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Abstract. As a self-supervised learning technique, contrastive learning
is an effective way to learn rich and discriminative representations from
data. In this study, we propose a variational autoencoder (VAE) based
approach to apply contrastive learning for the generation of optical coher-
ence tomography (OCT) images of the retina. The approach first learns
embedding representation from data by contrastive learning. Secondly,
the learnt embeddings are used to synthesize disease-specific OCT im-
ages using VAEs. Our results reveal that the diseases are separated well
in the embedding space and the proposed approach is able to generate
high-quality images with fine-grained spatial details. The source code of
the experiments in this paper can be found on Github1.

Keywords: Optical coherence tomography · contrastive learning · vari-
ational autoencoder · deep generative model · deep learning · artificial
intelligence.

1 Introduction

An increasing amount of effort has been put to the research and development
of deep learning (DL) and its applications [6]. This methodology has shown its
effectiveness as the state-of-the-art solution for many tasks [5] including medi-
cal image analysis. DL has also leveraged the potential for early detection and
recognition of abnormalities, such as diabetic retinopathy and age-related mac-
ula degeneration, from retinal images [1]. One of the retinal imaging techniques
that has benefited from DL is OCT [9]. This imaging modality sheds light on
pathological structures of the retina in 3D, through which it is possible to reli-
ably diagnose diseases such as choroidal neovascularization (CNV) and diabetic
macular edema (DME). As a result of progress in both fields, DL based solutions
are studied for the detection and recognition of such abnormalities from OCT
images.

Despite its potential and successful applications in a variety of tasks, the
practical utilisation of deep neural network (DNN) in safety-critical tasks like
medical diagnosis systems is limited [11]. One of the underlying reasons of this

1 https://github.com/kaplansinan/OCTRetImageGen_CLcVAE
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is the black-box nature of the DL models [6]. The term black-box refers to the
inability of understanding how the DL algorithm makes a particular decision [33].
This arises from the inherent structure of DL models, which are complex, non-
linear, challenging to interpret, and the amount of data needed to train such
models is typically large. To address the issues arising from the nature of DL
models, there exists several solutions under the name of an emerging field called
explainable artificial intelligence (XAI) [24, 2, 33]. XAI represents the techniques
and methods to understand why artificial intelligence (AI) makes a particular
decision. It is considered as key methodology to understand model decisions and
build trust between the users and AI solutions [26, 3].

In XAI literature, the methods are split into two categories [2]: global and
local. The global methods try to explain a particular model and data set used
for training the model, whereas the local methods are utilized for understanding
post-hoc decisions at instance level [24]. For example, considering a DL model
trained to recognize certain diseases in OCT images [29], post-hoc XAI methods
help in explaining which features in a target image are relevant to the model
while performing inference. Such explanation is achieved by highlighting rele-
vant regions in the target image [36]. Post-hoc explanations are often used for
sensitivity analysis [25, 19], where the aim is to understand how the behavior of a
model changes while manipulating the input image. There are different instance
manipulation techniques [24] such as applying specific image transformations
and augmentations like cropping, deleting certain part of the image [32], color
transformation, and copy-pasting a part of the image.

An ideal solution for sensitivity analysis would be to avoid the limitations of
existing data with synthetic data generated from an underlying distribution of
real data used for training a DL model. To do so, one may apply deep generative
models [16] like generative adversarial networks (GANs) [8] and VAEs [15] for
image generation. In this paper, we propose a framework to synthesize OCT
images using conditional variational autoencoder (cVAE) and contrastive learn-
ing [17]. The goal is to generate high-quality OCT images, which can be further
used for the sensitivity analysis of OCT image classification tasks [13, 36]. In
addition, the framework can be used to synthesize images for augmenting data
sets, or constructing a benchmark OCT set.

The rest of the paper is organized as follows: Section 2 reviews the studies
in OCT imaging, how DL is used for OCT image analysis and OCT image gen-
eration tasks. Section 3 introduces the proposed solution and Section 4 presents
the experimental results. Finally, we present the conclusions that can be made
based on the current experiment and give possible future directions in Section
5.

2 Related Work

OCT imaging and deep learning. OCT is a technique to acquire high res-
olution images of cross-sections of the retina [9]. It enables diagnosis of retinal
disorders. For instance, CNV, DME, and DRUSEN are such disease, which can be
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diagnosed through OCT imaging [13, 23]. To detect such diseases from OCT im-
ages, techniques based on DL have received substantial attention in the medical
image analysis field. For instance, classification [13] and segmentation tasks [9]
are implemented to support clinicians while diagnosing specific abnormalities
using OCT imaging.

OCT image generation by deep generative models. The potential of
deep generative models for synthesizing high quality images have been proposed
for OCT image generation tasks [20]. As part of deep generative models, GANs
are studied widely compared to VAEs. For instance, Zha et al. proposed con-
ditional generative adversarial networks (cGANs) to solve the class imbalance
problem exhibit in OCT data sets [37]. In addition, by considering the difficulty
of finding rare disease examples in OCT data sets, Xiao et al. adapted a GAN
based method to generate and create an open OCT data set [34]. Furthermore,
in another study [35], the authors aimed to improve the performance of OCT
image classification tasks by using cGANs to generate images, thereby increasing
the number of data samples.

OCT image generation by variational autoencoder. Although it has
not received that much attention in OCT image generation tasks [22, 7], VAEs
are an option for deep image generation. Compared to GANs, VAEs are easy to
train and do not suffer from mode collapse [18]. In addition, another important
advantage of VAEs is that they learn the characteristics of input data samples
by mapping them into a latent space [16]. After training, new data samples
are generated by sampling from this latent space. This way VAEs introduce a
controlled way for the generation.

Our work. Since VAEs enable us to alter and explore the variations over
the data, we choose VAEs to generate OCT images. To do so, generation is
conditioned on learnt embeddings via the contrastive learning approach. Thus,
our work combines contrastive learning and VAEs to synthesize disease-specific
OCT images with appropriate visual details. To best of our knowledge, no other
study has proposed this solution for the synthesis of OCT images of the retina.

3 Methods

The proposed solution consists of two stages. In the first stage, we use contrastive
learning [17] to have class-wise discrimination in the learned embedding space.
The embedding as a discriminative data representation enables class-specific
image generation. In the second stage, we train cVAEs to generate the disease-
specific OCT images. As the conditioning is done using the embeddings from
the first stage, we are able to control the disease-wise data generation. Fig. 1
illustrates the model architectures used in the two stages.

Contrastive learning is a self-supervised learning technique widely applied
for image retrieval tasks [17, 4]. The goal is to learn an embedding space in which
the distances between similar samples are minimized while the distances between
dissimilar samples are maximized. To learn such an embedding space, contrastive
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learning models are trained with specific loss functions, such as SimCLR [4],
triplet-loss [27], and n-pair loss [30].

In our work, the contrastive learning model is inspired by the work in [14].
As being an effective batch construction method and reducing convergence time
of the model, We use n-pair loss [30] to train the contrastive learning part. In
addition, instead of using Resnet34 as the encoder part of the contrastive model,
we use Resnet50 to increase the learning capacity of the model, thus having more
discriminative embeddings for each class.

To generate new samples, we use a variational autoencoder representing one
of the deep generative models. VAE maps the input data into a latent space
in a probabilistic way by an encoder module. Afterwards, a decoder module is
used to synthesize new data samples by sampling a latent vector from the latent
space [16]. In a VAE, the goal is to minimize the distance between distribution
of the input data and the distribution of the latent space using Kullback–Leibler
(KL) divergence loss [15]. In this paper, we apply a cVAE, which conditions the
synthesis of new samples on a given extra information, such as labels [16]. This
contributes to the generation of the data in a desired way.

Conditional variational autoencoder is optimized with a weighted set of
loss functions. VAEs often generate blurry images due to pixel-wise reconstruc-
tion loss. To avoid this issue, we replace the reconstruction loss by perceptual
loss [10] and deep feature loss [21]. Hence, the objective of our cVAEs is to
minimize the following weighted loss function:

LCVAE = w1 ∗ Lperceptual + w2 ∗ Lfeature + w3 ∗ LKL (1)

where Lperceptual is perceptual loss, Lfeature is feature loss and LKL is KL diver-
gence loss.

It is important to note that whilst designing the architecture of cVAE, in the
decoder part we use sub-pixel convolutional layer [28] to increase the quality of
generated images. This layer basically learns an array of image upscaling filters
described in the original paper.

Fig. 1. The architectures of the proposed solution: a) contrastive learning model
trained in Stage 1 and b) cVAE model trained in Stage 2. CVAE is conditioned on
the embedding learnt by the contrastive learning part.
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4 Experiments and Results

In this section, we cover characteristics of the training data, training procedure
and results from contrastive learning and cVAE. 2

4.1 Dataset

We use OCT data from the study in [12]. It consists of 84 495 labeled images split
into 4 categories as follows: 37 200 CNV, 8 618 DRUSEN, 11300 DME and 26 300
NORMAL (healthy) images. The data has the issue of class imbalance. As a
remedy, we apply a representative sampling approach given in the supplementary
material. After the representative sampling, we reduce the data size to 19 980
samples equally distributed across each category. A few representative samples
from the training set are presented in Fig. 2.

Fig. 2. Representative samples of OCT data for each category in the set. The red
rectangle highlights the characteristics of each disease in an image.

4.2 Model training

We performed training in two stages. First the contrastive learning is trained to
learn embeddings, which is used as conditioning information in the next stage of
cVAE training. In the second stage, we train a cVAE model for each class to syn-
thesize new OCT images. More details regarding the training hyperparameters,
model input/output size, and training environment is given in the supplementary
material.

2 The in-depth details regarding the data set, training hyperparameters, and randomly
generated OCT images by the trained model and the supplementary material can
be found in the Github repo.
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4.3 Results

Contrastive Learning The goal of contrastive learning is to learn discrimi-
native embedding from each class. To verify this after the model training, we
visualize the embedding space by principal-component analysis (PCA). Based
on the visualization in Fig. 3, the contrastive learning provides good discrimina-
tion between each class in the embedding space. This is important for accurately
mapping the input data into the latent space in the next stage.

It is also important to notice the representation of the NORMAL (healthy)
cases in the embedding space. Based on the visualization, they are at the inter-
section of each disease and this strengthens the idea that the generation of new
disease-specific OCT images representing different levels of severity of the con-
dition is possible. While studying the existing images individually, we observed
that the further an instance is located from the center of NORMAL cases, the
more severe the disease is.

Fig. 3. Principal-component analysis projection of embedding of training set from con-
trastive learning.

CVAE In the second stage, by training a cVAE model for each disease, we
generate high quality images that capture the characteristics of each disease
successfully. We demonstrate pairwise visual comparison of generated images
for each disease in Fig. 4, Fig. 5 and Fig. 6, respectively3.

Pathological structures in the OCT images are captured well with disease
specific details. However, we observe that the quality of generated images are

3 Randomly generated samples from each class are presented in the supplementary
material, which can be found in the Github repo.
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better if there is less variation within a class. For instance, not all the fine-
grained details are captured in the CNV class. The underlying reason behind
this is that the class contains far more variability of images compared to DME
and DRUSEN classes. The variation in CNV also exhibits in the embedding
space of contrastive learning model (see Fig. 3).

In some of the generated images (see the supplementary material), we en-
counter checkerboard artefacts, which is due to the upsampling layers used in
the decoder module of cVAE [31].

Fig. 4. The pair-wise visualization of generated choroidal neovascularization (CNV)
samples: First row - real images; Second row - corresponding generated images.

Fig. 5. The pair-wise visualization of generated diabetic macular edema (DME) sam-
ples: First row - real images; Second row - corresponding generated images.

Fig. 6. The pair-wise visualization of generated DRUSEN samples: First row - real
images; Second row - corresponding generated images.
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5 Conclusions

In this paper, we study a contrastive learning based approach for synthesizing
OCT images using cVAE. The contrastive learning is applied to extract rich
representations from the data, which is further used by cVAE to generate new
samples. Based on the presented results, the proposed method enables successful
synthesis of visually quality OCT images representing CNV, DME, DRUSEN in
fine-grained details. Among the aforementioned diseases, DME, DRUSEN cases
are synthesized better than CNV.

Although, our main motivation is to generate images to be used in sensitivity
analysis tasks, the image generation can be used variety of other tasks such as
augmenting existing sets, counterfactual image generation and disease progres-
sion simulation. In the future work, we plan to combine OCT image classification
done on the same set and use the proposed cVAE model to conduct sensitivity
analysis and simulate disease progression. Also, in the extended study of this
work, we plan to incorporate expert opinions to validate our observation about
the different levels of severity of the diseases revealed in the contrastive learning
part. We believe this can be helpful for both automated grading of the diseases
from OCT images and simulating the progression of a certain disease.
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