
 

 

LUT University  

School of Engineering Science  

Industrial Engineering and Management 

 

 

 

 

 

 

 

 

 

 

BERT model optimization methods for inference – a comparative 

study of five alternative BERT-model implementations 

Marko Buuri 

 

 

 

 

 

 

 

 

 

 

1. Supervisor: Pasi Luukka  

2. Supervisor: Jyrki Savolainen 

 



 

 

1 Table of contents 

1 Table of contents ........................................................................................................................................... 8 

1. Introduction .................................................................................................................................................. 7 

1.1 Motivation .................................................................................................................................................... 8 

1.2 Research objectives and limitations ............................................................................................................. 8 

1.3 Data and Methodology ................................................................................................................................ 9 

1.4 Structure of the Thesis .................................................................................................................................. 9 

2 Theoretical Background ............................................................................................................................... 10 

2.1 BERT - Bidirectional Encoder Representations from Transformers ............................................................ 10 

2.2 Masked language modeling ....................................................................................................................... 16 

2.3 Next Sentence prediction ........................................................................................................................... 16 

2.4 Benchmarks for BERT models ..................................................................................................................... 17 
2.4.1 GLUE Benchmark ................................................................................................................................... 17 
2.4.2 SQuAD dataset ....................................................................................................................................... 18 
2.4.3 IMBD Reviews dataset ........................................................................................................................... 18 
2.4.4 RACE Benchmark.................................................................................................................................... 18 

2.5 Types of BERT models ................................................................................................................................. 19 
2.5.1 ALBERT ................................................................................................................................................... 19 
2.5.2 RoBERT ................................................................................................................................................... 20 
2.5.3 DistillBERT .............................................................................................................................................. 20 
2.5.4 StructBERT ............................................................................................................................................. 21 

2.6 Named entity recognition .......................................................................................................................... 21 

2.7 NER model evaluation ................................................................................................................................ 24 

2.8 BERT model evaluation .............................................................................................................................. 24 
2.8.1 MUC score.............................................................................................................................................. 25 
2.8.2 Exact-match evaluation ......................................................................................................................... 25 
2.8.3 Automatic Content Extraction - ACE evaluation .................................................................................... 25 

2.9 Cost efficiency of implemented models ...................................................................................................... 26 

3 Methods considered in this study ................................................................................................................ 28 

3.1.1 Distillation .............................................................................................................................................. 28 
3.1.2 Quantization .......................................................................................................................................... 32 

4 Literature Review ........................................................................................................................................ 44 

4.1 Quantization methods ................................................................................................................................ 44 

4.2 Distillation and other methods ................................................................................................................... 49 

5 Results ......................................................................................................................................................... 56 



 

 

5.1 Data ............................................................................................................................................................ 56 

5.2 Tested models ............................................................................................................................................ 57 

5.3 Inference Results ........................................................................................................................................ 57 

5.4 Result analysis ............................................................................................................................................ 61 

6 Conclusion and discussion ........................................................................................................................... 62 

6.1 Answering research questions.................................................................................................................... 62 

6.2 Further research and development ............................................................................................................ 64 

7 References .................................................................................................................................................. 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

TIIVISTELMÄ 

Tekijä: Marko Buuri  

Työn nimi: BERT-mallin optimointimenetelmät inferenssiin – vertaileva tutkimus viidestä 

vaihtoehtoisesta BERT-mallin toteutuksesta 

Vuosi: 2022                                                                      Paikka: Espoo 

Diplomityö. LUT-yliopisto, Tuotantotalous, Business Analytics 

65 sivua, 5 taulukkoa, 5 kuvaa 

Tarkastajat(t): Pasi Luukka, Jyrki Savolainen 

Hakusanat: BERT, distillointi, kvantisointi, inferenssi 

Aiempina vuosina on nähty Transfer Learning -lähestymistapojen nousu luonnollisen kielen 

käsittelyssä (NLP) ja laajamittaisista esikoulutetuista kielimalleista on tullut perustyökalu monissa 

NLP-tehtävissä. Vaikka suuret mallit johtavat yleensä merkittäviin parannuksiin, niissä on usein 

useita miljoonia parametreja, jotka voivat tuottaa haasteita. 

 

BERT-mallit ovat Transformer-arkkitehtuurilla toteutettu kielenmallinnusjärjestelmiä, jotka ovat 

osoittautuneet tehokkaiksi kielimalleiksi. Tässä diplomityössä esitetään keinoja, jolla voidaan 

parantaa BERT-mallein nimetty kohteen tunnistamisen inferenssiä. Näillä menetelmillä voidaan 

hyödyntää pienetäkseen mallien kokoa ja parantaa niiden suoritustehoa pienentämättä merkittävästi 

mallin tarkkuutta. Kirjallisuuskatsauksessa selvitetään aikaisemmista tutkimuksista parhaita 

mahdollisia menetelmiä, joita on hyödynnetty mallin laskentatehokkuuden parantamiseen 

pienentämättä kuitenkaan niiden tarkkuutta.  

 

Toteutuksessa viiden erilaisen BERT-mallin toimivuutta on testattuja CoNLL-2003 datalla. Mallien 

toimivuuksien tuloksia, etenkin F1-tulosta, joka mittaa mallin tarkkuutta, ja malleihin käytettyä aikaa 

on verrattu toisiinsa. Alkuperäisenä mallina käytettiin BERT-base mallia. Tulokset osoittavat 

testatuista BERT-malleista, että Distill RoBERTa onnistui suoriutumaan paremmin saavuttamalla F1-

tuloksen 96.74 % ja puolet vähemmällä ajalla kuin alkuperäinen malli BERT-base F1-tuloksella 95.98 

%. Parannuksia voidaan huomata tarkastelemalla F1-tuloksia ja käytettyä aikaa inferenssissä. mutta 

osa malleista, kuten DistillBERT, eivät tuottaneet parannuksia tarkkuudessa eikä ajassa lähtökohtaan 

kuten kirjallisuuskatsauksen perusteella oli odotettavissa. 

 

 

 



 

 

ABSTRACT 

Author: Marko Buuri  

Title: BERT model optimization methods for inference – a comparative study of five alternative 

BERT-model implementations 

Vuosi: 2022                                                                      Paikka: Espoo 

Master’s thesis. LUT University, Industrial Engineering and Management, Business Analytics 

65 pages, 5 tables, 5 figures 

Supervisors(s): Pasi Luukka, Jyrki Savolainen 

Keywords:  BERT, distillation, quantization, inference 

Previous years have seen the rise of Transfer Learning approaches in Natural Language Processing 

(NLP) with large-scale pre-trained language models becoming a basic tool in many NLP tasks. Even 

though larger models generally lead to significant improvements, they often have several million 

parameters which can raise concerns. 

 

BERT models are natural language processing models base on Transformer-architecture, which have 

been proven effective. The aim of this master thesis is to introduce different BERT base named entity 

recognition model inference optimization methods, which can be implemented to reduce the model’s 

size and improve its throughput without compromising its accuracy. In literature review best possible 

methods from previous studies are find out, which have been used to increase models’ computational 

efficiency and not reducing their accuracies.  

 

In implementation five different BERT models were tested with CoNLL-2003 data and results show 

that part of these models were able to have better performance. Models we compared with each other 

especially concentrating on their F1-scores and total time used in inference. As a base model BERT-

base was used. Results partly showed that the models’ performance and accuracies for Distill RoBERTa 

achieved to perform better with F1-score of 96.74 % compared to the BERT-base with F1-score of 

95.98 % and used half of time compared to the initial BERT-base model. Improvements can be seen by 

evaluating F1-scores and time used inference, but some of the models did not perform better like 

DistillBERT, compared to the base model as expected based on the literature. 

 

 

 

 



 

 

ABBREVIATIONS  

 

ABWR    Absolute Binary weight regularization 

ACE    Automatic Content Extraction 

ANN    Artificial Neural Network 

BERT   Bidirectional Encoder of Representations from Transformers 

CPU    Central processing unit 

DNN   Deep neural networks 

EDR    Entity Detection and Recognition Value 

FLOP   Floating-point operations per second 

GLUE    General Language Understanding Evaluation 

GAN   Generative adversarial networks 

GPU    Graphic processing units 

ILF   Inverse Layer-wise Fine Tuning 

MLM    Masked Language Modelling 

NER   Named Entity Recognition 

NLP   Natural language programming 

NSP    Next sentence prediction 

PT   Prioritized Training 

SOP    Sentence order prediction 

SQuAD   The Stanford Question Answering Dataset 

TPU    Tensor processing unit
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1. Introduction 
 

In recent years, transfer learning approaches in natural language processing (NLP) have 

proliferated, with large-scale pre-trained language models becoming a key tool for many NLP tasks. . 

Although larger models generally result in significant improvements, they often have several million 

parameters that can raise various concerns. For example, the computational and storage requirements of 

these models can prevent widespread adoption. (Sanh et al., 2019, p. 1)  Various model compression 

techniques have been developed to speed up model inference and reduce model size while maintaining 

accuracy. The most widely used techniques involve knowledge quantification and distillation. Many 

attempts have been made to distill heavy models into their lighter counterparts.  (Liu et al., 2020, p. 1) 

One idea in the Transformer architecture is to move away from sequential processing, where inputs 

are provided one at a time. Transformers intend to change this design by providing the entire sequence as 

a one-time input to the network, allowing the network to learn an entire sentence at a 

time. This enables parallel processing and enables parallel distribution of insights to other cores 

or graphic processing units (GPUs). The goal of the encoder layer is to convert all input sequences given 

to the model into a representation layer that captures the context in a way that also pays more attention 

to the words that matter most to them in a given context. (Jain, 2022, p. 21, 27)   

 

The aim of this master thesis is to enhance bidirectional encoder representation from transformers named 

entity recognition (NER) model’s inference by applying different optimization methods and comparing the 

effect on accuracy. By enhancement, the goal is to decrease the latency of the model’s inference, decrease 

the model size in memory and increase the throughput on the central processing unit (CPU). (Kim et al., 

2021, p. 1)  NLP investigates the use of computers to process to understand human languages to perform 

useful tasks. It is an interdisciplinary field that combines computational linguistics, computing science, 

cognitive science, and artificial intelligence. (Jain, 2022, p. 2) Despite the most recent results on various 

NLP tasks, pre-trained Transformer models are generally an order of magnitude larger 

than previous models. For example, the large BERT model contains 340 million parameters, and in recent 

years larger transformer models have been introduced to contain even more parameters. Efficient 

implementation of these models has become a major challenge even in data centers due to limited 

resources such as performance, storage, space and computing power. In addition, these modelsrequire real-

time inference. These challenges are more advanced devices where computing and power resources are 

more limited. (Kim et al., 2021, p. 1) Recent studies conducted by Sahn et. al. (2019) has also shown that 

pre-trained language models have redundancy, and therefore, it is crucial and feasible to reduce the 
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computational overhead and model storage while retaining performance. (Sanh et al., 2019, p. 1)  Training 

large models from scratch typically takes four days on 4 to 16 Cloud tensor processing units (TPU)s, and 

even fine-tuning and pre-trained models with task-specific datasets may take several hours to finish one 

epoch. For these reasons, reducing computational costs is crucial for their applications in practice, where 

resources are limited. (Sun et al., 2019, p. 1) 

 

Knowledge distillation aims to transfer the knowledge embedded in a large teacher network where the 

student network is trained to reproduce the behaviors of the teacher network (Jiao et al., 2019, p. 1). 

Quantization is a technique that compresses models into smaller ones by representing a 

parameter and/or enabling low bit precision, reducing memory consumption. floating 

point arithmetic. These methods are used, for example, in integer-only quantization 

approaches. Additionally, it should be noted that approaches using 

floating-point arithmetic are inferior in terms of latency and power efficiency compared to integer-only 

inference. (Kim et al., 2021, p. 1-2) 

 

1.1 Motivation 
 

The aim of this thesis is to produce information related to different BERT models’ relative functionalities 

and compare 5 different BERT-based models named entity recognition models and develop my 

competencies related to natural language processing. From a professional point of view, this study gives 

me knowledge related to improving natural language models. 

 

1.2 Research objectives and limitations 
 

The purpose of this master thesis is to investigate different techniques for enhancing bidirectional encoder 

representation from transformers model’s inference. The subject group of this thesis is people interested to 

know different techniques for improving BERT models inference cost-efficiency and decreasing the latency 

of the model. The research questions are as follows:  

 

1. Which techniques can be used for decreasing BERT models’ production costs inference 

recourses? 

2. Which methods can be used for increasing the inference of the BERT model’s throughput 

by not severely decreasing the accuracy of the model? 
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1.3 Data and Methodology 
 

Methodologies used in this master thesis include investigating different possible techniques through 

previous studies made in this area.  Sources included especially regarding distillation and quantization 

techniques are reached and described. Also, found possible techniques are used in practice to make the 

model more efficient. The data used in this study is called CoNLL-2003. (Tjong et al., 2003, p. 1-2)  

 

1.4 Structure of the Thesis 
 

The first part of the thesis consists of the theoretical background, where the Bidirectional Encoder of 

Representations from Transformers (BERT) is introduced. Next different model efficiency methods 

concentrating on distillations and quantization methods are described. After the theoretical background, 

different methods found for model inference optimization are presented in different academical articles.  

 

In the empirical part data source used in the study is described and methods used for testing different 

models. Results are analyzed and conclusions are derived from the literature review and empirical results. 
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2 Theoretical Background 
 

2.1 BERT - Bidirectional Encoder Representations from Transformers 
 

Bidirectional Encoder Representation from Transformers (BERT) is applied to language modeling. It is a 

model introduced by researchers by Google and it is popular in a variety of NLP tasks like question 

answering. The model consists of two encoders for encoding sequences and it takes two sequences for 

encoding.  One is the normal sequence and the other one is the reverse of it. The model makes it different 

from previous models where sequences are taken in one direction only, from left to right to right to left. 

(Sabharwal and Agrawal, 2021, p. 60) 

 

The encoder consists of input embeddings, tokenization, vectorization, and positional encoding. One way 

to think of a word embedding layer is as a lookup table, which allows for the acquisition of a learned vector 

representation of each word, after which each word of a sentence is tokenized. After tokenization the tokens 

are vectorized, where each word is represented as a vector. Finally, positional encoding is done, which is 

based on the position of a specific word. Some information related to the positions in the input embeddings 

needs to be provided since the transformer encoder does not have recurrence as recurrent neural networks 

do. (Jain, 2022, p. 24-25) 

 

The responsibility of a decoder is to produce text sequences. It is similar to encoders in having the layers 

like multi-headed attention layers, adds and norm layers, and feed-forward layers. In addition, it has a linear 

layer with a SoftMax classifier to emit probabilities of an output. The decoder takes the starting tokenized 

word and then previous outputs if any and combines them with the output of the encoder.  The beginning 

of a decoder is like an encoder to large extent. The input is first placed via an embedding layer and then a 

positional encoding layer. The positional embeddings are sent through to the first multi-head attention layer. 

(Jain, 2022, p. 35)  

 

The first Multi-headed Attention layer uses a lookahead mask to restrict the decoder from looking at tokens 

that are yet to come. The mask is included both before and after the SoftMax calculation. The idea of the 

mask is to calculate the attention score for the current word based on previous words and not for future 

words in the sentence. The second layer of Multi-headed Attention takes the output from the first layer of 

the decoder and combines it with the output of the encoder, which allows the decoder to understand better 

as to which components of the encoder output to attend to the output of this layer are passed via a feed-

forward network. In the last step, the output of the previous layer and feed-forward network is again 
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normalized and passed to a linear layer with a SoftMax component for emitting probabilities. As an 

example, the probability would be the probability of what could be the next word in the sentence. (Jain, 

2022, p. 35) 

 

Pretrained BERT does not require any architectural change and can be used for different tasks by modifying 

the output layer. For grasping the relationship between a token or a word in the text it uses a transformer, 

which consists of an encoder and a decoder. BERT requires only the encoder mechanism. The encoder 

reads the input texts and can read the entire sequence of words at once instead of reading them sequentially 

from right to left, which makes the model bidirectional. The sequences of tokens are embedded into vectors, 

and they are used as input to the transformer. Then the vectors are processed in the neural network. As an 

output neural network gives a sequence of vectors corresponding to the input tokens, and it is dependent on 

the context in which it occurs. To surpass unidirectional constraints, BERT used two strategies: masked 

language modeling and next-sentence prediction. (Sabharwal and Agrawal, 2021, p. 60-61, 65) 

 

Input embedding in BERT is a combination of three types of embedding: position embedding, segment 

embedding, and token embedding. Since order-related information is lost in transformers, 

position embeddings are used to learn the order information. BERT learns a unique position embedding for 

each position in the input stream, allowing BERT to express the position of words in a stream. In 

segment keying, BERT learns keystones unique to the first and second keystone to help the 

model distinguish between them. With segment embedding, BERT can use sentence pairs as input for tasks 

such as answering questions. In token embeddings, token embeddings are learned by using tokens in 

WordPiece token vocabulary. (Sabharwal and Agrawal, 2021, p. 66–67)  

The vocabulary is initialized with individual characters in the language, then the most frequent 

combinations of symbols in the vocabulary are iteratively added to the vocabulary. The vocabulary 

inventory is initialized with all the characters in the text and the most frequent combinations of symbols in 

the vocabulary are added iteratively to the vocabulary. (Graves, 2012, p. 2) The vocabulary contains 

subworlds of words in their corpus. Summing the token, segment, and position embeddings of the input 

representation of a token given make it a comprehensive embedding scheme containing empirical useful 

information for the model. It was observed that WordPiece embeddings are designed to learn context-

independent representations, whereas the hidden layer embeddings are designed to learn context-dependent 

representations. (Sabharwal and Agrawal, 2021, p. 66–67, 86) 
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Sequence transduction, sequence transformation is meant, where the input sequence is transformed into an 

output sequence for example in speech recognition, machine translation, and text-to-speech translation. 

(Graves, 2012, p. 1) One of the most competitive neural sequence transduction models has an encode-

decoder structure. In BERT architecture encoder maps the input sequence of symbol representations to a 

sequence of continuous representations. Next, the sequence of continuous representation is passed to the 

decoder, which generates an output sequence of elements at a time. At each step, the model is 

autoregressive, which means that it uses the previously generated symbols as additional input information 

when generating the next. The transformer is using self-attention and pointwise, fully connected layers for 

the encoder and decoder. In the model, the architecture encoder is composed of 6 identical layers, which 

have two sublayers. (Vaswani et al., 2017, p. 2) 

 

An Artificial Neural Network (ANN) is a biologically inspired computational model, which consists of 

processing elements called neurons, and connections between them with coefficients called weights, bound 

to connections. The feed-forward network is one of the most common neural network architectures in which 

connections between neurons are directed and going only in a global forward direction, avoiding the 

formation of feedback loops. (Shanmuganathan, 2016, p. 48) To perform multiclass classifications with 

reasonable results, the SoftMax activation function is used. The SoftMax function transforms a vector into 

another vector for real values, each between 0 and 1, that sum up to 1. The activation function works like a 

probability since the sum over vector values is 1 and its elements are all less than 1. Given real values zk 

for i = 1, …, k the z = (z1, …, zk) the SoftMax vector is defined as follows. (Michelucci, 2022, p. 68)  

  

                                                      𝑆 (𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑒𝑗𝑘

𝑗=1

     (1) 

 

The encoder is composed of a stack of six identical layers, each layer having two identical sub-layers. The 

first is a multi-head self-attention mechanism and the second is a position-wise fully connected feed-

forward network. (Vaswani et al., 2017, p. 3) In the multi-head attention mechanism, the attention value 

represents the contribution to the classification results, to further optimize the final output of the model. It 

uses multiple parallel queries to extract multiple groups of different subspaces from features to obtain the 

relevant information, and self-attention feedbacks the internal dependence between the data and captures 

the key information of the sequence from different aspects. (Michelucci, 2022, p. 2) 

Residual connection is hired round every of 

the two sublayers, accompanied with the aid of using layer normalization. The decoder is also 

composed of a stack of six same layers. The decoder inserts a third 
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sub-layer similarly to the two sub-layers in every encoder performing 

multi-head interest over the output of the encoder stack. Like the 

encoder, residual connections round every of the sub-layers are hired., 

accompanied with the aid of using layer normalization.  Self-attention sublayer in the decoder stack is 

modified to prevent positions from attending to subsequent positions. This masking ensures that the 

prediction for position i can depend only on the known output at positions less than i. (Vaswani et al., 2017, 

p. 3) 

An attention function can be described as mapping a query and a set of key-value pairs to an output. Here 

the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values. 

The weights assigned to each value are computed by a compatibility function of the query with the 

corresponding key. In Scaled Dot-Product Attention the input consists of queries and keys of dimensions 

dk, and values of dimension dv. The dot products of the query with all keys are computed, divided by dk, 

and the SoftMax function is applied to obtain the weight of the values.  (Vaswani et al., 2017, p. 3) 

 

 

 

 

 

 

 

 

 

 

Figure 1. Multi-Head Attention (Vaswani et al., 2017, p. 4) 
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The attention function on a set of queries is computed simultaneously, packed into a matrix Q.  The keys 

and values are also packed together into matrices K and V, and the matrix of outputs is computed with the 

following equation. (Vaswani et al., 2017, p. 4) 

          𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =
𝑄𝐾𝑇

√𝑑𝑘
𝑉     (2) 

The most used attentions are additive and dot-product attention. Dot-product is identical to the above-

described algorithm, except for the scaling factor. Even though the two are similar in theoretical complexity, 

dot-product attention is much faster and more space-efficient since it can be implemented using highly 

optimized matrix multiplication code. (Vaswani et al., 2017, p. 4) Multi-Head attention is visualized in 

Figure 1. 

It was found beneficial by Vaswani et. al. (2017) to linearly project the queries, keys, and values hidden 

state times with different, learned linear projections to dk, dk and dv dimensions, respectively. On each of 

the projected entities, the attention function is performed in parallel, resulting in the final values. With 

Multi-head attention, it was found that the attention allows the model to jointly attend to information from 

different representation subspaces at different positions. (Vaswani et al., 2017, p. 4-5) 

The Transformer uses multi-headed attention in three different ways. In the encoder-decoder attention 

layer, queries come from the decoder layer above, and storage keys and values come from the encoder 

output. The encoder contains self-service layers where all keys, values and queries come from the same 

place, while the self-service layers in the decoder allow any position in the decoder to serve all positions in 

the decoder up to and including that position. Each 

of the layers contains a fully connected feedback network that is applied to each position separately and 

identically. The learned embeddings are used to convert the input and output tokens to vectors. The decoder 

also outputs the learned transform and the SoftMax function for converting the probabilities of the next 

prediction token. Since neither recursion nor convolution is used, some information about the relative or 

absolute positions of the tokens in the sequence must be included in order to take advantage of the sequence 

order. Positional encodings are added to the input embeddings at the end of the encoder and decoder stacks. 

(Vaswani et al., 2017, p. 5-6) Transformer model architecture is pictured in Figure 2. 
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Figure 2. Transformer model architecture (Vaswani et. al., 2017, p. 3) 
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Two BERT models have been implemented; the BERT base model and the BERT large model. The BERT 

base model is a pretrained BERT model that has 12 layers of transformer block, 768 hidden units in each 

layer, and 110 million parameters. Model can be further classified as BERT base-cased and BERT base-

uncased depending on the text. BERT large model has 24 layers, 1024 hidden units in each layer, and 340 

million parameters. It can be also further classified as BERT large-cased and BERT large-uncased. 

(Sabharwal and Agrawal, 2021, p. 62-63) 

 

2.2 Masked language modeling 
 

Masked language modeling is used to surpass the BERT model’s unidirectional constraint. The purpose is 

to assist the bidirectional transformer by masking randomly tokens from the input test while the next 

sentence prediction task jointly pre-trains text pair representations. The goal is to minimize the combined 

loss function for both tasks during training. (Sabharwal and Agrawal, 2021, p. 61) 

To predict a masked word, words surrounding it are used to predict the masked word. 15% of words are 

masked when sequences are fed into BERT. Three different mask strategies are used. 80% of the masked 

words are replaced with a [MASK] token, 10% are replaced with random words, and 10% of the time the 

words are unchanged. The purpose is to bias the representation of the actual observed words is done because 

if 100% of the masked words were used then the model would not necessarily produce good token 

representations for non-masked words. This improves the model’s performance since too much focus on a 

particular token or position has been prevented. Three steps need to be followed to generate a word 

embedding using BERT: adding a classification layer on top of the encoder output, multiplication of the 

output vectors by the embedding matrix, and the calculation of the probability of each word in the 

vocabulary with SoftMax. Masked values are only considered by the loss function in the prediction, and 

the non-masked words are ignored.  (Sabharwal and Agrawal, 2021, p. 68) 

 

2.3 Next Sentence prediction 
 

Next sentence prediction is applied in order BERT model to understand how different sentences in a text 

corpus are related to each other. For the training, the sentence pairs are taken as input. The goal is to predict 

if the second sentence in the pair is the previous sentence in the original input text. In 50% of inputs second 

sentence is the subsequent sentence as in the original text and in the other 50% of the pairs, the second 

sentence is chosen randomly from the text. The model assumes that the random second sentence is 

disconnected from the first sentence. (Sabharwal and Agrawal, 2021, p. 69) 
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Prior to training, inputs are processed. The process consists of three phases. The first two tokens are inserted into 

a sentence pair. One is at the beginning of a sentence, and one is at the end of a sentence. Both sets are tokenized, 

and the use of delimiters separates them. They are then entered into the model as a single input. In the 

second phase, an embedding is added for each symbolic sentence, indicating whether the sentence is the first 

or the second sentence. In the last phase before training, position embeddings are added to each token, which 

help the model to indicate the token's position in the sequence. (Sabharwal and Agrawal, 2021, p. 70) 

To predict the correct class for sentence pairs three steps are performed. The input sequence is passed 

through the transformer model. Next using a classification layer, the output of the first sentence’s token is 

transformed into a 2x1-shaped vector and finally, the probability is computed with SoftMax. (Sabharwal 

and Agrawal, 2021, p 70-71) 

 

2.4 Benchmarks for BERT models 
 

The performance and accuracy the of BERT model have been evaluated several times over different types 

of datasets for various NLP tasks. This is being done to check if BERT can achieve benchmark values 

already set up for these datasets. These datasets evaluate the working of specific aspects of a model and the 

most common benchmarks are discussed next. (Sabharwal and Agrawal, 2021, p. 83) 

 

2.4.1 GLUE Benchmark 

 

General Language Understanding Evaluation (GLUE) is a collection of datasets that can be used to train, 

test, and analyze NLP models. These different models are compared with each other by the GLUE dataset. 

The GLUE benchmark includes nine different datasets. To evaluate a model, it is first trained over a dataset 

provided by GLUE, and then it is scored for the nine tasks. The final performance score is the average of 

all the nine tasks. (Sabharwal and Agrawal, 2021, p. 83) 

    𝐹𝑖𝑛𝑎𝑙 𝐺𝐿𝑈𝐸 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑇𝑎𝑠𝑘 𝑠𝑐𝑜𝑟𝑒   (3)  

There is no need to change the input layer because the layer accommodates all of the GLUE tasks. However, 

the pretraining classification layer has to be removed. The BERT model scores a state-of-the-art result on 

the GLUE benchmark, with a score of 80.5%. (Sabharwal and Agrawal, 2021, p. 83) 

 



18 

 

 

2.4.2 SQuAD dataset 

 

The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of 

questions asked on a series of Wikipedia articles. The answer to each of the questions is either a text segment 

or a span from the passage. There are two versions of the SQuAD dataset 1.1 and 2.0. SQuAD 1.1 consists 

of 50 000 unanswered questions and SQuAD 2.0 of 100 000 answered questions.  The questions are similar 

in both datasets. The BERT model can achieve an F1-score of 93.2 and 83.1 for SQuAD 1.1 and SQuAD 

2.0 over the test dataset.(Sabharwal and Agrawal, 2021, p. 84) 

 

2.4.3 IMBD Reviews dataset 

 

The IMBD dataset is a film review dataset that was used to classify viewers' opinions of films. The 

dataset consists of 25,000 reviews for testing. In addition to the training and testing data, there is unlabeled 

data, and the dataset was also used to assess BERT in a sentiment ranking task. (Sabharwal and Agrawal, 

2021, p. 84) 

 

2.4.4 RACE Benchmark 

 

RACE is a large reading comprehension dataset from the examination. he RACE dataset is used to evaluate 

models in a reading comprehension task. The data set comes from the English tests of Chinese students. 

Dataset consists of nearly 28 000 passages and 100 000 questions generated by human experts. BERT large 

model achieves a score of 73.8 % on the RACE benchmark dataset. (Sabharwal and Agrawal, 2021, p. 85) 
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2.5 Types of BERT models 
 

Various models have been developed based. Different variants have been developed to cater to different 

types of NLP systems. In this section, four different variants are introduced. The variants covered in this 

section are: 

• ALBERT 

• RoBERT 

• DistillBERT 

• StructBERT 

 

2.5.1 ALBERT 

 

The ALBERT model was developed jointly by Google Research and the Toyota Technologies Institute. It 

is a smaller and smarter "lite" version of BERT that can be used with less processing power compared 

to BERT, but at the expense of some accuracy. Both BERT and ALBERT share a similar core 

architecture. ALBERT has a Transformer encoder and a vocabulary of 30,000 words equal to 

BERT's. However, some architectural improvements have been made. Whereas in BERT the embed size of 

the WordPiece is bound to the size of the hidden layer, in ALBERT the two parameters are not 

bound and the embed parameters are split into two smaller arrays. In ALBERT, the one-hot vectors are 

not projected directly onto the hidden layer, but are instead projected onto a smaller, lower-dimensional 

matrix, which is then projected onto the hidden layers. (Sabharwal and Agrawal, 2021, p. 86) 

Parameter efficiency is improved by sharing all the parameters across all layers. The feed-forward and 

attention parameters are all shared, which helps stabilize network parameters. Also compared to BERT, 

ALBERT does not use Next sentence prediction (NSP). Instead, it uses its developed training method called 

sentence order prediction (SOP). It is used to model inter-sentence coherence loss, whereas BERT combines 

topic prediction with coherence prediction. In benchmarks, ALBERT has outperformed BERT. (Sabharwal 

and Agrawal, 2021, p. 87) 
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2.5.2 RoBERT 

 

Facebook's artificial intelligence team has developed robust optimized BERT (RoBERT), and it is a 

streamlined method for pre-training NLP systems. The method re-implements the neural network 

architecture with additional pre-training improvements. While BERT has about 30,000 subwords, Robert 

has about 50,000 subwords. Compared to BERT, RoBERT uses more training data and more iterations. 

Static masking is applied in BERT, escaping words from the sentence during pre-processing. RoBERT 

applies dynamic masking, generating a masking pattern each time a sentence is entered into the training. 

The training is duplicated ten times and the data is masked differently.  (Sabharwal and Agrawal, 2021, p. 

88) 

This has improved the performance of BERT-based models giving better results than static masking. Also, 

the training objective differs from BERT. In BERT the relationship between the sentences is captured by 

training on NSP. Experiments have shown that models trained without NSP performed better on several 

BERT benchmarks. Training on longer sequences has achieved better results. (Sabharwal and Agrawal, 

2021, p. 90)  

 

2.5.3 DistillBERT 

 

DistillBERT was introduced for the knowledge distillation required to solve the problem of calculating a 

large number of parameters. Some NLP models can reach up to ten billion parameters. While this ensures 

optimal performance, it prevents training and maintaining the model with limited computational resources. 

In knowledge distillation, a larger model acts as a teacher to a smaller one that seeks to 

replicate its findings and underlayer activation, also known as teacher-student learning. To generalize the 

student model, the teacher's performance distribution can be used for all possible goals. (Sabharwal and 

Agrawal, 2021, p. 90) 

Distillation loss considers the combination of the output probabilities of the teacher (t) and the student (s), 

and the teacher probabilities are calculated through temperature SoftMax. Compared to SoftMax, 

temperature SoftMax gives a smoother output distribution, where the size of larger probabilities is 

decreased, and the smaller ones are increased.  (Sabharwal and Agrawal, 2021, p. 91) 

To build a better model, the cosine embedding loss is used as a measure of the distance between the hidden 

representation for the teacher and the student. In DistillBERT, the loss is the same as that used in the BERT 
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model to predict the correct token value for the masked token in the stream. Similar to the BERT model, the 

DistillBERT network architecture is a transformative encoder model as a BERT base. However, with 66 

million parameters, DistillBERT has half the number of layers compared to 

BERT's,110 million parameters, which helps reduce computational complexity when 

the computing environment is limited. On the GLUE benchmark, DistillBERT can achieve 97% of 

the BERT-base score. (Sabharwal and Agrawal, 2021, p. 91-92)  

 

2.5.4 StructBERT 

 

StructBERT integrates language structures into BERT pretraining with two linearization strategies, namely 

word-level order and sentence-level order. By including structural pre-training, StructBERT achieves better 

generalizability and adaptability. In StructBERT, the ability of the MLM task is increased by shuffling a certain 

number of tiles after masking words and predicting the right order. By randomly changing the order of 

sentences, StructBERT can also better understand the relationship between sentences. After pre-training 

StructBERT, the model can be referenced to task-specific data for a variety of downstream tasks, such as the 

summary of documents. (Sabharwal and Agrawal, 2021) 

The BERT base model does not explicitly model sequential order or higher-order word dependency in 

natural language, while StructBERT can implement this by supplementing BERT training targets with 

new structural targets of words. This is done in conjunction with Masked Language Modeling (MLM) and gives 

the model the ability to restructure the sentence to get the correct order of randomly shuffled word tiles. In 

addition, the goal of the original NSP-BERT model is extended by not only predicting 

the set as well as the previous set, which allowed StructBERT to learn the sequential order of the set in a bi-

directional way. (Sabharwal and Agrawal, 2021, p. 93-94) 

 

2.6 Named entity recognition 

 

Named entity recognition is a technique for identifying and classifying named entities in text. The result is the 

identification of different categories of words. These categories can be, for example, people, 

nationalities, religious or political groups, buildings, companies, and countries. Agrawal and Sabharwal 

(2021) states that Named Entity Recognition (NER) plays an important role in search engines 

and conversational systems. Search engines are used to identify documents relevant to a query made by 

a user, giving more importance to documents containing entities used in a search. Entities are used in 
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conversational systems to make a question asked by the user unique when the question relates to general 

problems, but for different entities. (Sabharwal and Agrawal, 2021, p. 482) 

Marrero et. al. (2013) state that NER is widely used for example in semantic annotation, question answering, 

ontology population, and opinion mining. The term was first used at the 6th Message Understanding 

conference in 1996.  NER is one the areas which purports to identify the semantics of interest in 

unstructured text to add a structure, which is one of the goals serving as the basis for other areas to manage 

information. (Marrero et al., 2013, p. 482) 

 

Semantic annotation goes beyond textual annotations about the concept of the documents to the formal 

identification of concepts and their relations. These annotations bring two main benefits enhanced 

information retrieval and improved interoperability. For example, semantic annotation might relate a city 

name to the concept a of City linking the instance to a specific country name of the abstract concept of a 

Country. NER techniques are widely used in question-answering systems as means to facilitate the selection 

of answers. Ontologies play a key role in the semantic web and all the applications it supports depend on 

technology to make information interoperable. One of the cornerstones is the proliferation of ontologies, 

which aims to incorporate instances into existing ontologies. One of the pre-processing techniques for 

opinion mining is the recognition of named entities of interest. From these entities opinions can be identified 

and assessed as positive or negative. (Marrero et al., 2013, p. 483) 

 

Testing five different NER tools by Marrero et. al. (2013) all seem implicit to recognize the categories of 

people, organization, and localization as types of named entities. Less frequently recognized entities were 

food products, natural elements, and names of events like wars. Only one system considered categories 

such as currency, dates, and measurements, while other tools do not recognize them or classify them in a 

category named miscellaneous, unknown, or other different definitions are given for named entities. 

Marrero et. al. (2013) categorizes them in terms of the following four criteria: grammatical category, rigid 

designation, unique identification, and domain of application. (Marrero et al., 2013, p. 486) 

 

NER tasks can be divided into two subtasks: entity detection and entity classification. Entity detection aims 

to detect whether a word string in a given text is an entity and in entity classification tasks the aim is to 

judge a category of the detected entities. (Zong et al., 2021, p. 230) 

 

Early research in NER mostly focused on rule-based methods and was commonly used among regular 

expressions. For example, in English, person names usually start with capital letters followed by titles such 

as Mr., Dr., or Prof. For example, databases have been constructed of location and organization names for 
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NER purposes. Nevertheless, with large databases, rule-based NER methods still face many challenges.  

On the one hand, a phrase might lead to different types of entities. As an example, Washington can be either 

a person’s name or a location name. Also, common words can be a type of entity. For example, Bill could 

be an ordinary word or a name. Challenges might also occur with abbreviations. This means that rule-based 

methods enhanced with entity databases are difficult to handle and cannot obtain high recognition accuracy. 

The rule-based approach faces the problem of system maintenance. It requires constant modification or 

addition of new rules that may conflict with existing ones. (Zong et al., 2021, p. 230-231) 

Supervised NER systems attempt to design machine learning methods that learn automatic prediction 

models on correctly labeled training data. This method is usually regarded in research as a sequence labeling 

problem. In sequence labeling, the first step is to determine the label set and language granularity for 

labeling. For example, BIO is a widely used label set. “B” denotes the beginning of an entity, “I” indicates 

the middle or end of an entity, and “O” denoted the outside of an entity. (Zong et al., 2021, p. 232) 

Supervised NER methods can achieve acceptable performance given large amounts of annotated data. 

In practice, however, the corpus of annotations on named entities is limited. Some areas may not 

be covered, e.g., financial areas. Also, the training sets contain only about 100,000 sets, which leads 

to limitations in NER performance, especially in domain matching. There are also massive 

untagged corpora in different languages and regions. In view of these shortcomings, research resorts to 

semi-supervised NER methods. In semi-supervised methods, unlabeled data can be used in a variety 

of ways. Unlabeled data can be used to extract more features based on the similarity of speech units, or 

they can be used to extract different contextual patterns. The similarity of distributed language units can be 

used to exploit more features in large unlabeled data to discover effective features. For example, the words 

say and tell can be grouped into a group 

provided that the group can be used as a feature word, say appears in the annotated corpus and tell 

in unannotated data, tell and its context can be used to correctly predict the name Identities. (Zong et al., 

2021, p. 239-240) 

Mining the diversity of context patterns is another purpose for using NER. Representative samples with 

high confidence and low redundancy can be selected from the unlabeled data and treated as labeled samples 

to enlarge the supervised training data.  This method cannot effectively improve performance because 

samples with high confidence base on the same context pattern as the training samples. For NER, this results 

in the newly added instances failing to enrich the context features. (Zong et al., 2021, p. 240) 
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2.7 NER model evaluation 
 

NER methods are usually evaluated objectively. First step is to select the test set, which not overlaps with 

the training data.  The test set is selected and manually labeled with entities. These entities include entities 

such as person, location, and organization names according to the specification used for the training data. 

If one method automatically recognizes the named entities in the test data obtaining the system output, the 

performance can be calculated by comparing the output to the reference.  (Zong et al., 2021, p. 241) 

The calculation process includes three variables: count(correct), count(spurious) and count(missing). 

Count(correct) is the number of entities correctly recognized in the system output, that is the overlap 

between system output and the reference. Count(spurious) refers to the number of entities recognized in the 

system output, but not considered as named entities in the reference. Count(Missing) refers to the number 

of named entities that exist in the reference that are not recognized by the system in the output. Based on 

these three variables, the precision, recall and F1 can be calculated. (Zong et al., 2021, 241) 

 

                                                𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)+𝑐𝑜𝑢𝑛𝑡(𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠)
∗ 100%    (4) 

 

                                                      𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)+𝑐𝑜𝑢𝑛𝑡(𝑚𝑖𝑠𝑠𝑖𝑛𝑔)
∗ 100%   (5) 

 

                                                                       𝐹𝐼 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 
∗ 100%    (6) 

 

2.8 BERT model evaluation 
 

In NER, systems are usually evaluated based on how their output compares with the output of human 

linguists 17. NER system can have different error types like system miss hypothesized an entity where there 

is none, entity is completely missed, a wrong label was given to an entity, system noticed there is an entity 

but got its boundaries wrong and a combination of two previous error types. (Sekine & Ranchhod, 2009, p. 

18) 
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2.8.1 MUC score 

 

In MUC a system is evaluated on two axes; its ability to find the correct type (TYPE) and its ability to find 

exact text (TEXT). When an entity is assigned the correct TYPE, a correct TYPE is credited and correct 

TEXT is credited if entity boundaries are correct, regardless of the TYPE. Or type and text three measures 

are kept: the number of correct answers (COR), the number of actual system guesses (ACT) and the number 

of possible entities in the solution (POS). Final MUC score is a micro-averaged f-measure (MAF), which 

is the harmonic mean of precision and recall calculated over all entity slots on both axes. The harmonic 

mean of two numbers is never higher than the geometrical mean. It tends toward the least number, 

minimizing the impact of large outliers and maximizing the impact of small ones. Precision is calculated 

by dividing COR with ACT, COR / ACT, and recall is calculated by dividing COR with POS, COR / POS. 

(Sekine & Ranchhod, 2009, p. 19) 

 

2.8.2 Exact-match evaluation 

 

Models are compared based on the MAF with the precision being the percentage of named entities found 

by the system that are correct and the recall being the percentage of named entities present in the solution 

that are found by the system. If named entity is an exact match with the corresponding entity in the solution, 

it is considered as correct. For some application the constraint of exact match is unnecessarily stringent. 

(Sekine & Ranchhod, 2009, p. 19-20) 

 

2.8.3 Automatic Content Extraction - ACE evaluation 

 

Automatic Content Extraction (ACE) evaluation includes mechanisms for dealing various evaluation issues 

like partial match and wrong type. It is more elaborated compared to previous tasks at level of named entity 

“subtypes”, “class” as well as entity mentions. In ACE evaluation each entity has a parametrized weight 

and contributes up to maximal proportion (MAXVAL) of the final score. For example, if each person is 

worth one point and each organization is worth 0.5 point then it takes two organizations to counterbalance 

one person in final score. In addition, for false alarms, missed entities and type errors customizable costs 

(COST) are used. Partial matches of textual spans are only allowed if named entity head matches on at least 

given proportion of characters, and temporal expressions are not treated in ACE. (Sekine & Ranchhod, 

2009, p. 20) 
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Final score in particular evaluation method is called Entity Detection and Recognition Value (EDR), which 

is 100 % minus the penalties. ACE evaluation scheme cost of error is very customizable, and it covers wide 

range of problems. However, scheme is problematic because the final scores are only comparable when 

parameters are fixed, and complex methods are not intuitive and make error analysis difficult. (Sekine & 

Ranchhod, 2009, p. 21) 

 

2.9 Cost efficiency of implemented models 
 

The power of Transformers has been pushed to new levels with recent success in language models, leading 

to new achievements for example in natural language processing. It also has been observed that with more 

floating-point operations per second (FLOP)s the performance of pretrained Transformer models keeps 

consistently improving. On the other hand, it is extremely expensive to pretrain and finetunes the state-of-

the-art models as they require more compared to traditional models. Due to these challenges, there has been 

a number of efforts to reduce the cost of pretraining and finetuning self-attention models. Typical 

approaches to tackle these issues are distillation, pruning, and quantization, where the aim is to derive a 

lighter model from a well-pre-trained model by learning to remove less important operations and taking the 

advantage of richer signals in the larger model. There are also aims to design an architecture that not only 

has a lower resources-to-performance ratio but also scales as well as the Transformer in certain domains. 

(Dai et al., 2020, p.  1) 

For many sequence-level NLP tasks, the most common use case is to extract a single vector from the entire 

sequence, which does not necessarily preserve all information down to the token-level granularity. For 

example, in a study conducted by Galindez Olascoaga et. al. (2021) authors propose a sequential resolution 

of the hidden representation in self-attention models to reduce sequence length which can lead to saving in 

FLOPs and in memory, which can be re-invested in constructing a deeper model to boost the model capacity 

without additional computational burden. 

Size and computation constraints also limit the amount of available memory and compute power, and these 

capabilities are in stark contrast with the state-of-the-art machine learning implementations, the inference 

stage requiring a vast number of computations per second and gigabytes of storage space. These demanding 

workloads are not attainable at the extreme, where devices are equipped with embedded CPUs that can 

perform at ranges lower than ten Giga operations per second and include very small memory. Consequently, 

the most extreme-edge realization of machine learning is currently located in the realm of deep neural 
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networks (DNN)s, both from an algorithmic and a hardware point of view. One can identify the following 

trends in pursuit of efficient inference on DNNs: 

• A Strategy for modifying and pruning the model topology, with the goal of making the model 

as compact as possible by removing redundant connections and weight and exploiting weight 

and structural scarcity. 

• Parameter quantization, parameter reduction, which improves the saving of computing resources. 

• Specialized Hardware where DNNs lend themselves to parallelization because of their layered 

and uniform structures. For example, the use of graphics processing units (GPUs) has exploited 

parallelization capabilities and other properties. 

• Memory-based strategies where reduction of such transactions aims to exploit the properties of 

memory cells to perform local computations before performing unnecessary transactions. 

(Galindez Olascoaga et al., 2021, p. 10-11) 

The impressive performance of BERT comes with a heavy computing and memory cost, which makes 

on-device inference prohibitive. Most significantly, the BERT base model consumes a staggering 432 

MB of memory in a 32-bit floating-point (FP32). Therefore, with limited resources is challenging and 

requires tight co-design of the BERT model optimizations with dedicated hardware acceleration and 

memory system design. For example, an early exit mechanism has been proposed to reduce the average 

energy and latency. The early existing entropy is probabilistic of the classification confidence, which 

is evaluated at the output of each computed Transform layer, and the inference exits when the entropy 

value falls below a pre-defined threshold. While this approach can appreciably reduce computation and 

energy costs, the achieved latency can vary drastically from one input sentence to another, potentially 

violating the strict real-time latency constraint of the application. (Tambe et al., 2021, p. 831) 
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3 Methods considered in this study 
 

3.1.1 Distillation 

 

Distillation is a process through which a large and accurate model transfers its knowledge to a smaller 

model with less representational power. The process consists of two steps. In the first step, a large teacher 

is trained on gold labels and in the second step a smaller student is trained on the labels produced by the 

teacher, also known as soft labels. The idea in knowledge distillation is that a larger model acts as a teacher 

for a smaller model. The smaller model tries to replicate the teacher’s outputs and sublayer activation for a 

given set of inputs, which is also known as teacher-student learning.  Applying the distribution information 

from the teacher’s model helps in the creation of student models for a different purpose. Since soft labels 

carry additional information distillation outperforms standard training. (Sabharwal and Agrawal, 2021, p. 

90-91) 

 

Due to the drawbacks of a large number of parameters compression techniques like knowledge distillation 

were introduced in DistillBERT model. Recently developed NLP models show an increase in parameter 

count, which prevents model training and serving due to limited computational resources. (Sabharwal and 

Agrawal, 2021, p. 90-91) 

 

Go et. al. (2021) discusses three different categories of knowledge distillation: response-based knowledge, 

feature base knowledge, and relation base knowledge.  In response knowledge, the idea is to mimic the 

prediction of the teacher model by referring to the neural response of the last output layer of the teacher 

model. Soft targets are known as the most popular response-based knowledge for image classification.  As 

a defect, this distillation category fails to address the intermediate-level supervision from the teacher model. 

(Gou et al., 2021, p. 4-5) 

A good extension of response-based knowledge and feature-based knowledge from the intermediate layers. 

So-called feature maps, the output of the last layer, and the output of the intermediate layers can be used as 

knowledge to supervise the training of the student model. The main idea is to directly match the feature 

activations of the teacher model and the student. (Gou et al., 2021, p. 5) 

In relation-based knowledge distillation, different layers of data samples are further explored. For example, 

a flow of solution process is proposed, which is defined by a Gram matrix between two layers.  The matrix 

summarizes the relations between pairs of feature maps, which are calculated using the inner products 

between features from two layers. Via singular value decompositions using the correlations between feature 
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maps as the distilled knowledge was proposed to extract information in the feature maps. (Gou et al., 2021, 

p .6)  

Distillation schemes, so-called training schemes can be divided into three main categories: offline 

distillation, online distillation, and self-distillation. In offline distillation the training process consists of 

two stages: the teacher model is trained on a set of training samples and in the form of logits the intermediate 

features teacher model is used to extract the knowledge. The scheme usually employs one-way knowledge 

transfer and two-phase training procedures. (Gou et al., 2021, p. 8) 

To improve the performance of the student model online distillation is proposed, when a large-capacity 

high-performance teacher model is not available. In online distillation, the teacher model and the student 

model are updated simultaneously. To reduce computational cost multi-branch architecture was proposed, 

in which each branch indicates a student model and different branches share the same backbone network. 

In a distillation method co-distillation, multiple models with the same architectures are trained in parallel 

and any other model is trained by transferring the knowledge from one to another.  An online scheme is a 

one-phase end-to-end training scheme with efficient parallel computing. However, usually existing online 

methods fail to address the high-capacity teacher online setting making it more interesting to explore.  (Gou 

et al., 2021, p. 8-9) 

Self-distillation is a special case of online distillation that uses the same networks for the teacher and student 

models. A new method of self-distillation has been proposed, in which knowledge is distilled from the deeper 

sections of the lattice into its shallow sections. A special variant of auto-distillation is snapshot distillation, 

in which findings from earlier epochs (teacher) are transferred to later epochs in another network (student). This 

is done to support's supervised training process within the same network. To further reduce the inference 

time using distillation-based early output training, it has been proposed that the early output layer attempts to 

mimic the output of the later output layer during training. (Gou et al., 2021, p. 9) 

In short online distillation means the teacher teaches the student, in online distillation both teacher and the 

student study together with each other, and in self-distillation student learns knowledge by himself. 

Different distillation schemes can be combined to complement each other. As an example, both self-

distillation and online distillation are integrated via the so-called multiple knowledge transfer framework. 

(Gou et al., 2021, p. 9) 

Next different distillation algorithms are presented. Algorithms, which are discussed are adversarial, cross-

modal, graph-based, attention-based, data-free, quantized, lifelong, and NAS-based distillations. 

Many competing methods of knowledge distillation have been proposed to provide teacher and student 

networks with a better understanding of data distribution. In generative antagonistic networks (GANs), 
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the discriminator estimates the probability that a sample comes from the training data distribution, while the 

generator tries to fool the discriminator with generated data samples. Methods using GAN can be divided into 

three main categories. In the first category, the synthetic data is generated 

with an adversarial generator used as a training data set or to augment the training data set. In the second 

category, a discriminator is introduced to distinguish the student and teacher model samples through the use of 

logits or features. In the last category, the distillation of contradictory knowledge is performed online, with 

the student and the teacher optimizing together in each iteration. (Gou et al., 2021, p. 11) 

The use of logit averaging, and functional representation has been shown to be effective in training students 

across multiple teacher networks. Two networks of teachers can be used to use logit and 

intermediate functions, in which one teacher transmits response-based knowledge to the student and the other 

teacher transmits function-based knowledge to the student. Various methods have been proposed to simulate 

multiple teachers by adding types of sounds to a specific teacher to realize knowledge transfer and explore the 

power of teachers by using multiple teachers, the distillation of knowledge from multiple 

teachers can be rich Deliver knowledge and adapt a versatile learning model more efficiently. (Gou et al., 2021, 

p. 12) 

The reason that data or labels are not available in some modalities it is, important to transfer knowledge 

between different modalities using cross-modal distillation algorithms. The methods can rely on unlabeled 

paired samples involving different modalities, for example, RGB images and depth images. Knowledge 

distillation performs well in visual recognition tasks in cross-modal scenarios. (Gou et al., 2021, p. 13) 

Graph-based distillation algorithms examine relationships between data, while most knowledge distillation 

algorithms focus on transferring knowledge from individual instances from teacher to student. There are two 

main ideas behind these methods; Using the chart as a carrier of the teacher's knowledge or using the chart to 

control the delivery of the teacher's knowledge message. In a study, a distillation diagram is introduced 

to examine the relationships between different modalities. The vertices 

represent a modality and the edges indicate the strength of the connection between one modality and 

another. This kind of algorithms can transfer the knowledge about the informative structure of the data. (Gou et 

al., 2021, p. 14) 

In data-free distillation algorithms as the name implies no training data exists and the data is newly or 

synthetically generated. In some studies, the transferred data is generated by a GAN. In one of the proposed 

methods, the transferred data is reconstructed by using the layer activations or layer spectral activations of 

the teacher network. In one of the studies zero-shot, knowledge distillation was proposed that does not use 

existing data. Using the parameters of the teacher model the transferred data is produced modeling the 

SoftMax space.  Data-free distillation has shown potential under the condition of unavailable data when the 
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data can be generated from the feature representations from the pre-trained teacher model. (Gou et al., 2021, 

p. 15) 

In some knowledge distillation methods, quantification processes in the teacher-student framework have been 

proposed. For example, a quantified distillation method, in which knowledge is transferred to a quantified 

network of higher-weight students, has been proposed. In a study, knowledge is transferred from a high-

precision network of teachers to a small, low-precision network. The master in the feature maps is first 

quantized and knowledge is transferred from the quantized master to a quantized student network. In recent 

studies, a self-distillation training scheme was developed to improve the performance of 

quantized depth models. In these models, the teacher shares the parameters of the student model. (Gou et al., 

2021, p. 15) 

The distillation method of lifelong learning includes three different learning methods: continual learning, 

continuous learning, and meta-learning. The aim is to accumulate previously learned knowledge and 

transfer the knowledge to future learning. 15 For example meta-transfer networks have been proposed that 

can determine what and where to transfer in the teacher-student architecture. Different lifelong methods 

have been developed to extract the learned knowledge and teach a student network new tasks to address the 

problem of forgetting in lifelong learning. (Gou et al., 2021, p. 16) 

In neural architecture search, the idea is to identify deep neural models and adaptively learn appropriate 

deep neural structures. Here in distillation knowledge transfer depends not only on the teacher but also on 

the architecture of the student model. Issues related to student learning from the teacher might make it 

difficult due to the capacity gap between the teacher and a student model. (Gou et al., 2021, p. 16) 

Models like BERT are very time and resource consuming with complex structures, so knowledge distillation in 

natural language processing is widely studied, and many different methods have been proposed to solve 

resource consumption in NLP tasks. Examples of these tasks include neural machine translation, text generation, 

question-answer systems, event detection, document retrieval, and text recognition. A so-called patient 

knowledge distillation was proposed for the compression of the BERT 

model, in which the feature representation of the token [CLS] of the track layers is transferred from the teacher 

to the student. To speed things up, a speech inference model called TinyBERT was introduced. It is a two-step 

transformative knowledge distillation that includes both cross-domain and task-specific knowledge distillation. 

(Gou et al., 2021, p. 20) 
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3.1.2 Quantization 

 

Quantization involves improving the efficiency of deep learning computations through smaller 

representations of model weights. By applying different quantization methods, the aim is to reduce the 

number of bits to represent a single scalar parameter. The definition of quantization is the division of a 

quantity into a discrete number of small parts. Often the parts are assumed to be integral multiples of a 

common quantity. The oldest example of quantization is rounding off.  Generally, a can be defined a 

quantizer as consisting of a set of intervals or cells, where the index set is ordinarily a collection of 

consecutive integers beginning with 0 or 1, together with a set of reproduction values or points or levels. 

(Gray and Neuhoff, 1998, p.1) 

 

In a uniform quantizer, the levels are evenly distributed, and the thresholds are midway between adjacent 

levels. In an infinite number of levels, all cells have a width equal to the delta, the distance between levels. 

If only a finite number of levels are allowed, then all but 2 cells are delta-wide and the outermost cells are 

half-infinity. Given a cell width delta uniform quantizer, the region of the input space within delta/2 of a 

certain quantizer level is called the granular or support region. The outer range where the quantization error 

is unbounded is called the overload or saturation range. In general, the supporting or granular region of a 

non-uniform quantizer is the region of the input space within a relatively small distance of a given 

level. The overload region is the complement of the granular region. (Gray and Neuhoff, 1998, p. 1) 

 

By measuring the rendering that results from a quantizer on the original, the quality of a quantizer can be 

measured. One way is to define a bias measure that quantifies the cost or bias that results from reproducing 

x and x and consider the average bias as a measure of a system's quality. Here, a smaller average distortion 

means higher quality. One of the most distorting errors is the squared error. In practice, the average is a 

sample average when the 

quantifier is applied to a sequence of real data. The theory assumes that the data share a probability density 

function that corresponds to a generic random variable and the mean bias becomes an expectation. (Gray 

and Neuhoff, 1998, p. 1) 

 

It is desirable to have the average distortion as small as possible. Negligible average distortion is achievable 

by letting the cells become numerous and tiny. For describing the quantizer output to a decoder there is a 

cost in terms of the number of bits. The goal of quantization is to encode the data from a source, 

characterized by its probability density function, into as few bits as possible. This is done in a way that 
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reproduction may be recovered from the bits with as high quality as possible. Quantization has a trade-off 

between the two-performance measure: average distortion and rate. (Gray and Neuhoff, 1998, p. 2) 

 

Most generally speaking, quantization complexity has two aspects: arithmetic and memory 

complexity. Arithmetic complexity represents the number of arithmetic operations per sample that must be 

performed when encoding or decoding. Memory complexity represents the complexity of the amount of 

auxiliary memory required for encoding or decoding. Keeping them on separate 

paths is being considered as the associated costs vary by location and in some locations, storage is 

so inexpensive that one is tempted to ignore it. Some techniques benefit from more memory, although 

the cost per unit is low. Memory usage should be increased until the ratio of the marginal gain to the cost 

of additional increases is small. At this point, the total cost of memory can be significant. These complexity 

measures require a number of qualifications. A decision must be made whether to count the encoding and 

decoding complexities separately, add them up, or just one of them is important. (Gray and Neuhoff, 1998, 

p. 2361) 

When evaluating the complexity of a quantization technique, it is interesting to compare the complexity 

invested in the lossy encoder/decoder versus that of the lossless encoder/decoder. A quantizer is considered 

low complexity if both coders are low complexity. Some fixed-rate techniques, such as lattice quantization 

and scalar vector quantization, have so-called indexing problems. In an indexing problem, it's easy to find 

the cell that the source vector is in, but the cells map to a set of N indices, which are not simply the integers 

from 1 to N, where N is the number of cells. The non-trivial part is converting the cell identity to a sequence 

of log N bits. Some vector quantization techniques that are not prohibitively complex to implement but 

have many codevectors that are overly complex in design or require an excessive amount of training data. 

Another problem is that in some applications it is desirable that the encoder's output be progressively 

decodable in the sense that the first bits it receives can be roughly reproduced. Also, 

improved reproductions are made as more bits are received. These quantizers a 

are referred to as progressive or embedded. In some applications it is desirable that the encoding is also 

progressive. As it turns out, several vector quantization approaches address these last two problems with 

reduced complexity, meaning they're easy to design and advanced. (Gray and Neuhoff, 1998, p. 2362) 

Lattice quantization can be viewed as a vector generalization of uniform scalar quantization that contains 

the playback codebook as a subset of a regular lattice. The network is the set of all vectors. The result is 

a Voronoi partition where all cells have the same shape, size, and orientation. The quantization technique 

was proposed by Gersho because of its near optimum for high-resolution, variable-rate quantization 

of evenly distributed sources. Although 
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low complexity algorithms were found for the lossy encoder, issues impact the performance and 

complexity of the lattice quantizers. For variable rate coding, the network must be scaled to get the 

desired rate and distortion. Also, an algorithm must be implemented to map integers to variable-length 

binary keywords. For rate R fixed rate coding, the network must be scaled and a subset of 

2kR network points must be identified as the code vectors. This includes a support region. 

The grid quantizer is usually chosen to have the same support when the source has finite support. If 

not, then the scaling factor and grid subset are usually chosen such that the resulting quantizer 

support range has a high probability. In both cases, for the assignment of binary sequences to the 

chosen code vectors i.e., for indexing, a low-complexity technique is required. (Gray and Neuhoff, 1998, 

p. 2363) 

A product quantizer uses a reproduction codebook that is the Cartesian product of lower dimensional 

reproduction codebooks. For example, the application of a scalar quantizer to k successive samples can be 

viewed as a product quantizer operating on the k-dimensional vector. It makes searching easier and, unlike 

the special case of a sequence of scalar quantizers, the search needs to be comprised-independent searches.  

Products of vector quantizers are also possible. Typically, the product quantizer is applied to some functions 

or features extracted from the vector. (Gray and Neuhoff, 1998, p. 2364) 

An example of a product quantizer is a shape-gain vector quantizer that uses a product reproduction 

codebook consisting of a positive scalar gain codebook and a positive scalar codebook in the form of k-

dimensional vectors of a uniform norm. One of the advantages of these systems is that by separating these 

two features, scalar quantization can be used for the gain feature and a lower rate codebook for the shape 

feature. This special feature can have a larger dimension with the same search complexity. Problems occur 

in an example of the rate allocation problem; What is the best way to split the bits between two codebooks 

in an overall rate limit? In a shape-gain vector quantizer, the optimal lossy encoder 

will generally not see only one coordinate at a time. Low complexity can be achieved by separate and 

independent quantization of the components, but usually a suboptimal 

encoder. With this particular quantizer, the optimal lossy coder is a simple sequential operation. The gain 

quantizer is scalar, but the choice of one of its quantization levels depends on the result of another 

quantizer, the shape quantizer. The Fischer pyramid vector quantizer is also a type of shape 

gain quantizer.  Here the codevectors of the shape codebook are constrained to lie on the surface of a 

pyramid of dimension k, that is, the set of all vectors whose components have magnitudes that sum to one.  

(Gray and Neuhoff, 1998, p. 2364) 
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Usually called polar quantizers are two-dimensional shape-gain product quantizers. In the basic scheme, 

the codebook consists of the Cartesian product of a nonuniform scalar codebook for the phase, and a two-

dimensional source vector is represented in polar coordinates.  The first versions used independent 

quantization of the magnitude and phase information. In later versions, better versions used a method 

described above, and some allowed the phase quantizers to have a resolution that depends on the outcome 

of the magnitude quantizer. With high-resolution analysis, the rate-distortion performance of these 

quantizers can be studied.  These analyses allow for finding the optimal point density for the magnitude 

quantizer and the optimal bit allocation between magnitude and phase. (Gray and Neuhoff, 1998, p. 2365) 

 

Scalar-Vector Quantization attempts to match the performance of an optimal entropy-constrained scalar 

quantizer with a low-complexity fixed-rate structure vector quantizer. A technique called block-constrained 

quantizer is easier to describe. In block-constrained quantizer, the reproduction codebook is a subset of the 

k-fold product of some scalar codebook.  The scalar levels are associated with the variable-length binary 

codewords. Given some target rate R, the k-dimensional codebook contains only those sequences of k 

quantization levels for which the sum of the lengths of the binary codewords associated with the levels is 

at most kR. Using dynamic programming the minimum distortion codevector can be found. Using a 

knapsack packing or Lagrangian approach an essentially optimal search can be performed with low 

complexity.  (Gray and Neuhoff, 1998, p. 2366) 

 

In tree-structured quantization, a k-dimensional tree-structured vector quantizer is a fixed-rate quantizer 

with rate R. Its encoding is guided by the balanced binary tree of depth kR. With each of its 2kR terminal 

nodes, also called leaves, there is a codevector associated. K-dimensional test vector associated with each 

of its 2kR -1 internal nodes. Quantization of the source vector proceeds in a tree-structured search by finding 

which of the two nodes stemming from the root node has the closer test vector to the source vector. Then 

find which of the two nodes stemming from this node has the closer testvector until a terminal node and 

codevector are found. The binary encoding of this codevector consists of the sequence of kR binary 

decisions that leads to it. Using a table lookup decoding is done as in unstructured vector quantization. 

Using this method encoding requires storing the tree of testvectors and codevectors, demanding 

approximately twice the storage of an unstructured codebook. However, encoding requires only 2kR 

distortion calculations, which is a tremendous decrease over the 2kR required by a full search of an 

unstructured codebook.  (Gray and Neuhoff, 1998, p. 2366) 

 

Arithmetic complexity can be roughly halved to kR operations per sample and 2kR vectors in the case 

of quadratic error distortion. This can be achieved by storing the normal to the hyperplane at each interior 
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node, bisecting the test vectors at the two nodes derived from them, and determining on which side of the 

hyperplane x lies by taking an inner product of x with the normal to a threshold is compared, which is also 

stored. The greedy method of designing vector quantization of tree structures is to first design 

the test vectors derived from the root node. This can be done by applying Lloyd's algorithm to a training 

set. A tree-structured quantifier is analogous to a classification or regression tree. As such, unbalanced, 

tree-structured quantizers can be developed using the grow-and-prune gardening metaphor, and the best 

known is the CART algorithm. With CART, a balanced or imbalanced tree with more 

leaves than necessary is first cultivated and then pruned. By splitting all the nodes at each level of the tree 

or splitting one node at a time or greedily to maximize the reduction in distortion by increasing the rate, a 

balanced tree can be grown. The tree can then be pruned by removing all descendants of all 

internal nodes, making it a leaf. The method increases average distortion but decreases speed. In 

addition, it is likely that in cases of moderate to severe distortion, pruning will remove the leaves 

corresponding to the elongated cells, like cubes cut in half, leaving mainly cubic cells. (Gray and Neuhoff, 

1998, p. 2367) 

As a form of tree-structured quantization with reduced arithmetic complexity and storage, multistage vector 

quantization was introduced.  A single codebook could be used for all branches of a common length instead 

of having a separate reproduction codebook for each branch in the tree. This is achieved by coding the 

residual error accumulated to that point instead of coding the input vector directly. In other words, by the 

following stage, the quantization error from the previous stage is quantized in the usual way. Reproduction 

is formed by summing the previous reproduction and the newly quantized residual. A multistage vector 

quantization contains all codevectors formed by summing codevectors from the reproduction codebooks 

used at each stage. In a sense, the multistage quantizer has a direct sum reproduction codebook and it can 

be viewed that the reproduction codebook is determined by the Cartesian product of the stage codebooks. 

Multistage structuring leads to a suboptimal vector quantizer for its given dimension. Usually, the direct 

sum for the codebook is not optimal. The greedy search algorithm, in which the residual from one stage is 

quantized by the next does not find the closest codevector in the direct sum codebook.  In general, the usual 

greedy design method, which uses a Lloyd algorithm to design the first stage in the usual way and then to 

design the second stage to minimize distortion when operating on the errors of the first does not design an 

optimal multistage vector quantizer.  (Gray and Neuhoff, 1998, 2367) 

 

Implementing multistage-conditioned vector quantization calls for the storing of a scale issue and 

a rotation for every first degree. The multistage operates at the first-degree residual 

earlier than quantization via way of means of the second one degree. Since the first-degree cells are 

almost spherical, the rotation profits most effective a small quantity and can be omitted. 
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Complexity may be decreased via way of means of the usage of a lattice vector quantizer as the second one 

degree because the best-recognized lattice tessellations are so near the best-recognized 

tessellations. As a way of circumventing the reality that optimum vector 

quantizers cannot be applied with commanders, multistage-conditioned two-degree 

quantizers may be considered as having a piecewise-regular factor density. (Gray and Neuhoff, 1998, p. 

2368) 

 

Implementing cell-conditioned vector quantization requires the storing of a scale factor and a rotation for 

each first stage. The cell operates on the first-stage residual before quantization by the second stage. Since 

the first-stage cells are so nearly spherical, the rotation gains only a small amount and may be omitted. 

Complexity can be reduced by using a lattice vector quantizer as the second stage since the best-known 

lattice tessellations are so close to the best-known tessellations. As a means of circumventing the fact that 

optimal vector quantizers cannot be implemented with commanders, cell-conditioned two-stage quantizers 

can be viewed as having a piecewise-constant point density. (Gray and Neuhoff, 1998, p. 2368) 

 

Codebook sharing is another scheme to adapt each phase to the previous one. Here each stage has a finite 

set of reproduction codebooks, one of which is used to quantize the rest based on the sequence 

of results from the previous stage, and each codebook is shared by a subset of the possible sequences of the 

previous stages. The method lies between the conventional multi-level vector quantizer and the tree-

structured vector quantizer. First, each stage has a 

codebook shared by all result sequences from previous stages, and in the second, a different codebook 

is actually used for each result sequence from previous stages. (Gray and Neuhoff, 1998, p. 2368) 

 

Feedback vector quantization allows the encoder and decoder to share a finite set of states and 

a custom quantizer for each state. The state must be determinable from knowledge of an initial state in 

combination with the binary code words transmitted to the decoder. Here both the encoder and the decoder 

must be able to track the state without channel errors. The result is a finite state version of a 

predictive quantifier. It is also known as an affine vector quantizer. In this particular 

quantization technique, given the binary keyword and state, the optimal playback decoder gives us a 

conditional expectation of the input vector. The optimal lossy encoder is not easy to describe. The next 

stage should be chosen in a way that ensures good future performance, rather than in a greedy way that 

minimizes the current squared error. Both final state and predictive vector quantizers generally use memory 

in the lossy encoder but use a memoryless lossless code that is applied independently to each 
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subsequent binary codeword. One can make dependent on previous binary code word or make lossless 

code state dependent. (Gray and Neuhoff, 1998, p. 2369) 

 

One way to introduce memory into the lossy encoder of a vector quantizer to attain higher dimensional 

performance with low dimensional complexity is called address-vector quantization. In this method, in 

addition to the usual reproduction codebook, there is an address codebook containing permissible sequences 

of indices of code vectors in the codebook. In a contained channel code outer code has the same role as the 

address codebook, which limits the allowable sequences of codewords from the inner code. The method 

allows address-vector quantization to exploit the property that certain sequences of codevectors are much 

more probable than others. (Gray and Neuhoff, 1998, p. 2369) 

 

In tree/trellis encoded quantization, unlike vector quantizers on tree structures, these systems enforced the 

tree structure on the sequence of symbols and not on a single vector of symbols. In the case 

of channel coding, where a good channel code can be converted into a good source code by reversing 

the order of encoder and decoder, the encoder is a convolutional code, the input symbols are shifted into 

a shift register as output symbols. formed by a linear combination of the shift register contents, shifted 

times. The sequence of output symbols could be represented by a tree structure. In the tree structure, 

each tree node corresponding to the state of the shift register and the branches connecting the nodes has 

been determined by the symbol last entered the shift register and identified by the corresponding 

output, the resulting output symbol if it is a branch taken out. Tree and trellis encoded quantizers can be 

viewed as vector quantizers with large block lengths and a reproduction codebook constrained to 

be small the possible outputs of a nonlinear filter or an affine state quantizer or a plus-

dimensional vector quantizer. Both generate long codewords with a lattice structure. (Gray and Neuhoff, 

1998, p. 2369)  

Traditional trellis-encoded systems can be improved with trellis-coded quantization by labelling the trellis 

branches with entire sub codebooks rather than with individual reproduction levels. The gain is a reduction 

in encoder complexity for a given level of performance.  Combinations of trellis-coding quantization have 

achieved excellent performance for example in image coding applications.  (Gray and Neuhoff, 1998, p. 

2370) 

 

Gaussian quantization showed that a Gaussian source has the worst velocity warp function of any source 

with the same variance, indicating that the Gaussian source was extreme in terms of source encoding. This 

has provided a robust approach to quantization in the sense that there are vector quantizers designed for the 
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Gaussian source with a given process domain distortion that will not yield worse distortion when applied to 

any source with the same variance. The method has provided a approach to robust vector quantization. 

Robust vector quantization is code that may not be optimal for the font and would perform no worse than 

the Gaussian source it was designed for. The external properties of the Speedwarp function to a source 

with memory. In another study, it was shown that code developed for a Gaussian 

source would perform essentially the same if applied to another process with the same covariance 

structure. One approach uses the central limit theorem and then the known structure of an optimal 

scalar quantifier for a Gaussian random variable to encode a general process. The Gaussian variable is first 

filtered to produce an approximate Gaussian density, the scalar result is quantized, and then back 

filtered to retrieve the original. (Gray and Neuhoff, 1998, p. 2370) 

In the min-max average sense, the Gaussian quantizers were described as being robust. A vector quantizer 

designed for a Gaussian source will yield no worse average distortion for any source in the class of all 

sources with the same second-order properties. An alternative formulation is to place a maximum distortion 

requirement the on quantizer design. If a quantizer bounds the maximum distortion for a class of sources a 

quantizer is considered robust. (Gray and Neuhoff, 1998, p. 2370) 

A quantizer is no worse than a fixed distortion value for all fonts in some collections. An alternative 

approach is to be greedy and try to design code that delivers near-optimal 

performance. This occurs regardless of what source is encoded within any collection, which is the idea of 

the universal quantization approach. The idea is to have a lossless encoder that works well 

for different sources by running multiple lossless codes in parallel and choosing the 

that produces the fewest bits over a period of time. The lossless encoder would work for different sources. 

It does this by running multiple lossless codes in parallel and choosing the one that produces the fewest bits 

over a given period of time, sending a small overhead to let the decoder know what code the 

encoder used. The existence of a universal fixed-rate lossy code has been proved under certain 

assumptions about the source statistics and the source and codebook alphabet, and the idea has been 

used, for example, to extend a coding theorem to a non-stationary source. The idea was 

used using the ergodic decomposition to interpret a non-ergodic source as a universal coding problem for a 

family of ergodic codes. A universal code is theoretically more complicated than an ordinary 

code. Instead, in practice it may mean that codes with smaller dimensions can be more efficient, 

as separate codebooks can be used for different behavior in the short term. Previously, universal 

quantization was considered more of a theory development method than a practical code design 

algorithm. Works assumed that the encoder and decoder had copies of the codebook used. A system has 

been considered where the codebooks are designed in the encoder. The codebooks were also encoded and 
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transmitted to the decoder, as is usually done with codebook supplementation. (Gray and Neuhoff, 1998, p. 

2370–2371) 

Performance tradeoffs can be improved by allowing both rate and distortion to vary. The universal coding 

problem was formulated as an entropy-constrained vector quantization problem for a family of sources and 

Lloyd-style design algorithms for the collection of codebooks subject to Lagrangian distortion measure. 

Measure yields a fixed rate-distortion slope optimization rather than fixed distortion or fixed rate. To study 

the rate of convergence with block length to the optimal performance high resolution quantization theory 

was used. It yielded results consistent with earlier convergence results developed by other means. The fixed-

slope universal quantizer approach was further developed with other code structures and design algorithms. 

Another approach resembling traditional adaptive and codebook replenishment- did not involve training 

but created and removed code vectors according to the data received and an auxiliary random process in a 

way that could be tracked by a decoder without side information. (Gray and Neuhoff, 1998, p. 2371) 

Interpolated quantization randomizes the effect of uniform quantization to minimize visual artifacts. The 

goal of dithering is to make the reconstruction error more like signal-independent additive white 

noise. Dithering, rather than directly quantizing an input signal, quantizes a signal that consists of a random 

process and a separate signal called the dithering process. Subtractive dithering achieves well behaved 

quantization noise as well as quantization error. However, is impractical for two main reasons. First, the 

receiver generally does not have a perfect analog connection to the transmitter, and therefore a pseudo-

random deterministic sequence must be used in both the transmitter and the receiver. However, there is no 

guarantee that the quantization error and noise will have the properties that apply to true random 

dithering. Second, subtractive interpolation, which looks like a sampling function of a random process with 

no memory, is complicated to implement. Requires state RAM dither, high precision 

arithmetic, and perfect timing. (Gray and Neuhoff, 1998, p. 2371–2372) 

Non-subtractive dither is not capable of making the reconstruction error independent of the input signal, 

but the proper choice of dithering function can make the conditional moments of the reproduction error 

independent of the input signal. As an example, the dithering function can make the perceived quantization 

noise energy constant as an input signal fades from high intensity to low intensity. Otherwise, it can exhibit 

strongly signal-independent behavior. In addition, in whitening quantization noise and making the noise or 

its moments independent of the input, dithering has a role in the proof of universal quantization. It has been 

shown that even without high-resolution theory, uniform scalar quantization combined with dithering and 

vector lossless coding could yield performance within 0.75 bit/symbol of the rate-distortion function. Also, 

extensions to lattice quantization and variations of this result have been developed. (Gray and Neuhoff, 

1998, p. 2372) 
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Near optimal communication of an information source over a noisy channel can 

be achieved by quantization or coding of the source separately from source and channel coding or error 

control coding of the resulting scrambled source for reliable transmission of a noisy channel. 

This was stated in the separation theorem of information theory. Common source and channel codes, 

codes that together account for quantization and reliable communication, must be considered if 

is to be implemented near the Shannon limit for moderate delays or block lengths. There are a variety 

of code structures and design methods that have been considered for designing source and channel code 

together. (Gray and Neuhoff, 1998, p. 2372) 

When designing a quantizer to use noisy channels, one approach is to replace the distortion measure that a 

quantizer is optimized for with the expected distortion over the noisy channel, so 

that the channel's statistics are included an optimal quantizer design formulation. The method was called 

optimized channel quantization. The method was applied to Shannon's source coding theorem and 

the Lloyd-style layout algorithm was also provided. The method has also been applied to the quantization 

of tree-structured vectors.  (Gray and Neuhoff, 1998, p. 2372) 

To join source and channel coding based on a quantizer structure and not explicitly involving typical 

channel-coding techniques, another approach is to design a scalar or vector quantizer for the source without 

regard to the channel. Here the resulting indices are coded in a way that ensures that the small Hamming 

distance of the channel codewords corresponds to a small distortion between the resulting reproduction 

codewords. This is done to correspond to that of the resulting reproduction codewords. The odes usually 

doing this are called index assignments. For example, index assignment has been introduced in an iterative 

search algorithm for designing index assignments for scalar quantizers, which has been extended to vector 

quantization. (Gray and Neuhoff, 1998, p. 2372) 

Determining the quantization rate to use when keeping the total number of channel symbols per source 

symbol fixed is a key issue when considering source and channel codes together. For example, as the 

quantization rate increases, the quantization noise decreases, but the channel induced noise increases 

because the channel code's ability to protect bits is reduced. Also, determining the rate at which overall 

distortion decreases in an optimal system as the total of 

channels used per source symbol increases. In addition, there are other approaches to joint source and 

channel coding, including using codes with a source-optimized channel coder structure or with a 

special source-adapted decoder. Unequal error protection is used to better protect the most 

important reproduction indices, common combinations of channel-optimized quantizers with source-

optimized channel codes. (Gray and Neuhoff, 1998, p. 2372-2373) 
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Quantization for a noisy channel a parallel problem is quantization for a noisy source. Attempting to 

compress a dirty source into a clean rendition or estimating the source based on a quantized version of 

a noise-impaired version can be seen as a problem. This can be treated as a quantization problem with a 

modified distortion measure if the problem can be viewed as trying to compress a dirty source into a clean 

rendition or making a source estimate based on a quantized version of a noisy version. The modified 

distortion measure for a quadratic error distortion was used to prove that the optimal quantizer for 

the modified distortion could be decomposed into the cascade of a least mean squared error estimator 

followed by an optimal quantizer for the estimated source. The result has been extended to a more general 

class of distortion measures, including input-weighted quadratic distortion. A generalized Lloyd 

algorithm for layout is presented here.  (Gray and Neuhoff, 1998, p. 2373) 

In several descriptions, the quantization of noisy channels, where the problem is usually formulated as a 

problem of source coding or quantization over a network, is a closely related topic to the quantization 

of noisy channels. Multi-description quantization is most easily described in terms of packet 

communications. For example, suppose that two packets of information, each at rate R, are transmitted to 

describe a reproduction of a single random vector. The encoder may receive one or all 

of the other packets, or both together, and wants to provide the best possible reconstruction for the received 

bit rate. This can be viewed as a network problem where one receiver sees only one channel, another 

receiver sees the second channel, and a third receiver sees both channels. The goal here is 

that everyone has an optimal reconstruction for the total received bitrate. It can be made better that each 

packet alone results in a distorted display close to the Shannon distortion rate function, while at the same 

time the two packets produce a distorted display. Unfortunately, this positive overall performance is not 

possible (Gray and Neuhoff, 1998, p. 2373) In Table 1 all discussed distillation and quantization methods 

are listed.  
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Table 1: Table of above discussed distillation and quantization methods 

Distillation methods Quantization methods 

• Response-based knowledge distillation 

• Feature-based knowledge distillation 

• Relation-based knowledge distillation 

• Online-based knowledge distillation 

• Co-distillation 

• Self-distillation 

• Adversarial distillation 

• Cross-modal distillation 

• Graph-distillation 

• Attention-based distillation 

• Data-free distillation 

• Quantized distillation 

• NAS-based distillation 

• Uniform quantization 

• Lattice quantization 

• Scalar vector quantization 

• Progressive/embedded quantization 

• Product quantization 

• Polar quantization 

• Scalar-vector quantization 

• Block-constrained quantization 

• Tree-structured quantization 

• Multistage quantization 

• Cell-conditioned vector quantization 

• Feedback vector quantization 

• Tree/trellis-encoded quantization 

• Gaussian quantization 

• Dithered quantization 

• Noisy channel quantization 

• Multiple description quantization 
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4 Literature Review 
 

Next, a literature review was conducted in order to find different quantization and distillation methods 

applied to NKLP and BERT models. Also, different modeling cases were also considered. Different 

academical articles were gone through to find possible methods for decreasing model size and improving 

their inference speed. First, different studies related to quantization methods are introduced after which 

distillation and other findings are presented. Information regarding different studies was searched using 

LUT Primo using keywords like BERT, named entity recognition, distillation, and quantization. 

 

4.1 Quantization methods 
 

Piao et. al. (2022) proposed a quantization-based BERT compression model improving the model’s 

efficiency by three aspects: model size, accuracy, and inference speed. The size is decreased by sensitivity-

aware mixed precision quantization. This improves the quantization approach by choosing target 

compression ratios based on the sensitivity of modules in BERT, and it is demonstrated that the encoders 

close to the input layer are more sensitive than those near the output layer in BERT, and the Self-Attention 

layer is more sensitive than the feed-forward network in an encoder. These sensitive parts are quantized to 

8-bit and the remaining parts to 1-bit. 8-bit quantization 8-bit index quantization is introduced to reduce the 

model size while retraining the accuracy by using 8-bit indices, minimum weight, and maximum weight to 

efficiently represent all weights of each layer.  To achieve fast inference speed proposed model applies 

FP16 general matrix multiplication (GEMM) to the 8-bit parts of the model and XNOR-Count GEMM to 

the 1-bit parts. Experiments were conducted on four GLUE downstream tasks. Experiments showed that 

the model compresses BERT 8 times in terms of models’ size and gives 5 times faster inference speed. The 

study also showed that three conducted 1-bit training methods improved the average accuracy by 1.1-1.4 

%. (Piao et al., 2022, p 2-3) 

 

The accuracy loss of the model is minimized with three training methods: Absolute Binary weight 

regularization (ABWR), Prioritized Training (PT), and Inverse Layer-wise Fine Tuning (ILF). ABWR is a 

regularization method to reduce the precision loss by learning new weight distribution that fits the 1-bit 

value quantization. The intuition of ABWR is to train the absolute value of the weights to become close to 

1 in the first place, thereby minimizing the drop in accuracy when 1-bit quantization is applied. PT is 

proposed to overcome the difficulty to train the model with binary weights. In conventional 1-bit 

quantization methods binarize both input and weights from the beginning to the training. PT keeps the input 
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binarized as in the conventional methods, but trains the weights with FP32 precision first, and then applies 

1-bit quantization. ILF is introduced to overcome the difficulty in training a model that applies 1-bit value 

quantization to a large portion of the model at once. (Piao et al., 2022, p 12-13) 

 

Experiments conducted by Cho et. al. achieved similar accuracy (90.4) to the BERT-base model, but up to 

6 times smaller model size. Also proposed model showed better accuracy compared to the pruning method 

with a similar model size. Compared to Q8BERT with a model size of 25 % from the BERT-base and 

average accuracy of 90.2 %, the proposed model reduces the model size to 7.7 %, while achieving higher 

accuracy. While BERT-base inference time takes 480 seconds, for the proposed model takes only 95 

seconds to make inferences on all the tasks’ training sets on average. (Piao et al., 2022, p. 1, 17) 

 

When converting data representation in higher precision to low-precision ones, which can only represent a 

smaller number of different values, how to handle outliers is believed to be a key issue. Outliers occupying 

a limited percentage of the values are decided to be kept and mapped into the range of low precision, a 

drawback is that a large-scale factor must be selected. As a result, the other element, which is in the majority 

and has contributed most to the accuracy, would be concentrated on a small part of the targeted range and 

become numerically close to each other leading to a degradation in accuracy. To avoid this issue clipping 

is expected to offer a solution. To implement clipping, a threshold must be decided in advance. Outliers 

that are beyond the set threshold, would be saturated to the threshold. In research conducted by Zhang et. 

al. (2022) clipping positions for weights belonging to each layer of BERT were integrated. The 

effectiveness of clipping was illustrated by extracting weights belonging to the same layer in BERT, the 

distribution of those weights was analyzed, and MSE was calculated, which showed that clipping 

effectively shortens the intervals between sample points, indicating an improved resolution and reducing 

MSE. (Zhang et al., 2022, p. 3-4) 

 

In two-piece-wise quantization, data points are divided into multiple classes, while for different classes, 

linear quantization with a unique parameter of the scale factor is adopted. In this quantization method 

splitting all the data points into two segments with data belonging to each segment quantized to a 7-bit 

integer. Data is split by selecting a split point, which in this case is called thresh. The precision of data is 

changing oppositely through selecting a different split point. (Zhang et al., 2022, p. 4)  

 

In experiments conducted by Zhang et. al. (2022) code developed on the hugging face library the 

quantization part of Q8BERT was overridden by clipping and two-piece wise quantization. With weight 

data in 8-bit integer, a model performance over 98 % of the full precision, 32-bit floating points, the baseline 
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is maintained for different tasks.  With a 4-bit weight, 96.8 % to 98.8 % of the baseline for GLUE can be 

achieved. With 7-bit activation, there was no performance loss in some tasks, and with 4-bit activation and 

full quantization, the proposed method still has over 90 % performance in most benchmarks but can gain 

over 70 % or 50 % improvement in hardware implementation. (Zhang et al., 2022, p. 6) 

 

A study conducted by Qiu et. al. (2022) proposed an end-to-end contrastive product quantization model to 

jointly refine the original BERT embeddings and quantize the refined embeddings into codewords. The 

study was motivated by two main problems. Firstly, methods for Approximate Nearest Neighbor, used in 

document search, are mostly on top of outdated TFID features, which do not contain various kinds of 

important information about documents, like word order and contextual information. Instead, in recent 

years pre-trained BERT has achieved success in various downstream tasks. However, it has been reported 

that BERT embeddings are not suitable for semantic similarity-related tasks. Secondly, to guarantee the 

efficiency of retrieval, most existing methods quantize every document to a binary code via semantic 

hashing. (Qiu et al., 2022, p. 1-2) 

 

First, the original BERT embeddings are transformed via a learnable mapping and feed the transformed 

embedding into a probabilistic product quantization module to output a quantized representation. A 

probabilistic contrastive loss is designed and trained in an end-to-end manner, simultaneously achieving 

the optimization of refining and quantizing modules. To improve the retrieval performance a mutual 

information maximization base method is developed to increase the representativeness of learned 

codewords. This enables the cluster structure hidden in a dataset of documents to be kept soundly, making 

the documents quantized more accurately. The proposed method outperformed benchmarks by more than 

4 %. It was also observed that the retrieval performance of the proposed method consistently improves as 

the code length increases. (Qiu et al., 2022, p. 2) 

 

Qiu et. al. further evaluated the retrieval performance of two variants of their method. At first, the model 

removes the mutual-information term in each codebook and only optimizes the quantized contrastive loss 

to learn semantics preserving quantized representation, and the second method does not inject Gumbel noise 

but utilizes the sole SoftMax operation to produce the deterministic codeword index. When compared to 

the originally proposed method, the model improves the retrieval performance averaged over all code 

lengths by 1.51 % and 0.94 % respectively, demonstrating the effectiveness of mutual-information terms 

inside each codebook. (Qiu et al., 2022, p. 7) 
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ZeroQuant is an end-to-end post-training quantization and inference pipeline proposed by Yao et. al. (2022) 

to address challenges targeting both INT8 and INT4/INT8 mixed-precision quantization. In their study fine-

grained hardware-friendly quantization schemes for both weight and activations, group-wise quantization 

for weight, and token-wise quantization for activations. Both quantization schemes can significantly reduce 

the quantization error and retain hardware acceleration properties. A novel layer-by-layer knowledge 

distillation method for INT/INT8 mixed-precision quantization, where the neural network is quantized 

layer-by-layer through distillation with minimal iterations and without access to original training data. At 

any given moment, the device memory is primarily populated only with a single extra layer’s footprint, 

making billion-scale model distillation feasible with a limited training budget and GPU devices. Also, a 

highly optimized inference backend was developed eliminating the expensive computation cost of 

quantization /dequantization operators, which enables latency speedups on INT8 Tensor cores on modern 

GPU hardware. (Yao et al., 2022, p. 1) 

 

Empirical studies showed that ZeroQuant enables BERT into INT8 weight and activations to retain 

accuracy without incurring any retraining cost. INT8 model achieves up to 519 times speedup on BERT-

base on A100 GPUs. ZeroQuant with layer-by-layer knowledge distillation can do INT4/INT8 mixed-

precision quantization for the BERT style model, which results in 3x memory footprint reduction with 

marginal accuracy loss as compared to the FP16 model. Laos it was demonstrated that the scalability of 

ZeroQuant on two of the largest open-source language models with INT8 quantization, where ZeroQuant 

can achieve 3.67X speedup over the FP116 model and reduce the GPU requirement for inference from 2 to 

1. (Yao et al., 2022, p. 1) 

 

In a study conducted by Qin et. al. (2022) was found that the performance drop in BERT with binarized 1-

bit weight, activation, and embedding comes from the information degradation of the attention mechanism 

in the forward propagation and the optimization direction mismatch of the distillation in the backward 

propagation. The analysis also showed that direct binarization leads to the almost complete degradation of 

the information of attention weight, which results in the invalidation of the selection ability for the attention 

mechanism. It was also shown that severe optimization direction mismatch is caused by utilizing the 

attention score, the direct binding product of two binarized activations, since the non-neglectable error 

between the de facto and expected optimization direction. (Qin et al., 2022, p. 2) 

 

The BiBERT model is proposed to turn the full-precision BERT into a strong fully binarized model. Also, 

the Bi-Attention mechanism is introduced to tackle information degradation of the attention mechanism. 

Bi-Attention applies binarized representations with maximized information entropy, allowing the binarized 
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model to restore the perception of input contents. With the Direction-Matching Distillation scheme, the 

direction mismatch is eliminated. The scheme takes appropriate activation and utilizes knowledge from 

constructed similarity matrices in distillation to optimize accurately. (Qin et al., 2022, p. 2) 

 

Experiments were done on the GLUE benchmark show that BiBERT outperforms existing quantized BERT 

models with low-bit activation. For example, the average accuracy of BiBERT exceeds 1-1-1 bit-width 

BinaryBERT (1-bit weight, 1-bit embedding, and 1-bit quantization) by 20.4 % accuracy on average, and 

better than 2-8-8 bit-width Q2BERT by 13.3 %.  In model size BiBERT is compressed by 31.2 times, which 

shows the advantage and potential of fully binarized BERT in terms of fast inference and flexible 

deployment in real-world resource-constrained scenarios. 2 With data augmentation BiBERT achieves 

comparable performance with full-precision BERT on several tasks with 90.9 % accuracy, which also 

indicates that BiBERT makes full use of the limited representation capabilities by the well-designed 

structure and training scheme. Also, it was shown that BiBERT on TinyBERT compact architectures still 

outperforms existing quantization methods on BERT-base. (Qin et al., 2022, p. 8) 

 

For reducing memory footprint by storing parameters and/or activations with low bit precision quantization 

method is used by Kim et. al. (2021, p. 1). The proposed model I-BERT is an integer-only quantization 

scheme for transformers. The entire inference is performed with integer arithmetic and key elements include 

approximation methods for nonlinear operations such as GELU, SoftMax, and LayerNorm.  The model has 

been evaluated with RoBERTa-Base/Large, where the quantization method improves the average GLUE 

score by 0.3/0.5 points compared to the baseline. The model has been also on end-to-end inference latency, 

showing that the quantization scheme can achieve 4 times faster speedup compared to the floating-point 

baseline. (Kim et al., 2021, p. 9) 

 

A study conducted by Fan et. al. (2020) introduces a model by quantizing only a subset of weights instead 

of the entire network during training, which is more stable for high-compression schemes. By quantizing 

only, a random fraction of the network at each forward, most of the weights is updated with unbiased 

gradients. Employing a simpler quantization scheme during the training makes it useful for quantizers with 

trainable parameters, such as Product Quantizers (PQ) for which quantization proxy is not parametrized.  

The approach applies a quantization noise, called Quant-Noise, to a random subset of weights, which makes 

a network more resilient to various types of discretization of weights. The approach reached 82.5% accuracy 

on MNLI by compressing RoBERTa to 14 MB. (Fan et al., 2020, p. 2) 
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The study proposed by Zafrir et. al. (2019, p. 1) authors point out that real-time NLP applications that 

integrate BERT must meet low latency requirements to achieve a high-quality customer experience, which 

poses a challenge to the deployment of these models to production. Models a have height impact on how 

the way business organizations consume computing resources since computing resources will have to the 

handle loading of large models and heave feed-forward calculations, shifting workload focus from lower-

level training to more application-specific fine-tuning and inference.  

 

Zafrir et. al. (2019) in their study implemented the quantization method for the BERT model by quantizing 

fully connected layers and embedding layers using linear quantization. The higher requirement for 

operations was kept in the original Int32 values. These included operations like SoftMax, Layer 

Normalization, and GELU. In total 99 % of the model’s weight was compromised to 8bit. This achieved 

reducing the memory by 4 times compared to the original model. Model maintained 99% accuracy in 

comparison to FP32 which refers to BERT-Base, which has 110M parameters in 32bit floating point 

representation. (Zafrir et al., 2019) 

 

Jacob et al. (2017) in their study provide a quantization scheme that quantizes weights activations as 8-bit 

integers and a few parameters as 32-bit integers. Also, they introduce a quantized training framework that 

is implementable on integer/arithmetic/only hardware., and a quantized training framework to minimize the 

loss of accuracy from quantization on models. The quantization scheme is implemented using integer-only 

arithmetic during inference and floating-point arithmetic during training. (Jacob et al., 2017, p. 2) 

 

4.2 Distillation and other methods 
 

Avram et. al. (2022) introduces three compressed versions of compressed BERT models that were obtained 

through the distillation process. Distil-BERT-base-ro was obtained by distilling the knowledge of BERT-

base-ro using its original training corpus and tokenizer. Distil-RoBERT-base was created from RoBERT-

base using both original training corpus and tokenizer, and DistillMulti-BERT-base-ro considered the 

distillation of the knowledge from an ensemble consisting of BERT-base-ro and RoBERT-base while 

relying on the combined corpus and coupled with the tokenizer of the former model. (Avram et al., 2021, 

p. 1-2) 

 

Models were evaluated on five datasets and the results showed that they maintained most of the performance 

of the original models, while being approximately twice as fast when run on a GPU. Both DistilBERT-

base-ro and DistilMulti-BERT-base-ro have a size of 312 MB and contain 81 million parameters, reducing 
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the size of BERT-base-ro by roughly 35 %. Distill-ROBERT-base is smaller, with 72 million parameters 

and a size of 232 MB, compressing ROBERT-base by the same amount. Named entity recognition 

evaluation showed that the Distil-BERT-base-ro obtained an F1-score of 79.42 %, which is almost identical 

to the F1-score obtained by the distilled ensemble of 79.43 %. Both models outperformed Distil-RoBERT-

base by 0,3 % on the same metric, and the compressed model lagged the base models by more than 3 % on 

the F1 metric. (Avram et al., 2021, p. 2, 4) 

 

In a study conducted by Zhou et. al. (2021) authors present an efficient knowledge distillation scheme that 

trains a light model called BiLSTM, which can retain the accuracy of its heavier counterparts, such as 

BERT, while significantly reducing costs. Solution exploits so-called soft surrogates, the most probable 

label sequences under the teacher model, to inform the student learner. Authors explore the Viterbi 

algorithm to expedite computation to efficiently identify the most likely label sequences and determine their 

relative likelihood. For sequence labeling, multi-grained knowledge distillation is used. (Zhou et al., 2021, 

p. 5705) 

 

The idea in the Viterbi algorithm for sequence outputs is to extract information from the teacher model via 

drawing a set of most probable sequences. Then the sequences are presented to the student model during 

its training, to pass on the knowledge from, the teacher through various loss functions. (Zhou et al., 2021, 

p. 5706) 

 

Experiments, to validate the proposed solution and elaborate its gains, were done with TensorFlow and 

executed on a single NVIDIA P100 GPU. The teacher model is constructed by a BERT model followed by 

the CRF layer. A dropout layer is concatenated to the BERT, followed by a fully connected layer. For the 

student model, BiLSTM+CRF architecture is used, which exploits Bidirectional LSTM to map input 

sequences into a sequence of feature vectors. The learned word embedding is reused from the teacher model 

and kept frozen during training.  (Zhou et al., 2021, p. 5709) 

 

In the results, the authors have found out that the teacher model outperforms baselines. In terms of the 

teacher is that directly copying the teacher embedding to the student model can be most helpful. Regarding 

distillation, it achieved cross-the-board performance gains relative to the no-distillation use of fixed pre-

trained teacher embeddings baseline. Also, it was noticed that inducing data augmentation consistently 

improves student learning, and in all cases, sequence-level distillation outperforms token-level distillation, 

especially in the absence of data augmentation. (Zhou et al., 2021, p. 5710) 
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In many industry scenarios needed student models to require different widths and depths to meet various 

latency and memory requirements. Chen et. al. (2021, 571- 572) proposed an Extract Then Distill (ETD) 

method to reuse teacher’s parameters for distillation purposes. ETD is a flexible and effective method to 

reuse. It firstly allows the student to have a narrower width than the teacher model. Models allow width-

wise extract the teacher’s parameters randomly and depending on the importance scores. This method 

applies to students with different models’ architecture sizes. In their test, they manage to save 70 % of 

computation cost. Moreover, when using the same computing resources, ETD outperforms the baseline. 

 

The model consists of three steps.  First, parameters are extracted from a teacher model to a model called 

the thin teacher. The first step is called width-wide extraction. In the uniform layer selection step, thin 

teacher layers are selected with a so-called uniform strategy, and these parameters are used to initialize the 

student. The last step is called transformer distillation which performs last-layer distillation.  (Chen et. al. 

2021, p. 572-573) 

 

To extract the teacher’s parameters two different approaches were introduced. In the first approach, neurons 

are randomly extracted, and corresponding weight parameters are assigned to the student model. In the 

other approach, a score-based pruning method is used to extract the relatively important weights from the 

teacher model. (Chen et. al. 2021, p. 574) Compared with the baselines in the study ETD can achieve similar 

results with less than 28% computation cost. In their conclusions, it was pointed out that fine-grained 

extraction is needed to achieve better results and reusing the teacher’s parameters is beneficial for most of 

the tasks. (Chen et. al. 2021, p. 578) 

 

Bai et. al. (2021, p. 1, 8) in their study proposed ternary weight splitting, which takes the ternary model as 

a proxy to bridge the gap between the binary and full-precision models. The model converts both the 

quantized and latent full-precision weights in a well-trained ternary model to initialize BinaryBERT. 

BinaryBERT supports also adaptive splitting, which means that it can adaptively perform splitting on most 

important ternary modules while leaving the rest as binary, based on efficiency constraints such as model 

size or floating-point operations. On the GLUE and SQuAD benchmarks, BinaryBERT has less than a 0.5 

% performance drop compared to the full-precision BERT-base model while being 24 times smaller. (Bai 

et al., 2020, p. 1, 8) 

 

Lin et. al. (2015, p. 1-2, 8) et al. proposed an approach for quantizing neural networks, which consists of 2 

components. In the forward pass, weights are stochastically binarized using so-called binary connect or 

ternary connect. 1 Binary connect allows eliminating multiplications in the feed-forward process by 
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stochastically sampling weights to be -1 or 1. Ternary connect allows weights to be also 0. 2 The idea is to 

eliminate most of the floating-point multiplications used during training feedforward neural networks. For 

backpropagation of errors method called quantized backpropagation is used, which converts multiplication 

into bit-shifts. For example, testing the model with the MNIST dataset by applying ternary connect and 

quantized backpropagation, an error of 1.15 % error rate was achieved while full precision training yielded 

a 1.33% error rate.  

 

In a study conducted by Romero et. al. (2014, p. 1-3) team aimed to address the neural network compression 

problem by taking advantage of depth. The method originated from Knowledge distillation in which the 

authors propose to train thin and deep neural networks. In their study authors explore a proposed framework 

in which a student network is trained from the softened output of an ensemble of wider networks so-called 

teacher network. The idea is to allow the student network to capture information from true labels and finer 

structures learned by the teacher network. Knowledge distillation is designed such that student networks 

mimic teachers’ architecture of similar depth. Also, so-called hints were introduced to student networks 

from teachers’ hidden layers to guide the training process of the student.  

 

In their implemented approach student network contained only 33.3% of the teacher’s parameters achieving 

91.61 % accuracy, which is higher than the teacher’s network accuracy, of 85.8%. One of their implemented 

student networks with 36 times less capacity compared to the teacher network witnessed a minor 

performance decrease of 1.3%. Another student network outperforms the teacher by 0.9 % while being 

faster by 4.64 factor. In this study using information from teacher networks or student networks models 

with fewer parameters can run faster and/or generalize better than their teachers. Also, it was found with 

empirical evidence -that hinting at the inner layers of a thin and deep network with information from the 

teacher’s hidden state generalizes better than hinting at classification targets. (Romero et al., 2014, p. 5, 9) 

 

Luo et. al. (2020, p. 2) proposed a solution and optimization scheme from a light pre-trained model to 

downstream tasks. Authors point out that models often contain a large number of parameters which poses 

challenges for fine-tuning and online services for latency and capacity limitations in real-world applications 

even though large parameter models can achieve better performance. In their study authors propose a 

DistillBERT model in which the original 12 layers are reduced to 6 and soft label and hidden layer 

parameters are used from a teacher’s model to train the student model. Compared to the benchmark BERT 

model size is reduced by 40% and the inference speed is increased by 60% decreasing the performance only 

by 3%. In their approach output distributions of the teacher, the model is transferred to the student model 
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to achieve the purpose of improving the effectiveness of the student model on the target tasks.  In their 

experiments, it was found that fine-tuning is more effective for small models. (Luo et al., 2020, p. 4, 8)  

 

In the literature review, it was found that different quantization methods like ZeroQuant and I-BERT have 

similar accuracies and much faster inference times compared to their base models. Some issues were found 

regarding the accuracy decrease in models like BiBERT. Regarding different distillation methods, it was 

found that the size of the models was decreased substantially like in Distill-BERT-base-ro model, and 

achieved better results compared to its base model. Also, the ETD model’s computational savings were 

significant and ternary weight splitting gave good results regarding performance and model size.  The 

summary of the works reviewed within the scope of this thesis is shown in Tables 2 and 3.  
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Table 2. Table of discussed quantization methods, use cases, and main results 

Author Year Use case Model Key results 
Piao et. al. 2022 Test with 

GLUE 

downstream 

tasks. 

Quantization-based BERT 

compression  

Compression by 8 times and 

5 times faster inference 

speed. Improved average 

accuracy by 1.1-1.4 %. 

Zhang. al. 2022 Evaluation of 

BERT with 

GLUE 

benchmark 

Clipping and two-piece wise 

quantization 

The 8-bit weight integer 

model has 98 % accuracy of 

the full precision 32-bit 

floating point. 4-bit weight 

96.8-98.8 % accuracy of the 

baseline was achieved. 

Qiu et. al. 

2022 Document 

search 

End-to-end contrastive 

product quantization 

Method outperformed 

benchmarks by more than 4 

% and retrieval performance 

averaged over all code 

lengths by 1.51 % and 0.94 

%. 

Yao et. al. 2022 Conversion of 

EBRT into 

INT8a and 

INT4/INT 

mixed-

precision 

quantization 

ZeroQuant INT8 model achieves up to 

519 times speedup on BERT-

base on A100 GPUs. 

Qin et. al. 2022 GLUE 

benchmark 

BiBERT BiBERT achieves 

performance with full-

precision BERT on several 

tasks with 90.9 % accuracy. 

The average accuracy of 

BiBERT exceeds 

BinaryBERT by 20.4 % 

accuracy on average, and 

better than 2-8-8 bit-width 

Q2BERT by 13.3 %. 

Kim et. al. 2021 Evaluation 

with RoBERTa 

I-BERT Improved GLUE score by 

0.3-0.5 %. Achieves 4 times 

faster speedup compared to 

baseline. 

Fan et. al. 2020 MNLI dataset 

compressing 

RoBERTa 

Quantization of subset of 

weights 

82.5% accuracy on MNLI by 

compressing the model to 14 

MB. 

Zafir et. al. 2019 Real-time NLP 

applications. 

Quantization of fully 

connected layers and 

embedding layers using linear 

quantization. 

99 % of the model’s weight 

was compromised to 8bit. 

The model maintained 99% 

accuracy. 

Jacob et. al. 2017 Quantization 

training to 

ResNets and 

ImageNet 

dataset 

Quantization of weights to 8-

bit 

Accuracy within 2 % of their 

floating-point counterparts. 
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Table 3. Table of discussed distillation methods, use cases, and main results 

Author Year Use case Model Key results 

Avram et. al. 2022 Named entity 

recognition 

Distill-BERT-base-ro, 

DistillMulti-BERT-base-ro 

Reduction in size of 

BERT-base model by 

roughly 35 %. 

Outperforming Distil-

RoBERT-base by 0.3 % 

Zhou et. al. 2021 Named entity 

recognition 

Knowledge distillation 

scheme training light 

model called BiLSTM 

Cross-the-board 

performance gains are 

achieved relative to the 

no-distillation use of fixed 

pre-trained teacher 

embeddings baseline. 

Chen et. al. 2021 Evaluation of 

BERT with 

GLUE and 

SQuAD 

benchmarks 

Extract Then Distill Saving computation costs 

by 70 %. 

Bai et. al. 2021 Evaluation of 

BERT with 

GLUE and 

SQuAD 

benchmarks 

Ternary weight splitting Less than a 0.5 % 

performance drop and 

model size decreased by 

24 times. 

Lin et. al. 2015 Test with 

MNIST 

dataset 

Ternary connect Elimination of most of the 

floating-point 

multiplication. 

Romero et. al. 2014 Neural 

network 

compression 

Knowledge distillation-

based model 

Containing only 33.3 % of 

the teacher’s parameters 

achieving 91.61 % 

accuracy, which is higher 

than the teachers’ network 

accuracy, of 85.8 % 
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5 Results 
 

In the implementation part, different Hugging face model inferences were tested, and results were 

analyzed compared to the findings from the literature. Python programming language was used for model 

inference testing using the task_evaluator function provided by the evaluation library. 

 

5.1 Data 
 

Data used in the implementation part contains CoNLL-2003 which is a named entity recognition dataset 

released as a part of the CoNLL-2003 shared task for language-named entity recognition. The data consists 

of eight files covering two languages: English and German. For each of the languages, the dataset consists 

of a training file, a development file, a test file, and a large file with annotated data. The English data, which 

is used was taken from Reuters Corpus. The Corpus consists of stories between August 1996 and August 

1997. (Tjong et al., 2003, p. 1-2) 

 

Table 4 shows the dataset structure consisting of English dataset training, development, and test set.  In 

the Table 4, LOC indicates the number of tokens related to location, MISC to miscellaneous names, ORG 

to organizations, and PER to persons. In the implementation, 1 000 sentences of the validation set are 

used to derive the inference values analyzed in this part. In the NER implementation, these four tokens 

are taken into account in the results analysis of the overall inference results.  

 

Table 4. Structure of the ConLL-2003 dataset 

English data Articles Sentences Tokens LOC MISC ORG PER 

Training set 946 12 987 203 621 7 140 3 438 6 321 6 600 

Development 

set 

216 3 466 51 362 1 837 922 1 341 1 842 

Test set 231 3 684 46 435 1 668 702 1 661 1 617 
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5.2 Tested models  
 

Five different HuggingFace models were tested in the implementation since they could already be used, 

and their inference could be tested with the evaluator. The first is called the bert-base-NER model, which 

is a fine-tuned BERT model that is ready to use for NER models, fine-tuned for the CoNLL-2003 dataset- 

The model is limited by its training dataset of entity-annotated news articles from a specific span of time, 

which may not generalize for all use cases in different domains. The second model is bert-base-

multilingual-case-ner-hrl is a NER model for 10 high-resourced languages based on a fine-tuned mBERT 

base model. Which is also limited by its dataset of entity-annotated news articles from a specific span of 

time. (HUggingFace 2022c, HuggingFace, 2022e) 

The third model is called the distilbert-base-uncased-finetuned-ner-model, which is based on the distillbert-

base-uncased-model. DistillBERT base model is a distilled version of the BERT base model based on the 

paper of Sanh et al. (2019). The following model is a transformers model, smaller and faster than BERT. It 

was trained on the same corpus in a self-supervised fashion, using the BERT base model of a teacher. 

Particularly model was trained with three objectives. Using distillation loss, the model was trained to return 

the same probabilities as the BERT base model. MLM to randomly mask words in the input and then run 

the entire masked sentence through the model to predict the masked words and cosine embedding loss, 

where the model was trained to generate hidden states as close as possible to the BERT base model. 

(HuggingFace, 2022a, HuggingFace, 2022b) 

The fourth model is an XML-RoBERTa model proposed by Conneau et al., which is based on Facebook’s 

Roberta model released in 2019. XML-RoBERTa model is fine-tuned with the CoNLL2003 dataset in 

English. Potential downstream use cases include NER and Part-of-Speech (PoS) tagging.  The fifth and last 

model is a BERT-large-cased-finetuned NER model fine-tuned with the CoNLL2003 dataset in English. 

(HuggingFace, 2022f) 

 

5.3 Inference Results 
 

All models were run using Google Collaboratory. Several inference evaluation results were gathered after 

each model’s inference. Only overall evaluation metrics are analyzed, and token-specific evaluation metrics 

are not taken into the scope of this thesis because the aim is to compare overall results to their inference 

time and other evaluation results regarding the time used in inference. The gathered evaluation metrics are 
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overall accuracy, overall precision, overall recall, overall F1, total time in seconds, samples per second, and 

latency in seconds. The results of each model’s metrics are described in the following Table 5. 

Table 5. Inference results of five different BERT models. The best performance is bolded 

 

As can be seen from the inference results from Table 5, best accuracies were achieved by BERT-base and 

Distill RoBERTa models with an accuracy of 99.33 %, while the best F1-score was achieved with XML 

RoBERTa-model with an F1-score of 98 %. Looking at the accuracies of all the models four of them 

achieved above 97 % except the XML RoBERTa -model with an accuracy of 87.26 %. When comparing 

the overall f1-score all models’ results vary between 91.74 % and 97.74 %. The lowest score was achieved 

by BERT-base multilingual while the best score was achieved with the XML-RoBERTa model with an F1-

score of 97.74 %.   

When comparing the inference times between these models three evaluation metrics were gathered as 

described above. From the results can be seen that the lowest total time used for inference was achieved 

with Distill RoBERTa model with a total time of 67.66 seconds, which is almost two times less than the 

second fastest model. The slowest model of these five models in time was the XML-RoBERTa model with 

a total time of 451.42 seconds. Even though the fastest samples per second were achieved with the same 

model. When comparing the latency in seconds between different models best-achieving model was Distill 

RoBERTa model with a latency of 0.07 seconds and the worst-achieving model was the XML-RoBERTa 

model with 0.45 seconds in latency.  

In Figure 3, the overall F1-score is compared to the samples per second evaluation metric from which can 

be seen that the XML-RoBERTa overall F1-score is among the highest and the samples per second are 

lowest comparing the other models. In Figure 5, due to the high latency of XML-RoBERTa model, Distill 

Model Overall 

accuracy 

Overall 

precision 

Overall 

recall 

Overall 

F1-

score 

Total time in 

seconds 

Samples per 

second 

Latency in 

seconds 

BERT base 99.22 % 96.60% 96.36% 95.98% 126.17 7.92 0.13 

DistillBERT 98.37 % 90.41% 94.85% 92.1% 174.66 5.72 0.17 

Distill 

RoBERTa 

99.33% 96.44% 97.04% 96.74% 67.66 14.77 0.07 

XML- 

RoBERTa 

87.26% 96.96 % 98.06% 97.5% 451.42 2.21 0.45 

BERT base 

multilingual 

97.54% 97.08 % 86.97% 91.74% 132.29 7.55 0.13 
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RoBERTa, BERT-base are most prominent options of these models. From the Figure 5 it can be seen, the 

latency in seconds can be seen in a bar chart format from which can be seen the high latency time of the 

XML-RoBERTa model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Overall F1-score compared to samples per second 
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Figure 4. Overall F1-score compared to total time in seconds 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Models’ latency in seconds 
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5.4 Result analysis 
 

From Table 5 we can see accuracies are similar regarding models with accuracies around 97-98 % except 

the XML-RoBERTa model with accuracy of 87.26 % which is more than 10 % less compared to other 

models even though the F1-score of this model is 97.5 %, which is highest compared to the other models. 

The highest accuracy result was achieved with Distill RoBERTa model with the accuracy values of 99.33 

%. When comparing the other models to best performing accuracy their accuracy is not less than 2 % except 

the accuracy of XML-RoBERT.  

 

When comparing F1-scores it can be seen that high for BERT-base, Distill RoBERTa and XML-RoBERTa 

models and lower for DistillBERT and BERT base multilingual model. Highest F1-score is achieved with 

XML-RoBERTa model with F1-score of 97.5 % and regarding overall it can be seen that the F1-score 

values are distributed 91.74 % - 97.5 %.   

 

When taking account time parameters, it can see that Distill RoBERTa has the lowest total time used in 

seconds with time of 67.66 seconds, which is around 67,66 seconds less compared to second less time used 

model and 58.51 seconds less compared to BERT base model. The worst performing model compared in 

total time in seconds was XML-RoBERTa, which used time 6.7 times more time compared to Distill 

RoBERTa model and 3.6 times more time than the BERT-base model. Even though XML-RoBERTa 

sample per second time is the lowest its latency in time is very high compared to other models with 0.45 

seconds. 

 

To take the performance values and time used in time from Figures 3 and 4 it can be seen that Distill 

RoBERTa and XML-RoBERTa performance is higher compared to BERT-base model, with F1-scores of 

96.74 % and 97.5 %, but the time used for inference for both models are 67.66 and 451.42 seconds from 

which can be seen that the Distill RoBERTa performs better in both of the aspects. 

 

Base on the result it can be stated the most feasible model is Distill RoBERTa due to the reason that its F1-

score is among the highest and its total time used in inference the lowest and for those reasons it could be 

used among tested the models. 
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6 Conclusion and discussion 
 

In this study, different methods for improving BERT model were reviewed and tested. Models’ inference 

performance regarding time and cost and different purposes for it have been described, like efficient 

employment challenges and limited resources needed for these models to operate. Also, improvements can 

be seen cost-wise reducing the computational, but still achieving similar performance results. Despite the 

state-of-the-art results Transformer models like BERT are generally larger than previous models with a 

large number of parameters used.   

From the literature review, it can be seen that different methods like Distill-BERT-base-ro by Avram et. al. 

(2022) and quantization-based BERT compression method by Piao et. al. (2022) was applied for reducing 

the size of these models and methods like knowledge distillation methods by Romero et. al. (2014) have 

decreased the number of parameters needed in order to use those models with constrained resources by 

reducing the computational cost of those models. As it was found out from the extant literature there are 

several different opportunities available for model inference optimization methods, which can improve 

throughput and with low latency without decreasing models’ accuracy performance.  

When reflecting on implementation results to theoretical background and literature review similarities 

regarding inference efficiency can be found even though several models were close to the base model like 

models based on RoBERTa where in study conducted by Kim et. al. (2021) has shown faster speedup 

compared to its base model and implementation of Distill RoBERTa has shown 0,06 second lower latency 

and using 58,51 seconds less time compared to BERT-base model, and DistillBERT model’s performance 

was significantly lower compared to others with F1-score of 92.1 %. Next research questions are answered. 

 

6.1 Answering research questions 
 

The RQ1 considered production inference and it was formalized as “Which techniques can be used for 

decreasing BERT models’ production costs inference recourses?” 

 

From the theoretical background, different quantization and distillation methods are developed to reduce 

the model production cost of its inference resources by decreasing the size of the model, which can affect 

the throughput of the implemented model and reduce the total time and latency in the production without 

compromising its accuracy.  
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As seen from the literature review quantization models like clipping and two-piece wise quantization 

methods, ZeroQuant and I-BERT can achieve similar accuracy metrics as their baselines with much faster 

inference. For example, as discussed in the literature review section quantized models like ZeroQuant were 

able to achieve up to 519 times speedup compared to the BERT-base model. This is partly explained by the 

reason for reducing the number of parameters that the quantized model has, which implies the possibility 

of using these methods in order to decrease one model size for improving model inference performance 

without decreasing the accuracy of the model. 

 

Regarding distillation methods like Distill-BERT-base-or ternary weight splitting can their base model size 

even outperforms their base model. Also, it was found that knowledge distillation for example in neural 

networks can significantly decrease the number of teacher’s parameters and still be able the student to gain 

better accuracy compared to the teacher model, which implies that knowledge distillation might outperform 

the teacher model and reduce parameter amount decreasing the computation need and improving inference 

speed. Also, it was found out from the literature that models like ETD can save a significant amount of 

computation costs. 

 

To answer RQ2 “Which methods can be used for increasing the inference of the BERT model’s throughput 

by not severely decreasing the accuracy of the model?” literature review was conducted, and different 

BERT models were tested 

 

First, different literature resources like studies conducted by Qiu et. al. (2022), Kim et. al. (2021) and Yao 

et. al. (2022) was used to find out possible methods to increase the throughput of a model and not decrease 

its accuracy significantly. From the literature’s theoretical background different trends have been identified 

like parameter quantization and pruning and ways like model topology modifications and memory-based 

strategies. From the literature review, it was found that models like quantization-base BERT compression, 

ZeroQuant, and I-BERT were able to increase the BERT model’s throughput. Regarding distillation models 

from the literature review reductions in size were achieved with for example Distill-BERT-base, Ternary 

weight splitting, and knowledge distillation. On the other hand, the BERT-base model in the 

implementation part gave better results compared to the DistillBERT model even though in the literature 

review it was found that distill model could improve the model’s accuracy, while also its size was 

significantly less compared with the baseline model. 

 

On the other hand, the implementation of Distill RoBERTa was able to increase the throughput and improve 

the F1-score compared to the BERT-base model. It was also found that this model was the only one whose 
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latency in seconds was lower compared to the BERT-base model, while the other models’ latency time was 

equal or more, which can explain why other models did not perform better timewise compared to the BERT-

base model. The performance of the RoBERTa model was also backed by the theoretical background where 

it was described that it is an optimized method of pretraining NLP systems. Also, Avram et. al (2022) in 

their study, applied distillation to the BERT-base model, as described in the literature review were able to 

decrease the model size and increase accuracy compared to the BERT-base model, which might indicate 

the benefit of using distilled models for gaining performance benefits in inference. 

 

6.2 Further research and development  
 

There are different research and development options to conduct regarding model inference optimization. 

For example, production-wise implementation can be researched and find out if a certain type or certain 

type of models could be implemented in production and how they will behave from point of view of 

accuracy efficiency. 

Another development opportunity is to find out if is it possible to reduce production costs money-wise using 

this kind of model’s inference optimization methods. For example, it can be researched whether is it 

possible to reduce maintenance costs in production with these above-discussed models. 
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