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One of the most common ways to drill a borehole to rock, is to use percussion drilling
which is based on frequently transferring high kinetic energies from the piston to the
rock. When the piston collides with the shank, there will be a high magnitude stress
wave propagating towards the rock. With the high stresses, the goal is to break the rock’s
structure which eventually creates a borehole. The challenge in percussion drilling is to
minimize stress waves that reflect from the rock as they may be harmful for the system.
Conventionally, stress waves are measured with strain gauges that measure the strain in an
object. In elastic regime, this strain can be converted into stress with the help of Young’s
modulus. This Master’s Thesis researches the possibility of configuring numerical Finite
Element Method (FEM) models to gain stress wave data without the need of using strain
gauges. The models are done for two different drilling systems of which there are strain
gauge data available. For analysing the reflected waves in different rock conditions, the
models use different parameters in the rock model. From the results it can be concluded
that the incident stress wave can be simulated accurately if the model itself is accurate.
The reflected stress wave cannot be predicted due to ever-changing rock conditions but it
can be fitted with the help of measurement data.
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Yksi tyypillisimmistä tavoista porata kolo kallioon on käyttää iskuporausta, joka perustuu
toistuvien suurien kineettisten energioiden siirtämiseen männältä kallioon. Kun mäntä
törmää niskaan, korkean suuruusluokan jännitysaalto kulkeutuu kohti kiveä. Korkeilla
jännityksillä tavoitellaan kiven rikkomista, joka lopulta luo porareiän. Eräs haaste isku-
porauksessa on minimoida jännitysaaltoja, jotka heijastuvat kiveltä, koska ne saattavat
olla haitallisia järjestelmälle. Tavanomaisesti jännitysaaltoja mitataan venymäliuskoilla,
jotka mittaavat kappaleessa esiintyviä venymiä. Elastisessa olosuhteessa tämä venymä
voidaan muuntaa jännitykseksi kimmokertoimen avulla. Tämä diplomityö tutkii mahdol-
lisuutta konfiguroida numeeristen elementtimenetelmien malleja jännitysaaltodatan tuot-
tamiseksi ilman tarvetta käyttää venymäliuskoja. Mallit tehdään kahdelle eri porausjär-
jestelmälle, joista on olemassa venymäliuskadataa. Heijastuneiden aaltojen analysoimi-
seksi erilaisissa kiviolosuhteissa mallit käyttävät vaihtelevia parametreja kivimallissa. Tu-
loksista voidaan johtaa, että menevä jännitysaalto voidaan simuloida tarkasti, jos malli
itsessään on tarkka. Heijastunutta jännitysaaltoa ei voida ennustaa alati muuttuvien kivi-
olosuhteiden takia, mutta se voidaan sovittaa mittausdatan avulla.
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LIST OF ABBREVIATIONS
∆L Change in length
∆R Change in resistance
∆t Time step
∆te Time difference error
ε Strain
εaxial Axial strain
εtrans Transverse strain
η Stress wave efficiency
γ Unloading parameter
ν Poisson’s ratio
ρ Density
σ Stress
σi Incident stress wave
σc Compressive stress
σr Reflected stress wave
σr,b Reflected stress from drill bit
σr,c Reflected compressive stress
σr,t Reflected tensile stress
σs Shear stress
σt Tensile stress
σtr Transmitted stress
σx Stress along x-axis

A Cross-sectional area
Bm Bulk modulus
B FE system strain matrix in global coordinate system in global coordinate
C Correlation
Ci Correlation of incident wave
Cr Correlation of reflected wave
Cs Stiffness
c Speed of sound
ce Damping constant
csg Speed of sound of strain gauge measurement
csim Speed of sound of simulation
cov(X, Y ) Covariance
D FE system displacement matrix in global coordinate
D̈ FE system acceleration matrix in global coordinate



6

De Element displacement vector in global coordinate
Ḋe Element velocity vector in global coordinate
D̈e Element acceleration vector in global coordinate
Dt+∆t FE system displacement matrix at time t+∆t in global coordinate
Dt−∆t FE system displacement matrix at time t−∆t in global coordinate
Ḋt+∆t FE system velocity matrix at time t+∆t in global coordinate
D̈t FE system acceleration matrix at time t in global coordinate
de Element displacement vector
d̈e Element acceleration vector
E Young’s modulus
E FE system Young’s modulus matrix in global coordinate
Eσ Stress wave energy
Eσ,i Incident stress wave energy
Eσ,r Reflected stress wave energy
F Force
F FE system force vector in global coordinate
Fc Compressive force
Fe Element force vector in global coordinate
Fint Initial force vector
Fresidual Residual force vector
Fs Tensile force
Ft Uniaxial force
fe Element force vector
G Shear modulus
GF Gauge factor
K FE system stiffness matrix in global coordinate
Ke Element stiffness matrix in global coordinate
k Spring constant
ke Element stiffness matrix
k1 Loading spring constant
k2 Unloading spring constant
L Length
Lp Piston length
M FE system mass matrix in global coordinate system in global coordinate
Me Element mass matrix in global coordinate system
me Element mass matrix
N FE system shape function matrix in global coordinate
n Number of samples
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p′ Change in pressure
pp Percussion pressure
R Resistance
RMSE Root Mean Square Error
RMSEi Root Mean Square Error of incident wave
RMSEr Root Mean Square Error of reflected wave
S Compliance
s Distance
T Transformation matrix
Td Duration of incident wave
t Time
t0 Integral time limit start
t1 Integral time limit end
Uin Input voltage
Uout Output voltage
u′ Change in velocity
V Volume
V ′ Change in volume
V ar(X) Variance
v Particle velocity
Wσ Work done by stress wave
x Displacement
xi Observation of variable x

x̂i Prediction of variable x

∂x/∂t Time derivative of displacement
Z Mechanical impedance

CAD Computer Aided Design
DTH Down-The-Hole
FEA Finite Element Analysis
FEM Finite Element Method
LSM Lattice spring model
THD Top Hammer Drilling
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
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1 INTRODUCTION

1.1 Background

In percussion drilling systems, stress waves play a crucial role as the energy from the pis-
ton needs to be transferred to the breaking of the rock. This Master’s Thesis interprets the
stress waves in rock drilling systems by analysing stress wave data gathered from strain
gauges. Commonly, stress wave data is used to tune the drill system to achieve higher en-
ergy efficiency and longer durability for the power transmission parts. To achieve a more
precise analysis of the occurring stress waves, finite elements models are created and the
resulting numerical data are compared with the measurements.

1.2 Objectives and delimitations

This thesis aims to study if simulated can models be tuned to correspond to strain gauge
measurements. To achieve more in-depth research in this thesis, the following delimita-
tions are in-place:

1. Numerical experiments are conducted only for a small batch of different drilling
equipment.

2. Only existing rock drilling parts are used, i.e. no new ones are designed.

3. Material properties are chosen according to prior experiments and are not measured
within this thesis.

1.3 Structure of the thesis

The thesis is divided into six sections, excluding this introduction. The first section fo-
cuses on reviewing literature and related works that can be used as a reference in this
thesis. The second section presents the fundamentals of stress wave physics and how the
underlying physics can be applied in measurement devices or numerical models. In addi-
tion, the theory section includes common statistical methods that are used to compare the
results with each other.
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Then follows the material and software section which focuses on giving the reader suf-
ficient information about measurement devices, signal processing and software that are
used to create numerical models of the drilling system. In the next section, the results
obtained from the measurement devices and numerical models are presented. The last
two sections focus on discussing the results and wrapping up the thesis with succinct
conclusion.
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2 LITERATURE REVIEW

This section gives an overview of studies that are related to this thesis. With the help of
other studies, it is possible to come up with research methods that can be applied to solve
presented research questions or use them as follow-up studies.

2.1 Stress wave propagation analysis with LS-DYNA

Kobayashi et al. [1] conducted a study that takes advantage of developing numerical mod-
els to research stress wave propagation in various experiments while validating the results
with experimental data. For creating models, the study uses the software LS-DYNA that
is based on the finite element method (FEM) approach. The FEM can be considered as
one the of most popular and effective ways to numerically solve boundary value problems
[2]. In the models, two cylindrical elastic bodies with different cross-sectional areas are
being coupled to each other and one of these bodies experiences impacts from a striker.
For viewing the mechanical changes in the system, stresses are being measured in two
separate locations.[1]

By analysing stress wave propagation in elastic bodies, the study from Kobayashi et al.
[1] wants to find an effective method that would reduce the magnitude of reflected stress
waves that come from the tail end. In the study, two different sets of experiments are
conducted. In the first set of experiments, a different connection type between the two
bodies is researched. In the other set of experiments, the effect of varying output bar
diameter and the insert length of the coupling is researched.[1]

To summarize the results from the study, any changes in the connection between the rods
can have significant effects on the intensity of reflected stress waves [1]. While the models
used in the study can be said to mimic percussion rock drilling, the system lacks a key
component which is the rock model. Without the rock model, the incident stress wave in
the second rod has nowhere to attenuate, thereby, it reflects back towards the striker.

2.2 Simulating rock drill impact with 3D FEM methodology

In a study from Chiang and Elías [3], the possibility of numerically modelling impact
tools used in rock drilling is researched. In the study three different approaches were
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taken to model the impact from the drill — these three being, impulse-momentum prin-
ciple, 1D FEM, and 3D FEM. FEM analysis can be used in mining industry to simulate
impact in stress-strain problems, to model post failure fracture propagation, and to exam-
ine material’s linear properties.[3]

When comparing the three different approaches against each other with the addition of
experimental data, all three methods can adequately simulate the impact from the rock
drill. The 3D FEM approach is superior to 1D models when rock fragmentation is subject
of the research. The cost of using 3D FEM models is their much longer computation run
times which can take roughly forty times longer than the one with 1D FEM. The proposed
method of using FEM analysis can be seen as suitable solution to numerically simulate
the differences in energy transmission efficiency between two rock drills. It still should be
noted that even the 3D FEM model is not suitable for accurately predicting the penetration
rate of the drill.[3]

Even though the study from Chiang and Elías [3] was conducted for Down-The-Hole
(DTH) drills, the proposed method of using numerical models proofs to have potential
for solving the research problem with Top Hammer Drilling (THD) method used in this
Master’s Thesis.
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3 THEORY

This part of the thesis goes more in depth with the theory and physics — giving enough in-
formation for the reader to understand the fundamentals of stress waves, how these stress
waves can be measured or numerically computed and what type of statistical methods are
used to evaluate the results.

3.1 Basic principles of percussion rock drilling

One common way to drill rocks is to use the THD method, where the rotation and per-
cussion are realized outside the borehole. For the DTH method, the rotation takes place
outside the borehole while the percussion is applied to the bit by the hammer or piston
directly at the end of the rod. The main difference between these two methods is the type
of energy transmission which makes them to have their own benefits in certain use cases.
Usually, THD is used to drill smaller and shorter holes, while DTH can be used to drill
longer holes due to more constant total efficiency which is not affected by the hole length
that increases the energy losses for the THD method.[4] Commonly, DTH is used also
for rocks that have a higher fragmentation. From this point forward, this thesis solely
investigates rock drilling that uses the THD method.

The THD method relies on percussion drilling, where the main goal is to transfer the ki-
netic energy from the drill’s piston to the rock frequently. At first the piston is accelerated
hydraulically to a high speed, after which the piston collides with the shank adapter. At
this stage, the piston’s kinetic energy is transferred to the adapter and the collision of these
two parts creates a stress wave. From the shank adapter, the incident stress wave travels
through the drill rods towards the drill bit. When the incident stress wave has travelled to
the end of the drill bit, there will normally be a reflected wave which travels back towards
the drill.[4]

Figure 1 presents an overview image of a rock drilling system where the piston strikes the
shank with a certain velocity which can be controlled with percussion pressure pp. Upon
the percussion, stress waves start to propagate towards the bit via a single or multiple
rods. Once the stress waves reach the end of the bit, the bit will normally hit the rock,
transferring some of its energy to the rock and thereby breaking the rock.
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Figure 1. Overview image of a rock drill system.

In a case where the drill bit has a good contact with the rock, the incident stress wave
makes the drill bit to hit the rock with high force. On the other hand, if the drill bit
does not have a good contact with the rock, the incident stress wave has no place to
absorb its energy — thereby, the wave reflects back towards the rock drill where there
can be a stabilizer dampening parts of the energy from the reflected stress wave. If the
reflected stress waves are not dampened by any means, the kinetic energy of stress waves
eventually transforms into heat due to friction that is created by the interaction between
the stress waves and the couplings.

3.2 Stress waves in rock drilling

Springs are one of the essential mechanical elements that can be used to describe en-
ergy absorption and storage. Mechanical properties of elastic materials can be described
by Hooke’s law, as in Equation (1), in which the required force F to compress or ex-
tend a spring is linear proportional to the spring’s compression or extension x in its elastic
regime. In Equation (1), the stiffness of the spring is denoted by k.[5] A system of springs
can be traced back to atomic level. In crystallography, it is possible to model crystal struc-
tures with a lattice spring model (LSM), where the bonds between particles are presented
as springs. By applying Newton’s second law and Hooke’s law, it is possible to numer-
ically simulate structures under stress in an atomic level.[6][7] The Lorentz oscillator
model shares the same approach of having mechanical mass-and-spring systems of elec-
trons that carry energy in their moving masses, store energy in their springs, interact with
local electromagnetic fields, and lose energy due to internal friction mechanisms.[8]

F = −kx (1)

Materials that obey Hooke’s law are called linearly elastic [9]. The elasticity is determined
in form of the relationship between stress σ and strain ε. This relationship is described by
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the Hooke’s law which can be defined either with compliance S or stiffness Cs. Equations
(2) and (3) show this relationship respectively for compliance S and stiffness Cs.[10]

σ = Csε (2)

ε = Sσ (3)

If the stress σ and strain ε take place in an isotropic uniaxial case, the stiffness Cs can
be presented by the Young’s modulus E, as in the Equation (4) [10]. Since the strain ε is
expressed as ε = ∆L/L, where ∆L is the change in length and L is the initial length —
Equation (4) can be rewritten to Equation (5) [11].

σ = Eε (4)

σ = E
∆L

L
(5)

The rock’s ability to withstand external forces is directly proportional to the applied
stress. Thereby, when interpreting the operation of rock drilling systems, it is impor-
tant to analyse the stress waves that are generated from the percussion. In a simplified
one-dimensional case, where the force F is applied to an object, the stress σ that the
object experiences is defined by Equation (6), where A is the cross-sectional area of the
object.[4]

σ =
F

A
(6)

Concerning rock strength, the mechanical stress in Equation (6) can be divided into three
different components of stress which are compressive stress σc, tensile stress σt and shear
stress σs. These stresses are defined in Equations (7), (8) and (9) respectively, where
Fc, Ft and Fs stands for a specific mode of applied force. Figure 2 illustrates in which
direction the respective forces are applied in each case.[4]
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σc =
Fc

A
(7)

σt =
Ft

A
(8)

σs =
Fs

A
(9)

Figure 2. Compressive stress σc, tensile stress σt and shear stress σs. Figure reprinted with a
permission from Elsevier.[4]

In terms of the strain ε, it can be axial εaxial or transverse εtrans, and the ratio between
these is called Poisson’s ratio ν = −εtrans/εaxial. The Young’s modulus E and Poisson’s
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ratio ν have the following relationship with each other

G =
E

2(1 + ν)
, (10)

where G denotes the shear modulus of the material.[12]

In addition to the shear modulus G, bulk modulus Bm is used. The bulk modulus denotes
material’s ability to withstand changes in its volume, and it is defined as,

Bm = −V
p′

V ′ , (11)

where V is the initial volume, p′ is the change in pressure, and V ′ is the change in volume.
In Equation (11), the bulk modulus Bm describes the relation between applied pressure
and relative deformation.[18]

3.2.1 One-dimensional stress wave theory

For more common and simplified system, stress waves can be illustrated in one-dimensional
space. In such system, the following two assumptions can be made:

• The cross-sectional area of the drilling rod stays the same.

• All wave components travel at the same speed.

In reality the assumptions above are not valid, because the drilling rod’s cross-sectional
area changes at couplings and the wave speed is proportional to its frequency.[13] In
the following studies [14], [15], [16], and [17], it has been stated that despite of having
the previous assumptions, one-dimensional stress wave models can provide the desired
accuracy for studying longitudinal stress waves in drilling rods.

When a stress wave encounters a point of discontinuity, it will be divided into two different
components, those two being transmitted and reflected waves σtr and σr, respectively. The
transmitted part of the wave travels through the discontinuity but the reflected wave re-
flects to the opposite direction of the incident wave. This phenomenon is demonstrated in
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Figure 3, where coupled objects 1 and 2 have their individual densities ρ, cross-sectional
areas A and Young’s modulus E.[13] To determine the magnitude of the reflected and
transmitted waves, changes in the mechanical impedances must be analysed. The me-
chanical impedance Z of system is defined in Equation (12), where p′ is the change in
pressure in given velocity change u′ [18]

Z =
p′

u′ . (12)

Figure 3. Incident σi, transmitted σtr and reflected stress σr waves at a point of discontinuity.

If the first object in Figure 3 moves towards the second object that is in rest, according to
Equation (12), there will be an impedance mismatch. It is the impedance mismatch that
transforms the incident wave into transmitted and reflected waves.[18]

At a point of discontinuity, as shown in Figure 3, the transmitted σtr and reflected waves
σr are expressed respectively in Equations (13) and (14), where c is the speed of sound in
a solid material [1][13][19]. The relationship between transmitted and reflected waves in
Equations (13) and (14) derives from the impedances Z of the two objects and resulting
in an impedance mismatch.

σtr(t) =
2A1ρ1c1

A1ρ1c1 + A2ρ2c2
σi(t) (13)
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σr(t) =
−A1ρ1c1 + A2ρ2c2
A1ρ1c1 + A2ρ2c2

σi(t) (14)

If the objects in Figure 3 are homogeneous, meaning that their densities ρ and speeds of
sound c are equal — Equations (13) and (14) can be reduced to Equations (15) and (16).

σtr(t) =
2A1

A1 + A2

σi(t) (15)

σr(t) =
−A1 + A2

A1 + A2

σi(t) (16)

From Equation (16) it can be stated that the direction and magnitude of the reflected stress
wave σr is dependent on the cross-sectional areas A1 and A2. By acknowledging these
two dependencies, we can examine two distinctive cases, where A2 = ∞ or A2 = 0.
When A2 approaches infinity, it illustrates a case where the rod would be rigidly attached
to the shank, as in,

σr(t) = lim
A2→∞

(
−A1 + A2

A1 + A2

σi(t)

)
= σi(t), (17)

where the reflected σr has same magnitude as the incident σi [13]. On the contrary to
Equation (17), a case with A2 = 0, where there is no physical contact between the two
objects results in Equation (18), in which the reflected wave σr has the same magnitude
as incident σi but is in the form of tensile stress.[4][13]

σr(t) =
−A1 + 0

A1 + 0
σi(t) = −σi(t) (18)

Concerning the transmitted wave σtr in Equation (15), it can be stated that, if the cross-
sectional areas A1 and A2 are the same at the junction, the transmitted wave is equal to
the incident wave

σtr(t) =
2A1

A1 + A1

σi(t) =
2A1

2A1

σi(t) = σi(t). (19)
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In a case where two identical drilling rods are rigidly connected to each other by the end
of the rods, Equation (19) states that the stress wave in the first rod must be equal to the
one at the second rod after penetrating the junction.

3.2.2 Energy of stress wave

Stress wave energies can be analysed by estimating how much work Wσ a stress wave
does. A well-known way of presenting work is by multiplying a force F with displace-
ment x. From Equation (6), it is known that F = Aσ. Thus, work Wσ can be expressed
as:

Wσ = Fx = Aσ(t)x, (20)

where x denotes the particle displacement. Equation (20) also emphasizes that stress is
a function of time. It is also known that displacement is a function of velocity and time,
x = vt, where particle velocity v can also be expressed as

v =
σ

cρ
, (21)

where c is the speed of sound [4]. By applying x = vt and Equation (21) to Equation
(20), the work Wσ done by the stress wave is

Wσ = Aσ(t)vt = Aσ(t)
σ(t)

cρ
t =

A

cρ
tσ(t)2, (22)

where t expresses the period when the stress affects. With the speed of sound c in Equation
(23), the work Wσ in Equation (22) can be rewritten in the form of Equation (24).

c =

√
E

ρ
(23)

Wσ =
At√
E
ρ
ρ
σ(t)2 (24)
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To better illustrate the effect of stress waves, the work Wσ will be denoted as energy Eσ.
Since stress is a function of time in Equation (24), the change in energy over a period can
be calculated by integration from time t0 to t1 which results in Equation (25) that can be
used to calculate for example the energy of an incident wave

Eσ =
At√
E
ρ
ρ

t1∫
t0

σ(t)2dt. (25)

Energies of the incident and reflected waves are noted as Eσ,i and Eσ,r respectively. The
stress wave efficiency η is calculated as

η =
Eσ,i − Eσ,r

Eσ,i

. (26)

One of the biggest challenges in rock drilling is to transmit as much energy to the rock as
possible [3]. With optimized drill rigs, it is possible to reach stress wave efficiencies of
around 70-80 %. To give an example, if the kinetic energy of the incident wave is 360 J
and 90 J get reflected, then the stress wave efficiency η corresponds to 75 %.

3.2.3 Compressive and tensile stress waves

When the rock drill piston collides with the shank, the shank experiences a force that
is perpendicular to the piston’s head — thereby, the force starts to compress the shank
as in Figure 2, where the compressive stress is denoted as σc = Fc/A [4]. To better
illustrate the difference between compressive and elastic stress waves, Hooke’s law can
be re-formulated to:

σ = ∓
(
E

c

)
∂x

∂t
= ∓ρc

∂x

∂t
, (27)

where the particle velocity v = ∂x/∂t can be positive or negative depending on the
direction that the wave travels.[4] To solve Equation (27), initial values of stress σ and
velocity v must be known. In a simplified case, where there is no stress initially applied
and the particle velocity is zero, the solution of Equation (27) is
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σ = ∓ρcv. (28)

When a stress wave propagates in the system with positive velocity v, negation in Equa-
tion (28) should be used for calculating negative stress that is compressive stress. On the
other hand, tensile stresses are indicated with positive values in Equation (28).[4] Because
in rock drilling, the goal is to apply compressive stress from the percussion to the rock,
it is more natural to express compressive stresses as positive values and vice versa tensile
stresses as negative values — thereby, from this point forward, in this thesis compressive
stresses are expressed as positive values.

Figures 4, 5 and 6 show 2D-axisymmetric models of simplified rock drilling process. In
these Figures, positive compressive stress waves σc are illustrated with blue colors and
negative tensile stress waves σs with red colors. Figure 4 shows a cross-section view of
rod, shank, and piston. In the upper image of Figure 4, the piston hits the shank, and
the lower image shows moments later how the compressive incident stress wave starts to
propagate left towards the drill bit.

Figure 4. Incident stress wave propagating left at times T1 and T2, where T2 > T1.

The duration of the incident wave Td in Figure 4 can be calculated as:

Td =
2Lp

c
, (29)

where Lp is the piston length and c is the speed of sound. Rearranging Equation (29) to
2Lp = Tdc, shows that the length of the incident stress wave is twice as long as the piston
length Lp.[20]
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In upper images of Figures 5 and 6, the compressive incident stress wave is reaching
the end of the drill bit and after a moment the wave reflects back towards the drill. The
difference between Figures 5 and 6 are their initial conditions. In Figure 5 the drill bit
and the rock have 1 mm gap but in Figure 6, there is no free space between those two.
When comparing the reflected wave of these two cases, there is a notable difference in
the reflected waves. The small gap in Figure 5 results in having high magnitude tensile
stresses in the reflected wave. The full animation of Figure 6 is available in Appendix 1.

The reflected stress wave that travels back towards the drill should be minimized because
its energy is harmful for the system — especially, for the threads that are used to connect
bits, rods, or shanks. To maximize the drilling efficiency, the reflected stress waves should
be prevented by pressing the drill bit to the rock.[11]

Figure 5. Incident stress wave propagating at time T3. Reflected wave propagating at time T4

after having a poor contact with the rock.

Figure 6. Incident stress wave propagating at time T3. Reflected wave propagating at time T4

after having a good contact with the rock.
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3.2.4 Bilinear stiffness model of bit-rock interface

In addition to knowing the quality of the bit–rock contact, it is essential to know the rock
properties. As the drill bit strikes the rock with a high force, the rock first experiences
elastic deformation in form of strain. In the elastic regime, the deformation can be linear,
nonlinear or a combination of both [21].

As atoms can be thought to function as a system of springs in material, it is possible to
picture the energy transmission interface between the drill bit and the rock in form of
springs. Figure 7 presents a Hookean bilinear stiffness model of bit-rock interface, where
the stiffness k corresponds to the slope that is dependent on the direction of force F that
is a function of displacement x. The bilinear model as in Figure 7 makes the assumption
of having only linear deformation [20][36]. At first, when the drill bit strikes the rock,
the compressive force F linearly increases with the slope of the loading spring constant
k1 [20][22][36]. After the initial compression, the drill bit starts to experience extension
where the force F decreases to zero with a slope of the unloading spring constant k2 that
corresponds to

k2 =
k1
γ
, (30)

where γ is the unloading parameter [20][36]. The lower the unloading parameter in Equa-
tion (30), the higher the displacement is when force reaches zero in Figure 7. A study
from Depouhon et al. [36] further describes and justifies the physics behind the linear
rock model. In the study experimental data is compared with simulations using different
rock models [36].
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Figure 7. Bilinear stiffness model of bit-rock interface.[20][36]

Combining Equations (5) and (6) and solving change in length ∆L yields Equation (31)

∆L =
FL

EA
. (31)

If the change in length ∆L can be considered as elastic displacement x in Hooke’s law,
then the stiffness k can be expressed by applying Equation (31) to Equation (1) as:

k =
FEA

FL
=

EA

L
, (32)

where the axial stiffness k is a function of Young’s modulus E, cross-sectional area A,
and length L.

3.3 Measuring stress waves with strain gauges

To achieve high performance and efficiency in rock drilling, it is mandatory to understand
how much energy from the percussion is transmitted to the rock and then reflected back to
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the drill [23]. This can be done by measuring the first incident stress wave and comparing
it to the first reflected stress wave. Analysing researching multiple reflections of the stress
wave can give information about whether there are other issues in the process [11].

A common way to observe stress waves in drilling equipment is to measure the strain in
an object by means of strain gauges [11][23]. Strain gauges are based on the relationship
between electrical resistance R and the mechanical strain ε. The strain of an object can
be calculated as:

ε =
∆R

R

1

GF
, (33)

where ∆R is change in electrical resistance, R is the reference resistance at zero strain,
and GF is the gauge factor.[24][25] Typically the gauge factor GF has value of around
two [11][24]. The changes in resistance ∆R can be marginal when comparing to the
reference resistance R, thereby, an amplifier must be used [11].

Wheatstone bridges can be used to determine the unknown resistance within the circuit.
Operation of Wheatstone bridge is based on the fact that the output voltage Uout is zero
regardless of input voltage Uin.[11] A traditional Wheatstone bridge is shown in Figure
8a), where the bridge has four identical resistors.

As shown in Equation (33), if strain is applied to an electrical object, the object expe-
riences a change in resistance — thereby, by replacing two of the resistors with strain
gauges, we can create a bridge that works as the traditional Wheatstone bridge but is
sensitive to strain. This circuit is shown in Figure 8b).[11]
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Figure 8. a) Wheatstone bridge [26] and b) modified bridge with strain gauges [11].

When the resistance of the strain gauges change, the voltage levels in the circuit start to
differ and the output voltage Uout can be expressed as:

Uout =
1

4

∆R

R
Uin =

1

4
GFεUin. (34)

By measuring the output voltage from the circuit in Figure 8b), the only variable that
is unknown in Equation (34) is the strain ε. After measuring the strain ε by the strain
gauge, we can convert the strain to a stress σ by using Equation (4). To eliminate bending
strain from the measurements, the circuit in Figure 8b) uses two strain gauges that are on
opposite sides of the bridge. To calculate only the longitudinal strain from Equation (34),

Uout =
1

4
GF (ε1 + ε2)Uin, (35)

in which both strain gauge sensors have their own strains ε1 and ε2.[11]

To measure the stress waves in case of rock drilling, the strain gauges are installed to
an area of the drilling rod that is outside the borehole to avoid damaging the sensors
[11]. While, the operation of a strain gauge is straightforward, its working principle is
what works against itself when the temperature changes. When electrically conductive
material experiences increase an in temperature, its resistance typically increases as well
[27]. Since the drilling rods eventually heat up from the friction caused by the stress
waves, the heat will conduct to the strain gauge, thereby changing its resistance.
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3.4 Statistical methods

Statistical methods and analysis are used in thesis to mathematically interpret and com-
pare the computed and measured data.

3.4.1 Correlation

The correlation coefficient C is used to express the strength of an association between
two variables.[28] Equation (36) shows how the population correlation coefficient is cal-
culated

C =
cov(X, Y )√

V ar(X)
√

V ar(Y )
, (36)

where covariance cov(X, Y ) = E(X−EX)(Y −EY ) = E(XY )−EXEY and V ar(X) =

E(X − EX)2. Acknowledging these, Equation (36) can be rewritten as:

C(X, Y ) =
E(X − EX)(Y − EY )√

E(X − EX)2
√

E(Y − EY )2
. (37)

When random variables X and Y are not correlated with each other, the correlation co-
efficient C equals to zero.[29] When calculating correlation coefficient C from Equation
(37), its range of values is [-1,1], where -1 corresponds to perfect negative correlation. On
the contrary, 1 corresponds to perfect positive correlation.[28] With perfect correlations,
the information from one variable could be transferred to the correlated variable without
a loss of information. In this thesis when the correlation is calculated within the incident
stress wave, it is noted as Ci. Similarly, the reflected wave’s correlation is noted as Cr.

3.4.2 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a common way to identify the error between
observed and predicted data. RMSE is calculated as:
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RMSE =

√√√√( n∑
i=1

(xi − x̂i)2

)
/n, (38)

where xi are observed values, x̂i predicted values, and n is the number of samples.[30]
Because in Equation (38) the mean squared error is square rooted, RMSE has the same
unit as its input variable x. RMSE of the incident wave is noted as RMSEi and similarly,
the reflected wave as RMSEr.

3.4.3 Sensitivity analysis

A sensitivity analysis is a mathematical method that is used to investigate variation in the
output of a numerical model when the model’s input variables experience known varia-
tion. With the help of a sensitivity analysis, uncertainties in the output can be distributed
into different sources by applying minimal changes to the model’s input variables.[31]
In this thesis, a sensitivity analysis is used to visualize the effect of changing physical
constants such as speed of sound or spring constants of the rock model. Since this thesis’
research problem concerns continuous data and not discrete one, sensitivity analysis is
conducted by overlaying numerical models next to each other and comparing their per-
formance to the measurement mean in terms of correlation and root mean square error. In
addition to analysing changes in the input variables, variances in the measurements can
be visualized performing a shade plot which overlays all individual percussions from the
drill into a single figure.

3.5 Stress analysis with the Finite Element Method (FEM)

The Finite Element Method (FEM) is a numerical method which original use case is to
solve problems of stress analysis. Nowadays it has been applied in numerous of other
problems such as fluid flow analysis and thermal analysis. In a case of stress analysis, the
problem roots into solving Hooke’s equation — that being, determining material displace-
ments when material experiences external forces. For modeling any object, FEM takes
an approach of distributing the problem into finite number of elements that are made of
nodes and then the elements can interact with neighbouring elements. The formation that
these elements create is called the mesh.[12] When taking an approach of considering
these individual nodes as atoms, the mesh can be thought of being an extensive Lorentez
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oscillator model of mechanical mass–and–spring system.

One of the first tasks in conducting Finite Element Analysis (FEA) is to define the geom-
etry of the system. Nowadays designing the system is commonly done by using various
of Computer Aided Design (CAD) software that come with graphical user interfaces that
can be used to design complex objects.[12] This Master’s Thesis takes advantage of using
existing designs that are used to manufacture rock drilling parts. With the help of accu-
rate design geometry, it is possible to reduce the error between a numerical model and
measurement.

Once the system geometry is defined, meshing is done. Since the whole problem domain
is divided into elements by using a set of nodes, the solution across the elements can be
approximated by using linear or polynomial functions.[12] When meshing, it is important
to understand the complexity of the mesh. Having higher density of elements and thereby
higher number of nodes, the complexity of the mesh increases. On the other hand, with
more dense mesh, approximations between elements have smaller error due to shorter
distance used in approximation.

For defining an appropriate mesh, the element type and shape must be selected with care.
If the geometry does not require higher dimension than 1D, the elements are expressed as
lines. Whereas, having 2D space requires more complex mesh which is usually made from
triangular or quadrilateral elements. While quadrilateral elements can provide more ac-
curate approximations than triangular elements, generating mesh made from quadrilateral
elements can be challenging. Going from 2D to 3D space, the model can fundamentally
be used for all 3D solids by using tetrahedron or hexahedron shapes.[12] From the as-
pect of computation time, a conversion from triangle to tetrahedron is more efficient than
going from quadrilateral element to hexahedral.

Besides of having defined geometry for the mesh, the physical properties of the elements
need to be configured in a way that they correspond to material properties of bodies. To
conduct stress analysis, it is essential to determine Young’s modulus and shear modulus
for a specified area of the mesh. Commonly, material properties are obtained by conduct-
ing own experiments or by utilizing literature.[12] This Master’s Thesis uses experimental
material properties that are based on literature.
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3.5.1 Key equations used in FEM

The FEM equation for expressing how external forces affect an individual element’s node
in its local coordinate system is

fe = kede + med̈e, (39)

where fe is the force vector of the total forces taking place in a node, while ke and me are
the stiffness and mass matrices that are respectively multiplied by displacement vector de

and acceleration d̈e.[12] Equation (39) hereby expresses node as a mass–spring–system
that obeys Hooke’s law and Newton’s second law.

By conducting coordinate transformation with transformation matrix T, Equation (39)
can be expressed on the global coordinate system. Coordinate transformation of Equation
(39) is

Fe = KeDe + MeD̈e, (40)

where Fe, Ke, De, Me, and D̈e in Equation (40) are in the global coordinate system.[12]

The benefit of having a matrix representation of nodal FE Equation (40) is that the forces
from neighbouring elements can be assembled together to form the global FE equation
system:

F = KD + MD̈. (41)

With the help of Equation (41), displacements at any node in the problem domain can
be expressed. To make Equation (41) applicable for transient excitation, that is a highly
dynamic and time-dependent force experienced on the structure, Equation (42) is used

F = KD + CḊ + MD̈, (42)

where
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K =
∑
e

∫
Ve

BTEBdV, (43)

C =
∑
e

∫
Ve

ceNTNdV, (44)

and

M =
∑
e

∫
Ve

ρNTNdV. (45)

The stiffness matrix K in Equation (43) consists of the strain matrix B and Young’s mod-
ulus matrix E. The damping coefficient matrix C in Equation (44) and the mass matrix
M in Equation (45) both have shape function matrices N that determine the way of in-
terpolation. In Equation (44) ce is the damping coefficient which is determined from
experimental data.[12]

The classical way of solving Equation (42) is to use a central difference algorithm that is
based on a residual method. The residual force vector Fresidual is expressed as:

Fresidual = F − Fint = F − [CḊ + KD] = MD̈, (46)

where the internal force Fint at time t is

Fint = [CḊ + KD], (47)

and the acceleration vector D̈ can be solved to

D̈ = M−1Fresidual. (48)

In a central difference algorithm there are three fundamental equations to express ele-
ment’s movement in the problem domain. Equation (49) is used to approximate node
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displacement after time step ∆t by using current and previous displacement. Similarly,
Equation (50) approximates node velocity by relating current acceleration and previous
velocity. To solve acceleration at time t from Equation (51), displacements at times t±∆t

and t are used.[12]

Dt+∆t = 2∆tḊ + Dt−∆t (49)

Ḋt+∆t = 2∆tD̈ + Ḋt−∆t (50)

D̈t =
1

(∆t)2
(Dt+∆t − 2Dt + Dt−∆t) (51)

With Equations (49) and (51), the displacement at time t−∆t can be solved into

Dt−∆t = Dt −∆tḊ +
(∆t)2

2
D̈t. (52)

By acknowledging the initial conditions from where the system starts to operate, Equa-
tions (48) and (52) can be used to approximate how external forces affect the node dis-
placement.

In the case of one-dimensional problem domain, the element’s strain in the global coor-
dinate system ε can be written in form of a strain matrix B, a transform matrix T and the
element displacement De, as ε = BTDe. Since σ = Eε, the stress along x-axis σx is

σx = Eε = EBTDe. (53)

With the help of Equation (52), dynamical stress changes can be solved with Equation
(53).[12]
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4 MATERIAL AND SOFTWARE

This section of the thesis shows how stress wave measurements are conducted with com-
monly used strain gauges. For comparison, different software are used to study the pos-
sibility to numerically compute similar data as in the measurements. For visualizing,
processing, and analysing the signals received from the measurement device and numer-
ical models, MATLAB R2022a is used. MATLAB by Mathworks is programming and
numeric computing platform that can be used for iterative analyses and design processes
[32].

4.1 Measurement equipment

In this thesis, two different drilling systems for stresses are utilized. Both systems use the
same rock drill but different tools are listed in Table 1.

Table 1. Differences between A and B threaded systems.

A B
Proportional rod cross-sectional area 1:1 4:3

Strain gauge rod length [ft] 12 14

Proportional drill bit diameter 1:1 5:4

4.1.1 Drilling rods with strain gauges

Strain gauges are used in this thesis to measure the stress waves of drilling rods. The
way these strain gauges are electrically connected is illustrated in Figure 8b). Strain
gauges rely on a conductor’s change in resistance which is caused by strain. For further
theoretical operation of strain gauges, please refer to Section 3.3.

Figure 9 shows three drilling rods that have strain gauges installed to them. The position
of the strain gauges is chosen to provide a good quality signal while also ensuring an
adequate endurance of the sensor. Placing the strain gauge close to the shank could cause
an increase of noise in the signal due to the higher temperatures and vibrations from the
drill. On the other hand, if the sensor is closer to the drill bit, the cabling would tangle up
inside the borehole and could thereby get damaged. Therefore, the strain gauge and its
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cabling are installed in the middle of the first drilling rod that is above the surface [11].
One of the biggest challenges in measuring with strain gauges is to keep the vibrations
caused by the drilling equipment as low as possible to avoid breaking the delicate strain
gauge sensors [11]. The cables seen in Figure 9 are used to transmit the voltage signal
from the Wheatstone’s bridge to a computer for data logging and processing.

Figure 9. Strain gauge rods with strain gauges installed.

After the voltage change in the bridge has been converted to stress σ, the signal can be
used to analyse propagating stress waves in the drilling rods. Figure 10 shows how the
stress σ changes as a function of time after a single piston strike. Similarly, Figure 11
has a short sample of stress wave where different stresses are classified as follows: inci-
dent stress σi, reflected stress from drill bit σr,b, reflected tensile stress σr,t, and reflected
compressive stress σr,c.
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Figure 10. Stress wave propagating through a drilling rod.

Figure 11. Classified stresses from a single piston stroke.
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4.2 Numerical models of stress waves

This thesis uses numerical drilling process models to computationally create as similar as
possible stress data that can be observed with strain gauge measurements. When creating
numerical models, it is compulsory to make problem domains that correspond to the one
used when measuring with strain gauges. Having different geometries and cross-sectional
areas will lead to incorrect values in stress, as the stress σ is proportional to area A as
presented in Equation (6).

When creating numerical models that represent a physical phenomenon, it is mandatory
to be aware what physical properties need to be set and what are the values for those.
In this thesis, the physical properties are not separately measured but values from other
extensive researches are used. Tables 2 and 3 show the physical constants that are used in
this research unless stated differently.

Table 2. Physical properties of steel.[22][33][34][35]

Young’s modulus E 210 [GPa]

Density of steel ρ 7800 [kg/m3]

Poisson ratio ν 0.3

Table 3. Bilinear rock model’s parameters.

Loading spring constant k1 800 · 106 N/m

Unloading spring constant k2 800 · 107 N/m

Unloading parameter γ 0.1

4.2.1 Software A and Software B

Software A is one of the software that is used to create numerical models for the thesis.
Software A is a commercial software that is based on finite element method (FEM). Soft-
ware A includes a multi-physics solver that allows to solve computational fluid dynamics
and structural changes. In this thesis, Software A is used to create FEM models where the
force and thereby stress propagates from the piston/shank percussion towards the drill bit
from which it reflects back towards the drill.
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The second software used to create numerical models is Software B. Software B is similar
to Software A as they share a similar way to numerically compute stresses in systems
based on FEM. Both Software A and Software B models are structurally similar to each
other where there are own parts for piston, shank, drilling rods, bit, and rock. Each part in
the system have their own unique physical properties, such as, density, Young’s modulus,
and elastic constant. In each FEM system, shank, drilling rods and bit are designed as
they are made for the real drill rigs.

One of the downsides of models created with Software A and Software B is that there is
no complete rock drill, and the piston is thought to be a floating object that strikes the
shank with specified velocity. In addition to missing rest of the rock drill, the system does
not experience gravitational forces that affect stresses, especially when drilling vertically.

Both Software A and Software B have a high density of elements in the mesh, with the
shortest distance between elements being 1.5 mm at the threads where the geometry is
the most detailed. The mesh itself is assembled in the 2D-axisymmetric space. The
downside of having an axisymmetric problem domain is that the threads will not have
helical structure.
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5 RESULTS

5.1 Measurements using thread type A

Figure 12 shows the stress σ in function of time from one drilling measurement session
with a system using thread type A. At the beginning and at the end of the signal, there is
no contact between the drill bit and the rock. The drill bit starts to collide with the rock
15 seconds after the beginning of the recording. The measurement session is conducted
by gradually increasing the percussion pressure as in Figure 13. This leads to increasing
feed pressure in Figure 14. By increasing percussion and feed pressure, the piston of the
rock drill experiences higher forces and accelerations, thereby making the impact velocity
higher which leads to higher stresses and energies.

Figure 12. Strain gauge measurement from one drilling session.
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Figure 13. Percussion pressure measurement from one drilling session.

Figure 14. Feed pressure measurement from one drilling session.

Due to changes in percussion and feed pressure, the data in Figure 12 is classified into five
different intervals according to the percussion pressures seen in Figure 13. These intervals
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are respectively 120 bar, 130 bar, 140 bar, 150 bar, and 160 bar. After dividing the whole
measurement data into shorter sections, the stress waves can be examined with respect to
percussion pressure, as shown in Figures 15 and 16, where the black graph corresponds to
interval’s mean strike. Red vertical lines are used to annotate where incident and reflected
waves start and end.

Figure 15. Mean stress waves of A threaded system with 120 bar and 130 bar percussion pressure.



43

Figure 16. Mean stress waves of A threaded system with 140 bar, 150 bar, and 160 bar percussion
pressure.

Table 4 compares the maximum compressive stresses in the incident wave σi and reflected
wave σr,c for the different percussion pressure levels. In addition to these, the greatest
tensile stress during the reflected wave σr,t is included. As shown in Table 4, stresses in
the incident wave increase as the percussion pressure increases. Despite of the increasing
stresses in the incident wave, stresses in the reflected wave do not directly correlate with
the percussion pressure.

Table 4. Thread type A measurements’ mean stress amplitudes with respect to percussion pres-
sure.

pp [bar] max(σi) [MPa] min(σr,t) [MPa] max(σr,c) [MPa]

120 199.38 -47.76 116.96

130 210.09 -49.85 118.77

140 221.40 -52.95 121.33

150 230.92 -54.38 117.67

160 237.66 -52.36 118.58

Similarly to Table 4, Table 5 compares the mean energies with respect to the percussion
pressure. In Table 5, Eσ,i is the incident wave energy from the mean strike — similarly,
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Eσ,r is the reflected wave’s energy. As the reflected wave’s energy Eσ,r is nearly constant,
even though the incident wave energy increases, the efficiency η shows a slight increase.

Table 5. Thread type A measurements’ mean energies with respect to percussion pressure.

pp [bar] Eσ,i [J] Eσ,r [J] η

120 290.49 62.25 0.786

130 331.91 62.74 0.811

140 364.96 65.41 0.821

150 390.61 62.65 0.840

160 413.83 63.09 0.848

5.2 Measurements using thread type B

For comparing the effect of having different thread geometries, bit sizes, and rod lengths,
another set of measurements and simulations are conducted. The following measurements
use the same rock drill as the previously used A threaded system but with exceptions
shown in Table 1. Figures 17 and 18 present mean stress waves of B threaded system’s
simulations with percussion pressures of 140 bar, 160 bar, 180 bar, and 200 bar.

Figure 17. B threaded system mean stress waves with 140 bar and 160 percussion pressure.
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Figure 18. B threaded system mean stress waves with 180 bar and 200 percussion pressure.

Table 6 lists the maximum compressive stresses in the incident wave σi and reflected
wave’s highest tensile stress σr,t and compressive stress σr,c for each measurement with
thread type B.

Table 6. Thread type B measurements’ mean stress amplitudes with respect to percussion pressure.

pp [bar] max(σi) [MPa] min(σr,t) [MPa] max(σr,c) [MPa]

140 190.25 -109.63 83.59

160 206.54 -122.43 88.40

180 220.75 -128.15 94.90

200 232.26 -134.35 99.64

Table 7 presents incident Eσ,i and reflected wave energies Eσ,r in joules for each per-
cussion pressure’s mean stress wave. In addition to energies, stress wave efficiency η is
shown.
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Table 7. Thread type B measurements’ mean energies with respect to percussion pressure.

pp [bar] Eσ,i [J] Eσ,r [J] η

140 322.27 109.17 0.661

160 386.41 122.49 0.683

180 440.88 133.22 0.698

200 493.07 141.45 0.713

Figure 19 shows a comparison between A and B threaded measurements at 140 bar per-
cussion pressure. Since the B threaded measurements use a two feet longer strain gauge
drilling rod, the reflection does not occur at the same time as for the A threaded measure-
ment. Despite of non-matching stress wave reflections, the B threaded mean measurement
experiences a twice as high tensile stress compared with thread type A.

Figure 19. Thread type A and B measurement mean stress waves at 140 bar percussion pressure.

5.3 Numeric simulation model of system with A thread

For creating the first numerical simulations of A threaded system, Software A and Soft-
ware B is used. Both simulations use the same accurate models of shank, drilling rod, and
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drill bit. In Figures 20 and 21 numerical simulations are being overlayed on top of mea-
surement data from Figures 15 and 16. Even though the incident waves are in-phase with
the measurement means, for all percussion levels the reflected stress wave is out-of-phase
in Figures 20 and 21.

Figure 20. Thread type A stress wave simulations with Software A and Software B at 120 bar and
130 bar percussion pressure.
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Figure 21. Thread type A stress wave simulations with Software A and Software B at 140 bar,
150 bar, and 160 bar percussion pressure.

Tables 8 and 9 asses the simulation performances in form of root mean square error
and correlation with the respect to measurement mean at different percussion pressures.
RMSEs are calculated separately for the incident wave and the reflected wave — error
of these are denoted as RMSEi and RMSEr, respectively. The same approach is used
in Table 9 for correlations Ci and Cr.

Table 8. Software A and Software B incident and reflection wave errors of A threaded system at
different percussion pressures.

Software A Software B
pp [bar] RMSEi [MPa] RMSEr [MPa] RMSEi [MPa] RMSEr [MPa]

120 15.88 59.60 10.07 49.25

130 19.22 62.63 12.55 52.30

140 19.88 60.58 25.17 49.49

150 25.70 65.31 21.00 55.34

160 28.77 66.29 25.53 56.49
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Table 9. Software A and Software B incident and reflection wave correlations of A threaded
system at different percussion pressures.

Software A Software B
pp [bar] Ci Cr Ci Cr

120 0.984 0.296 0.992 0.525

130 0.979 0.254 0.990 0.474

140 0.988 0.315 0.962 0.540

150 0.984 0.198 0.992 0.421

160 0.985 0.187 0.991 0.400

5.3.1 Differentiating rock model

Figures 22 and 23 present six different Software A simulations where k1 value changes.
The simulations are run with k1 values of 250 MN/m, 350 MN/m, 450 MN/m, 550 MN/m,
650 MN/m, and 800 MN/m. For all percussion pressure levels, with increasing k1 values
the tensile stresses are lower. On the other hand, the compressive stress starts earlier with
higher k1.

Figure 22. Software A stress wave simulations with differentiating k1 at 120 bar and 130 bar
percussion pressures.
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Figure 23. Software A stress wave simulations with differentiating k1 at 140 bar, 150 bar, and 160
bar percussion pressures.
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Figure 24 presents a view that magnifies on the area where the reflected stress wave starts
in Figure 22. From Figure 24, it can be seen how the simulation signals start to devi-
ate from each other when k1 is different. If the beginning of the deviation is where the
reflection starts, then the annotated vertical red line is off by 10 µs.

Figure 24. Signal deviation from differentiating k1 with Software A.

Table 10 shows the errors between the simulations with different k1 values and the mea-
surement average at a percussion pressure 120 bar.

Table 10. Software A simulations’ errors with differentiating k1 at 120 bar pp.

k1 [MN/m] RMSEi [MPa] RMSEr [MPa]

250 15.88 47.64

350 15.88 31.43

450 15.88 28.08

550 15.88 35.01

650 15.88 44.94

800 15.88 59.61
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Similarly to Table 10, Table 11 presents the incident wave and reflected wave correlations
Ci and Cr for models from Software A.

Table 11. Software A simulations’ correlations with differentiating k1 at 120 bar pp.

k1 [MN/m] Ci Cr

250 0.984 0.953

350 0.984 0.960

450 0.984 0.895

550 0.984 0.767

650 0.984 0.590

800 0.984 0.296

Figures 25 and 26 show simulation results obtained with Software A where the unloading
parameter γ is 0.05, 0.1 and 0.15. From the simulations it can be seen that by varying γ,
it is possible to achieve higher compressive stress in the reflected wave without affecting
the signal prior to it.

Figure 25. Differentiating unloading ratio γ with Software A at 120 bar and 130 bar percussion
pressures.
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Figure 26. Differentiating unloading ratio γ with Software A at 140 bar, 150 bar, and 160 bar
percussion pressures.

Table 12 presents incident wave errors RMSEi and reflected wave errors RMSEr for
different γ ratios from 120 bar percussion pressure simulations.

Table 12. Errors at percussion pressure 120 bar with different unloading ratios γ.

γ RMSEi [MPa] RMSEr [MPa]

0.05 15.88 31.61

0.10 15.88 28.08

0.15 15.88 25.75

Table 13 shows the respective results of the correlation analysis where Ci is the incident
wave correlation and Cr the reflected wave correlation with measurement mean.

Table 13. Correlations at percussion pressure 120 bar with different unloading ratios γ.

γ Ci Cr

0.05 0.984 0.877

0.10 0.984 0.895

0.15 0.984 0.913
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5.3.2 Varying density and Young’s modulus

In Figure 27, the results of two different Software B simulations are shown. The first
simulation uses Young’s modulus E = 210 GPa whereas the second simulations uses
Young’s modulus of 206 GPa. Both of models use a density ρ of 7800 kg/m3. With
Equation (21), calculated speeds of sound are 5189 m/s and 5139 m/s, for E = 210 GPa
and E = 206 GPa, respectively. Even though the simulations are in-phase for the incident
stress waves, there is a noticeable shift in phase due to different speeds of sound at a later
stages of the simulations. At the end of the simulations, the signal for E = 210 GPa is
10 µs ahead of the E = 206 GPa signal. The RMSE between the full simulations with
E = 210 GPa and E = 206 GPa is 5.89 MPa.

Figure 27. Software B simulation with 210 GPa and 206 GPa Young’s modulus.

Figure 28 illustrates a similar case as in Figure 27 but the simulations in Figure 28 are
carried out with Software A where both the density ρ and Young’s modulus E are changed
at the same time. For one simulation ρ = 7800 kg/m3 and E = 210 GPa are used
whereas the other uses ρ = 7881 kg/m3 and E = 200 GPa. The speeds of sound for these
simulations are 5189 m/s and 5038 m/s, respectively. Both simulations in Figure 28 use
k1 = 350 MN/m and γ = 0.1.
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Figure 28. Software A simulation with two different densities and Young’s modulus.

At the end of the simulations in Figure 28, the change in the speed of sound results in
signal with higher velocity to be 40 µs ahead of the other simulation. When calculating
the RMSE between these two signals for the whole duration of the simulation, the error
corresponds to 15.07 MPa. For comparing the two simulations to the mean measurement,
Table 14 shows separate errors for incident and reflection.

Table 14. Incident and reflection errors for percussion pressure 120 bar.

ρ [kg/m3] E [GPa] c [m/s] RMSEi [MPa] RMSEr [MPa]

7800 210 5189 15.88 31.43

7881 200 5038 15.85 28.31

5.3.3 Direction of the stress wave

Figure 29 presents a more comprehensive plot of the simulation results already shown in
Figure 20. Figure 29 provides the additional information about the direction of the stress
wave. A positive direction corresponds to stress wave travelling towards the drill, while
a negative direction corresponds waves travelling towards the rock. Nearly all stresses in
the incident wave travel in negative direction towards the rock. The part of the simulation
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when stress wave is reflecting back mainly consists of stresses that travel in positive di-
rection towards the drill but there is stress up to 18 MPa travelling the opposite direction
as tensile stress.

Figure 29. Direction of stress wave simulation with Software B.

5.4 Numeric simulation model of system with B thread

Figures 30 and 31 show Software B simulation results and mean measurements of B
threaded system at 140 bar, 160 bar, 180 bar, and 200 bar percussion pressures.
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Figure 30. B threaded system stress wave simulation with 140 bar and 160 bar percussion pres-
sures.

Figure 31. B threaded system stress wave simulation with 180 bar and 200 bar percussion pres-
sures.



58

Table 15 contains RMSEs for both incident and reflected wave with an increasing per-
cussion pressure. The lowest errors are achieved by having percussion pressure set to 140
bar.

Table 15. B threaded system stress wave simulation errors depending on percussion pressure.

pp [bar] RMSEi [MPa] RMSEr [MPa]

140 5.91 48.27

160 14.30 50.88

180 23.16 53.24

200 31.65 55.57

Table 16 shows the correlations for the B threaded system stress wave simulations with
measurement data. Even though RMSEi errors significantly increase for higher pres-
sures, Ci correlations in Table 16 barely change.

Table 16. B threaded system stress wave simulation correlations depending on percussion pres-
sure.

pp [bar] Ci Cr

140 0.996 0.713

160 0.995 0.704

180 0.994 0.708

200 0.994 0.673

5.4.1 Additional drilling rod

Figures 32 and 33 show mean stress wave measurements from a drilling system where the
strain gauge drilling rod is 14 ft and the second one is 12 ft. Measurements are conducted
with 140 bar, 160 bar, 180 bar, and 200 bar percussion pressures.
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Figure 32. Two drilling rod B threaded mean stress waves with 140 bar and 160 bar percussion
pressures.

Figure 33. Two drilling rod B threaded mean stress waves with 180 bar and 200 bar percussion
pressures.
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Table 17 shows stress amplitudes from the mean measurements shown in Figures 32 and
33. Table 17 contains the maximum compressive stresses of incident and reflection waves
and the highest tensile stress in the reflection wave. The corresponding stress wave ener-
gies and their efficiencies are shown in Table 18.

Table 17. Two drilling rod B threaded measurements’ mean stress amplitudes with respect to
percussion pressure.

pp [bar] max(σi) [MPa] min(σr,t) [MPa] max(σr,c) [MPa]

140 190.40 -75.67 87.18

160 205.85 -76.66 84.11

180 212.29 -69.01 85.05

200 226.05 -70.24 85.80

Table 18. B threaded measurements’ mean energies with respect to percussion pressure.

pp [bar] Eσ,i [J] Eσ,r [J] η

140 338.25 87.58 0.741

160 399.31 88.73 0.778

180 434.29 87.23 0.799

200 483.84 89.57 0.815

When simulating a rock drilling system that uses multiple drilling rods, the numerical
model must be adjusted accordingly for it to be identical with the system used in mea-
surements. Results from a numerical model for the measurements shown in Figures 32
and 33 are shown in Figures 34 and 35.
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Figure 34. Two drilling rod B threaded stress wave simulation with 140 bar and 160 bar percussion
pressures.

Figure 35. Two drilling rod B threaded stress wave simulation with 180 bar and 200 bar percussion
pressures.
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The performance of a Software B numerical model is illustrated in Tables 19 and 20. Table
19 focuses on incident wave RMSEi error and reflected wave error RMSEr, while Table
20 lists the correlations Ci and Cr. When comparing errors in Table 19 with Figure 34, it
can be seen the error in reflection RMSEr is caused by the fact that the signals are not
in-phase. In fact, the simulation is 40 µs ahead of the measurement signal at the beginning
of the reflection.

Table 19. Two drilling rod B threaded stress wave simulation errors depending on percussion
pressure.

pp [bar] RMSEi [MPa] RMSEr [MPa]

140 10.65 49.59

160 23.67 43.55

180 28.20 42.03

200 34.88 43.10

Table 20. Two drilling rod B threaded stress wave simulation correlations depending on percus-
sion pressure.

pp [bar] Ci Cr

140 0.994 0.528

160 0.980 0.674

180 0.983 0.709

200 0.987 0.692

5.5 Phase-shift analysis

To improve the analysis of the reflected stress wave shape and amplitude, the mean mea-
surement signal from Figure 30 is shifted by -40 µs. The result is shown in Figure 36,
where the incident wave is not in-phase in contrast to the reflection is.



63

Figure 36. Stress wave reflection synchronization for B threaded measurement at 140 bar percus-
sion pressure.

For comparing performance parameters between a signal that is in-phase with the incident
wave and a signal that is in-phase with the reflection, Table 21 lists errors and correlations
for both cases.

Table 21. Performance parameters of phase-shift analysis.

RMSEi [MPa] RMSEr [MPa] Ci Cr

Incident in-phase 5.91 48.27 0.996 0.713

Reflection in-phase 47.49 21.15 0.743 0.970

Because the distance that the stress waves travel in Figure 36 are equal for both signals,
and since it is possible to synchronize either incident or reflection, the speeds of sound
must be different between the signals. The real speed of sound of measurement signal is

csg =
csimt1

t1 −∆te
=

scsim
csim∆te + s

=
4.47 m · 5189 m/s

5189 m/s · 40 · 10−6 s + 4.47 m
= 4959 m/s,
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where ∆te is the time difference error after the stress wave has travelled s = 4.47 m. This
is the time from the sensor to the bit and back to the sensor. The relative error between
measurements’ velocity and simulations’ velocity is

| 5189− 4959 | m/s
4959 m/s

=
230

4959
= 4.64 %.

If a similar phase-shift analysis is done for simulations results shown in in Figure 34 for
the system using two 14 ft rods yields a time difference ∆te of 70 µs. By shifting the
measurement mean in Figure 34 by -70 µs, the reflected stress waves are in-phase as in
Figure 37.

Figure 37. Stress wave reflection synchronization for B threaded two rod measurement at 140 bar
percussion pressure.

By introducing an additional drilling rod that is 12 ft long, the length s that stress wave
propagates between the strain gauge and the bit s increases from 4.47 meters to 11.78
meters with a factor of 2.64, while the time difference ∆te increases from 40 µs to 70 µs
with a factor of 1.75. Hereby, the speed of sound of the mean measurement in Figure 37
can be calculated to
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csg =
11.78 m · 5189 m/s

5189 m/s · 70 · 10−6 s + 11.78 m
= 5034 m/s,

and the relative error is

| 5189− 5034 | m/s
5034 m/s

=
155

5034
= 3.08 %.
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6 DISCUSSION

6.1 Current study

The numerical models described in Section 4 are designed and created by collaborators at
Sandvik. My contribution in this thesis is to analyse and interpret the results from these
numerical models for further use cases.

One of the first things that can be concluded from the strain gauge measurements is that
the percussion pressure has an impact on the incident stress wave. With increasing per-
cussion pressure, the incident stress wave amplitude and energy increase. While the per-
cussion pressure affects the incident wave, there is a low correlation with reflected stress
wave amplitudes or energies. It is possible to achieve higher stress wave efficiencies by
increasing the percussion pressure. However, if the energy of the incident wave is high
and there is a poor contact with the rock, the reflected wave energy can be too high for
the system to handle without breakage.

After representing the fundamental measurement data of a drilling system that uses A
thread, the initial numerical models are computed with Software A and Software B. Both
models are identical to each other by having same geometries, material properties and
starting values. For percussion pressures of 120 bar and 130 bar shown in Figure 20, the
models tend to simulate the incident stress wave well with a lowest RMSEr of 12.16
MPa with model implemented in Software B. Even though low errors are achieved for the
incident wave, there are major differences in the reflected waves. While both simulations
are in-sync with the measurement mean’s incident wave, the shape of the reflected waves
do not correspond to the measurement. In general, the simulations do not reproduce as low
tensile stresses as measured during reflection wave. In addition, the numerically simulated
reflection waves have their peak compressive stresses at different times compared to the
measurement means.

For conducting the analysis of the reflected wave, Section 5.3.1 includes various numeric
simulations that use different bit-rock interface models. The first aspect is to run simula-
tions where only the spring constant k1 changes. As seen in Figures 22 and 23, changing
the value of k1 affects the shape of reflected stress wave — especially, the amplitude of
tensile stress increases with decreasing k1. Also, the amount of tensile stress affects on
how soon the stress becomes compressive. From six different k1 simulations with Soft-
ware A, the lowest error RMSEr is achieved for k1 = 350 MN/m. From the point of
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correlation, with the same k1, the reflection correlation Cr = 0.934.

Another benefit of running simulations with different k1 is that the beginning of the re-
flected wave can be extinguished more clearly. As seen in Figure 24, the simulations start
to deviate from each other at specific point of time. Since the simulations differ from
each other only by the bit-rock interface’s spring constant k1, the point of deviation must
be where the reflection starts. By comparing the point of deviation to the reflected wave
annotation in Figure 24, the time difference is 10 µs.

In addition to different value of k1, the unloading parameter γ is analysed by running
simulations with γ = [0.05, 0.1, 0.15]. Since k2 = k1/γ, the unloading parameter γ

determines the magnitude of the unloading spring constant k2. As demonstrated in Section
3.2.4, that greater unloading spring constant k2 leads to the dampening of the reflected
forces and thereby reflected stresses.

To put it in short, it seems that when having a bilinear bit-rock interface, k1 can be used to
control the reflected wave’s tensile stress amplitude which then also affects the time when
the compressive part reaches the location of the sensor — while, k2 can be used to adjust
the magnitude of the compression.

Section 5.3.2 takes an aspect of adjusting Equation (23), the speed of sound. Figure 27
has the results from the first adjustment where the original Young’s modulus is lowered
from 210 GPa to 206 GPa. By lowering the Young’s modulus, the speed of sound de-
creases from 5189 m/s to 5139 m/s. The difference in the speed sound results in a linearly
increasing phase difference. When calculating RMSE between these two simulations for
the whole time span, the error corresponds to 5.89 MPa.

Figure 28 analyses the influence of the speed of sound by increasing density and decreas-
ing Young’s modulus simultaneously. When density increases from 7800 kg/m3 to 7881
kg/m3 and Young’s modulus decreases from 210 GPa to 200 GPa, the resulting speed of
sound is 5038 m/s which is 2.9 % slower than the initial one. When reading from the
end of the graphs in Figure 28, the phase difference is 40 µs and this leads to RMSE

of 15.07 MPa between the two simulations. In terms of distance travelled, such a phase
difference corresponds to 5189 m/s · 40 · 10−6 s = 0.2076 m. While the reflected waves
errors to the experimental data mean RMSEr are 31.43 MPa and 28.31 MPa for the faster
and the slower propagations, respectively. It is important to keep in mind that the system
uses only a single 12 ft drilling rod instead of multiple ones which would lead into higher
phase differences.
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For analysing the direction in which the stress waves propagates, Figure 29 presents sep-
arated stresses that either move towards the rock or the drill. It is worth noting that while
nearly all stress in the incident wave propagate towards rock, the reflected wave consists
of waves propagating both ways. Interestingly the bit reflection seen in Figure 29 at 1.225
ms, the mean measurement’s reflected stress wave correlates better with the simulation
that only propagates towards the drill and not the one which consists of both components.

Moving on to the B threaded system that has several differences in geometry when com-
paring to the A threaded system — these differences are shown in Table 1. Even though
the strain gauge rod length is not the same for these two systems, the shape of the stress
wave can be compared as in Figure 19, where both system’s mean measurements at 140
percussion pressure is shown. When comparing the measurements shown in Figure 19,
a noticeable difference can be seen for both the incident wave and the reflected wave. In
terms of the incident wave, the A threaded system experiences a 42.6 joules of higher
energy according to Tables 5 and 7. Similarly, the reflected wave of the A threaded sys-
tem contains 44.2 joules less energy making it theoretically more energy efficient. On the
other hand, it is good to keep in mind that the B threaded system has a significantly larger
drill bit.

Taking a closer look at the reflected waves as shown in Figure 19, it can be seen that the
B threaded system experiences twice as much tensile stress than the A threaded system.
While one could hypothesise that there must have been either a poor contact with the
rock or the rock itself must have been softer. But as numeric simulation in Figure 36 has
neither of these issues — since the model itself is otherwise identical to the A threaded
system except for the changes in geometry — the hypothesis could be rejected. Also,
when comparing the bit reflections in Figure 19, there is a noticeable difference between
A and B threaded systems. The difference in the bit reflections can be caused by the larger
drill bit seen in the B threaded system.

After running a numeric simulation for the B threaded system as shown in Figure 30,
it can be seen how well the incident stress wave correlates with the mean measurement
at 140 bar percussion pressure — reaching Ci = 0.996 and RMSEi = 5.91 MPa. On
the other hand, the simulated reflection is far from being in-phase with the measurement
mean. Similar results can be seen by coupling additional 12 ft drilling rod to the system in
Figure 34, making the system 26 ft long in total. With the longer system, the performance
corresponds to Ci = 0.994 and RMSEi = 10.65 MPa.
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With the phase difference issues seen various of numerical simulations, Section 5.5 con-
ducts an analysis where the reflected stress waves are time shifted to be in-phase with the
measurement means. By shifting the measurement mean in Figure 30 by -40 µs, RMSEr

decreases from 48.27 MPa to 21.15 MPa and Cr increases from 0.713 to 0.970. Similarly,
if the measurement mean in the 26 ft long system in Figure 34 is shifted by -70 µs, the
reflected stress waves are in-phase. Interestingly, having additional length that the wave
has to propagate does not directly proportionally increase the time difference error which
might be a sign of dispersion that affects the wave propagation. Given that distance s,
speed of sound in the simulation csim and time difference error ∆te are known, the speed
of sound experienced in strain gauge measurements csg can be calculated. For shorter and
longer systems, the velocities csg are 4959 m/s and 5034 m/s, respectively — in terms of
relative error, these correspond to 4.64 % and 3.08 %. Even though the relative errors
between the velocities are not higher than 5 %, having non-matching velocities results in
having signals to be out-of-phase and thereby providing significantly worse performance
for the reflected wave.

To answer the research question of whether simulated models can be calibrated to be accu-
rate as the strain gauge measurements, there is no definite answer to that. For simulating
the incident stress waves even with differentiating geometries, the numerical simulations
are a valid option for understanding how much energy is transferred to the rock. The most
questionable aspect in using numerical models is the fact of having a fixed rock model
that might be impractical to solve due to ever-changing rock conditions, which affects the
state of the mass–spring–model.

6.2 Future work

While this Master’s Thesis has proven to show results that can be used both to understand
how stress waves are used in percussion drilling and how a more modern approach of
numerically simulating these stress waves could be utilized, there is still plenty of room
for future work.

One of the first tasks is to solve the phase difference issue where the simulation’s reflected
wave is not in-phase with the measurement mean if the incident waves are in phase. While
the issue is likely caused by incorrect speed of sound used in the model, it should be
researched whether the phase difference linearly increase with increasing amount of the
drilling rods. In case where the phase difference does not linearly increase with longer
system, it is possible that for example the couplings can create dispersion that affects
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frequency and thereby the speed of sound. It is also worth studying how much density
and Young’s modulus can deviate within in the tool materials.

While synchronizing incident and reflected waves might be straightforward to investigate
and solve, conducting thorough analysis for the rock’s behaviour as a continuously chang-
ing elastic object can be found challenging to model. With this thesis’ results, it can be
concluded how a bilinear rock model performs and what changes can be seen from the
results with different parameters. Another thing to consider when trying to improve the
rock model, would be to use a trilinear model or a model that would be a combination of
linear and nonlinear stiffnesses.

As a final aspect for future work, differentiating the directions of the stress wave propaga-
tion could render a crucial means to improve the agreement of the numerical simulation
results with the measurement data, as the reflected wave is a mixture of stresses that prop-
agate in opposite directions.
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7 CONCLUSION

FEM can be used to numerically approximate stress wave propagation in a rock drilling
system. One of the key characteristics that the numerical simulations are good at is the
ability to adapt to geometry changes in the system. Since the incident stress wave solely
depends on what happens between the piston and the strain gauge, it is feasible to sim-
ulate the incident wave if the model is prepared accurately. The reflected wave however,
depends on the incident wave, system geometries and the rock properties, thus increas-
ing the modelling complexity tremendously. For example, Figure 22 illustrates well the
effect of having ever-changing rock conditions. Since the rock stiffness can change after
each percussion cycle, it is obviously challenging to optimize such numerical model for
multipurpose rock conditions. If the rock stiffness were to stay constant throughout the
borehole, the presented bilinear rock model could be optimized by fine-tuning the load-
ing and unloading spring constants that affect reflected stress wave amplitudes. Hereby,
the rock model optimization is one of the decisive future works for calibrating numerical
model to be as accurate as strain gauge measurements.

While the numerical models have shown to provide evident results for simulating both
the incident and reflected stress waves, the models still require more tuning to be coherent
with the measurements. Despite of having the incident waves of simulation and mea-
surement in-phase, the reflected waves are consistently out-of-phase, although shapes and
amplitudes of the reflected waves are well reproduced. For conducting any further re-
search with numerical models used in this thesis, the speed of sound needs to be analysed
to adapt the model specifically, while also keeping in mind that wave dispersion could
also possibly affect the speed of sound.



 

  72 

REFERENCES 

 

[1] Kobayashi, H., Seo, Y., Ogawa, K., Horikawa, K., & Tanigaki, K., (2018), ‘Numerical 

Analysis and Experiment for Stress Wave Propagation in Two Connected Cylindrical 

Bodies with Different Cross-Sectional Area and Same Mechanical Impedance’, EPJ Web of 

Conferences. 2018 Les Ulis: EDP Sciences, pp. 1033. 

 

[2] Allaire, G. & Craig, A., (2007), Numerical Analysis and Optimization: An Introduction to 

Mathematical Modelling and Numerical Simulation, Oxford University Press, Incorporated, 

Oxford. 

 

[3] Chiang, L. E. & Elías, D. A., (2008), ‘A 3D FEM methodology for simulating the impact in 

rock-drilling hammers’, International journal of rock mechanics and mining sciences, vol. 

45, no. 5, pp. 701–711. 

 

[4] Zhang, Z.-X., (2016), Rock fracture and blasting : theory and applications, Butterworth-

Heinemann, Amsterdam. 

 

[5] Zhan, H., Zhang, G., Yang, C., & Gu, Y., (2018), ‘Breakdown of Hooke’s law at the 

nanoscale - 2D material-based nanosprings’, Nanoscale, vol. 10, no. 40, pp. 18961–18968. 

 

[6] Li, Q., Zhao, G.-F., & Lian, J., (2019), ‘A Fundamental Investigation of the Tensile Failure 

of Rock Using the Three-Dimensional Lattice Spring Model’, Rock mechanics and rock 

engineering, vol. 52, no. 7, pp. 2319–2334. 

 

[7] Zhao, G.-F., Fang, J., & Zhao, J., (2011), ‘A 3D distinct lattice spring model for elasticity 

and dynamic failure’, International journal for numerical and analytical methods in 

geomechanics, vol. 35, no. 8, pp. 859–885. 

 

[8] Mansuripur, M., (2011), The Lorentz Oscillator Mode, Field, Force, Energy and Momentum 

in Classical Electrodynamics, pp. 140–162. 

 

[9] Gross, D., Hauger, W., Schröder, J., Wall, W., & Bonet, J., (2018), Engineering Mechanics 

2 Mechanics of Materials, 2nd ed, Springer Berlin Heidelberg, Berlin. 

 

[10] Hopcroft, M.A., Nix, W.D., & Kenny, T.W., (2010), ‘What is the Young’s Modulus of 

Silicon?’, Journal of microelectromechanical systems, vol. 19, no. 2, pp. 229–238. 

 



 

  73 

[11] Hämäläinen, P., (2013), ‘Signaalinkäsittelyn käyttö mittausmenetelmän tehostamiseksi 

liikkuvissa työkoneissa’, Master’s Thesis, Tampere University of Technology. 

 

[12] Liu, G.R., Quek, S.S., & Liu G.R., (2003), Finite Element Method: A Practical Course, 

Elsevier Science & Technology, Oxford. 

 

[13] Rantala, E., (1997), ’Iskuporauksen dynamiikan simulointi’, Master’s Thesis, Tampere 

University of Technology. 

 

[14] Graff K., (1975), Wave Motion in Elastic Solids, Dover Publications. 

 

[15] Kauppinen, K., (1974), ’Kallioporakoneen iskumännän muodon optimointi’, Master’s 

Thesis, Tampere University of Technology. 

 

[16] Savolainen, H., (1982), ’Niskatangon matemaattinen simulointi’, Master’s Thesis, Tampere 

University of Technology. 

 

[17] Vulli, P., (1975), ’Energian siirtyminen kallioporakoneen iskumännästä kiveen’, Master’s 

Thesis, Tampere University of Technology. 

 

[18] Ramamurthi, K., (2021), Modeling explosions and blast waves, 2nd ed, Springer, Cham. 

 

[19] Razavi, S., Callegari, G., Drazer, G., & Cuitiño, A., (2016), ‘Toward predicting tensile 

strength of pharmaceutical tablets by ultrasound measurement in continuous 

manufacturing’, International journal of pharmaceutics, vol. 507, num. 1–2, pp. 83–89. 

 

[20] Lundberg, B. & Huo, J., (2017), ‘Biconvex versus bilinear force-penetration relationship in 

percussive drilling of rock’, International journal of impact engineering, vol. 100, pp. 7–

12. 

 

[21] Chen, C., Chen, S., Zhang, Y., Lin, H., & Wang, Y., (2022), ‘A Unified Nonlinear Elastic 

Model for Rock Material’, Applied sciences, vol. 12, no. 24, pp. 12725. 

 

[22] Lundberg, B. & Okrouhlik, M., (2006), ‘Efficiency of a percussive rock drilling process 

with consideration of wave energy radiation into the rock’, International journal of impact 

engineering, vol. 32, no. 10, pp. 1573–1583. 

 

[23] Chiang, L. E., (2004), ‘Dynamic force-penetration curves in rock by matching theoretical 

to experimental wave propagation response’, Experimental mechanics, vol. 44, no. 2, pp. 

167–175. 



 

  74 

 

[24] Meehan, C. L. & Talebi, M., (2017), ‘A method for correcting field strain measurements to 

account for temperature effects’, Geotextiles and geomembranes, vol. 45, no. 4, pp. 250–

260. 

 

[25] Kalevo, N., (2012), ‘Magnetoelastic properties of heat treated steels’, Master’s Thesis, 

Tampere University of Technology. 

 

[26] Weiss, G., (1969), ‘Wheatstone Bridge Sensitivity’, IEEE transactions on instrumentation 

and measurement, vol. 18, no. 1, pp. 2–6. 

 

[27] Lei, J.-F. & Will, H. A., (1998), ‘Thin-film thermocouples and strain-gauge technologies 

for engine applications’, Sensors and actuators. A. Physical, vol. 65, no. 2, pp. 187–193. 

 

[28] Papageorgiou, S. N., (2022), ‘On correlation coefficients and their interpretation’, Journal 

of orthodontics, vol. 49, no. 3, pp. 359–361. 

 

[29] Bijima, F., Jonker, M., Van der Vaart, A., & Erné, R., (2017), An Introduction to 

Mathematical Statistics, Amsterdam University Press, Amsterdam. 

 

[30] Karunasingha, D. S. K., (2022), ‘Root mean square error or mean absolute error? Use their 

ratio as well’, Information sciences, vol. 585, pp. 609–629. 

 

[31] Pianosi, F., Sarrazin, F., & Wagener, T., (2015), ‘A Matlab toolbox for Global Sensitivity 

Analysis’, Environmental modelling & software : with environment data news, vol. 70, pp. 

80–85. 

 

[32] Mathworks, MATLAB, https://www.mathworks.com/products/matlab.html, Last accessed 

12 December 2022. 

 

[33] Tkalcec, I., Azcoitia, C., Crevoiserat, S., & Mari, D., (2004), ‘Tempering effects on a 

martensitic high carbon steel’, Materials science and engineering. A, Structural materials : 

properties, microstructure and processing, vol. 387, pp. 352–356. 

 

[34] Hussain, G., Hameed, A., Horsfall, I., Barton, P., & Malik, A. Q., (2012), ‘Experimental 

and simulation optimization analysis of the Whipple shields against shaped charge’, Acta 

mechanica Sinica, vol. 28, no. 3, pp. 877–884. 

 



 

  75 

[35] Prasad, M. & XiaoBing, S., (2020), ‘Post-cracking Poisson Ratio of Concrete in Steel-

Concrete-Steel Panels Subjected to Biaxial Tension Compression’, IOP conference series. 

Materials Science and Engineering, vol. 758, no. 1, pp. 12081. 

 

[36] Depouhon, A., Denoël, V., & Detournay, E., (2015), ‘Numerical Simulation of Percussive 

Drilling’, International journal for numerical and analytical methods in geomechanics, vol 

39, no. 8, pp. 889–912. 



Appendix 1. Rock drilling animation

Figure A1.1 presents an animation overview of a rock drill system where the stress wave
first propagates from right to left and then reflects.

Figure A1.1. Percussion animation in a rock drill system, where blue and red colours represent
zones of compression and tension, respectively.
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