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Manufacturing industries are continually exploring ways to optimize their manufacturing 

processes to improve production by maximizing raw materials usage and minimizing 

operational costs. Industry 4.0 brings a digital revolution to the manufacturing industries in 

which Machine learning, IoT, Big Data, Data Mining, and Image processing play a vital role 

in optimizing manufacturing processes. This thesis aims to examine how the manufacturing 

process in the veneer/LVL industry can be optimized by using data from veneer sheets and 

applying machine learning methods. To achieve the thesis objective, a comprehensive 

literature review has been conducted of the existing methodologies used in the veneer/LVL 

industry.  

 

In the empirical part of this thesis textural image data of veneer sheets is extracted and 

utilized to identify similar veneer sheets images after the drying process. Veneer sheets 

contain different variations in the textures; this thesis studied approaches to select the sheets 

containing high textures as well as low textures. A model has been developed in this thesis 

to select the candidate dry sheets with high and low textures after the drying process. Three 

approaches have been studied with Gray-Level Co-Occurrence Matrix (GLCM) and Canny 

edge detection methods on the image data set, and 20 features have been extracted from the 

image's texture. Future work and research required for further analyse the veneer sheet 

images with different edge detection methods are discussed. 
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EDA  Exploratory data analysis  
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FMS  Flexible manufacturing systems  

GAN  Generative adversarial networks 

GLCM Gray-Level Co-Occurrence Matrix 

GLVQ Generalized learning vector 

I4.0  Industry 4.0  

ICT  Information and communication technologies  

IDM Inverse difference moment 

IOC Information measures of correlation 

IoT  Internet of Things 

KDD  Knowledge discovery in database  

KNN  K-Nearest Neighbour  

KPCA  Kernel principal component analysis  

LDA  Linear Discriminant Analysis  

LVL  Laminated veneer lumber  

MA Metaheuristic algorithm 

MaaS  Manufacturing-as-a-Service  

MCC Maximum correlation coefficient 

ML  Machine learning  

MLP  Multilayer perceptron  

MSPC  Multivariate statistical process control  

PCA  Principal Component Analysis  



PLS  Partial Least Squares  

PLSR  Partial least squares regression  

PM  Primitive maintenance  

PMS  Process monitoring systems  

RDBMS  Relational database management schemas  

RNNs  Recurrent neural networks  

SA Sum average 

SAD Sum of absolute difference 

SDCM  Software-defined cloud manufacturing  

SE Sum entropy 

SED Squared Euclidean Distance  

SMOS  Smart manufacturing objects  

SOA  Service-oriented architecture  

SPC  Statistical process control  

SPCA  Sparse principal component analysis  

SPD  Social product development  

SPE  Squared Prediction Error  

SQL  Structure query language  

SS Sum of squares 

SV Sum variance 

SVD  Singular Vector Decomposition  

SVM  Support vector machine  
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1  Introduction 

1.1  Motivation and background 

This thesis focuses on the peeling-drying process optimization in the veneer/LVL industry 

using data mining methodologies and machine learning (ML) algorithms for image data. In 

recent years terms related to industry 4.0 such as “big data analytics”, “IoT”, and “machine 

learning” have become more common because the size of available data for analysis is 

exponentially increasing while the cost of data capturing is decreasing. In the last few years, 

the volume of structured and unstructured data has increased exponentially (Vialetto and 

Noro, 2020). In industry, exponentially increasing use of process operations, process control 

systems and information systems generate massive volumes of data, making the existing 

manufacturing databases gigantic. Furthermore, with improvements and advancements in 

IoT and image processing, the data collected from the smart manufacturing process will 

likely expand in multi-dimensions. 

In recent years, big data has received a lot of attention due to its significant impact on the 

optimization of manufacturing processes. Because of the widespread usage of distributed 

control systems (DCS) and improvements in information and communication technologies 

(ICT), industrial processes are increasingly running in an unpredictable and complex 

environment with challenging procedures and complicated constraints. (Belhadi et al., 

2019). 

1.2  Objectives and research questions 

This thesis focuses on, first, how to optimize the manufacturing processes using Industry 4.0 

big data analytics, IoT and machine learning. Secondly, a focused attempt is undertaken to 

develop a data-based method to identify similar veneer sheets after the drying process 

according to their textural features and grains. The motivation to identify veneer sheets is 

that implementing a full-fledged data-optimization of the veneer production process requires 

matching the dried (processed) sheet images with the original ones, which was only partially 
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possible at the time of writing this thesis (spring 2022). The Figure 1 shows the capturing of 

veneer images at different stages during the veneer/LVL manufacturing process. 

 

 

Figure 1. Capturing images of veneer sheets during peeling and drying process 

 

The research questions are formulated as follows based on the above description: 

1. According to the current literature, how Machine Learning algorithms have been 

applied in the data-based optimization of drying process specifically in the veneer / 

LVL industry? 

2. How to match peeling and drying sheet images to enhance the peeling-drying process 

in the given LVL-manufacturing case example?  

1.3  Data and methodology 

This thesis is based on quantitative research, and the data of this study is provided by Raute 

Corporation, which is composed of two parts. The first part contains captured images of 

peeling and drying veneer sheets after the peeling and drying process, and the second part 

contains black and white, “fingerprint” images of the same sheets produced with edge 

detection algorithms. Key methodologies applied in this thesis are methods of data mining 

and machine learning models. 

1.4  Structure of thesis 

This thesis consists of six chapters, First Chapter is about the introduction of the thesis 

consisting of motivation and background, objectives and research questions, methodologies, 

and thesis structure. Chapter 2 concentrates on theoretical background and consists of five 

sub-chapters. The first sub-chapter describes the industry 4.0 paradigm and the three main 
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pillars of Industry 4.0 related to this project. The second sub-chapter explains the theoretical 

core concept for the multivariate process control and process controls optimization in the 

manufacturing industry. The third sub-chapter explains the core principles of data mining 

and their importance in big data analytics specifically in manufacturing 4.0. This sub-chapter 

focuses on studies related to the data exploration, data pre-treatment methodologies for the 

industrial data, dimensionality, and noise reduction methods and lastly, this sub-chapter 

explains the importance of reliability and validity of the data as project uses the data obtained 

from different IoT devices on time intervals. The fourth sub-chapter explains the stages of 

data management after the data mining to be used in ML methods. This sub-chapter focuses 

on Data acquisition, Data storage, Data conversion, Feature engineering and data 

representation. Lastly, the fifth sub-chapter describes the relevant Machine learning methods 

from the literature. 

Chapter 3 consists of the Literature review related to industry 4.0. The first sub-chapter 

describes the followed Review methodology for the literature review related to the topic of 

this thesis. Chapter 4 consists of the description of the data and the methodologies applied 

in the manufacturing process. The first sub-chapter briefly explains the current 

manufacturing process from inputting of woodblock, its peeling, quality evaluation, and final 

output of the dried veneer sheets.  The second sub-chapter thoroughly explain the data 

structure and data types. How data is being collected and transformed from different data 

points such as peeled wet sheets images, sensors (temperature, humidity, light, pressure) and 

dry sheet image. Chapter 5 explains and interprets the results and the characteristics of the 

evaluation criteria, how the benchmarks are set, and quality evaluation decisions are made. 

The last chapter, Chapter 6 discusses key findings during and at the end of project 

implementation, answering the research questions, limitations, and lastly, the future research 

potentials to optimize the manufacturing process using big data analytics, IoT and image 

processing. 
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2  Theoretical background 

2.1  Industry 4.0 paradigm 

In 2013, the fourth industrial revolution was initiated by Germans as a decisive initiative to 

take an innovative position in industries that are revolutionizing the manufacturing sector. 

I4.0 has emerged as a prospective technological paradigm for extending and integrating 

industrial processes at inter- and intra-organizational levels, radically changing the 

manufacturing sector and its economic environment. The previous three industrial 

revolutions focused on increasing production led by mechanization, electrical energy, and 

information technology (IT) (Veza et al., 2015). During the first industrial revolution, the 

age of steam, manufacturing capacities were established with the use of water and steam 

energies. In the second industrial revolution, the age of electricity, electrical energy was used 

to accomplish mass manufacturing in the industries. 

The third industrial revolution, the age of information, digital and information technologies, 

broadened production automation. Flexible manufacturing systems (FMS) were introduced 

in this industrial revolution, which was made possible by adopting computer numerical 

control systems (CNC) and industrial robots. Computer integrated manufacturing (CIM) is 

made possible with computer aided processing planning (CAPP), computer aided 

manufacturing (CAM), and computer aided design (CAD) applications. In the fourth 

industrial revolution, Cyber physical systems (CPS) introduced a paradigm change in 

industries and businesses to improve productivity, particularly in the manufacturing industry 

(Lasi et al., 2014; Xu et al., 2018). 

The use of intelligent machines and technologies to digitally modify manufacturing 

processes is relatively new. Rapid advancement in information and communication 

technologies (ICT) has led to the development of I4.0. The underlying technology behind 

I4.0 is CPS, which makes manufacturing systems modular and flexible, allowing mass 

production of highly customized products. The development and technological advancement 

in I4.0 will provide a series of feasible solutions for the expanding need for informatization 

in the manufacturing industry. This viability is demonstrated by the fact that an increasing 

number of businesses are investigating the benefits of digitizing their horizontal and vertical 
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supply chains by adopting I4.0 to become leading digital businesses in tomorrow’s complex 

industrial manufacturing ecosystems (PWC, 2016). Due to swift and revolutionary changes 

in the industry, information is transferred in a short period, globalizing the markets, and 

resulting in intense competition between companies that were never observed before (Rajnai 

and Kocsis, 2018).  

The main objective of I4.0 is to make traditional factories and manufacturing processes 

intelligent to achieve higher levels of operational efficiency, productivity, and automation. 

By incorporating sensors, autonomous systems, and actuators into the manufacturing 

process, I4.0 makes factories smarter, more dynamic, and adaptive. As a result, machines 

and equipment can self-optimize and automate to a high degree. In addition, the production 

process is capable of meeting more complicated requirements and product quality standards 

(Roblek et al., 2016). 

Implementation of I4.0 must be interdisciplinary with close contact between different vital 

areas (Alcácer and Cruz-Machado, 2019). Multiple technologies are available for 

implementing I4.0: Additive Manufacturing (AM), Artificial Intelligence (AI), Automation 

and Industrial Robots, Big Data and Analytics (BDA), Blockchain, Internet of Things (IoT), 

Cloud Computing (CC), Cyber-Physical Systems (CPS), Industrial information integration, 

Simulation and Modelling, and Visualization. With enabling technologies, tools, and 

methods, I4.0 helps in reducing manufacturing costs and improving time efficiency and 

product quality. As a result, I4.0 will accelerate the manufacturing industry to achieve 

exceptional operational efficiency and improved productivity (Lu, 2017). 

I4.0 is an approach for developing an interaction system enabling manufacturing production 

lines and products to communicate through a connected smart factory (CSF); there are six 

underlying design principles of I4.0, as in Figure 2 (Nascimento et al., 2019). CSF is a 

methodology designed to construct a highly interlinked network-based integrated 

manufacturing model that provides real-time monitoring and autonomous control of the 

whole manufacturing process. Optimizes supplies, energy, and raw material usage and adds 

value through the coordinated cooperation of products and services, resulting in low 

production costs and high-value products. CSF is the outcome of applying a new paradigm 

to the industry called ICT-based smart (manufacturing, building, grid, etc.), where machines 

enable automatic manufacturing through simulation (Park, 2016). 



17 

 

 

Figure 2. Basic design principles of I4.0 (Adapted from Nascimento et al., 2019) 

 

CPS communicates over the IoT to connect infrastructures, machines, human users, and 

processes across organizational units, enabling integration between the physical and virtual 

environments by using sensor devices, actuators, and computational resources to broadcast 

data in real-time for decentralized decision-making processes (Trappey et al., 2016).  

2.1.1  Internet of things 

(Sezer et al., 2018) describes the Internet of Things as “IoT allows people and things to be 

connected anytime, anyplace, with anything and anyone, ideally using any path/network and 

any service.” According to (Bortolini et al., 2017), IoT is the ubiquitous presence with the 

common goal of different objects interacting and collaborating to digitize physical systems. 

The internet has dramatically changed the way how we live, allowing people to communicate 

in a virtual environment in several contexts covering professional and social relationships. 

IoT is adding a new dimension to this process by enabling connectivity to and between smart 
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devices, thus leading to the goal of communicating “anytime, anywhere, any media, 

anything.”  

The potential offered by the IoT enables the development of a vast number of applications, 

only a tiny fraction of which are currently available to our society. Most of these are the 

domains and environments in which these applications of IoT are improving the quality of 

our lives, such as smart manufacturing, smart factories, e-health, smart homes, smart cities, 

and energy management. According to a UN report, a new age of ubiquity is approaching, 

in which internet traffic generated by humans will be overshadowed by the networking of 

everyday objects (Atzori et al., 2010).  

The internet of things is a paradigm that is exponentially gaining popularity in today's 

wireless telecommunications era; the main idea behind IoT is the ubiquitous presence of 

various types of objects around us, such as sensor devices, radio-frequency identification 

(RFID) tags, mobile devices, and actuators, that can communicate and cooperate to achieve 

common goals using unique addressing protocols (Giusto et al., 2010). The development of 

IoT and I4.0 is interlinked; in fact, IoT is the trend and direction of the I4.0. IoT comprises 

two terms: Internet and Things; The first refers to a network-oriented vision, while the 

second focuses on the integration of things to share data by following standard protocols 

(Atzori et al., 2010; Gubbi et al., 2013).  

(Gubbi et al., 2013) presents a taxonomy from a high-level perspective to define the required 

components of the Internet of Things. There are three major components, Hardware, 

Middleware, and Presentation, that enables the unified ubicomp for IoT. Hardware is based 

on communication devices, actuators, and sensors, middleware is based on computing tools 

and storage, and presentation is based on visualization. Visualization provides deep insights 

and concise interpretation tools that can be accessed on various platforms and can be tailored 

for specific applications. Visualization is critical for IoT applications because it lets users 

interact with the environment to monitor the process and make decisions in real-time. 

IoT can be added to the historical list of forces that drove last three industrial changes 

(mechanization, electricity, and information technology). The changes that I4.0 brings with 

itself will make it the global language for smart manufacturing. I4.0 guarantees to improve 

and increase the manufacturing productivity by fifty percent and to reduce the utilization of 

required resources to half (GTAI, 2018). Digitalization of information can be utilized to 
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change production patterns by using virtual models of the current physical environment and 

sensor data to meet manufacturing objectives (Peruzzini et al., 2017). Networking of the 

products over the IoT enables the whole manufacturing process to connect, transforming the 

factories with different value streams into a smart environment (Kerin and Pham, 2019). 

2.1.2  Intelligent manufacturing 

Traditional enterprises are facing new business challenges due to globalization, mass 

customization and competitive business environments (Simmert et al., 2018). I4.0 introduces 

new opportunities that can potentially change the current manufacturing processes in the 

companies. With the acceptance and growth of digital technologies over the past years, 

technologies can affect different processes differently; some techniques have cross-sectional 

effects on all processes, while some focus only on one specific process. The area which is 

highly impacted by I4.0 is manufacturing, enhancing the production process to optimize the 

operational performance, product or service development and supply chain planning (Zheng 

et al., 2020). 

Intelligent manufacturing is a multidimensional concept that optimizes production processes 

through advanced data analysis, manufacturing technologies, and system engineering. It is a 

new manufacturing model to improve the design, production, management, testing, and 

integration of a product throughout its life cycle with the implementations of intelligence 

science and technology. In I4.0, an integrated management system (IMS) employs service-

oriented architecture (SOA) to offer collective, adaptable, reconfigurable, and customizable 

services to end-users over the network, resulting in a highly unified human-machine 

manufacturing architecture. 

The agent paradigm is observed as one of the most effective ways of achieving intelligent 

manufacturing (Lu, 2017). The word “agent” refers to a process or entity designed to 

accomplish a task constantly and independently in a non-deterministic context with other 

processes and elements. Agents perform tasks in a condition from which they are separated 

and have their own knowledge and understanding of their surrounding environment; they 

employ preference in interacting within their environment, developing plans, making 

autonomous choices, and performing actions to change the environment (Adeyeri et al., 

2015). The multi-agent system describes autonomous and intelligent entities as agents or 
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entities that can work together to achieve global tasks. The fundamental requirement for 

collaboration arises from the reality that agents lack sufficient information to make decisions 

that can be applied globally (Tang et al., 2017). The author presented a cloud-assisted self-

organized architecture (CASOA) based on smart agents and the cloud computing to 

communicate and interact over the network for agent-based manufacturing in the perspective 

of I4.0 and classified agents into four types according to their functionalities: machining 

agents, product agents, suggestion agents, and conveying agents.  

AI performs an integral part in IMS by offering particular features such as learning, 

analysing, and responding. Human participation in the information management system can 

be minimized by applying AI. For example, raw material and production components can be 

organized automatically, and production operations can be controlled and monitored in real-

time. With the continuous acceptance of I4.0, autonomous sensing, intelligent decision-

making, smart interconnectivity, learning, and analysis are becoming a reality (Zhong et al., 

2017). 

Intelligence and digitalization are applied from the procurement of raw material to the 

production system, product consumption, and the end of the product’s life (Lu, 2017). I4.0 

provides horizontally and vertically value-added integration in the industrial process. The 

horizontal approach integrates value-creation modules across the entire product lifecycle, 

from material flow to logistics. Whereas the vertical approach combines product, machine, 

and user requirements with several aggregation levels of value-creation and production 

systems (Castelo-Branco et al., 2022; Lu, 2017; Veza et al., 2015). (Shafiq et al., 2015) stated 

three approaches of integrations in the industrial process, horizontal, vertical, and end-to-

end, to achieve the design principles of I4.0. The author also presented three levels of 

integration at which virtual manufacturing can be integrated: virtual processes, virtual 

devices, and virtual factories. The integration of these three virtual levels will assist in 

building the architecture of I4.0 in order to achieve higher levels of smart machines, 

industrial automation, and semantic analytics.  

End-to-end digital integration refers to a universal digital engineering concept that reduces 

the gaps between product designing, production, and the customer. There are two 

approaches, application pull and the technology push, through which I4.0 drives 

manufacturing. Technology push requires higher degrees of automatization, digitalization, 
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networking, and miniaturization, whereas application-pull generates dynamic changes as a 

result of a new generation of industrial infrastructure (Lasi et al., 2014).  

IoT plays an integral part in the architecture of intelligent manufacturing; IoT-enabled 

manufacturing is a cutting-edge approach that transforms traditional manufacturing devices 

into smart manufacturing objects (SMOs) that can connect, communicate, and interact with 

one another to execute manufacturing logic automatically and adaptively (Zhong et al., 

2017). The manufacturing process in I4.0 will require more microcontrollers, actuators, 

sensors, autonomous systems, advanced methods of data analytics, CPS, and ECM due to 

the rapid development of technologies (Lasi et al., 2014; Lu, 2017). 

Cloud-based manufacturing (CBM) is a technology that has the potential to considerably 

assist in the implementation of I4.0. Figure 3 shows the characteristics of cloud-based 

manufacturing. Similar to cloud computing, CBM uses resources that are highly distributed 

over a network which is increasing acceptability of the Manufacturing-as-a-Service (MaaS) 

in the industry (Xu et al., 2018). Cloud technologies are helpful towards the implementation 

of CBM by minimizing the setup and maintenance cost and increasing scalability through 

virtual resources (Nascimento et al., 2019). (Thames and Schaefer, 2016) presents software-

defined cloud manufacturing (SDCM) based on the network of software and hardware 

elements communicating over a TCP/IP. The purpose is to use elements that make up a I4.0 

system, such as an Industrial internet of Things (IIoT), CBM, or social product development 

(SPD), individually or in combination.    
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Figure 3. Characteristics of cloud-based manufacturing (Adapted from Thames and 

Schaefer, 2016) 

 

It is crucial to understand that a company’s digital transformation is not just about investing 

in the advancement and implementation of technology. It is also based on the business 

strategy and both internal and external business processes. Digitalization in an organization 

is not a one-time event but an advancement through several steps including technological 

and organizational changes (Rajnai and Kocsis, 2018). (Peruzzini et al., 2017) points out that 

factories are made up of more than just machines; there are also human operators in the 

factories that collaborate with machines and each other in various ways, such as performing 

jobs, regulating, and monitoring the process, and interpreting machine results. People may 

therefore be seen as "things" in a smart factory to be monitored and connected to one another 

and the machines. Despite advancements in production line automation, humans perform 

essential roles in factories and are primarily responsible for smooth production and high 

product quality. 



23 

 

2.1.3  Big data analytics 

The amount of data generated by industrial systems has been rapidly increasing as a result 

of developments in IoT, 5G, and CC technologies. Improvements and advancements in 

product design, manufacturing processes, and primitive maintenance (PM) have been 

achieved because of the effective use of industrial data. Big Data Analytics has been 

identified as a vital component in the development of intelligent industrial systems (Wang 

et al., 2022). Humans, machines, and nature all contribute to the generation of data. With the 

advancement of technologies and services, an enormous volume of data is generated from 

several sources, which might be structured, semi-structured, or unstructured (Ishwarappa 

and Anuradha, 2015). 

I4.0 brings a new era of the industrial revolution, which accelerated the integration of 

information technology with the industrial systems, and enterprise data has become 

increasingly rich (Wang et al., 2022). The continuous manufacturing process, multiple 

sensors, and real-time data generation and transfer make the data have three characteristics 

(3 V’s): Volume, Variety, and Velocity (Belhadi et al., 2019; Gandomi and Haider, 2015; 

Hashem et al., 2015; Jagadish, 2015; Kerin and Pham, 2019; Philip Chen and Zhang, 2014; 

Wang et al., 2022). These 3 V’s were the initial suggestions for characterizing big data as 

these are the three main aspects that surfaced as a base framework for data management and 

manipulation challenges.  

Other dimensions, as in Figure 4 big data challenges, including volatility, variation, veracity, 

validation, verification, vision, and value have been sought to assign for a better 

characterization of big data in order to continually analyse a substantial volume of 

unstructured data acquired from several different sources (Alcácer and Cruz-Machado, 2019; 

Belhadi et al., 2019; Gandomi and Haider, 2015; Hashem et al., 2015; Ishwarappa and 

Anuradha, 2015; Sivarajah et al., 2017). (Wang et al., 2022) stated that industrial data has 

also been characterized as multi- sources, multi-dimensions, multi-noise, imbalanced, and 

time series.  
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Figure 4. Big data challenges (Adapted from Sivarajah et al., 2017) 

 

The volume presents the most immediate challenge to conventional IT structures. The main 

benefit of big data analytics is the advantage gained from the potential to process enormous 

volumes of data (Ishwarappa and Anuradha, 2015). The structural heterogeneity in data is 

called variety (Gandomi and Haider, 2015) generated in multiple formats from multiple 

sources based on multidimensional data features (Alcácer and Cruz-Machado, 2019). 

Advancement in technology allows organizations to process different types of structured, 

semi-structured and unstructured data. Structured data consists of five percent of all existing 

data in the form of tables available in worksheets or relational databases (MySQL, Microsoft 

SQL Server, Oracle etc.). Raw text, audios, images, and videos are examples of the 

unstructured data that need to be transformed into a structured form for the analysis by the 

machines. Manufacturing industries have been collecting such data from internal resources 

(sensors, production lines) and external sources (marketing campaigns, social media). With 

the development of new data management and data analytics tools enables the companies to 

utilize data in their business processes, which is one of the pioneering aspects of smart 

manufacturing (Gandomi and Haider, 2015). 
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Velocity refers to the rate at which data is being generated as well as the rate at which it 

should be examined and acted upon (Alcácer and Cruz-Machado, 2019; Belhadi et al., 2019; 

Hashem et al., 2015). Veracity represents the inaccuracy or irregularity in the data, such as 

outliers, noise, and missing values (Alcácer and Cruz-Machado, 2019). IBM introduced this 

term as the fourth V for the big data characteristic. For example, Sentiments on social media 

are unreliable since they involve an individual’s judgement. They do, however, include 

useful information resulting in the requirement to deal with inaccuracy and uncertainty in 

the data as an additional aspect of big data that can be addressed by utilizing tools, 

methodologies, and analytics designed for the mining and management of uncertainty in the 

data (Gandomi and Haider, 2015). 

Variability is the term used to describe the variation in data flow rates (Alcácer and Cruz-

Machado, 2019; Belhadi et al., 2019; Gandomi and Haider, 2015; Sivarajah et al., 2017). 

The SAS introduces variability and complexity as two new dimensions of big data (Belhadi 

et al., 2019; Gandomi and Haider, 2015). Velocity of big data is often inconsistent, with 

frequent peaks and troughs. The complexity of big data is defined by the fact that it is 

generated from different sources, which poses a significant challenge in connecting, 

matching, cleaning, and transforming data generated from multiple sources (Gandomi and 

Haider, 2015). 

Value is the most essential characteristic of big data. According to Oracle's (2021) definition, 

BD is generally characterized by "low-value density." That is, when data is received in its 

raw form, it does not have much value as compared to the volume of the data. However, 

analysing vast volumes of such data can yield a high value (Belhadi et al., 2019; Gandomi 

and Haider, 2015).  

Data-driven and model-driven approaches are the two primary paradigms for BDA. Model-

driven paradigm refers to the process of developing a solid understanding of how a physical 

system works. It is an effective technique based on a detailed understanding of a system and 

can take advantage of scientifically proven relationships. Data-driven is a model-free 

approach and is based on the correlation between the parameters of a system indicating its 

status and estimates predicted by different ML methods with high accuracy for optimization 

(Wang et al., 2022). Due to the widespread usage of distributed control systems in the 

manufacturing industry over the last few decades, massive volumes of data have been 

generated. It can be challenging to develop first-principal models because of their immensely 
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complex processes, whereas data-driven process modelling, monitoring, control, and 

prediction have recently gained significant attention (Ge et al., 2017).  

Figure 5 illustrates applications in manufacturing industry that are based on data driven 

paradigm. Industrial big data allows industries to precisely perceive changes in the system's 

internal and external environment by enabling scientific analysis and decision-making to 

improve productivity, reduce costs, and enhance operating efficiency. Industrial data can be 

seen as a way to promote smart manufacturing, which in results brings new business models 

to promote socioeconomic development (Wang et al., 2022). 

 

 

Figure 5. Dig data applications in manufacturing industry (Adapted from Wang et al., 

2022) 

 

Organizations require effective methods to transform enormous amounts of fast-moving and 

diverse data into actionable insights to make these data-driven choices. Figure 6 shows the 

stages of extracting deep insights from big data. Data management and analytics are two 

critical sub-processes of extracting insights from big data. The methods and technologies 

used to capture, store, process, and retrieve data for the analysis are referred to as data 
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management. Whereas analytics refers to the techniques for analysing and extracting 

information from large amounts of data.  

 

 

Figure 6. Steps for extracting deep insights from big data (Adapted from Gandomi and 

Haider, 2015) 

 

Big data is defined by data collection and storage, but data analysis and extracting 

meaningful insights from unstructured data is its core feature, and without it, big data is 

useless. Big data can provide systematic guidance for manufacturing processes over the 

entire product lifecycle, ensuring cost-effective and fault-free operation and assisting 

management with decision-making and solving problems related to the manufacturing 

process. The ability to generate value through big data provides advantages to businesses 

(Alcácer and Cruz-Machado, 2019). 

Advanced data analysis is required to explore data and it depends on the type of insights 

required as in Figure 7. Offline and real-time data can be analysed and mined using cloud 

computing (CC) and by applying advanced analytics methodologies: machine learning 

forecasting, semantic analysis, sentiment analysis, network analysis, and simulation. Data 

insights derived from a large amount of data let manufacturers understand the various 
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product lifecycle stages. Furthermore, advanced big data analytics can be utilized to detect 

and resolve bottlenecks caused by data generated by IoT devices in intelligent manufacturing 

(Alcácer and Cruz-Machado, 2019). 

 

 

Figure 7. Big data analytics methods (Adapted from Sivarajah et al., 2017) 

 

In order to promote evidence-based decision-making, Organizations require efficient 

strategies for processing vast amounts of heterogeneous data into meaningful data insights. 

Big data can improve decision-making and improve organizational production; by applying 

analytical methods to extract deep insights from data (Sivarajah et al., 2017), as shown in 

the Figure 8. 

 

 

Figure 8. Big data analytics techniques (Adapted from Belhadi et al., 2019)  
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The benefits of big data are significant and undeniable, but there are plenty of challenges 

that must be handle before the full potential of big data can be realized. These challenges in 

big data can be categorized into three groups (Sivarajah et al., 2017).  

1. Data challenges in big data are related to the data characteristics, commonly known 

as the V’s of big data, as in Figure 4. 

2. Process challenges are the collection of issues that appear during the data processing 

and analysis that can arise during data collection, interpretation or pre-processing and 

presentation of the results. These challenges are related to the how approaches: How 

to collect, integrate, transform, select a suitable model, and interpret the findings. 

Process challenges are divided into five steps, as shown in the Figure 9. 

 

 

Figure 9. Process challenges (Adapted from Wang et al., 2022) 

 

3. Management challenges arises during retrieving, handling, and governing of data, 

such as privacy of the data, data sharing, and data ownership. Personal data, financial 

transactions, or other sensitive data belonging to individuals and organizations are 

stored in databases. Organizations must guarantee a secure infrastructure that allows 

each employee and staff to only access relevant data for which the employee is 

authorized. 

BDA has been significantly improved with the developments in AI. With the implementation 

of AI, industrial data can be effectively explored for intelligent manufacturing. Continuous 

learning from big data enables a manufacturing process to learn, optimize, and regulate itself 

(Wang et al., 2022). Furthermore, as manufacturing industries become more complicated 

and knowledge-intensive, enormous amount of data is generated from I4.0 applications. The 

drawbacks of heterogeneous data will impede industrial advancement. As a result, big data 
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management has become a significant problem; depending on the security and safety 

protocols, CC architecture can be utilized to overcome data management issues. Data 

mining, machine learning, and CC will determine the future of big data analytics (Lu, 2017). 

2.2  Theoretical core concepts 

One of the main goals of industrial operations that handle biomaterials of varying quality, 

such as wood, is to use effective control systems to reduce the unpredictability of the end 

products and ensure that they meet the required quality standards. For this purpose, Industrial 

facilities use statistical process control (SPC) and multivariate statistical process control 

(MSPC) to monitor process flows continually and adjust process parameters as needed 

(Lestander et al., 2012). 

2.2.1  Process control and optimization 

By analysing patterns of the manufacturing data and correlations between features, valuable 

information can be retrieved. Statistical models for several applications, including process 

monitoring, fault detection, and quality factor indicators, can be implemented using such 

information (Ge et al., 2017). In manufacturing and chemical industries, SPC techniques 

have become essential for monitoring the performance of a process to detect any unusual 

events. Improvements in the manufacturing processes and product qualities can be achieved 

by identifying and removing issues (Kourti et al., 1996). After training and validating a 

model, the trained model can be applied for online or offline process control applications to 

monitor a manufacturing process’s operational status by fault diagnosis, fault classification, 

dimensionality reduction, trend analysis, and quality prediction.  

Squared prediction error (SPE) and Hotelling’s T2 are commonly implemented in 

multivariate process control methods. The process’s desirable and undesirable operating 

conditions can be distinguished by setting control limits for these monitoring indicators. The 

objective of fault diagnosis is to provide a detailed explanation for the indicated fault in an 

industrial process. Based on the fault detection method applied, the underlying cause of the 

defect can be identified in a specific component, sensor, or actuator (Ge et al., 2017). The 
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majority of quality improvement applications are categorized into five types, as shown in 

Figure 10.  

 

 

Figure 10. Applications of quality improvement (Adapted from Cheng et al., 2018) 

 

Parameters optimization (see Fig. 10) provides the optimal number of process related 

parameters to deliver the required quality based on learned features of a high-quality product 

or a process. These parameters can be utilized as control chart boundaries or assist in 

developing an accurate model. Quality classification divides product quality into multiple 

levels and employs effective measures to improve the quality of a product based on the level 

predicted ahead of time. Process monitoring monitors the production process and detects any 

unusual patterns. It supports identifying and resolving the source of signals outside the 

control limits or the point where quality changes as soon as possible. Processes 

characterization identifies features or parameters that impact quality, then classifies these 

features or parameters according to their level of significance. When the output is a real 

value variable, quality prediction builds a model that correlates the input variable features 

with the output and uses it to forecast the quality of a given set of input parameters (Cheng 

et al., 2018). 

2.2.2  Multivariate statistical process control 

In the manufacturing industry, there are several cases where concurrent monitoring or 

handling of two or more process quality components is required. Multivariate statistical 

process control refers to scenarios in which numerous interlinked process variables of 

interest are monitored (Bersimis et al., 2009). When multiple monitoring parameters are 
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included to control micro fluctuations in the manufacturing process, SPC becomes more 

complicated, potentially resulting in information overload for process operators. 

In order to reduce a large set of variables into a small number of components, MSPC uses 

multidimensional data analysis techniques, and shows the results in charts along with process 

limits. This allows the monitoring system to integrate a large number of parameters while 

maintaining a broad perspective of enormous datasets (Bersimis et al., 2009; Lestander et 

al., 2012). PCA and PLS are multivariate statistical projection methods that can handle 

enormous volumes of data and compress the information into low-dimensional latent 

variable components, making monitoring and interpreting results more manageable (Kourti 

et al., 1996). Any multivariate process control approach must fulfil the four conditions: (i) 

Is the process in control? (ii) An overall likelihood for the occurrence of event “Process 

detects an out-of-control erroneously condition” (iii) correlation among the variables (iv) 

What is the problem if the process is out-of-control (Bersimis et al., 2009).  

(Lestander et al., 2012) uses PCA and PLSR to simulate an effective MSPC based on data 

from the wood pellet manufacturing process to classify deviations in the supervised 

parameters over a period in order to forecast wood pellet dryness and to identify the 

possibilities of using MSPC for monitoring and predictions in the wood pellet industry. 

(Tiryaki and Aydin, 2022) did a study on multivariate Hotelling T2 statistical process control 

in terms of various quality characteristics that are used to monitor the manufacturing process 

of medium density fiber boards. The quality attributes that contributed the most to each 

signal were identified by decomposing T2 values. 

 

2.3  Data mining 

Data mining is a process of extracting information from data by applying machine learning 

techniques. Data generated from the manufacturing process can be divided into three 

categories: operational data, non-operational data, and metadata. Data patterns, correlations, 

and linkages among these data formats can provide deep insights (Luo, 2008). Data mining 

may be defined as the process of determining correlations in large databases by applying 

multiple levels of analysis. It is a high-potential and robust tool that assists organizations or 
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businesses in increasing sales and profit and optimizing the manufacturing process from the 

available data (Agarwal, 2014). 

According to (Luo, 2008), it is a knowledge discovery method in which data is analysed 

from multiple dimensions and summarized into meaningful information, that can be used to 

increase revenue, enhance production, optimize resource utilization and cost. Data mining is 

a rapidly growing field of study that is the intersection of multiple disciplines: statistics, 

databases, AI, data visualization, and CC. Data mining provides valuable information that 

standard queries or reports cannot deliver efficiently. 

Data mining is an essential component of the Knowledge discovery in database (KDD) 

process (Luo, 2008). Figure 11 shows the KDD methods for the process industry, and Figure 

12 shows the complete overview of knowledge discovery in a process industry. 

 

 

Figure 11. Knowledge discovery methods in the process industry (Adapted from Zhang et 

al., 2018) 

 

KDD process as in Figure 12, including data integration, data pre-processing, data 

warehouse, data selection, and data transformation are used to handle and prepare data. 
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Whereas data mining, data analytics, and pattern evaluation are used to extract deep insights 

from the processed data (Agarwal, 2014; Luo, 2008). Data mining techniques can be 

generally categorized into descriptive and predictive. Descriptive data mining methods 

(association, generalization, clustering, and sequence pattern mining) are applied when a 

dataset's properties and structure have to be explored. Predictive data mining methods 

(classification, prediction, exception knowledge mining, and time series analysis) are 

applied to forecast or predict the trends in the data (Cheng et al., 2018). 

 

 

Figure 12. Process industry KDD (Adapted from Ge et al., 2017) 

 

By incorporating data mining insights into process monitoring systems (PMS) and decision 

support systems (DSS), process optimization can be achieved through closed-loop feedback 

gathering system and early rectification of manufacturing process faults. Data mining and 

analysis techniques hold an essential relationship between operational and information 

technologies in order to form advanced process control systems (APC) that allow cognitive 

and self-learning abilities to handle real-time data in decision-making systems (Belhadi et 

al., 2019). 
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Data mining tasks are diverse and distinct because multiple hidden patterns exist in extensive 

datasets. Different data mining techniques are required to extract distinct patterns from a 

dataset. Data association, data summarization, data clustering, data trend analysis, and data 

classification are the techniques that can be classified according to the patterns or deep 

insights found in a dataset. These techniques are inherited from multiple research areas: ML, 

statistics, probability, and association rules (Luo, 2008). 

2.3.1  Data exploration 

It will not be easy to understand, analyse and apply information if the information extracted 

from data mining techniques cannot be presented in a simple and straightforward way. 

Existing data mining approaches do not provide visual analysis, exploration, and 

optimization of data sets. Data visualization is an important phase of data analysis since it 

helps in analysing outliers, selecting features, and tweaking the ML processes. 

Data can be visualized in several ways, such as heatmaps, histograms, or two-dimensional 

scatter plots that summarize several complicated correlations into simple, instructive plots. 

For example, using histograms and violin plots during Exploratory data analysis (EDA) 

helps identify outliers and prune the data (Komorowski et al., 2016; Ward et al., 2018). EDA 

minimizes presumption and assists in applying optimal models for further exploration. In 

simple terms, it is utilized to visualize and extract important but less evident information 

from data. EDA applies a number of techniques, including descriptive statistics and 

visualization methods, for in-depth exploration of a dataset.  

Data patterns should be thoroughly analysed to fully understand the dominant behaviour and 

unique characteristics in the data. It helps in determining advanced statistical methods that 

should be applied to data to extract meaningful information. It also helps in determining the 

scale on which data is originally represented is applicable or not (Camizuli and Carranza, 

2018). (Komorowski et al., 2016) presented a few exploratory data analysis techniques 

according to the data types (Table 1) and objectives of data analysis (Table 2). 
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Table 1. EDA methods according to data type (Adapted from Komorowski et al., 2016) 

Data Type EDA method 

Categorical  Descriptive statistics (mean, median, mode, SD, Variance) 

Univariate continuous Scatter plots, Line plots, Histograms 

Bivariate continuous XY scatter plots 

Two dimensional arrays Heatmaps 

Multi-variate 3D scatter plots 

Multi groups Box plots side-by-side 

 

 

Table 2. EDA methods according to objective (Adapted from Komorowski et al., 2016) 

Objective EDA method 

Distribution of a feature Histograms, Kernel density estimation 

Outlier identification Scatter plots, Histograms, Box plot 

Relationship between two features Scatter plot with covariance curve and correlation  

Relationship between two input 

features and one outcome feature 

Heatmaps 

Multi-dimensional data visualizations PCA or t-SNE 

 

When graphically examining the data distribution, it is apparent that the distributions of the 

features might seem quite different. Instead of graphically analysing range of data 

distributions, it may be preferable to characterize the data distribution using statistical 

parameters to describe the data in terms of central tendency (minimum value, maximum 

value, arithmetic mean, geometric mean, median, mode), data spread (minimum value, 

maximum value, interquartile range, variance, standard deviation), and data distribution 

(kurtosis, skewness) (Komorowski et al., 2016; Reimann et al., 2008). 

2.3.2  Data pre-processing and cleaning 

Data pre-processing is a collection of techniques used to eliminate inconsistencies and noise 

from data in order to improve data mining performance. Data integration, cleansing, 

selection, and transformation are some of the essential data pre-processing methods. In data 

analysis, data pre-processing techniques are applied to structure the data because 

unstructured data having inconsistencies (outliers and missing) cannot be utilized directly 

for data mining (Agarwal, 2014). Figure 13 presents the categorization of data pre-

processing methods into different subcategories. 
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Figure 13. Categorization of data pre-processing methods (Adapted from Nguyen et al., 

2019).  

 

Feature extraction is a technique for developing new features dependent on the original input 

features to decrease the high dimensionality of the feature vector without losing valuable 

data (Zebari et al., 2020). The process of integrating data from numerous resources and 

loading it in a data warehouse is known as data integration. Databases, data cubes, and text 

files can all be used as data sources. Data heterogeneity and redundancy is the most 

significant challenge of data integration.  

Data transformation is the process of converting raw data into a uniform format required for 

data mining (Agarwal, 2014; Sun et al., 2018). The data transformation technique filters and 

summarizes data according to the objectives of data mining. Directional, planned data 

aggregation can make data analysis more efficient. Data transformation consists of data 

aggregation, data smoothing (noise removal), and data normalization.  

Data normalization is required to scale down the data into smaller range like [0,1], which is 

helpful in avoiding the data properties being dependent on the measurement units that can 

influence the model results. Min-max, zero mean, and fractional scale are the most used 
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normalization methods to normalize the data. Normalization approaches perform better on 

NN or classification algorithms based on distance measure (Sun et al., 2018).  

Feature engineering is described as the “Process of using domain knowledge of the data to 

create features that make machine learning algorithms work more efficiently” (Zhang et al., 

2018). (Agarwal, 2014) states feature engineering is a process of new attribute constructions 

based on existing attributes. For example, the area attribute can be created if height and width 

are available in the data.  

Data reduction techniques are applied to massive datasets having multiple features to get a 

derived version of the data while preserving the veracity of the original data. Data reduction 

techniques include aggregation of the data cube, selecting the subset of attributes, 

dimensionality and numerosity reduction, and concept hierarchy. Raw data inputted from 

different or identical sources may contain many inconsistencies in measuring units or 

recorded values, so data cleaning techniques must perform on such inconsistent data for 

accurate results (Agarwal, 2014; Xu et al., 2015; Zhang et al., 2018). Generally, data 

cleaning is based on four steps, as shown in Figure 14. 

 

 

Figure 14. Data cleaning steps (Adapted from Xu et al., 2015) 
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The simplest method for handling missing values is to ignore the data row; however, this is 

not a preferable option unless the missing ratio of the data is relatively large. One way to 

calculate the missing value is by calculating the mean value of the available data in a feature 

and replacing the missing value with it. Regression is a highly effective technique that can 

be used to calculate the missing value; it is a statistical approach that can be used to fill in 

missing data by statistically estimating the missing value (Agarwal, 2014; Xu et al., 2015). 

(Xu et al., 2015) presented a detailed overview and selection of missing value imputation 

methods: mean replacement, regression replacement, hot deck replacement, MLP, fuzzy 

similarity-based, pairwise, and likewise deletion, EM, matrix factorization, decision trees, 

random forests, and maximum likelihood. 

Outliers are observations that do not exhibit constant statistical relation with the majority of 

the data set. Before applying data mining methods, outliers should be removed from the data 

as these can influence the model parameter estimation results and data analysis process. In 

the manufacturing industry processes, outliers can arise due to multiple reasons, including 

sensor failure and improper processing of missing data. Outliers can be of univariate or 

multivariate. Univariate outliers appear in the context of a single feature, whereas 

multivariate appears when a combination of variables violates a specific threshold (Xu et al., 

2015). (Xu et al., 2015) also presented a significant overview and assessment of outlier 

detection techniques, shown in Figure 15. 

 

 

Figure 15. Outlier detection methods (Adapted from Xu et al., 2015) 

 

Outliers are not always bad; sometimes, outliers provide helpful information that can lead to 

the unearthing of new information (Cheng et al., 2018; Xu et al., 2015). Sometimes outliers 

are difficult to identify because they involve an expansion of unseen regions. Detecting 

outliers become more difficult because noise distorts common data value, making it 



40 

 

impossible to distinguish between average data value and outliers. (Agarwal, 2014) presents 

a five steps process for outlier analysis: (i) Input data for data cleaning (ii) Applying 

algorithms to distinguish the outliers from the common values (iii) Presentation of an outlier 

(iv) Describing the profile of the outlier (v) Exploring outliers. 

2.3.3  Dimensionality reduction and de-noising 

Data analysis has become much more complicated due to recent trends in gathering large 

and diverse datasets. One of the characteristics of such large datasets is that they contain 

significant levels of redundancy. The use of massive multidimensional data brings increased 

noise, redundancy, and the likelihood of unrelated data entities (Houari et al., 2016). The 

process of transforming a multidimensional data representation into a low dimensional 

representation is known as dimensionality reduction. 

The use of multiple dimensionality reduction techniques has become widespread in many 

areas of application due to the massive growth of multidimensional data. Furthermore, a 

number of new techniques are constantly emerging. Dimensionality reduction techniques 

take a multidimensional dataset and transform it into a low-dimensional dataset while 

preserving as much of the data’s original meaning. The low-dimensional approximation of 

the original data helps in resolving the curse of the dimensionality problem. Data in low 

dimensions is simple to examine, process, visualize and interpret (Zebari et al., 2020).  

In scientific studies and industrial production, multidimensional data is ubiquitous. It 

provides ample information but also poses significant challenges to data mining and pattern 

recognition methods due to its sparseness and redundancy. Dimensionality reduction is 

essential in pattern recognition methods to reduce the noise and redundancy in the data and 

to improve the efficiency and classification accuracy of the learning algorithm (Velliangiri 

et al., 2019). Several benefits can be achieved by applying dimensionality reduction 

techniques to multidimensional data. (i) Storage space required by multidimensional data 

can be optimized and reduced when the data is transformed into lower dimensions, (ii) 

Processing time can be reduced, (iii) Data redundancy, irrelevancy, or noise can be 

eliminated, (iv) Data quality can be enhanced, (v) Certain algorithms do not perform well 

when the data is in multi-dimensions, so reducing data dimensions helps algorithms perform 

efficiently and improve accuracy results, (vi) Exploratory data analysis of multidimensional 
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data is complicated, so reducing data dimensions may help in clearly developing and 

analysing patterns, (vii) It simplifies the classification process and enhances efficiency.  

Dimensionality reduction methods can be classified into feature selection and feature 

extraction approaches. Feature selection is considered the most crucial technique; some 

major multidimensional challenges can be handled by applying it, such as eliminating 

unnecessary data, efficiently reducing duplication, decreasing redundancy in the data and 

increasing result interpretation. Whereas feature extraction deals with the challenge of 

identifying the most unique, explainable, and limited group of features to improve the 

efficiency of data processing and storage. Information can be missed during feature selection 

because some features should be removed throughout the feature subset selection process, 

but in feature extraction, the dimension may be reduced without losing much of the original 

feature dataset (Zebari et al., 2020). Feature extraction and feature selection are crucial parts 

of feature engineering for dimensionality reduction. In contrast to feature selection, feature 

extraction attempts to create a new feature subspace by projecting the original feature space 

with specified criteria. 

The well-known feature extraction techniques are PCA and PLS, other approaches are also 

available, such as linear discriminant analysis, kernel principal component analysis (KPCA), 

and Sparse principal component analysis (SPCA) that can be implemented in the same way 

as PCA (Xu et al., 2015; Zhang et al., 2018). “PCA uses orthogonal transformations to 

transform a set of features into linear uncorrelated features called principal components.” 

Although the method has a strong theoretical foundation and is used to reduce linear 

dimensionality, it is not suitable for the dimensionality reduction of a non-linear data.  

KPCA and SPCA can effectively perform dimensionality reduction in non-linear data. 

Sparse data refers to features with a large number of missing values. Although 

multidimensional data comprises an enormous number of features, only some of them are 

linked with specific learning models, so it can train the model by reconstructing a lower-

dimensional dataset of features. Sparse models can filter out a significant amount of 

redundancy and noise from data, leaving just the features that are relevant to the objective. 

The fundamental principle of the spares model for feature selection is the multi-purpose 

optimization of a problem (Velliangiri et al., 2019). 
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(Houari et al., 2016) state that dimensionality reduction techniques are mainly divided into 

two types: Linear dimensionality reduction (PCA, SPCA, SVD, LDA, FA) and non-linear 

dimensionality reduction (LLE, ISO MAP, KPCA, LE Maps, MDS). Most of the data in 

manufacturing industries originate from sensors that generate signals via electrical, 

electromechanical, or electro-optical methods. The environment is likely to affect sensor 

data, i.e., high-frequency noise can affect signals. Usually, noise in the data must be 

examined thoroughly since it can indicate changes in the operational environment. For this, 

an interdisciplinary approach known as “acoustic chemometrics” can be used to manipulate 

the noise to uncover information about the process (Xu et al., 2015). 

Noise refers to an abnormal attribute value that differs from the rest of the data in a feature. 

For example, after drying moisture content in veneer sheet is 80% (the normal range is 

between 8% and 15%), the body temperature of a patient having 26.9 centigrade, and a pH 

of 2.26 (the normal range is between 4 and 8). Noisy data can be processed by regression, 

binning, outlier analysis, and data extraction from other data sources (Sun et al., 2018). 

Multiple approaches are available to filter noise from the data and can be classified into 

model-based and data-driven approaches. Kalman filter is one of the most widely used 

model-based filters for filtering noise from the data. Whereas digital filters, Savitzky-Golay 

filters, and wavelet filters are used as data-driven filters. 

2.3.4  Reliability and validity 

Due to uncertainty in the manufacturing process, dynamic changes in real-time data often 

cause volatility in the models and even declare the earlier obtained model invalid. 

Meanwhile, accumulating unseen data may cause previously established information to be 

invalidated. Data mining algorithms may uncover hundreds of patterns, some of which are 

incorrect or irrelevant in a specific perspective. However, there is currently no definite 

system or procedure for assessing such issues. Furthermore, data mining uses ML methods 

to extract meaningful insights, the model may be unable to interactively identify the obtained 

knowledge, not resulting in completely adaptable or helpful knowledge. Some data mining 

approaches, such as Gaussian regression, may analyse the quality of the mining and the 

degree of uncertainty in the outcomes (Cheng et al., 2018). 
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(Raschka, 2018) summarizes the main reason to assess the predictive performance of a 

model: (i) To evaluate the model's generalized performance, which is how the model will 

behave when given unseen or new data. (ii) To improve prediction performance by fine-

tuning the learning algorithm and selecting the optimal model with high performance 

accuracy. (iii) To find a ML model that is most suited for the current problem, by applying 

and testing different algorithms and selecting the model with high prediction accuracy.  

A reliable method for testing a model's performance involves training an ML model with 

existing data and evaluating its classification performance using newly acquired data or 

unseen data. Train/Test split is a reliable method to validate the model's performance in 

which a train set is used for the training, and a test set is applied for the validation of the 

model. Utilizing unseen data to test a machine learning model provides an impartial 

assessment of how well the model will perform when the model is used to make real-world 

predictions. 

There are cases when the available datasets are limited; in that case, cross-validation is a 

useful approach to validate the model. Instead of training a model only once, multiple models 

are developed iteratively on different data segments. K-Fold, leave-one-out, and hold-out 

are the most popular cross-validation techniques (Vabalasid et al., 2019). Results of the 

machine learning classification model can be evaluated on the values of sensitivity, 

specificity, and area under the curve (AUC) (Adams, 2017). 

2.4  Data Management 

The volume of big data is growing exponentially, and the current capacity to work with big 

data is relatively low levels of petabytes, exabytes and zettabytes. Along with the benefits of 

data analytics, big data also brings many challenges, including difficulties with data 

acquisition, storage, analysis, and visualization (Philip Chen and Zhang, 2014). In order to 

process vast volumes of data from multiple sources, BDA and data mining require an 

intelligent architecture that should be based on data storage techniques, data governance, 

data management and data risk management (Belhadi et al., 2019). 
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2.4.1  Data Conversion 

Data transformation into a suitable form to perform the analysis is a barrier to adopt big data 

analytics. Big data can be turned into an analytical process in two ways; the first is for 

unstructured data, and the second is for structured data, as shown in the Figure 16. If the data 

is in a structured format, then data is pre-processed before being saved in relational databases 

to meet the required constraints of schema related to the structure of the data, and after that, 

the data can be accessed for analysis. On the other hand, Unstructured data must be kept in 

distributed databases before being accessed for analysis. Unstructured data can be accessed 

from distributed databases after meeting the schema-on-read constraint (Hashem et al., 

2015). 

 

 

Figure 16. Transformation of Big data for data analysis (Adopted from Hashem et al., 2015)  

 

Data integration process is the most time and resource-requiring process in business 

intelligence. It is estimated that approximately 70% of the time and effort is spent on the 

ETL process. ETL stands for extract, transform and load, it is a technique of incorporating 

data from multiple data sources into one consistent data store (Wikipedia). Usually, data 

conversion is straightforward and can be done either as an ETL transform or as part of the 

source to target mapping, as shown in the Figure 17. The data conversion is needed when 

the source and target data types do not have the same structure; different data sources with 

different data types may be used to populate a table or a column; a source column contains 

a specific code that is based on some combination of other values and that need to break 

down into separate components etc. (Sherman, 2015).  
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Figure 17. Data conversion from source to target (Adapted from Sherman, 2015) 

 

2.5  Machine learning methods 

After data pre-processing, applying a machine learning algorithm on the data might be useful 

to solve a specific problem. There are a number of different machine learning algorithms, 

and when choosing a machine learning algorithm, the most common question is “which 

algorithm to select to solve the given problem.” The selection of a machine learning 

algorithm is based on multiple factors such as (i) data size, data quality, and the problem 

domain, (ii) computational time, (iii) urgency and importance of the task, and (iv) loss 

function to be minimized (Nguyen et al., 2019).  

Machine learning is a subset of artificial intelligence techniques which allows computers to 

learn from prior information using historical data and enhance their performance in solving 

a specific task (Ge et al., 2017; Nguyen et al., 2019). However, probability and statistics 

theories also play an essential part in modern machine learning algorithms. ML techniques 

include regression, classification, clustering, decision trees, SVM, NN, decision trees, Bayes 

learning, etc. Machine learning algorithms are based on four types supervised, unsupervised, 

semi-supervised, and reinforcement learning. The first three types are typically used for data 

mining and analytics, whereas reinforcement learning is mainly used in developing robots, 

games, and navigation applications (Ge et al., 2017). 
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Unsupervised learning is a technique for extracting information from training data without 

a ground-truth label (Ge et al., 2017; Nguyen et al., 2019). Its primary goal is to study data 

and reveal hidden information. Unsupervised learning methods (K-means, PCA, Clustering 

etc.) and applications (Feature extraction, Dimensionality reduction, Process monitoring 

etc.) of unsupervised machine learning are listed in Figure 18 (Ge et al., 2017). 

Supervised learning techniques are utilized when the samples in the data consist of a set (𝑋𝑖, 

𝑦𝑖) where  𝑋𝑖 is the input value to be given to the predictor and  𝑦𝑖 is the label (Ge et al., 

2017; Nguyen et al., 2019). In supervised learning, labelled data samples can be discrete or 

continuous. When the labels are of discrete data type, supervised learning can be used to 

classify the process data, such as operation mode classification, quality classification, or 

fault classification. If the labels are continuous, regression models can be implemented to 

predict and estimate the label. Methods (PCR, SVM, Random Forest etc.) and applications 

(Feature extraction, Dimensionality reduction, Process monitoring etc.) of unsupervised 

machine learning are listed in Figure 18. 
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Figure 18. ML algorithm types and usage in the process industry (Adapted from Ge et al., 

2017) 

 

Semi-supervised learning techniques are effective in the process industry applications, where 

the labelling of data is costly and time-consuming. For example, labelling the form of 

discovered defects in data is a complicated task that may need engineers' process expertise 

and experience, which can be costly and time-consuming. A subset of machine learning 

called reinforcement learning is used to design algorithms that decide which actions to 

perform in a given situation in order to maximize reward. In contrast to supervised learning, 

where the predictor is assigned by data labels, the model in reinforcement learning learns by 

trial and error to determine the optimum output (Ge et al., 2017). 
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Recently, research in machine learning has been focused on deep learning, which is a method 

of learning multiple layers of abstractions to interpret the given data more accurately(Gubbi 

et al., 2013). Figure 19 shows the commonly used deep learning architectures. 

 

 

Figure 19. Deep learning architectures  (Adapted from Nguyen et al., 2019) 

 

3  Literature review 

This chapter consists of the systematic literature review on I4.0, focusing on veneer/LVL 

industry. The first sub-chapter describes the followed review methodology for the literature 

review and the second sub-chapter focuses on keyword search on scientific databases to find 

out machine learning methodologies applied in optimization of veneer/LVL industry. 

The aim of the literature review is to, first, evaluate and compile the current research that 

has been done related to the peeling and drying of veneer/LVL industry for smart 

manufacturing. Secondly, which machine learning methods has been applied in existing 

research papers to optimize the peeling and drying processes? 
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3.1  Review methodology 

To ensure the literature review’s robustness and reliability, the study follows the concept-

centric structured approach recommended by (Webster and Watson, 2002) to determine the 

source material for the review. To conduct the current literature review in an organized 

manner, a series of processes is followed: Preparation, Search, Selection, and Analysis 

process. Figure 20 shows the research processes, sub-processes, and its outcomes.  

 

 

Figure 20. Research processes, sub-processes, and its outcomes 

 

3.1.1  Selection of research databases 

After evaluating the relevant data sources, the search methodology is developed to access 

the wide range of existing research related to the research objectives and question. To begin 

the research related to the literature review, five scientific research publication platforms 

have been identified as in Table 3 and a search engine (Google scholar) to extract the papers 

related to the research objectives. These databases provided complete and organized access 

to the scientific publications from journals, along with the combination of search keywords 

helpful in performing a systematic literature review. 

Google Scholar is not a database; instead, it is a search engine to search the papers, which 

does not allow detailed information and characteristics about the research. By using 

Harzing’s Publish or Perish tool, Google scholar is used as a database, which was 
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significantly helpful in searching the papers according to the search criteria by applying 

specific filters. 

 

Table 3. Research publication platforms  

Research Publication Platform Database 

EBSCO Academic Search Elite 

Elsevier Scopus 

IEEE IEEE Xplore Digital Library 

ProQuest ProQuest Technology Collection 

Springer Springer Link 

 

3.1.2  Keyword selection 

For the literature review, it is important to limit the research in the direction of research 

objectives. For this, relevant and applicable research journals related to the research topic 

are selected to build a reproducible, thorough, and impartial literature review process. At the 

first stage, “Veneer peeling” AND/OR “LVL peeling”, “Veneer drying” AND/OR “LVL 

drying”, “Industry 4.0”, “Machine Learning” OR “Optimization”, “Wood Defects”, 

“Image processing”, “Feature extraction”, “GLCM” and “CBIR” AND/OR “Similarity 

measure” are chosen as the keywords which are the most focused, common, and 

representative terms in the literature review related to the research question to search 

published papers collected primarily from LUT Primo and Secondarily from Google 

Scholar. These selected keywords were used as pairwise queries in the databases listed in 

Table 4 with the search criteria in article, abstract and keyword.  

 

Table 4 shows the bibliographical analysis on veneer drying and peeling keywords in general 

from the selected databases. Only articles originated from journals were consider in this 

research and the language for the article is English and there is no range applied on the 

number of years. In five databases term veneer drying produced total 5624 articles having 

largest number of articles in springer database and lowest in IEEE Xplore whereas for term 

veneer peeling total number of articles were produced are 935 having largest number of 

articles in springer and least in IEEE Xplore similar to the term veneer drying. Mainly in 
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general springer database presented high number of articles for both keywords. Figure 21 

and Figure 22 shows the top six authors having research publications in veneer peeling and 

veneer drying. 

 

Table 4. Numbers of papers related to the keyword search in each database.   

Keyword EBSCO Scopus IEEE 

Xplore 

ProQuest Springer Total 

Veneer drying 140 164 61 2102 3157 5624 

Veneer peeling 51 81 11 319 473 935 

 

 

 

Figure 21. Papers published by authors on veneer peeling (Data source: Scopus) 

 

 

Figure 22. Papers published by authors on veneer drying (Data source: Scopus) 
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To limit the research in the right direction pairwise queries are used to search the relevant 

literature. For this along with the veneer drying and veneer peeling other keywords are also 

used to create combinations of keywords and filters are applied as in Table 5.  

 

Table 5. Combination of search queries   

Pairwise query Database 

( TITLE-ABS-KEY ( veneer )  AND  TITLE-ABS-KEY ( peeling ) )  AND  ( LIMIT TO ( 

LANGUAGE ,  “English” ) )  AND  ( LIMIT-TO ( SRCTYPE ,  “j” ) ) 

Scopus 

( TITLE-ABS-KEY ( wood  AND defects )  AND  TITLE-ABS-KEY ( image AND 

processing ) )  AND  ( LIMIT-TO ( LANGUAGE ,  “English” ) )  AND  ( LIMIT-TO ( 

SRCTYPE ,  “j” ) ) 

Scopus 

( TITLE-ABS-KEY ( veneer )  AND  TITLE-ABS-KEY ( drying  AND temperature ) )  

AND  ( LIMIT-TO ( LANGUAGE ,  “English” ) )  AND  ( LIMIT-TO ( SRCTYPE ,  “j” ) )  

Filters: Moisture and Plywood 

Scopus 

( TITLE-ABS-KEY ( veneer  AND  drying )  AND  TITLE-ABS-KEY ( lvl  AND  drying ) 

)  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  AND  ( LIMIT-TO ( SRCTYPE ,  "j" ) 

) 

Scopus 

( TITLE-ABS-KEY ( veneer )  OR  TITLE-ABS-KEY ( lvl )  AND  TITLE-ABS-KEY ( 

feature  AND extraction ) )  AND  ( LIMIT-TO ( LANGUAGE ,  “English” ) )  AND  ( 

LIMIT-TO ( SRCTYPE ,  “j” ) )  

Scopus 

( TITLE-ABS-KEY ( cbir )  AND  TITLE-ABS-KEY ( similarity  AND measure ) )  Scopus 

( TITLE-ABS-KEY ( glcm )  AND  TITLE-ABS-KEY ( texture ) ) Scopus 

Veneer AND Drying 

Filters: Manufacturing, English 

ProQuest 

Technology 

Collection 

(Image processing) AND veneer OR LVL 

Filters: Scholarly journals, English, Journal of wood science 

ProQuest 

Technology 

Collection 

veneer AND drying AND process AND optimization 

Filters: Manufacturing, English 

Springer 

Link 

veneer AND peeling AND drying  EBSCO - 

Academic 

Search 

Elite 
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3.2  Results of the literature review 

Papers has been filtered out on the basis of inclusion criteria (keywords, search boundaries, 

and language) and exclusion criteria (similar titles, abstract, and relevancy towards research 

objective). Following papers have been short listed to analysed further. 

(Kamal et al., 2017) implemented a feed-forward back-propagation neural network (BPNN) 

to identify the wood knot defects (leaf, dry, sound, horn, and edge). The gray level co-

occurrence matrix (GLCM) and laws' texture energy measures (LTEM) are applied to extract 

texture features from the images. GLCM is one of the popular approaches applied in textural 

feature analysis for image classification invented in 1973 by (Haralick et al., 1973). The 

inspiration behind using GLCM by (Kamal et al., 2017) is to gauge the results of LTEM 

against GLCM. The technique is applied using distinct features: Contrast, Correlation, 

Energy and Smoothness for a BPNN applied as a classifier. University of Oulu dataset for 

the wood knot defects has been used, which contains 395 samples of two feature sets first 

set is for the GLCM-based features, and the second one is for LTEM-based features. Most 

of the samples were related to dry knot, sound knot, and edge knot defects. Dataset is divided 

for both feature sets (GLCM, LTEM) into 70% to train the neural network, 15% for testing 

and 15% for validation. For GLCM based feature set, BPNN's best performance results are 

obtained by 15 hidden layers of neurons, with the 0.1072 MSE and 84.3% accuracy. For 

LTEM based feature set, BPNN's best performance results are obtained by 30 hidden layers 

of neurons, with the 0.0718 MSE and 90.4% accuracy. Furthermore, it has been observed 

that by combining both GLCM and LTEM features, classification accuracy can be improved. 

(Haryanto et al., 2020) presented a method for texture feature extraction using a multi-patch 

image pixel approach with sliding windows to reduce computational time for features 

extraction as high-resolution images take longer due to the enormous volume of data 

available in the images. A mean shift filter removes noise from the images before calculating 

the GLCM texture features. In this study, texture features for histopathology images (used 

for diagnosing cancer) are calculated using GLCM contrast, energy, ASM, dissimilarity, 

correlation, and homogeneity with the pixel distance d=5 and angles = (0°, 45°, 90°, 135°). 

The presented GLCM method is then trained using DNN with ReLu as an activation function 

during the training process and compared to other classification methods for performance 
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benchmarking. This research has observed that DNN with GLCM has higher accuracy of 

96.72% with four CVs compared to the other classifiers. 

(Alsmadi, 2020) presented a content-based image retrieval technique for similar candidate 

images from a database. The proposed system is based on GLCM for extracting texture 

features, Canny edge histogram for extracting colour features, Canny edge method for 

extracting shape features, YCbCr with discrete wavelet transform and neutrosophic 

clustering method. YCbCr is a colour space family used in video and digital photography 

systems as part of the colour image pipeline where Y represents the luma component, and 

CB and CR define blue and red difference chroma components (Wikipedia). A metaheuristic 

algorithm is used to select the image with the highest similarity to the queried image. Squared 

Euclidean distance is used for calculating the similarities between the query and the list of 

images in the database. During the image pre-processing different types of noises (salt, 

speckle, and pepper) have been removed by applying the median filter. The image dataset is 

based on thousand different types of images from the Corel dataset in which each image has 

a resolution of 384x256. Before applying GLCM on the image set, each image is converted 

to a grayscale image and a 5x5 Gaussian filter is applied to the image. The filtered image is 

then sliced into 4x4 blocks, and GLCM texture features energy, mean value, standard 

deviation, contrast, and homogeneity are calculated for four angles 𝜃 = (0°,45°,90°,135°). 

Results show that similarity measure calculated through meta-heuristics has proven an 

image's solid capacity for discriminating texture, shape, and colour. 

(Wang and Ren, 2014) proposed a recognition method based KPCA and generalized learning 

vector (GLVQ) for rotary kiln combustion working conditions, either complete or 

incomplete combustion, by extracting textural data of flame image using GLCM. All 14 

GLCM texture features have been calculated for the images, and KPCA with Gaussian 

function as kernel function is used on texture features to reduce the input vector's 

dimensionality. The first five principal components explaining more than 85% of variance 

are used for the GLVQ model. The model input layer is based on five neurons as five PCs 

are used as input, and the output layer is based on two neurons representing the condition of 

the kiln combustion. The model gives 95.83% accuracy with the hyperparameters 5000 

iterations, 10-3 as a learning error and the learning step to 0.5. 

(Surabaya et al., n.d.) proposed a method for auto-colouring the grayscale image by matching 

image block similarity based on GLCM texture features using the sum of absolute difference. 



55 

 

Blocks of the colour image are used as a template, and grayscale images are used as the 

target image. GLCM texture features (ASM, IDM, Contrast, entropy, and correlation) are 

calculated with distance L=1 and only one angle = 0°. Similarities of the two image blocks 

are calculated by subtracting the GLCM texture values and comparing the GLCM of the 

target with the template value to get the smallest value in the colour block. Block having the 

smallest colour image block is a pair of grayscale blocks due to similarity in the texture 

features. Lastly, transfer colour to the grayscale image until all areas having similarities are 

coloured. 

(Jalonen et al., 2021) applied a visual method for tracking manufacturing products and 

presented its usage in plywood manufacturing. For the visual and positional transformations 

of the veneer, the authors have applied Siamese neural network. For the model training, 

validation and testing publicly available dataset (Veneer21) provided by the Raute 

corporation is used. Dataset is based on 2579 paired image samples of wet and dry wood 

veneer. Dimensions of the RGB images of wet veneers are roughly 3300 x 3300, and dry 

veneers are around 4100 x 4100. The images are resized to 224 x 224 and normalized to [0 

1] pixel values. Image pairs are randomly divided into train, validation, and test sets. 

Training set contain 1879 image pairs, validation 200 pairs, and for testing 500 pairs. Model 

is trained with TensorFlow Keras using 200 epochs, cross-entropy is used as a loss function 

and Adam as an optimizer. The model has been trained sixteen times for training and with 

three batch sizes (16, 32, and 64), and four learning rates 10-3, 10-4, 10-5, and 10-6). Model’s 

performance is evaluated by a matching pair of a wet veneer with five dry veneers out of 

which only one is the matching dry veneer pair and it has been repeated 1000 times for a set 

of 500 wet images resulting in a 500,000 clusters test. Hungarian and Greedy based decision 

rule approaches have been used to match dry and wet veneers. Hypermeters combination 

that gives the highest validation accuracy of 92% are the batch size of 64, learning rate of 

10-5, and validation loss of 0.200. Furthermore, the model has been tested for the real test 

scenario by creating a random cluster size 100 times with a cluster size of five dry and wet 

veneers. The average accuracy of the Hungarian decision rule is 98.54%, with a standard 

deviation of ± 0.71% and the greedy decision rule average accuracy is 91.41 ±1.66%. 

(Urbonas et al., 2019) applied a method for the visual analysis for the positioning and 

classification of defects (Split, core, branch, and stain) on the veneer surface by applying a 

faster region-based convolutional neural network (faster R-CNN). Dataset is obtained by 
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scanning 250 veneer sheets of 1525 x 1525 mm into 300 x 300mm batches at a 4000 x 3000 

pixels resolution in monochrome single-channel images for training and testing sets. A total 

of 353 (300 x 300mm) samples there is at least one defect present in 285 samples, and six 

samples had no defects, categorized as background. Out of 353, 291 samples are used for 

training, and 62 samples are used for testing. Testing samples contain the most defective 

veneer sheets. Furthermore, to improve the training of the neural network, the original 

dataset has been augmented (flip, resize, and rotation transformations), and the image size is 

reduced heuristically to 800 x 600 pixels to improve the training of the neural network. For 

the annotation and labelling of the defects, VoTT (Microsoft opensource application) is used 

to determine the defects’ class, position, and size. The authors used transfer learning to 

achieve a better result by applying pre-trained neural networks BN-Inception, AlexNet, 

ResNet152 and VGG16. With the ResNet152 neural network, the model gives 80.6% of 

overall accuracy, and by combining all the defect classes into one type gives 96.1% of 

accuracy. 

(Ahmed et al., 2020) stated that the temperature of the veneer sheet is a key component that 

could be utilized to assess the quality of the final product. In order to manage the temperature 

and humidity inside the sections of a drying machine, several process parameters must be 

controlled, including airflow, gas usage, drying speeds (time), dryer zone temperatures, and 

chain side temperature. Besides process parameters, product parameters such as wood 

species and veneer sheet thickness also influence the drying process. The authors applied the 

regression tree method to simplify the complexity between the process and product features 

and determine the essential elements for drying veneer and reaching the desired range of 

veneer temperature (output variable). The study shows that the temperature of the veneer is 

determined on the three parameters average temperature in zone 1 of the dryer (C1), average 

temperature in zone 3 of the dryer (C3) and mean daily temperature climatic variable (MDT). 

(Demirkir et al., 2013) presented a method by applying ANN to predict the intermediate 

bonding strength values based on the peeling and drying temperature of the veneer sheets. 

The proposed approach has two objectives first is to predict optimum manufacturing 

parameters using ANN without compromising bonding strength and losing time. The second 

objective is to use the ANN model and values obtained from experimental research to 

determine the significant proportions of these parameters on plywood panel bonding 

strength. It has been found that the bonding strength of the plywood panels with phenol-
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formaldehyde (PF) resin has a positive correlation with the drying temperature of the veneer, 

whereas plywood panels with melamine urea-formaldehyde (MUF) resin have a negative 

correlation. Optimum drying temperatures for higher bonding strength for PF and MUF have 

been calculated for different wood species veneer panels. The results obtained in this study 

can help to decide the optimum temperatures for drying and steam conditioning of wood 

logs according to the type of wood. 

(Yuce et al., 2014) has presented ANN-based quality control to identify defects in wood 

veneer with lower assessment benchmarks and improve the response time during quality 

control. PCA has been applied for feature selection and to reduce the dimensionality of input 

variables for the ANN, which minimized the model training time and improved the method's 

accuracy. It has been observed that the model's performance has been improved by 56% with 

PCA compared to the training and testing of ANN with all features. To further improve the 

model's performance and benchmark the results of ANN with PCA, the Taguchi method has 

been applied, which shows that with only one hidden layer, a high number of neurons in the 

hidden layer, and fewer PCs, ANN performed well as compared to PCA. 

Veneer drying process consumes a large amount of energy which is approximately fifty 

percent of the mill’s energy in the plywood manufacturing. (Han et al., 2015) presented an 

approach by using non-linear programming and operational research theory to design 

manufacturing conditions to optimize the energy consumption during veneer drying, the 

manufacturing conditions such as temperature, pressure, and the number of veneers are 

investigated as a function of energy consumption (Q), modulus of elasticity (MOE) and 

contact angle (CA). 

(Çolak et al., 2007) investigated the log steaming and veneer drying conditions on technical 

properties and durability of LVL and solid sawn lumber. To evaluate the effects of treatment 

on different properties of the veneer, authors proposed a chemometric modelling and 

multivariate data analysis of near-infrared spectroscopy. As a result, PLS models were 

effective for the quality control of veneer treated thermally. 

As a summary of the literature review, there are multiple ML methods that are used in 

optimizing the drying process, as in Figure 23. Secondly, GLCM seems to be one of the most 

used methods to extract features from the images. Most of the authors have used this method 

and applied different methodologies on extracted GLCM texture feature values in order to 
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match the images, which gives promising results. The most important papers covered in this 

literature review are summarized in Table 6. 

 

 

Figure 23. Methods frequently used in optimizing the drying process according to current 

literature 

 

Table 6. Papers according to the concept centric approach   

Article Drying Peeling Image processing / 

Feature extraction 

(Defects) 

Approach 

(Kamal et al., 2017)   x GLCM, LTEM, BPNN 

(Urbonas et al., 

2019) 

  x Data augmentation, transfer 

learning, R-CNN, Deep learning 

(Han et al., 2015) x   Non-linear programming and 

operational research theory 

(Jalonen et al., 

2021) 

  x Siamese neural network, 

Hungarian and Greedy decision 

rules  

(Demirkir et al., 

2013) 

x x  Artificial neural network (ANN) 
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(Ahmed et al., 

2020) 

x   Regression tree, Data mining, 

ANOVA, Cross-validation 

(Çolak et al., 2007) x   Partial least square (PLS), 

Multivariate data analysis 

(Yuce et al., 2014)   x ANN, PCA, Taguchi, Feature 

selection 

(Haryanto et al., 

2020) 

  x GLCM, DNN 

(Alsmadi, 2020)   x GLCM, Canny edge, YcbCr, 

Canny edge histogram, median 

filter, MA, SED 

(Wang and Ren, 

2014) 

  x GLCM, KPCA, GLVQ, 

(Surabaya et al., 

n.d.) 

  x GLCM, SAD 

 

 

4  Methodology and Data 

This chapter describes the data and methodologies applied in the veneer/LVL manufacturing 

process. The production process section briefly explains the current manufacturing process 

from inputting of woodblock, peeling, quality evaluation, drying process, and final output of 

the dried veneer sheets. The second sub-chapter thoroughly explains the data and 

methodology applied. The complete process understanding from log selection to the final 

product was made possible with the learning package provided by the Raute Corporation. 

4.1  Production process – Peeling and drying 

Plywood and LVL is manufactured by gluing wood veneer sheets together. Plywood 

structure is based on cross-bonded structure, meaning in each layer, the wood grain 

directions of sheets vary by 90 degrees, making it strong in all directions. It can be produced 

in various dimensions according to the requirements, but the main limitation is the length of 

woodblock in the peeling process which limits the veneer length and final product length. 

Commonly veneer sheets are peeled from 4 ft or 8 ft long woodblocks, and the main plywood 

panel sizes are 4 ft x 8 ft and 8 ft x 4 ft. 
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Typically, plywood is composed of mainly two dimensions: long-grain plywood and short-

grain plywood. In long-grain plywood, grain direction is in the larger dimensions, whereas 

in short-grain plywood, grain direction is in the smaller dimensions. Plywood panels can be 

composed of odd or even numbers of veneer sheets (piles). There are different types of 

veneer sheets on which the structure of plywood is based; these sheets are mainly top face 

veneer, long core veneer, cross core veneer and back face veneer. 

LVL is made up of thick veneer sheets that are placed in the same grain directions with billet 

length. This type of LVL sheet is used in load-bearing structures such as roof rafters, curved 

roof components, interior wall posts, prefabricated floor units and concrete casting moulds. 

LVL sometimes has veneer sheets glued together similar to the plywood in the crosswise 

direction perpendicular to the panel length to get more stability in the width direction. The 

thickness of the LVL depends on the number of 3 mm veneer sheets glued together; usually, 

LVL thickness range from 21 to 90 mm. Maximum width ranges are 1200 mm, 1800 mm or 

2500 mm, whereas the length of LVL can be up to 25 meters. LVL is dimensionally straight 

and a stable product due to its laminated structure and drying process. Like plywood, it has 

the best weight-strength ratio, which can compete with steel and concrete as building 

materials. 

Production of plywood and LVL is based on multiple production stages. As in the Figure 24, 

these production stages are required to make logs into veneer sheets and from veneer sheets 

to plywood or LVL. 

 

 

Figure 24. Overview of plywood and LVL manufacturing process 

 

Wood is a renewable material, and it is ready for industrial harvesting when it has a required 

diameter of approx.150 mm. Different wood species are utilized to manufacture plywood 

and LVL, such as birch, pine species, eucalyptus, poplar, maritime pine, tropical hardwood, 

etc. The first step in the veneer peeling is selecting the raw material, which is a log. Specific 

Log Veneer Sheets Plywood / LVL
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requirements should be fulfilled to select a log for further processing and to get a higher 

yield in the form of veneer ribbon.  

After raw material selection and storage, logs have to be passed through the conditioning 

process. The purpose of the conditioning process is to heat the log to make it suitable for the 

peeling process. The logs are usually conditioned by soaking in a hot water pool and spraying 

water over the bundles for about 12 to 24 hours. 

After log conditioning, the bark has to remove from the log, length of the log has to be 

measured to properly cut the log into the required length for the peeling process. Figure 25 

shows the pre-processing of the log before the peeling process. 

 

 

Figure 25. Pre-processing of the log before peeling 

 

Logs are fed onto the log conveyor table and run through the metal detector, which removes 

any metal spots from the peeling block after this bark is removed from the log. A 3D scanner 

is used to create a 3D model of the logs to identify the log’s exact volume for cutting. 

According to the scanner’s inputs, a log is cut into the peeling block within tolerance limits. 

After cutting logs into specified peeling block lengths, the logs are inputted to the peeling 

line to be peeled into veneer ribbons and then cut into the desired length of veneer sheets, as 

shown in the Figure 26. 

 

 

Figure 26. Overview of blocks to veneer sheet process 
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Veneer sheets manufacturing is based on multiple phases as in Figure 27. Peeled veneer 

ribbons get scanned to detect any defects in the veneer ribbon; if there is any bark or defect 

in the veneer ribbon, the scanner sends instructions to the clipping line to clip the veneer 

accordingly. The moisture of the veneer ribbon is also measured during the scanning of the 

defects on the veneer ribbon. The clipper then cuts the veneer ribbon into veneer sheets 

according to the instructions received from the scanner. 

 

 

Figure 27. Overview of veneer sheets manufacturing 

 

After peeling the blocks into veneer ribbon and clipping veneer ribbon into veneer sheets, 

the next process is the drying of the veneer sheets. The quality of the final product is based 

on the effectiveness of the drying process. The purpose of drying is to get the veneer sheet 

into target moisture content for gluing and hot pressing. Figure 28 shows the process of 

removing moisture from the peeled wet veneer sheets. 

 

 

Figure 28. Overview of drying process 

 

Veneer sheets are fed one by one on the rollers of the drying machine. The temperature of 

the drying machine is determined by the moisture content in the wet veneer and the wood 

species. The temperature inside the dryer is up to 200 °C.  

The drying speed is adjusted according to the thickness, temperature, and the initial moisture 

content of wet sheets and the moisture content after the dryer. Veneer sheets are fed into the 

dryer rollers in the grain direction; while passing through the rollers, hot and humid air is 

Block infeed
Scanning & 
centering

Lathe
Scanning of 

defects
Clipping Stacking

Wet Veneer Drying Cooling Grading Stacking
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blown on the surface of the wet veneers. After the cooling process, veneer sheets are sorted, 

graded and stacked for further processing according to the automated visual analysis and 

moisture content available in the dried veneer sheets.  

After the drying process, the width of the veneer gets shrinked up to 10 cm because of the 

different shrinking properties of wood areas. Visual defects appear according to log 

diameter; the smaller logs have better grade veneers because the knots are still very small in 

the heartwood, and sometimes even without knots. After the drying process, full-size sheets 

are stacked and transported directly to the lay-up or scarf jointing. Broken or defective 

veneers are stacked for the composing process. 

4.2  Data and Methodology 

Traditionally, in the wood industry, one of the most widely used ways to evaluate the quality 

of wood veneer has been random testing. It is done by selecting random processed sheets 

and evaluating the quality. If the quality is not met, then the production line has to stop to 

identify the problems in the peeling and drying processes which cause losses in productivity 

and revenue. Due to this, veneer/LVL manufacturing industries are investing in the 

automation of their processes, digital twins of the manufacturing line and crowdsourcing to 

increase their product quality standards, reliability, and efficiency (Urbonas et al., 2019). 

The veneer sheet images dataset (5019 peeling and 3363 drying images) is provided by the 

Raute Corporation and comprises two types of grayscale veneer sheet images. The first set 

is of wet peeled veneer sheets, and the second is of dried sheets after drying process. Images 

of peeled and dried veneer sheets are captured and stored in a timestamp after peeling from 

the wood log and drying process. 

A second dataset based on the fingerprint images for each peeled and dried veneer sheet 

image is also provided by the Raute Corporation. These fingerprint images are created by 

applying Canny edge detector, Gabor filter-based enhancement, and skeletonizing each 

image. Algorithms 1 and 2 provide more details on the Canny edge detector and how 

fingerprint images of veneer sheets were created. Furthermore, the provided dataset was 

unlabelled, and the aim was to develop an exploratory analysis of the dataset to find matching 

sheets. 
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Steps for extracting insights from big data mentioned in Figure 6 have been followed in this 

research, from capturing data (veneer sheets images) to interpreting the results. Considering 

different big data analytics techniques mentioned in Figure 8, descriptive analytics 

techniques, including data mining, statistical analysis, and multimedia (images) analytics, 

have been performed during the implementation of the model. 

Firstly, veneer sheets images after peeling and drying processes have been captured. From 

each image, GLCM textural features have been calculated in an n x m matrix with 20 features 

representing texture properties calculated on neighbouring pixel distance and for angles. 

Data transformation methods have been applied to the data in order to transform it into a 

uniform format required for the data mining; for this, data normalization is applied to scale 

down calculated GLCM texture features into the smaller range [0,1] by applying L2 (square 

root of the sum of the squared vector) normalization.  

After normalizing the calculated GLCM texture feature values, dimensionality reduction has 

been applied to the n x m data matrix by applying PCA to the normalized texture features of 

the veneer images. Feature extraction plays an integral part in the thesis in order to identify 

the most unique, explainable, and limited group of features to match the veneer sheet images 

with candidate images having high similarities. The cosine similarity method is used with a 

threshold of 90% of similarity to calculate the similarities between the transformed values 

of the veneer sheets. The results of similar veneer sheets are evaluated based on expert 

knowledge. 

In image processing, texture analysis of the image is one of the main characteristics in 

content-based image retrieval, region of interest, comparison, or object detection in images. 

(Haralick et al., 1973) states, “Texture is one of the important characteristics used in 

identifying objects or regions of interest in an image, whether the image is a 

photomicrograph, an aerial photograph, or a satellite image.” Veneer sheet also contains 

textures and grain patterns that can be used to compare veneer sheets to obtain matching 

candidates in a set of images. A set of candidate sheets after drying wet peeled sheets can be 

developed by utilizing statistical characteristics of the veneer sheet image. For extracting the 

textual features from each veneer peeled and dried sheet image, Gray Level Co-occurrence 

Matrices (GLCM) method is applied in this thesis. GLCM is a method of extracting second-

order statistical texture features from an image by considering the relationship between pair 

of pixels (reference and neighbour pixels) in the image. It is introduced by the (Haralick et 
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al., 1973) to extract features based on gray-tone spatial dependencies and then take the mean 

and range of each measure (14 texture features; see Table 7) and use these values in the 

classification. 

GLCM is a statistical method that counts the relative frequencies of relationship values for 

pairs of pixels 𝑝(𝑖, 𝑗) in an image separated by distance 𝑑, angle 𝜃 = 0, π/4, π/2, 3π/4 and 

normalized to probabilities. These descriptors utilize the spatial relationship between 

grayscale from distinct points in an image to describe the texture. Such matrices of gray-tone 

spatial dependence frequencies are based on the angular relationship in vertical (0°), 

horizontal (90°), and diagonal (45° and 135°) direction and the neighbouring distance, as 

illustrated in the Figure 29. Generally, the distance between the pair of pixels is one pixel, 

but it can be increased to more pixels and can be selected based on results, whereas the size 

of the GLCM matrix is dependent on the number of pixels in the analysed texture area that 

can be selected on different window sizes by dividing the image into multiple segments. 

 

 

Figure 29. GLCM w.r.t four directions of edge detection 

 

Co-occurrence matrix mathematical equation for size of G × G from a N x M image region, 

shown in (1) 

 

𝐶𝑀𝑑,𝜃 (𝑖, 𝑗)  = |{(𝑛,𝑚), (𝑛 + 𝑑𝑦, 𝑚 + 𝑑𝑥); 𝐼(𝑛,𝑚) = 𝑖, 𝑙(𝑛 + 𝑑𝑦, 𝑚 + 𝑑𝑥) = 𝑗 }|                (1)   

 

where: 
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(𝑛,𝑚), (𝑛 + 𝑑𝑦, 𝑚 + 𝑑𝑥) ∈ 𝑁𝑥𝑀 

i = Value of pixel at position (𝑛,𝑚) 

j = Value of pixel at position (𝑛 + 𝑑𝑦, 𝑚 + 𝑑𝑥) 

G = Value of minimum and maximum difference in pair of pixels in an image. 

This thesis focuses on comparing similarities between veneer sheets textures and grains to 

group similar candidate images peeled and dried from the same wood log. Initially, different 

combinations of GLCM parameters (14 features, pixel distances, and angles) are calculated 

for the veneer sheet images and then similarities between GLCM texture features of images.  

4.2.1  GLCM texture features used in this research 

In this research, five GLCM features have been applied based on the selection from edge 

texture and interior texture groups. The edge texture group generates high values when there 

are rapid changes in values between the neighbouring pixels, i.e. pixels in the neighbourhood 

contain visual edges. Whereas the interior texture group generates high values when there 

are few consistent edges but contain multiple uneven and subtle variations between the 

neighbouring pixels (Hall-Beyer, 2017). Dissimilarity and contrast have been selected from 

the edge texture group, whereas energy, correlation and homogeneity are selected from the 

interior texture group. Table 7 shows the remaining GLCM texture features that are not used 

in this research.  

Contrast refers to measuring local variations or intensity of the reference pixel and its 

neighbouring pixels with the specified angle and distance. If there is significant amount of 

variation in an image, the contrast will be high (Haralick et al., 1973; Indra et al., 2022). 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑛2

{
 

 
∑ ∑𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
|𝑖−𝑗|=𝑛 }

 

 
                                       (2)

𝑁𝑔−1

𝑛=0

 

 

Correlation shows the linear connectivity of the gray level value of one pixel relative to the 

other pixel in the GLCM, indicating the local gray-level dependency on the texture image. 
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Similar gray-level areas in the image give higher values of the correlation (Haralick et al., 

1973; Indra et al., 2022). 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
                               (3) 

 

Distance between the pair of pixels in the region of interest (distance and angle) is measured 

by dissimilarity. A higher value indicates a more significant disparity in the intensity levels 

of adjoining pixels (Haralick et al., 1973; Indra et al., 2022). 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑ 𝑝(𝑖, 𝑗)|𝑖 − 𝑗|                                      (4)

𝑁𝑔−1

𝑖,𝑗−0

 

 

The energy in GLCM is calculated from the angular second moment (ASM), which 

represents the homogeneity of an image, as shown in (5). Energy is used to calculate the 

local homogeneity and uniformity levels in an image's texture, and it is the inverse of the 

entropy. A higher level of texture homogeneity in an image gives higher energy values as 

homogeneous images contain few gray levels, which results in few GLCM values but 

relatively higher values of a pixel. Values of energy are in the range of [0,1], where 1 

represents the maximum levels of homogeneity in an image (Haralick et al., 1973; Indra et 

al., 2022). 

𝐴𝑆𝑀 =∑∑{𝑃(𝑖, 𝑗)}2                                            (5)

𝑗𝑖

 

𝐸𝑛𝑒𝑟𝑔𝑦 = √𝐴𝑆𝑀                                                       (6) 

 

Homogeneity refers to how close a pixel's distribution is in a GLCM. It is inversely 

proportional to the contrast; if there is a significant amount of contrast in an image, then 

homogeneity decreases. There will be high levels of homogeneity in an image if the values 

of the co-occurrence matrix are concentrated along the diagonal. If the homogeneity values 
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are greater and closer to 1, the texture has an ideal repeating structure, and if the values are 

low or near to 0, the texture element has numerous variations and is not uniformly distributed 

over the texture region (Haralick et al., 1973; Indra et al., 2022). 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 =  ∑∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

                          (7)

𝑁𝑔

𝑖=1

 

 

Table 7. GLCM texture features (Alsmadi, 2020; Hall-Beyer, 2017; Haralick et al., 1973; 

Indra et al., 2022; Wang and Ren, 2014) 

GLCM Feature Equation 

Sum of squares (SS) : Variance 𝑓4 =∑∑(𝑖 − 𝑢)2𝑝(𝑖, 𝑗)

𝑗𝑖

 

Sum average (SA) 

𝑓6 =∑𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Sum variance (SV) 

𝑓7 =∑(𝑖 − 𝑓8)
2𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Sum entropy (SE) 

𝑓8 = −∑𝑝𝑥+𝑦(𝑖) log{𝑝𝑥+𝑦(𝑖)}

2𝑁𝑔

𝑖=2

 

Entropy 𝑓9 = −∑∑𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))

𝑗𝑖

 

Difference variance (DV) 𝑓10 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑥−𝑦 

 

Difference entropy (DE) 

𝑓11 = − ∑ 𝑝𝑥−𝑦(𝑖) log{𝑝𝑥−𝑦(𝑖)}

𝑁𝑔−1

𝑖=0

 

Maximum correlation coefficient 

(MCC) 

𝑓12 = (𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)
1/2 

Where:  

𝑄(𝑖, 𝑗) =  ∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)
𝑘

 

Information measures of correlation 

(IOC) 
𝑓13 = 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max {𝐻𝑋,𝐻𝑌}
 

𝑓14 = (1 − exp[−2.0(𝐻𝑋𝑌2) − 𝐻𝑋𝑌])
1/2 

𝐻𝑋𝑌 =  −∑∑𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))

𝑗𝑖
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Where HX and HY are entropies of 𝑝𝑥 and 𝑝𝑦 

𝐻𝑋𝑌1 = −∑∑𝑝(𝑖, 𝑗) log{𝑃𝑋(𝑖)𝑝𝑦(𝑗)}

𝑗𝑖

 

𝐻𝑋𝑌2 = −∑∑𝑝𝑥(𝑖)𝑝𝑦(𝑗) log{𝑃𝑋(𝑖)𝑝𝑦(𝑗)}

𝑗𝑖

 

 

 

GLCM texture features energy, correlation, homogeneity, contrast, and dissimilarity are 

calculated with pixel distance d = 1 and at angles 𝜃 = (0°,45°,90°,135°). Figure 30 shows 

the proposed system for extracting and comparing image similarity presented in a block 

diagram.  

 

 

Figure 30. Proposed system for extracting and comparing image similarity presented in a 

block diagram 

 

Figure 31 shows the GLCM feature texture values calculated on different angles with 

distance d = 1 for a set of hundred consecutive dry veneer sheet images. The figure shows 

that there are high variations in the values of all five calculated GLCM texture values at 

angle 0°, but there are only minor variations in angles 45°,90°, and 135°. From all four 

angles, it can be observed that there are high levels of contrast in the images, which indicates 

that a significant number of local variations are present between the reference and 

neighbouring pixels. It can also observed from the figure that homogeneity is inversely 

proportional to the contrast and have values closer to 0, which indicates that texture does not 
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have an ideal repeating structure. Except angle 0, there are no high values in dissimilarity, 

which indicates there is no significant disparity in the intensity levels of adjoining pixels. 

 

 
𝜽 = 𝟎° 

 
𝜽 = 𝟒𝟓° 

 
𝜽 = 𝟗𝟎° 

 
𝜽 = 𝟏𝟑𝟓° 

Figure 31. GLCM texture on different angle with distance of one pixel 

 

After calculating the five GLCM texture features for each image with pixel distance d = 1 at 

four angles, a total of twenty features has been created. The calculated features are 

normalized by the L2 (square root of the sum of the squared vector) method, and lastly, PCA 

is applied to normalized values of GLCM texture features before further processing. 

At first, a query image is selected from the set of sheets for which GLCM texture features 

are calculated. To calculate the similarity between the query image and the set of images 

cosine similarity method has been used. Cosine similarity computes similarity as a 

normalized dot product of X and Y on L2-normalized data as in the (8). 
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𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑆𝑐(𝐴, 𝐵) ≔ cos(𝜃) =
𝐴. 𝐵

||𝐴||. ||𝐵||
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

                      (8) 

 

Cosine similarity returns the similarity values for each image in the dataset with the queried 

image. To get the highest similar candidates related to queried image, cosine similarities of 

the images having similarity values equal to or larger than 90% have been selected, out of 

which the top 3 candidates are selected. 

4.2.2  Edge detection and Fingerprints 

During this research, it has been observed that the GLCM model seems to work well for 

highly textured images, but it does not give promising results if the veneer image contains 

low texture. To optimize the model for the low texture images, fingerprint images have been 

created by applying the Canny edge detector, Gabor filter-based enhancement and 

skeletonizing on each image. Canny edge detection is a multi-stage algorithm with five steps 

shown in algorithm 1, whereas algorithm 2 shows the process of creating fingerprint images 

using the original veneer sheet images. 

 

Algorithm 1. Canny edge algorithm (Adapted from Wikipedia) 

Begin 

1. To smooth the image and remove the noise apply Gaussian filter. 

2. Calculate the intensity gradients. 

3. Gradient magnitude thresholding. 

4. Double threshold for determining the potential edges. 

5. Apply hysteresis for edge tracking. 

End 
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Using canny edge detector method fingerprint image of each veneer sheet has been 

generated. Algorithm 2 shows the steps for generating fingerprint image of original veneer 

sheet image and Figure 32 shows fingerprint image of veneer sheet image.  

 

  

Figure 32. Original veneer sheet image (left) and Fingerprint image of the same veneer sheet 

(right)   

 

Algorithm 2. Creating fingerprint image of a veneer sheet 

Begin 

1. Calculate the diagonal size of the input image as the image size changes from peeling to drying and 

absolute pixel lengths are not applicable. 

2. Calculate canny edges within the given minimum and maximum threshold values that proportional to 

the diagonal image size (from (1))  

3. Enhance the calculated edges by applying Gabor filter-based enhancement. 

4. To remove noise from the image, all bright structures in an image are removed whose surface is less 

than the threshold value (e.g., 0.005 x Diagonal size of the input image). 

5. Skeletonize enhanced edges. 

6. Calculate the bitwise OR of the input image and skeletonize enhanced edges. 

End 
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Instead of using original veneer sheets images, fingerprint images of veneer sheets are used 

to calculate the GLCM texture features (energy, correlation, homogeneity, contrast, and 

dissimilarity) with pixel distance d = 1 and angle 𝜃 = (0°, 90°, 45° and 135°). 

Peeling and drying images of veneer sheets are captured and stored in order of their 

timestamp. Subsequent peeling images always form logs for clarity, but drying sheets are 

mixed up during the process. To sort the drying sheets according to their similarity and group 

them in one set so that it can be identified that the sheets belong to the same peeled wood 

log. For this purpose, a batch of consecutive fifty images have been used to test how the 

model works as some images have high texture and some have low texture. Algorithm 3 

shows the steps to find similar images in a group of consecutive images. 

 

Algorithm 3. Consecutive images to one log sheet according to texture and grain similarity 

Begin 

1. A timestamp-based batch of fingerprint images. 

2. Calculate GLCM texture with pixel distance d = 1 at angle 𝜃 = (0°, 90°, 45° and 135°). 

3. Normalize the GLCM feature values. 

4. Apply Principal component analysis (PCA). 

5. Use transformed values of GLCM. 

6. Select the first image from the stack of the fingerprint images. 

7. Calculate the cosine similarity between the transformed GLCM values of the first selected fingerprint 

image in the stack and the rest of the fingerprint images. 

8. Sort similarity values in descending order and select top images having a similarity of 90% or greater. 

9. Store the selected consecutive candidates from the stack and remove the fingerprint images from the 

existing stack. 

10. Perform again step 7, step 8 and step 9 till there is no image left in the stack. 

11. Group the stored selected consecutive candidates from step 9 and output the consecutive stacked 

result.  

End 
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5  Results 

In this thesis, two approaches have been applied for selecting similar candidates' veneer 

sheets. In the first approach, GLCM texture features are calculated for the original images 

of veneer sheets with the distance of d =1 and angles  𝜃 = (0°, 90°, 45° and 135°). GLCM 

texture values have been normalized, and PCA is applied to the normalized values of the 

GLCM texture features. The cosine similarity method calculates the similarities between the 

query image and other images in the set. Veneer sheets having similarity of GLCM texture 

features of 90% or greater with the query image are selected; out of these selected candidates 

top 3 images have been selected as the most similar. The Figure 33 shows the stack of similar 

candidates for the query image (1st from the left) 

 

 

Figure 33. Candidates by using GLCM texture features of original sheet image 

 

It is observed that when using algorithm 3 for sheets with high texture, the returned 

candidates are at least similar looking, yet, probably originating from different logs. With 

lower texture in the veneer sheets as in Figure 34 the model performance is poor. To optimize 

the model, fingerprint image of each veneer sheet image has been created as mentioned in 

algorithms 1 and 2, and Figure 31 shows the fingerprint image for the original veneer sheet 

image.  
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Figure 34. Low texture candidates by using GLCM texture features of original sheet image 

 

Next, the fingerprint images were used to calculate the same GLCM texture features, pixel 

distance and angles used in calculating GLCM features for the original image in the first 

approach. The reason behind using fingerprint images is that GLCM works well for images 

with high texture, but it did not provide promising results where images have low textures. 

Using fingerprint images instead of original images also allows the ability to match low-

textured images. The Figure 35 shows the stack of similar candidates for the query image 

(1st from the left) using fingerprint images.  

  

 

Figure 35. Candidates by using GLCM texture features of fingerprint image 

 

A set of 50 consecutive drying images has been selected based on timestamps to sort them 

according to their similarity to identify whether drying images belong to the same peeled 

wood log. Figure 36 shows the veneer sheets sorted according to similarity on texture and 

grains. The first image is selected from the stack, and the similarity of the selected fingerprint 

image has been calculated with all other fingerprint images. Fingerprints having similarities 

equal to or greater than 90% have been removed and stored separately from the existing 

stack of the images. This process is repeated until all consecutive images have been sorted, 

as in algorithm 3.  
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Figure 36. Consecutive veneer sheets similarity using fingerprints 

 

It has been observed that fingerprint images match images with high textures and also those 

with low textures. 

5.1  Result analysis 

As it has been discussed in the theoretical background of the thesis that intelligent 

manufacturing is a multidimensional concept to optimize production processes through 

advanced data analysis, manufacturing technologies, and system engineering. Different 

challenges arise with multidimensionality processes, such as volume, variety, and veracity, 

as shown in Figure 4. The data used in this research is based on images of veneer sheets 

which also reflects multiple data challenges. 

It has been found that using GLCM texture features of original veneer sheets works well for 

the images with high texture, but it does not work well where texture is low. In order to get 

similar sheets with low textures, fingerprint images have been created for each veneer sheet 

image as mentioned in algorithms 1 and 2, and then again, all data pre-processing methods 

discussed earlier have been applied to the texture features of fingerprint images. Using 

GLCM texture features of fingerprint images gives promising results; the model identifies 

similar candidates for both high- and low-texture veneer sheets as in Figure 35. 
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According to the current literature review, (Alsmadi, 2020; Haryanto et al., 2020; Surabaya 

et al., n.d.; Wang and Ren, 2014; Zhang et al., 2021) applied GLCM to calculate the texture 

features of the images. Some authors have calculated all GLCM texture features, and some 

have calculated for fewer texture features. These texture features have been grouped into the 

edge and interior texture groups. (Hall-Beyer, 2017) presented guidelines in the selection of 

GLCM texture features which have been followed in this thesis for the selection of texture 

features. Contrast, correlation, dissimilarity, energy, and homogeneity GLCM texture 

features have been calculated for both available veneer sheet original and fingerprint images 

with pixel distance d=1 and angle θ = (0°, 45°, 90° and 135°). 

In current literature, (Haryanto et al., 2020) calculated ASM, contrast, correlation, 

dissimilarity, energy, and homogeneity with pixel distance d =5 and angles θ = (0°, 45°, 90° 

and 135°) for histopathology images. (Surabaya et al., n.d.) calculated ASM, IDM, contrast, 

entropy, and correlation with pixel distance d = 1 and for only one angle θ = 0°. (Kamal et 

al., 2017) calculated contrast, correlation, energy, and homogeneity GLCM texture feature 

for the wood images containing different types of wood knots defects. (Alsmadi, 2020) 

calculated contrast, energy, homogeneity, standard deviation, and mean for each 4 x 4 block 

in the image at angles θ = (0°, 45°, 90° and 135°). 

When it comes to the implementation of GLCM, in the current literature, the maximum value 

of pixel distance is usually d = 5, whereas most of the authors have used pixel distance d =1 

to calculate the GLCM texture features in angles θ = (0°, 45°, 90° and 135°). It has been 

justified by (Haryanto et al., 2020) that too far pixel distance cause information between 

pixel to be irrelevant. Furthermore, in this thesis, initially, GLCM texture features for 

different pixels distance d = (1,5, 7, 9) have been calculated, which are shown in Figure 37, 

and in the proposed model pixel distance d =1 has been used to calculate GLCM texture 

features. 
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Figure 37. Candidate images with distance d = (1,5,7,9) and angles (0°, 45°, 90° and 135°) 

 

In this thesis, fingerprint images have been created using the canny edge detector to get 

candidate sheets with low texture. (Alsmadi, 2020) also used the canny edge detector to 

extract the shape features, and by applying canny edge, diverse shapes existed in the image 

were obtained to improve the similarities between the query image and the images in the 

database. In this thesis, the canny edge method improves the results by selecting images as 

candidate images that have low texture. 

Veneer sheets have variations in the texture; some have low texture, and some have high. It 

is easy to determine the similar sheets after the peeling process, but after the drying process, 

it is complicated to match similar sheets to form logs for clarity, as the veneer sheets get 

mixed during the drying process. The proposed method in this thesis shown in the Figure 38 

can be used to form logs for clarity from a set of consecutive dried veneer sheet images by 

using fingerprint images to calculate GLCM texture features (Contrast, correlation, 
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Dissimilarity, Energy, and Homogeneity) with distance d=1 and angles = (0°,45°,90°,135°). 

Normalizing the GLCM texture feature values with L2, applying PCA on normalized values, 

and calculating the cosine similarity on the transformed values resulted in promising results 

for both low and high texture veneer sheet images. This model can be used to optimize the 

manufacturing process of the veneer/LVL industry by forming a log of similar dried veneer 

sheets for further processing. 

 

6  Conclusion and discussion 

The first objective of this thesis was to examine how machine learning algorithms have been 

applied in the veneer/LVL industry to optimize the peeling and drying process of veneer 

sheets. The second objective was to optimize the veneer/LVL manufacturing process to 

develop a data-based method to identify similar veneer sheets after the drying process 

according to their textural features and grains. 

In order to comprehensively obtain the research objective, two research questions have been 

identified at the beginning of the thesis. The answer to the first research question is below, 

based on understanding the theoretical background and literature review. 

RQ1. According to the current literature, how Machine Learning algorithms have been 

applied in the data-based optimization of drying process specifically in the veneer/LVL 

industry? 

In general, multiple methodologies are currently being utilized in the veneer/LVL industry 

to optimize peeling and drying processes using the data generated from sensors and image 

processing of veneer sheets. In the current perspective, most of the research has been done 

on classification methods to identify the wood knot defects (leaf, dry, sound, horn and edge) 

and quality analysis of the veneer sheets before and after the drying process. Another 

research area in the drying process is to optimize the process in such a way to reduce the 

energy consumption in the drying process, which is approximately fifty percent of the mill’s 

energy in the plywood manufacturing and lastly.  
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In this thesis, three approaches have been studied and evaluated using the texture features 

data from the veneer sheets to answer the second research question.  

RQ2. How to enhance the peeling-drying process through data-based optimization in the 

given LVL-manufacturing case example through the use of data mining and machine 

learning?  

The first approach was using GLCM texture features and calculating the similarities of the 

query image based on texture similarity. The second approach was implemented using 

GLCM texture features, normalizing the features, applying PCA and using the transformed 

values to calculate the similarities. The last approach was that instead of original veneer 

sheet images, fingerprints of the images were used to calculate the GLCM texture features. 

During the study, it was observed that extracting GLCM texture features on fingerprint 

images gives promising results compared to the original veneer sheet images used in the 

previous two approaches. However, the preliminary results show some similarities with the 

candidate sheets as the data was unlabelled, which provides direction to further analysis with 

fingerprint images. 

6.1  Future research 

This thesis provides a solid foundation for future studies. The research related to the thesis's 

topic shows several new ideas that can be investigated further. A significant topic of interest 

of this thesis may be to widen the scope and experiment with other image edge detecting 

techniques such as Sobel edge detection and Prewitt edge detection on the original images 

and evaluate the results on different similarity calculating methods. 

In general, this thesis evaluates the use of GLCM texture features results in the veneer sheets 

and fingerprint images. The overall results are based on the research based on the literature 

review related to the veneer sheet peeling and drying methodologies. Furthermore, literature 

reviews of the papers from other disciplines other than the wood industry, like biomedical, 

have also been done. It is observed that applying image processing methods from biomedical 

imaging field in the veneer industry will be worth trying. 
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