
This is a version of a publication

in

Please cite the publication as follows:

DOI:

Copyright of the original publication:

This is a parallel published version of an original publication.
This version can differ from the original published article.

published by

Security risks of global software development life cycle: Industry
practitioner's perspective

Khan Rafiq Ahmad, Khan Siffat Ullah, Akbar Muhammad Azeem, Alzahrani
Musaad

This is the peer reviewed version of the following article:
Khan, RA, Khan, SU, Akbar, MA, Alzahrani, M. Security risks of global software development life
cycle: Industry practitioner's perspective. J Softw Evol Proc. 2022;e2521. doi:10.1002/smr.2521,
which has been published in final form at https://doi.org/10.1002/smr.2521.

This article may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Use of Self-Archived Versions.

Author's accepted manuscript (AAM)

John Wiley & Sons Ltd.

Journal of Software: Evolution and Process

10.1002/smr.2521

© 2022 John Wiley & Sons Ltd.

This article may not be enhanced, enriched or otherwise transformed into a derivative work,
without express permission from Wiley or by statutory rights under applicable legislation.
Copyright notices must not be removed, obscured or modified. The article must be linked to
Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise
making available the article or pages thereof by third parties from platforms, services and
websites other than Wiley Online Library must be prohibited.

Security Risks of Global Software Development Life Cycle: Industry
Practitioner's Perspective

Rafiq Ahmad Khan1, Siffat Ullah Khan1, Muhammad Azeem Akbar2, Musaad Alzahrani3

1Software Engineering Research Group, Department of Computer Science & IT, University of Malakand, Pakistan
2Software engineering, LUT University, Finland.
3Department of Computer Science, Albaha University, Albaha 65799, Saudi Arabia

Corresponding author: (rafiqahmadk@gmail.com, azeem.akbar@lut.fi)

Abstract
Software security has become increasingly important since hacking and other attacks on computer
systems have grown in popularity in the last few years. As a result, several researchers have examined
security solutions as early as the requirement engineering phase. With the growth of the software business
and the internet, there is a need to understand the security risks against each phase of the software
development life cycle (SDLC). This study aims to empirically investigate and prioritize the risks that
could negatively impact the software security aspects of SDLC in the context of global software
development (GSD). To achieve the study objectives, we conducted an industrial empirical study to
determine the impact of software security threats against each phase of SDLC. Furthermore, the fuzzy
analytical hierarchy process (FAHP) was used to prioritize the list of software security risks against the
SDLC. The results and analysis of this study provide a ranked-based decision-making framework, which
assists the practitioners in considering the most critical security risks on priority. The results show,
"improper plan for secure requirement identification, inception, authentication, authorization, and
privacy", "lack of threat models updating", "lack of output validation", "lack of certification in the final
release and archive", and "spoofing" are declared as top ranked security risks of SDLC in GSD. In
addition, the application of FAHP is novel in this domain as it is helpful to address multicriteria decision-
making problems.

Keywords: Software Security, Security Risks, Software Development Life Cycle (SDLC), Secure
Software Engineering, Fuzzy Analytical Hierarchy Process (FAHP)

1. Introduction
One of the most critical issues facing companies is implementing and managing security in the

software development lifecycle (SDLC) [1, 2]. A set of software security standards, guidelines, practices,
and certifications can be used to assist in the creation of secure software applications [3]. However,
despite the widespread understanding of the importance of presenting scenarios covering the entire SDLC
of secure software development, only a few have been documented [4]. Understanding Secure Software
Engineering (SSE) methodologies are becoming increasingly important in tackling the problem's
technological and psychological components [2]. Secure software engineering (SSE) is the process of
designing, building, and testing software so that it becomes secure; this includes secure SDLC processes
and secure software development (SSD) methods [5-7]. To produce secure software, one must adhere to
the following four steps: software requirements security, design security, implementation security, and
testing security [3, 8]. This process strives to strengthen security requirements, implement threat modeling
approaches during software design, and adhere to best security practices when coding, reviewing code,
and performing testing [6]. This process must be constantly updated to ensure that software products are
secure; thus, research indicating the trends in methods, notations, tools, and techniques is needed [1].

1.1 Rational for the Review in the Context of Existing Knowledge

Contrarily, misusing software can lead to significant financial losses, sabotage in the
communications industry, data theft in databases, and even human life-threatening software abuse in
missile control systems [9, 10]. Khan [11] stated that security concerns heavily influence software quality
as software development grows more complicated, distributed, and concurrent. Insecure software affects
an organization's reputation with customers, partners, and investors; it raises expenses, as enterprises are
obliged to patch unreliable programs; and it delays other development efforts as scarce resources are
assigned to address present software problems [11]. The lack of prioritizing security is one of the major
causes of widespread vulnerabilities [8]. Even the most conscientious organizations use the "fix and
penetrate" strategy in which security is accessed after a project is completed [8]. The disadvantage is that
the users do not apply the patches themselves. Aside from that, attackers may devise strategies to exploit
new security flaws [12]. Much money was invested in traditional security methods, mainly focused on
network systems. They primarily include IDS (Intrusion Detection System), firewalls, encryption,
antivirus, and antispyware protection [5, 13].

Although identifying software security threats and implementing secure SDLC techniques is
critical, little work has been done on creating secure software development tools, models, and standards
[4, 14]. Our previous published study explored the software security risks and their practices in the SDLC
phases [2].

1.2 Research Goals and Questions

The following goals are being pursued in the current study: (1) We conduct a questionnaire
survey to gather information from global software development experts (researchers and practitioners
alike) on the security risks in the SDLC phases. (2) Using the fuzzy analytical hierarchy process (FAHP),
rank the investigated security risks regarding their importance to secure SDLC phases in the context of
GSD.

However, no research has prioritized the security risks of SDLC phases in the context of global
software development. To address software security issues in the context of GSD, we applied the FAHP
technique. We believe that a thorough awareness of software security threats throughout the SDLC phases
will aid GSD organizations in implementing required secure software development modifications
effectively and efficiently. The ranking of security risks helps GSD organizations prioritize the most
critical security concerns necessary for successfully implementing software security activities in the
context of GSD. This study's goals are met through the following research questions:

RQ1: What are the most cited software security risks in the SDLC phases in the domain of GSD?
RQ2: What is the best way to prioritize the significant software security risks that have been identified?
RQ3: What would be the decision-making framework for the critical software security risks?

The rest of the paper reads as follows: Section 2 provides an overview of the research. Section 3 goes into
detail about the study's methodology. The results of the study can be found in Section 4. Results
evaluation and analysis are provided in Section 5. Section 6 investigates the study's limitations. Section 7
provides the Implications of the Study. Section 8 provides a conclusion and directions for future research.

2. Background and Motivation

Software security is the concept of creating software that continues to function even when it is attacked
maliciously [10, 15]. The best strategy to eliminate software bugs/vulnerabilities is to incorporate security
and non-functional specifications into all phases of the SDLC [2, 16]. There has been considerable
research on "high integrity" throughout the years, and scholars and practitioners have worked diligently to

produce secure software systems. This section addresses the various approaches to integrating security
into the SDLC phases, as well as the security techniques that are frequently utilized in these approaches:

 CMMI, Microsoft Software Development Life Cycle (MS-SDL), Misuse case modeling, Abuse
case modeling, Knowledge Acquisition for Automated Specification, System Security
Engineering-Capability Maturity Model (SSE-CMM), OWASP, and Secure Tropos
Methodology[16].

 McGraw [17, 18] recommends seven touchpoint operations (Abuse cases, Security requirements,
Architectural risk analysis, code review and repair, Penetration testing, and security operations)
for creating secure software, all of which are connected to software development artifacts.

 Sodiya [19] developed the Secure Software Development Model (SSDM), which provides
training to stakeholders in software development with adequate security education.

 Al-Matouq et al. [12] designed a framework Secure Software Design Maturity Model (SSDMM),
and the results show that SSDMM helps measure the maturity level of software development
organizations.

 Flechas et al. [20] developed AEGIS (Appropriate and Effective Guidance for Information
Security), first evaluating device assets and their relationships, then moving on to risk analysis,
which defines weaknesses, threats, and risks.

 Gupta et al. [21] developed Team Software Process for Secure Software Development (TSP)
specifically for software teams to help them create a high-performance team and prepare their
work to produce the best results.

 The Software Engineering Institute (SEI) at Carnegie Mellon University developed the Capability
Maturity Model Integration (CMMI) [22] process model, which assists companies measure and
improving their development processes while also delivering high-quality products.

 Al-Qutaish and Abran [23] proposed the Software Product Quality Maturity Model (SPQMM),
which measures the quality of a software product.

 B. Golden, [24] introduced the Open Source Maturity Model (OSMM) to assess open-source
products.

 April et al. [25] proposed the Software Maintenance Maturity Model (SMmm), based on the
CMMI, to assess and improve the quality of software maintenance activities.

 Turetken et al. [26] developed a maturity model to assess the Scaled Agile Framework (SAFe),
which integrates agile software development practices in traditional large-scale projects.

 Da Silva and de Barros [27] presented an information security maturity model for software
developers based on ISO 27001; it was evaluated by subject experts and utilized to measure the
maturity level of several organizations.

 S. R. Ahmed [28] identified security activities that should be performed to build secure software
and has shown how the security activities are related to usual activities in different phases of
software development.

 Essafi et al. [29] developed the Secure Software Development Process Model (S2D-ProM), a
strategy-oriented process model that offers guidance and support to developers and software
engineers at all levels, from beginners to experts to build secure software.

 Niazi et al. [8] conducted a systematic literature review (SLR) to pinpoint the required practices
for developing secure software and identifying best requirement practices. A framework for
secure requirement engineering named Requirements Engineering Security Maturity Model
(RESMM) was developed.

 Manico [30] designed the Comprehensive, Lightweight Application Security Process (CLASP),
which consists of 24 high-level security activities that can be entirely or partially integrated into
software during the SDLC.

 The Open Web Application Security Project (OWASP) created the Software Assurance Maturity
Paradigm (SAMM) [30], which is a non-commercial model and is an open platform that aids
software companies in developing and implementing software security policies.

 The Building Security In Maturity Model (BSIMM) [31] quantifies numerous businesses'
security activities and provides a common foundation for them to compare their security
endeavours to those of others. There are 119 activities in the BSIMM 10 software security
framework. These activities are divided into twelve practices. Each practice's exercises are
divided into three maturity levels.

 Security Quality Requirements Engineering (SQUARE) methodology allows for elicitation,
classification, and prioritization of security specifications for information technology systems
and applications [32].

We conclude from the above discussion that none of these models or structures is explicitly
committed to recognizing security risks/threats in the SDLC context of GSD. Furthermore, no study
identified and prioritized software security issues during the SDLC phases. An empirical study that
analyses security threats and ranks them according to their importance for secure SDLC in GSD is
required to fill this research gap.

The study results give a taxonomy that will assist the GSD organizations in developing secure
software by developing new and effective strategies to handle the security aspects of SDLC. Apart from
that, the knowledge gained from identifying security risks will aid in developing a generic model that
would be useful to GSD organizations in effectively implementing security checks against each phase of
SDLC. To address the objective of this study, we collected the industry practitioners’ insights using a
questionnaire survey approach.

Additionally, we apply an expert opinion approach to quantify the discovered security risks
against each phase of SDLC. The discovered security risks and their categories were prioritized by
calculating the relative weight of each important security risk and its categories. As a result, determining
the significance and priority of numerous security risks and categories may be referred to as the multi-
criterion decision-making (MCDM) dilemma [33-36]. Numerous decision-making techniques exist [37-
42]. Thus, we applied the fuzzy AHP technique as it is an effective way to handle the MCDM.
Considering the successfulness of fuzzy AHP in other engineering domains, we also consider it to
prioritize the identified security risks against each phase of SDLC.

3. Research Methodology

To achieve the objective of this study, the research work is designed in three steps. A brief
description of all the steps is given in subsequent sections:

3.1 Step-1: Identifying software security risks of SDLC in the context of global software
development

To explore the software security risks of SDLC in the context of global software development, we
used a systematic literature review (SLR) method, and the preliminary findings were published in prior
work [2]. An SLR is a secondary study in which primary studies are examined impartially and iteratively
to define, interpret, and discuss evidence relevant to the research questions [43-46]. The step-by-step
directions of Kitchenham and Charters [44] were followed to conduct the SLR. According to
Kitchenham[47], SLR findings are more valid and exhaustive since they are conducted according to
predefined protocols. To investigate software security risks during the SDLC phases, Khan et al. [2]
thoroughly follow all the SLR processes, namely planning the review, conducting the review, and
reporting the review.

One hundred twenty-one papers were selected via the tollgate technique [48] based on the
inclusion, exclusion, and quality rating criteria. Khan et al. [2] identified 145 security risks and 424 best
practices that help software development organizations to manage security throughout the SDLC phases.
Afzal et al. [48] suggested the tollgate method was used to refine the research articles found during the
primary study collection.

3.2 Step-2: Empirical Investigation

Figure 1: Flowchart of Research Methodology

A key goal of empirical research in software engineering is to assess practical significance, which
answers whether the observed effects of some compared treatments show a relevant difference in practice
in realistic scenarios. Even though plenty of standard techniques exist to assess statistical significance,
connecting it to practical significance is not straightforward or routinely done; only a few empirical
studies in software engineering assess practical importance conscientiously and systematically [49].

Many empirical research articles have been published recently [49-53] to address the software
security issues. To address this objective, an online questionnaire survey was constructed using Google
Docs to validate the SLR findings and discover other security risks and associated practices.

It is difficult to obtain data directly from large numbers of industry experts working across the
globe. As a result, we used a non-methodical technique for data collecting, namely an online survey using
snow balling technique. Other researchers in the software engineering domain also employed the same

date collection process [54-60]. The following steps were involved in conducting the questionnaire
survey:

3.2.1 Development of Questionnaire Survey

The questionnaire primarily consists of closed-ended questions designed to get the practitioner's insight
concerning the security risks of SDLC in the GSD context. The questionnaire also contains an open-ended
section to allow the survey participant to add any additional security risk of SDLC in GSD. We employed
a five-point Likert (strongly-agree to strongly-disagree)scale to obtain survey participants' observations
regarding the software security risks and practices listed in the closed-ended section, i.e., strongly agree,
agree, neutral, disagree, and strongly disagree.

3.2.2 Pilot of Questionnaire Survey

To conduct the pilot assessment of the questionnaire survey, we chose experts working in the
GSD environment (i.e., Software Engineering Research Group (SERG UOM) Pakistan, King Fahd
University of Petroleum and Minerals, Saudi Arabia, and Qatar University, Doha, Qatar). This pilot
assessment aims to address significant issues (in terms of statistical variables) and improve the survey
questions' understandability. Experts suggest improving the questionnaire's design by adding questions to
obtain more information about survey participants. The questionnaire survey was revised after
considering the experts' ideas and recommendations.

At the beginning of the survey, a statement on the researchers' ethical responsibility was also
added to assure the participant's confidentiality. This remark reassured the participants that only the study
team would access their information. It was stated that the research team would not share the data with
anyone to reveal the identity of any participant or organization.

3.2.2 Data Collection Sources

As previously indicated, our target population was large and spread organizations across the
globe. We decided to use unusual methods to collect responses from SSD professionals working in GSD.
We used the snowball sampling technique to gather data from the experts [61]. Snowballing is a low-cost,
straightforward strategy to reach a specific audience [57, 61, 62].

FIGURE 2. Respondents Responses

We used social media networks such as Facebook, LinkedIn, Research Gate, and email to contact
the experts. The empirical study's data was collected online from June 01, 2021, to July 04, 2021, and the
entire data gathering process took one month and four days. During the survey's implementation, 64
responses were collected, as shown in Figure 2. All of the responses were manually reviewed. We
excluded 14 responses because the respondents of these 14 persons do not have experience in GSD and
software security. For analysis, the final 50 survey results were taken into account. We ensure survey
participants that the obtained data will only be used for research purposes and that their identities will
never be disclosed to a third party. Appendix A lists all of the countries and their responses.

3.2.4 Data Analysis

The frequency analysis method was used to examine survey participant replies in this study. This
approach analyzes nominal and ordinal data over many variables or groups of variables [63]. Because the
survey responses are nominal, we employed the chi-square ("liner-by-linear connection") technique to
discover significant differences across the variables. Research with similar data types has used the same
analysis approach [62, 64].

3.4 Step-3: Fuzzy Analytical Hierarchy Process (FAHP) Survey

The respondents to the first survey were contacted and asked to participate in a second survey that used
the FAHP technique to rank software security risks and their categories. We obtained 27 complete
responses from respondents in the second survey. Appendix A contains an example of the questionnaire
used to collect data for the second survey. Compared to the previous survey, the FAHP survey had a
smaller sample size (27 replies), threatening the generalizability of our results. The FAHP method, on the
other hand, has been viewed as a more subjective approach that allows for smaller sample size [65-68].

3.4.1 Fuzzy Set Theory and AHP

This section discusses the basics of fuzzy set theory and how to use it in the traditional AHP
method. Several MCDM approaches include AHP, Fuzzy AHP, Fuzzy TOPSIS, etc. AHP is the most
popular because it is very effective [33, 69, 70]. Various areas, including political, economic, and
management sciences, have extensively used AHP to solve complicated problems. When measuring
multiple criteria's relative importance, classical AHP cannot handle the ambiguity and obscurity of the
decision-maker. Because of this, fuzzy AHP was developed, which outperformed AHP in terms of
accuracy and efficiency [71-73]. With these insights in mind, we chose fuzzy AHP over other approaches.

3.4.2 Fuzzy Set Theory

Zadeh [74] developed a fuzzy set theory to extend the traditional set theory. It was designed to
manage ambiguous responses in decision-making tasks based on numerous criteria to deal with
uncertainties and ambiguity in real-world situations. The fuzzy set theory is a valuable tool [75, 76]. A
characteristic function μV(x) is inserted into the fuzzy set, which maps a given value's membership
between 0 and 1. The following sections describe the fundamental principles and definitions of fuzzy sets:

Definition: Triangular fuzzy number (TFN) Vis represented by a triplet (vl, vm, vu). The
characteristic function μV(x) of a TFN is given in equation (1) and Figure 3.

Where vl represents the lowest, vm represents the most favourable, and vu denotes the highest
possible values.

Figure 3. Triangular fuzzy number

Table 1 lists the most typically used algebraic procedures between two TFNs (V1, V2).

Table 1. Triangular fuzzy numbers

3.4.3 Fuzzy analytical hierarchy process (FAHP)
Practitioners widely accept that the FAHP is useful for dealing with complex decision-making situations.
The most critical aspect of FAHP is its ability to efficiently deal with qualitative and quantitative data that
contain many criteria. The significant steps for performing FAHP analysis are as follows:

Step 1: The decision problem is broken down into a hierarchical structure. (See Figure 3)
Step 2: The priority vector is calculated by pair-wise comparison for each level of the hierarchy.
Step 3: Calculate the pair-wise consistency ratio.
Step 4: Prioritize each component and sub-factor based on their weight in the overall score. (See Figure
4).

Even though different FAHP approaches are accessible in the literature [65-68], we have used
Chang’s method [77] because of its effectiveness and widespread acceptance among scientists. Chang
[77] expressed a prioritisation problem as a group of elements referred to as primary categories as X =
{x1, x2,...,xm}. Each xi also contains elements, called goal set, and represented as V = {v1, v2,..,vn}. At a
time, one main category, xi, is considered, and each goal gi undergoes extent analysis. The following
equations(2) and(3) can be used to calculate the number of extent analyses (m) that are performed for
each category:

Where, all Vj
gi, (j = 1, 2, ..., m) are TFNs. Chang's step-by-step extent analysis method is

described as follows [77]:

Figure 4. FAHP decision hierarchy

Step 1:The fuzzy analysis of the ith category is shown in Equation (4) as:

Step 2: Given two TFNs Va and Vb, the degree of possibility that Va≥ Vb can be defined as:

Where d indicates the largest value of intersection between µGa and µVb(Figure 5)

Figure 5. Triangular Fuzzy number

Step 3: The overall degree of possibility of a given convex fuzzy number H is calculated concerning
other Vi (i= 1, 2,..., k) as:

Step 4: The weight vector W obtained from equation (12) is normalized to achieve priority weight as a
crisp number:

Step 5: Checking consistency ratio: FAHP requires that the pair-wise matrices be consistent at all times
[39]. Thus, a consistency ratio is calculated for each pair of comparison matrices, referred to as a
consistency check. A graded mean integration approach converts the given matrix with a fuzzy number
into corresponding crisp values. This is referred to as defuzzification. To convert a given TFN P = (l, m,
u) into an equivalent crisp number, the following formula must be utilized:

Where,
Imax: the maximum eigenvalue of the given comparison matrix,
n: number of criteria in the given matrix,
RI: the random index and its value can opt from Table 2.

Table 2. Random consistency index (RI) concerning matrix size

If the estimated value of CR is less than 0.1, expert pair-wise responses are assumed to be consistent.
Otherwise, current responses are discarded, and new responses are gathered.

4. Results and Applications of Fuzzy AHP

To address the research questions raised in Section 1, we have organized the findings of this study into
the following sections:

4.1 Most cited software security risks in the SDLC phases in the domain of GSD
We previously published [2] an in-depth analysis of software security risks in the SDLC phases in the
domain of Secure Software Engineering (SSE). In this paper, we employed the coding system of Strauss'
[78] ground theory (GT) technique to identify, classify, and organize the identified critical security risks
(CSRs) in our research. Although we have already collected the data through SLR, we used the four main
phases of the GT coding scheme to map the CSRs into four major categories (i.e. "code," "categories",
"sub-categories," and theory/theoretical model").

Figure 6: Theoretical model of the critical software security risks of SDLC in GSD

All three authors of this study are on the mapping team. The third author checks to make sure the
mapping process is going well. First, we allocated a unique code/label to each CSR we studied. The
second phase involved categorizing the examined CSRs into six broad phases/groups, "Requirement
Engineering", "Designing", "Coding", "Testing", "Deployment", and "Maintenance". In the third step, the
CSRs were mapped into these phases. In the fourth step, we engineered a theoretical model depicted in
Figure 6.

The primary goal of this categorization is to construct a hierarchical framework for executing the
FAHP. Furthermore, this categorization will help academic researchers and practitioners to identify the
most important software security risk in the SDLC in the context of GSD. We identified 45 CSRs, which
were mapped in each phase of the SDLC, as stated in Table 3.

Table 3: list of identified critical security risks of SDLC in GSD

SDLC Phases Code /
Label Critical Security Risks (CSRs)

Requirement
Engineering

CSR1 Lack of security requirements, review, assessment, analysis, verification,
validation

CSR2 Security requirements are often neglected or considered a non-functional
requirement

CSR3 Lack of secure requirements identification and documentation

CSR4 Lack of experience, knowledge, guidance, and security training during
security requirement documentation

CSR5 Improper plan for secure requirement identification, inception,
authentication, authorization, and privacy

CSR6 Lack of security requirements elicitation activity
CSR7 Lack of developing threat modeling

CSR8 Lack of security requirements prioritization, management, and
categorization

Designing

CSR9 Improper secure design documentation and specification review
CSR10 Lack of developing threat modeling during the design phase
CSR11 Lack of access control and traceability
CSR12 Improper security design review and its verification
CSR13 Lack of attention to following security design principles
CSR14 Lack of developing data flow diagrams and design requirements
CSR15 Lack of building and maintaining abuse case models and attack patterns
CSR16 Lack of security design awareness, guidance, and training

CSR17
Lack of implementation of security design decisions: (Cryptographic
protocols, standards, services, frameworks, abuse case models, and attack
patterns)

Coding

CSR18 Tampering: is the unauthorized modification of data
CSR19 SQL Injection, Cross Site Scripting, cross-site request forgery

CSR20 Denial of Services: is the process of making a system or application
unavailable

CSR21 Repudiation: is the ability of users (legitimate or otherwise) to deny that
they performed specific actions or transactions

CSR22 Information Disclosure: is the unwanted exposure of private data

CSR23 Elevation of privilege: occurs when a user with limited privileges assumes
the identity of a privileged user

CSR24 Spoofing: An attempt to gain access to a system by using a fake identity
CSR25 Password Conjecture: Lack of password complexity enforcement

Testing
CSR26 Lack of Penetration Security Testing Analysis
CSR27 Lack of Static and Dynamic Security Testing Analysis
CSR28 Lack of final and manual security review

CSR29 Lack of Fuzz and Unit Testing Analysis
CSR30 Brute Force Attack

CSR31 Lack of developing threat models: as it helps to develop test cases or test
plans

CSR32 Lack of Functional and Non-Functional Testing

CSR33
Various kinds of Attacks (viruses,) malware, Trojan Virus: A type of virus
that is well known for causing issues and destruction to computers is a
Trojan virus

Deployment

CSR34 Lack of default software configuration
CSR35 Lack of output validation
CSR36 Lack of certification in final release and archive
CSR37 Lack of threat models updating

Maintenance

CSR38 Lack of proper methods to find out new threats in the system
CSR39 Lack of security trust

CSR40 Improper configuration, vulnerability management, change control, and
improvement of security assessment

CSR41 Security activities increase the cost of the software
CSR42 Timing attacks and lack of log optimization
CSR43 Inability to run software updates or change usernames and passwords
CSR44 Lack of government assistance for proper rules for cybercrime

4.2 Application of Analytic Hierarchy (AHP)
Throughout this part, we determine the relative importance of each investigated software security risk and
between each category. Additionally, by completing all of the methods outlined in Section3.4.3, the most
critical category of critical software security risks was established.

Step 1: Simplify a complex decision-making problem by dividing it into a hierarchical structure
Shameem et al. [39], Albayrak [79] and Akbar et al. [36] stated that decision-making problems are broken
down into a series of interconnected components at this level. Figure 7 shows the problem's hierarchical
structure divided into three stages. The problem's aim is mentioned in the first stage of this hierarchical
structure; however, the components and sub-factors are situated in stages 2 and3, respectively. The
hierarchical structure of the current investigation is depicted in Figure 7.

Step 2: Make a pair-by-pair comparison
This study aims to rank the critical software security risks and their categories in terms of their
importance for the successful development of secure software projects. A questionnaire was designed and
sent to respondents of the initial survey to conduct the pair-wise comparison (for fuzzy-AHP analysis).
Participants in the survey provided a total of 27 replies. To ensure that no data was missing, all replies
were rigorously examined. We discovered that all 27 of the responses were complete. Second-survey
questionnaire samples are included in Appendix-A. One potential concern with fuzzy-AHP analysis is a
small sample size. However, a similar-sized dataset has been utilized in previous publications [80-83] to
do the AHP analysis:

Several existing studies also consider FAHP data from a small sample size. For example,
Shameem et al. [39] gathered data from 5 specialists to compare the impacting elements of distributed
agile development pair-wise. Similarly, Cheng and Li [82] have collected nine responses to a pair-wise
comparison of the success variables for building partnering. Furthermore, Wong and Li [80] found FAHP
is an effective tool for narrowing down the options for intelligent building systems during a survey of
nine industry professionals. Based on these illustrations, we may conclude that a sample size of 27 is
sufficient for FAHP.

The survey data from the FAHP participants have been transformed into geometric means for
comparing security risks and categories side by side. A geometric mean is an efficient method for

converting survey respondents' assessments into TFN values. The following formula has been used to
calculate the geometric mean: The following formula has been used to calculate the geometric mean:

The linguistic variable against their triangular fuzzy Likert scales is given in Table 1. The triangular fuzzy
conversion scale (Table 1) suggested by Bozbura et al. [84] was used to create the pair-wise comparison
matrixes of the reported critical software security risks and their associated categories.

Figure 7: Proposed hierarchical structure of the critical software security risks of SDLC in GSD

Step 3: Determine the local priority weight for each security risk
We calculated the priority weight of each critical security risk (CSR) and their related phases to

identify the criticality of each CSR for developing secure software applications in the context of GSD. In
the first place, the synthetic extent values of four CSRs in the category "Deployment" were found. As a
result, we calculated the priority weight for each CSRs in the following manner. For example, we
determined local weights for the CSRs of the "Deployment" category. Table 4 shows a pair-wise analysis
of CSRs in the "Deployment" category.

The following equation (4) was used to determine the synthesis values for the "Deployment"
category CSRs (CSR34–CSR37):

Table 4: Pair-wise analysis of CSRs in the "Deployment" category
Critical Software Security Risks CSR34 CSR35 CSR36 CSR37

CSR34 (1,1,1) (1.5, 1.5, 1) (1, 1.5, 3) (1.5, 2, 0.5)
CSR35 (0.5, 1.5, 0.5) (1,1,1) (1.5, 0.5, 1.5) (0.5, 0.5,2)
CSR36 (1, 1.5, 0.6) (2, 1, 2.5) (1,1,1) (2.5, 1, 1.5)
CSR37 (0.5, 2.5, 0.5) (1.5, 1.5, 1.5) (1.5, 0.5, 2) (1,1,1)

Table 5: Results of V values for criteria (priority weight)
CSR34 CSR35 CSR36 CSR37 d (Priority Weight)

V (R34≥….) - 1 1 1 1
V (R35≥….) 0.0301 - 0.2670 0.6256 0.0303

V (R36≥….) 0.6983 1 - 1 0.6972
V (R37≥….) 0.3643 1 0.6467 - 0.3661

Table 6: Fuzzy Crisp Matrix (FCM) critical software security risks in the deployment phase
CSR34 CSR35 CSR36 CSR37 Priority

Weight
CSR34 0.5 2.5 0.5 1.5 0.11571
CSR35 1.5 1 1.5 1.5 0.29510
CSR36 0.7 2.0 1.0 1.0 0.17128
CSR37 1.5 1.5 0.7 2.5 0.41892

Equation 6 was used to compute the degree of possibility, and equation 8 was used to get the
minimal degree of possibility (priority weights) for each pair-wise comparison. Table 5 shows the
estimated weights, which are W'= W (1, 0.0303, 0.6972, 0.3661).The statistical significance of the data
was determined by normalizing it to W =(0.085234, 0.098666, 0.085853, 0.088267, 0.073985, 0.083276).

Step 4: Consistency Check
We conducted the consistency check using Table 6 and followed all the steps necessary to

determine the consistency of pair-wise comparison matrixes. As shown in Table 6, the Fuzzy Crisp Matrix
(FCM) was created by converting the fuzzy triangular numbers of the pair-wise comparison matrix of the
"Deployment" category CSRs into crisp numbers. To find the greatest Eigen vector (max), we added the
sums of the columns of the FCM matrix together. We then divided each value by the total of its appropriate
column to find the greatest Eigen vector (max) (Table 6). Finally, In Table 7, we take the average of each
row and divide it by the total number of CSRs to assess their priority weight.

Table 7: Normalized matrix of CSRs in the deployment phase
CSR34 CSR35 CSR36 CSR37

CSR34 0.3703 0.3563 0.4065 0.3835
CSR35 0.1853 0.1438 0.1343 0.1354
CSR36 0.2593 0.2848 0.2714 0.2876
CSR37 0.1855 0.2154 0.1889 0.1932

A consistent pair-wise comparison of the "Deployment" category was found to have a calculated value of
CR of 0.0192< 0.10, which indicates that the category is consistent. Similarly, the consistency ratio for all the
categories is evaluated, and the results, together with a pair-wise comparison of "Requirement Engineering",
"Designing", "Coding", "Testing", and "Maintenance", are reported in Tables 8, 9, 10 and 11.

Table 8: Pair-wise comparison and priority weight of CSRs in the requirement engineering phase
CSR1 CSR2 CSR3 CSR4 CSR5 CSR6 CSR7 CSR8 Priority

Weight

CSR1 (1,1,1) (1, 1.5, 2) (0.5, 1,
0.5)

(1, 0.5,
2.5)

(0.5, 0.5,
1.5)

(2.5, 2,
0.5)

(1, 1.5,
0.5)

(1.5, 0.5,
1) 0.099521

CSR2 (1.5, 0.6, 1) (1,1,1) (1.5, 2, 2) (0.5, 0.5,
1)

(0.5, 0.5,
1)

(1, 0.5,
2.5) (1.5, 2, 1) (0.5, 0.5,

1) 0.095747

CSR3 (1.5, 2, 1.5) (0.5, 1.5, 1.5) (1,1,1) (0.5, 1,
0.5)

(1.5, 0.5,
1)

(1.5, 1,
1.5)

(0.5, 0.5,
1)

(1.5, 1,
2.5) 0.089021

CSR4 (1.5, 0.5, 1) (1, 1.5, 1.5) (0.5, 1,
1.5) (1,1,1) (1, 1.5, 2) (0.5, 0.5,

1)
(0.5, 0.5,

1) (1, 0.5, 2) 0.094227

CSR5 (1, 2.5, 2) (1.5, 2, 2) (1, 1.5,
0.5)

(1.5, 0.5,
1) (1,1,1) (1, 1.5,

0.5)
(1, 0.5,

2.5)
(1.5, 0.5,

0.5) 0.106190

CSR6 (1.5, 0.5, 1.5) (1.5, 0.5, 1) (0.6, 1,
0.5)

(1.5, 0.5,
2)

(1, 2.5,
1.5) (1,1,1) (0.5, 1,

0.6)
(1, 0.5,

2.5) 0.073994

CSR7 (1.5, 0.5, 1) (1.5, 0.5, 1) (1.5, 1, 2) (1, 0.5, 2) (1.5, 0.5,
1) (1, 2, 1.5) (1,1,1) (01.5, 0.5,

1) 0.085222

CSR8 (1, 1.5, 2.5) (1.5, 1, 2.5) (0.5, 1,
2.5)

(0.5, 0.5,
1)

(0.5, 1.5,
0.5)

(0.5, 0.5,
1)

(1.5, 1,
1.5) (1,1,1) 0.098655

Table 9: Pair-wise comparison and priority weight of CSRs in the designing phase
CSR9 CSR10 CSR11 CSR12 CSR13 CSR14 CSR15 CSR16 CSR17 Priority

Weight
CSR9 (1,1,1) (1, 1.5,

1)
(0.5, 1,

0.5)
(2.5, 2,

0.5)
(1.5, 0.5,

1)
(1.5, 1,

1.5)
(1.5, 1,

2.5)
(1.5, 0.5,

1)
(1.5, 1, 2) 0.089761

CSR10 (1, 0.5,
1.5)

(1,1,1) (1.5, 2, 1) (0.5, 1,
1.5)

(0.5, 0.5,
1.5)

(1.5, 1, 2) (1.5, 2,
2.5)

(0.5, 0.5,
1)

(1, 1.5, 2) 0.092647

CSR11 (1, 1.5,
0.5)

(0.5,
0.5, 1)

(1,1,1) (0.5, 1.5,
0.5)

(1.5, 0.5,
1)

(1.5, 2,
1.5)

(0.5, 1,
0.5)

(1.5, 1,
0.5)

(0.5, 1.5,
1)

0.082365

CSR12 (0.5, 0.5,
1)

(1, 1.5,
0.5)

(1.5, 0.5,
1)

(1,1,1) (0.5, 2,
1.5)

(0.5, 1.5,
1)

(1.5, 0.5,
1)

(1.5, 1,
0.5)

(1.5, 0.5,
1)

0.074265

CSR13 (1, 0.5,
1.5)

(1.5, 2,
1.5)

(1, 1.5,
0.5)

(0.5, 1.5,
0.5)

(1,1,1) (0.5, 0.5,
1)

(0.5, 1,
1.5)

(1, 2, 2.5) (1.5, 0.5,
1)

0.099316

CSR14 (1, 0.5,
1.5)

(1.5,
0.5, 1)

(0.5, 1.5,
0.5)

(1, 0.5,
1.5)

(1, 1.5,
1.5)

(1,1,1) (0.5, 1,
1.5)

(1.5, 0.5,
2)

(1.5, 0.5,
1)

0.072521

CSR15 (1.5, 0.5,
1)

(0.5,
1.5, 1)

(1.5, 1,
2.5)

(1, 1.5,
2)

(1.5, 2,
2.5)

(1, 1.5, 2) (1,1,1) (0.4, 0.5,
0.6)

(0.5, 0.6,
1)

0.083386

CSR16 (1.5, 0.5,
2)

(1.5,
0.5, 1)

(0.5, 1.5,
1)

(0.5, 0.5,
2)

(1.5, 0.5,
0.5)

(1.5, 0.5,
1)

(1.5, 2,
2.5)

(1,1,1) (1.5, 2,
2.5)

0.093576

CSR17 (2.5, 0.5,
0.5)

(2.5,
0.5, 1)

(1, 0.5, 2) (1.5, 0.5,
2)

(1, 1.5, 2) (1.5, 2,
1.5)

(1, 1.5, 2) (0.5, 0.5,
1.5)

(1,1,1) 0.074578

Table 10: Pair-wise comparison and priority weight of CSRs in the coding phase
CSR18 CSR19 CSR20 CSR21 CSR22 CSR23 CSR24 CSR25 Priority

Weight
CSR18 (1,1,1) (1, 0.5, 1.5) (1.5, 0.5,

0.5)
(1, 1.5, 2) (0.5, 1.5,

1)
(1, 0.5, 2) (1, 1.5, 2) (1.5, 0.5,

1)
0.110114

CSR19 (1.5, 0.1, 1) (1,1,1) (1.5, 2,
1.5)

(1.5, 0.5,
1)

(0.5, 1,
1.5)

(1, 0.5, 2) (1.5, 2,
2.5)

(0.5, 1.5,
1)

0.098378

CSR20 (1.5, 2, 1.5) (0.5, 0.5,
1.5)

(1,1,1) (1.5, 0.5,
1)

(0.5, 1.1,
1)

(1, 1.5, 2) (0.5, 1,
0.5)

(1.5, 0.5,
2.5)

0.095145

CSR21 (1.5, 0.5, 1) (1, 1.5, 0.5) (0.5, 1.5,
1)

(1,1,1) (1.5, 2,
2.5)

(0.5, 1.5,
1)

(0.5, 1,
0.5)

(1.5, 0.5,
1.5)

0.089665

CSR22 (1.5, 0.5, 2) (0.5, 2, 1.5) (1, 0.5, 2) (1.5, 0.5,
0.5)

(1,1,1) (1.5, 0.5,
0.5)

(1.5, 0.5,
1.5)

(1.5, 2,
1.5)

0.109771

CSR23 (1.5, 0.5, 1) (1.5, 0.5, 1) (1.5, 0.5,
1)

(1.5, 0.5,
2)

(1, 0.5, 2) (1,1,1) (1.5, 0.5,
0.5)

(1, 1.5, 2) 0.087083

CSR24 (1.5, 0.5, 1) (0.5, 1.5,
0.5)

(1.5, 2,
1.5)

(1, 0.5,
2.5)

(1.5, 2,
2.5)

(1.5, 2,
1.5)

(1,1,1) (0.5, 0.5,
1)

0.119217

CSR25 (1, 1.5, 0.5) (1, 0.5, 2) (0.5, 1.5,
0.6)

(0.5, 1.5,
0.5)

(0.5, 1.5,
0.5)

(1.5, 0.5,
1)

(1, 1.5, 2) (1,1,1) 0.099248

Table 11: Pair-wise comparison and priority weight of CSRs in the testing phase
CSR26 CSR27 CSR28 CSR29 CSR30 CSR31 CSR32 CSR33 Priority

Weight

CSR26 (1,1,1) (0.5, 0.6, 1) (0.4, 0.5,
0.6)

(1.5, 2, 2.5) (0.5, 1.5, 1) (0.5,
1.5,
0.5)

(1.5, 2,
2.5)

(0.5, 2,
2.5)

0.078233

CSR27 (1, 1.5, 2) (1,1,1) (1.5, 2, 2.5) (0.5, 0.6, 1) (1.5, 0.5, 0.5) (1.5, 2,
0.5)

(1.5, 0.5,
1)

(1.5, 2,
0.5)

0.077154

CSR28 (1, 1.5, 2) (0.4, 0.5,
0.6)

(1,1,1) (0.4, 0.5,
0.6)

(1, 1.5, 2) (1.5,
1.5,
0.5)

(1, 1.5, 2) (1.5, 0.5,
2)

0.061136

CSR29 (0.4, 0.5, 0.6) (1, 1.5, 2) (1.5, 2, 2.5) (1,1,1) (1, 1.5, 2) (0.5,
1.5,
0.5)

(1.5, 2,
2.5)

(0.5, 1.5,
1)

0.072115

CSR30 (1.5, 2, 2.5) (1.5, 2, 2.5) (0.4, 0.5,
0.6)

(0.5, 0.6, 1) (1,1,1) (0.5, 1,
2.5)

(1.5, 1.5,
1)

(1, 1.5,
0.5)

0.075752

CSR31 (1.5, 2, 2.5) (0.4, 0.5,
0.6)

(1.5, 2, 2.5) (1.5, 2, 2.5) (1.5, 0.5, 1) (1,1,1) (1, 1.5, 2) (0.5, 1.5,
1)

0.074992

CSR32 (0.4, 0.5, 0.6) (1, 1.5, 2) (0.4, 0.5,
0.6)

(0.4, 0.5,
0.6)

(1, 1.5, 2) (1.5, 1,
1.5)

(1,1,1) (1, 1.5, 2) 0.065515

CSR33 (0.4, 0.5, 0.6) (0.4, 0.5,
0.6)

(2.5, 3, 3.5) (1, 1.5, 2) (1.5, 1, 2.5) (1.5, 1,
2.5)

(0.5, 1.5,
1)

(1,1,1) 0.077155

Table 12: Pair-wise comparison and priority weight of CSRs in the maintenance phase
CSR38 CSR39 CSR40 CSR41 CSR42 CSR43 CSR44 Priority

Weight
CSR38 (1,1,1) (1.5, 0.5, 1) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.5, 1.5, 1) (0.5, 0.5, 1) (1.5, 2, 2.5) 0.106170
CSR39 (1, 0.5, 2) (1,1,1) (1.5, 0.5, 2) (1, 1.5, 2) (0.5, 0.5, 0.6) (1, 1.5, 2) (0.5, 1.5, 1) 0.073974
CSR40 (0.5, 1.5, 1) (1.5, 2, 2.5) (1,1,1) (0.4, 0.5, 0.6) (0.5, 1.5, 1) (1.5, 2, 2.5) (0.5, 0.5, 1) 0.085242
CSR41 (1.5, 0.5, 1) (0.5, 1.5, 1) (1.5, 2, 2.5) (1,1,1) (1.5, 2, 2.5) (1, 1.5, 2) (1, 1.5, 2) 0.098675
CSR42 (1, 0.5, 2) (1.5, 2, 2.5) (1, 1.5, 2) (0.5, 1.5, 0.6) (1,1,1) (0.5, 0.5, 0.5) (0.5, 1.5, 1) 0.085862
CSR43 (1, 1.5, 2) (0.5, 1.5, 1) (1, 0.5, 1.5) (0.5, 1.5, 1) (1.5, 2, 2.5) (1,1,1) (1.5, 2, 2.5) 0.088267
CSR44 (1, 0.5, 1.5) (1, 1.5, 2) (1, 1.5, 2) (1.5, 2, 1) (1, 2.5, 2) (1.5, 0.5, 0.5) (1,1,1) 0.083375

Table 13: Pair-wise comparison and priority weight among SDLC phases in GSD
SDLC Phases Deployment Requirement

Engineering
Designing Coding Testing Maintenance Priority Weight

Deployment (1,1,1) (0.4, 0.5, 0.6) (1, 1.5, 2) (0.4, 0.5, 0.6) (1, 1.5, 2) (0.5, 0.6, 1) 0.073985
Requirement
Engineering

(1.5, 2, 2.5) (1,1,1) (0.4, 0.5, 0.6) (0.5, 0.6, 1) (1.5, 2, 2.5) (0.5, 0.6, 1) 0.085234

Designing (0.5, 0.6, 1) (1.5, 2, 2.5) (1,1,1) (1.5, 2, 2.5) (1, 1.5, 2) (1, 1.5, 2) 0.098666
Coding (1.5, 2, 2.5) (1, 1.5, 2) (0.4, 0.5, 0.6) (1,1,1) (0.4, 0.5, 0.6) (0.5, 0.6, 1) 0.085853
Testing (0.5, 0.6, 1) (0.4, 0.5, 0.6) (0.5, 0.6, 1) (1.5, 2, 2.5) (1,1,1) (1.5, 2, 2.5) 0.088267

Maintenance (1, 1.5, 2) (1, 1.5, 2) (0.5, 0.6, 1) (1, 1.5, 2) (0.4, 0.5, 0.6) (1,1,1) 0.083276

Table 14: Pair-wise comparison and priority weight among SDLC phases and its critical software
security risks

Category Category Weight Risk local
Weight

Local
Rank

Global
Weight

Global
Rank

Requirement
Engineering 0.085234

CSR1 0.099521 2 0.0084826 15
CSR2 0.095747 4 0.0081609 21
CSR3 0.089021 6 0.0075876 25
CSR4 0.094227 5 0.0080313 23
CSR5 0.106190 1 0.009051 10
CSR6 0.073994 8 0.0063068 40
CSR7 0.085222 7 0.0072638 29
CSR8 0.098655 3 0.0084088 17

Designing 0.098666

CSR9 0.089761 4 0.0088564 11
CSR10 0.092647 3 0.0091411 9
CSR11 0.082365 6 0.0081266 22
CSR12 0.074265 8 0.0073274 30
CSR13 0.099316 1 0.0097991 5
CSR14 0.072521 9 0.0071554 31
CSR15 0.083386 5 0.0082274 18
CSR16 0.093576 2 0.0092328 8
CSR17 0.074578 7 0.0073583 27

Coding CSR18 0.110114 2 0.0094536 6

0.085853 CSR19 0.098378 5 0.008446 16
CSR20 0.095145 6 0.0081685 20
CSR21 0.089665 7 0.007698 24
CSR22 0.109771 3 0.0094242 7
CSR23 0.087083 8 0.0074763 26
CSR24 0.119217 1 0.0102351 4
CSR25 0.099248 4 0.0085207 14

Testing 0.088267

CSR26 0.078233 1 0.0069054 35
CSR27 0.077154 3 0.0068102 36
CSR28 0.061136 8 0.0053963 43
CSR29 0.072115 6 0.0063654 39
CSR30 0.075752 4 0.0066864 37
CSR31 0.074992 5 0.0066193 38
CSR32 0.065515 7 0.0057828 42
CSR33 0.077155 2 0.0068102 36

Deployment 0.073985

CSR34 0.11571 4 0.0085608 13
CSR35 0.29510 2 0.021833 2
CSR36 0.17128 3 0.0126722 3
CSR37 0.41892 1 0.0309938 1

Maintenance 0.083276

CSR38 0.106170 1 0.0088414 12
CSR39 0.073974 7 0.0061603 41
CSR40 0.085242 5 0.0070986 33
CSR41 0.098675 2 0.0082173 19
CSR42 0.085862 4 0.0071502 32
CSR43 0.088267 3 0.0073505 28
CSR44 0.083375 6 0.0069431 34

Step-5: Determine the relative importance of critical software security risks on a local and global
weight

Table 14 shows the local and global weights for each critical software security risk (CSR) and its SDLC
phase. When a CSR is given a local weight, it indicates its importance to other similar CSRs. On the other
hand, the global weight reveals which of the 44CSRs has the highest priority. The pair-wise comparison
was used to generate each CSR and category (step4).

For instance, Table 14 indicates that CSR5, "Improper plan for secure requirement identification,
inception, authentication, authorization, and privacy", has the highest local weight (LW) in the
Requirement Engineering category (0.106190), indicating that CSR5is the highest ranked (prioritized)
component in the Requirement Engineering category.

However, each CSR's global weight was computed by multiplying its local weight by the weight
of its category. For example, the global weight (GW) of CSR1 = weight of its category (Requirement
Engineering) multiply with it local weight = 0.085234 × 0.099521 = 0.0084826 as depicted in Table 14.
Similarly, we estimated each reported CSR's global weight (GW) (see Table 14).

The results in Table 14 indicate that CSR37 (Lack of threat models updating, GW=0.0309938) is
the highest-ranking critical software security risk in the SDLC process implementation in the GSD
context.

Step 6: Prioritizing of CSRs

The final stage of the AHP process prioritizes the critical software security risks facing software
development organizations. The application of this prioritizing is that software development organizations
will focus on these priority base CSRs during the SDLC phases to develop a secure software
application/product. This prioritization of CSRs is depicted in Table 15. The global weights are used to
determine the final rankings of CSRs and calculate their relative importance.

However, the absolute rankings in Table 15 show that CSR37 (Lack of threat models updating,
GW=0.0309938) is the most important CSR. This indicates that the secure software development experts
have acknowledged the need for effective security management to help software development
organizations effectively perform the GSD activities. We further noted (see Table 15) that CSR35 (Lack

of output validation), CSR36 (Lack of certification in the final release and archive), CSR24 (Spoofing:
An attempt to gain access to a system by using a fake identity), are the second, third and fourth highest-
ranking CSRs in the SDLC process in the GSD context.

Table 15: List of CSRs and their priority order/global rank
Code /
Label CSRs in the SDLC phases Priority order /

global rank
CSR37 Lack of threat models updating 1
CSR35 Lack of output validation 2
CSR36 Lack of certification in final release and archive 3
CSR24 Spoofing: An attempt to gain access to a system by using a fake identity 4
CSR13 Lack of attention to follow security design principles 5
CSR18 Tampering: is the unauthorized modification of data 6
CSR22 Information Disclosure: is the unwanted exposure of private data 7
CSR16 Lack of security design awareness, guidance, and training 8
CSR10 Lack of developing threat modeling during the design phase 9

CSR5 Improper plan for secure requirement identification, inception, authentication,
authorization, and privacy 10

CSR9 Improper secure design documentation and specification review 11
CSR38 Lack of proper methods to find out new threats in the system 12
CSR34 Lack of default software configuration 13
CSR25 Password Conjecture: Lack of password complexity enforcement 14

CSR1 Lack of security requirements, review, assessment, analysis, verification,
validation 15

CSR19 SQL Injection, Cross Site Scripting, cross-site request forgery 16
CSR8 Lack of security requirements prioritization, management, and categorization 17
CSR15 Lack of building and maintaining abuse case models and attack patterns 18
CSR41 Security activities increase the cost of the software 19
CSR20 Denial of Services: is the process of making a system or application unavailable 20

CSR2 Security requirements are often neglected or considered a non-functional
requirement 21

CSR11 Lack of access control and traceability 22

CSR4 Lack of experience, knowledge, guidance, and security training during security
requirement documentation 23

CSR21 Repudiation: is the ability of users (legitimate or otherwise) to deny that they
performed specific actions or transactions 24

CSR3 Lack of secure requirements identification and documentation 25

CSR23 Elevation of privilege: occurs when a user with limited privileges assumes the
identity of a privileged user 26

CSR17 Lack of implementation of security design decisions: (Cryptographic protocols,
standards, services, frameworks, abuse case models, and attack patterns) 27

CSR43 Inability to run software updates or change usernames and passwords 28
CSR7 Lack of developing threat modeling 29
CSR12 Improper security design review and its verification 30
CSR14 Lack of developing data flow diagrams and design requirements 31
CSR42 Timing attacks and lack of log optimization 32

CSR40 Improper configuration, vulnerability management, change control, and
improvement of security assessment 33

CSR44 Lack of government assistance for proper rules for cybercrime 34
CSR26 Lack of Penetration Security Testing Analysis 35
CSR27 Lack of Static and Dynamic Security Testing Analysis 36

CSR33 Various kinds of Attacks (viruses,) malware, Trojan Virus: A type of virus that is
well known for causing issues and destruction to computers is a Trojan virus 36

CSR30 Brute Force Attack 37

CSR31 Lack of developing threat models: as it helps to build test cases or test plans 38
CSR29 Lack of Fuzz and Unit Testing Analysis 39
CSR6 Lack of security requirements elicitation activity 40
CSR39 Lack of security trust 41
CSR32 Lack of Functional and Non-Functional Testing 42
CSR28 Lack of final and manual security review 43

5. Results Evaluation and Analysis
The fuzzy analytical hierarchy approach (FAHP) is used in this paper to prioritize the critical software
security risks (CSRs) in the SDLC phases in the global software development (GSD) domain. As stated in
Section1, we have generated three research questions to accomplish the study's goal. The results of the
evaluation and the analysis are briefly shown in the following sections:

5.1 RQ1: What are the most cited software security risks in the SDLC phases in
the domain of GSD?

This study found 44 CSRs (see Table 15) that are essential for the SDLC process in GSD to be
carried out successfully. It is based on our prior systematic literature review analysis that identified 145
software security risks [2]. Section 4.1 and Figure 6 describe the mapping approach we used to group the
researched CSRs into six essential categories based on the framework developed by Shameem et al. [39].
The primary objective of security risks categorization is to establish a hierarchy process that will aid in
applying the fuzzy AHP. It is also important for practitioners and academic researchers to consider the
CSRs for SDLC phases implementation and future study, respectively, by using the mapping technique.

The most cited/critical software security risk is CSR37 "Lack of threat models updating", CSR35
"Lack of output validation", CSR36 "Lack of certification in final release and archive", CSR24
"Spoofing: An attempt to gain access to a system by using a fake identity" in the SDLC process in the
GSD context.

5.2 RQ2: What is the best way to prioritize the significant software security risks?

The fuzzy AHP approach prioritized the examined CSRs and their categories. This was
accomplished using pair-wise comparisons between the security risks and the relevant categories. The
pair-wise comparison is important in determining the importance of the CSRs in the SDLC process in the
context of GSD. Every CSR and its category were ranked following the priorities set. The fuzzy AHP
technique enables a thorough comprehension of multi-criteria decision-making situations that incorporate
the significance of SDLC process security improvement and their associated categories.

It is clear from Table 15 that CSR37, "Lack of threat models updating", is the most important
CSR in the SDLC phases. For this reason, secure SDLC experts believe the software development
organization should have qualified and skilled team members. On the other hand, the members of secure
software development organizations must be capable of efficient communication and coordination [85,
86].

5.3 RQ3: What would be the decision-making framework for the critical software
security risks?

Figure 8: Decision-Making Framework

Finally, taking into consideration the framework proposed by Shameem et al. [39], we develop a
taxonomy by classifying the prioritized CSRs into six main categories (Secure Requirement Engineering
(RE), Secure Designing, Secure Coding, Secure Testing and Review, Secure Deployment, and Secure
Maintenance) in Figure 8. Each CSR is given a global and local weight in the taxonomy based on its
importance. There are two types of weights: local and global. The local weight shows how a CSR affects
its category, and the global weight affects the whole SDLC process. As a result, the taxonomy (Figure 8)
aids in specifying the influence of a single CSR in a specific category and across the entire SDLC
process.

Figure 8 shows that the most CSRs are: CSR37 "Lack of threat models updating (LW = 0.41892
and GW = 0.0309938)", CSR35 "Lack of output validation (LW = 0.29510 and GW = 0.021833)",
CSR36 "Lack of certification in final release and archive (LW = 0.17128 And GW = 0.0126722)", CSR24
"Spoofing: An attempt to gain access to a system by using a fake identity (LW = 0.119217 and GW =
0.0102351)" in the SDLC process in the GSD context.

Threat modeling is a systematic method for identifying threats that may compromise security, and
it is considered a well-known accepted practice by the software testing industry [87]. In CLASP, threat
modeling and risk analysis are performed during the requirement and design phase. The design and
implementation phase suggests secure design guidelines and coding standards [88]. Microsoft uses
STRIDE to model threats to their systems; threats are defined by looking into the possibilities of spoofing
identity, tampering with data, repudiation, information leakage, denial of services, and elevation in the
given situation [89]. Incorrect input/output validation refers to the lack of or inaccurate validation of
input/output provided by a user via the application's user interface. Injection attacks take advantage of the
lack of input/output validation controls to allow malicious inputs to be passed in, which can be used to
obtain elevated rights, alter data, or crash a system [90]. Code injection attacks can breach data security,
cause a loss of services, and harm thousands of users' systems [91]. During the secure deployment phase,
final security reviews and audits are performed [11, 36]. At this phase, customer satisfaction is also very
important.

Table 14 shows that "Designing" (W = 0.098666) has been declared the most important category
of the CSRs evaluated by software development industry experts. Software development experts should
pay close attention to the CSRs of the designing category. Moreover, the "Testing" category (W =
0.088267), followed by "Coding" (W = 0.085853), are the second and third most important categories,
respectively. Table 14 indicate that category (Designing, category weight = 0.098666) is the highest-
ranking category based on software security in the SDLC process implementation. The design phase is
one of the most creative stages of the SDLC, which is one of the reasons it is important from the
viewpoint of security [4, 92]. 50 % of software defects are identified and detected during the design stage
of the SDLC [4, 92, 93]. Design-level flaws are software systems' most common security risks [4].
Designation-level flaws are software systems' most common security risks [4]. Building secure software
means building software that functions properly even under malicious attacks [94]. This requires
addressing the security challenges throughout the SDLC, especially in the early stages of the design phase
[95]. This reduces the risk of overlooking critical security requirements or introducing security flaws
throughout the implementation process. To complete this phase appropriately and securely, the software
developer must consider security best practices during design.

6. Study Limitations
It is necessary to elaborate potential risks of this study before using the findings in industry or for other
research purposes. For example, the sample size of FAHP survey responses is n = 27, which may not be
strong enough to support the validity of the reported CSRs when evaluating their explanation. Compared
to the previous survey, the FAHP survey had a smaller sample size (27 replies), threatening the

generalizability of our results. The FAHP method, on the other hand, has been viewed as a more
subjective approach that allows for smaller sample size [65-68, 96].

Construct validity measures how well an assessment scale is used to examine the supplied CSRs'
work. A questionnaire survey was conducted with real-world software development practitioners to
determine the significance of the researched elements concerning the SDLC process in GSD. Following
the findings, the parameters identified could favour the SDLC process in the GSD context.

Internal validity is the evaluation of the results and analyses presented in the study. The results of
pilot research we conducted with secure software development specialists show that the study has an
adequate level of internal validity.

External validity refers to the ability of a study's results to be generalized. The survey participants
in this study came from various continents and nations, yet we are convinced that the data sample was
sufficiently representative and generalizable.

7. Study Implications
It is hoped that the findings of this study will have both practical and research consequences because they
give a prioritized set of SDLC critical software security risks, which will serve as a knowledge base for
industry practitioners and academic scholars in the field of GSD. The classification of the researched
CSRs aids the researchers in determining the most important category of CSR to consider when planning
their future studies. Furthermore, the study gives a prioritization-based taxonomy of the aspects that
contributed to the success of secure software development applications.

Prioritization-based taxonomy helps GSD practitioners consider the most important CSRs related
to their specific categories based on the most important local rankings. Using the taxonomy, the
practitioners (software development organizations) may see the global rankings of each CSR, making it
easier for them to identify the CSR while implementing secure SDLC-related requirements modifications.
In summary, this study presents a complete analysis of the GSD and secure SDLC critical software
security risks and their priority order, which has not been done in this field. We believe that the study's
findings will aid software development industry practitioners in building effective plans for successfully
executing secure SDLC operations in the context of GSD.

8. Conclusion and Future Directions
An increase in GSD projects prompted us to study and prioritize the aspects that could positively

impact SDLC. The CSRs that have been documented emphasize the critical areas that must be addressed
with urgency for the secure SDLC process to be successfully implemented in the GSD. One hundred
forty-five software security risks were found due to the systematic literature review approach that we
have used [2]. The security risks observed were then divided into six distinct software development
process improvement areas. Furthermore, a questionnaire survey has been used to determine what
software development industry professionals think about the security risks of SDLC phases in GSD.
According to the empirical data analysis, more than 70% of survey participants agreed that the enlisted
security risks are important to consider when developing secure software in the GSD context.

As a result of the FAHP approach, the "Designing" category is by far the most significant
identified CSRs. In addition, the FAHP results show that "Lack of threat models updating", "Lack of
output validation", and "Lack of certification in final release and archive" are the three most important
CSRs in the designing category.

Software development organizations in the GSD domain could benefit from a taxonomy of CSRs
that can amend and evaluate their SDLC strategies based on the categorization, weighting, and
prioritizing of CSRs. The taxonomy presented here is based on a hierarchical and multidimensional model
that incorporates the significance of SDLC activities in the GSD environment in the six core categories.

We believe that the findings, analysis, and conclusions of this study will be useful in addressing
the issues related to the improvement of the SDLC process, which is critical to the success and
development of GSD businesses.

With the increasing number of software security threats, regularly upgrade software security
processes and practices. This study project can be improved in a variety of ways. The following are some
of the open study directions that researchers can look into near future:

 We intend to develop a security tool from a Security Assurance Model (SAM) of Software
Development [16, 97] for global software development (GSD) vendor organizations. This model
will assist GSD vendors in determining their readiness for secure software development. We will
develop the model using the results of this study, SLR, industrial survey, case study, supervisor
inputs, and lessons learned from the existing studies [5, 8, 12, 98-100]. The model will generate
several assessment reports, including a list of security risks/threats and practices that GSD vendor
organizations will use in each phase of the SDLC.

 Collaboration with software development organizations is required to improve the outcomes of
SAM of Software Development. Depending on the facilities and methods used, it might be
adapted to meet the needs of various organizations.

 The SAM of Software Development might include characteristics relating to specific
technologies like the Internet of Things (IoT), blockchain, and cloud computing.

 The SAM of Software Development might be made available as an online repository (tool)
updated regularly with new academic and industry practices. The SAM of Software Development
will become a reliable resource for scholars and practitioners.

Acknowledgment
We thank the Software Engineering Research Group at the University of Malakand, the questionnaire
survey, and FAHP Survey participants for their critiques and contributions to this project (SERG UOM).

References
[1] A. Ramirez, A. Aiello, and S. J. Lincke, "A Survey and Comparison of Secure Software

Development Standards," in 2020 13th CMI Conference on Cybersecurity and Privacy (CMI) -
Digital Transformation - Potentials and Challenges, Copenhagen, Denmark, pp. 1-6, 2020.

[2] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, "Systematic Literature Review on Security
Risks and its Practices in Secure Software Development," IEEE Access, vol. 10, pp. 5456-5481,
2022.

[3] H. Nina, J. A. Pow-Sang, and M. Villavicencio, "Systematic Mapping of the Literature on Secure
Software Development," IEEE Access, vol. 9, pp. 36852-36867, 2021.

[4] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, "Systematic Mapping Study on Security
Approaches in Secure Software Engineering," IEEE Access, vol. 9, pp. 19139-19160, 2021.

[5] J. C. S. Núñez, A. C. Lindo, and P. G. Rodríguez, "A Preventive Secure Software Development
Model for a Software Factory: A Case Study," IEEE Access, vol. 8, pp. 77653-77665, 2020.

[6] S. V. Solms and L. A. Futcher, "Adaption of a Secure Software Development Methodology for
Secure Engineering Design," IEEE Access, vol. 8, pp. 125630-125637, 2020.

[7] M. Z. Gunduz and R. Das, "Cyber-security on smart grid: Threats and potential solutions,"
Computer Networks, vol. 169, p. 1-14, 2020.

[8] M. Niazi, A. M. Saeed, M. Alshayeb, S. Mahmood, and S. Zafar, "A maturity model for secure
requirements engineering," Computers & Security, vol. 95, p. 1-34, 2020.

[9] M. Zhang, X. d. C. d. Carnavalet, L. Wang, and A. Ragab, "Large-Scale Empirical Study of
Important Features Indicative of Discovered Vulnerabilities to Assess Application Security,"
IEEE Transactions on Information Forensics and Security, pp. 1-12, 2019.

[10] G. McGraw, "Six Tech Trends Impacting Software Security," Computer, vol. 50, pp. 100-102,
2017.

[11] R. Khan, "Secure software development: a prescriptive framework," Computer Fraud & Security,
vol. 2011, pp. 12-20, 2011.

[12] H. Al-Matouq, S. Mahmood, M. Alshayeb, and M. Niazi, "A Maturity Model for Secure Software
Design: A Multivocal Study," IEEE Access, vol. 8, pp. 215758-215776, 2020.

[13] S. Moyo and E. Mnkandla, "A Novel Lightweight Solo Software Development Methodology
With Optimum Security Practices," IEEE Access, vol. 8, pp. 33735-33747, 2020.

[14] R. A. Khan, S. U. Khan, M. Ilyas, and M. Y. Idris, "The State of the Art on Secure Software
Engineering: A Systematic Mapping Study," presented at the Proceedings of the Evaluation and
Assessment in Software Engineering, Trondheim, Norway, pp. 1-6, 2020.

[15] G. McGraw, "From the ground up: the DIMACS software security workshop," IEEE Security &
Privacy, vol. 99, pp. 59-66, 2003.

[16] R. A. Khan and S. U. Khan, "A preliminary structure of software security assurance model,"
presented at the Proceedings of the 13th International Conference on Global Software
Engineering, Gothenburg, Sweden, pp. 137-140, 2018.

[17] B. Potter and G. McGraw, "Software security testing," IEEE Security & Privacy, vol. 2, pp. 81-
85, 2004.

[18] D. Verdon and G. McGraw, "Risk Analysis in Software Design," IEEE Security and Privacy, vol.
2, pp. 79–84, 2004.

[19] Sodiya, A.S. Onashoga, S. A., and Ajayi, O. B.: ‘Towards Building Secure Software Systems’,
Issues in Informing Science and Information Technology, Vol 3, 2006, pp. 636-636

[20] I. Flechais, C. Mascolo, and M. A. Sasse, "Integrating security and usability into the requirements
and design process," Int. J. Electron. Secur. Digit. Forensic, vol. 1, pp. 12–26, 2007.

[21] S. Gupta, M. Faisal, and M. Husain, "Secure Software Development Process for Embedded
Systems Control," International Journal of Engineering Sciences & Emerging Technologies, vol.
4, pp. 133-143, 2012.

[22] Team, C.P.: ‘CMMI for Development, Version 1.3’, in Editor (Ed.): ‘Book CMMI for
Development, Version 1.3’ (Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 2010, edn.), pp. 1-482.

[23] R. Al-Qutaish and A. Abran, "A Maturity Model of Software Product Quality," Journal of
Research and Practice in Information Technology, vol. 43, pp. 307-327, 2011.

[24] B. Golden: ‘Succeeding with Open Source. Reading, ’ in Editor (Ed.): ‘Book Succeeding with
Open Source. Reading, ’ (2005, edn.), pp. 1-242.

[25] A. April, J. Huffman Hayes, A. Abran, and R. Dumke, "Software Maintenance Maturity Model
(SMmm): the software maintenance process model," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 17, pp. 197-223, 2005.

[26] O. Turetken, I. Stojanov, and J. Trienekens, "Assessing the adoption level of scaled agile
development: a maturity model for Scaled Agile Framework (SAFe)," Journal of Software:
Evolution and Process, vol. 29, pp. 1-18, 2016.

[27] M. P. d. Silva and R. M. d. Barros, "Maturity Model of Information Security for Software
Developers," IEEE Latin America Transactions, vol. 15, pp. 1994-1999, 2017.

[28] S. R. Ahmed, Secure Software Development : Identification of Security Activities and Their
Integration in Software Development Lifecycle’, in Editor (Ed.): ‘Book Secure Software
Development : Identification of Security Activities and Their Integration in Software
Development Lifecycle’ (2007, edn.), pp. 1-40.

[29] M. Essafi, L. Jilani, and H. Ben Ghezala: ‘S2D-ProM: A Strategy Oriented Process Model for
Secure Software Development’ 2007, pp. 1-24.

[30] J. Manico, "OWASP " in Application Security Verification Standard 3.0.1, ed, 2016, pp. 1-70.
[31] BSIMM: ‘Building security in maturity model (BSIMM)’, in Editor (Ed.)^(Eds.): ‘Book Building

security in maturity model (BSIMM)’ (2022, edn.), pp. 1-65.

[32] N. Mead and T. Stehney, "Security quality requirements engineering (SQUARE) methodology,"
ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 1-7, 2005.

[33] C.-C. Sun, "A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS
methods," Expert Systems with Applications, vol. 37, pp. 7745-7754, 2010.

[34] M. A. Akbar, K. Smolander, S. Mahmood, A. J. I. Alsanad, and S. Technology, "Toward
successful DevSecOps in software development organizations: A decision-making framework,"
Information Software Technology, vol. 147, p. 1-21, 2022.

[35] M. A. Akbar, S. Rafi, A. A. Alsanad, S. F. Qadri, A. Alsanad, and A. J. I. A. Alothaim, "Toward
Successful DevOps: A Decision-Making Framework," IEEE Access, vol. 10, pp. 51343-51362,
2022.

[36] M. A. Akbar, A. A. Khan, Z. J. I. T. Huang, and Management, "Multicriteria decision making
taxonomy of code recommendation system challenges: a fuzzy-AHP analysis," Information
Technology and Management, pp. 1-17, 2022.

[37] T. Kamal, Q. Zhang, M. A. Akbar, M. Shafiq, A. Gumaei, and A. Alsanad, "Identification and
Prioritization of Agile Requirements Change Management Success Factors in the Domain of
Global Software Development," IEEE Access, vol. 8, pp. 44714-44726, 2020.

[38] T. Saaty, "Analytic hierarchy process," ed, 2001, pp. 19-28.
[39] M. Shameem, R. R. Kumar, C. Kumar, B. Chandra, and A. A. Khan, "Prioritizing challenges of

agile process in distributed software development environment using analytic hierarchy process,"
Journal of Software: Evolution and Process, vol. 30, p. 1-19, 2018.

[40] R. d. F. S. M. Russo and R. Camanho, "Criteria in AHP: A Systematic Review of Literature,"
Procedia Computer Science, vol. 55, pp. 1123-1132, 2015.

[41] S. Ali, H. Li, S. U. Khan, Y. Zhao, and L. Li, "Fuzzy Multi Attribute Assessment Model for
Software Outsourcing Partnership Formation," IEEE Access, vol. 6, pp. 55431-55461, 2018.

[42] M. A. Akbar, A. Alsanad, S. Mahmood, and A. Alothaim, "A Multicriteria Decision Making
Taxonomy of IOT Security Challenging Factors," IEEE Access, vol. 9, pp. 128841-128861, 2021.

[43] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, "Systematic
literature reviews in software engineering – A systematic literature review," Information and
Software Technology, vol. 51, pp. 7-15, 2009.

[44] B. Kitchenham and S. Charters, "Guidelines for performing systematic literature reviews in
software engineering," pp. 1-65. 2007.

[45] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, "Software security patch
management - A systematic literature review of challenges, approaches, tools and practices,"
Information and Software Technology, vol. 144, p. 1-45, 2022.

[46] A. Shukla, B. Katt, L. O. Nweke, P. K. Yeng, and G. K. Weldehawaryat, "System security
assurance: A systematic literature review," Computer Science Review, vol. 45, p. 1-30, 2022.

[47] B. Kitchenham, "Procedures for performing systematic reviews," Keele, UK, Keele University,
vol. 33, pp. 1-26, 2004.

[48] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based testing for non-
functional system properties," Information and Software Technology, vol. 51, pp. 957-976, 2009.

[49] R. Torkar, C. A. Furia, R. Feldt, F. G. d. O. Neto, L. Gren, P. Lenberg, et al., "A Method to
Assess and Argue for Practical Significance in Software Engineering," IEEE Transactions on
Software Engineering, pp. 1-1, 2021.

[50] L. Zhang, J. Tian, and J. Jiang, "Empirical Research in Software Engineering — A Literature
Survey," Jounrla of Computer Science Technology, vol. 33, pp. 876–899, 2018.

[51] S. Xu, "Empirical research methods for software engineering: Keynote address," in 2017 IEEE
15th International Conference on Software Engineering Research, Management and Applications
(SERA), 2017, pp. 1-1.

[52] M. De Stefano, E. Iannone, F. Pecorelli, and D. A. Tamburri, "Impacts of software community
patterns on process and product: An empirical study," Science of Computer Programming, vol.
214, p. 1-20, 2022.

[53] M. Nevendra and P. Singh, "Empirical investigation of hyperparameter optimization for software
defect count prediction," Expert Systems with Applications, vol. 191, p. 116-216, 2022.

[54] S. Wagner, D. M. Fernández, M. Felderer, A. Vetrò, M. Kalinowski, R. Wieringa, et al., "Status
Quo in Requirements Engineering: A Theory and a Global Family of Surveys," ACM Trans.
Softw. Eng. Methodol., vol. 28, p. 1-48, 2019.

[55] M. Niazi, D. Wilson, and D. Zowghi, "Critical success factors for software process improvement
implementation: an empirical study," Software Process: Improvement and Practice, vol. 11, pp.
193-211, 2006.

[56] H. U. Rahman, M. Raza, P. Afsar, and H. U. Khan, "Empirical Investigation of Influencing
Factors Regarding Offshore Outsourcing Decision of Application Maintenance," IEEE Access,
vol. 9, pp. 58589-58608, 2021.

[57] M. A. Akbar, W. Naveed, A. A. Alsanad, L. Alsuwaidan, A. Alsanad, A. Gumaei, et al.,
"Requirements Change Management Challenges of Global Software Development: An Empirical
Investigation," IEEE Access, vol. 8, pp. 203070-203085, 2020.

[58] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, "An empirical study to improve software
security through the application of code refactoring," Information and Software Technology, vol.
96, pp. 112-125, 2018.

[59] A. Mazuera-Rozo, C. Escobar-Velásquez, J. Espitia-Acero, D. Vega-Guzmán, C. Trubiani, M.
Linares-Vásquez, et al., "Taxonomy of security weaknesses in Java and Kotlin Android apps,"
Journal of Systems and Software, vol. 187, p. 1-11, 2022.

[60] C. Beaman, M. Redbourne, J. D. Mummery, and S. Hakak, "Fuzzing vulnerability discovery
techniques: Survey, challenges and future directions," Computers & Security, vol. 120, p. 1-13,
2022.

[61] B. Kitchenham and S. L. Pfleeger, "Principles of survey research part 6: data analysis," SIGSOFT
Softw. Eng. Notes, vol. 28, pp. 24–27, 2003.

[62] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad, "Systematic literature review and
empirical investigation of barriers to process improvement in global software development:
Client–vendor perspective," Information and Software Technology, vol. 87, pp. 180-205, 2017.

[63] B. Martin, Introduction to Medical Statistics, 4th Edition ed., pp. 1-464, 2015.
[64] S. U. Khan, M. Niazi, and A. Rashid, "Factors influencing clients in the selection of offshore

software outsourcing vendors: an exploratory study using a systematic literature review," Journal
of Systems and Software, vol. 84, pp. 686-699, 2011.

[65] T. Yaghoobi, "Prioritizing key success factors of software projects using fuzzy AHP," Journal of
software: Evolution and process, vol. 30, p. e1891, 2018.

[66] E. Sloane, M. Liberatore, R. Nydick, W. Luo, and Q. Chung, "Clinical engineering technology
assessment decision support: a case study using the analytic hierarchy process (AHP)," in
Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the
Biomedical Engineering Society][Engineering in Medicine and Biology, 2002, pp. 1950-1951.

[67] L. Wen-ying, "Application of ahp analysis in risk management of engineering projects [j],"
Journal Beijing University of Chemical Technology (Social Sciences Edition), vol. 1, pp. 46-48,
2009.

[68] G. Kabra, A. Ramesh, and K. Arshinder, "Identification and prioritization of coordination barriers
in humanitarian supply chain management," International Journal of Disaster Risk Reduction,
vol. 13, pp. 128-138, 2015.

[69] G. J. Klir, Fuzzy set theory: Wiley-IEEE Press, pp. 260-314, 2006.
[70] M. A. Akbar, H. Alsalman, A. A. Khan, S. Mahmood, C. Meshram, A. H. Gumaei, et al.,

"Multicriteria decision making taxonomy of cloud-based global software development
motivators," IEEE Access, vol. 8, pp. 185290-185310, 2020.

[71] C.-K. Kwong and H. Bai, "A fuzzy AHP approach to the determination of importance weights of
customer requirements in quality function deployment," Journal of intelligent manufacturing, vol.
13, pp. 367-377, 2002.

[72] C.-K. Kwong and H. Bai, "Determining the importance weights for the customer requirements in
QFD using a fuzzy AHP with an extent analysis approach," IEEE Transactions, vol. 35, pp. 619-
626, 2003.

[73] M. A. Akbar, M. Shameem, S. Mahmood, A. Alsanad, and A. J. Gumaei, "Prioritization based
taxonomy of cloud-based outsource software development challenges: Fuzzy AHP analysis,"
IEEE Access, vol. 95, p. 106557, 2020.

[74] L. A. Zadeh, G. J. Klir, and B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers
vol. 6: World Scientific, pp. 1-840, 1996.

[75] T. L. Saaty, "Analytic hierarchy process," Encyclopedia of operations research and management
science, pp. 52-64, 2013.

[76] P. J. Van Laarhoven and W. Pedrycz, "A fuzzy extension of Saaty's priority theory," Fuzzy sets
and Systems, vol. 11, pp. 229-241, 1983.

[77] D.-Y. Chang, "Applications of the extent analysis method on fuzzy AHP," European journal of
operational research, vol. 95, pp. 649-655, 1996.

[78] J. M. Corbin and A. Strauss, "Grounded theory research: Procedures, canons, and evaluative
criteria," Qualitative sociology, vol. 13, pp. 3-21, 1990.

[79] E. Albayrak and Y. C. Erensal, "Using analytic hierarchy process (AHP) to improve human
performance: An application of multiple criteria decision making problem," Journal of Intelligent
Manufacturing, vol. 15, pp. 491-503, 2004.

[80] J. K. Wong and H. Li, "Application of the analytic hierarchy process (AHP) in multi-criteria
analysis of the selection of intelligent building systems," Building and Environment, vol. 43, pp.
108-125, 2008.

[81] S. Soh, "A decision model for evaluating third-party logistics providers using fuzzy analytic
hierarchy process," African Journal of Business Management, vol. 4, pp. 339-349, 2010.

[82] E. W. Cheng and H. Li, "Construction partnering process and associated critical success factors:
quantitative investigation," Journal of management in engineering, vol. 18, pp. 194-202, 2002.

[83] K. Lam and X. Zhao, "An application of quality function deployment to improve the quality of
teaching," International Journal of Quality & Reliability Management, vol. 15, pp. 389-413,
1998.

[84] F. T. Bozbura, A. Beskese, and C. Kahraman, "Prioritization of human capital measurement
indicators using fuzzy AHP," Expert Systems with Applications, vol. 32, pp. 1100-1112, 2007.

[85] N. M. Minhas and A. Zulfiqar, "An improved framework for requirement change management in
global software development," Journal of Software Engineering and Applications, vol. 7, pp. 1-
779, 2014.

[86] N. Ali and R. Lai, "A method of requirements elicitation and analysis for Global Software
Development," Journal of Software: Evolution and Process, vol. 29, pp. 1-27, 2017.

[87] D. Basin, J. Doser, and T. Lodderstedt, "Model driven security: From UML models to access
control infrastructures," ACM Trans. Softw. Eng. Methodol., vol. 15, pp. 39–91, 2006.

[88] W. Li and T. Chiueh, "Automated Format String Attack Prevention for Win32/X86 Binaries," in
Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), 2007, pp. 398-
409.

[89] L. Y. Banowosari and B. A. Gifari, "System Analysis and Design Using Secure Software
Development Life Cycle Based On ISO 31000 and STRIDE. Case Study Mutiara Ban
Workshop," in 2019 Fourth International Conference on Informatics and Computing (ICIC),
2019, pp. 1-6.

[90] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Automated software architecture security risk
analysis using formalized signatures," in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 662-671.

[91] R. Cope, "Strong security starts with software development," Network Security, vol. 2020, pp. 6-
9, 2020.

[92] V. Maheshwari and M. Prasana, "Integrating Risk assessment and Threat modeling within SDLC
process," in International Conference on Inventive Computation Technologies (ICICT), 2016, pp.
1-5.

[93] M. A. Akbar, S. Mahmood, and D. Siemon, "Toward Effective and Efficient DevOps using
Blockchain," in The International Conference on Evaluation and Assessment in Software
Engineering, 2022, pp. 421-427.

[94] N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, "The practice of secure software
development in SDLC: an investigation through existing model and a case study," Security and
Communication Networks, vol. 9, pp. 5333-5345, 2016.

[95] S. Ahmed, "Secure Software Development : Identification of Security Activities and Their
Integration in Software Development Lifecycle," pp. 1-40, 2007.

[96] M. A. Akbar, A. A. Khan, S. Mahmood, A. J. I. T. Mishra, and Management, "SRCMIMM: the
software requirements change management and implementation maturity model in the domain of
global software development industry," pp. 1-25, 2022.

[97] R. A. Khan, S. U. Khan, M. Alzahrani, and M. Ilyas, "Security Assurance Model of Software
Development for Global Software Development Vendors," IEEE Access, pp. 58458-58488, 2022.

[98] Asad. Muhammad and A. Shafique, "Model Driven Architecture for Secure Software
Development Life Cycle " International Journal of Computer Science and Information Security
(IJCSIS), vol. 14, pp. 649-661, 2016.

[99] Y. Mufti, M. Niazi, M. Alshayeb, and S. Mahmood, "A Readiness Model for Security
Requirements Engineering," IEEE Access, vol. 6, pp. 28611-28631, 2018.

[100] R. A. Khan, M. Y. Idris, S. U. Khan, M. Ilyas, S. Ali, A. U. Din, et al., "An Evaluation
Framework for Communication and Coordination Processes in Offshore Software Development
Outsourcing Relationship: Using Fuzzy Methods," IEEE Access, vol. 7, pp. 112879-112906,
2019.

Appendix-A: (Sample of Fuzzy AHP Survey Questionnaire)

Section- A1 (Respondent Information)

Full Name (optional) Position

Secure Software
Development working
experience (Years)?

Email Address

Address of your
current organization
including the country
name

Total
academic/industrial
experience in years

Have you ever
participated in Secure
Software
Development process?

Yes No

Section- A2 (Organization Detail)

Current organization
name (Optional)

What is the primary
business of your
organization? (You
may tick more than
one)

Global/offshore
Development

Collocated/single
site development

Research Other

Size of your current
organization

Small Medium

Large Not sure

Please specify your
organization type

National Multinational

Not sure Other

Does your
organization adopt
Secure Software
Developmentstandards
or models?(Please
specify)

For how long your
organization is using
the Secure Software
Development
standard/model?
(Years)

Section B- Pair-wise Comparison of the Identified Critical Software Security Risks (CSRs) and Categories

Categories (SDLC
Phases)

Code /
Label Critical Security Risks (CSRs)

Requirement
Engineering

CSR1 "Lack of security requirements, review, assessment, analysis, verification,
validation"

CSR2 "Security requirements are often neglected or considered as a non-
functional requirement"

CSR3 "Lack of secure requirements identification and documentation"

CSR4 "Lack of experience, knowledge, guidance, and security training during
security requirement documentation"

CSR5 "Improper plan for secure requirement identification, inception,
authentication, authorization and privacy"

CSR6 "Lack of security requirements elicitation activity"

CSR7 "Lack of developing threat modeling"

CSR8 "Lack of security requirements prioritization, management and

categorization"

Designing

CSR9 "Improper secure design documentation and specification review"

CSR10 "Lack of developing threat modeling during the design phase"

CSR11 "Lack of access control and traceability"

CSR12 "Improper security design review and its verification"

CSR13 "Lack of attention to follow security design principles"

CSR14 "Lack of developing data flow diagrams and design requirements"

CSR15 "Lack of building and maintaining abuse case models and attack patterns"

CSR16 "Lack of security design awareness, guidance, and training"

CSR17
"Lack of implementation of security design decisions: (Cryptographic
protocols, standards, services, frameworks, abuse case models and attack
patterns)"

Coding

CSR18 "Tampering: is the unauthorized modification of data"

CSR19 "SQL Injection, Cross Site Scripting, cross-site request forgery"

CSR20 "Denial of Services: is the process of making a system or application
unavailable"

CSR21 "Repudiation: is the ability of users (legitimate or otherwise) to deny that
they performed specific actions or transactions"

CSR22 "Information Disclosure: is the unwanted exposure of private data"

CSR23 "Elevation of privilege: occurs when a user with limited privileges assumes
the identity of a privileged user"

CSR24 "Spoofing: An attempt to gain access to a system by using a fake identity"

CSR25 "Password Conjecture: Lack of password complexity enforcement"

Testing

CSR26 "Lack of Penetration Security Testing Analysis"

CSR27 "Lack of Static and Dynamic Security Testing Analysis"

CSR28 "Lack of final and manual security review"

CSR29 "Lack of Fuzz and Unit Testing Analysis"

CSR30 "Brute Force Attack"

CSR31 "Lack of developing threat models: as it helps to develop test cases or test
plans"

CSR32 "Lack of Functional and Non Functional Testing"

CSR33
"Various kinds of Attacks (viruses,) malware, Trojan Virus: A type of virus
that is well known for causing issues and destruction to computers is a
Trojan virus"

Deployment

CSR34 "Lack of default software configuration"

CSR35 "Lack of output validation"

CSR36 "Lack of certification in final release and archive"

CSR37 "Lack of threat models updating"

Maintenance

CSR38 "Lack of proper methods to find out new threats in the system"

CSR39 "Lack of security trust"

CSR40 "Improper configuration, vulnerability management, change control and
improvement of security assessment"

CSR41 "Security activities increase the cost of the software"

CSR42 "Timing attacks and lack of log optimization"

CSR43 "Inability to run software updates or change usernames and passwords"

CSR44 "Lack of government assistance for proper rules for cybercrime"

Perform the pair-wise comparison of the CSRs and the given categories by putting the checkmark (✓). For
example, if a CSR on the left side of Table 1 is more significant than the right side, then put the checkmark on the
left side of the scale just equal (JE) based on your preference. Similarly, if a category on the right side of Table1 is
more important than the matching category at the left, then put the checkmark on the right side of the scale just
equal (JE).
Table 1 refersto a questionnaire hierarchal structure to determine the weight priorities of the CSRs and their
respective categories by putting the checkmark on the pair-wise comparison matrices. For example, how important
is CSR1 as compared to CSR2 when we execute SDLCimprovement activities in global software development
domain.

Description Significance intensity

Just equal (JE) (1,1,1)

Equally important (EI) (1/2,1,3/2)

Weakly important
(WI)

(1,3/2,2)

Strong more important
(SMI)

(3/2,2,5/2)

Very strong more
important (VSMI)

(2,5/2,3)

To perform the pair-wise comparison of the CSRS and the given categories by putting the checkmark (✓). For
example, if a CSR on the left side of Table 1 is more significant than the right side, then put the checkmark on the
left side of the scale i.e. 1 (Equal) based on your preference. Similarly, if a category on the right side of Table1 is
more important than the matching category at the left, then put the checkmark on the right side of the scale 1
(Equal).
Table 1 refersto a questionnaire hierarchal structure to determine the weight priorities of the SDLCcritical software
security risks and their respective categories by putting the checkmark on the pair-wise comparison matrices. For
example, how important is CSR1 as compared to CSR2 when we execute SDLC process activities in GSD?

Section C-Pair-wise Assessment
Requirement Engineering
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives

CSR1 CSR1
CSR1 CSR2
CSR1 CSR3
CSR1 CSR4
CSR1 CSR5
CSR1 CSR6
CSR1 CSR7
CSR1 CSR8
CSR2 CSR2
CSR2 CSR3
CSR2 CSR4
CSR2 CSR5
CSR2 CSR6
CSR2 CSR7
CSR2 CSR8
CSR3 CSR3
CSR3 CSR4
CSR3 CSR5
CSR3 CSR6
CSR3 CSR7
CSR3 CSR8
CSR4 CSR4
CSR4 CSR5
CSR4 CSR6
CSR4 CSR7
CSR4 CSR8
CSR5 CSR5
CSR5 CSR6
CSR5 CSR7
CSR5 CSR8
CSR6 CSR6
CSR6 CSR7
CSR6 CSR8
CSR7 CSR7
CSR7 CSR8
CSR8 CSR8

Designing
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives

CSR9 CSR9
CSR9 CSR10
CSR9 CSR11
CSR9 CSR12

CSR9 CSR13
CSR9 CSR14
CSR9 CSR15
CSR9 CSR16
CSR9 CSR17
CSR10 CSR10
CSR10 CSR11
CSR10 CSR12
CSR10 CSR13
CSR10 CSR14
CSR10 CSR15
CSR10 CSR16
CSR10 CSR17
CSR11 CSR11
CSR11 CSR12
CSR11 CSR13
CSR11 CSR14
CSR11 CSR15
CSR11 CSR16
CSR11 CSR17
CSR12 CSR12
CSR12 CSR13
CSR12 CSR14
CSR12 CSR15
CSR12 CSR16
CSR12 CSR17
CSR13 CSR13
CSR13 CSR14
CSR13 CSR15
CSR13 CSR16
CSR13 CSR17
CSR14 CSR14
CSR14 CSR15
CSR14 CSR16
CSR14 CSR17
CSR15 CSR15
CSR15 CSR16
CSR15 CSR17
CSR16 CSR16
CSR16 CSR17
CSR17 CSR17

Coding
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives

CSR18 CSR18
CSR18 CSR19
CSR18 CSR20
CSR18 CSR21
CSR18 CSR22
CSR18 CSR23
CSR18 CSR24
CSR18 CSR25
CSR19 CSR19
CSR19 CSR20

CSR19 CSR21
CSR19 CSR22
CSR19 CSR23
CSR19 CSR24
CSR19 CSR25
CSR20 CSR20
CSR20 CSR21
CSR20 CSR22
CSR20 CSR23
CSR20 CSR24
CSR20 CSR25
CSR21 CSR21
CSR21 CSR22
CSR21 CSR23
CSR21 CSR24
CSR21 CSR25
CSR22 CSR22
CSR22 CSR23
CSR22 CSR24
CSR22 CSR25
CSR23 CSR23
CSR23 CSR24
CSR23 CSR25
CSR24 CSR24
CSR24 CSR25
CSR25 CSR25

Testing
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives

CSR26 CSR26
CSR26 CSR27
CSR26 CSR28
CSR26 CSR29
CSR26 CSR30
CSR26 CSR31
CSR26 CSR32
CSR26 CSR33
CSR27 CSR27
CSR27 CSR28
CSR27 CSR29
CSR27 CSR30
CSR27 CSR31
CSR27 CSR32
CSR27 CSR33
CSR28 CSR28
CSR28 CSR29
CSR28 CSR30
CSR28 CSR31
CSR28 CSR32
CSR28 CSR33
CSR29 CSR29
CSR29 CSR30
CSR29 CSR31
CSR29 CSR32

CSR29 CSR33
CSR30 CSR30
CSR30 CSR31
CSR30 CSR32
CSR30 CSR33
CSR31 CSR31
CSR31 CSR32
CSR31 CSR33
CSR32 CSR32
CSR32 CSR33
CSR33 CSR33

Deployment
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives

CSR34 CSR34
CSR34 CSR35
CSR34 CSR36
CSR34 CSR37
CSR35 CSR35
CSR35 CSR36
CSR35 CSR37
CSR36 CSR36
CSR36 CSR37
CSR37 CSR37

Maintenance
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives

CSR38 CSR38
CSR38 CSR39
CSR38 CSR40
CSR38 CSR41
CSR38 CSR42
CSR38 CSR43
CSR38 CSR44
CSR38 CSR39
CSR38 CSR40
CSR38 CSR41
CSR38 CSR42
CSR38 CSR43
CSR38 CSR44
CSR39 CSR39
CSR39 CSR40
CSR39 CSR41
CSR39 CSR42
CSR39 CSR43
CSR39 CSR44
CSR40 CSR40
CSR40 CSR41
CSR40 CSR42
CSR40 CSR43
CSR40 CSR44
CSR41 CSR41
CSR41 CSR42
CSR41 CSR43
CSR41 CSR44

CSR42 CSR42
CSR42 CSR43
CSR42 CSR44
CSR43 CSR43
CSR43 CSR44
CSR44 CSR44

Pair-wise Assessment of the Categories (SDLC Phases)
Alternatives AMI VSMI SMI WI EI JE EI WI SMI VSMI AMI Alternatives
Requirement
Engineering

Requirement
Engineering

Requirement
Engineering

Designing

Requirement
Engineering

Coding

Requirement
Engineering

Testing

Requirement
Engineering

Deployment

Requirement
Engineering

Maintenance

Designing Designing
Designing Coding
Designing Testing
Designing Deployment
Designing Maintenance

Coding Coding
Coding Testing
Coding Deployment
Coding Maintenance
Testing Testing
Testing Deployment
Testing Maintenance

Deployment Deployment
Deployment Maintenance
Maintenance Maintenance

