

LUT University

School of Engineering Science

Industrial Engineering and Management

BERT model optimization methods for inference – a comparative

study of five alternative BERT-model implementations

Marko Buuri

1. Supervisor: Pasi Luukka

2. Supervisor: Jyrki Savolainen

1 Table of contents

1 Table of contents ... 8

1. Introduction .. 7

1.1 Motivation .. 8

1.2 Research objectives and limitations ... 8

1.3 Data and Methodology .. 9

1.4 Structure of the Thesis .. 9

2 Theoretical Background ... 10

2.1 BERT - Bidirectional Encoder Representations from Transformers .. 10

2.2 Masked language modeling ... 16

2.3 Next Sentence prediction ... 16

2.4 Benchmarks for BERT models ... 17
2.4.1 GLUE Benchmark ... 17
2.4.2 SQuAD dataset ... 18
2.4.3 IMBD Reviews dataset ... 18
2.4.4 RACE Benchmark.. 18

2.5 Types of BERT models ... 19
2.5.1 ALBERT ... 19
2.5.2 RoBERT ... 20
2.5.3 DistillBERT .. 20
2.5.4 StructBERT ... 21

2.6 Named entity recognition .. 21

2.7 NER model evaluation .. 24

2.8 BERT model evaluation .. 24
2.8.1 MUC score.. 25
2.8.2 Exact-match evaluation ... 25
2.8.3 Automatic Content Extraction - ACE evaluation .. 25

2.9 Cost efficiency of implemented models .. 26

3 Methods considered in this study .. 28

3.1.1 Distillation .. 28
3.1.2 Quantization .. 32

4 Literature Review .. 44

4.1 Quantization methods .. 44

4.2 Distillation and other methods ... 49

5 Results ... 56

5.1 Data .. 56

5.2 Tested models .. 57

5.3 Inference Results .. 57

5.4 Result analysis .. 61

6 Conclusion and discussion ... 62

6.1 Answering research questions.. 62

6.2 Further research and development .. 64

7 References .. 65

TIIVISTELMÄ

Tekijä: Marko Buuri

Työn nimi: BERT-mallin optimointimenetelmät inferenssiin – vertaileva tutkimus viidestä

vaihtoehtoisesta BERT-mallin toteutuksesta

Vuosi: 2022 Paikka: Espoo

Diplomityö. LUT-yliopisto, Tuotantotalous, Business Analytics

65 sivua, 5 taulukkoa, 5 kuvaa

Tarkastajat(t): Pasi Luukka, Jyrki Savolainen

Hakusanat: BERT, distillointi, kvantisointi, inferenssi

Aiempina vuosina on nähty Transfer Learning -lähestymistapojen nousu luonnollisen kielen

käsittelyssä (NLP) ja laajamittaisista esikoulutetuista kielimalleista on tullut perustyökalu monissa

NLP-tehtävissä. Vaikka suuret mallit johtavat yleensä merkittäviin parannuksiin, niissä on usein

useita miljoonia parametreja, jotka voivat tuottaa haasteita.

BERT-mallit ovat Transformer-arkkitehtuurilla toteutettu kielenmallinnusjärjestelmiä, jotka ovat

osoittautuneet tehokkaiksi kielimalleiksi. Tässä diplomityössä esitetään keinoja, jolla voidaan

parantaa BERT-mallein nimetty kohteen tunnistamisen inferenssiä. Näillä menetelmillä voidaan

hyödyntää pienetäkseen mallien kokoa ja parantaa niiden suoritustehoa pienentämättä merkittävästi

mallin tarkkuutta. Kirjallisuuskatsauksessa selvitetään aikaisemmista tutkimuksista parhaita

mahdollisia menetelmiä, joita on hyödynnetty mallin laskentatehokkuuden parantamiseen

pienentämättä kuitenkaan niiden tarkkuutta.

Toteutuksessa viiden erilaisen BERT-mallin toimivuutta on testattuja CoNLL-2003 datalla. Mallien

toimivuuksien tuloksia, etenkin F1-tulosta, joka mittaa mallin tarkkuutta, ja malleihin käytettyä aikaa

on verrattu toisiinsa. Alkuperäisenä mallina käytettiin BERT-base mallia. Tulokset osoittavat

testatuista BERT-malleista, että Distill RoBERTa onnistui suoriutumaan paremmin saavuttamalla F1-

tuloksen 96.74 % ja puolet vähemmällä ajalla kuin alkuperäinen malli BERT-base F1-tuloksella 95.98

%. Parannuksia voidaan huomata tarkastelemalla F1-tuloksia ja käytettyä aikaa inferenssissä. mutta

osa malleista, kuten DistillBERT, eivät tuottaneet parannuksia tarkkuudessa eikä ajassa lähtökohtaan

kuten kirjallisuuskatsauksen perusteella oli odotettavissa.

ABSTRACT

Author: Marko Buuri

Title: BERT model optimization methods for inference – a comparative study of five alternative

BERT-model implementations

Vuosi: 2022 Paikka: Espoo

Master’s thesis. LUT University, Industrial Engineering and Management, Business Analytics

65 pages, 5 tables, 5 figures

Supervisors(s): Pasi Luukka, Jyrki Savolainen

Keywords: BERT, distillation, quantization, inference

Previous years have seen the rise of Transfer Learning approaches in Natural Language Processing

(NLP) with large-scale pre-trained language models becoming a basic tool in many NLP tasks. Even

though larger models generally lead to significant improvements, they often have several million

parameters which can raise concerns.

BERT models are natural language processing models base on Transformer-architecture, which have

been proven effective. The aim of this master thesis is to introduce different BERT base named entity

recognition model inference optimization methods, which can be implemented to reduce the model’s

size and improve its throughput without compromising its accuracy. In literature review best possible

methods from previous studies are find out, which have been used to increase models’ computational

efficiency and not reducing their accuracies.

In implementation five different BERT models were tested with CoNLL-2003 data and results show

that part of these models were able to have better performance. Models we compared with each other

especially concentrating on their F1-scores and total time used in inference. As a base model BERT-

base was used. Results partly showed that the models’ performance and accuracies for Distill RoBERTa

achieved to perform better with F1-score of 96.74 % compared to the BERT-base with F1-score of

95.98 % and used half of time compared to the initial BERT-base model. Improvements can be seen by

evaluating F1-scores and time used inference, but some of the models did not perform better like

DistillBERT, compared to the base model as expected based on the literature.

ABBREVIATIONS

ABWR Absolute Binary weight regularization

ACE Automatic Content Extraction

ANN Artificial Neural Network

BERT Bidirectional Encoder of Representations from Transformers

CPU Central processing unit

DNN Deep neural networks

EDR Entity Detection and Recognition Value

FLOP Floating-point operations per second

GLUE General Language Understanding Evaluation

GAN Generative adversarial networks

GPU Graphic processing units

ILF Inverse Layer-wise Fine Tuning

MLM Masked Language Modelling

NER Named Entity Recognition

NLP Natural language programming

NSP Next sentence prediction

PT Prioritized Training

SOP Sentence order prediction

SQuAD The Stanford Question Answering Dataset

TPU Tensor processing unit

7

1. Introduction

In recent years, transfer learning approaches in natural language processing (NLP) have

proliferated, with large-scale pre-trained language models becoming a key tool for many NLP tasks. .

Although larger models generally result in significant improvements, they often have several million

parameters that can raise various concerns. For example, the computational and storage requirements of

these models can prevent widespread adoption. (Sanh et al., 2019, p. 1) Various model compression

techniques have been developed to speed up model inference and reduce model size while maintaining

accuracy. The most widely used techniques involve knowledge quantification and distillation. Many

attempts have been made to distill heavy models into their lighter counterparts. (Liu et al., 2020, p. 1)

One idea in the Transformer architecture is to move away from sequential processing, where inputs

are provided one at a time. Transformers intend to change this design by providing the entire sequence as

a one-time input to the network, allowing the network to learn an entire sentence at a

time. This enables parallel processing and enables parallel distribution of insights to other cores

or graphic processing units (GPUs). The goal of the encoder layer is to convert all input sequences given

to the model into a representation layer that captures the context in a way that also pays more attention

to the words that matter most to them in a given context. (Jain, 2022, p. 21, 27)

The aim of this master thesis is to enhance bidirectional encoder representation from transformers named

entity recognition (NER) model’s inference by applying different optimization methods and comparing the

effect on accuracy. By enhancement, the goal is to decrease the latency of the model’s inference, decrease

the model size in memory and increase the throughput on the central processing unit (CPU). (Kim et al.,

2021, p. 1) NLP investigates the use of computers to process to understand human languages to perform

useful tasks. It is an interdisciplinary field that combines computational linguistics, computing science,

cognitive science, and artificial intelligence. (Jain, 2022, p. 2) Despite the most recent results on various

NLP tasks, pre-trained Transformer models are generally an order of magnitude larger

than previous models. For example, the large BERT model contains 340 million parameters, and in recent

years larger transformer models have been introduced to contain even more parameters. Efficient

implementation of these models has become a major challenge even in data centers due to limited

resources such as performance, storage, space and computing power. In addition, these modelsrequire real-

time inference. These challenges are more advanced devices where computing and power resources are

more limited. (Kim et al., 2021, p. 1) Recent studies conducted by Sahn et. al. (2019) has also shown that

pre-trained language models have redundancy, and therefore, it is crucial and feasible to reduce the

8

computational overhead and model storage while retaining performance. (Sanh et al., 2019, p. 1) Training

large models from scratch typically takes four days on 4 to 16 Cloud tensor processing units (TPU)s, and

even fine-tuning and pre-trained models with task-specific datasets may take several hours to finish one

epoch. For these reasons, reducing computational costs is crucial for their applications in practice, where

resources are limited. (Sun et al., 2019, p. 1)

Knowledge distillation aims to transfer the knowledge embedded in a large teacher network where the

student network is trained to reproduce the behaviors of the teacher network (Jiao et al., 2019, p. 1).

Quantization is a technique that compresses models into smaller ones by representing a

parameter and/or enabling low bit precision, reducing memory consumption. floating

point arithmetic. These methods are used, for example, in integer-only quantization

approaches. Additionally, it should be noted that approaches using

floating-point arithmetic are inferior in terms of latency and power efficiency compared to integer-only

inference. (Kim et al., 2021, p. 1-2)

1.1 Motivation

The aim of this thesis is to produce information related to different BERT models’ relative functionalities

and compare 5 different BERT-based models named entity recognition models and develop my

competencies related to natural language processing. From a professional point of view, this study gives

me knowledge related to improving natural language models.

1.2 Research objectives and limitations

The purpose of this master thesis is to investigate different techniques for enhancing bidirectional encoder

representation from transformers model’s inference. The subject group of this thesis is people interested to

know different techniques for improving BERT models inference cost-efficiency and decreasing the latency

of the model. The research questions are as follows:

1. Which techniques can be used for decreasing BERT models’ production costs inference

recourses?

2. Which methods can be used for increasing the inference of the BERT model’s throughput

by not severely decreasing the accuracy of the model?

9

1.3 Data and Methodology

Methodologies used in this master thesis include investigating different possible techniques through

previous studies made in this area. Sources included especially regarding distillation and quantization

techniques are reached and described. Also, found possible techniques are used in practice to make the

model more efficient. The data used in this study is called CoNLL-2003. (Tjong et al., 2003, p. 1-2)

1.4 Structure of the Thesis

The first part of the thesis consists of the theoretical background, where the Bidirectional Encoder of

Representations from Transformers (BERT) is introduced. Next different model efficiency methods

concentrating on distillations and quantization methods are described. After the theoretical background,

different methods found for model inference optimization are presented in different academical articles.

In the empirical part data source used in the study is described and methods used for testing different

models. Results are analyzed and conclusions are derived from the literature review and empirical results.

10

2 Theoretical Background

2.1 BERT - Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representation from Transformers (BERT) is applied to language modeling. It is a

model introduced by researchers by Google and it is popular in a variety of NLP tasks like question

answering. The model consists of two encoders for encoding sequences and it takes two sequences for

encoding. One is the normal sequence and the other one is the reverse of it. The model makes it different

from previous models where sequences are taken in one direction only, from left to right to right to left.

(Sabharwal and Agrawal, 2021, p. 60)

The encoder consists of input embeddings, tokenization, vectorization, and positional encoding. One way

to think of a word embedding layer is as a lookup table, which allows for the acquisition of a learned vector

representation of each word, after which each word of a sentence is tokenized. After tokenization the tokens

are vectorized, where each word is represented as a vector. Finally, positional encoding is done, which is

based on the position of a specific word. Some information related to the positions in the input embeddings

needs to be provided since the transformer encoder does not have recurrence as recurrent neural networks

do. (Jain, 2022, p. 24-25)

The responsibility of a decoder is to produce text sequences. It is similar to encoders in having the layers

like multi-headed attention layers, adds and norm layers, and feed-forward layers. In addition, it has a linear

layer with a SoftMax classifier to emit probabilities of an output. The decoder takes the starting tokenized

word and then previous outputs if any and combines them with the output of the encoder. The beginning

of a decoder is like an encoder to large extent. The input is first placed via an embedding layer and then a

positional encoding layer. The positional embeddings are sent through to the first multi-head attention layer.

(Jain, 2022, p. 35)

The first Multi-headed Attention layer uses a lookahead mask to restrict the decoder from looking at tokens

that are yet to come. The mask is included both before and after the SoftMax calculation. The idea of the

mask is to calculate the attention score for the current word based on previous words and not for future

words in the sentence. The second layer of Multi-headed Attention takes the output from the first layer of

the decoder and combines it with the output of the encoder, which allows the decoder to understand better

as to which components of the encoder output to attend to the output of this layer are passed via a feed-

forward network. In the last step, the output of the previous layer and feed-forward network is again

11

normalized and passed to a linear layer with a SoftMax component for emitting probabilities. As an

example, the probability would be the probability of what could be the next word in the sentence. (Jain,

2022, p. 35)

Pretrained BERT does not require any architectural change and can be used for different tasks by modifying

the output layer. For grasping the relationship between a token or a word in the text it uses a transformer,

which consists of an encoder and a decoder. BERT requires only the encoder mechanism. The encoder

reads the input texts and can read the entire sequence of words at once instead of reading them sequentially

from right to left, which makes the model bidirectional. The sequences of tokens are embedded into vectors,

and they are used as input to the transformer. Then the vectors are processed in the neural network. As an

output neural network gives a sequence of vectors corresponding to the input tokens, and it is dependent on

the context in which it occurs. To surpass unidirectional constraints, BERT used two strategies: masked

language modeling and next-sentence prediction. (Sabharwal and Agrawal, 2021, p. 60-61, 65)

Input embedding in BERT is a combination of three types of embedding: position embedding, segment

embedding, and token embedding. Since order-related information is lost in transformers,

position embeddings are used to learn the order information. BERT learns a unique position embedding for

each position in the input stream, allowing BERT to express the position of words in a stream. In

segment keying, BERT learns keystones unique to the first and second keystone to help the

model distinguish between them. With segment embedding, BERT can use sentence pairs as input for tasks

such as answering questions. In token embeddings, token embeddings are learned by using tokens in

WordPiece token vocabulary. (Sabharwal and Agrawal, 2021, p. 66–67)

The vocabulary is initialized with individual characters in the language, then the most frequent

combinations of symbols in the vocabulary are iteratively added to the vocabulary. The vocabulary

inventory is initialized with all the characters in the text and the most frequent combinations of symbols in

the vocabulary are added iteratively to the vocabulary. (Graves, 2012, p. 2) The vocabulary contains

subworlds of words in their corpus. Summing the token, segment, and position embeddings of the input

representation of a token given make it a comprehensive embedding scheme containing empirical useful

information for the model. It was observed that WordPiece embeddings are designed to learn context-

independent representations, whereas the hidden layer embeddings are designed to learn context-dependent

representations. (Sabharwal and Agrawal, 2021, p. 66–67, 86)

12

Sequence transduction, sequence transformation is meant, where the input sequence is transformed into an

output sequence for example in speech recognition, machine translation, and text-to-speech translation.

(Graves, 2012, p. 1) One of the most competitive neural sequence transduction models has an encode-

decoder structure. In BERT architecture encoder maps the input sequence of symbol representations to a

sequence of continuous representations. Next, the sequence of continuous representation is passed to the

decoder, which generates an output sequence of elements at a time. At each step, the model is

autoregressive, which means that it uses the previously generated symbols as additional input information

when generating the next. The transformer is using self-attention and pointwise, fully connected layers for

the encoder and decoder. In the model, the architecture encoder is composed of 6 identical layers, which

have two sublayers. (Vaswani et al., 2017, p. 2)

An Artificial Neural Network (ANN) is a biologically inspired computational model, which consists of

processing elements called neurons, and connections between them with coefficients called weights, bound

to connections. The feed-forward network is one of the most common neural network architectures in which

connections between neurons are directed and going only in a global forward direction, avoiding the

formation of feedback loops. (Shanmuganathan, 2016, p. 48) To perform multiclass classifications with

reasonable results, the SoftMax activation function is used. The SoftMax function transforms a vector into

another vector for real values, each between 0 and 1, that sum up to 1. The activation function works like a

probability since the sum over vector values is 1 and its elements are all less than 1. Given real values zk

for i = 1, …, k the z = (z1, …, zk) the SoftMax vector is defined as follows. (Michelucci, 2022, p. 68)

 𝑆 (𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑒𝑗𝑘

𝑗=1

 (1)

The encoder is composed of a stack of six identical layers, each layer having two identical sub-layers. The

first is a multi-head self-attention mechanism and the second is a position-wise fully connected feed-

forward network. (Vaswani et al., 2017, p. 3) In the multi-head attention mechanism, the attention value

represents the contribution to the classification results, to further optimize the final output of the model. It

uses multiple parallel queries to extract multiple groups of different subspaces from features to obtain the

relevant information, and self-attention feedbacks the internal dependence between the data and captures

the key information of the sequence from different aspects. (Michelucci, 2022, p. 2)

Residual connection is hired round every of

the two sublayers, accompanied with the aid of using layer normalization. The decoder is also

composed of a stack of six same layers. The decoder inserts a third

13

sub-layer similarly to the two sub-layers in every encoder performing

multi-head interest over the output of the encoder stack. Like the

encoder, residual connections round every of the sub-layers are hired.,

accompanied with the aid of using layer normalization. Self-attention sublayer in the decoder stack is

modified to prevent positions from attending to subsequent positions. This masking ensures that the

prediction for position i can depend only on the known output at positions less than i. (Vaswani et al., 2017,

p. 3)

An attention function can be described as mapping a query and a set of key-value pairs to an output. Here

the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values.

The weights assigned to each value are computed by a compatibility function of the query with the

corresponding key. In Scaled Dot-Product Attention the input consists of queries and keys of dimensions

dk, and values of dimension dv. The dot products of the query with all keys are computed, divided by dk,

and the SoftMax function is applied to obtain the weight of the values. (Vaswani et al., 2017, p. 3)

Figure 1. Multi-Head Attention (Vaswani et al., 2017, p. 4)

14

The attention function on a set of queries is computed simultaneously, packed into a matrix Q. The keys

and values are also packed together into matrices K and V, and the matrix of outputs is computed with the

following equation. (Vaswani et al., 2017, p. 4)

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =
𝑄𝐾𝑇

√𝑑𝑘
𝑉 (2)

The most used attentions are additive and dot-product attention. Dot-product is identical to the above-

described algorithm, except for the scaling factor. Even though the two are similar in theoretical complexity,

dot-product attention is much faster and more space-efficient since it can be implemented using highly

optimized matrix multiplication code. (Vaswani et al., 2017, p. 4) Multi-Head attention is visualized in

Figure 1.

It was found beneficial by Vaswani et. al. (2017) to linearly project the queries, keys, and values hidden

state times with different, learned linear projections to dk, dk and dv dimensions, respectively. On each of

the projected entities, the attention function is performed in parallel, resulting in the final values. With

Multi-head attention, it was found that the attention allows the model to jointly attend to information from

different representation subspaces at different positions. (Vaswani et al., 2017, p. 4-5)

The Transformer uses multi-headed attention in three different ways. In the encoder-decoder attention

layer, queries come from the decoder layer above, and storage keys and values come from the encoder

output. The encoder contains self-service layers where all keys, values and queries come from the same

place, while the self-service layers in the decoder allow any position in the decoder to serve all positions in

the decoder up to and including that position. Each

of the layers contains a fully connected feedback network that is applied to each position separately and

identically. The learned embeddings are used to convert the input and output tokens to vectors. The decoder

also outputs the learned transform and the SoftMax function for converting the probabilities of the next

prediction token. Since neither recursion nor convolution is used, some information about the relative or

absolute positions of the tokens in the sequence must be included in order to take advantage of the sequence

order. Positional encodings are added to the input embeddings at the end of the encoder and decoder stacks.

(Vaswani et al., 2017, p. 5-6) Transformer model architecture is pictured in Figure 2.

15

Figure 2. Transformer model architecture (Vaswani et. al., 2017, p. 3)

16

Two BERT models have been implemented; the BERT base model and the BERT large model. The BERT

base model is a pretrained BERT model that has 12 layers of transformer block, 768 hidden units in each

layer, and 110 million parameters. Model can be further classified as BERT base-cased and BERT base-

uncased depending on the text. BERT large model has 24 layers, 1024 hidden units in each layer, and 340

million parameters. It can be also further classified as BERT large-cased and BERT large-uncased.

(Sabharwal and Agrawal, 2021, p. 62-63)

2.2 Masked language modeling

Masked language modeling is used to surpass the BERT model’s unidirectional constraint. The purpose is

to assist the bidirectional transformer by masking randomly tokens from the input test while the next

sentence prediction task jointly pre-trains text pair representations. The goal is to minimize the combined

loss function for both tasks during training. (Sabharwal and Agrawal, 2021, p. 61)

To predict a masked word, words surrounding it are used to predict the masked word. 15% of words are

masked when sequences are fed into BERT. Three different mask strategies are used. 80% of the masked

words are replaced with a [MASK] token, 10% are replaced with random words, and 10% of the time the

words are unchanged. The purpose is to bias the representation of the actual observed words is done because

if 100% of the masked words were used then the model would not necessarily produce good token

representations for non-masked words. This improves the model’s performance since too much focus on a

particular token or position has been prevented. Three steps need to be followed to generate a word

embedding using BERT: adding a classification layer on top of the encoder output, multiplication of the

output vectors by the embedding matrix, and the calculation of the probability of each word in the

vocabulary with SoftMax. Masked values are only considered by the loss function in the prediction, and

the non-masked words are ignored. (Sabharwal and Agrawal, 2021, p. 68)

2.3 Next Sentence prediction

Next sentence prediction is applied in order BERT model to understand how different sentences in a text

corpus are related to each other. For the training, the sentence pairs are taken as input. The goal is to predict

if the second sentence in the pair is the previous sentence in the original input text. In 50% of inputs second

sentence is the subsequent sentence as in the original text and in the other 50% of the pairs, the second

sentence is chosen randomly from the text. The model assumes that the random second sentence is

disconnected from the first sentence. (Sabharwal and Agrawal, 2021, p. 69)

17

Prior to training, inputs are processed. The process consists of three phases. The first two tokens are inserted into

a sentence pair. One is at the beginning of a sentence, and one is at the end of a sentence. Both sets are tokenized,

and the use of delimiters separates them. They are then entered into the model as a single input. In the

second phase, an embedding is added for each symbolic sentence, indicating whether the sentence is the first

or the second sentence. In the last phase before training, position embeddings are added to each token, which

help the model to indicate the token's position in the sequence. (Sabharwal and Agrawal, 2021, p. 70)

To predict the correct class for sentence pairs three steps are performed. The input sequence is passed

through the transformer model. Next using a classification layer, the output of the first sentence’s token is

transformed into a 2x1-shaped vector and finally, the probability is computed with SoftMax. (Sabharwal

and Agrawal, 2021, p 70-71)

2.4 Benchmarks for BERT models

The performance and accuracy the of BERT model have been evaluated several times over different types

of datasets for various NLP tasks. This is being done to check if BERT can achieve benchmark values

already set up for these datasets. These datasets evaluate the working of specific aspects of a model and the

most common benchmarks are discussed next. (Sabharwal and Agrawal, 2021, p. 83)

2.4.1 GLUE Benchmark

General Language Understanding Evaluation (GLUE) is a collection of datasets that can be used to train,

test, and analyze NLP models. These different models are compared with each other by the GLUE dataset.

The GLUE benchmark includes nine different datasets. To evaluate a model, it is first trained over a dataset

provided by GLUE, and then it is scored for the nine tasks. The final performance score is the average of

all the nine tasks. (Sabharwal and Agrawal, 2021, p. 83)

 𝐹𝑖𝑛𝑎𝑙 𝐺𝐿𝑈𝐸 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑇𝑎𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 (3)

There is no need to change the input layer because the layer accommodates all of the GLUE tasks. However,

the pretraining classification layer has to be removed. The BERT model scores a state-of-the-art result on

the GLUE benchmark, with a score of 80.5%. (Sabharwal and Agrawal, 2021, p. 83)

18

2.4.2 SQuAD dataset

The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of

questions asked on a series of Wikipedia articles. The answer to each of the questions is either a text segment

or a span from the passage. There are two versions of the SQuAD dataset 1.1 and 2.0. SQuAD 1.1 consists

of 50 000 unanswered questions and SQuAD 2.0 of 100 000 answered questions. The questions are similar

in both datasets. The BERT model can achieve an F1-score of 93.2 and 83.1 for SQuAD 1.1 and SQuAD

2.0 over the test dataset.(Sabharwal and Agrawal, 2021, p. 84)

2.4.3 IMBD Reviews dataset

The IMBD dataset is a film review dataset that was used to classify viewers' opinions of films. The

dataset consists of 25,000 reviews for testing. In addition to the training and testing data, there is unlabeled

data, and the dataset was also used to assess BERT in a sentiment ranking task. (Sabharwal and Agrawal,

2021, p. 84)

2.4.4 RACE Benchmark

RACE is a large reading comprehension dataset from the examination. he RACE dataset is used to evaluate

models in a reading comprehension task. The data set comes from the English tests of Chinese students.

Dataset consists of nearly 28 000 passages and 100 000 questions generated by human experts. BERT large

model achieves a score of 73.8 % on the RACE benchmark dataset. (Sabharwal and Agrawal, 2021, p. 85)

19

2.5 Types of BERT models

Various models have been developed based. Different variants have been developed to cater to different

types of NLP systems. In this section, four different variants are introduced. The variants covered in this

section are:

• ALBERT

• RoBERT

• DistillBERT

• StructBERT

2.5.1 ALBERT

The ALBERT model was developed jointly by Google Research and the Toyota Technologies Institute. It

is a smaller and smarter "lite" version of BERT that can be used with less processing power compared

to BERT, but at the expense of some accuracy. Both BERT and ALBERT share a similar core

architecture. ALBERT has a Transformer encoder and a vocabulary of 30,000 words equal to

BERT's. However, some architectural improvements have been made. Whereas in BERT the embed size of

the WordPiece is bound to the size of the hidden layer, in ALBERT the two parameters are not

bound and the embed parameters are split into two smaller arrays. In ALBERT, the one-hot vectors are

not projected directly onto the hidden layer, but are instead projected onto a smaller, lower-dimensional

matrix, which is then projected onto the hidden layers. (Sabharwal and Agrawal, 2021, p. 86)

Parameter efficiency is improved by sharing all the parameters across all layers. The feed-forward and

attention parameters are all shared, which helps stabilize network parameters. Also compared to BERT,

ALBERT does not use Next sentence prediction (NSP). Instead, it uses its developed training method called

sentence order prediction (SOP). It is used to model inter-sentence coherence loss, whereas BERT combines

topic prediction with coherence prediction. In benchmarks, ALBERT has outperformed BERT. (Sabharwal

and Agrawal, 2021, p. 87)

20

2.5.2 RoBERT

Facebook's artificial intelligence team has developed robust optimized BERT (RoBERT), and it is a

streamlined method for pre-training NLP systems. The method re-implements the neural network

architecture with additional pre-training improvements. While BERT has about 30,000 subwords, Robert

has about 50,000 subwords. Compared to BERT, RoBERT uses more training data and more iterations.

Static masking is applied in BERT, escaping words from the sentence during pre-processing. RoBERT

applies dynamic masking, generating a masking pattern each time a sentence is entered into the training.

The training is duplicated ten times and the data is masked differently. (Sabharwal and Agrawal, 2021, p.

88)

This has improved the performance of BERT-based models giving better results than static masking. Also,

the training objective differs from BERT. In BERT the relationship between the sentences is captured by

training on NSP. Experiments have shown that models trained without NSP performed better on several

BERT benchmarks. Training on longer sequences has achieved better results. (Sabharwal and Agrawal,

2021, p. 90)

2.5.3 DistillBERT

DistillBERT was introduced for the knowledge distillation required to solve the problem of calculating a

large number of parameters. Some NLP models can reach up to ten billion parameters. While this ensures

optimal performance, it prevents training and maintaining the model with limited computational resources.

In knowledge distillation, a larger model acts as a teacher to a smaller one that seeks to

replicate its findings and underlayer activation, also known as teacher-student learning. To generalize the

student model, the teacher's performance distribution can be used for all possible goals. (Sabharwal and

Agrawal, 2021, p. 90)

Distillation loss considers the combination of the output probabilities of the teacher (t) and the student (s),

and the teacher probabilities are calculated through temperature SoftMax. Compared to SoftMax,

temperature SoftMax gives a smoother output distribution, where the size of larger probabilities is

decreased, and the smaller ones are increased. (Sabharwal and Agrawal, 2021, p. 91)

To build a better model, the cosine embedding loss is used as a measure of the distance between the hidden

representation for the teacher and the student. In DistillBERT, the loss is the same as that used in the BERT

21

model to predict the correct token value for the masked token in the stream. Similar to the BERT model, the

DistillBERT network architecture is a transformative encoder model as a BERT base. However, with 66

million parameters, DistillBERT has half the number of layers compared to

BERT's,110 million parameters, which helps reduce computational complexity when

the computing environment is limited. On the GLUE benchmark, DistillBERT can achieve 97% of

the BERT-base score. (Sabharwal and Agrawal, 2021, p. 91-92)

2.5.4 StructBERT

StructBERT integrates language structures into BERT pretraining with two linearization strategies, namely

word-level order and sentence-level order. By including structural pre-training, StructBERT achieves better

generalizability and adaptability. In StructBERT, the ability of the MLM task is increased by shuffling a certain

number of tiles after masking words and predicting the right order. By randomly changing the order of

sentences, StructBERT can also better understand the relationship between sentences. After pre-training

StructBERT, the model can be referenced to task-specific data for a variety of downstream tasks, such as the

summary of documents. (Sabharwal and Agrawal, 2021)

The BERT base model does not explicitly model sequential order or higher-order word dependency in

natural language, while StructBERT can implement this by supplementing BERT training targets with

new structural targets of words. This is done in conjunction with Masked Language Modeling (MLM) and gives

the model the ability to restructure the sentence to get the correct order of randomly shuffled word tiles. In

addition, the goal of the original NSP-BERT model is extended by not only predicting

the set as well as the previous set, which allowed StructBERT to learn the sequential order of the set in a bi-

directional way. (Sabharwal and Agrawal, 2021, p. 93-94)

2.6 Named entity recognition

Named entity recognition is a technique for identifying and classifying named entities in text. The result is the

identification of different categories of words. These categories can be, for example, people,

nationalities, religious or political groups, buildings, companies, and countries. Agrawal and Sabharwal

(2021) states that Named Entity Recognition (NER) plays an important role in search engines

and conversational systems. Search engines are used to identify documents relevant to a query made by

a user, giving more importance to documents containing entities used in a search. Entities are used in

22

conversational systems to make a question asked by the user unique when the question relates to general

problems, but for different entities. (Sabharwal and Agrawal, 2021, p. 482)

Marrero et. al. (2013) state that NER is widely used for example in semantic annotation, question answering,

ontology population, and opinion mining. The term was first used at the 6th Message Understanding

conference in 1996. NER is one the areas which purports to identify the semantics of interest in

unstructured text to add a structure, which is one of the goals serving as the basis for other areas to manage

information. (Marrero et al., 2013, p. 482)

Semantic annotation goes beyond textual annotations about the concept of the documents to the formal

identification of concepts and their relations. These annotations bring two main benefits enhanced

information retrieval and improved interoperability. For example, semantic annotation might relate a city

name to the concept a of City linking the instance to a specific country name of the abstract concept of a

Country. NER techniques are widely used in question-answering systems as means to facilitate the selection

of answers. Ontologies play a key role in the semantic web and all the applications it supports depend on

technology to make information interoperable. One of the cornerstones is the proliferation of ontologies,

which aims to incorporate instances into existing ontologies. One of the pre-processing techniques for

opinion mining is the recognition of named entities of interest. From these entities opinions can be identified

and assessed as positive or negative. (Marrero et al., 2013, p. 483)

Testing five different NER tools by Marrero et. al. (2013) all seem implicit to recognize the categories of

people, organization, and localization as types of named entities. Less frequently recognized entities were

food products, natural elements, and names of events like wars. Only one system considered categories

such as currency, dates, and measurements, while other tools do not recognize them or classify them in a

category named miscellaneous, unknown, or other different definitions are given for named entities.

Marrero et. al. (2013) categorizes them in terms of the following four criteria: grammatical category, rigid

designation, unique identification, and domain of application. (Marrero et al., 2013, p. 486)

NER tasks can be divided into two subtasks: entity detection and entity classification. Entity detection aims

to detect whether a word string in a given text is an entity and in entity classification tasks the aim is to

judge a category of the detected entities. (Zong et al., 2021, p. 230)

Early research in NER mostly focused on rule-based methods and was commonly used among regular

expressions. For example, in English, person names usually start with capital letters followed by titles such

as Mr., Dr., or Prof. For example, databases have been constructed of location and organization names for

23

NER purposes. Nevertheless, with large databases, rule-based NER methods still face many challenges.

On the one hand, a phrase might lead to different types of entities. As an example, Washington can be either

a person’s name or a location name. Also, common words can be a type of entity. For example, Bill could

be an ordinary word or a name. Challenges might also occur with abbreviations. This means that rule-based

methods enhanced with entity databases are difficult to handle and cannot obtain high recognition accuracy.

The rule-based approach faces the problem of system maintenance. It requires constant modification or

addition of new rules that may conflict with existing ones. (Zong et al., 2021, p. 230-231)

Supervised NER systems attempt to design machine learning methods that learn automatic prediction

models on correctly labeled training data. This method is usually regarded in research as a sequence labeling

problem. In sequence labeling, the first step is to determine the label set and language granularity for

labeling. For example, BIO is a widely used label set. “B” denotes the beginning of an entity, “I” indicates

the middle or end of an entity, and “O” denoted the outside of an entity. (Zong et al., 2021, p. 232)

Supervised NER methods can achieve acceptable performance given large amounts of annotated data.

In practice, however, the corpus of annotations on named entities is limited. Some areas may not

be covered, e.g., financial areas. Also, the training sets contain only about 100,000 sets, which leads

to limitations in NER performance, especially in domain matching. There are also massive

untagged corpora in different languages and regions. In view of these shortcomings, research resorts to

semi-supervised NER methods. In semi-supervised methods, unlabeled data can be used in a variety

of ways. Unlabeled data can be used to extract more features based on the similarity of speech units, or

they can be used to extract different contextual patterns. The similarity of distributed language units can be

used to exploit more features in large unlabeled data to discover effective features. For example, the words

say and tell can be grouped into a group

provided that the group can be used as a feature word, say appears in the annotated corpus and tell

in unannotated data, tell and its context can be used to correctly predict the name Identities. (Zong et al.,

2021, p. 239-240)

Mining the diversity of context patterns is another purpose for using NER. Representative samples with

high confidence and low redundancy can be selected from the unlabeled data and treated as labeled samples

to enlarge the supervised training data. This method cannot effectively improve performance because

samples with high confidence base on the same context pattern as the training samples. For NER, this results

in the newly added instances failing to enrich the context features. (Zong et al., 2021, p. 240)

24

2.7 NER model evaluation

NER methods are usually evaluated objectively. First step is to select the test set, which not overlaps with

the training data. The test set is selected and manually labeled with entities. These entities include entities

such as person, location, and organization names according to the specification used for the training data.

If one method automatically recognizes the named entities in the test data obtaining the system output, the

performance can be calculated by comparing the output to the reference. (Zong et al., 2021, p. 241)

The calculation process includes three variables: count(correct), count(spurious) and count(missing).

Count(correct) is the number of entities correctly recognized in the system output, that is the overlap

between system output and the reference. Count(spurious) refers to the number of entities recognized in the

system output, but not considered as named entities in the reference. Count(Missing) refers to the number

of named entities that exist in the reference that are not recognized by the system in the output. Based on

these three variables, the precision, recall and F1 can be calculated. (Zong et al., 2021, 241)

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)+𝑐𝑜𝑢𝑛𝑡(𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠)
∗ 100% (4)

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

𝑐𝑜𝑢𝑛𝑡(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)+𝑐𝑜𝑢𝑛𝑡(𝑚𝑖𝑠𝑠𝑖𝑛𝑔)
∗ 100% (5)

 𝐹𝐼 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
∗ 100% (6)

2.8 BERT model evaluation

In NER, systems are usually evaluated based on how their output compares with the output of human

linguists 17. NER system can have different error types like system miss hypothesized an entity where there

is none, entity is completely missed, a wrong label was given to an entity, system noticed there is an entity

but got its boundaries wrong and a combination of two previous error types. (Sekine & Ranchhod, 2009, p.

18)

25

2.8.1 MUC score

In MUC a system is evaluated on two axes; its ability to find the correct type (TYPE) and its ability to find

exact text (TEXT). When an entity is assigned the correct TYPE, a correct TYPE is credited and correct

TEXT is credited if entity boundaries are correct, regardless of the TYPE. Or type and text three measures

are kept: the number of correct answers (COR), the number of actual system guesses (ACT) and the number

of possible entities in the solution (POS). Final MUC score is a micro-averaged f-measure (MAF), which

is the harmonic mean of precision and recall calculated over all entity slots on both axes. The harmonic

mean of two numbers is never higher than the geometrical mean. It tends toward the least number,

minimizing the impact of large outliers and maximizing the impact of small ones. Precision is calculated

by dividing COR with ACT, COR / ACT, and recall is calculated by dividing COR with POS, COR / POS.

(Sekine & Ranchhod, 2009, p. 19)

2.8.2 Exact-match evaluation

Models are compared based on the MAF with the precision being the percentage of named entities found

by the system that are correct and the recall being the percentage of named entities present in the solution

that are found by the system. If named entity is an exact match with the corresponding entity in the solution,

it is considered as correct. For some application the constraint of exact match is unnecessarily stringent.

(Sekine & Ranchhod, 2009, p. 19-20)

2.8.3 Automatic Content Extraction - ACE evaluation

Automatic Content Extraction (ACE) evaluation includes mechanisms for dealing various evaluation issues

like partial match and wrong type. It is more elaborated compared to previous tasks at level of named entity

“subtypes”, “class” as well as entity mentions. In ACE evaluation each entity has a parametrized weight

and contributes up to maximal proportion (MAXVAL) of the final score. For example, if each person is

worth one point and each organization is worth 0.5 point then it takes two organizations to counterbalance

one person in final score. In addition, for false alarms, missed entities and type errors customizable costs

(COST) are used. Partial matches of textual spans are only allowed if named entity head matches on at least

given proportion of characters, and temporal expressions are not treated in ACE. (Sekine & Ranchhod,

2009, p. 20)

26

Final score in particular evaluation method is called Entity Detection and Recognition Value (EDR), which

is 100 % minus the penalties. ACE evaluation scheme cost of error is very customizable, and it covers wide

range of problems. However, scheme is problematic because the final scores are only comparable when

parameters are fixed, and complex methods are not intuitive and make error analysis difficult. (Sekine &

Ranchhod, 2009, p. 21)

2.9 Cost efficiency of implemented models

The power of Transformers has been pushed to new levels with recent success in language models, leading

to new achievements for example in natural language processing. It also has been observed that with more

floating-point operations per second (FLOP)s the performance of pretrained Transformer models keeps

consistently improving. On the other hand, it is extremely expensive to pretrain and finetunes the state-of-

the-art models as they require more compared to traditional models. Due to these challenges, there has been

a number of efforts to reduce the cost of pretraining and finetuning self-attention models. Typical

approaches to tackle these issues are distillation, pruning, and quantization, where the aim is to derive a

lighter model from a well-pre-trained model by learning to remove less important operations and taking the

advantage of richer signals in the larger model. There are also aims to design an architecture that not only

has a lower resources-to-performance ratio but also scales as well as the Transformer in certain domains.

(Dai et al., 2020, p. 1)

For many sequence-level NLP tasks, the most common use case is to extract a single vector from the entire

sequence, which does not necessarily preserve all information down to the token-level granularity. For

example, in a study conducted by Galindez Olascoaga et. al. (2021) authors propose a sequential resolution

of the hidden representation in self-attention models to reduce sequence length which can lead to saving in

FLOPs and in memory, which can be re-invested in constructing a deeper model to boost the model capacity

without additional computational burden.

Size and computation constraints also limit the amount of available memory and compute power, and these

capabilities are in stark contrast with the state-of-the-art machine learning implementations, the inference

stage requiring a vast number of computations per second and gigabytes of storage space. These demanding

workloads are not attainable at the extreme, where devices are equipped with embedded CPUs that can

perform at ranges lower than ten Giga operations per second and include very small memory. Consequently,

the most extreme-edge realization of machine learning is currently located in the realm of deep neural

27

networks (DNN)s, both from an algorithmic and a hardware point of view. One can identify the following

trends in pursuit of efficient inference on DNNs:

• A Strategy for modifying and pruning the model topology, with the goal of making the model

as compact as possible by removing redundant connections and weight and exploiting weight

and structural scarcity.

• Parameter quantization, parameter reduction, which improves the saving of computing resources.

• Specialized Hardware where DNNs lend themselves to parallelization because of their layered

and uniform structures. For example, the use of graphics processing units (GPUs) has exploited

parallelization capabilities and other properties.

• Memory-based strategies where reduction of such transactions aims to exploit the properties of

memory cells to perform local computations before performing unnecessary transactions.

(Galindez Olascoaga et al., 2021, p. 10-11)

The impressive performance of BERT comes with a heavy computing and memory cost, which makes

on-device inference prohibitive. Most significantly, the BERT base model consumes a staggering 432

MB of memory in a 32-bit floating-point (FP32). Therefore, with limited resources is challenging and

requires tight co-design of the BERT model optimizations with dedicated hardware acceleration and

memory system design. For example, an early exit mechanism has been proposed to reduce the average

energy and latency. The early existing entropy is probabilistic of the classification confidence, which

is evaluated at the output of each computed Transform layer, and the inference exits when the entropy

value falls below a pre-defined threshold. While this approach can appreciably reduce computation and

energy costs, the achieved latency can vary drastically from one input sentence to another, potentially

violating the strict real-time latency constraint of the application. (Tambe et al., 2021, p. 831)

28

3 Methods considered in this study

3.1.1 Distillation

Distillation is a process through which a large and accurate model transfers its knowledge to a smaller

model with less representational power. The process consists of two steps. In the first step, a large teacher

is trained on gold labels and in the second step a smaller student is trained on the labels produced by the

teacher, also known as soft labels. The idea in knowledge distillation is that a larger model acts as a teacher

for a smaller model. The smaller model tries to replicate the teacher’s outputs and sublayer activation for a

given set of inputs, which is also known as teacher-student learning. Applying the distribution information

from the teacher’s model helps in the creation of student models for a different purpose. Since soft labels

carry additional information distillation outperforms standard training. (Sabharwal and Agrawal, 2021, p.

90-91)

Due to the drawbacks of a large number of parameters compression techniques like knowledge distillation

were introduced in DistillBERT model. Recently developed NLP models show an increase in parameter

count, which prevents model training and serving due to limited computational resources. (Sabharwal and

Agrawal, 2021, p. 90-91)

Go et. al. (2021) discusses three different categories of knowledge distillation: response-based knowledge,

feature base knowledge, and relation base knowledge. In response knowledge, the idea is to mimic the

prediction of the teacher model by referring to the neural response of the last output layer of the teacher

model. Soft targets are known as the most popular response-based knowledge for image classification. As

a defect, this distillation category fails to address the intermediate-level supervision from the teacher model.

(Gou et al., 2021, p. 4-5)

A good extension of response-based knowledge and feature-based knowledge from the intermediate layers.

So-called feature maps, the output of the last layer, and the output of the intermediate layers can be used as

knowledge to supervise the training of the student model. The main idea is to directly match the feature

activations of the teacher model and the student. (Gou et al., 2021, p. 5)

In relation-based knowledge distillation, different layers of data samples are further explored. For example,

a flow of solution process is proposed, which is defined by a Gram matrix between two layers. The matrix

summarizes the relations between pairs of feature maps, which are calculated using the inner products

between features from two layers. Via singular value decompositions using the correlations between feature

29

maps as the distilled knowledge was proposed to extract information in the feature maps. (Gou et al., 2021,

p .6)

Distillation schemes, so-called training schemes can be divided into three main categories: offline

distillation, online distillation, and self-distillation. In offline distillation the training process consists of

two stages: the teacher model is trained on a set of training samples and in the form of logits the intermediate

features teacher model is used to extract the knowledge. The scheme usually employs one-way knowledge

transfer and two-phase training procedures. (Gou et al., 2021, p. 8)

To improve the performance of the student model online distillation is proposed, when a large-capacity

high-performance teacher model is not available. In online distillation, the teacher model and the student

model are updated simultaneously. To reduce computational cost multi-branch architecture was proposed,

in which each branch indicates a student model and different branches share the same backbone network.

In a distillation method co-distillation, multiple models with the same architectures are trained in parallel

and any other model is trained by transferring the knowledge from one to another. An online scheme is a

one-phase end-to-end training scheme with efficient parallel computing. However, usually existing online

methods fail to address the high-capacity teacher online setting making it more interesting to explore. (Gou

et al., 2021, p. 8-9)

Self-distillation is a special case of online distillation that uses the same networks for the teacher and student

models. A new method of self-distillation has been proposed, in which knowledge is distilled from the deeper

sections of the lattice into its shallow sections. A special variant of auto-distillation is snapshot distillation,

in which findings from earlier epochs (teacher) are transferred to later epochs in another network (student). This

is done to support's supervised training process within the same network. To further reduce the inference

time using distillation-based early output training, it has been proposed that the early output layer attempts to

mimic the output of the later output layer during training. (Gou et al., 2021, p. 9)

In short online distillation means the teacher teaches the student, in online distillation both teacher and the

student study together with each other, and in self-distillation student learns knowledge by himself.

Different distillation schemes can be combined to complement each other. As an example, both self-

distillation and online distillation are integrated via the so-called multiple knowledge transfer framework.

(Gou et al., 2021, p. 9)

Next different distillation algorithms are presented. Algorithms, which are discussed are adversarial, cross-

modal, graph-based, attention-based, data-free, quantized, lifelong, and NAS-based distillations.

Many competing methods of knowledge distillation have been proposed to provide teacher and student

networks with a better understanding of data distribution. In generative antagonistic networks (GANs),

30

the discriminator estimates the probability that a sample comes from the training data distribution, while the

generator tries to fool the discriminator with generated data samples. Methods using GAN can be divided into

three main categories. In the first category, the synthetic data is generated

with an adversarial generator used as a training data set or to augment the training data set. In the second

category, a discriminator is introduced to distinguish the student and teacher model samples through the use of

logits or features. In the last category, the distillation of contradictory knowledge is performed online, with

the student and the teacher optimizing together in each iteration. (Gou et al., 2021, p. 11)

The use of logit averaging, and functional representation has been shown to be effective in training students

across multiple teacher networks. Two networks of teachers can be used to use logit and

intermediate functions, in which one teacher transmits response-based knowledge to the student and the other

teacher transmits function-based knowledge to the student. Various methods have been proposed to simulate

multiple teachers by adding types of sounds to a specific teacher to realize knowledge transfer and explore the

power of teachers by using multiple teachers, the distillation of knowledge from multiple

teachers can be rich Deliver knowledge and adapt a versatile learning model more efficiently. (Gou et al., 2021,

p. 12)

The reason that data or labels are not available in some modalities it is, important to transfer knowledge

between different modalities using cross-modal distillation algorithms. The methods can rely on unlabeled

paired samples involving different modalities, for example, RGB images and depth images. Knowledge

distillation performs well in visual recognition tasks in cross-modal scenarios. (Gou et al., 2021, p. 13)

Graph-based distillation algorithms examine relationships between data, while most knowledge distillation

algorithms focus on transferring knowledge from individual instances from teacher to student. There are two

main ideas behind these methods; Using the chart as a carrier of the teacher's knowledge or using the chart to

control the delivery of the teacher's knowledge message. In a study, a distillation diagram is introduced

to examine the relationships between different modalities. The vertices

represent a modality and the edges indicate the strength of the connection between one modality and

another. This kind of algorithms can transfer the knowledge about the informative structure of the data. (Gou et

al., 2021, p. 14)

In data-free distillation algorithms as the name implies no training data exists and the data is newly or

synthetically generated. In some studies, the transferred data is generated by a GAN. In one of the proposed

methods, the transferred data is reconstructed by using the layer activations or layer spectral activations of

the teacher network. In one of the studies zero-shot, knowledge distillation was proposed that does not use

existing data. Using the parameters of the teacher model the transferred data is produced modeling the

SoftMax space. Data-free distillation has shown potential under the condition of unavailable data when the

31

data can be generated from the feature representations from the pre-trained teacher model. (Gou et al., 2021,

p. 15)

In some knowledge distillation methods, quantification processes in the teacher-student framework have been

proposed. For example, a quantified distillation method, in which knowledge is transferred to a quantified

network of higher-weight students, has been proposed. In a study, knowledge is transferred from a high-

precision network of teachers to a small, low-precision network. The master in the feature maps is first

quantized and knowledge is transferred from the quantized master to a quantized student network. In recent

studies, a self-distillation training scheme was developed to improve the performance of

quantized depth models. In these models, the teacher shares the parameters of the student model. (Gou et al.,

2021, p. 15)

The distillation method of lifelong learning includes three different learning methods: continual learning,

continuous learning, and meta-learning. The aim is to accumulate previously learned knowledge and

transfer the knowledge to future learning. 15 For example meta-transfer networks have been proposed that

can determine what and where to transfer in the teacher-student architecture. Different lifelong methods

have been developed to extract the learned knowledge and teach a student network new tasks to address the

problem of forgetting in lifelong learning. (Gou et al., 2021, p. 16)

In neural architecture search, the idea is to identify deep neural models and adaptively learn appropriate

deep neural structures. Here in distillation knowledge transfer depends not only on the teacher but also on

the architecture of the student model. Issues related to student learning from the teacher might make it

difficult due to the capacity gap between the teacher and a student model. (Gou et al., 2021, p. 16)

Models like BERT are very time and resource consuming with complex structures, so knowledge distillation in

natural language processing is widely studied, and many different methods have been proposed to solve

resource consumption in NLP tasks. Examples of these tasks include neural machine translation, text generation,

question-answer systems, event detection, document retrieval, and text recognition. A so-called patient

knowledge distillation was proposed for the compression of the BERT

model, in which the feature representation of the token [CLS] of the track layers is transferred from the teacher

to the student. To speed things up, a speech inference model called TinyBERT was introduced. It is a two-step

transformative knowledge distillation that includes both cross-domain and task-specific knowledge distillation.

(Gou et al., 2021, p. 20)

32

3.1.2 Quantization

Quantization involves improving the efficiency of deep learning computations through smaller

representations of model weights. By applying different quantization methods, the aim is to reduce the

number of bits to represent a single scalar parameter. The definition of quantization is the division of a

quantity into a discrete number of small parts. Often the parts are assumed to be integral multiples of a

common quantity. The oldest example of quantization is rounding off. Generally, a can be defined a

quantizer as consisting of a set of intervals or cells, where the index set is ordinarily a collection of

consecutive integers beginning with 0 or 1, together with a set of reproduction values or points or levels.

(Gray and Neuhoff, 1998, p.1)

In a uniform quantizer, the levels are evenly distributed, and the thresholds are midway between adjacent

levels. In an infinite number of levels, all cells have a width equal to the delta, the distance between levels.

If only a finite number of levels are allowed, then all but 2 cells are delta-wide and the outermost cells are

half-infinity. Given a cell width delta uniform quantizer, the region of the input space within delta/2 of a

certain quantizer level is called the granular or support region. The outer range where the quantization error

is unbounded is called the overload or saturation range. In general, the supporting or granular region of a

non-uniform quantizer is the region of the input space within a relatively small distance of a given

level. The overload region is the complement of the granular region. (Gray and Neuhoff, 1998, p. 1)

By measuring the rendering that results from a quantizer on the original, the quality of a quantizer can be

measured. One way is to define a bias measure that quantifies the cost or bias that results from reproducing

x and x and consider the average bias as a measure of a system's quality. Here, a smaller average distortion

means higher quality. One of the most distorting errors is the squared error. In practice, the average is a

sample average when the

quantifier is applied to a sequence of real data. The theory assumes that the data share a probability density

function that corresponds to a generic random variable and the mean bias becomes an expectation. (Gray

and Neuhoff, 1998, p. 1)

It is desirable to have the average distortion as small as possible. Negligible average distortion is achievable

by letting the cells become numerous and tiny. For describing the quantizer output to a decoder there is a

cost in terms of the number of bits. The goal of quantization is to encode the data from a source,

characterized by its probability density function, into as few bits as possible. This is done in a way that

33

reproduction may be recovered from the bits with as high quality as possible. Quantization has a trade-off

between the two-performance measure: average distortion and rate. (Gray and Neuhoff, 1998, p. 2)

Most generally speaking, quantization complexity has two aspects: arithmetic and memory

complexity. Arithmetic complexity represents the number of arithmetic operations per sample that must be

performed when encoding or decoding. Memory complexity represents the complexity of the amount of

auxiliary memory required for encoding or decoding. Keeping them on separate

paths is being considered as the associated costs vary by location and in some locations, storage is

so inexpensive that one is tempted to ignore it. Some techniques benefit from more memory, although

the cost per unit is low. Memory usage should be increased until the ratio of the marginal gain to the cost

of additional increases is small. At this point, the total cost of memory can be significant. These complexity

measures require a number of qualifications. A decision must be made whether to count the encoding and

decoding complexities separately, add them up, or just one of them is important. (Gray and Neuhoff, 1998,

p. 2361)

When evaluating the complexity of a quantization technique, it is interesting to compare the complexity

invested in the lossy encoder/decoder versus that of the lossless encoder/decoder. A quantizer is considered

low complexity if both coders are low complexity. Some fixed-rate techniques, such as lattice quantization

and scalar vector quantization, have so-called indexing problems. In an indexing problem, it's easy to find

the cell that the source vector is in, but the cells map to a set of N indices, which are not simply the integers

from 1 to N, where N is the number of cells. The non-trivial part is converting the cell identity to a sequence

of log N bits. Some vector quantization techniques that are not prohibitively complex to implement but

have many codevectors that are overly complex in design or require an excessive amount of training data.

Another problem is that in some applications it is desirable that the encoder's output be progressively

decodable in the sense that the first bits it receives can be roughly reproduced. Also,

improved reproductions are made as more bits are received. These quantizers a

are referred to as progressive or embedded. In some applications it is desirable that the encoding is also

progressive. As it turns out, several vector quantization approaches address these last two problems with

reduced complexity, meaning they're easy to design and advanced. (Gray and Neuhoff, 1998, p. 2362)

Lattice quantization can be viewed as a vector generalization of uniform scalar quantization that contains

the playback codebook as a subset of a regular lattice. The network is the set of all vectors. The result is

a Voronoi partition where all cells have the same shape, size, and orientation. The quantization technique

was proposed by Gersho because of its near optimum for high-resolution, variable-rate quantization

of evenly distributed sources. Although

34

low complexity algorithms were found for the lossy encoder, issues impact the performance and

complexity of the lattice quantizers. For variable rate coding, the network must be scaled to get the

desired rate and distortion. Also, an algorithm must be implemented to map integers to variable-length

binary keywords. For rate R fixed rate coding, the network must be scaled and a subset of

2kR network points must be identified as the code vectors. This includes a support region.

The grid quantizer is usually chosen to have the same support when the source has finite support. If

not, then the scaling factor and grid subset are usually chosen such that the resulting quantizer

support range has a high probability. In both cases, for the assignment of binary sequences to the

chosen code vectors i.e., for indexing, a low-complexity technique is required. (Gray and Neuhoff, 1998,

p. 2363)

A product quantizer uses a reproduction codebook that is the Cartesian product of lower dimensional

reproduction codebooks. For example, the application of a scalar quantizer to k successive samples can be

viewed as a product quantizer operating on the k-dimensional vector. It makes searching easier and, unlike

the special case of a sequence of scalar quantizers, the search needs to be comprised-independent searches.

Products of vector quantizers are also possible. Typically, the product quantizer is applied to some functions

or features extracted from the vector. (Gray and Neuhoff, 1998, p. 2364)

An example of a product quantizer is a shape-gain vector quantizer that uses a product reproduction

codebook consisting of a positive scalar gain codebook and a positive scalar codebook in the form of k-

dimensional vectors of a uniform norm. One of the advantages of these systems is that by separating these

two features, scalar quantization can be used for the gain feature and a lower rate codebook for the shape

feature. This special feature can have a larger dimension with the same search complexity. Problems occur

in an example of the rate allocation problem; What is the best way to split the bits between two codebooks

in an overall rate limit? In a shape-gain vector quantizer, the optimal lossy encoder

will generally not see only one coordinate at a time. Low complexity can be achieved by separate and

independent quantization of the components, but usually a suboptimal

encoder. With this particular quantizer, the optimal lossy coder is a simple sequential operation. The gain

quantizer is scalar, but the choice of one of its quantization levels depends on the result of another

quantizer, the shape quantizer. The Fischer pyramid vector quantizer is also a type of shape

gain quantizer. Here the codevectors of the shape codebook are constrained to lie on the surface of a

pyramid of dimension k, that is, the set of all vectors whose components have magnitudes that sum to one.

(Gray and Neuhoff, 1998, p. 2364)

35

Usually called polar quantizers are two-dimensional shape-gain product quantizers. In the basic scheme,

the codebook consists of the Cartesian product of a nonuniform scalar codebook for the phase, and a two-

dimensional source vector is represented in polar coordinates. The first versions used independent

quantization of the magnitude and phase information. In later versions, better versions used a method

described above, and some allowed the phase quantizers to have a resolution that depends on the outcome

of the magnitude quantizer. With high-resolution analysis, the rate-distortion performance of these

quantizers can be studied. These analyses allow for finding the optimal point density for the magnitude

quantizer and the optimal bit allocation between magnitude and phase. (Gray and Neuhoff, 1998, p. 2365)

Scalar-Vector Quantization attempts to match the performance of an optimal entropy-constrained scalar

quantizer with a low-complexity fixed-rate structure vector quantizer. A technique called block-constrained

quantizer is easier to describe. In block-constrained quantizer, the reproduction codebook is a subset of the

k-fold product of some scalar codebook. The scalar levels are associated with the variable-length binary

codewords. Given some target rate R, the k-dimensional codebook contains only those sequences of k

quantization levels for which the sum of the lengths of the binary codewords associated with the levels is

at most kR. Using dynamic programming the minimum distortion codevector can be found. Using a

knapsack packing or Lagrangian approach an essentially optimal search can be performed with low

complexity. (Gray and Neuhoff, 1998, p. 2366)

In tree-structured quantization, a k-dimensional tree-structured vector quantizer is a fixed-rate quantizer

with rate R. Its encoding is guided by the balanced binary tree of depth kR. With each of its 2kR terminal

nodes, also called leaves, there is a codevector associated. K-dimensional test vector associated with each

of its 2kR -1 internal nodes. Quantization of the source vector proceeds in a tree-structured search by finding

which of the two nodes stemming from the root node has the closer test vector to the source vector. Then

find which of the two nodes stemming from this node has the closer testvector until a terminal node and

codevector are found. The binary encoding of this codevector consists of the sequence of kR binary

decisions that leads to it. Using a table lookup decoding is done as in unstructured vector quantization.

Using this method encoding requires storing the tree of testvectors and codevectors, demanding

approximately twice the storage of an unstructured codebook. However, encoding requires only 2kR

distortion calculations, which is a tremendous decrease over the 2kR required by a full search of an

unstructured codebook. (Gray and Neuhoff, 1998, p. 2366)

Arithmetic complexity can be roughly halved to kR operations per sample and 2kR vectors in the case

of quadratic error distortion. This can be achieved by storing the normal to the hyperplane at each interior

36

node, bisecting the test vectors at the two nodes derived from them, and determining on which side of the

hyperplane x lies by taking an inner product of x with the normal to a threshold is compared, which is also

stored. The greedy method of designing vector quantization of tree structures is to first design

the test vectors derived from the root node. This can be done by applying Lloyd's algorithm to a training

set. A tree-structured quantifier is analogous to a classification or regression tree. As such, unbalanced,

tree-structured quantizers can be developed using the grow-and-prune gardening metaphor, and the best

known is the CART algorithm. With CART, a balanced or imbalanced tree with more

leaves than necessary is first cultivated and then pruned. By splitting all the nodes at each level of the tree

or splitting one node at a time or greedily to maximize the reduction in distortion by increasing the rate, a

balanced tree can be grown. The tree can then be pruned by removing all descendants of all

internal nodes, making it a leaf. The method increases average distortion but decreases speed. In

addition, it is likely that in cases of moderate to severe distortion, pruning will remove the leaves

corresponding to the elongated cells, like cubes cut in half, leaving mainly cubic cells. (Gray and Neuhoff,

1998, p. 2367)

As a form of tree-structured quantization with reduced arithmetic complexity and storage, multistage vector

quantization was introduced. A single codebook could be used for all branches of a common length instead

of having a separate reproduction codebook for each branch in the tree. This is achieved by coding the

residual error accumulated to that point instead of coding the input vector directly. In other words, by the

following stage, the quantization error from the previous stage is quantized in the usual way. Reproduction

is formed by summing the previous reproduction and the newly quantized residual. A multistage vector

quantization contains all codevectors formed by summing codevectors from the reproduction codebooks

used at each stage. In a sense, the multistage quantizer has a direct sum reproduction codebook and it can

be viewed that the reproduction codebook is determined by the Cartesian product of the stage codebooks.

Multistage structuring leads to a suboptimal vector quantizer for its given dimension. Usually, the direct

sum for the codebook is not optimal. The greedy search algorithm, in which the residual from one stage is

quantized by the next does not find the closest codevector in the direct sum codebook. In general, the usual

greedy design method, which uses a Lloyd algorithm to design the first stage in the usual way and then to

design the second stage to minimize distortion when operating on the errors of the first does not design an

optimal multistage vector quantizer. (Gray and Neuhoff, 1998, 2367)

Implementing multistage-conditioned vector quantization calls for the storing of a scale issue and

a rotation for every first degree. The multistage operates at the first-degree residual

earlier than quantization via way of means of the second one degree. Since the first-degree cells are

almost spherical, the rotation profits most effective a small quantity and can be omitted.

37

Complexity may be decreased via way of means of the usage of a lattice vector quantizer as the second one

degree because the best-recognized lattice tessellations are so near the best-recognized

tessellations. As a way of circumventing the reality that optimum vector

quantizers cannot be applied with commanders, multistage-conditioned two-degree

quantizers may be considered as having a piecewise-regular factor density. (Gray and Neuhoff, 1998, p.

2368)

Implementing cell-conditioned vector quantization requires the storing of a scale factor and a rotation for

each first stage. The cell operates on the first-stage residual before quantization by the second stage. Since

the first-stage cells are so nearly spherical, the rotation gains only a small amount and may be omitted.

Complexity can be reduced by using a lattice vector quantizer as the second stage since the best-known

lattice tessellations are so close to the best-known tessellations. As a means of circumventing the fact that

optimal vector quantizers cannot be implemented with commanders, cell-conditioned two-stage quantizers

can be viewed as having a piecewise-constant point density. (Gray and Neuhoff, 1998, p. 2368)

Codebook sharing is another scheme to adapt each phase to the previous one. Here each stage has a finite

set of reproduction codebooks, one of which is used to quantize the rest based on the sequence

of results from the previous stage, and each codebook is shared by a subset of the possible sequences of the

previous stages. The method lies between the conventional multi-level vector quantizer and the tree-

structured vector quantizer. First, each stage has a

codebook shared by all result sequences from previous stages, and in the second, a different codebook

is actually used for each result sequence from previous stages. (Gray and Neuhoff, 1998, p. 2368)

Feedback vector quantization allows the encoder and decoder to share a finite set of states and

a custom quantizer for each state. The state must be determinable from knowledge of an initial state in

combination with the binary code words transmitted to the decoder. Here both the encoder and the decoder

must be able to track the state without channel errors. The result is a finite state version of a

predictive quantifier. It is also known as an affine vector quantizer. In this particular

quantization technique, given the binary keyword and state, the optimal playback decoder gives us a

conditional expectation of the input vector. The optimal lossy encoder is not easy to describe. The next

stage should be chosen in a way that ensures good future performance, rather than in a greedy way that

minimizes the current squared error. Both final state and predictive vector quantizers generally use memory

in the lossy encoder but use a memoryless lossless code that is applied independently to each

38

subsequent binary codeword. One can make dependent on previous binary code word or make lossless

code state dependent. (Gray and Neuhoff, 1998, p. 2369)

One way to introduce memory into the lossy encoder of a vector quantizer to attain higher dimensional

performance with low dimensional complexity is called address-vector quantization. In this method, in

addition to the usual reproduction codebook, there is an address codebook containing permissible sequences

of indices of code vectors in the codebook. In a contained channel code outer code has the same role as the

address codebook, which limits the allowable sequences of codewords from the inner code. The method

allows address-vector quantization to exploit the property that certain sequences of codevectors are much

more probable than others. (Gray and Neuhoff, 1998, p. 2369)

In tree/trellis encoded quantization, unlike vector quantizers on tree structures, these systems enforced the

tree structure on the sequence of symbols and not on a single vector of symbols. In the case

of channel coding, where a good channel code can be converted into a good source code by reversing

the order of encoder and decoder, the encoder is a convolutional code, the input symbols are shifted into

a shift register as output symbols. formed by a linear combination of the shift register contents, shifted

times. The sequence of output symbols could be represented by a tree structure. In the tree structure,

each tree node corresponding to the state of the shift register and the branches connecting the nodes has

been determined by the symbol last entered the shift register and identified by the corresponding

output, the resulting output symbol if it is a branch taken out. Tree and trellis encoded quantizers can be

viewed as vector quantizers with large block lengths and a reproduction codebook constrained to

be small the possible outputs of a nonlinear filter or an affine state quantizer or a plus-

dimensional vector quantizer. Both generate long codewords with a lattice structure. (Gray and Neuhoff,

1998, p. 2369)

Traditional trellis-encoded systems can be improved with trellis-coded quantization by labelling the trellis

branches with entire sub codebooks rather than with individual reproduction levels. The gain is a reduction

in encoder complexity for a given level of performance. Combinations of trellis-coding quantization have

achieved excellent performance for example in image coding applications. (Gray and Neuhoff, 1998, p.

2370)

Gaussian quantization showed that a Gaussian source has the worst velocity warp function of any source

with the same variance, indicating that the Gaussian source was extreme in terms of source encoding. This

has provided a robust approach to quantization in the sense that there are vector quantizers designed for the

39

Gaussian source with a given process domain distortion that will not yield worse distortion when applied to

any source with the same variance. The method has provided a approach to robust vector quantization.

Robust vector quantization is code that may not be optimal for the font and would perform no worse than

the Gaussian source it was designed for. The external properties of the Speedwarp function to a source

with memory. In another study, it was shown that code developed for a Gaussian

source would perform essentially the same if applied to another process with the same covariance

structure. One approach uses the central limit theorem and then the known structure of an optimal

scalar quantifier for a Gaussian random variable to encode a general process. The Gaussian variable is first

filtered to produce an approximate Gaussian density, the scalar result is quantized, and then back

filtered to retrieve the original. (Gray and Neuhoff, 1998, p. 2370)

In the min-max average sense, the Gaussian quantizers were described as being robust. A vector quantizer

designed for a Gaussian source will yield no worse average distortion for any source in the class of all

sources with the same second-order properties. An alternative formulation is to place a maximum distortion

requirement the on quantizer design. If a quantizer bounds the maximum distortion for a class of sources a

quantizer is considered robust. (Gray and Neuhoff, 1998, p. 2370)

A quantizer is no worse than a fixed distortion value for all fonts in some collections. An alternative

approach is to be greedy and try to design code that delivers near-optimal

performance. This occurs regardless of what source is encoded within any collection, which is the idea of

the universal quantization approach. The idea is to have a lossless encoder that works well

for different sources by running multiple lossless codes in parallel and choosing the

that produces the fewest bits over a period of time. The lossless encoder would work for different sources.

It does this by running multiple lossless codes in parallel and choosing the one that produces the fewest bits

over a given period of time, sending a small overhead to let the decoder know what code the

encoder used. The existence of a universal fixed-rate lossy code has been proved under certain

assumptions about the source statistics and the source and codebook alphabet, and the idea has been

used, for example, to extend a coding theorem to a non-stationary source. The idea was

used using the ergodic decomposition to interpret a non-ergodic source as a universal coding problem for a

family of ergodic codes. A universal code is theoretically more complicated than an ordinary

code. Instead, in practice it may mean that codes with smaller dimensions can be more efficient,

as separate codebooks can be used for different behavior in the short term. Previously, universal

quantization was considered more of a theory development method than a practical code design

algorithm. Works assumed that the encoder and decoder had copies of the codebook used. A system has

been considered where the codebooks are designed in the encoder. The codebooks were also encoded and

40

transmitted to the decoder, as is usually done with codebook supplementation. (Gray and Neuhoff, 1998, p.

2370–2371)

Performance tradeoffs can be improved by allowing both rate and distortion to vary. The universal coding

problem was formulated as an entropy-constrained vector quantization problem for a family of sources and

Lloyd-style design algorithms for the collection of codebooks subject to Lagrangian distortion measure.

Measure yields a fixed rate-distortion slope optimization rather than fixed distortion or fixed rate. To study

the rate of convergence with block length to the optimal performance high resolution quantization theory

was used. It yielded results consistent with earlier convergence results developed by other means. The fixed-

slope universal quantizer approach was further developed with other code structures and design algorithms.

Another approach resembling traditional adaptive and codebook replenishment- did not involve training

but created and removed code vectors according to the data received and an auxiliary random process in a

way that could be tracked by a decoder without side information. (Gray and Neuhoff, 1998, p. 2371)

Interpolated quantization randomizes the effect of uniform quantization to minimize visual artifacts. The

goal of dithering is to make the reconstruction error more like signal-independent additive white

noise. Dithering, rather than directly quantizing an input signal, quantizes a signal that consists of a random

process and a separate signal called the dithering process. Subtractive dithering achieves well behaved

quantization noise as well as quantization error. However, is impractical for two main reasons. First, the

receiver generally does not have a perfect analog connection to the transmitter, and therefore a pseudo-

random deterministic sequence must be used in both the transmitter and the receiver. However, there is no

guarantee that the quantization error and noise will have the properties that apply to true random

dithering. Second, subtractive interpolation, which looks like a sampling function of a random process with

no memory, is complicated to implement. Requires state RAM dither, high precision

arithmetic, and perfect timing. (Gray and Neuhoff, 1998, p. 2371–2372)

Non-subtractive dither is not capable of making the reconstruction error independent of the input signal,

but the proper choice of dithering function can make the conditional moments of the reproduction error

independent of the input signal. As an example, the dithering function can make the perceived quantization

noise energy constant as an input signal fades from high intensity to low intensity. Otherwise, it can exhibit

strongly signal-independent behavior. In addition, in whitening quantization noise and making the noise or

its moments independent of the input, dithering has a role in the proof of universal quantization. It has been

shown that even without high-resolution theory, uniform scalar quantization combined with dithering and

vector lossless coding could yield performance within 0.75 bit/symbol of the rate-distortion function. Also,

extensions to lattice quantization and variations of this result have been developed. (Gray and Neuhoff,

1998, p. 2372)

41

Near optimal communication of an information source over a noisy channel can

be achieved by quantization or coding of the source separately from source and channel coding or error

control coding of the resulting scrambled source for reliable transmission of a noisy channel.

This was stated in the separation theorem of information theory. Common source and channel codes,

codes that together account for quantization and reliable communication, must be considered if

is to be implemented near the Shannon limit for moderate delays or block lengths. There are a variety

of code structures and design methods that have been considered for designing source and channel code

together. (Gray and Neuhoff, 1998, p. 2372)

When designing a quantizer to use noisy channels, one approach is to replace the distortion measure that a

quantizer is optimized for with the expected distortion over the noisy channel, so

that the channel's statistics are included an optimal quantizer design formulation. The method was called

optimized channel quantization. The method was applied to Shannon's source coding theorem and

the Lloyd-style layout algorithm was also provided. The method has also been applied to the quantization

of tree-structured vectors. (Gray and Neuhoff, 1998, p. 2372)

To join source and channel coding based on a quantizer structure and not explicitly involving typical

channel-coding techniques, another approach is to design a scalar or vector quantizer for the source without

regard to the channel. Here the resulting indices are coded in a way that ensures that the small Hamming

distance of the channel codewords corresponds to a small distortion between the resulting reproduction

codewords. This is done to correspond to that of the resulting reproduction codewords. The odes usually

doing this are called index assignments. For example, index assignment has been introduced in an iterative

search algorithm for designing index assignments for scalar quantizers, which has been extended to vector

quantization. (Gray and Neuhoff, 1998, p. 2372)

Determining the quantization rate to use when keeping the total number of channel symbols per source

symbol fixed is a key issue when considering source and channel codes together. For example, as the

quantization rate increases, the quantization noise decreases, but the channel induced noise increases

because the channel code's ability to protect bits is reduced. Also, determining the rate at which overall

distortion decreases in an optimal system as the total of

channels used per source symbol increases. In addition, there are other approaches to joint source and

channel coding, including using codes with a source-optimized channel coder structure or with a

special source-adapted decoder. Unequal error protection is used to better protect the most

important reproduction indices, common combinations of channel-optimized quantizers with source-

optimized channel codes. (Gray and Neuhoff, 1998, p. 2372-2373)

42

Quantization for a noisy channel a parallel problem is quantization for a noisy source. Attempting to

compress a dirty source into a clean rendition or estimating the source based on a quantized version of

a noise-impaired version can be seen as a problem. This can be treated as a quantization problem with a

modified distortion measure if the problem can be viewed as trying to compress a dirty source into a clean

rendition or making a source estimate based on a quantized version of a noisy version. The modified

distortion measure for a quadratic error distortion was used to prove that the optimal quantizer for

the modified distortion could be decomposed into the cascade of a least mean squared error estimator

followed by an optimal quantizer for the estimated source. The result has been extended to a more general

class of distortion measures, including input-weighted quadratic distortion. A generalized Lloyd

algorithm for layout is presented here. (Gray and Neuhoff, 1998, p. 2373)

In several descriptions, the quantization of noisy channels, where the problem is usually formulated as a

problem of source coding or quantization over a network, is a closely related topic to the quantization

of noisy channels. Multi-description quantization is most easily described in terms of packet

communications. For example, suppose that two packets of information, each at rate R, are transmitted to

describe a reproduction of a single random vector. The encoder may receive one or all

of the other packets, or both together, and wants to provide the best possible reconstruction for the received

bit rate. This can be viewed as a network problem where one receiver sees only one channel, another

receiver sees the second channel, and a third receiver sees both channels. The goal here is

that everyone has an optimal reconstruction for the total received bitrate. It can be made better that each

packet alone results in a distorted display close to the Shannon distortion rate function, while at the same

time the two packets produce a distorted display. Unfortunately, this positive overall performance is not

possible (Gray and Neuhoff, 1998, p. 2373) In Table 1 all discussed distillation and quantization methods

are listed.

43

Table 1: Table of above discussed distillation and quantization methods

Distillation methods Quantization methods

• Response-based knowledge distillation

• Feature-based knowledge distillation

• Relation-based knowledge distillation

• Online-based knowledge distillation

• Co-distillation

• Self-distillation

• Adversarial distillation

• Cross-modal distillation

• Graph-distillation

• Attention-based distillation

• Data-free distillation

• Quantized distillation

• NAS-based distillation

• Uniform quantization

• Lattice quantization

• Scalar vector quantization

• Progressive/embedded quantization

• Product quantization

• Polar quantization

• Scalar-vector quantization

• Block-constrained quantization

• Tree-structured quantization

• Multistage quantization

• Cell-conditioned vector quantization

• Feedback vector quantization

• Tree/trellis-encoded quantization

• Gaussian quantization

• Dithered quantization

• Noisy channel quantization

• Multiple description quantization

44

4 Literature Review

Next, a literature review was conducted in order to find different quantization and distillation methods

applied to NKLP and BERT models. Also, different modeling cases were also considered. Different

academical articles were gone through to find possible methods for decreasing model size and improving

their inference speed. First, different studies related to quantization methods are introduced after which

distillation and other findings are presented. Information regarding different studies was searched using

LUT Primo using keywords like BERT, named entity recognition, distillation, and quantization.

4.1 Quantization methods

Piao et. al. (2022) proposed a quantization-based BERT compression model improving the model’s

efficiency by three aspects: model size, accuracy, and inference speed. The size is decreased by sensitivity-

aware mixed precision quantization. This improves the quantization approach by choosing target

compression ratios based on the sensitivity of modules in BERT, and it is demonstrated that the encoders

close to the input layer are more sensitive than those near the output layer in BERT, and the Self-Attention

layer is more sensitive than the feed-forward network in an encoder. These sensitive parts are quantized to

8-bit and the remaining parts to 1-bit. 8-bit quantization 8-bit index quantization is introduced to reduce the

model size while retraining the accuracy by using 8-bit indices, minimum weight, and maximum weight to

efficiently represent all weights of each layer. To achieve fast inference speed proposed model applies

FP16 general matrix multiplication (GEMM) to the 8-bit parts of the model and XNOR-Count GEMM to

the 1-bit parts. Experiments were conducted on four GLUE downstream tasks. Experiments showed that

the model compresses BERT 8 times in terms of models’ size and gives 5 times faster inference speed. The

study also showed that three conducted 1-bit training methods improved the average accuracy by 1.1-1.4

%. (Piao et al., 2022, p 2-3)

The accuracy loss of the model is minimized with three training methods: Absolute Binary weight

regularization (ABWR), Prioritized Training (PT), and Inverse Layer-wise Fine Tuning (ILF). ABWR is a

regularization method to reduce the precision loss by learning new weight distribution that fits the 1-bit

value quantization. The intuition of ABWR is to train the absolute value of the weights to become close to

1 in the first place, thereby minimizing the drop in accuracy when 1-bit quantization is applied. PT is

proposed to overcome the difficulty to train the model with binary weights. In conventional 1-bit

quantization methods binarize both input and weights from the beginning to the training. PT keeps the input

45

binarized as in the conventional methods, but trains the weights with FP32 precision first, and then applies

1-bit quantization. ILF is introduced to overcome the difficulty in training a model that applies 1-bit value

quantization to a large portion of the model at once. (Piao et al., 2022, p 12-13)

Experiments conducted by Cho et. al. achieved similar accuracy (90.4) to the BERT-base model, but up to

6 times smaller model size. Also proposed model showed better accuracy compared to the pruning method

with a similar model size. Compared to Q8BERT with a model size of 25 % from the BERT-base and

average accuracy of 90.2 %, the proposed model reduces the model size to 7.7 %, while achieving higher

accuracy. While BERT-base inference time takes 480 seconds, for the proposed model takes only 95

seconds to make inferences on all the tasks’ training sets on average. (Piao et al., 2022, p. 1, 17)

When converting data representation in higher precision to low-precision ones, which can only represent a

smaller number of different values, how to handle outliers is believed to be a key issue. Outliers occupying

a limited percentage of the values are decided to be kept and mapped into the range of low precision, a

drawback is that a large-scale factor must be selected. As a result, the other element, which is in the majority

and has contributed most to the accuracy, would be concentrated on a small part of the targeted range and

become numerically close to each other leading to a degradation in accuracy. To avoid this issue clipping

is expected to offer a solution. To implement clipping, a threshold must be decided in advance. Outliers

that are beyond the set threshold, would be saturated to the threshold. In research conducted by Zhang et.

al. (2022) clipping positions for weights belonging to each layer of BERT were integrated. The

effectiveness of clipping was illustrated by extracting weights belonging to the same layer in BERT, the

distribution of those weights was analyzed, and MSE was calculated, which showed that clipping

effectively shortens the intervals between sample points, indicating an improved resolution and reducing

MSE. (Zhang et al., 2022, p. 3-4)

In two-piece-wise quantization, data points are divided into multiple classes, while for different classes,

linear quantization with a unique parameter of the scale factor is adopted. In this quantization method

splitting all the data points into two segments with data belonging to each segment quantized to a 7-bit

integer. Data is split by selecting a split point, which in this case is called thresh. The precision of data is

changing oppositely through selecting a different split point. (Zhang et al., 2022, p. 4)

In experiments conducted by Zhang et. al. (2022) code developed on the hugging face library the

quantization part of Q8BERT was overridden by clipping and two-piece wise quantization. With weight

data in 8-bit integer, a model performance over 98 % of the full precision, 32-bit floating points, the baseline

46

is maintained for different tasks. With a 4-bit weight, 96.8 % to 98.8 % of the baseline for GLUE can be

achieved. With 7-bit activation, there was no performance loss in some tasks, and with 4-bit activation and

full quantization, the proposed method still has over 90 % performance in most benchmarks but can gain

over 70 % or 50 % improvement in hardware implementation. (Zhang et al., 2022, p. 6)

A study conducted by Qiu et. al. (2022) proposed an end-to-end contrastive product quantization model to

jointly refine the original BERT embeddings and quantize the refined embeddings into codewords. The

study was motivated by two main problems. Firstly, methods for Approximate Nearest Neighbor, used in

document search, are mostly on top of outdated TFID features, which do not contain various kinds of

important information about documents, like word order and contextual information. Instead, in recent

years pre-trained BERT has achieved success in various downstream tasks. However, it has been reported

that BERT embeddings are not suitable for semantic similarity-related tasks. Secondly, to guarantee the

efficiency of retrieval, most existing methods quantize every document to a binary code via semantic

hashing. (Qiu et al., 2022, p. 1-2)

First, the original BERT embeddings are transformed via a learnable mapping and feed the transformed

embedding into a probabilistic product quantization module to output a quantized representation. A

probabilistic contrastive loss is designed and trained in an end-to-end manner, simultaneously achieving

the optimization of refining and quantizing modules. To improve the retrieval performance a mutual

information maximization base method is developed to increase the representativeness of learned

codewords. This enables the cluster structure hidden in a dataset of documents to be kept soundly, making

the documents quantized more accurately. The proposed method outperformed benchmarks by more than

4 %. It was also observed that the retrieval performance of the proposed method consistently improves as

the code length increases. (Qiu et al., 2022, p. 2)

Qiu et. al. further evaluated the retrieval performance of two variants of their method. At first, the model

removes the mutual-information term in each codebook and only optimizes the quantized contrastive loss

to learn semantics preserving quantized representation, and the second method does not inject Gumbel noise

but utilizes the sole SoftMax operation to produce the deterministic codeword index. When compared to

the originally proposed method, the model improves the retrieval performance averaged over all code

lengths by 1.51 % and 0.94 % respectively, demonstrating the effectiveness of mutual-information terms

inside each codebook. (Qiu et al., 2022, p. 7)

47

ZeroQuant is an end-to-end post-training quantization and inference pipeline proposed by Yao et. al. (2022)

to address challenges targeting both INT8 and INT4/INT8 mixed-precision quantization. In their study fine-

grained hardware-friendly quantization schemes for both weight and activations, group-wise quantization

for weight, and token-wise quantization for activations. Both quantization schemes can significantly reduce

the quantization error and retain hardware acceleration properties. A novel layer-by-layer knowledge

distillation method for INT/INT8 mixed-precision quantization, where the neural network is quantized

layer-by-layer through distillation with minimal iterations and without access to original training data. At

any given moment, the device memory is primarily populated only with a single extra layer’s footprint,

making billion-scale model distillation feasible with a limited training budget and GPU devices. Also, a

highly optimized inference backend was developed eliminating the expensive computation cost of

quantization /dequantization operators, which enables latency speedups on INT8 Tensor cores on modern

GPU hardware. (Yao et al., 2022, p. 1)

Empirical studies showed that ZeroQuant enables BERT into INT8 weight and activations to retain

accuracy without incurring any retraining cost. INT8 model achieves up to 519 times speedup on BERT-

base on A100 GPUs. ZeroQuant with layer-by-layer knowledge distillation can do INT4/INT8 mixed-

precision quantization for the BERT style model, which results in 3x memory footprint reduction with

marginal accuracy loss as compared to the FP16 model. Laos it was demonstrated that the scalability of

ZeroQuant on two of the largest open-source language models with INT8 quantization, where ZeroQuant

can achieve 3.67X speedup over the FP116 model and reduce the GPU requirement for inference from 2 to

1. (Yao et al., 2022, p. 1)

In a study conducted by Qin et. al. (2022) was found that the performance drop in BERT with binarized 1-

bit weight, activation, and embedding comes from the information degradation of the attention mechanism

in the forward propagation and the optimization direction mismatch of the distillation in the backward

propagation. The analysis also showed that direct binarization leads to the almost complete degradation of

the information of attention weight, which results in the invalidation of the selection ability for the attention

mechanism. It was also shown that severe optimization direction mismatch is caused by utilizing the

attention score, the direct binding product of two binarized activations, since the non-neglectable error

between the de facto and expected optimization direction. (Qin et al., 2022, p. 2)

The BiBERT model is proposed to turn the full-precision BERT into a strong fully binarized model. Also,

the Bi-Attention mechanism is introduced to tackle information degradation of the attention mechanism.

Bi-Attention applies binarized representations with maximized information entropy, allowing the binarized

48

model to restore the perception of input contents. With the Direction-Matching Distillation scheme, the

direction mismatch is eliminated. The scheme takes appropriate activation and utilizes knowledge from

constructed similarity matrices in distillation to optimize accurately. (Qin et al., 2022, p. 2)

Experiments were done on the GLUE benchmark show that BiBERT outperforms existing quantized BERT

models with low-bit activation. For example, the average accuracy of BiBERT exceeds 1-1-1 bit-width

BinaryBERT (1-bit weight, 1-bit embedding, and 1-bit quantization) by 20.4 % accuracy on average, and

better than 2-8-8 bit-width Q2BERT by 13.3 %. In model size BiBERT is compressed by 31.2 times, which

shows the advantage and potential of fully binarized BERT in terms of fast inference and flexible

deployment in real-world resource-constrained scenarios. 2 With data augmentation BiBERT achieves

comparable performance with full-precision BERT on several tasks with 90.9 % accuracy, which also

indicates that BiBERT makes full use of the limited representation capabilities by the well-designed

structure and training scheme. Also, it was shown that BiBERT on TinyBERT compact architectures still

outperforms existing quantization methods on BERT-base. (Qin et al., 2022, p. 8)

For reducing memory footprint by storing parameters and/or activations with low bit precision quantization

method is used by Kim et. al. (2021, p. 1). The proposed model I-BERT is an integer-only quantization

scheme for transformers. The entire inference is performed with integer arithmetic and key elements include

approximation methods for nonlinear operations such as GELU, SoftMax, and LayerNorm. The model has

been evaluated with RoBERTa-Base/Large, where the quantization method improves the average GLUE

score by 0.3/0.5 points compared to the baseline. The model has been also on end-to-end inference latency,

showing that the quantization scheme can achieve 4 times faster speedup compared to the floating-point

baseline. (Kim et al., 2021, p. 9)

A study conducted by Fan et. al. (2020) introduces a model by quantizing only a subset of weights instead

of the entire network during training, which is more stable for high-compression schemes. By quantizing

only, a random fraction of the network at each forward, most of the weights is updated with unbiased

gradients. Employing a simpler quantization scheme during the training makes it useful for quantizers with

trainable parameters, such as Product Quantizers (PQ) for which quantization proxy is not parametrized.

The approach applies a quantization noise, called Quant-Noise, to a random subset of weights, which makes

a network more resilient to various types of discretization of weights. The approach reached 82.5% accuracy

on MNLI by compressing RoBERTa to 14 MB. (Fan et al., 2020, p. 2)

49

The study proposed by Zafrir et. al. (2019, p. 1) authors point out that real-time NLP applications that

integrate BERT must meet low latency requirements to achieve a high-quality customer experience, which

poses a challenge to the deployment of these models to production. Models a have height impact on how

the way business organizations consume computing resources since computing resources will have to the

handle loading of large models and heave feed-forward calculations, shifting workload focus from lower-

level training to more application-specific fine-tuning and inference.

Zafrir et. al. (2019) in their study implemented the quantization method for the BERT model by quantizing

fully connected layers and embedding layers using linear quantization. The higher requirement for

operations was kept in the original Int32 values. These included operations like SoftMax, Layer

Normalization, and GELU. In total 99 % of the model’s weight was compromised to 8bit. This achieved

reducing the memory by 4 times compared to the original model. Model maintained 99% accuracy in

comparison to FP32 which refers to BERT-Base, which has 110M parameters in 32bit floating point

representation. (Zafrir et al., 2019)

Jacob et al. (2017) in their study provide a quantization scheme that quantizes weights activations as 8-bit

integers and a few parameters as 32-bit integers. Also, they introduce a quantized training framework that

is implementable on integer/arithmetic/only hardware., and a quantized training framework to minimize the

loss of accuracy from quantization on models. The quantization scheme is implemented using integer-only

arithmetic during inference and floating-point arithmetic during training. (Jacob et al., 2017, p. 2)

4.2 Distillation and other methods

Avram et. al. (2022) introduces three compressed versions of compressed BERT models that were obtained

through the distillation process. Distil-BERT-base-ro was obtained by distilling the knowledge of BERT-

base-ro using its original training corpus and tokenizer. Distil-RoBERT-base was created from RoBERT-

base using both original training corpus and tokenizer, and DistillMulti-BERT-base-ro considered the

distillation of the knowledge from an ensemble consisting of BERT-base-ro and RoBERT-base while

relying on the combined corpus and coupled with the tokenizer of the former model. (Avram et al., 2021,

p. 1-2)

Models were evaluated on five datasets and the results showed that they maintained most of the performance

of the original models, while being approximately twice as fast when run on a GPU. Both DistilBERT-

base-ro and DistilMulti-BERT-base-ro have a size of 312 MB and contain 81 million parameters, reducing

50

the size of BERT-base-ro by roughly 35 %. Distill-ROBERT-base is smaller, with 72 million parameters

and a size of 232 MB, compressing ROBERT-base by the same amount. Named entity recognition

evaluation showed that the Distil-BERT-base-ro obtained an F1-score of 79.42 %, which is almost identical

to the F1-score obtained by the distilled ensemble of 79.43 %. Both models outperformed Distil-RoBERT-

base by 0,3 % on the same metric, and the compressed model lagged the base models by more than 3 % on

the F1 metric. (Avram et al., 2021, p. 2, 4)

In a study conducted by Zhou et. al. (2021) authors present an efficient knowledge distillation scheme that

trains a light model called BiLSTM, which can retain the accuracy of its heavier counterparts, such as

BERT, while significantly reducing costs. Solution exploits so-called soft surrogates, the most probable

label sequences under the teacher model, to inform the student learner. Authors explore the Viterbi

algorithm to expedite computation to efficiently identify the most likely label sequences and determine their

relative likelihood. For sequence labeling, multi-grained knowledge distillation is used. (Zhou et al., 2021,

p. 5705)

The idea in the Viterbi algorithm for sequence outputs is to extract information from the teacher model via

drawing a set of most probable sequences. Then the sequences are presented to the student model during

its training, to pass on the knowledge from, the teacher through various loss functions. (Zhou et al., 2021,

p. 5706)

Experiments, to validate the proposed solution and elaborate its gains, were done with TensorFlow and

executed on a single NVIDIA P100 GPU. The teacher model is constructed by a BERT model followed by

the CRF layer. A dropout layer is concatenated to the BERT, followed by a fully connected layer. For the

student model, BiLSTM+CRF architecture is used, which exploits Bidirectional LSTM to map input

sequences into a sequence of feature vectors. The learned word embedding is reused from the teacher model

and kept frozen during training. (Zhou et al., 2021, p. 5709)

In the results, the authors have found out that the teacher model outperforms baselines. In terms of the

teacher is that directly copying the teacher embedding to the student model can be most helpful. Regarding

distillation, it achieved cross-the-board performance gains relative to the no-distillation use of fixed pre-

trained teacher embeddings baseline. Also, it was noticed that inducing data augmentation consistently

improves student learning, and in all cases, sequence-level distillation outperforms token-level distillation,

especially in the absence of data augmentation. (Zhou et al., 2021, p. 5710)

51

In many industry scenarios needed student models to require different widths and depths to meet various

latency and memory requirements. Chen et. al. (2021, 571- 572) proposed an Extract Then Distill (ETD)

method to reuse teacher’s parameters for distillation purposes. ETD is a flexible and effective method to

reuse. It firstly allows the student to have a narrower width than the teacher model. Models allow width-

wise extract the teacher’s parameters randomly and depending on the importance scores. This method

applies to students with different models’ architecture sizes. In their test, they manage to save 70 % of

computation cost. Moreover, when using the same computing resources, ETD outperforms the baseline.

The model consists of three steps. First, parameters are extracted from a teacher model to a model called

the thin teacher. The first step is called width-wide extraction. In the uniform layer selection step, thin

teacher layers are selected with a so-called uniform strategy, and these parameters are used to initialize the

student. The last step is called transformer distillation which performs last-layer distillation. (Chen et. al.

2021, p. 572-573)

To extract the teacher’s parameters two different approaches were introduced. In the first approach, neurons

are randomly extracted, and corresponding weight parameters are assigned to the student model. In the

other approach, a score-based pruning method is used to extract the relatively important weights from the

teacher model. (Chen et. al. 2021, p. 574) Compared with the baselines in the study ETD can achieve similar

results with less than 28% computation cost. In their conclusions, it was pointed out that fine-grained

extraction is needed to achieve better results and reusing the teacher’s parameters is beneficial for most of

the tasks. (Chen et. al. 2021, p. 578)

Bai et. al. (2021, p. 1, 8) in their study proposed ternary weight splitting, which takes the ternary model as

a proxy to bridge the gap between the binary and full-precision models. The model converts both the

quantized and latent full-precision weights in a well-trained ternary model to initialize BinaryBERT.

BinaryBERT supports also adaptive splitting, which means that it can adaptively perform splitting on most

important ternary modules while leaving the rest as binary, based on efficiency constraints such as model

size or floating-point operations. On the GLUE and SQuAD benchmarks, BinaryBERT has less than a 0.5

% performance drop compared to the full-precision BERT-base model while being 24 times smaller. (Bai

et al., 2020, p. 1, 8)

Lin et. al. (2015, p. 1-2, 8) et al. proposed an approach for quantizing neural networks, which consists of 2

components. In the forward pass, weights are stochastically binarized using so-called binary connect or

ternary connect. 1 Binary connect allows eliminating multiplications in the feed-forward process by

52

stochastically sampling weights to be -1 or 1. Ternary connect allows weights to be also 0. 2 The idea is to

eliminate most of the floating-point multiplications used during training feedforward neural networks. For

backpropagation of errors method called quantized backpropagation is used, which converts multiplication

into bit-shifts. For example, testing the model with the MNIST dataset by applying ternary connect and

quantized backpropagation, an error of 1.15 % error rate was achieved while full precision training yielded

a 1.33% error rate.

In a study conducted by Romero et. al. (2014, p. 1-3) team aimed to address the neural network compression

problem by taking advantage of depth. The method originated from Knowledge distillation in which the

authors propose to train thin and deep neural networks. In their study authors explore a proposed framework

in which a student network is trained from the softened output of an ensemble of wider networks so-called

teacher network. The idea is to allow the student network to capture information from true labels and finer

structures learned by the teacher network. Knowledge distillation is designed such that student networks

mimic teachers’ architecture of similar depth. Also, so-called hints were introduced to student networks

from teachers’ hidden layers to guide the training process of the student.

In their implemented approach student network contained only 33.3% of the teacher’s parameters achieving

91.61 % accuracy, which is higher than the teacher’s network accuracy, of 85.8%. One of their implemented

student networks with 36 times less capacity compared to the teacher network witnessed a minor

performance decrease of 1.3%. Another student network outperforms the teacher by 0.9 % while being

faster by 4.64 factor. In this study using information from teacher networks or student networks models

with fewer parameters can run faster and/or generalize better than their teachers. Also, it was found with

empirical evidence -that hinting at the inner layers of a thin and deep network with information from the

teacher’s hidden state generalizes better than hinting at classification targets. (Romero et al., 2014, p. 5, 9)

Luo et. al. (2020, p. 2) proposed a solution and optimization scheme from a light pre-trained model to

downstream tasks. Authors point out that models often contain a large number of parameters which poses

challenges for fine-tuning and online services for latency and capacity limitations in real-world applications

even though large parameter models can achieve better performance. In their study authors propose a

DistillBERT model in which the original 12 layers are reduced to 6 and soft label and hidden layer

parameters are used from a teacher’s model to train the student model. Compared to the benchmark BERT

model size is reduced by 40% and the inference speed is increased by 60% decreasing the performance only

by 3%. In their approach output distributions of the teacher, the model is transferred to the student model

53

to achieve the purpose of improving the effectiveness of the student model on the target tasks. In their

experiments, it was found that fine-tuning is more effective for small models. (Luo et al., 2020, p. 4, 8)

In the literature review, it was found that different quantization methods like ZeroQuant and I-BERT have

similar accuracies and much faster inference times compared to their base models. Some issues were found

regarding the accuracy decrease in models like BiBERT. Regarding different distillation methods, it was

found that the size of the models was decreased substantially like in Distill-BERT-base-ro model, and

achieved better results compared to its base model. Also, the ETD model’s computational savings were

significant and ternary weight splitting gave good results regarding performance and model size. The

summary of the works reviewed within the scope of this thesis is shown in Tables 2 and 3.

54

Table 2. Table of discussed quantization methods, use cases, and main results

Author Year Use case Model Key results
Piao et. al. 2022 Test with

GLUE

downstream

tasks.

Quantization-based BERT

compression

Compression by 8 times and

5 times faster inference

speed. Improved average

accuracy by 1.1-1.4 %.

Zhang. al. 2022 Evaluation of

BERT with

GLUE

benchmark

Clipping and two-piece wise

quantization

The 8-bit weight integer

model has 98 % accuracy of

the full precision 32-bit

floating point. 4-bit weight

96.8-98.8 % accuracy of the

baseline was achieved.

Qiu et. al.

2022 Document

search

End-to-end contrastive

product quantization

Method outperformed

benchmarks by more than 4

% and retrieval performance

averaged over all code

lengths by 1.51 % and 0.94

%.

Yao et. al. 2022 Conversion of

EBRT into

INT8a and

INT4/INT

mixed-

precision

quantization

ZeroQuant INT8 model achieves up to

519 times speedup on BERT-

base on A100 GPUs.

Qin et. al. 2022 GLUE

benchmark

BiBERT BiBERT achieves

performance with full-

precision BERT on several

tasks with 90.9 % accuracy.

The average accuracy of

BiBERT exceeds

BinaryBERT by 20.4 %

accuracy on average, and

better than 2-8-8 bit-width

Q2BERT by 13.3 %.

Kim et. al. 2021 Evaluation

with RoBERTa

I-BERT Improved GLUE score by

0.3-0.5 %. Achieves 4 times

faster speedup compared to

baseline.

Fan et. al. 2020 MNLI dataset

compressing

RoBERTa

Quantization of subset of

weights

82.5% accuracy on MNLI by

compressing the model to 14

MB.

Zafir et. al. 2019 Real-time NLP

applications.

Quantization of fully

connected layers and

embedding layers using linear

quantization.

99 % of the model’s weight

was compromised to 8bit.

The model maintained 99%

accuracy.

Jacob et. al. 2017 Quantization

training to

ResNets and

ImageNet

dataset

Quantization of weights to 8-

bit

Accuracy within 2 % of their

floating-point counterparts.

55

Table 3. Table of discussed distillation methods, use cases, and main results

Author Year Use case Model Key results

Avram et. al. 2022 Named entity

recognition

Distill-BERT-base-ro,

DistillMulti-BERT-base-ro

Reduction in size of

BERT-base model by

roughly 35 %.

Outperforming Distil-

RoBERT-base by 0.3 %

Zhou et. al. 2021 Named entity

recognition

Knowledge distillation

scheme training light

model called BiLSTM

Cross-the-board

performance gains are

achieved relative to the

no-distillation use of fixed

pre-trained teacher

embeddings baseline.

Chen et. al. 2021 Evaluation of

BERT with

GLUE and

SQuAD

benchmarks

Extract Then Distill Saving computation costs

by 70 %.

Bai et. al. 2021 Evaluation of

BERT with

GLUE and

SQuAD

benchmarks

Ternary weight splitting Less than a 0.5 %

performance drop and

model size decreased by

24 times.

Lin et. al. 2015 Test with

MNIST

dataset

Ternary connect Elimination of most of the

floating-point

multiplication.

Romero et. al. 2014 Neural

network

compression

Knowledge distillation-

based model

Containing only 33.3 % of

the teacher’s parameters

achieving 91.61 %

accuracy, which is higher

than the teachers’ network

accuracy, of 85.8 %

56

5 Results

In the implementation part, different Hugging face model inferences were tested, and results were

analyzed compared to the findings from the literature. Python programming language was used for model

inference testing using the task_evaluator function provided by the evaluation library.

5.1 Data

Data used in the implementation part contains CoNLL-2003 which is a named entity recognition dataset

released as a part of the CoNLL-2003 shared task for language-named entity recognition. The data consists

of eight files covering two languages: English and German. For each of the languages, the dataset consists

of a training file, a development file, a test file, and a large file with annotated data. The English data, which

is used was taken from Reuters Corpus. The Corpus consists of stories between August 1996 and August

1997. (Tjong et al., 2003, p. 1-2)

Table 4 shows the dataset structure consisting of English dataset training, development, and test set. In

the Table 4, LOC indicates the number of tokens related to location, MISC to miscellaneous names, ORG

to organizations, and PER to persons. In the implementation, 1 000 sentences of the validation set are

used to derive the inference values analyzed in this part. In the NER implementation, these four tokens

are taken into account in the results analysis of the overall inference results.

Table 4. Structure of the ConLL-2003 dataset

English data Articles Sentences Tokens LOC MISC ORG PER

Training set 946 12 987 203 621 7 140 3 438 6 321 6 600

Development

set

216 3 466 51 362 1 837 922 1 341 1 842

Test set 231 3 684 46 435 1 668 702 1 661 1 617

57

5.2 Tested models

Five different HuggingFace models were tested in the implementation since they could already be used,

and their inference could be tested with the evaluator. The first is called the bert-base-NER model, which

is a fine-tuned BERT model that is ready to use for NER models, fine-tuned for the CoNLL-2003 dataset-

The model is limited by its training dataset of entity-annotated news articles from a specific span of time,

which may not generalize for all use cases in different domains. The second model is bert-base-

multilingual-case-ner-hrl is a NER model for 10 high-resourced languages based on a fine-tuned mBERT

base model. Which is also limited by its dataset of entity-annotated news articles from a specific span of

time. (HUggingFace 2022c, HuggingFace, 2022e)

The third model is called the distilbert-base-uncased-finetuned-ner-model, which is based on the distillbert-

base-uncased-model. DistillBERT base model is a distilled version of the BERT base model based on the

paper of Sanh et al. (2019). The following model is a transformers model, smaller and faster than BERT. It

was trained on the same corpus in a self-supervised fashion, using the BERT base model of a teacher.

Particularly model was trained with three objectives. Using distillation loss, the model was trained to return

the same probabilities as the BERT base model. MLM to randomly mask words in the input and then run

the entire masked sentence through the model to predict the masked words and cosine embedding loss,

where the model was trained to generate hidden states as close as possible to the BERT base model.

(HuggingFace, 2022a, HuggingFace, 2022b)

The fourth model is an XML-RoBERTa model proposed by Conneau et al., which is based on Facebook’s

Roberta model released in 2019. XML-RoBERTa model is fine-tuned with the CoNLL2003 dataset in

English. Potential downstream use cases include NER and Part-of-Speech (PoS) tagging. The fifth and last

model is a BERT-large-cased-finetuned NER model fine-tuned with the CoNLL2003 dataset in English.

(HuggingFace, 2022f)

5.3 Inference Results

All models were run using Google Collaboratory. Several inference evaluation results were gathered after

each model’s inference. Only overall evaluation metrics are analyzed, and token-specific evaluation metrics

are not taken into the scope of this thesis because the aim is to compare overall results to their inference

time and other evaluation results regarding the time used in inference. The gathered evaluation metrics are

58

overall accuracy, overall precision, overall recall, overall F1, total time in seconds, samples per second, and

latency in seconds. The results of each model’s metrics are described in the following Table 5.

Table 5. Inference results of five different BERT models. The best performance is bolded

As can be seen from the inference results from Table 5, best accuracies were achieved by BERT-base and

Distill RoBERTa models with an accuracy of 99.33 %, while the best F1-score was achieved with XML

RoBERTa-model with an F1-score of 98 %. Looking at the accuracies of all the models four of them

achieved above 97 % except the XML RoBERTa -model with an accuracy of 87.26 %. When comparing

the overall f1-score all models’ results vary between 91.74 % and 97.74 %. The lowest score was achieved

by BERT-base multilingual while the best score was achieved with the XML-RoBERTa model with an F1-

score of 97.74 %.

When comparing the inference times between these models three evaluation metrics were gathered as

described above. From the results can be seen that the lowest total time used for inference was achieved

with Distill RoBERTa model with a total time of 67.66 seconds, which is almost two times less than the

second fastest model. The slowest model of these five models in time was the XML-RoBERTa model with

a total time of 451.42 seconds. Even though the fastest samples per second were achieved with the same

model. When comparing the latency in seconds between different models best-achieving model was Distill

RoBERTa model with a latency of 0.07 seconds and the worst-achieving model was the XML-RoBERTa

model with 0.45 seconds in latency.

In Figure 3, the overall F1-score is compared to the samples per second evaluation metric from which can

be seen that the XML-RoBERTa overall F1-score is among the highest and the samples per second are

lowest comparing the other models. In Figure 5, due to the high latency of XML-RoBERTa model, Distill

Model Overall

accuracy

Overall

precision

Overall

recall

Overall

F1-

score

Total time in

seconds

Samples per

second

Latency in

seconds

BERT base 99.22 % 96.60% 96.36% 95.98% 126.17 7.92 0.13

DistillBERT 98.37 % 90.41% 94.85% 92.1% 174.66 5.72 0.17

Distill

RoBERTa

99.33% 96.44% 97.04% 96.74% 67.66 14.77 0.07

XML-

RoBERTa

87.26% 96.96 % 98.06% 97.5% 451.42 2.21 0.45

BERT base

multilingual

97.54% 97.08 % 86.97% 91.74% 132.29 7.55 0.13

59

RoBERTa, BERT-base are most prominent options of these models. From the Figure 5 it can be seen, the

latency in seconds can be seen in a bar chart format from which can be seen the high latency time of the

XML-RoBERTa model.

Figure 3. Overall F1-score compared to samples per second

60

Figure 4. Overall F1-score compared to total time in seconds

Figure 5. Models’ latency in seconds

61

5.4 Result analysis

From Table 5 we can see accuracies are similar regarding models with accuracies around 97-98 % except

the XML-RoBERTa model with accuracy of 87.26 % which is more than 10 % less compared to other

models even though the F1-score of this model is 97.5 %, which is highest compared to the other models.

The highest accuracy result was achieved with Distill RoBERTa model with the accuracy values of 99.33

%. When comparing the other models to best performing accuracy their accuracy is not less than 2 % except

the accuracy of XML-RoBERT.

When comparing F1-scores it can be seen that high for BERT-base, Distill RoBERTa and XML-RoBERTa

models and lower for DistillBERT and BERT base multilingual model. Highest F1-score is achieved with

XML-RoBERTa model with F1-score of 97.5 % and regarding overall it can be seen that the F1-score

values are distributed 91.74 % - 97.5 %.

When taking account time parameters, it can see that Distill RoBERTa has the lowest total time used in

seconds with time of 67.66 seconds, which is around 67,66 seconds less compared to second less time used

model and 58.51 seconds less compared to BERT base model. The worst performing model compared in

total time in seconds was XML-RoBERTa, which used time 6.7 times more time compared to Distill

RoBERTa model and 3.6 times more time than the BERT-base model. Even though XML-RoBERTa

sample per second time is the lowest its latency in time is very high compared to other models with 0.45

seconds.

To take the performance values and time used in time from Figures 3 and 4 it can be seen that Distill

RoBERTa and XML-RoBERTa performance is higher compared to BERT-base model, with F1-scores of

96.74 % and 97.5 %, but the time used for inference for both models are 67.66 and 451.42 seconds from

which can be seen that the Distill RoBERTa performs better in both of the aspects.

Base on the result it can be stated the most feasible model is Distill RoBERTa due to the reason that its F1-

score is among the highest and its total time used in inference the lowest and for those reasons it could be

used among tested the models.

62

6 Conclusion and discussion

In this study, different methods for improving BERT model were reviewed and tested. Models’ inference

performance regarding time and cost and different purposes for it have been described, like efficient

employment challenges and limited resources needed for these models to operate. Also, improvements can

be seen cost-wise reducing the computational, but still achieving similar performance results. Despite the

state-of-the-art results Transformer models like BERT are generally larger than previous models with a

large number of parameters used.

From the literature review, it can be seen that different methods like Distill-BERT-base-ro by Avram et. al.

(2022) and quantization-based BERT compression method by Piao et. al. (2022) was applied for reducing

the size of these models and methods like knowledge distillation methods by Romero et. al. (2014) have

decreased the number of parameters needed in order to use those models with constrained resources by

reducing the computational cost of those models. As it was found out from the extant literature there are

several different opportunities available for model inference optimization methods, which can improve

throughput and with low latency without decreasing models’ accuracy performance.

When reflecting on implementation results to theoretical background and literature review similarities

regarding inference efficiency can be found even though several models were close to the base model like

models based on RoBERTa where in study conducted by Kim et. al. (2021) has shown faster speedup

compared to its base model and implementation of Distill RoBERTa has shown 0,06 second lower latency

and using 58,51 seconds less time compared to BERT-base model, and DistillBERT model’s performance

was significantly lower compared to others with F1-score of 92.1 %. Next research questions are answered.

6.1 Answering research questions

The RQ1 considered production inference and it was formalized as “Which techniques can be used for

decreasing BERT models’ production costs inference recourses?”

From the theoretical background, different quantization and distillation methods are developed to reduce

the model production cost of its inference resources by decreasing the size of the model, which can affect

the throughput of the implemented model and reduce the total time and latency in the production without

compromising its accuracy.

63

As seen from the literature review quantization models like clipping and two-piece wise quantization

methods, ZeroQuant and I-BERT can achieve similar accuracy metrics as their baselines with much faster

inference. For example, as discussed in the literature review section quantized models like ZeroQuant were

able to achieve up to 519 times speedup compared to the BERT-base model. This is partly explained by the

reason for reducing the number of parameters that the quantized model has, which implies the possibility

of using these methods in order to decrease one model size for improving model inference performance

without decreasing the accuracy of the model.

Regarding distillation methods like Distill-BERT-base-or ternary weight splitting can their base model size

even outperforms their base model. Also, it was found that knowledge distillation for example in neural

networks can significantly decrease the number of teacher’s parameters and still be able the student to gain

better accuracy compared to the teacher model, which implies that knowledge distillation might outperform

the teacher model and reduce parameter amount decreasing the computation need and improving inference

speed. Also, it was found out from the literature that models like ETD can save a significant amount of

computation costs.

To answer RQ2 “Which methods can be used for increasing the inference of the BERT model’s throughput

by not severely decreasing the accuracy of the model?” literature review was conducted, and different

BERT models were tested

First, different literature resources like studies conducted by Qiu et. al. (2022), Kim et. al. (2021) and Yao

et. al. (2022) was used to find out possible methods to increase the throughput of a model and not decrease

its accuracy significantly. From the literature’s theoretical background different trends have been identified

like parameter quantization and pruning and ways like model topology modifications and memory-based

strategies. From the literature review, it was found that models like quantization-base BERT compression,

ZeroQuant, and I-BERT were able to increase the BERT model’s throughput. Regarding distillation models

from the literature review reductions in size were achieved with for example Distill-BERT-base, Ternary

weight splitting, and knowledge distillation. On the other hand, the BERT-base model in the

implementation part gave better results compared to the DistillBERT model even though in the literature

review it was found that distill model could improve the model’s accuracy, while also its size was

significantly less compared with the baseline model.

On the other hand, the implementation of Distill RoBERTa was able to increase the throughput and improve

the F1-score compared to the BERT-base model. It was also found that this model was the only one whose

64

latency in seconds was lower compared to the BERT-base model, while the other models’ latency time was

equal or more, which can explain why other models did not perform better timewise compared to the BERT-

base model. The performance of the RoBERTa model was also backed by the theoretical background where

it was described that it is an optimized method of pretraining NLP systems. Also, Avram et. al (2022) in

their study, applied distillation to the BERT-base model, as described in the literature review were able to

decrease the model size and increase accuracy compared to the BERT-base model, which might indicate

the benefit of using distilled models for gaining performance benefits in inference.

6.2 Further research and development

There are different research and development options to conduct regarding model inference optimization.

For example, production-wise implementation can be researched and find out if a certain type or certain

type of models could be implemented in production and how they will behave from point of view of

accuracy efficiency.

Another development opportunity is to find out if is it possible to reduce production costs money-wise using

this kind of model’s inference optimization methods. For example, it can be researched whether is it

possible to reduce maintenance costs in production with these above-discussed models.

65

7 References

Avram, A.-M., Catrina, D., Cercel, D.-C., Dascălu, M., Rebedea, T., Păiş, V., Tufiş, D., 2021. Distilling

the Knowledge of Romanian BERTs Using Multiple Teachers.

Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu, Q., Lyu, M., King, I., 2020. BinaryBERT:

Pushing the Limit of BERT Quantization.

Chen C., Chen X., Jiangm Z., Liu O., Shang L., Xin Z., Yin Y., 2021. Extract the distill: Efficient and

effective task-agnostic BERT distillation. Artificial neural networks and machine learning – ICANN

2021. Vol.12893, 570-581.

Dai, Z., Lai, G., Yang, Y., Le, Q. v., 2020. Funnel-Transformer: Filtering out Sequential Redundancy for

Efficient Language Processing.

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jegou, H., Joulin, A., 2020. Training with

Quantization Noise for Extreme Model Compression.

Galindez Olascoaga, L.I., Meert, W., Verhelst, M., 2021. Hardware-Aware Probabilistic Machine Learning

Models, Hardware-Aware Probabilistic Machine Learning Models. Springer International Publishing.

Gou, J., Yu, B., Maybank, S.J., Tao, D., 2021. Knowledge Distillation: A Survey. Int J Comput Vis 129,

1789–1819.

Graves, A., 2012. Sequence Transduction with Recurrent Neural Networks.

Gray, R.M., Neuhoff, D.L., 1998. Quantization. IEEE Trans Inf Theory 44, 2325–2384.

HuggingFace, 2022a, distilbert-base-uncased, Available at: https://huggingface.co/distilbert-base-

uncased.

https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased

66

HuggingFace, 2022b, distilbert-base-uncased-finetuned-ner, Available at:

https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-ner.

HuggingFace, 2022c, bert-base-multilingual-cased-ner-hrl, Available at:

https://huggingface.co/Davlan/bert-base-multilingual-cased-ner-hrl.

HuggingFace, 2022d, bert-large-cased-finetuned-conll03-english, Available at:

https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english.

HuggingFace, 2022e, bert-base-NER, Available at: https://huggingface.co/dslim/bert-base-NER.

HuggingFace, 2022f, xml-roberta-large-finetuned-conll03-english, Available at:

https://huggingface.co/xlm-roberta-large-finetuned-conll03-english.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D., 2017.

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.

Jain, S.M., 2022. Introduction to Transformers for NLP, Introduction to Transformers for NLP. Apress.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., Liu, Q., 2019. TinyBERT: Distilling

BERT for Natural Language Understanding.

Kim, S., Gholami, A., Yao, Z., Mahoney, M.W., Keutzer, K., 2021. I-BERT: Integer-only BERT

Quantization.

Li H., Luo H., Wang. X., and Zhang Y., 2020. Knowledge distillation and data augmentation for NLP

light pre-trained models.

Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y., 2015. Neural Networks with Few Multiplications.

https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-ner
https://huggingface.co/Davlan/bert-base-multilingual-cased-ner-hrl
https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english
https://huggingface.co/dslim/bert-base-NER
https://huggingface.co/xlm-roberta-large-finetuned-conll03-english

67

Liu, W., Zhou, P., Zhao, Z., Wang, Z., Deng, H., Ju, Q., 2020. FastBERT: a Self-distilling BERT with

Adaptive Inference Time.

Luo, H., Li, Y., Wang, X., Zhang, Y., 2020. Knowledge distillation and data augmentation for NLP light

pre-trained models, in: Journal of Physics: Conference Series. IOP Publishing Ltd.

Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., Gómez-Berbís, J.M., 2013. Named Entity

Recognition: Fallacies, challenges and opportunities. Comput Stand Interfaces 35, 482–489.

Michelucci, U., 2022. Applied Deep Learning with TensorFlow 2, Applied Deep Learning with TensorFlow

2. Apress.

Piao, T., Cho, I., Kang, U., 2022. SensiMix: Sensitivity-Aware 8-bit index & 1-bit value mixed precision

quantization for BERT compression. PLoS One 17.

Qin, H., Ding, Y., Zhang, M., Yan, Q., Liu, A., Dang, Q., Liu, Z., Liu, X., 2022. BiBERT: Accurate Fully

Binarized BERT.

Qiu, Z., Su, Q., Yu, J., Si, S., 2022. Efficient Document Retrieval by End-to-End Refining and Quantizing

BERT Embedding with Contrastive Product Quantization.

Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y., 2014. FitNets: Hints for Thin

Deep Nets.

Sabharwal, N., Agrawal, A., 2021. Hands-on Question Answering Systems with BERT, Hands-on Question

Answering Systems with BERT. Apress.

Sanh, V., Debut, L., Chaumond, J., Wolf, T., 2019. DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter.

Sekine S., Ranchhod E., 2009. Named entities. Recognition classification and use.

Shanmuganathan, S., 2016. Studies in Computational Intelligence 628 Artificial Neural Network

Modelling.

68

Sun, S., Cheng, Y., Gan, Z., Liu, J., 2019. Patient Knowledge Distillation for BERT Model Compression.

Tambe, T., Hooper, C., Pentecost, L., Jia, T., Yang, E.Y., Donato, M., Sanh, V., Whatmough, P.N., Rush,

A.M., Brooks, D., Wei, G.Y., 2021. EdgeBERT: Sentence-level energy optimizations for latency-aware

multi-task NLP inference, in: Proceedings of the Annual International Symposium on Microarchitecture,

MICRO. IEEE Computer Society, pp. 830–844.

Tjong, E.F., Sang, K., de Meulder, F., 2003. Introduction to the CoNLL-2003 Shared Task: Language-

Independent Named Entity Recognition.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.,

2017. Attention Is All You Need.

Yao, Z., Aminabadi, R.Y., Zhang, M., Wu, X., Li, C., He, Y., 2022. ZeroQuant: Efficient and Affordable

Post-Training Quantization for Large-Scale Transformers.

Zafrir, O., Boudoukh, G., Izsak, P., Wasserblat, M., 2019. Q8BERT: Quantized 8Bit BERT.

Zhang, X., Ding, Y., Yu, M., O’Uchi, S.I., Fujita, M., 2022. Low-Precision Quantization Techniques for

Hardware-Implementation-Friendly BERT Models, in: Proceedings - International Symposium on Quality

Electronic Design, ISQED. IEEE Computer Society.

Zhou, X., Zhang, X., Tao, C., Chen, J., Xu, B., Wang, W., Xiao, J., 2021. Multi-Grained Knowledge

Distillation for Named Entity Recognition.

Zong, C., Xia, R., Zhang, J., 2021. Text Data Mining.

