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ABSTRACT 

Lappeenranta–Lahti University of Technology LUT 

LUT School of Engineering Science 

International Master’s Program of Science in Engineering, Entrepreneurship and Resources 

(MSc ENTER) 

Una Smailbegovic 

 

Modelling energy consumption of a typical residential building using experimental design 

Master’s thesis 

2022 

60 pages, 28 figures, 17 tables and 3 appendices 

Examiner(s): Prof. Antti Häkkinen, Prof. Dr. Edin Kadric, Prof. Dr.-Ing. Tobias M. Fieback 
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Globally, energy consumption of building sector is enormously high. In Bosnia and 

Herzegovina, residential sector consumes 59% of the total energy consumption, mainly for 

heating. B&H is a middle-income country with high heating demands caused by climate 

conditions and poor energy related properties of the residential building sector.  

Therefore, the purpose of this master’s thesis is analysis energy consumption of the one 

selected typical residential building from B&H residential stock and developing mathematical 

model prediction heating demand. Observed residential building is located in Sarajevo, capital 

city of B&H and is classified as apartment block built-in period of 1960-1970.  

Energy properties selected as relevant for this analysis are external wall heat transfer 

coefficient, roof heat transfer coefficient, glazing type and efficiency of heating system.  

Design Builder is used for modeling selected building, considering architectural, 

constructional, HVAC system, climate condition, occupant and electrical equipment 

schedules. EnergyPlus, simulation engine, integrated in Design Builder, is applied for 

performing dynamic simulations using hourly weather data.  

Fluctuations in energy consumption due to influencing factor variations were analyzed using 

the Design of Experiment method. Mathematical model for predicting energy demand is 

developed with Minitab, with focus on savings in heating demand and heating carbon 

footprint. Additionally, annual heating carbon emissions are calculated.   
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Symbols and abbreviations  

 

Roman characters 

p pressure [bar, Pa] 

T temperature [ºC, K] 

U transmission coefficient [W/m2 K] 

R thermal resistance [m2K/W] 

A area  [m2] 

Q H,nd specific annual required energy for heating [kWh/m2] 

Q H,del specific annual delivered energy for heating [kWh/m2] 

EH,CO2 annual heating carbon emissions  [t] 

eco2 carbon emission factor  [kgCO2/kWh] 

 

 Greek characters 

 significance level [-] 

λ thermal conductivity [W/mK] 

𝜂𝑠𝑦𝑠   system efficiency [-] 

𝛿 material thickness [m] 

 

Abbreviations 

B&H Bosnia and Herzegovina 

EU European Union  

HVAC Heating, ventilation and air conditioning 

DOE  Design of Experiment 

ANOVA Analysis of Variance 

EE Energy Eficiency 

RSM Response Surface Method 

FFD Full Factorial Design 

BBD Box-Behnken Design 

CCD Central Composite Design 



 
 

GDP Gross Domestic Product 

ML Machine Learning 

OFAT  One Factor at Time 

SS Sum of Squares 

MSS Mean Sum of Squares 

DF Degrees of Freedom 

VIF Variance Inflation Factor 

AB Apartment Block 

SHGC Solar Heat Gain Coefficient 

XPS Extruded Polystyrene 

EPS Expanded Polystyrene 

TABULA Typology Approach of Building Stock for 

Energy Efficiency Assessment 
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1. Introduction 

Rising energy consumption of residential buildings is a symbiosis of different socio-economic, 

geographical, physical, technical, and human-influenced factors. Due to increased human 

population and improved quality of life, at the global level, building energy consumption and 

carbon emission are recently significantly increased (Cao et al., 2016, 2016; Pérez-Lombard et 

al., 2008). In addition to the increasing scarcity of traditional energy sources, the issue of the 

global warming has been present for years and its consequences are manifesting exponentially, 

leaving an indelible mark on the environment.  

To overcome this challenging issue, the most feasible solution is to increase the efficiency of 

energy use and to decrease the energy consumption in buildings by improving the energy 

characteristics of the constructional sector. Bosnia and Herzegovina, as a medium economic 

level country with high heating demands caused by climate conditions and poor energy related 

properties of the residential building sector, should avoid further increases in energy 

consumption and increase the electrification ratio (Guo et al., 2020). Accordingly, in B&H, 

insufficient attention has been paid to research into energy efficiency improvement measures 

and sustainable development. As a consequence of inadequate energy policies, according to 

WHO, Bosnia and Herzegovina is the third in the world by deaths caused by air pollution (Air 

quality and health, 2018). B&H, as a country in transition, has two main challenges related to 

further sustainable development: replacing traditional with renewable energy sources and more 

efficient use of energy. 

 As it is present on figure 1.1, in B&H is energy consumed by residential sector is 18.44% 

higher than consumption in EU. Therefore, the huge potential is hidden in improving the 

performance of buildings. Approximately 72% of the total energy use in residential sector is 

used for heating (Kadrić et al., 2022). 
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Figure 1.1. Energy consumption per sector in B&H, 2010 (Energy efficiency action plan of Bosnia 

and Herzegovina for the period 2016 - 2018, 2017) 

The main purpose of this master’s thesis is an analysis of the energy properties of the selected 

typical residential building from B&H residential stock, for building energy properties ranging 

from poor to advanced. Energy properties selected as relevant for this analysis are heat transfer 

coefficient of the building envelope, glazing  type and efficiency of the district heating system. 

Mathematical model for estimation of annual energy demand of selected typical residential 

building in B&H is developed to analyze how particular energy properties and their correlation 

influence energy consumption. Observed residential building is located in Sarajevo, capital city 

of B&H. To analyze influence of different values of building energy properties on energy 

consumption, building model is created in Design Builder v.6.1.0.006 software 1, graphical user 

interface. Energy Plus v.8.92 is integrated within Design Builder and it is engine applied for 

performing dynamic simulations. Model is containing relevant information related to climate 

condition, building construction and architecture, HVAC system, occupant activities and 

installed equipment. 

Statistics is essential and unavoidable tool utilized in analyzing the experimentally obtained 

data (Antony, 2014). Design of Experiments (DOE) is powerful and often underestimated 

advanced statistical method and refers to the process of planning experiment and analyzing 

experiments’ results, in order to reach conclusions effectively and efficiently (Jiju, 2014). Given 

the unbreakable bond between statistics and engineering, changes in energy consumption due 

 
1 Available at https://designbuilder.co.uk/ 
2 Available at https://energyplus.net/ 
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to influencing factor variations were analyzed using the DOE method, used to generate 

mathematical model in Minitab® v.19.2020.13. Hence, heating carbon footprint is calculated.  

In the literature review, insight in related research articles is provided and compared with 

methodology used in this master’s thesis. Since there is noticeable gap in literature related to 

energy performance of buildings in B&H, this master’s thesis emphasizes the undetected 

research potential of this topic. Chapter 3 is theoretical introduction to  DOE, applied statistic 

method for developing mathematical model. Focus of the chapter 4 is on understanding the 

thermodynamic laws and quantities that are required to calculate the energy demand in 

buildings. Architectural, constructional and energy characteristics of the selected building are 

described in chapter 5, as well as motivation for selecting analyzed residential building. Finally 

in chapter 6 simulation results are presented, mathematical model for predicting heating energy 

consumption is developed, and model validation is performed.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 
3 Available at https://www.minitab.com/en-us/ 

https://www.minitab.com/en-us/
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2.  Literature review  

The first conceptualization of DOE was introduced in 1920s by statistician Sir Ronald Fischer 

(Fisher, 1971; Jiju, 2014; Shina, 2022). Sir Ronald Fischer utilized these statistical methods for 

investigating influence of the rain on crop growth. In 1925, his conclusions have been summed 

up in the work ‘Statistical Methods for Research Workers’, which was subsequently published 

in nine editions (Fisher, 1971). Another example of interesting application of DOE is found in 

the World War II, when the United States Naval Experimentation Laboratory investigated the 

cause of poor-quality welds on shipyards (Astakhov, 2012).  

Edward Deming, a well-known engineer, statistician and father of quality management, 

educated the Japanese about statistical methods, including DOE, and helped raising Japanese 

production to the top. Japanese scientist and engineer Genichi Taguchi developed characteristic 

DOE method known as Taguchi design and applied it to improve Toyota production system. 

After establishment of Six Sigma concept, and the globally acceptance of these methodologies, 

DOE is characterized as advanced statistic method and it is utilized in remarkable companies 

as Motorola and General Electric (Astakhov, 2012).  

Nowadays, DOE has a wide range of applications that have gone beyond scientific research. 

Practical example of utilizing this powerful statistic tool is finding optimal design of the letter 

envelope in order to boost the response rate, performed by credit card company in the United 

States (Astakhov, 2012). Importance of this method is recognized by psychologists, and it is 

used in marketing to examine customer’s behavior and sales prediction (Muir, 2010).  

Antony emphasizes incontrovertible advantage of utilizing DOE in research work, as well as 

industry. The widely accepted One-Factor-at-Time (OFAT) principle is time-consuming, 

requires a lot of resources to perform and can lead to misleading conclusions, due to the fact it 

does not analyze the dependence of the investigated factors. Although primary designed for 

agriculture, it has found application in all departments of scientific research. Zhang et al., (2022) 

utilized DOE to enhance performance of lithium-ion batteries management system. 

Furthermore, this statistical method is widely used in pharmaceutical industry (N. Politis et al., 

2017) and optimizing chemical processes, aimed to satisfy requirements of circular and green 

chemistry and utilize resources and energy more efficient (Huhtanen, 2012; Lamberti et al., 

2022; Taylor et al., 2020). Another important factor pertaining the reduction of the number of 

experiments is decreasing the utilization of critical raw materials.  
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Researchers and the manufacturing industry have recently made significant investments in 

developing smart home solutions and zero net building design. In literature, the issue of 

predicting energy consumption in housing units has been tackled generally in two ways: using 

machine learning (ML) algorithms (Elbeltagi and Wefki, 2021; Kalogirou et al., 2018; Liu et 

al., 2021; Martellotta et al., 2017; Olu-Ajayi et al., 2022) and the less represented, using 

advanced statistics methods (García-Cuadrado et al., 2022; Jankovic et al., 2021; Li et al., 2021; 

Liu et al., 2019; Sadeghifam et al., 2015). Data is collected with simulation software or using 

existing data sets.  

Although ML algorithms are widely applied for analyzing data, forecasting and pattern 

discovering, large number of information is required for developing reliable model. However, 

obtaining large datasets can be time-consuming, uneconomic and in some cases, impossible to 

perform. In contrast to conventical statistical methods, DOE is advanced statistical approach 

whose application  contributes to significant conclusions, observing reduced amount of data. 

When a specific case of simulations of a building's energy consumption is considered, reducing 

the number of required experiments significantly simplifies research. However, DOE requires 

developing comprehensive plan before conducting experiments. Phases of applying DOE 

method for analyzing energy consumption data obtained with simulation software according to 

(García-Cuadrado et al., 2022) are presented in figure 2.1. 

 

 

Figure 2.1. Phases of experimental program (García-Cuadrado et al., 2022) 

However, there are not many examples in the literature of the cohesive use of DOE with 

simulation software to predict the energy performance of a building. Given that, collaborative 

employment of DOE and dynamic energy simulation software is innovative approach and 

deserves more attention in research related to improving energy efficiency of construction 

sector.   
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Jankovic et al., (2021) have analyzed double skin facade (DSF) applying different DOEs in case 

of four different ventilation modes. On figure 2.2, example of determining experiment numbers 

for applied DOEs are presented. Significance of this research is the diversity of applied DOE 

models and therefore, it provides inside into DOE methods and their performance, as well as 

recommendation for selection of the suitable DOE. On this case study, Full Factorial Design, 

Screening Design, Taguchi Multilevel Design, Central Composite and Box-Behnken Design 

have been performed.  Examined factors are indoor and outdoor temperature difference, solar 

radiation, angle of a venetian blinds, infiltration rate, glazing and blinds. In conclusion, Central 

Composite Design is the most suitable for this study-case.  

 

Figure 2.2. Different DOE methods for 3 factors varied on 2 levels (Jankovic et al., 2021). Black dots 

represent planned experiments with applied DOE method and red dots repeated experiments 

In their research, Sadeghifam et al., (2015) used EnergyPlus simulations results to analyze the 

effect of buildings’ characteristics and designed temperature on cooling energy loads in 

residential buildings located in Kuala Lumpur. Given the characteristics of the climate in which 

the building is positioned, and HVAC system is installed, the biggest energy consumer is air 

conditioning systems. In summary, the highest impact on observed model has ceiling 

construction, followed by the wall construction and designed temperature. Contrary to what 

was expected, the analysis showed that the windows have no influence on the energy required 

for cooling. 
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 Since China is a great contributor to world’s energy demand (Zheng and Wei, 2019), analysis 

of this problem is widely represented in the literature. (Liu et al., 2019) presented analysis of o 

energy performance of the public building in China with Orthogonal Experimental Design. For 

model validation, obtained data are compared with actual building annual energy consumption 

and error is 4,1%. In conclusion, the highest influence has airtightness of outer window, 

followed by window- wall ratio, U coefficient of window, SHGC of windows, U coefficient of 

wall , and at the end, U coefficient of the roof. Authors have proposed optimal values to achieve 

the lowest energy demand. Due to fluctuating climate conditions in China, importance of 

including weather data in energy demand calculation is emphasized.  

Perceiving problem of ineffective and time consuming energy demand forecasting, in their 

research García-Cuadrado et al., (2022) and (Li et al., 2021) employed RSM for optimizing 

energy characteristics combined with EnergyPlus for obtaining data. García-Cuadrado et al., 

(2022) analyzed typical single-family house located in three different climate types: 

Mediterranean hot summer climate, Oceanic climate, and Humid continental climate. This 

research, as well as research conducted by Liu et al., (2019),  confirm the influence of climatic 

conditions on energy demand calculation. Heating set point, cooling set point and U coefficient 

of outer wall have been varied on three levels and fifteen experiments were performed for every 

climate type.  

Analysis demonstrated that in Europe, heating is the most energy-intensive process. Hence, it 

has been proven that the building envelope contributes to approximately 75% of a building's 

energy losses.   

The focus of study written by (Li et al., 2021) is using RSM for  proposing optimal values for 

analyzed factors, to satisfy thermal comfort in public building in China, with lower energy 

consumption. After applying Fractional Factorial Design, it is found that insulation thickness, 

U coefficient of the roof and windows-wall ratio are the most significant factor. After 

optimizing announced factors, 4% energy savings has been accomplished.  

Above mentioned examples demonstrated an advantage of collaborative use of  DOE and 

dynamic simulations. Therefore, it is an accurate, time-efficient, reliable way of determining 

energy demand in building and construction sector. Hence, described examples from literature 

have shown that there is no unique model that can be applied to all buildings. Influencing factors 

differ significantly depending on the construction characteristics of the object, its purpose and 

location. Climate conditions are an important factor affecting energy demand, and the reliability 

of the model depends on the accuracy of the outdoor temperature data applied for calculation. 
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Also, selection of the optimal DOE relies on the  experiment objective and the amount of 

available data.  

To emphasize the significance and consequences of increasing energy performance of 

residential buildings in B&H, this master thesis aims to analyze the impact of renovation 

measures on the  heating demand in the apartment building block, that belong to the period of 

construction from  1960 to 1970, according to Building Typology (Arnautović-Aksić et al., 

2016). There is a noticeable gap in the literature related to forecasting building energy 

consumption in B&H and the focus of this thesis is to build a bridge between world trends and 

the current situation in the Western Balkans. Considering that B&H is a country that has applied 

for a membership in the European Union and that energy sustainability and decarbonization are 

important factors that can accelerate this procedure, building renovation strategies by 2050 have 

been proposed.  

Kadrić et al., (2022) in their study provide analysis of the costs associated with implementing 

improvement measures in the building sector in B&H. Four levels of restauration measures are 

proposed, from basic to advanced. The analysis showed that citizens of Bosnia and Herzegovina 

have four times less financial resources for the implementation of rehabilitation measures 

compared to EU countries, as it is presented on figure 2.3.  

 

Figure 2.3. Ratio of  the GDP/capita to improvement measure cost for B&H, in comparison with 

Slovenia, Czech Republic, and Italy (Kadrić et al., 2022). 

 

According to Kadrić et al., (2022), apartment blocks in B&H can reduce energy consumption  

from 40%, when implementing basic restoration measures to 77% for the most advanced 

improvements.  
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Arnautović-Aksić et al., (2016) in their comprehensive analysis of residential stock in B&H, 

for residential building selected in this master’s thesis proposed two level of improvements. 

Improvement measures are adding wall(10cm and 20cm) and roof (20 cm and 30 cm) insulation 

windows replacement (double and triple glazing), heating system improvements.  

Accordingly, energy demand and carbon footprint of analyzed building for above mention cases 

are shown on figure 2.4. Guidelines for calculation was valid legal regulation in B&H. Quasi-

stationary monthly calculation are performed, based on EN ISO 13790. As it can be seen from 

figure 2.4, 69% energy can be saved with implementing improvement 1 and 81% with 

improvement 2.  

 

Figure 2.4. Annual specific heating demand and carbon footprint of the selected residential building, 

for current and improved condition, according to Arnautović-Aksić et al., (2016) 

 Although research  regarding building energy performance in B&H has been performed, the 

methods used are not precise enough and there are deviations from the actual energy 

consumption data. Therefore, in this master’s thesis, EnergyPlus, as a more precise software for 

obtaining data,  is used for simulations and calculations are performed hourly. As announced 

examples in literature have confirmed, DOE is reliable method for energy analysis and 

therefore, in this master’s thesis, it is used for developing mathematical model for predicting 

heating demand, based on hourly weather data, in selected residential building in B&H.  
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3.  Design of Experiments 

Experiments are applied to analyze a cause-and-effect relationship and acquire information 

about process. Developing a set of techniques, procedures and methods to test a hypothesis 

systematically is referred as experimental design (Antony et al., 2017). Conventionally,  

dependent variable fluctuations, caused by variation of the independent process variables, are 

observed. Basically said, process is an established order of the predefined operations, aimed to 

transform inputs into outputs (Antony, 2014).  

Widely represented experimental methodology of varying one factor per experiment is 

inefficient, uneconomic, and does not include analysis of interactions among variables. DOE is 

alternative to OFAT approach and refers to the process of planning the experiment, creating 

experiment schedule and analyzing experimentally obtained data, in order to reach pragmatic 

conclusions based on reduced amount of data (Antony et al., 2017; Fisher, 1971; Jiju, 2014).  

To avoid any misunderstanding, it is necessary to define terminology related to DOE 

methodology used in this study. In the DOE methodology, response variable is measured 

output. Controllable input variables are defined as factors and they can be qualitative or 

quantitative. (Siebertz et al., 2010). For instance, glazing can be single, double, or triple and it 

is qualitative variable, but U-coefficient can take any value in physically reasonable range, and 

it is quantitative variable.  Levels are specific values of factors used in experiments, selected to 

cover entire range of possible values of factor, and they are presented as coded value. High 

level is presented as +1, medium as 0, and low level as -1 (Jiju, 2014; Siebertz et al., 2010). 

Experimental matrix is arrangement of methodically varied levels of examined factors and gives 

instructions on the order in which individual experiments are performed. Each combination of 

factors in experimental matrix is called treatment (Montgomery, 2013).  

In cases where relationship between response and factors is assumed to be linear, models with 

factors varied at two levels are sufficient (Huhtanen, 2012). For instance, Full Factorial and 

Fractional Factorial Design can be used to analyse linear relationship between factors and 

response (Jankovic et al., 2021). Even though Full Factorial Design analyses process 

comprehensively, if high number of factors is include in analysis, the number of required 

experiments increases exponentially, and the Fractional Factorial Design is recommended for 

simplification (Jiju, 2014). Fractional Factorial Design is modified version of the Full Factorial 

Design that requires only specified subgroup of original experiments to be performed. In the 
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figure 3.1, difference in the number of experiments for performing above described method is 

shown (Jankovic et al., 2021).  

 

Figure 3.1. Difference between Full (left) 23 and Fractional 23-1 Factorial (right) Design  

(Montgomery, 2013) 

Taguchi Design is a standardized approach for determination of the best factor values 

combination to produce a product or service (Huhtanen, 2012). Taguchi design significantly 

reduces number of experiments, and it is intended for use in industry to minimize costs 

(Jankovic et al., 2021). In cases where relationship between response and factors is assumed to 

be non-linear, models with factors varied at minimum three levels are required. Box-Behnken 

(BBD) and Central Composite design (CCD), most common RSM, are used to optimize 

response  (Jankovic et al., 2021). Typically, BBD and CCD are employed for reduced number 

of factors, after screening methods have identified important factors (Huhtanen, 2012).  

A well-planned, successfully performed and extensively analyzed experiment contributes to 

process optimization and detection of the problems in industry and research field. Additionally, 

it can be utilized to build a mathematical model for prediction of process behavior, reduce costs, 

optimize process time, and increase capacity. Establishment of a detailed plan is essential for 

the successful and efficient implementation of the experiment (Jiju, 2014). Process of 

experiment planning follows typical procedure: problem definition, selection of the response 

variable, factors, and suitable levels, and according to objective of experiment and given 

factors, selection of the suitable DOE. Subsequently, the experiments are performed in the order 

indicated in the experiment matrix, responses are measured and finally, mathematical model is 

developed (FFD) the optimal values of the variables are determined (RSM). Data analysis is  

consisted of determining the most influential factors, interactions between factors, development 

of a mathematical model and verification of model adequacy, applying established statistical 

tests (Dean et al., 2017; Jiju, 2014; Montgomery, 2013).  
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A systematically developed plan and the process understanding is essential for the experiment 

conduction and obtaining relevant information about considered process. Even though many 

DOE methods have been developed, the optimal method has to be selected.  

3.1.  Full Factorial Design 

Aim of this master’s thesis is creating the mathematical model for estimation of annual energy 

consumption in selected building. Four influencing factors are examined: U coefficient of the 

external walls and roof, glazing and efficiency of the district heating system. Since linear 

relationship is assumed, two levels of factors are considered, low (-1) and high (+1) level. 

Considering the relatively small number of factors, FFD is selected.  

Calculation of the number of experiments (n), when k factors are varied on two levels in the 

FFD is given by:  

𝑛 = 2𝑘 (3.1) 

  

According to 3.1, the number of performed experiments in this research is sixteen.  

Hence, model that quantitatively describes the process, individual and interaction effect of 

factors, has to be developed.  Main effect of the factor is a difference in the main response value 

(𝑦) when the factor (𝑥𝑖) is varied from lowest (−1)  to highest (+1) value (Montgomery, 2013). 

Consequently, the greater the difference between response value when the factor is varied, the 

greater the influence of the analyzed factor on the measured response. This method is called the 

contrast method (Siebertz et al., 2010).  

Expected regression model for estimation of the response, considering four analysed factors, is  

given by:  

 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3+𝛽7𝑥1𝑥4

+ 𝛽8𝑥2𝑥3 + 𝛽9𝑥2𝑥4 + 𝛽10𝑥3𝑥4 + 𝛽11𝑥2𝑥3𝑥4 + 𝛽12𝑥1𝑥2𝑥4

+ 𝛽13𝑥1𝑥3𝑥4 + 𝛽14𝑥1𝑥2𝑥3𝑥4   +  𝜖 

 

        (3.2) 

Where:  

𝑦 – response variable  
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𝛽0 − intercept 

(𝛽1,𝛽2,. . . 𝛽14,) − regression coefficients,  

𝑥1, 𝑥2, 𝑥3, 𝑥4 − analysed factors 

𝜖 − normally distributed random error component 𝜖 ∈ 𝑁(0, 𝜎). 

 

Model defined by (3.2) contains intercept, linear component, two-way, three-way, and four-

way interaction components and random, normally distributed error. Depending on the 

estimated statistical significance of terms in (3.2), statistically insignificant may be excluded 

from equation. If certain terms are excluded from (3.2), then the new model is called reduced 

model. Regression coefficients (𝛽1,𝛽2,. . . 𝛽14,) are calculated as a half of the corresponding 

factor’s effect and intercept 𝛽0 is grand average of the all observations. Graphic representation 

of (3.2) is plane called response surface plot (Montgomery, 2013). 

Validation is an essential step in DOE and development of reliable and accurate mathematical 

model. Further explanation of model adequacy testing is given in chapter 3.3. 

3.2.  Analysis of Variance  

In mathematical model development, the main objective is to identify factors with greatest 

influence on the process response. Beside effect calculation, it is important to estimate statistical 

significance of factors, using Analysis of Variance (ANOVA). One-way ANOVA is a statistical 

methodology that evaluates two mutually exclusive hypothesis about two or more population 

means. Without ANOVA, the model cannot be accepted. 

Statistical hypothesis is statement about population that can be accepted or rejected, after 

applying statistical tests (Montgomery, 2013). At the beginning of the testing procedure, two 

types of hypotheses are developed; null hypothesis (𝐻0), which assumes the correctness of the 

formulated statement, and alternative (𝐻1), which assumes deviations from the basic statement 

(Kolesaric and Tomasevic-Humer, 2016). Probability of rejecting null hypothesis when it is 

true is significance level (𝛼) of the test.  

When FFD effect model, defined by (3.2),  is considered, null hypothesis assumes invariance 

of the process response with varying factor levels. Hence, analyzed factor is not statistically 

significant. Alternative hypothesis assumes there is at least one exception from previous 

statement. Accordingly, similar hypothesis is constructed for factor’s interactions.  



Design of Experiments 

14 
 

The lowest level of significance (𝛼) that results in the rejection of the null hypothesis is defined 

as 𝑝 value (Dean et al., 2017; Kolesaric and Tomasevic-Humer, 2016; Montgomery, 2013). The 

most convenient statistical procedure for testing statistical significance of factor is ANOVA. 

To analyze variability of the process with two factors, sum of squares (SS) and mean squares 

(MS) are defined. Additionally, Fischer’s test, statistical test that compares MS of examined 

factors and model error, is performed for testing factor significance. Let it be assumed that there 

are two factors A and B whose influence on the process is analyzed. Examined factors are varied 

on total of 𝑎, 𝑏 levels, respectively and 𝑛 experiments are performed with m replicates. 

Replicates are repeated treatments performed to reduce the influence of non-controlling 

variables. Since in this master’s thesis simulation software is used for obtaining data, 

replications are not performed. 

SS is square of the differences between each experiment treatment response and overall mean 

response (Montgomery, 2013).  

 

𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ ∑(𝑦𝑖𝑗𝑘 − �̅�)
2

=

𝑛

𝑘=1

𝑏

𝑗=1

 

𝑎

𝑖=1

 

= 𝑏𝑚 ∑(�̅�𝑖 − �̅�)2

𝑎

𝑖=1

+ 𝑎𝑚 ∑(�̅�𝑗 − �̅�)
2

𝑏

𝑖=1

+ 𝑚 ∑ ∑(�̅�𝑖𝑗 − 𝑦�̅� − �̅�𝑗 + �̅�)
2

𝑏

𝑗=1

+  ∑ ∑ ∑(𝑦𝑖𝑗𝑘 − �̅�𝑖𝑗)
2

𝑚

𝑘=1

𝑏

𝑗=1

𝑎

𝑖=1

𝑎

𝑖=1

, 

 

 

(3.3) 

Where:  

𝑎, 𝑏 − level of factors A and B, correspondingly, (𝑖 = 1. . 𝑎, 𝑗 = 1. . 𝑏) 

𝑚 − number of replicates, (𝑘 = 1. . 𝑚) 

�̅� − overall mean value 

  

As it can be seen from (3.3), total SS is consisted of four parts. Therefore, (3.3) can be written 

in abbreviated form given by: 

 

𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸 

 

(3.4) 

The first and second terms in (3.3) and (3.4) are a sum of the squares of the differences between 

the individual experiment averages and the overall mean, for A and B factors, separately. Third 

term of the (3.4) is sum of squares of differences between interaction effect of factors in 

individual experiment averages and the overall mean and the last part is sum of squares of the 
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differences of observations within treatments and the treatment average (Montgomery, 2013). 

The first, second and third terms are variations due to factor influence on the process response, 

and the last term represents variation that occurs due to random error in the experiment 

(Montgomery, 2013). 

Mean square (MS) of the source of variation is defined as ratio of the sum of square and 

corresponding degrees of freedom (Montgomery, 2013) For MS calculation, degrees of 

freedom (DF), as number of independent variables, are listed in table 3.1.  

 

Table 3.1. Degrees of freedom 

Source of variation Part of equation Degrees of freedom 

A 𝑆𝑆𝐴 𝑎 − 1 

 B 𝑆𝑆𝐵 𝑏 − 1 

 AB 𝑆𝑆𝐴𝐵 (𝑎 − 1)(𝑏 − 1) 

Error 𝝐 𝑆𝑆𝐸  𝑎𝑏 (𝑛 − 1) 

Total 𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑛 − 1 

 

Equation used for estimation of the MS of individual factor effect, interaction factor effect and 

model error, respectively, is given by: 

 

𝑀𝑆𝐴 =
𝑆𝑆𝐴

𝑎 − 1
; 𝑀𝑆𝐵 =

𝑆𝑆𝐵

𝑏 − 1
 ;  𝑀𝑆𝐴𝐵 =

𝑆𝑆𝐴

(𝑎 − 1)(𝑏 − 1)
; 𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑎𝑏(𝑛 − 1)
 

 

(3.5) 

Since the focus is to determine whether the variability is caused by the effect of factors on the 

process or a random error, MS of factors is compared to MS of the error, and the ratio of these 

two values is defined as F-value. F-test is used for testing factor significance. Therefore, high 

F-value indicates rejection of the null hypothesis and F-factor around 1 leads to hypothesis 

acceptance (Dean et al., 2017).  

 

𝐹𝑜𝐴 =
𝑀𝑆𝐴

𝑀𝑆𝐸
 ;  𝐹𝑜𝐵 =

𝑀𝑆𝐵

𝑀𝑆𝐸
 ;  𝐹𝑜𝐴𝐵 =

𝑀𝑆𝐴𝐵

𝑀𝑆𝐸
 

 

(3.6) 

If normal distribution with constant variance of model error is assumed, each ratio listed in (3.6) 

is following the F distribution, where numerator has (𝑎 − 1), (𝑏 − 1), (𝑎 − 1)(𝑏 − 1) degrees 

of freedom, respectively,  and denominator  𝑎𝑏(𝑛 − 1). The critical value above which the null 
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hypothesis is not accepted, is obtained from statistical tables for F distribution, considering DF 

of nominator and denominator (Montgomery, 2013).  

P-value, given in the ANOVA table, is the easiest and most frequently used metric for the 

determination of the acceptability of the null hypothesis. If calculated 𝑝 value is smaller than 

pre-defined significance level 𝛼, the influence of the analyzed factor cannot be neglected, and 

the null hypothesis is rejected (Kolesaric and Tomasevic-Humer, 2016). Otherwise, null 

hypothesis is accepted.  

T-test is the most common statistical test used for determination whether factor is significant 

for analyzed model. If obtained t-value is exceeding critical value from the t-distribution for the 

corresponding degrees of freedom, number of observations in sample and significance level, 

null hypothesis is rejected.  

The Variance Inflation Factor (VIF) is statistical measure that is used to measure the 

multicollinearity in regression analysis and the most desirable value is around 1. If 

multicollinearity is high, the model cannot be accepted. 

3.3.  Verification of model adequacy 

After experiments are conducted and mathematical model is developed, model validity check 

must be performed to determine whether developed mathematical model can be accepted.  

Since factors are varied on two levels, linear model is developed and therefore the adequacy of 

the selected model must be checked. When analyzing process, it is assumed that model random 

errors are following normal distribution ,𝜖𝑖𝑗𝑘 ∈ 𝑁(0, 𝜎). In addition, it is assumed that  residuals 

are independent and have constant variance at every level of factor. Therefore, 

homoscedasticity, normality, linearity, and independence of residuals  must be confirmed. If 

one of the listed assumptions is incorrect, the model cannot be accepted.  

For the model with 2 analyzed factors A and B, with total of a and b levels, correspondingly, 

and m replicas, residuals can be estimated using following equation.  

  

𝑒𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − �̂�𝑖𝑗𝑘 

 

(3.7) 

Where:  

�̂�𝑖𝑗𝑘 − overall mean 
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𝑒 − model residual (error) 

𝑖 − level of factor A, 𝑖𝜖(1. . 𝑎)  

𝑗 − level of factor B, 𝑗𝜖(1. . 𝑏)  

𝑘 − replicant order 𝑘𝜖(1. . 𝑚)  

 

The standardized residual equals the value of a residual divided by the square root of MS of the 

error (Shina, 2022).  

Normality is usually examined with Anderson-Darling (AD) test. Null hypothesis assumes that 

all residuals follow normal distribution. Accordingly alternative hypothesis claims that data are 

not normally distributed. If the obtained p value is higher than the defined 𝛼, the null hypothesis 

is confirmed, and it is concluded that the model residuals follow a normal distribution. If a 

residual value deviates significantly from the others, that value is considered an outlier 

(Montgomery, 2013).  

The problem of heteroscedasticity may appear on the residuals and fitted values plot. The 

residuals should be approximately equally distributed around the zero line and the distance from 

that line should not follow any trend. The most frequently applied solution is data 

transformation for the purpose of variance stabilization (Montgomery, 2013). However, many 

mathematical tests are developed for examination the homogeneity of variance. For instance, 

Bartlett’s test is widely used for testing homoscedasticity (Montgomery, 2013) and model is 

confirmed if  𝑝 < 0.05. Additionally, for testing homoscedasticity, Levene’s test and Multiple 

comparison test for equal variances can be used, following the same logic as Bartlett’s test. 

Bartlett’s test cannot be used on residuals that are not normally distributed (Montgomery, 

2013). Levene’s test and Multiple Comparison test are less sensitive to deviation from 

normality.  

Since obtained model is linear, the coefficient of determination can  be used to determine the 

regression significance (Shina, 2022). Coefficient of determination is defined as percentage of 

the dependent variable variation that can be explained with model (Allen, 2010) and can have 

a value between 0 and 1. Therefore, it is a metric that indicates how well the model fits the data. 

It is desirable that the coefficient of determination be above 0.9 and then the model can be 

considered significant (Shina, 2022). On the other side, adjusted coefficient of determination 

(𝑅2(𝑎𝑑𝑗)) considers degrees of freedom in calculation and estimates how particular factor 
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improve the fit of the regression model. If the model is valid,  𝑅2 and 𝑅2(𝑎𝑑𝑗) should not differ 

significantly. 
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4. Buildings as complex thermodynamic system  

This chapter theoretically describes the behavior of the building as a complex thermodynamic 

system. Although in this research dynamic simulation software EnergyPlus v.8.9. is used  for 

the heating demand calculation in selected residential building, a theoretical background is 

required for the process understanding and performing analysis with DOE. 

4.1. Heat loss in building sector  

Heat losses in buildings can be divided into transmission and ventilation losses (Mastelic, 

2018). Although there are ventilation losses in the building envelope due to the porosity of the 

materials, heat transmission is the dominant heat loss in the facade. Ventilation losses are the 

most often caused by insufficiently insulated windows and  connection between windows and 

frames (Gullbrekken et al., 2020; Odeh et al., 2018). On the other side, ventilation is necessary 

to ensure living comfort and sufficient air circulation reduces the exposure of people to harmful 

substances (Medved, 2022). On figure 4.1, typical average heat losses for a single-family house 

are shown. It should be emphasized that there are significant deviations from these values 

between buildings of different characteristics.  

 

Figure 4.1. Heat loss in single-family house (Dmytro et al., 2017): Walls (35%), Roof (25%), Floor 

(15%), Infiltration through windows and doors (25%) 

When calculating heat losses in the residential building, the following assumptions are made: 

• stationary conditions of heat transfer, 

• one-dimensional heat transfer, 
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• all physical quantities are constant, and the material is homogeneous. 

4.1.1. Transmission losses in residential buildings  

There are three different methods of the heat transfer: thermal conduction, convention, and 

thermal radiation (Bocken and Ritala, 2020; Moss, 2007). Thermal conduction is a transport of 

thermal energy from the surface with the higher temperature to the surface with the lower 

temperature that are in physical contact (R. Hall, 2010), until the temperatures become equal. 

Conduction is significant cause of heat loss in the residential buildings (Moss, 2007). Due to 

the temperature difference, conduction occurs through the material layers of the poorly 

insulated building envelope (Moss, 2007). To prevent transmission losses, insulation should be 

installed on the outer walls of the building. Convection is heat transfer through the movement 

of the fluid molecules that occurs due to the heterogeneity of the fluid temperature (von Böckh 

and Wetzel, 2012). For instance, convection occurs when heating the air in a room with a 

heating element. The third method of a heat transfer is radiation (von Böckh and Wetzel, 2012), 

and it is a heat transfer performed without medium and it occurs for instance in systems that 

emit electromagnetic radiation. Radiation that occurs in building sector is solar heat absorption. 

Figure 4.2. shows principle of announced heat transfer mechanism.  

 

Figure 4.2. Heat transfer mechanisms: a) conduction, b) convection, c) radiation (Bergman and  

Incropera, 2011) 

 

The properties of the material of the outer walls have the greatest influence on the transmission 

heat loss. To simplify the process, the explanation of heat transfer by radiation is omitted in this 

master's thesis and it is assumed that heat transfer through solid building element is performed 

by convection and conduction. 
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Thermal conductivity (𝜆) is a material characteristic that describes the magnitude of the heat 

amount that can be transferred per unit length and per unit temperature difference in the 

direction of the heat flux. The thermal conductivity is characteristic of specific material and 

depends on temperature and pressure difference between two environments.  

 

Generally, in construction sector, to qualify an observed object's ability to transmit the heat, the 

overall heat transfer coefficient 𝑈 [𝑊/𝑚2𝐾] is used (Moss, 2007). Heat transfer coefficient is 

inverse value of the material’s thermal resistance 𝑅 [𝑚2𝐾/𝑊]. The thermal resistance of 

specific layer of material is defined as ratio of material layer’s thickness (𝑑) and thermal 

conductivity (𝜆) (R. Hall, 2010).  

 

 In multilayer materials, the thermal resistances are connected in series and the total resistance 

can be calculated as the sum of the individual ones (Bergman and Incropera, 2011). Higher U-

value of the observed building’s element results with the increased heat loss and it is often used 

as indicators of  the building energy efficiency (Medved, 2022). To reduce heat losses and at 

the same time increase energy efficiency the specific transmission heat loss of the building 

should be as low as possible and are the largest permissible values of this parameter are 

regulated by law. 

 

In praxis, heat transfer in building elements is caused by combinate action of the all three heat-

transfer mechanism described above (Medved, 2022). Heat flux in the building’s outer wall is 

transferred by the mechanism of convention on both sides of the wall and conduction through 

the layers of the wall material, as it is presented on figure 4.3.  Heat is transferred from the side 

with hot fluid with convective heat-transfer coefficient ℎ1, through wall layers with thermal 

conductivity 𝜆𝐴, 𝜆𝐵,𝜆𝐶, and thickness 𝐿𝐴 ,𝐿𝐵,𝐿𝑐, respectively, and at the and it is transferred to 

cold fluid with convective heat-transfer coefficient ℎ2. 
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Figure 4.3. Heat transfer through multi-layer wall (Moss, 2007) 

Mathematically, heat transfer through multi-layer homogeneous plane wall with 𝑛 layers, is 

presented with equation bellow.  

 

𝑞 =
𝑇∞,1 − 𝑇∞,4

1
ℎ1

+ ∑
𝐿𝑖

𝜆𝑖
+

1
ℎ1

𝑛
𝑖=1

=
∆𝑇

𝑅𝑡𝑜𝑡𝑎𝑙
= 𝑈∆𝑇 

(4.1) 

  

 Transmission losses in residential buildings can be divided into (Mastelic, 2018):  

• transmission loss from the heated space to the external environment  

• transmission loss from the heated space to the unheated space (for instance, common 

building corridor) 

• transmission loss from the heated space to the ground 

4.1.2. Ventilation loss in building sector 

Nowadays, the airtightness of buildings has been used for assessment of the energy efficiency 

(Medved, 2022).  Airtightness primarily describes the quality of the constructive solutions for 

elimination of unwanted air circulation through building elements (Santamouris, 2006).  On the 

other hand, if there is no adequate mechanical ventilation in the building, and the building’s 

structure is designed to minimize ventilation heat losses, there may be an insufficient amount 
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of fresh air in dwelling units. Therefore, aim is to provide the optimal amount of air without 

unnecessary heat loss. 

 

If sufficient air quality is not maintained,  many symptoms of sick building syndrome like can 

manifested (Suszanowicz, 2018). Therefore, it is legally established how much air circulation 

is required to provide the occupants with a healthy living environment.. Koiv and Targo (2011) 

in their research paper investigated thermal comfort in building apartments in Estonia and they 

emphasized importance of mechanical ventilation installation to prevent appearance of mold on 

the inner walls of the building. Nevertheless, uncontrollable ventilation of living spaces during 

the heating season generates high heat loss in the buildings.  Air circulation in buildings can be 

caused by mechanical and natural ventilation. Mechanical ventilation is planned and controlled 

air circulation, installed for the purpose of ensuring living comfort and meeting health 

regulations. On the other hand, infiltration is the unintentional leakage of air through cracks 

between building elements.  

 

In this master’s thesis hourly air-change rate is used to quantify the infiltration in the building. 

It specifies how many times the air in the internal space is replaced by fresh air from outside in 

one hour. (Medved, 2022) and it is measured experimentally. 

 

Coefficient of ventilation heat loss in the residential building is calculated with equation bellow. 

𝐻𝑣 = 𝜌 ∙ 𝑐𝑝 ∙ 𝑉 ∙ 𝑛 

 

(4.2) 

Where:  

• 𝑐𝑝 [
𝐽

𝑘𝑔𝐾
] −specific heat of air 

• 𝜌 [
𝑘𝑔

𝑚3
] − density of air 

• 𝑉[𝑚3] − volume of heated area 

 

Accordingly, heat loss due to outdoor air infiltration can be calculated as follows. 

𝑄𝑉 = 𝐻𝑣 ∙ ∆𝑇 (4.3) 
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4.2. Annual required heating load 

A heating and cooling system major objective is to maintain the living area in a desirable and 

healthy condition.  

The annual required heating load is the calculated amount of heat that the heating system should 

generate for one year in order to ensure thermal comfort during the heating period, taking into 

account the outdoor climate conditions. Required heating load is highly dependent on the heat 

losses in building and it is designed to compensate for these losses. Therefore, there is balance 

between heat loss and heat gain. Required heating load combines the energy needed to warm 

up the building's structure and to maintain the indoor space air at a comfortable temperature. 

Annual required heating load equation is shown bellow (Kalliomäki, 2010). 

 

𝑄𝐻,𝑛𝑑 = 𝑄𝑇 + 𝑄𝑉 − 𝜂𝐻(𝑄𝑖𝑛𝑡 + 𝑄𝑠𝑜𝑙) 

 

(4.4) 

Where:  

• 𝑄𝐻,𝑛𝑑 [𝑘𝑊ℎ] − annual required heating load, 

• 𝑄𝑇[𝑘𝑊ℎ] − transmission heat loss, 

• 𝑄𝑉[𝑘𝑊ℎ] − ventilation heat loss, 

• 𝜂𝐻 − utilization factor of internal and solar gains, 

• 𝑄𝑖𝑛𝑡[𝑘𝑊ℎ] − internal heat gains of the building (people, devices, lighting), 

• 𝑄𝑠𝑜𝑙[𝑘𝑊ℎ] − heat gains from solar radiation. 

Considering the time step of the calculation, there are three approaches for calculating energy 

consumption for heating (Mastelic, 2018): 

• Quasi-stationary calculation based on seasonal values 

• Quasi-stationary calculation based on monthly values 

• Dynamic calculation with a time step of one hour or less 

For building energy certification quasi-stationary calculation base on monthly values is applied. 

Annual value of required heat energy for heating is calculated as the sum of positive monthly 

values. Energy Plus is software for dynamic simulations, and therefore in this master's thesis 

calculation is based on hourly values.  
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4.3. District heating system  

District heating is an efficient system for heat distribution, from central boiler room where heat 

is generated, through a system of pipes toward the heating substation of residential and non-

residential buildings. It is usually utilized for collective living apartments in urban areas, which 

includes and selected residential building. Heat is usually generated by fossil fuel combustion 

or renewable energy sources. In Sarajevo, the mail fuel is natural gas. On figure 4.4, distinct 

heating schematically presented.  

 

Figure 4.4. District heating system (Byun et al., 2012) 

As it is presented on figure 4.4, heat losses occur in distribution system. Therefore, overall 

system efficiency (𝜂𝑠𝑦𝑠) can be defined as ratio of specific annual supplied heat energy and 

energy delivered from central boiler room. In presented equation, system efficiency considering 

the delivered energy at the building substation is taken into account: 

 

𝜂𝑠𝑦𝑠,𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑄𝐻,𝑛𝑑

𝑄𝐻,𝑑𝑒𝑙,𝑐𝑒𝑛𝑡𝑟
 

 

(4.5) 

4.4. Carbon footprint in the building sector 

According to the IEA buildings and construction sector are producing globally 40% of total 

direct and indirect carbon emissions (“IEA – International Energy Agency,” 2022).  
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The carbon footprint in residential building can be divided into two types, according to the 

cause and period of occurrence (Clark, 2019):  

• operating carbon footprint, caused by the electricity usage and HVAC system  

• embodied carbon footprint, produced by manufacturing, material production and transport, 

construction, and material disposal   

 

Depending on the different phases of the building's lifespan, the sources of CO2 emissions are 

different. In table 4.1, the three main stages and sources of carbon emissions are shown.  

Table 4.1. The stages during the life of a typical building (Clark, 2019) 

Construction stage Usage stage End of life stage 

Raw material supply Operational energy use Deconstruction 

Manufacturing Operational water use Transport 

Material installation Refurbishment Waste processing and disposal 

 

In this master’s thesis focus is on analyzing operating carbon footprint. According to Atmaca 

(2019), in usage phase 56% CO2 is produced. Carbon emissions produced by heating is 

calculated using equation bellow (Morvaj et al., 2008).  

𝐸𝐶𝑂2 
= 𝑄𝐻,𝑑𝑒𝑙 ∙ 𝑒𝑓𝑢𝑒𝑙 

 

(4.6) 

Where:  

• 𝐸𝐶𝑂2 
[

𝑘𝑔

𝑎𝑛𝑛𝑢𝑎𝑙
] − annual heating carbon emission   

• 𝑄𝐻,𝑑𝑒𝑙[𝑘𝑤ℎ] − annual delivered energy for heating 

• 𝑒𝑓𝑢𝑒𝑙 [
𝑘𝑔𝐶𝑂2

𝑘𝑊ℎ
] − emission factor 

Since in selected residential building district heating system is applied, carbon emissions are 

generated in station. 
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5.  Selected Residential Building 

To obtain data related to energy consumption using simulation software, all relevant building 

characteristics must be precisely modeled in Design Builder software. In this chapter, 

architectural constructional and energy properties of the selected building are comprehensively 

described, as well as motivation for object selection. As it is emphasized in literature review, 

weather data highly influence required energy for heating. Therefore, data about climate 

condition in Sarajevo is presented.  

5.1. Typology of residential stock in B&H  

B&H Building Typology is established on the research project TABULA (IWE, 2013), which 

originates from the Institute for housing and environment (IWU4) from Darmstadt. Due to lack 

of information regarding building stock in B&H, Arnautović-Aksić et al., (2016) have made 

comprehensive analysis of existing residential buildings and proposed categorization based on 

architectural parameters and construction period.  

Data from Building Typology provides valuable dataset for developing strategies aimed to 

increase energy performance of building sector in B&H. Furthermore, it provides base of 

classified residential objects and offers statistical and energy performance analysis of each 

category. Clustering is performed according to the year of construction, and architectural and 

construction characteristics. Representative building of each category is selected, detailed 

characteristics of that building are presented, and energy consumption of typical buildings is 

calculated. Additionally, feasible measures for energy savings are proposed.  

Statistical representation of total of six categories of  residential stock according to urban-

architectural parameters in B&H are shown on figure 5.1. (Arnautović-Aksić et al., 2016). 

 

 
4 IWU- abbr. from Institut Wohnen und Umwelt GmbH 
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Figure 5.1. Statistical representation of building categories in B&H by gross surface 

According to Typology (Arnautović-Aksić et al., 2016), selected building is representative of  

the category of apartment blocks, built in period 1961 to 1970. The representation of all building 

categories is shown in the table 5.1. 

Table 5.1. Percentage of energy consumption of buildings’ categories (Arnautović-Aksić et al., 2016) 

Year 

 
Single-

family 

houses 

(SFH) 

 
Terraced 

houses 

(TH) 

 
Multi-family 

houses (MFH) 

 
Apartments blocks 

(AB) 

 
High-rise 

buildings (HBR) 

Total 

A 

<1945 

1.25 0.04 0.09 0.10 0.00 1.25 

B 

1946-1960 

3.67 0.14 1.00 0.43 0.00 3.67 

C 

1961-1970 

14.05 0.45 1.67 1.86 0.30 14.05 

D 

1971-1980 

32.41 0.80 0.97 3.38 0.18 32.41 

E 

1981-1990 

15.83 0.46 0.59 1.03 0.00 15.83 

F 

1991-2014. 

18.01 0.00 0.59 0.72 0.00 18.01 

Total 85.22 1.89 4.90 7.51 0.47 85.22 

 

As it can be seen from figure 5.1, statistically, number and gross surface of single-family houses 

is significantly higher than number of collective residential units. However, in urban areas 

residential buildings dominate and therefore analysis of energy characteristics of apartment 

blocks is significant. As it can be seen from table 5.1. selected building category, according to 

Arnautović-Aksić et al.(2016), 1,86% of the total energy in residential sector is consumed by 

Apartment Blocks built in period 1961-1970 (AB-C).  

Due to the prevalence and the intensive energy consumption, category AB-C is selected for the 

analysis.  

73.71%

2.81%

8.77%

2.51%
11.49% 0.70% Single-family houses

Individual terraced houses

Multi-family houses

Attached apartment building in

urban blocks
Apartment blocks

High-rise buidlings
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5.2.  Basic information about case-study residential object 

Selected residential building is located in Sarajevo, capital city of B&H. The apartment block 

construction is minimalist, as it can be seen on figure 5.2. 

                     

Figure 5.2. Selected residential building (from left to right: thermal image, photo, Revit5 model) 

Analyzed apartment block, presented on figure 5.2.,  is consisted of four separate entrances and 

each entrance consists of a basement with two apartments and a storage room, a high ground 

floor and five floors. Each floor has two apartments, and the building does not have an elevator. 

Floor plan is presented on figure 5.3. The arrangement of the apartments on each floor is the 

same and the apartment is consisted of separate thermal zones: living room, kitchen with dining 

room, bedroom, bathroom with toilet, hall and pantry. There are no heating elements in the 

common corridor in the building and in the common storage rooms. General building data are 

shown in table 5.2.  

Table 5.2. General building data (Arnautović-Aksić et al., 2016) 

Gross area of the heated part of the building 𝟑𝟐𝟓𝟑. 𝟐𝟔 𝒎𝟐 

Gross volume of the heated part of the building 8133.15 𝑚3 

Total net area of the heated space 2833.96 𝑚2 

The net volume of the heated part of the building 7084.9 𝑚3 

Form factor 0.48 

 

 
5 Autodesk Revit 2021 
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Figure 5.3. Example of the floor plan in selected building, a.) Autodesk Revit 2021 model, b.) Design 

Builder model 

In addition to the architectural characteristics, occupancy of the residential space is an important 

factor in energy consumption, especially when the consumption of electrical energy is analyzed. 

With an increase in the number of occupants, the need for air ventilation increases . Human 

body produces a certain amount of heat, depending on the activity, and this reduces the energy 

required for heating. Statistically, an average of three people live in one apartment (Arnautović-

Aksić et al., 2016). The highest number of occupants in the apartment is at 5 p.m., so it was 

assumed that these are peak hours of energy demand, as well as morning from 6 a.m. until 9 

a.m. The schedule for each zone, considering its purpose, is created. Figure 5.4. shows an 

instance of a created schedule for the kitchen and light for workdays.  

 

Figure 5.4. Created occupancy schedule in Design Builder for kitchen (left) and light (right) 

 

For calculating energy demand of a residential building, significant influence has climate. 

Climatic conditions determine whether the required energy for heating or cooling is more 

a.) b.) 
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dominant. Although a small country in the south-east of Europe, B&H has several climate 

zones, from a harsh Mountain climate in the north to a mild Mediterranean on the south. The 

interweaving of these climate influences gives Sarajevo the characteristics of a moderately 

continental climate. 

As a result of the climate change, extreme weather conditions are recently more frequent (Trbic 

et al., 2021), and therefore there are common occurrences of droughts, heat waves, floods, and 

extreme snowfalls. According to the data from federal hydrometeorological institute, the 

average annual temperature for Sarajevo is 12.5 °C, and the average amount of precipitation is 

about 570 mm (“Federalni hidrometeorološki zavod BiH,” 2022). The lowest recorded 

temperature is -21.8 °C (January 23, 1963), the highest 37.4 °C (July 24, 1987). Figure 5.5. 

shows average monthly low temperatures and average monthly high temperatures in Sarajevo. 

 

 

Figure 5.5. Daily average high (red line) and low (blue line) temperature in Sarajevo, Bosnia and 

Herzegovina  for period 1942-2022 (Diebel et al., n.d.) 

Figure 5.6. shows average daily solar energy heat gain per square meter. Heating period is 

longer than the cooling period in Sarajevo and therefore it is economically more profitable to 

have glazing that retains solar gains.  
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Figure 5.6. Average daily shortwave solar energy reaching the ground per square meter in Sarajevo, 

Bosnia and Herzegovina for period 1942-2022 (Diebel et al., n.d.) 

5.3.  Constructional and energy characteristics of the residential building 

In this master thesis, the analyzed components of the building are external walls, windows, roof, 

and efficiency of the heating system. Properties of these elements are introduced in this chapter.  

In Sarajevo, buildings built in the 60s were built without thermal insulation. Therefore, walls 

are mainly made of slag-concrete blocks with plaster finishing. In the analyzed residential 

building, there are several structurally different external walls, depending on the orientation and 

wall’s position. As it can be seen from table 5.3, the dominant walls above the basement are 

W1, located on the north and south, and W2, on the east and west sides of the building. On the 

lowest floor of the building, which is in contact with the ground, there are several walls of 

different characteristics: 

• WB1 - wall below ground level  

• WEB1 – outer wall above ground level to upper floor 

A flat inaccessible roof has 5 cm of insulation, but due to poor material distribution, losses 

occur.  In table 5.3, the characteristics of the building envelope are shown.  

Table 5.3. Properties of building envelope 

Element Materials U  [𝑾/𝒎𝟐𝑲] 

The total 

surface of wall  

that type 

𝑨 [𝒎𝟐] 

W1 plaster, low-density concrete 2.31 864.4 
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W2 plaster, slag-concrete blocks 1.81 512.84 

WB1 high-density concrete, bitumen, low-density 

concrete 

2.84 54.83 

WEB1 plaster, high density concrete 3.64 139.8 

Roof  bitumen, insulation, high-density concrete, concrete 

with low conductivity, reed slats 

2.03 532.7 

 

There are several types of windows that can be found on buildings of this type, listed in table 

5.4. It should be emphasized that WIN4 is installed in the unheated part of the building, i.e., in 

the storerooms and the common corridor. 

Table 5.4. Properties of building windows 

Element Materials U [𝑾/𝒎𝟐𝑲] The total 

surface of the 

opening of that 

type 𝑨 [𝒎𝟐] 

WIN1 single-glazed, concrete frame, high infiltration 6.2 152.8 

WIN2 single glazing with wooden frame, high infiltration 5.2 25.44 

WIN3 double glazing with wooden frame, high infiltration 3.6 97.3 

WIN4 double glazing with plastic frame, medium 

infiltration 

2 287.5 

 

Heat transfer coefficient of the windows depends on glazing type, insulator between glasses, 

frame material, thermal bridges. In addition to heat transfer, if the window does not fit to the 

wall, due to dilapidated frame and thermal bridges, increased air filtration occurs. 
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On figure 5.7, thermal images of analyzed building components are shown. It can be seen that 

enormous heat losses occur due to lack of envelope insulation and inadequate window fit. The 

thermal image shows an uneven distribution of temperature on radiator, which may indicate 

unbalanced hot water flow system.  

Figure 5.7. Thermal image of the building envelope, windows, roof, heating element 

Residential object considered in this paper is connected to the district heating system. Central 

boiler room is in the vicinity of building, with characteristics shown in table 5.5. Natural gas is 

used as the main fuel, and fuel oil is the auxiliary fuel. Hot water is distributed towards the heat 

substation located in the building basement, where it transfers heat to closed circuit of water 

that circulates between heat exchanger (heat substation) and radiators (heated area in the 

building). The delivered thermal energy towards the substation is measured via heat meter 

installed in the substation. Heated water from the heat exchanger circulated through a two-pipe 

system via centrifugal pump. The hot water distribution system consists of a horizontal pipeline 

that enters the basement, splits in half in the centre of the structure, and travels to four vertical 

pipes—two on the right and two on the left—through which hot water is delivered to the heating 

elements. The heating elements are convector radiators, with a total installed power of 293 kW. 

This type of system has a very high efficiency, 𝜂𝑠𝑦𝑠𝑡𝑒𝑚 = 0.85 − 0.95 (Kalliomäki, 2010). 

According to data from heating plant, efficiency of existing system is 0.85 (Kurtalic, 2018). 

According to data from heating plant and Morvaj et al. (2008), CO2emission coefficient is 

0,236 𝑘𝑔/𝑘𝑊ℎ. 
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Table 5.5. Characteristics of the boiler room, plant "Toplane KJKP Sarajevo" 

Code Boiler room 

name 

Installed 

power 

[MW] 

Power in 

use [MW] 

Heated living 

space [𝒎𝟐] 

Heated 

nonresidential 

space [𝒎𝟐] 

PS0101000000  

 

Cengic Vila I 12  4,768  65446  

 

3787  
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6.  Application of DOE to experimental data 

In this part of the master's thesis, the analysis of the energy demand of the selected residential 

building is presented. To develop mathematical model for predicting heating energy demand, 

FFD is used. Four factors are varied on two levels and sixteen simulations were performed. 

Heating energy demand is, after creating building model in Design Builder v.6.1.0.006, 

calculated using integrated dynamic simulation software Energy Plus v.8.9. Calculation is 

based on hourly values, considering detail occupancy and electric equipment schedule, climate 

condition in Sarajevo. Minitab® v.19.2020.1 is used for applying DOE, performing ANOVA 

and statistical tests for checking model adequacy. In table 6.1, basic description of utilized 

software packages is presented. 

Table 6.1 Description of utilized software for conducting research  

 
EnergyPlus v.8.96 

Design Builder 

v.6.1.0.0067 
Minitab® v.19.2020.18 

Purpose  Building energy simulation tool  GUI for 

EnergyPlus 

Statistical software 

Advantage  Dynamic thermal simulation at sub-

hourly timesteps,  

Utilizes the ASHRAE-approved 

'Heat Balance' method for 

calculation 

Simple modeling, 

user friendly 

Suitable for conducting 

industry-leading data analysis, 

dynamic visualizations and 

predictions. 

 

 

6.1.  Factor levels selection 

In DOE codded value are used and the range of values on which the research was conducted 

should be defined. The factor’s range was selected to include all possible values that researched 

factors can physically take, based on statistics provided in Typology (Arnautović-Aksić et al., 

2016). In table 6.2, varied factors and their codded values are shown.  

 

 

Table 6.2. Examined factors and their levels   

 
6 Available at https://energyplus.net/ 
7 Available at https://designbuilder.co.uk/ 
8 Available at https://www.minitab.com/en-us/ 

https://energyplus.net/
https://designbuilder.co.uk/
https://www.minitab.com/en-us/
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 Factor  Factor 

label 

Level 

-1 +1 

Walls (U-coeff) [W/m2K] A 2.48 0.205 

Windows (glazing) B single  Triple 

Roof (U-coeff) [ W/m2K] C 1.33 0.11 

𝜼 system  D 0.85 0.95 

 

In the current state, the walls have no insulation and transmission coefficient of outer walls 

without insulation is 2.48 𝑊/𝑚2𝐾. Proposed improvement measure is installing 20 𝑚𝑚 

expanded polystyrene (EPS), which conduction coefficient (𝜆) is 0.0440 𝑊/𝑚𝐾 (Pruteanu et 

al., 2013). Maximal transmission coefficient after building renovation is prescribed by law. 

Therefore, according to Guideline on minimum requirements for energy performance of 

buildings (. 81/19. Official Gazette of Federation of Bosnia and Herzegovina, 2019), after the 

building restoration, the maximum transmission coefficient is 0.35 𝑊/𝑚2𝐾. After adding 

20mm EPS, transmission coefficient of the outer walls is 0.205 𝑊/𝑚2𝐾. Therefore, current 

condition represents -1 level, and outer walls with 20mm EPS +1 level.  

Two distinct effects of building openings were observed in this research. Firstly, windows 

transmission coefficient varies with the glazing. Furthermore, air infiltration is increased when 

window frame is unmaintained. The characteristics of the analyzed opening types in the 

residential part of the building are shown in the table 6.3.  The Solar Heat Gain Coefficient 

(SHGC) is used to quantize ability of windows to transmit or absorb solar radiation. 

Table 6.3. Properties of high and low level of building openings  

Level Glazing Frame Layers U  [𝑾/𝒎𝟐𝑲] Infiltration 

(Mathur and 

Damle, 2021) 

Solar heat 

gain 

coefficient  

Low Single  Wooden Clear glass 3𝑚𝑚 5.2 1.5 0.871 

 

High Triple  Plastic 3x Clear glass  3𝑚𝑚 

2x Air 13𝑚𝑚 

1.75 0.5 0.684 

 

The roof takes 25% of the building envelope. Although even in the worst-case scenario it has a 

layer of insulation, the material is unevenly distributed and the heat losses in some places are 

large, as can be seen in the figure 5.7. Extruded polystyrene (XPS) is used  for thermal 

insulation. An inverted flat roof construction (Misar and Novotný, 2017) is applied and 
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therefore thermal insulation is placed above the hydro isolation. According to Rulebook on 

minimum requirements for energy performance of buildings (81/19. Official Gazette of 

Federation of Bosnia and Herzegovina, 2019), maximal U-coefficient of the roof after 

restoration is 0.25. After the installation of 20 cm XPS material on the roof, coefficient of 

transmission is 0.4 𝑊/𝑚2𝐾. 

6.2.  Simulation results  

In figure 6.1, building model designed in Design Builder is shown. 

 

 

As described before, in order to develop mathematical model for predicting energy 

consumption, full factorial design is applied. Since four factors are varied on two levels, sixteen 

experiments are conducted. Design Builder and Energy Plus are utilized as dynamic simulation 

software to obtain experimental results. Accordingly, experimental matrix and simulation 

results are presented in table 6.4. 

 

 

 

 

Figure 6.1. Analysed residential building modelled in Design Builder (working model) 
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Table 6.4. FFD exp.matrix and simulation results: annual specific delivered energy for heating, 

cooling and electricity 

 
Factors Results 

No. Walls Window Roof 𝜼𝒔𝒚𝒔 Del.energy for 

heating 

[𝒌𝑾𝒉/𝒎𝟐] 

Del.energy 

for cooling 

[𝒌𝑾𝒉/𝒎𝟐] 

Electricity 

[𝒌𝑾𝒉/𝒎𝟐] 

1 -1 -1 -1 -1 119.59 9.47 44.28 

2 1 -1 -1 -1 71.95 10.16 44.19 

3 -1 1 -1 -1 77.20 11.91 44.28 

4 1 1 -1 -1 23.51 8.01 44.20 

5 -1 -1 1 -1 104.71 9.27 44.27 

6 1 -1 1 -1 61.72 8.86 44.19 

7 -1 1 1 -1 67.97 13.47 44.28 

8 1 1 1 -1 13.87 9.47 44.18 

9 -1 -1 -1 1 107.00 10.16 44.28 

10 1 -1 -1 1 64.37 9.47 44.19 

11 -1 1 -1 1 69.07 10.16 44.28 

12 1 1 -1 1 21.03 11.92 44.20 

13 -1 -1 1 1 93.68 8.01 44.27 

14 1 -1 1 1 55.23 9.27 44.19 

15 -1 1 1 1 60.82 8.86 44.28 

16 1 1 1 1 12.41 13.47 44.18 

 

Important conclusion from table 6.4. is that the dominant energy consumption is heating and 

therefore mathematical model for prediction of heating demand is developed. Additionally, 

cooling system is not installed in all dwelling units. Heating has the greatest influence on carbon 

footprint production. Consequently, optimization of the construction characteristics of the 

building to reduce the heating demand results in decreasing carbon footprint. Electricity has 

constant value, and it is not influenced by building characteristics.  

For a more detailed insight into the heating energy consumption , a graphical presentation of a 

heat gains and heating demand in a typical winter week is selected. Due to comprehensiveness, 

not all graphs are shown, considering the most prominent difference, the presentation of the 

first and the sixteenth experiment was chosen. In figures 6.2. and 6.3., heat gains, indoor 

temperature, heat balance and air infiltration for the worst-case scenario (the first experiment) 

and the best-case scenario (the sixteenth experiment) in typical winter week is shown. 
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Calculations are performed using sub-hourly weather data. As it can be seen from fuel graph, 

heating period is from 6 a.m. to 10p.m. 

 It  can be seen from heat balance graph, that heat gains (distinct heating, solar gains, lighting, 

electric equipment, occupancy) compensates for the loss caused by heat transmission and air 

infiltration. To achieve thermal comfort in the residential space, 22°C is maintained during 

heating period. In temperature graph, oscillations in indoor air temperature due to intermitted 

heating are shown. When observing the graphs shown below, after the restoration of the 

building, other additional gains (electricity, solar gains, occupancy) are dominant and 

significantly reduce the required heating energy. 

Reduced heating demand is a consequence of the improved building energy characteristics and 

system self-sustainability is a basic concept of zero-net energy buildings. 
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Figure 6.2.  EnergyPlus 

simulation results: 

temperatures, heat gains, 

energy consumption and air 

infiltration for typical winter 

week for selected building 

(the first experiment from 

experimantal matrix) 
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Figure 6.3. EnergyPlus simulation results:temperatures, heat gains, energy consumption and air 

infiltration for typical winter week for selected building (the sixteenth experiment from experimental 

matri
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6.3.  Model calibration 

Several analyzes of energy consumption in selected residential building were performed in 

literature. According to Arnautović-Aksić et al. (2016), calculated specific energy required for 

intermitted heating is 𝑄𝐻,𝑛𝑑 is 170,1 𝑘𝑊ℎ/𝑚2. The calculation is based on valid legal 

regulations in B&H, with quasi-stationary monthly calculation based on EN ISO 13790. It can 

be seen that there is significant deviation from the heating plant data. Therefore, the advantage 

of using dynamic simulations to obtain data is emphasized.  

Fluctuations in monthly specific energy consumption, according to data from heating plant,  in 

the period from 2019-2022 are shown in the figure 6.4. It can be concluded that the highest 

heating demand is in January, which is in line with the average monthly temperatures shown in 

figure 5.5.  

 

 

Figure 6.4. Specific monthly energy consumption for heating per month for three seasons (Data 

collected from heating plant) 

Annual average heating demands for observed dwelling unit, according to data from heating 

plant are listed in table 6.5. and average value is 115.856 
𝑘𝑊ℎ

𝑚2
 .  

 

 

May Apr Mar Feb Jan Dec Nov Oct

2019/2020 4.64 13.40 14.16 19.75 27.79 18.53 7.18 1.53

2020/2021 3.29 19.50 16.81 19.00 24.98 19.30 11.33 3.58

2021/2022 3.62 11.29 22.12 21.87 23.29 18.86 13.63 7.78
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Table 6.5. Specific delivered heating energy in selected building according to data from heating plant 

Year 
𝑸𝑯,𝒏𝒅[

𝒌𝑾𝒉

𝒎𝟐
] 

2019 106.98 

2020 117.789 

2021 122.799 

 

Heating energy demand, according to simulation results for the worst-case scenario is 119.59 

𝑘𝑊ℎ

𝑚2  .  Therefore, the difference of data obtained in this study from the heating plant data is 

approximately 3.22%.  

6.4. Mathematical model for prediction of heating demand  

After simulation results are obtained, shown in table 6.4, FFD is applied. As mentioned in 

previous  chapters, the objective of this study is to develop mathematical model for prediction 

of the  heating energy consumption in selected residential building. The expected mathematical 

form of the model, with 4  analyzed factors, is shown in (3.2). Results of ANOVA are presented 

in table 6.6. 

Table 6.6. ANOVA table in Minitab  

 

 
DF SS  MSE F-Value P-Value 

Model 11 16510.2 1500.93 22957.42 0.003 

  Linear 4 16375.6 4093.89 62618.02 0.002 

    A 1 8834.5 8834.47 135127.49 0.001 

    B 1 6905.0 6904.96 105614.67 0.004 

    C 1 433.8 433.81 6635.34 0.000 

    D 1 202.3 202.32 3094.59 0.022 

  2-Way Interactions 6 128.9 21.48 328.51 0.010 

    A*B 1 66.1 66.14 1011.67 0.042 

    A*C 1 4.0 4.04 61.85 0.016 

    A*D 1 27.3 27.27 417.06 0.029 

    B*C 1 8.8 8.76 134.01 0.000 

    B*D 1 21.3 21.31 325.97 0.018 

    C*D 1 1.3 1.34 20.48 0.073 

  3-Way Interactions 4 6.0 1.51 84.41 0.081 

    A*B*C 1 5.8 5.78 324.0 0.035 
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    A*B*D 1 0.2 0.2 11.44 0.183 

    A*C*D 1 0.0 0.01 0.7 0.557 

    B*C*D 1 0.0 0.03 1.51 0.434 

Error 1 0.3 0.02     

Total 15 16510.5       

 

As it is presented in table 6.6, F-values are significantly high.). In order to accept alternative 

hypothesis about factor significance, calculated p-value have to be smaller than 0.05. Since all 

p-values of calculated F-values are less than 0.05, it can be concluded that variability is not 

random and null hypotheses are rejected for every factor and its interaction, except interactions 

CD, ABD,ACD and BCD.  

To understand considered process and analysis resluts in depth, Pareto chart, presented in figure 

6.5., is used for graphical presentation of effects. All effects higher than critical t-value (12.7) 

are significant. Since interactions CD, ACD, ABD and BCD have 𝑝 > 0.05, they are excluded 

from analysis.Further analysis is performed on reduced model. From Pareto chart, it can be seen 

that the most significant factors are U-coeff of the walls and glazing type. The lower importance 

of the U-coeff of the roof can be explained by the smaller area of the roof compared to the 

overall building envelope.  

 

 

 

 

 

 

 

 

 

 

 

                                                   Figure 6.5. Pareto chart of factor’s effects 

 

The same conclusion can be drawn from figure 6.6. Transmission coefficient of the wall and 

glazing have the greatest slopes and therefore, they are the most significant.   
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Figure 6.6. Main effect plot for analysed factors  

Finally, quantized factor’s effects are utilized for development of the mathematical model. 

Effect table, (Appendix C) obtained in the Minitab, apart from factor effects shows standard 

error of coefficients, t-value, p-value, VIF. Standard error of each coefficient is the same 

because orthogonality of design matrix. T-test leads to the same conclusion as F-test. For 

performing t-test, critical t-value obtained from statistical table is required. According to t 

statistical table, critical value for 1 degree of freedom and significance level of 0.05 is 6.314. 

Therefore, according to t-test, interactions ABD, ACD and BCD, can be excluded from the 

model. VIF coefficient is 1, and therefore there is no multicollinearity.  

Finally, regression model for prediction of the delivered energy for heating, considering four 

influencing factors, is developed and presented with following equation.  

 

𝑄𝐻,𝑑𝑒𝑙 [
𝑘𝑊ℎ

𝑚2 ] = 64 − 23.5𝐴 − 20.77𝐵 − 5.2𝐶 − 3.55𝐷 − 2.03𝐴𝐵 + 0.5𝐴𝐶

+ 1.3𝐴𝐷 + 0.7𝐵𝐶 + 1.15𝐵𝐷 − 0.6𝐴𝐵𝐶 

 

     (6.1) 

Coefficient of determination of developed model is 100% and adjusted coefficient of 

determination is 99.99%. It can be concluded that model is reliable and capable for predicting 

heating demand.  

6.5. Model validity check  

As described in chapter 3.3 , model validity check must be performed before accepting 

the model.   
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Normality of residuals  is tested with Anderson-Darling normality test. Since calculated p 

>0.05, as it is shown in figure 6.7, null hypothesis is confirmed and it is possible to state that 

residuals are normally distributed, with confidence level 95%.  Probability plot of residuals, 

shown below,  confirms the assumption that residuals follow normal distribution, since all 

residuals are within 95% confidence interval limited by the red curve in the figure 6.7.  

 

    Figure 6.7. Normal probability plot of residuals of model for predicting delivered heating energy, 

𝛼 = 0.05 

 

Plot of  fitted values versus standardized residuals plot is shown in figure 6.8. From this graphic 

representation, it can be seen that residuals are distributed around zero line and therefore, it is 

possible to conclude that linear relationship is adequate for this model. In addition, 

homoscedasticity can be tested using figure 6.8. The values of the residuals are roughly 

similarly distributed around the zero line and that confirms the assumption that the variances of 

the error are equal.  
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Figure 6.8. Fitted value versus standardized residuals plot of model for prediction of the delivered 

heating energy 

Furthermore, test for equal variances is performed. The null hypothesis claims that the variances 

are equal, and the alternative hypothesis is that there is at least one different variance. For p 

values greater 0.05, zero hypothesis about equal variances is accepted. Since residuals are 

following normal distribution, F-test can be used in Minitab.  

 In table 6.6  summary or the performed F-test is presented. It can be seen that p>0.05 for all 

factors levels and therefore null hypothesis is accepted and homoscedasticity is confirmed. 

Table 6.7. F-tests for equal variances, 95% confidence level  

Coefficient Level p-value 
Standard 

deviation 
Confidence interval 

Individual 

confidence 

level 

Transmission 

coefficient of 

outer walls 

-1 
0.66 

1.15 (0.722816, 2.64637) 
97.5% 

+1 0.97 (0.610036, 2.23345) 

Glazing type -1 
0.77 

1.138 (0.705948, 2.58461) 
97.5% 

+1 1.01 (0.629479, 2.30464) 

Transmission 

coefficient of 

the roof 

-1 
0.21 

0.784 (0.490711, 1.79658) 
97.5% 

+1 1.292 (0.808585, 2.96038) 

System 

efficiency 
-1 

1    
0.338   (0.211524, 0.774430) 

97.5% 
    +1      0.338     (0.211524, 0.774430) 

 

After performing validity check, developed model satisfy all requirements and can be used for 

predicting annual heating demand in residential buildings, that have the same or similar 

characteristics as the analyzed object and belong to the same statistically determined category. 
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6.6. Carbon emission  

Using (4.6) , carbon emission produced by heating in selected residential building is calculated. 

Carbon emissions in the case of district heating are generated in the main boiler room, where 

natural gas is used as the main fuel.  

The CO2 emission factors include the direct emissions during combustion and embodied 

emissions (Clark, 2019). According to data from heating plant and Morvaj et al. (2008), 

emission coefficient is 0,236 𝑘𝑔/𝑘𝑊ℎ. 

In figure 6.11 specific annual carbon emissions caused by fuel combustion is presented. It can 

be concluded that implementing renovation measures presented in this master’s thesis also 

reduces building’s direct carbon footprint. More advanced improvements can be achieved by 

switching heating plants to renewable energy sources. 

Figure 6.9. Carbon emissions caused by fuel combustion for heating in selected residentil building per 

performed experiment 

Since there is linear relation between carbon emission and delivered energy for heating, 

reduction of the required fuel for heating results in decreased carbon emissions. 

To develop mathematical equation for prediction of the carbon emissions by fuel combustion, 

DOE is applied. Similar as previous case, factors A,B and C have the highest influence on the 

response and interaction effect CD,ACD, ABD and BCD are not statistically significant (𝑝 >

0.05). ANOVA results are shown in table below.  
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Table 6.8. ANOVA results for analysing carbon emissions 

 

 

Developed regression model for estimating carbon emissions in selected building, considering 

4 analyzed factors is presented below.  

𝐸𝐶𝑂2
[𝑡/𝑦𝑒𝑎𝑟] = 42.8 − 15.71𝐴 − 13.89𝐵 − 3.48𝐶 − 2.37𝐷 − 1.35𝐴𝐵 + 0.34𝐴𝐶 +

0.87𝐴𝐷 + 0.49𝐵𝐶 + 0.77𝐵𝐷 − 0.41𝐴𝐵𝐶  

 

(6.2) 

Accordingly, model validity check is conducted.  

In figure 6.10, fitted values versus standardized residuals plot is shown. Residuals are 

distributed approximately equally around the zero line and have no pattern. Therefore, it can be 

concluded that residuals have constant variance.  

Source DF Adj SS Adj MS F-Value P-Value 

Model 14 7385.34 527.52 66064.32 0.003 

  Linear 4 7325.00 1831.25 229335.99 0.002 

    A 1 3951.77 3951.77 494899.00 0.001 

    B 1 3088.68 3088.68 386809.50 0.001 

    C 1 194.05 194.05 24301.67 0.004 

    D 1 90.50 90.50 11333.81 0.006 

  2-Way 

Interactions 

6 57.64 9.61 1203.15 0.022 

    A*B 1 29.59 29.59 3705.22 0.010 

    A*C 1 1.81 1.81 226.51 0.042 

    A*D 1 12.20 12.20 1527.47 0.016 

    B*C 1 3.92 3.92 490.82 0.029 

    B*D 1 9.53 9.53 1193.86 0.018 

    C*D 1 0.60 0.60 75.01 0.073 

  3-Way 

Interactions 

4 2.70 0.67 84.41 0.081 

    A*B*C 1 2.59 2.59 324.00 0.035 

    A*B*D 1 0.09 0.09 11.44 0.183 

    A*C*D 1 0.01 0.01 0.70 0.557 

    B*C*D 1 0.01 0.01 1.51 0.434 

Error 1 0.01 0.01     

Total 15 7385.34       
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Figure 6.10. Standardized residuals versus fitted value, response is carbon footprint for selected 

building 

Observing figure 6.11, conclusion that residuals are following normal distribution is reached. 

 

Figure 6.11. Normal probability of residuals of model for prediction carbon emissions 
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7.  Conclusion 

The world is currently facing a global energy crisis. Compared to last year, gas prices are 400% 

higher (“Open Energy Market - Open Energy Market,” 2022), causing market volatility and 

uncertainty. On the other hand, energy demand in residential buildings is increased by 8% as a 

result of the implemented isolation measures due to the covid pandemic (“Buildings – The 

Covid-19 Crisis and Clean Energy Progress,” 2020). Also, population growth affects energy 

consumption. In addition to the current crisis, the consequences of global warming are 

manifesting exponentially. Therefore, the aim is to ensure thermal comfort with lower energy 

consumption. According to Melville (2022), improvement building energy characteristics is the 

most effective way to mitigate the consequences of the crisis. 

Bosnia and Herzegovina, as middle-income country with high heating demand, needs adequate 

strategy for realization Sustainable Development Goals (“A Partnership for Sustainable 

Development,” 2021). Having this in mind, this master’s thesis aims to analyze energy 

consumption of a typical residential apartment block built in period 1960-1970 in Sarajevo, 

capital city of B&H, and propose measures to save energy for heating and lower CO2 emissions.  

Energy consumption data are obtained using simulation software and DOE is utilized for the 

analysis of the factors’ effect on the response. According to the DOE results, the highest 

influence on the delivered energy for heating has the U coefficient of outer wall and glazing 

type. Analyzed improvement measures are installation of 20mm EPS on outer walls, 20mm 

XPS on the roof, replacement of single glazing windows with triple glazing with improved air 

tightness and improving heat delivery system. Accordingly, applying proposed improvement 

measures saves 89% of the heating energy and  25.29 t CO2 emissions annually. 

However, several analyses of energy consumption of the selected building are performed, but 

the results differ significantly from the actual data. Therefore, quasi-stationary calculation 

based on seasonal or monthly temperature values is not adequate approach for building energy 

analysis. Additionally, calculation process is time-consuming. From the other side, dynamic 

simulation software incorporates all relevant data as occupancy, and enables precise modeling 

of the system. Moreover, hourly weather data is used for comprehensive calculation of heating 

energy demand. 

According to statistical analysis of residential stock in B&H, apartment blocks account for 

11.5% gross area of the total residential area (Arnautović-Aksić et al., 2016). The most 
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significant benefit of this research it that this model can be applied for prediction heating 

demand in all buildings that statistically belong to the same category. Therefore, applying 

simulation software with DOE for energy analysis in building sector is accurate, reliable, and 

time-efficient method.  

Finally, the developed mathematical model offers time-efficient analysis of the building 

characteristics improvement measures, in order to reduce energy consumption and carbons 

emissions while maintaining a comfortable indoor environment.  

It outlines best practices for managing energy efficiency during the sustainable development 

process. 
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Appendix A: Percentage Points of the t Distribution 
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Appendix B: Percentage points of the F distribution (𝜶 = 𝟎. 𝟎𝟓) 
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Appendix C: Minitab FFD effect table  

In the following table, results of performing DOE in Minitab are presented. Response variable 

is delivered energy for heating. Effects column from this table are used for developing 

mathematical model. T-value and p-value are used for testing factor effect statistical 

significance and VIF provides information about variation.  

 

Term Effect  Coef SE Coef T-Value P-Value VIF 

Constant    64.0077 0.0334 1916.29 0.000   

A -46.9959  -23.4980 0.0334 -703.49 0.001 1.00 

B -41.5480  -20.7740 0.0334 -621.94 0.001 1.00 

C -10.4141  -5.2070 0.0334 -155.89 0.004 1.00 

D -7.1120  -3.5560 0.0334 -106.46 0.006 1.00 

A*B -4.0664  -2.0332 0.0334 -60.87 0.010 1.00 

A*C 1.0054  0.5027 0.0334 15.05 0.042 1.00 

A*D 2.6109  1.3054 0.0334 39.08 0.016 1.00 

B*C 1.4800  0.7400 0.0334 22.15 0.029 1.00 

B*D 2.3082  1.1541 0.0334 34.55 0.018 1.00 

C*D 0.5786  0.2893 0.0334 8.66 0.073 1.00 

A*B*C -1.2025  -0.6012 0.0334 -18.00 0.035 1.00 

A*B*D 0.2259  0.1130 0.0334 3.38 0.183 1.00 

A*C*D -0.0559  -0.0279 0.0334 -0.84 0.557 1.00 

B*C*D -0.0822  -0.0411 0.0334 -1.23 0.434 1.00 

 

 

 


