
CLASSIFYING CUSTOMER COMPANIES IN AN ENTERPRISE
RESOURCE PLANNING SYSTEM USING MACHINE
LEARNING METHODS

Lappeenranta-Lahti University of Technology LUT

Master’s Program in Computational Engineering and Analytics, Master’s Thesis

2022

Juho Kauppala

Examiners: Associate Professor, D.Sc. Tuomas Eerola
M.Sc. Pauli Immonen

ABSTRACT

Lappeenranta-Lahti University of Technology LUT
School of Engineering Science
Computational Engineering and Analytics

Juho Kauppala

Classifying customer companies in an enterprise resource planning system using ma-
chine learning methods

Master’s thesis
2022
48 pages, 17 figures, 6 tables, 0 appendices
Examiners: Associate Professor, D.Sc. Tuomas Eerola and M.Sc. Pauli Immonen

Keywords: pattern recognition, machine learning, multi-label classification, customer
data analysis

Information systems such as smart phone applications collect large amounts of data about
their users. The data is used mostly for the system’s primary task, but machine learn-
ing methods can be used to get additional value out of the collected data. The goal of
the thesis is to use customer data of an enterprise resource planning (ERP) system to
classify customer companies based on which plugins they have selected, to create a plu-
gin recommender model and increase plugin usage in the system. A review to customer
data analysis and machine learning classification is presented. A method to classify the
companies is proposed. Neural network, random forest, support vector machine forest,
and metric learning models are compared with a dataset consisting of the ERP’s data.
Multi-label classification model’s output is interpreted using top-k and threshold func-
tions. The models are evaluated using the mean of plugin-specific F1-scores. The highest
mean (0.558) is achieved by a support vector machine forest. The result is considered
promising, perhaps good enough for a plugin recommender, but currently insufficient for
business-critical applications. Testing alternative solutions, such as smaller decision trees
and top-1 interpretation, might improve results.

TIIVISTELMÄ

Lappeenrannan-Lahden teknillinen yliopisto LUT
School of Engineering Science
Laskennallinen tekniikka ja analytiikka

Juho Kauppala

Asiakasyritysten luokittelu koneoppimismetodeilla taloushallinnon järjestelmässä

Diplomityö
2022
48 sivua, 17 kuvaa, 6 taulukkoa, 0 liitettä
Tarkastajat: Tutkijaopettaja, TkT. Tuomas Eerola ja DI. Pauli Immonen

Avainsanat: hahmontunnistus, koneoppiminen, usean luokan luokittelu, asiakasdatan ana-
lyysi

Informaatiojärjestelmät, kuten älypuhelinsovellukset, keräävät suuria datamääriä käyttä-
jistään. Tätä dataa käytetään enimmäkseen järjestelmien varsinaiseen toimintatarkoituk-
seen, mutta koneoppimisen avulla kerätystä datasta voidaan saada entistä enemmän hyö-
tyä. Tämän työn tavoitteena on käyttää taloushallinnon ohjelmiston asiakasdataa asia-
kasyritysten luokitteluun heidän valitsemiensa lisäosien perusteella, jotta järjestelmään
voitaisiin kehittää lisäosien suosittelija ja kasvattaa lisäosien käyttöä. Työssä esitetään
kirjallisuuskatsaus asiakasdatan analysointiin ja koneoppimiseen, ehdotetaan mallia yri-
tysten luokittelutehtävään ja vertaillaan neuroverkkoa, päätösmetsää, tukivektorikonetta
sekä metriikkaoppimismallia käyttäen taloushallinnon ohjelmiston dataa. Usean luokan
luokittimen tulosta tulkittiin valiten parhaat tai raja-arvon ylittävät luokat positiivisiksi.
Mallien tarkkuudet laskettiin lisäosakohtaisten F1-score-arvojen keskiarvona. Tukivek-
torikonemetsä tuotti parhaan keskiarvon (0.558). Tulosta voidaan pitää lupaavana, ehkä
jopa riittävänä lisäosasuosittelijalle, mutta riittämättömänä bisneskriittisille sovelluksille.
Vaihtoehtoisten ratkaisujen, kuten pienempien päätöspuiden ja top-1-tulkinnan, kokeile-
minen saattaisi tuottaa parempia tuloksia.

ACKNOWLEDGEMENTS

I would like to thank everyone who believed in me and supported me while working on
this thesis, especially my family, girlfriend, friends, and colleagues. Regardless of how
familiar you were with my topic and field, you showed interest in me and my progress.
Even when I did not show it, I did need every bit of that support.

I am grateful for my supervisors Tuomas Eerola and Pauli Immonen for guiding me and
helping me understand a little bit more about this world of opportunities, also called
machine learning. Thank you Teppo Salmi for customer data access guidance and for
your patience and interest in my thesis work, even though it was not expected of you.

Thanks to the student association of computational engineering and analytics, Lateksii ry,
and the student union, LTKY, for making the studying environment at LUT University
welcoming, supporting, and encouraging.

And thank you for reading!

Lappeenranta, October 31, 2022

Juho Kauppala

5

LIST OF ABBREVIATIONS

ANN Artificial Neural Network
CNN Convolutional Neural Network
DAG Directed Acyclic Graph
DAGSVM Directed Acyclic Graph SVM
ERP Enterprise Resource Planning
FTRL Follow the regularized leader
GDPR General Data Protection Regulation
KNN K-Nearest Neighbour
MAR Missing At Random
MCAR Missing Completely At Random
NMAR Not Missing At Random
PCA Principal Component Analysis
RBF Radial Basis Function
RFM Recency, Frequency, Monetary
SGD Stochastic gradient descent
SVM Support Vector Machine

6

CONTENTS

1 INTRODUCTION 8
1.1 Background . 8
1.2 Objectives and delimitations . 9
1.3 Structure of the thesis . 10

2 CUSTOMER DATA ANALYSIS 11
2.1 Background . 11
2.2 Example 1: Customer behavior analysis 12
2.3 Example 2: Customer retention prediction 13
2.4 Challenges of customer data analysis . 14

3 DATA CLASSIFICATION 16
3.1 Machine learning techniques for classification 16

3.1.1 Overview . 16
3.1.2 Logic-based techniques . 17
3.1.3 Perceptron-based techniques . 18
3.1.4 Statistical learning techniques 20
3.1.5 Support vector machine . 21
3.1.6 Instance-based learning . 22
3.1.7 Comparison of techniques . 23

3.2 Typical data preprocessing for classification 24
3.3 Classification using partial data . 24

4 PROPOSED METHODS 27
4.1 Goal of the proposed methods . 27
4.2 Multi-label customer data classification using machine learning methods . 27

4.2.1 Multi-label problem in classification 27
4.2.2 Neural network . 28
4.2.3 Random forest . 29
4.2.4 Support vector machine . 30

4.3 Similarity measurement with metric learning 31
4.3.1 Working principle of distance metric learning 31
4.3.2 Pipeline for metric learning in customer classification 32

5 EXPERIMENTS 34
5.1 Data . 34

5.1.1 Raw customer data . 34
5.1.2 Data preprocessing . 36

7

5.2 Evaluation criteria . 38
5.2.1 Interpretation of model output 38
5.2.2 Model accuracy calculation . 40

5.3 Description of experiments . 41
5.4 Results . 42

5.4.1 Neural network results . 42
5.4.2 SVM forest results . 42
5.4.3 Random forest results . 43
5.4.4 Metric learning results . 44
5.4.5 Overall results . 44

6 DISCUSSION 46
6.1 Current study . 46
6.2 Future work . 48

7 CONCLUSION 50

REFERENCES 51

8

1 INTRODUCTION

1.1 Background

As information technology keeps evolving in every segment of life, more capable com-
puting and measurement devices generate large amounts of data. Increasing number of
different information systems are also used in everyday life to automate tasks, which has
led to those systems gathering large amounts of customer data. This has been the trend
since 1980’s, and as the amount and nature of customer data has evolved, so has the mind-
set of how it could be utilized in the information system [1]. The data, which has been
originally used in the basic functionality of the information system, is now utilized to gain
knowledge on a higher abstraction level. This is often done with data analysis tools and
machine learning methods.

An example of a new use case for the collected data could be a grocery store or retailer
company as described in [2]. The original reason to collect data of sold products has been
to anticipate which products need resupply and to optimize storage space. Afterwards,
a grocery store might notice that by analyzing which products the individual customers
are buying, customers can be categorized, and advertising can be better targeted for them.
This information can be either sold or utilized inside the organization.

The data usage of a digital Enterprise Resource Planning (ERP) is similar to the described
example. It gathers large quantities of data about customer companies’, which is manda-
tory for the system to function. However, there are notable opportunities to gain additional
information from the patterns and correlations in the system data.

Machine learning studies algorithms that improve with experience. [3] Machine learning
models are constructed in different ways, and some are much more complex than others,
but they are similar in the way that decision logic is not programmed to the model. In-
stead, machine learning models are trained using real or artificial data, and with numerous
iterations, they try to find the best possible parameters for themselves. The idea of auto-
matically learning computer programs is decades old, but the increase of computational
power and available data has created a growing demand for machine learning solutions in
modern world applications.

Machine learning models excel at finding previously unknown patterns from data, which
makes them a good tool to find higher level knowledge from customer data. Different big

9

data analysis tools exist, but often they display graphs and reports but leave the deduction
to the users. Deep machine learning models attempt to perform the deduction part too,
and in the best case, they might be able to give more accurate predictions than human
analysts. However, their output must be validated with care to ensure the learning process
succeeds in generalization but does not overlearn the training data.

In this thesis, machine learning models are trained using ERP system data to classify
customer companies based on which plugins they have selected in the ERP. The purpose
is to create a recommender which picks the most suitable plugins for a company and
displays them in the ERP, so the customers would use more plugins. This way, machine
learning could bring value for the product by discovering new uses for the existing data,
which would otherwise be difficult to achieve.

1.2 Objectives and delimitations

The objectives of the thesis are as follows:

1. To provide a review to relevant published work concerning customer data analysis
and data classification.

2. To implement a suitable machine learning model for customer company classifica-
tion.

3. To prepare a dataset for the training and evaluation of the machine learning model.

4. To train and evaluate the implemented model.

The ERP system has multiple purchasable plugins, which are different additional services
and have extra cost. The classification task is to find the plugins which a company is likely
to use. During training, there is a many-to-many relation between companies and plugins,
but the output of the model can be a single most likely plugin for the input company.

Although the data is from an ERP system, no business knowledge is applied in the model
creation or data preprocessing. All data is treated as numerical values, and if feature
values are categorized, the categorization is based on the data structure, such as variable
means and variances, not any business-related knowledge.

10

Data fields can be used either directly with normalization, or indirectly with preprocess-
ing. Preprocessing could mean calculating averages, numbers of occurrences, sums, or
other similar indicators. For time-related data fields, like page visits or sent invoices, time
series analysis could also be utilized if additional or more correct information can be ex-
tracted with it. Discrete data fields should be enumerated, so machine learning models
can process them among other fields. A dimensions reduction method should be used to
reduce the dimensions of the dataset.

All data should be treated anonymously. Names of companies, users or employees should
not be included in the machine learning model or data preprocessing in any way. Ag-
gregate values should be computed for sensitive information, such as employee salaries.
Identifiers should be used in the presentation of results; for example, numerical identifiers
should be given to companies and plugins.

1.3 Structure of the thesis

The rest of the thesis is organized as follows. The next two chapters provide a litera-
ture review to customer data analysis and data classification, respectively. In Chapter 4,
a method is proposed to perform the task described in previous chapters. Chapter 5 de-
scribes experiments conducted and analyses the results. Chapter 6 discusses the results
and future work, and Chapter 7 draws conclusions of the thesis.

11

2 CUSTOMER DATA ANALYSIS

2.1 Background

Because customer data has different forms in different information systems, there seems
to be no standardized pipeline for its processing. However, many publications seem to
prefer a few methodologies in customer data analysis [1, 2, 4]. The steps include col-
lecting the data, accessing collected data, anonymizing customers, dealing with missing
data, normalizing data, reducing dimensions, and selecting features, before performing
the actual data analysis. Figure 1 presents the steps, with green background indicating
common steps and yellow ones indicating optional steps. After discussing the common
methods in this subsection, two publications, which are selected as example cases, are
presented in the following subsections, and a short analysis is provided about how they
process customer data in their work.

Figure 1. Rough pipeline of how customer data is typically treated.

Customer data analysis is often done by collecting event data of the usage of the system.
Event data consist of different types of interactions the customer can do in the system.
When a system has lots of users, the event data often fills the criteria of big data. In [5],
big data is described as "datasets whose size is beyond the ability of typical database
software tools to capture, store, manage, and analyse." Therefore, big data mining tools,
such as Recency, Frequency, Monetary (RFM) [6], are often utilized in customer data
analysis [2, 5, 7].

What is also common in customer data analysis is the need to distance both the data

12

points (customers) and the data owner (the information system) from the presented results.
Although this is a standard practice in all data analytics, extra care must be taken when
analyzing real customer data. The General Data Protection Regulation (GDPR), which
is applicable in the European Union since May 25th, 2018, has clarified the individuals’
rights to their privacy, and it has generated discussion and new ways of data handling, like
presented in [8].

Other common aspects in customer data seem to be that there are often a large number of
features and having missing data is quite usual. Finding suitable feature selection methods
for customer data appears to be a valid research question itself [9–11]. Data imputation is
also common part of customer data handling [12, 13], and is present also in the example
work presented in Section 2.3.

2.2 Example 1: Customer behavior analysis

In [2], a method to analyze the customer data of a large retailing company is presented.
The retailing company consist of a large number of food-based stores. The aim of the
paper is to segment different categories of users by using data mining techniques on a
transactional database. First, typical shopping basket is gathered by forming product
categories from similar products. Then a clustering algorithm is used to create clusters
of similar transactions. Based on the clusters, six typical lifestyles are presented, into
which the customers are intended to be divided. The lifestyles are presented from many
perspectives, for example, proportion of products in the main category and proportion of
products of each brand position (Figure 2). The brand position means whether the brand
aims to have the highest quality in the market (Premium), the lowest price (Economic), or
something in between.

Figure 2. An example cluster: (a) Presented by the main product category; (b) Presented by brand
position [2].

13

In [2], a relatively large data set is used in the analysis, allowing to drop out any infor-
mation which could connect the results to any retailer or customer. The clusters contain
information about what kind of products people in different lifestyle segments are likely
to buy, and which is a good example of the higher abstraction level information that can be
obtained. Using the results, the retailing company can optimize what they sell in which
store by analyzing which products of which quality are often purchased by customers
sharing the same lifestyle.

2.3 Example 2: Customer retention prediction

In [14], machine learning techniques for customer retention prediction are compared.
18 features are used in the customer dataset, which is from a telecommunication com-
pany. The dataset contains three categorical variables, including the independent variable
"Churn" (synonym for customer retention), and 15 integer variables. The two categori-
cal explanatory variables describe if the customer has a feature enabled, and the integer
explanatory variables describe the usage of the service. The larger the integer value, the
more the customer uses the service or the longer they have been a customer. A few exam-
ple variables are "Total day calls made", "Total international minutes used", and "Number
of customer service calls made".

The preprocessing steps used are data transformation, data cleaning and feature selection.
In data transformation, categorical explanatory variables are converted into integers with
values 0 or 1. Data cleaning is performed using random forest imputation technique [15]
for numerical data and binary imputation [16] for categorical data. A combination of
random forest technique [17] and Boruta [18] is used to reduce dimensions and select
best possible features for machine learning models.

After the data preprocessing, 10 different machine learning methods are used to predict
customer churn. The minimum and maximum accuracy were measured for each model
and displayed ordered by the maximum accuracy (Figure 3), where accuracy is defined
to be the proportion of correct classifications in all classifications. The objective of the
paper was to provide a benchmark on how well the different models can predict customer
retention, and they ended up recommending ensemble-based learning techniques.

Similarly to [2], the proposed method succeeds in distancing their study from recog-
nizable traits of customers and the telecommunication company, to which the dataset
belongs. All the explanatory variables are converted to integers to enable the machine

14

Figure 3. Accuracies of churn predicting machine learning models [14].

learning methods to take them into account without, for example, hard-coded input types
or other special arrangements. Explanatory variables that were found to be not significant
were left out from the final dataset.

2.4 Challenges of customer data analysis

Challenges in customer data analysis seem to arise from the following three sources:

1. The amount of data. Big data mining tools are often necessary to be able to access
customer behaviour data, especially when its transactional or event-based.

2. The disintegrity of the data. Data collection methods and collected features tend to
change over time, which creates a situation where some features are systematically
missing for some span of time.

3. The interpretation of the data. While it is common to calculate aggregate values of
the data, like means, rates, and ratios, a bigger challenge arises in drawing conclu-
sions based on the values, because it requires knowledge of causation between the
data (or the aggregate values) and high-level information.

Especially the interpretation of the data is a challenge to which deep machine learning
models offer potential tools. Due to their ability to learn the features of a dataset, the deep

15

machine learning models can compensate for the lack of domain expertise of the dataset.
However, some domain knowledge should still be present to validate the output of the
deep learning model.

16

3 DATA CLASSIFICATION

3.1 Machine learning techniques for classification

3.1.1 Overview

Machine learning is a way of programming where the program learns the characteristics
of the data without being explicitly programmed for the case. The machine learning
model maintains an internal state of parameters, which it uses while performing its task.
When the model is trained, the parameters are updated so that the model would produce
results closer to the values in the training data. Depending on which machine learning
algorithm is used, the decision rules may be understandable for humans or not [19]. The
parameters which describe the machine learning model itself are called hyperparameters.
Suitable values for hyperparameters enable the model to learn and generalize the patterns
or correlations in the data, but prevent it from overlearning them. Overlearning means
that the model learns to make decisions based on patterns which exist in the training data
by chance but are not generally applicable [20].

Machine learning models require input and produce output. In classification, the input is
often called features, and the output is called labels. Typically, machine learning classi-
fiers are designed to work with numbers, but in practice the input can be in any format,
such as image, text, or voice, as long as the machine learning model has means to convert
it to numerical representation. A good example about this is the Convolutional Neural
Network (CNN), in which a neural network uses convolutions to extract numerical fea-
tures out of images.

While training, the dataset is given as input to the model usually multiple times. Go-
ing through the training dataset once is called an epoch. Traditionally, a model training
consists of hundreds of epochs. [21]

Classification tasks occur when data points are divided into a pre-defined number of cat-
egories, and the task is to select the proper category for each data point based on its fea-
tures. Classification is one of the most popular tasks for machine learning [22]. A typical
pipeline for creating machine learning classifiers includes data preprocessing, classifi-
cation model implementation and training, tuning and testing the model, evaluating the
model and comparing alternative options, and repeating the steps until the model is esti-
mated to be good enough. The pipeline is presented in Figure 4 with green background

17

indicating common steps and yellow ones indicating optional steps. There are different
ways to divide classification methods into categories, but arguably the most common is
the division presented in Figure 5, which is used, among others, in [19, 23, 24].

Figure 4. An example pipeline of creating a machine learning classification model.

Using machine learning for classification tasks has its characteristic challenges. Different
models have different parameters, but most models need trial and error to find optimal
hyperparameters for each unique classification task. Expertise is often needed to be able
to tell whether the model is overlearning the training data or not. Some machine learning
models have poor transparency, which means that their internal state and decision flow are
hard to interpret. On top of that, training a model usually requires a lot of computational
resources, and models can be relatively large files to transfer.

As explained in [25], the opportunities of machine learning classifiers surpass those cre-
ated with traditional programming. Machine learning models can learn to detect complex
patterns, of which the creators have not been aware to start with. Models can be created
for many fields and can process different types of data, including video and audio data.
There are also benefits in decision rules not being created by human programmers, since
there is no chance of forgetting to observe or compare a value.

3.1.2 Logic-based techniques

Logic-based techniques contain decision trees (Figure 6) and rule-based classifiers [23].
They seek to acquire results by setting a group of tests, and choosing the next test based

18

Figure 5. Categorization of machine learning classification techniques [23].

on the result of the previous one. The execution of a decision tree resembles following
a flowchart, where the next node to process depends on which decision was made on the
previous one. After having arrived in the last node of a branch, which is called a leaf
node, the result of the last test is the classification result.

The training of decision trees consists of two phases: Tree growth and Tree pruning. [23]
The Tree growth phase creates new nodes in the decision tree until most of the samples are
classified correctly. The Tree pruning phase reduces the size of the tree while preserving
the classification functionality as well as possible, which makes observation of the tree
easier. In [23], two famous decision tree algorithms called ID3 (Iterative Dichotomiser 3)
and C4.5 are presented and explained.

3.1.3 Perceptron-based techniques

The perceptron [26] is a classifier which imitates the way neurons process and transmit
signals in human brains. A single perceptron receives an input vector, multiplies each
input value with its corresponding weight, sums the products, and returns 1 if the sum
is above a threshold, and otherwise 0. A perceptron is only capable of solving linearly
separable problems, as it is basically a linear combination of inputs with a bias [19]. A
simple perceptron is presented in Figure 7.

19

Figure 6. An example structure of a decision tree [19]. Yes and No are outputs of the tree, atn
stands for the n:th node and an, bn, cn, etc. for the corresponding decision options.

When multiple perceptrons receive the same inputs, they form a layer. When the outputs
of perceptrons act as inputs for the perceptrons of the next layer, they form a multilayer
perceptron [24]. A multilayer perceptron is capable of solving linearly inseparable prob-
lems, such as the XOR problem [27].

More modern perceptron-based techniques evolved from the multilayer perceptron is the
Artificial Neural Network (ANN). ANNs contain usually three segments: Input layers,
hidden layers, and output layers. Input layers accept data, hidden layers process it, and
final result is readable from the output layers. A common challenge with ANNs resides in
how many and how large hidden layers it should contain. Too few and too small hidden
layers may fail to capture the features in the data, and too many and too large hidden
layers are likely to overlearn the local features of the training data [24].

ANNs can have specialized neurons for processing certain type of data. A well-known
example of this is the CNN, where the input layers perform convolution on image data.
A Radial Basis Function (RBF) network is another special case of an ANN. It has three
layers: an input layer, a hidden layer with radial basis activation function, and an output
layer. Its working principle is presented in more detail in [24] and [19].

While training an ANN, a backpropagating algorithm is used to update the weights of each

20

Figure 7. A perceptron illustrated.

neuron. The difference of the correct result and the current result forms a gradient, which
tells each neuron separately how its weights should be modified. The backpropagation
algorithm is explained in more detail in [19].

3.1.4 Statistical learning techniques

Statistical learning techniques differ from other presented categories so, that they assume
there are probabilities for phenomena in data and try to estimate those probabilities and
their dependencies on each other. They utilize a priori probabilities and a posteriori prob-
abilities as well as conditional probabilities to form the calculation models. Two most
important statistical learning techniques are the naïve Bayes classifier and the Bayesian
network [19].

Bayesian probability models are often constructed to be in the form of a Directed Acyclic
Graph (DAG). A DAG comprises nodes which are connected to each other directionally
and without forming a cycle. Using DAGs, it is possible to apply the Bayes theorem [28]
and form the conditional probabilities for each node. Depending on whether the shape of
the DAG is fixed or not, the training of the Bayesian network includes either only tuning
the probabilities or changing the shape of the DAG, too [23]. Figure 8 shows an example
of a Bayesian network of juvenile Astacopsis gouldi habitat suitability.

21

Figure 8. An example Bayesian network [29].

3.1.5 Support vector machine

Support Vector Machine (SVM) [30] is a binary classification algorithm which attempts to
divide two classes by fitting a decision line or hyperplane between the classes. It operates
by choosing the data points nearest to the decision plane as support vectors, and resulting
in such a decision hyperplane, which has the greatest margin between classes, i.e., the
greatest distance from the hyperplane to the nearest points of both classes [22]. Two
example images of how SVM generates its decision boundary are shown in Figure 9.

There are several ways to apply SVM in multi-class classification, 3 of which seem to
be most common and simplistic. They are called One-Against-All, One-Against-One,
and Directed Acyclic Graph SVM (DAGSVM). In One-Against-All, there is one SVM
for each class, and they are trained with their corresponding class data as positive labels
and the rest as negative. In One-Against-One and DAGSVM with k classes, one SVM is
trained for each distinct pair of classes, resulting in k(k−1)

2
classifiers. In One-Against-All

and One-Against-One, the result is achieved with models voting. In DAGSVM, a DAG
with binary nodes and k leaves is constructed, and the SVM models produce the decisions
for each node. [31]

A basic SVM can only classify linearly separable data. In linearly inseparable cases,
kernel trick can be applied to make the classification possible. A kernel is a nonlinear
function which transforms the data to make it linearly separable. In [32], a high-level
presentation of the kernel trick is provided with examples.

It is stated in [23], that SVM in classification, learning, and prediction tasks, SVM has the
reputation of being one of the most reliable and efficient method. Another advantage of
SVM is its robustness with different kinds of classification problems. Linearly inseparable

22

cases and high dimensionality are handled by SVM relatively well. The drawbacks of
SVM are its high number of parameters and poor interpretability [19].

Figure 9. Illustration of SVM: (a) SVM creates maximum margin to nearest points; (b) In a lin-
early inseparable case, SVM considers the distance to the points on the wrong side of the decision
boundary [33].

3.1.6 Instance-based learning

Instance-based learning algorithms are lazy-learning algorithms, meaning that they do not
form rules or tests during training, but instead they perform the generalization or induction
process during the actual classification. The most notable instance-based learning method
is the K-Nearest Neighbour (KNN) algorithm. It selects k nearest neighbours of the input
data point, and classifies it based on which class is the most represented in the group of
neighbours [24].

Figure 10 demonstrates how the value of parameter k impacts the KNN process. The
yellow point is to be classified to either Class 1 (green) or Class 2 (blue). If k = 1, Class
1 would be chosen, because the nearest neighbour belongs to Class 1. However, if k = 3,
Class 2 would be chosen, because 2 out of the 3 nearest neighbours belong to Class 2.
With k = 5, Class 1 would be chosen again. Figure 10 does not represent any real data,
and is crafted to behave so that KNN changes its value based on the parameter k, but
similar behaviour affects real-world scenarios, too.

Based on [23], the advantages of KNN are its robustness, simplicity and transparency. It
has severe disadvantages, though, which make it rarely the best choice. Based on [19], the
major disadvantages of KNN include long classification time, large storage requirement.
There is also no means to optimize the parameter k without remarkable computational

23

Figure 10. An example illustration of how KNN would classify a data point.

time, because having different values is a trade-off between execution time and model
robustness [19].

3.1.7 Comparison of techniques

Different machine learning classification techniques are tested in [19]. It is discovered,
that when the data has continuous features and many dimensions, SVM and neural net-
works seem to be the best choices, but to achieve good results, they require more training
data than the other techniques. For categorical features, logic-based techniques are recom-
mended. Naïve Bayes method is noted to perform well with relatively small datasets. A
table of test results is presented, where the performance of different models is presented in
respect to 13 measurements, which include among others accuracy, speed, transparency,
and tolerances to different data features. It is suggested that the next step to achieve better
results is to combine individual classifiers.

Similar results are presented in [24]. Combining different methods using so called en-
semble learning is claimed to be the best option for raw classification accuracy, but its
weaknesses are increased need for storage space, computational power, and decreased
transparency of the classification process. In [23], methods are not compared to each
other in particular, but similar advantages and disadvantages are mentioned there, too.

24

3.2 Typical data preprocessing for classification

Figures 1 and 4 present the typical steps in customer data analysis and machine learning
classifier creation. The typical preprocessing steps of classification data resembles the
steps in Figure 1. An important addition to the steps is that input data for machine learning
classifiers should usually be numerical or convertible to numerical, because calculations
are performed on the input values. If the input data is not in numerical form, then the
input layer typically calculates numerical values out of it, e.g., by applying convolution
for images or using text processing methods.

Like in any other fields of data analysis, normalization is typically included in data pre-
processing. Standard score is a simple normalization method targeted especially for nor-
mally distributed data, where variance is reduced to 1 and mean to 0, without affecting
the relative distances between data points. Other normalization methods

Dimensionality reduction can also be necessary, since the size of the model is in propor-
tion to the required computational power to train the model, and therefore to the required
time. Principal Component Analysis (PCA) [34, 35] is one of the most commonly used
global methods for dimensionality reduction, because of the way it preserves as much of
the data variation as possible. If global dimension reduction methods do not produce suf-
ficient output, for example because of data sparsity, local dimension reduction methods
like whitening or sphering can be used instead [36].

3.3 Classification using partial data

A standard way to store especially relational data is to define a set of different features
for which each point of data has one value [37]. The features have different data types,
such as integer, string, or byte, depending on the kind of data stored in them. In table-
like thinking, columns stand for features and rows for data points, respectively. This way
the columns and rows form a 2-dimensional grid, where there is equal amount of storage
space for each data point.

A dataset produced by collecting measurements is often partial, meaning that there are
systematic missing values. A measurement device could be malfunctioning or out of use
for a span of time, causing all the values for a specific feature to be missing or erroneous
for all data points. Another scenario which produces missing values is when measure-
ments for a new feature are started, and the values for that feature will be missing for all

25

values gathered before the time of starting. It is usual that some features have missing
values in large datasets, and there has been research on how to compensate for this flaw
in the dataset.

In [13], a Theory of Missing Data (based on [38]) is presented, and the categorization of
the types of missing data in machine learning, how they impact the model, and what can
be done to mitigate the impact is presented. The classification for missing data types is
presented in Table 1.

Table 1. Types of missing data [13].

Missing Completely
At Random (MCAR)

Whether the data is missing is completely random, and existing
data can be considered a valid random sample of the whole
data.

Missing At Random
(MAR)

Whether the data is missing can depend on something else than
the value of the data. The existing data can be biased.

Not Missing At Ran-
dom (NMAR)

Whether the data is missing depends either on the value of the
missing data or the value of latent variables contained in the
missing data.

In short, it is stated that if missing data is of type MCAR or MAR, it can often be used
with precautions. However, if the condition to satisfy either of those types is not met,
missing data is of type NMAR, and additional actions must be considered to be able to
model the data.

An approach proposed by [39] is to use different subsets of the data, divided in a way that
no subset itself is partial. While the data is not partial in the sense described above, the
dataset is still very sparse with features. Machine learning is used for data analysis too,
and the solution is to have multiple machine learning models who vote for the output by
analyzing different parts of the data — the first one analyzes extracted local features, the
second one generalized features, and the third one raw data. The output of the model is
the mode output of the three machine learning models.

In [13] and [40], the following imputation options are presented. Missing data can be set
as zeros or mean or median values, but it is suggested that using statistical imputation
methods for machine learning training data produce better quality models. Advanced
imputation techniques mentioned include KNN imputation, Predictive Mean Matching,
Bayesian and non-Bayesian Linear Regression, and Random Sampling.

In KNN imputation, missing values are imputed by copying values from similar points

26

in the same dataset. In Predictive Mean Matching, missing values of a continuous vari-
able are imputed by sampling from the observed values of the variable while matching
predicted values as closely as possible. In Bayesian Linear Regression, univariate miss-
ing data is imputed using Bayesian linear regression analysis. In non-Bayesian Linear
Regression, imputation is done by fitting a linear regression line and picking values from
a spread around it, ignoring model error. Random sampling imputes data by selecting
observed data points randomly into missing data cells. [40]

27

4 PROPOSED METHODS

4.1 Goal of the proposed methods

The objective of the method is to produce a machine learning classifier for classifying
customer companies based on the plugins they have selected in the ERP. The companies
have at least one plugin selected, but the maximum number is not limited. The proposed
method should learn to output the correct labels based on which plugins the company has
selected. The method does not need to output the number of plugins, only plugin-specific
probabilities. The number of positive labels in the output is determined using different
output interpretation functions, which are introduced in Section 5.2.1.

The classifier model will receive numerical data about the customer companies as input.
The data will consist of both ERP-specific usage data, e.g., how often they use the system
and which features they use, and business data, e.g., how high their turnover is. The data
the model receives will be anonymous and normalized.

Neural network, Random forest, and SVM can be altered to perform multi-label clas-
sification. Metric learning, however, has a different working principle and cannot be
straightforwardly converted. It is proposed that the techniques are implemented and com-
pared so, that the three are implemented as multi-label classifiers and metric learning as a
single-label, multi-class classifier where different combinations of plugins form classes.

4.2 Multi-label customer data classification using machine learning
methods

4.2.1 Multi-label problem in classification

Typically, the best-performing machine learning classification methods are neural net-
work, random forest, and support vector machine. The simplest classification tasks are
single-label classification, and to be able to classify multi-label data, the models need
some adjustments. The designs of the methods impact how much alteration is needed.

28

4.2.2 Neural network

The neural network is a black box method, which means that it is challenging to view
the decision logic once the network has been trained. Looking at Figure 11, this can be
understood when keeping in mind that usually there are many hidden layers, and they
can contain hundreds of neurons each. During training, the weights for the network’s
parameters are tuned according to how correct results the model is able to produce. The
weight adjustments are controlled by a loss function, which judges how correct the output
was and how much the weights should be changed.

Figure 11. Neural network visualized in [41].

The decision of which loss function to select depends on the problem domain. If the neu-
ral network is to produce numeric values, a regression loss, such as mean squared error,
should be selected. Binary classification uses binary cross-entropy function to calculate
loss. Multi-class single-label classification can be achieved with categorical cross-entropy
loss function. In [42], a loss function for neural network multi-class multi-label classifi-
cation is proposed, and it is chosen to be utilized in this work, too. The function is called
Bp-mll, and its basic principle is as follows.

With number of data points m, number of classes Q, model output c, desired output d,
and global error E, the loss (global error) is defined as

E =
m∑
i=1

Ei , (1)

29

where

Ei =

Q∑
j=1

(cij − dij)
2 . (2)

In [42], the equations are optimized further, but in this context, it is enough to understand
that the prediction loss is the sum of squared errors per label, and the global loss is the
sum of prediction losses. It is also good to keep in mind, that global does not necessarily
mean the entire dataset, but if training was done in batches, global would mean the batch
error.

The proposed neural network consists of the following layers:

1. Input layer.

2. 1 or more hidden layers and Rectified Linear Unit activation function [43].

3. Dropout layer to prevent overfitting by randomly setting some of its inputs 0 during
training.

4. Decision layer with Softmax activation function [44].

The number of hidden layers and dropout rate should be tested with different values to
find the best neural network architecture for this task.

4.2.3 Random forest

Random forest (Figure 12) is a machine learning method which comprises of multiple
decision trees. The decision trees are simple classifiers which have a discrete set of possi-
ble output values. Normally, some kind of voting mechanism is implemented in random
forests to make a decision based on the outputs of the trees [17]. However, multi-class
multi-label classification can be achieved by merely outputting the sum or mean of the
trees’ outputs. This way, the random forest is capable of performing multi-class multi-
label classification with only a little adjustment.

The random forest consists of multiple decision trees similar to each other. The output
of the forest is the mean of the outputs of the individual decision trees. The trees have
Sigmoid [44] activation functions in their nodes, and the forest has Bp-mll loss function.

30

Figure 12. Random forest visualization where DT stands for decision tree.

The numbers of trees as well as tree depth should be tested to find the optimal forest
architecture.

4.2.4 Support vector machine

SVM is another binary classifier which operates by trying to maximize the distance on
both sides of its decision plane (Figure 9). In Section 3.1.5, different ways to combine
SVMs for multi-class output are presented, but without modification they would still be
single-label classifiers. A binary or single-label classifier is not sufficient for this work, so
the SVM should be modified to be able to classify linearly inseparable, multi-label cases.

Using a kernel enables the SVM to classify linearly inseparable data. The Random Fourier
Features kernel seems to be one suitable option. Its working principle is based on the
following theorem: "a continuous kernel k(x, y) = k(x − y) on Rd is positive definite if
and only if k(δ) is the Fourier transform of a non-negative measure." [45]

To make multi-label classification possible, multiple SVM models should be utilized. In
the same way how random forest combines its output from multiple decision trees, having
an ensemble of SVMs and a voting mechanism should enable multi-label classification for
the SVM. It would be neither One-Against-One nor One-Against-All approach, but the
SVM model instances should be able to learn whatever significant patterns there are in

31

the data.

The proposed SVM method for this classification task is what could be called an SVM
forest. The forest would be similar to random forest with the exception that instead of
decision trees, there would be a number of SVM instances which use the Random Fourier
Features kernel. The forest’s output would be the mean of the SVM outputs, and the forest
would use the Bp-mll loss function to calculate the loss of the prediction.

4.3 Similarity measurement with metric learning

4.3.1 Working principle of distance metric learning

Distance metric learning (described in [46]) is a method that fundamentally differs from
other machine learning classifiers described in Section 4.2. Instead of trying to learn a
way to separate classes from each other using mathematical expressions, metric learning
maps the data points to a new space, with number of dimensions as a hyperparameter
(Figure 13). The mapping is considered successful if points of the same class are close
to each other and points from different classes are far from each other. The process of
mapping is called embedding, and different embedding functions can be used, both linear
and non-linear. If the embedded space has fewer dimensions than the original (observed)
space, then the method works as a dimension reduction tool, too.

Figure 13. A metric learning model converts an observed point x with n dimensions to an em-
bedded space point e with m dimensions. Typically, m ≤ n.

A metric learning model is trained using groups of data points. Like many other machine
learning models, a metric learning model training is controlled with a loss function which
evaluates the goodness of the prediction made by the model. The simplest loss function
uses pairs of data points (tuplets). In the training process, the embedding function is
trained to place tuplets of same class near each other. Groups of three data points (triplets)
are often used so, that there is one anchor point, one point from the same class (positive),
and one point from a different class (negative). This way the embedding function is
trained simultaneously to both place the anchor and the positive near each other, and

32

the anchor and the negative far from each other. Loss functions with more than three
simultaneous data points exist, too, but they seem to be less common at the time of writing.

Metric learning can be trained as strongly supervised, weakly supervised, or unsuper-
vised. Strongly supervised training means that each training data point has a class label.
Weakly supervised training means that tuplets or triplets are provided, but no information
about their classes is provided; only that these points are of the same or of a different
class. Unsupervised training is merely calculating the covariance, which does not utilize
the characteristics and strengths of metric learning.

The metric learning itself does not limit what is done with the resulting embedded space.
For classification, it is common to use the KNN to perform classification, since the data
points of same class should lie close to each other in the embedded space. However, the
embedded space can also be used, for example, for clustering.

4.3.2 Pipeline for metric learning in customer classification

In this work, a simple metric learning method is implemented to compare against more
traditional classifiers. As metric learning needs the data points to be either same class or
different class, the concept of "partially same class" present in multi-label classification
could not be implemented. Therefore, with number of classes n, an integer label l is
calculated for each binary vector of labels y as follows.

l =
n∑

i=1

2i−1yi . (3)

After converting the multi-label problem to a single-label one, the pipeline of metric learn-
ing model (Figure 14) is straightforward. A metric learning model maps the data points
into an embedded space, where a KNN performs the classification. The sparse cate-
gorical cross-entropy loss is used for the model, which is identical to categorical cross-
entropy [47], but takes correct labels as integers instead of binary arrays.

33

Figure 14. Pipeline for metric learning in this task.

34

5 EXPERIMENTS

5.1 Data

5.1.1 Raw customer data

For the ERP system to work, it has to keep track of quite much data. However, the data
chosen for this work needs to be properly handled as the agreements with the customers
state. The input data for the machine learning models does not contain any data which
is classified as sensitive in the GDPR, or anything else which could be used to identify
single companies or users. The dataset comprises of the following types of fields:

• Numerical values, e.g., how many sales invoices did the company send using the
ERP?

• Binary values, e.g., is the company direct customer or a customer of an account
office using the ERP?

– Categories as one-hot-encoded binary values, e.g., which of the ERP pricing
models does the company have?

The dataset contains 116 numerical and 168 binary input features. The binary features
are mostly whether the company has specific sections of the ERP enabled or disabled.
The numerical features contain the number of logins, number of users, turnover, and
the number of API requests, as well as a large number of counts of different kinds of
transactions made in the ERP. The numeric data which counts something from a span of
time, such as number of sent and received invoices, is collected from one month. This way
of collecting data has its limitations, because some companies might operate cyclically,
and they would get different data depending on the month. On the other hand, if a longer
period of time were chosen, it would discriminate newer clients which would not have
usage data from the required period for a longer time.

The dataset obtained from the ERP was found to be very biased. All companies which
have at least 1 plugin in use were included in the dataset. 3647 out of 5511 total companies
have only a single, same plugin, and most plugins are used by a very small group of
companies. Also, only a small fraction of possible plugin combination were present. The
plugin distribution before bias reduction is presented in Figures 15 and 16.

35

Figure 15. Plugin popularity. Number of companies using a plugin.

Figure 16. Number of total plugins used by companies.

36

Partial data and its imputation methods are discussed in Section 3.3, because it is to be
expected that data would be missing for two reasons:

1. Incomplete data collecting in the ERP: All events and actions might not be logged
in detail.

2. Data not existing in the ERP: The company could send and receive invoices outside
the ERP.

However, since the research question is to classify companies based on plugin usage in
the ERP, it can be argued that no imputation is necessary in this work. The reason 1
applies similarly for every company, thus not creating missing data fields or rows inside
the dataset, but only limiting which features can be chosen. The reason 2 can be ignored:
It does not make any difference how many invoices the company might handle outside the
ERP, they still will not need the invoice-related plugin in the ERP.

5.1.2 Data preprocessing

The data preprocessing pipeline (Figure 17) in this work is relatively simplistic. It in-
cludes normalization, bias reduction and division into training and testing datasets. Due
to the small size of the dataset, a separate validation set is not constructed. Instead, the
training continues for a fixed number of epochs. The reason behind this decision is that
many plugins and combinations have so few data points, that the validation dataset would
be very small, and the selection of data points would have bigger impact than desired.
After all, the validation dataset should represent similar data than the training set but with
different data points, and it is argued that the similarity could not be achieved in this work.

The first preprocessing step is normalization of the data. Each feature is marked as nu-
merical or binary as presented in Section 5.1.1. Binary features are left untouched as they
already have values 0 or 1, but numerical features are normalized using the feature-wise
zscore-algorithm [48]:

xi =
xi −mean(x)

std(x)
, (4)

where x contains the values of the feature from all companies and i is the index of com-
pany.

37

Figure 17. Data preprocessing pipeline.

38

The second preprocessing step is the reduction of bias. All companies which have more
than one plugin selected are kept automatically, because they are a relatively small per-
centage, and they bring valuable variation in the data. The removal of companies using
only a single plugin is done with the following heuristic algorithm for each plugin i sep-
arately:

1. Choose a maximum limit, L, for companies using only a single plugin. L = 150 in
this work, based on the distribution of the data.

2. If the number of companies using only plugin i, ni > L: remove randomly ni − L

companies using only plugin i from the dataset.

The third preprocessing step is the division into training and testing datasets. The division
was made by randomly choosing 20 % of data to be the testing set, and the rest 80 % to be
the training set. For metric learning, two extra steps were also taken, due to the different
nature of the model. First, the data points which were the only ones of their class in the
training dataset were also removed, because the model is taught using pairs of data from
the same class. Then, the data points were removed from the testing dataset which did
not have any matching classes in the training set, because they would be always classified
incorrectly.

5.2 Evaluation criteria

5.2.1 Interpretation of model output

Evaluating a multi-label classification model requires more consideration than a single-
label model, because what is correct becomes ambiguous. When different data points have
different number of correct classes in training set, how should the number of classes for
the prediction be determined? The output of the model is an array of class probabilities:
[p1, p2, ..., pn], where 0 ≤ pi ≤ 1. In search of the best predictions during training,
different constant thresholds were tried as well as choosing top-k class predictions, where
k ∈ N. In [49], top-k is presented as a method to include the correct result in k highest
predictions, but in this multi-label classification work it simply means choosing top k

predictions as the positive labels. These different methods are used to choose classes
from the prediction array for each model, and their results are handled separately from
each other.

39

For every model, the following ways of interpreting the model output were applied, and
their respective accuracies calculated. The interpretation functions are visualized in Fig-
ure 18.

• Constant thresholds: For each output pi and threshold t, the output is interpreted as:

pi =

1, if pi ≥ t

0 otherwise

– The following threshold values t were tested: 0.2, 0.3, 0.4, 0.5

• Top-k: For each output pi and value k, the output is interpreted as:

pi =

1, if pi in k highest values of p

0 otherwise

– The following values of k were tested: 2, 3, 4, as many as in the correct output

(a) (b)

Figure 18. Visualization of threshold and top-2 interpretation functions. Colourful bars represent
positive labels, grey bars negative.

It can be argued that it is very important to find the best interpretations for each model.
Evaluating the models is relatively cheap in performance, compared to training additional
models, and thus it would be unwise not to thoroughly test the capability of the trained
models.

40

5.2.2 Model accuracy calculation

Because the bias reduction cannot achieve equal number of data points for each class,
also evaluation should consider the possible class imbalance. If accuracy were measured
as correct predictions, very good results would be achieved by predicting only the most
popular plugin and nothing else. To take other plugins into account, the accuracy of the
model is calculated as the sum of plugin-specific F1-score values.

To understand a plugin-specific F1-score, let us define some measures:

• TPi: True positives by plugin. How many times the plugin was selected by the
company and also predicted by the model.

• FPi: False positives by plugin. How many times the plugin was predicted by the
model but not selected by the company.

• FNi: False negatives by plugin. How many times the plugin was selected by the
company but not predicted by the model.

• TNi: True negatives by plugin. How many times the plugin was neither selected by
the company nor predicted by the model.

Using these, plugin-specific precision Pi, recall Ri, and F1-score F1i can now be calcu-
lated as follows:

Pi =
TPi

TPi + FPi

(5)

Ri =
TPi

TPi + FNi

(6)

F1i = 2
PiRi

Pi +Ri

(7)

The total F1-score F1 is the sum of plugin-specific ones:

F1 =
n∑

i=1

F1i =
n∑

i=1

2
PiRi

Pi +Ri

(8)

This kind of an evaluation criteria gives as much value for each plugin. However many
data points belong to the most popular class, it will only have 1

n
impact on the final ac-

curacy value. This way, the best model should be the one which can capture the char-
acteristics of the classes in the features and get decent precisions and recalls for each

41

class, instead of learning one or two very well. However, one could argue that this kind
of calculation gives too much power to the classes with fewer data points, thus leading to
overlearning the features of the rarest points to gain the easiest increase of accuracy value.
At this point, one should keep in mind, that many multi-label combinations do not exists,
and therefore it cannot be assumed nor expected that there would be an equal number of
data points representing the other combinations, either

5.3 Description of experiments

The experimental arrangement combines the data preprocessing, model training, and
model evaluation. The program was written in Python (v. 3.10), and the machine learning
models were implemented using the libraries Keras (v. 2.9.0) and Tensorflow (v. 2.9.1).

The most important model hyperparameters and evaluation methods were applied using
the 2n factorial experiment design [50], where all combinations are systematically tested.
These included:

• Optimizer functions (Follow the regularized leader (FTRL) [51], Stochastic gradi-
ent descent (SGD) [52], and Adam [53])

• Neural network number of hidden layers (2, 3, 4, or 7)

• Neural network dropout layer input dropout rate (0, 1
4
, or 1

2
)

• SVM and random forest number of trees (3, 7, 11, or 15)

• Random forest depth of trees (8, 12, 16)

Other hyperparameters, such as learning rate, regularization algorithm and strength, and
neural network layer widths, were not tested systematically due to the performance lim-
itations brought by the 2n factorial design but altered manually with the most promising
models. The results were saved so that the best accuracies can be queried and the hyper-
parameters observed. The default values to begin with were as follows:

• Neural network layer width 4096 neurons.

• Learning rate 0.001.

• Metric learning classifier KNN value k = 1.

42

• No regularization.

5.4 Results

5.4.1 Neural network results

The results of neural network models are shown in Table 2. The neural network seems to
be one of the worse two models in this experiment. What the best neural network models
seem to have in common is the top-n (as many as in the correct output) interpretation. The
best neural network with any other interpretation (24th best neural network) has the mean
F1-score 0.402, with difference over 0.05 to the best one. However, the number of hidden
layers and the dropout rate seems to vary, suggesting that they have little contribution to
the accuracy of the model.

Table 2. 5 best performing neural network models

Model type Details Interpretation Precision Recall F1

Neural network layers: 3, dropout: 1
4

top-n 0.447 0.469 0.453
Neural network layers: 3, dropout: 1

2
top-n 0.440 0.463 0.448

Neural network layers: 3, dropout: 0 top-n 0.433 0.466 0.445
Neural network layers: 4, dropout: 1

2
top-n 0.434 0.458 0.443

Neural network layers: 7, dropout: 1
2

top-n 0.426 0.458 0.440

5.4.2 SVM forest results

The results of the SVM forest models are shown in Table 3. The SVM forest is the best
of the three models which actually perform multi-label classification by a notable margin.
However, as Table 3 shows, the higher accuracies were only achieved by three model
instances, and beyond them the SVM forest models seem to perform on the same level as
the weaker models (mean F1-score between 0.40 and 0.45). The three best instances seem
to have in common that they all contain only 3 SVM:s, which suggests that the classes
could effectively be separated using 3 decision surfaces. After that, the number of SVM:s
seems to vary, however. This distribution is visualized in Figure 19.

SVM forest seems to perform well while interpretation is such that it picks few classes.
Thresholds 0.2 and 0.3, as well as top-2, top-3, and top-n are present in the 30 best SVM

43

Table 3. 5 best performing SVM forest models

Model type Details Interpretation Precision Recall F1

SVM Forest 3 SVM:s top-n 0.583 0.560 0.558
SVM Forest 3 SVM:s top-2 0.524 0.608 0.537
SVM Forest 3 SVM:s threshold: 0.2 0.551 0.592 0.530
SVM Forest 9 SVM:s top-n 0.518 0.558 0.494
SVM Forest 5 SVM:s top-n 0.526 0.454 0.454

Figure 19. Distribution of number of SVM:s in the top 30 SVM forest models.

forest evaluations. This is to be expected, however, considering that most companies only
have 1 plugin - having more positives in predictions leads to decrease of precision.

5.4.3 Random forest results

The results of random forest models are shown in Table 4. The random forest seems to be
the worst performing model in this work, though having a very small difference to neural
network. The other hyperparameters of the random forest seem to vary, but not before
the 21st best model are there 15 trees contained. This, combined with the findings about
the SVM forest necessary decision surfaces, might implicate that the random forests used
in this work are unnecessarily large. Especially the arbitrary minimum tree depth of 8
should probably be questioned.

44

Table 4. 5 best performing random forest models

Model type Details Interpretation Precision Recall F1

Random forest trees: 7, depth: 12 top-n 0.443 0.454 0.443
Random forest trees: 3, depth: 12 top-n 0.498 0.410 0.406
Random forest trees: 11, depth: 8 top-n 0.428 0.424 0.405
Random forest trees: 3, depth: 8 top-n 0.432 0.414 0.402
Random forest trees: 7, depth: 12 threshold: 0.3 0.465 0.380 0.397

5.4.4 Metric learning results

The results of metric learning models are shown in Table 5. The metric learning model
has achieved the second highest accuracy in this work but is not entirely comparable with
the other models due to the fact that it performs single-label classification with plugin
combinations acting as classes. In evaluation, its output is treated as if it was a multi-label
prediction. It is compatible, and the model’s uncertainty acts as secondary and tertiary
class predictions. However, there is room for improvement, for example, by attempting
triplet learning instead of tuplet learning.

What is interesting about the metric learning model is that its best results are achieved
with different interpretations than the other models. The most prevalent interpretation
is top-4, and the recall values seem to be often higher than precision values. The best
metric learning model (Table 5) is a great example of such. The model predicts too many
classes, but the correct classes are so often among them, that the high recall keeps the
mean F1-score decent.

It is noticeable how quickly the great F1-scores of metric learning models fall. The differ-
ence between the 1st and the 5th models’ accuracies is remarkable. One should keep in
mind, however, that due to the 2n factorial design, for each metric learning model trained,
there are 12 random forest models, 4 SVM models, and 12 neural network models trained.
Assuming that training with the same parameters leads to roughly similar accuracies, it is
a very different thing to display 5 best metric learning models than 5 best neural network
models.

5.4.5 Overall results

The overall best model evaluation results are shown in Table 6. The best performing
model instances seem to be either SVM forests or metric learning models. The best

45

Table 5. 5 best performing metric learning models

Model type Details Interpretation Precision Recall F1

Metric learning top-4 0.493 0.646 0.556
Metric learning top-3 0.511 0.519 0.512
Metric learning threshold: 0.2 0.506 0.523 0.509
Metric learning top-n 0.525 0.438 0.473
Metric learning threshold: 0.3 0.507 0.408 0.443

neural network is the 10th best overall model, and the best random forest is the 15th. The
highest accuracies per model type are:

• SVM forest: 0.558

• Metric learning: 0.556

• Neural network: 0.453

• Random forest: 0.443

Based on these findings, it could be argued that the SVM forest and metric learning are
better performing models for this work. Their best accuracies are very close to each other,
as are those of neural network’s and random forest’s, but the difference between the two
groups is roughly 0.1.

Table 6. 5 best performing models

Model type Details Interpretation Precision Recall F1

SVM Forest 3 SVM:s top-n 0.583 0.560 0.558
Metric learning top-4 0.493 0.646 0.556
SVM Forest 3 SVM:s top-2 0.524 0.608 0.537
SVM Forest 3 SVM:s threshold: 0.2 0.551 0.592 0.530
Metric learning top-3 0.511 0.519 0.512

46

6 DISCUSSION

6.1 Current study

The objective of the thesis was to review customer data analysis and classification with
machine learning, create a suitable model for multi-label classification, train it with a
prepared dataset, and evaluate it. Four different methods were used for the task; neural
network, SVM and random forest were altered to be able to perform multi-label clas-
sification, and a metric learning classifier was trained for single-label classification by
processing data. The models were trained, and different evaluation methods were applied
to be able to measure the performance of the models.

The highest F1-score achieved was 0.558 with a SVM forest model. Given the selected
accuracy calculation and considering the application as a recommender model whose er-
rors do not cause damage, the results can be considered promising. Neural network and
random forest models had worse performance but refining them might produce better re-
sults.

The highest accuracies (mean F1 = 0.558) are not nearly as high as single-label classifiers
produce, especially in binary classification tasks. However, in the context of the current
work and evaluation method, the results are arguably promising. A business-critical sys-
tem should not be implemented using the current models, but for an application with less
consequences on incorrect predictions, such as a recommendation tool, the best models
might be good enough in their current state.

The reason why as small value as 0.558 could be considered promising is the calculation
of the F1-score. As can be seen from Equation 8, if either precision or recall is low, so is
the F1-score. While the models are expected to learn to predict those classes well which
have many training data points, there are many classes which do not have, as Figure 15
shows. The case is most likely that those classes are difficult for the models, and as
they have few data points, every false negative prediction lowers recall significantly. On
the other hand, if the model learns to predict the rare class often, precision decreases
rapidly. And if there are 0 true positives, both precision and recall are 0, and so is the F1-
score. This way, the predictions of the rarest plugins have most impact on which models
reach the highest accuracies and expecting as high accuracy values as with single-label
classification tasks would be unrealistic.

47

The evaluation of the models could be further developed. The plugin-specific way of cal-
culating accuracy ensures that every plugin is taken into account, but this also introduces
a problem. Some plugins have very few datapoints, which raises a question, whether it
impacts too much if those few datapoints are predicted correctly or not.

The previous question could be approached by contemplating the actual problem that the
models are trying to solve. If we should ask "which plugin would the company most
likely want to use?", the answer might be every time the most popular plugin (Plugin 3
in Figure 16). However, if we asked, "for which plugin does the company suit best?", the
bias would be meaningless and every plugin would be seen as equal. The current accuracy
calculation using plugin-specific F1-scores is targeted for the latter approach, but it should
not be accepted without questioning.

The comparison between metric learning and multi-label classifiers is not fair in this work.
Neural network, support vector machine, and random forest models are adapted to per-
form multi-label classification, but the metric learning model performs ordinary single-
label classification, where all combinations of multiple labels are converted into unique
labels. While the output of the metric learning model is compatible with the multi-label
model evaluation calculation, the model never learns to output secondary or tertiary val-
ues on purpose, instead it outputs them as uncertainty. The goal of this work is to create a
working implementation, but to be able to actually compare the metric learning with the
other models, a similar implementation should be created for both.

The model output interpretation option as many as in the correct output is not very realis-
tic. It was used to be able to see how the models learn, because with hard-coded top-k or
threshold values there will always be wrong number of output classes. However, in real
life application there will not be the information of how many classes should be chosen,
and thus it would make sense to remove the as many as in the correct output entirely from
the evaluation process.

The usability if the current metric learning model should be taken with caution. Even
though metric learning achieves the accuracy of 0.556, the prominent top-4 interpreta-
tion and precision lower than recall undermine its performance as a recommender. A
good recommender should achieve good results with top-2 interpretation, because most
likely only 1 or 2 plugins would be recommended in the application. Even though metric
learning successfully finds the correct classes in top-4, it might not be suitable for the
recommending task.

Also, the ground truth of the classification task should be considered. The fact that com-

48

panies have selected some plugins does not guarantee that those plugins are the best fit for
the company, yet this data is used to train and evaluate the model. For example, if a new
plugin was recently added, very few, if any, companies would have it at the moment and
the model would not recommend it for most companies, regardless of if it would actually
fit their needs.

6.2 Future work

Many problems have been solved one way in this thesis but exploring alternative solu-
tions might be useful as future work. For example, the bias reduction method is not very
sophisticated and uses an arbitrary value which was decided by looking at the data. Being
able to use a larger share of the original data without exposing the model to remarkable
class-imbalance could improve the learning of the generalized features in the data.

A k-fold cross validation might be useful with such a small dataset as well. When there are
only a few companies with specific plugins, the division of data points between datasets
becomes important for those classes especially. In this thesis, there is no confirmation
logic that each class would have more points in the training dataset than the testing one.
In the worst case, this could lead to all data points being in the same dataset, thus causing
the model not to learn them or getting a 0 in precision because there was no chance to
make any true positive predictions.

Different model hyperparameters could be further experimented. The metric learning
model could use triplet loss, and especially the neural network was left with many untested
options and parameter combinations. Other machine learning models could be tried as
well. And if there were more data, a validation dataset should be used to prevent the
model from overlearning the training dataset by observing validation accuracy.

The neural network is the model type which has clearly the most hyperparameters and
options. A limited number of non-systematic alterations were made to hyperparameters
like optimizer function, learning rate, regularization, layer width, initialization, loss func-
tion, and activation function, but many parameter combinations were not tested. Of all
the models present in the work, neural network was left with the most unexplored tuning,
which might have improved its performance, given the time and resources for systematic
testing.

For the metric learning model, open set classification [54] with a similarity threshold

49

could also be tested. This would remove the problem that testing data might contain
labels which do not exist in the training data. However, if the result that the open set
classifier would give below the similarity threshold was ’some other class’, it would not
be very useful as a plugin recommendation.

It should not be taken for granted that there should be only one model. A One-Against-
All model for each plugin could be worth testing in the future. The reason for the current
solution lies in the scarcity of the data. Some models might only have a few positive
datapoints, and the risk of overlearning would be remarkable. However, having one model
per plugin might enable using different models for different plugins based on how they
perform.

50

7 CONCLUSION

Many information systems collect data about their users to be able to perform in their pri-
mary task. The data can be further utilized by machine learning methods, which might be
able to learn such patterns from the data, that could be otherwise challenging to discover.
This way machine learning can provide additional value for the system using the existing
user data.

In this thesis, customer companies in an ERP system were classified using machine learn-
ing methods. A literature review of customer data analysis and machine learning clas-
sification was provided, and a method for solving the research problem was proposed.
Four different machine learning methods were tailored to be able to perform multi-label
classification. Data was preprocessed and the models were trained and evaluated using
class-specific F1-score.

Different interpretation and evaluation methods were presented and applied. The accura-
cies achieved with the models were promising, highest mean F1-score being 0.558. The
SVM model and metric learning performed better than the neural network and the random
forest. The results were analyzed and discussed, and improvements and future work were
presented.

51

REFERENCES

[1] Hannu Saarijärvi, Heikki Karjaluoto, and Hannu Kuusela. Customer relationship
management: the evolving role of customer data. Marketing Intelligence & Plan-

ning, 31, 2013.

[2] Vera L Miguéis, Ana S Camanho, and João Falcão e Cunha. Customer data mining
for lifestyle segmentation. Expert Systems with Applications, 39(10):9359–9366,
2012.

[3] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-hill
New York, 1997.

[4] T. K. Das. A customer classification prediction model based on machine learning
techniques. In International Conference on Applied and Theoretical Computing and

Communication Technology, pages 321–326, 2015.

[5] Qianling Chen, Min Zhang, and Xiande Zhao. Analysing customer behaviour in
mobile app usage. Industrial Management & Data Systems, 117, 2017.

[6] Arthur Middleton Hughes. The complete database marketer: Second-generation

strategies and techniques for tapping the power of your customer database. Irwin
Professional Pub., 2nd edition, 1996.

[7] Ammar Mars and Mohamed Salah Gouider. Big data analysis to features opinions
extraction of customer. Procedia Computer Science, 112:906–916, 2017.

[8] Zhiqiang Yang, Sheng Zhong, and Rebecca N Wright. Privacy-preserving classifi-
cation of customer data without loss of accuracy. In SIAM International Conference

on Data Mining, pages 92–102, 2005.

[9] Tzu-Liang Bill Tseng and Chun-Che Huang. Rough set-based approach to feature
selection in customer relationship management. Omega, 35(4):365–383, 2007.

[10] Jin Xiao, Hanwen Cao, Xiaoyi Jiang, Xin Gu, and Ling Xie. Gmdh-based semi-
supervised feature selection for customer classification. Knowledge-Based Systems,
132:236–248, 2017.

[11] Bingquan Huang, Brian Buckley, and T-M Kechadi. Multi-objective feature selec-
tion by using nsga-ii for customer churn prediction in telecommunications. Expert

Systems with Applications, 37(5):3638–3646, 2010.

[12] Pete Rotella and Sunita Chulani. Analysis of customer satisfaction survey data. In
IEEE Working Conference on Mining Software Repositories, pages 88–97, 2012.

52

[13] Benjamin Marlin. Missing data problems in machine learning. PhD dissertation,
University of Toronto, 2008.

[14] Sahar F Sabbeh. Machine-learning techniques for customer retention: A compara-
tive study. International Journal of Advanced Computer Science and Applications,
9(2), 2018.

[15] Anoop D Shah, Jonathan W Bartlett, James Carpenter, Owen Nicholas, and Harry
Hemingway. Comparison of random forest and parametric imputation models for
imputing missing data using mice: a caliber study. American Journal of Epidemiol-

ogy, 179(6):764–774, 2014.

[16] Munevver Mine Subasi, Ersoy Subasi, Martin Anthony, and Peter L Hammer. A
new imputation method for incomplete binary data. Discrete Applied Mathematics,
159(10):1040–1047, 2011.

[17] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[18] Miron B Kursa, Aleksander Jankowski, and Witold R Rudnicki. Boruta–a system
for feature selection. Fundamenta Informaticae, 101(4):271–285, 2010.

[19] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine learn-
ing: A review of classification techniques. Emerging Artificial Intelligence Applica-

tions in Computer Engineering, 160(1):3–24, 2007.

[20] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. New advances in

machine learning, 3:19–48, 2010.

[21] Jason Brownlee. What is the difference between a batch and an epoch in a neural
network. Machine Learning Mastery, 20, 2018.

[22] F.Y. Osisanwo, J.E.T. Akinsola, O. Awodele, J.O. Hinmikaiye, O. Olakanmi, and
J. Akinjobi. Supervised machine learning algorithms: classification and comparison.
International Journal of Computer Trends and Technology, 48(3):128–138, 2017.

[23] Aized Amin Soofi and Arshad Awan. Classification techniques in machine learning:
applications and issues. Journal of Basic and Applied Sciences, 13:459–465, 2017.

[24] Sotiris B Kotsiantis, Ioannis D Zaharakis, and Panayiotis E Pintelas. Machine learn-
ing: a review of classification and combining techniques. Artificial Intelligence

Review, 26(3):159–190, 2006.

[25] Chhaya Khanzode and Ravindra Sarode. Advantages and disadvantages of artificial
intelligence and machine learning: A literature review. International Journal of

Library & Information Science, 9(1):3, 2020.

53

[26] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386, 1958.

[27] Vaibhav Kant Singh. Proposing solution to xor problem using minimum configura-
tion mlp. Procedia Computer Science, 85:263–270, 2016.

[28] Thomas Bayes. An essay toward solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society of London, 53:370–418, 1764.

[29] Serena H Chen and Carmel A Pollino. Good practice in bayesian network modelling.
Environmental Modelling & Software, 37:134–145, 2012.

[30] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 1999.

[31] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. IEEE transactions on Neural Networks, 13(2):415–425, 2002.

[32] Eric Kim. Everything you wanted to know about the kernel trick.
URl: https://web.archive.org/web/20221028150810/https://www.eric-kim.net/eric-

kim-net/posts/1/kernel_trick.html, 2013. Accessed 30 October 2022.

[33] Abhisek Ukil. Support vector machine. In Intelligent Systems and Signal Processing

in Power Engineering, pages 161–226. 2007.

[34] Harold Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. Journal of Educational Psychology, 24(6):417, 1933.

[35] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, 1987.

[36] Miguel A Carreira-Perpinán. A review of dimension reduction techniques. Depart-

ment of Computer Science. University of Sheffield. Tech. Rep. CS-96-09, 9:1–69,
1997.

[37] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain. A
survey and comparison of relational and non-relational database. International Jour-

nal of Engineering Research & Technology, 1(6):1–5, 2012.

[38] Roderick Little and Donald Rubin. Statistical analysis with missing data. John
Wiley & Sons, Inc., 1987.

[39] Bin Jiang, Xi Fang, Yang Liu, Xingzhu Wang, and Jie Liu. Spectral feature extrac-
tion using partial and general method. Advances in Astronomy, 2021.

54

[40] Anil Jadhav, Dhanya Pramod, and Krishnan Ramanathan. Comparison of perfor-
mance of data imputation methods for numeric dataset. Applied Artificial Intelli-

gence, 33(10):913–933, 2019.

[41] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in ar-
tificial neural network applications: A survey. Heliyon, 4(11):e00938, 2018.

[42] Min-Ling Zhang and Zhi-Hua Zhou. Multilabel neural networks with applications
to functional genomics and text categorization. IEEE transactions on Knowledge

and Data Engineering, 18(10):1338–1351, 2006.

[43] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint

arXiv:1803.08375, 2018.

[44] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural
networks. Towards data science, 6(12):310–316, 2017.

[45] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
Advances in neural information processing systems, 20, 2007.

[46] Liu Yang and Rong Jin. Distance metric learning: A comprehensive survey. Michi-

gan State University, 2(2):4, 2006.

[47] Kevin Koidl. Loss functions in classification tasks. Presentation, School of Com-

puter Science and Statistic Trinity College, Dublin, 2013.

[48] S Patro and Kishore Sahu. Normalization: A preprocessing stage. arXiv preprint

arXiv:1503.06462, 2015.

[49] Felix Petersen, Hilde Kuehne, Christian Borgelt, and Oliver Deussen. Differentiable
top-k classification learning. In International Conference on Machine Learning,
pages 17656–17668, 2022.

[50] Charles Robert Hicks. Fundamental concepts in the design of experiments. Holt,
Rinehart and Winston, 1964.

[51] Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence
theorems and l1 regularization. In International Conference on Artificial Intelligence

and Statistics, pages 525–533, 2011.

[52] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neuro-

computing, 5(4-5):185–196, 1993.

55

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[54] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open
set recognition: A survey. IEEE transactions on pattern analysis and machine intel-

ligence, 43(10):3614–3631, 2020.

	INTRODUCTION
	Background
	Objectives and delimitations
	Structure of the thesis

	CUSTOMER DATA ANALYSIS
	Background
	Example 1: Customer behavior analysis
	Example 2: Customer retention prediction
	Challenges of customer data analysis

	DATA CLASSIFICATION
	Machine learning techniques for classification
	Overview
	Logic-based techniques
	Perceptron-based techniques
	Statistical learning techniques
	Support vector machine
	Instance-based learning
	Comparison of techniques

	Typical data preprocessing for classification
	Classification using partial data

	PROPOSED METHODS
	Goal of the proposed methods
	Multi-label customer data classification using machine learning methods
	Multi-label problem in classification
	Neural network
	Random forest
	Support vector machine

	Similarity measurement with metric learning
	Working principle of distance metric learning
	Pipeline for metric learning in customer classification

	EXPERIMENTS
	Data
	Raw customer data
	Data preprocessing

	Evaluation criteria
	Interpretation of model output
	Model accuracy calculation

	Description of experiments
	Results
	Neural network results
	SVM forest results
	Random forest results
	Metric learning results
	Overall results

	DISCUSSION
	Current study
	Future work

	CONCLUSION
	REFERENCES

