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Metabolomics has become a viable approach to elucidate alterations in the small-molecule
chemicals of various biological samples under changing environmental conditions, as well
as to assess difference in nutritional values between processed and unprocessed foods, just
to name a few. With the recent development of computational methods, there is a great
potential for advancing this field. This thesis, conducted on behalf of Afekta Technologies
Ltd, aims to investigate the applicability of existing computational techniques in Afekta’s
workflow, rather than to develop a novel approach. Specifically, two tools, namely Met-
Frag and Sirius, were evaluated using Afekta’s in-house data set. While MetFrag exhib-
ited limited accuracy in predicting test data, Sirius demonstrated promising performance
and could potentially streamline the annotation of metabolites. It is worth mentioning that
despite the progress in this area, achieving a fully automated annotation process remains
a challenging task. The development of complex machine learning methods would be
necessary to achieve this goal.
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Metabolomiikan avulla voidaan selvittää esimerkiksi millaisia muutoksia minkä tahansa
orgaanisen aineen aineenvaihdunnassa havaitaan ympäristön vaihdellessa, tai selvittää
tarkemmin ruoka-aineiden terveellisyyteen liittyviä ominaisuuksia sekä eroja esimerkiksi
prosessoidussa ja prosessoimattomassa ruoassa. Tämä kandidaatintyö on tehty Afekta
Technologies Oy:lle. Työssä käydään läpi metaboliittien tunnistuksessa käytettävien las-
kennallisten menetelmien nykytilanne ja testataan voiko niitä käyttää helpottamaan asian-
tuntijan manuaalista tunnistustyötä. Työssä ei kehitetä uutta työkalua metaboliittien tun-
nistukseen. Testattavaksi päätyi kaksi työkalua, MetFrag ja Sirius, joita testattiin Afektan
datan avulla. MetFrag ei kyennyt tekemään tarpeeksi luotettavia tunnistuksia testidatasta,
kun taas Siriuksen tunnistuskyky vaikuttaa lupaavalta ja siitä olisi hyötyä tunnistuspros-
essin apuna. Huolimatta viime vuosien aikana tapahtuneesta edistyksestä alalla, täysin
automatisoituun ratkaisuun ei ole vielä olemassa sopivaa työkalua. Tällaisen menetelmän
kehittäminen vaatisi monimutkaisia koneoppimismalleja.
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LIST OF SYMBOLS AND ABBREVIATIONS

.jar Java archive file

.ms a custom spectra file for Sirius
Afekta Afekta Technologies Ltd.
BDE bond dissociation energy
CASMI Critical Assessment of Small Molecules Identification
DNA deoxyribonucleic acid
ESI electrospray ionization
GC gas chromatography
HILIC hydrophilic interaction liquid chromatography
LC liquid chromatography
LC-MS liquid chromatography-mass spectrometry
log P a logarithmic ratio between two solvents
m/z mass-to-charge ratio
MKL multiple kernel learning
MS mass spectrometry
MS/MS tandem mass spectrometry
NMR nuclear magnetic resonance
RNA ribonucleic acid
RP reverse-phase chromatography
RT retention time
SMILES simplified molecular input line entry specification
SVM support vector machine
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1 Introduction

1.1 Background

In the late 20th century, the development of research methods enabled scientists to delve
deeper into the functions of living organisms by studying increasingly smaller molecules.
Metabolomics is the newest field of study among ’omics’ disciplines, which are pre-
sented in Figure 1. Whereas genomics studies DNA, transcriptomics studies RNA, and
proteomics studies the proteome, Weckwerth and Kahl [31] state metabolomics aims to
identify the metabolite complement from any biological sample. Oliver et al. [21] set the
foundation to the term "metabolomics" in 1998, and since then numerous papers have
been published to explore the possibilities of metabolomics research [1]. Metabolomics
has since become an indispensable tool for answering various biological questions, such
as discovering drug actions, exploring biomarkers in medical science, and better modeling
of biological systems like plants or animals.

Figure 1. A diagram depicting the omics technologies and their objects of study. Adapted
from: [19]

Metabolomics continues to face numerous challenges, particularly on the data analysis
front [5]. To start off, the chemical diversity of metabolome is vast and a part of it re-
mains yet unknown. Therefore, the untargeted approach also requires the identification
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of unknown metabolites, which is a complex task. These in addition to multiple varying
workflows lead to complex data and a non-standardized manual annotation of the results.
The lack of proper database standards and current fractioned databases are also problems
in metabolomics research. According to Johnson and Gonzalez [12], the annotation of
metabolites is the most challenging and bottlenecked aspect of the study. It takes special
knowledge and significant time from biochemists, making the automation of annotation a
necessity for future advancements in metabolomics.

1.2 Goals and delimitation

This thesis was conducted for Afekta Technologies Ltd. (Afekta), one of the world’s lead-
ing enterprises in metabolomics, specializing in plant-based foods and phytochemicals.
They offer a complete metabolomics analysis service using state-of-the-art technologies
to analyze almost any biological sample. Afekta utilizes liquid chromatography-mass
spectrometry (LC-MS), which is one of the primary methods for metabolomics research
and therefore this thesis focuses primarily on LC-MS, although other methods are men-
tioned.

Recent advancements in the development and assessment of automatic annotation tools
for metabolites, such as those evaluated in the Critical Assessment of Small Molecules
Identification (CASMI) contest and the study by Blaženović et al. [3], provide a promis-
ing foundation. However, due to variability in analysis methods, further testing is required
for finding the optimal tool for a specific use. As such, this thesis has two main objectives.
Firstly, to assess the current status of computational tools for metabolite identification in
LC-MS analysis. Secondly, to identify a tool to use in practice for Afekta’s data process-
ing pipeline. This is achieved by testing selected tools using an in-house data set of pure
compounds.

To ensure a manageable workload, the thesis has several limitations. Testing is restricted
to existing tools, and the development of a novel tool is outside the scope of the thesis.
Testing tools with unknown features would require expertise in biochemistry, thus this
kind of comprehensive testing is not part of this thesis. Furthermore, automatisation or
the implementation of a tool into the data processing pipeline are also excluded.
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1.3 Structure of the thesis

The thesis is structured in a way that first introduces the reader to the topic, and sets out
the goals and limitations. The subsequent three sections, in addition to the Introduction
section, cover the major areas of focus. Section 2 describes metabolomics as research
field and and provides an overview of the most commonly used methods in it, with a par-
ticular emphasis on LC-MS and the metabolite identification process. Section 3 provides
comprehensive technical specifications employed in the testing phase, including details
of the data and software used. Section 4 reports on the results obtained from the test-
ing phase. To conclude, a critical analysis of the results and a concluding discussion are
presented at the end of the thesis.
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2 The principles of metabolomics research

2.1 LC-MS metabolomics

Small molecules, called metabolites, are formed in cells, tissues and body fluids as a prod-
uct of metabolism [5]. According to Johnson et al. [13], metabolites are responsible for
vital cellular functions, such as producing and storing the energy, transducting signals and
programmed death of cells. Metabolomics is the study of metabolites, and it can be used
for characterizing them and the metabolic pathways in the sample. It is not as straight-
forward as analyzing the genome or the proteome since both environment and microflora
affect and change the metabolome [18, 31]. Lutz et al. [18] describe three major research
methods used for analyzing samples, those being nuclear magnetic resonance (NMR)
and either liquid chromatography (LC) or gas chromatography (GC) combined with mass
spectrometry (MS). An overview of a LC-MS instrument is presented in Figure 2.

Ion Source

Mass Analyzer

Detector

Mass Spectrometer

Ion Source

Mass Analyzer

Detector

Mass Spectrometer

LC Column

Sample Solvent

LC Column

Sample Solvent

Output

Figure 2. A diagram of the LC-MS instrument. Adapted from: [19]

Chromatography is a fundamental analytical technique that relies on the selective inter-
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action of molecules with stationary and mobile phases. In LC, molecules are separated
based on their polarity. The principle of LC is similar to the phenomenon observed when
dissolved molecules in coffee stain clothes, as they interact with the solid molecules in the
surface. A polar stationary phase is used to retain polar molecules that are dissolved in
a mobile liquid solvent. By gradually increasing the polarity of the mobile solvent, more
polar molecules are dissolved, resulting in different retention time (RT)s in the column.
This enables separation and identification of the molecules of interest.[2]

The two most popular columns are hydrophilic interaction liquid chromatography (HILIC)
and reverse-phase chromatography (RP). In RP, the mobile phase which becomes increas-
ingly hydrophobic, passes through a stationary phase that is hydrophobic in nature. This
mode is termed "reverse" as compared to the normal phase, wherein molecules that are
more hydrophobic exhibit a greater RT. On the other hand, HILIC is a more complicated
version of the normal phase, which uses relatively hydrophobic bulk eluent as a solvent.
The order of dissolving molecules is more or less opposite of the RP mode, thus these two
modes complement each other well.[2, 9]

The second part of the instrument, MS, contains three major parts: an ion source, a mass
analyzer and a detector. Initially, metabolites are subjected to ionization in the ion source,
a process that converts the molecules into ions that can be subsequently detected by the
mass analyzer. The mass-to-charge ratio (m/z) of the metabolites is then identified. Typ-
ically, in LC-MS, the ionization process involves both positive and negative ions to cap-
ture a broader range of chemical properties of the metabolites. An electrospray ionization
(ESI) is widely considered the most suitable ion source for metabolomics, due to its ability
to generate a higher quantity of intact molecular ions that can facilitate identification.[32]

2.2 Untargeted LC-MS analysis

LC-MS can be used in two complementary approaches for metabolic analysis. The tar-
geted analysis identifies and quantifies a few selected metabolites with prior knowledge
of the metabolome. In contrast, an untargeted approach is used to obtain the broadest
range of metabolites without any prior knowledge. In the untargeted approach, the goal
is to study all metabolites that can be measured by the LC-MS instrument. The output
data from the instrument contains molecular features that represent metabolites. These
features need to be separately identified to associate them with their metabolite origin.
Identifications can be divided into four sections based on if they are expected and able to
be identified. Figure 3 depicts the classification of the identifications.[13, 25]
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LC-MS has multiple advantages in untargeted analysis [18]. Firstly, it is a product-
sensitive instrument that can detect thousands of so-called features although not all fea-
tures can be identified as compounds. Secondly, a tandem mass spectrometry (MS/MS)
spectra can be produced to help with the identification as described in Section 2.3. Thirdly,
samples do not require any chemical preparation which could produce unwanted side
products. LC-MS has also some disadvantages compared to other methods. It is neither
quantitative nor reproducible and takes the most time to perform out of all methods. The
LC-MS analysis is rather semi-quantitative than quantitative, meaning that multiple ions
may correspond to different fragments from the same molecule, making full quantifica-
tion difficult [14]. Analysis can not be reproduced accurately, since the environment has
been changed and RTs of the same sample between batches may differ. When comparing
data from two different analyses, a batch correction should be applied to align RTs.

Figure 3. “Rumsfeld Quadrants” showing the intersection of yes/no answers for whether analysts
expect a compound to be identified in the sample (prior probability) and whether it was identified
in a library search. Adapted from: [29]

After analyzing the sample, the raw data needs pre-processing before annotation can be
performed. Zhou et al. [32] stated the following procedure, which is shown in Figure
4. First, outliers are screened in case some acquired peaks deviate significantly from the
majority. Improved data quality can be achieved by removing noise while preserving
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peaks in various ways, such as performing a baseline correction with Savitzky–Golay
filter to remove the unwanted effect of baseline shift caused by increasing RTs. This
procedure is called filtering. Next, raw continuous data is transformed into centroided
discrete data where one peak represents each ion. This so called peak detection has two
major advantages, it further reduces the noise and also reduces data dimensions without
significant information loss. Even if samples would be identical replicates of each other,
some variation in RTs always exists. Therefore, the peaks are aligned after the peak
detection so a comparison can be done across all samples. Finally, data is normalized
to remove unwanted system bias. Relative abundances are calculated by adjusting other
ions’ intensities based on their ratios to internal standards added to the peaks. Multiple
tools are available for this purpose, as most of the instrument manufacturers provide their
own software [32]. In addition, there are free tools available for pre-processing LC-MS
data such as MS-DIAL [30], Mzmine [22] and XCMS [28].

Raw data

Outlier screening

Filtering

Peak detection

Peak alignment

Normalization

Data analysis

Figure 4. Pre-processing procedure of raw LC-MS data
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2.3 Annotation of metabolites

To obtain biological information from LC-MS data, metabolites need to be annotated.
According to Chaleckis et al. [5], basic criteria for annotation are m/z and RT, which can
be retrieved from MS and LC, respectively. This information is not usually enough for
identification due to the millions of theoretical structures one chemical formula can have.
To elucidate chemical formula and structure, MS/MS spectra can be used. It is acquired
by colliding neutral molecules with the target molecule [11]. These fragments are then
subjected to another round of MS, which yields a spectrum of fragments’ masses and
intensities. The annotation can then be done by matching the spectra to mass spectral
libraries. For example, the world’s largest open chemistry database, PubChem, contains
over 113 million entries of unique chemical structures [20].

Table 2 outlines the different levels of the annotation set by the Metabolomics Standards
Initiative with a new level 0 annotation [3]. Level 0 is the complete identification which
requires a complete 3d structure and stereochemistry information. Level 1 requires two
of RT, m/z and MS/MS to define the 2d structure confidently. Level 2 differs from level 1
only by the confidence level of the structure. In Level 3, only one piece of information is
available, leading to possible structural matches. Level 4 annotation is unknown but can
be distinguished or quantified. It’s important to note that level 0 is considered as identifi-
cation, while subsequent levels are referred to as annotation. In practice, annotations up
to level 2 have a MS/MS spectrum available and thus can be annotated.

Table 2. New confidence levels of compound annotations, as discussed by the Compound Identi-
fication work group of the Metabolomics Society at the 2017 annual meeting of the Metabolomics
Society (Brisbane, Australia). The new edition refers to the ‘Level 0’ annotation; other levels re-
main as discussed by the Metabolomics Standards Initiative. Adapted from: [3]

Confidence
Level

Description Minimum Data Requirements

Level 0 An unambigous 3D structure:
Isolated, pure compound, including full
stereochemistry

Following natural product guidelines, deter-
mination of 3D structure

Level 1 A confident 2D structure:
Uses reference standard match or full 2D
structure elucidation

At least two orthogonal techniques defining
2D structure confidently, such as MS/MS
and RT or m/z

Level 2 A probable 2D structure:
Matched to literature data or databases by di-
agnostic evidence

At least two orthogonal pieces of informa-
tion, including evidence that excludes all
other candidates

Level 3 A possible 2D structure or class:
Most likely structure, isomers possible, sub-
stance class or substructure match

One or several candidates possible, requires
at least one piece of information supporting
the proposed candidate

Level 4 An unknown feature of interest Presence in a sample
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Computational methods for MS/MS spectra generation can be divided into four cate-
gories. Quantum chemistry-based approaches generate mass spectra solely from physical
and chemical information and first principles. The second category involves heuristic
methods that are only suitable for predicting compound classes with reoccurring and pre-
dictive fragmentation patterns, rather than distinct structures. Reaction-based approaches
utilizes reactions found in literature and is based on observed reaction pathways. The
final category are machine learning-based methods, which require diverse training sets to
achieve decent results. However, it is important to note that computational methods are
not yet able to generate accurate MS/MS spectra for all metabolites, and experimental
validation is still necessary for confident identification.[3]
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3 Computational annotation tools in practice

3.1 MetFrag

MetFrag, an in silico molecular fragmenter, was first founded in 2010 and it has since gone
through multiple algorithmic and scoring refinements [24]. The core scoring function is
based on weighted characteristics of the spectra in addition to recently added annotation
algorithm which is based on Bayesian modeling. Initially, candidate molecules sourced
from the molecular structure database are constrained to matching m/z within a user-
defined confidence interval. Optionally, if the molecular formula is known, it can be
included to further restrict candidate molecules in MetFrag. In the absence of molecular
formula, MetFrag does not predict it and sources the candidates based solely on m/z.
According to Ruttkies et al. [24], the limitation of the search by molecular formula might
lead to wrong results.

After sourcing the candidates, the final score for each candidate is calculated as

SCfinal
= ωi · SCi

, (1)

where ω refers to weights and SC refers to scoring terms of different characteristics of
input spectra. The original term is fragmentation score, which is defined by

SCFrag
=

∑
p=P

RelMassαp ·RelIntβp
(
∑

b=Bf
BDEb)γ

, (2)

where the relative mass RelMass and the intensity RelInt are from each peak p matching
the generated fragment, in addition to the sum of bond dissociation energy (BDE) of all
cleaved bonds b of the fragment assigned to p. The weights α = 1.84, β = 0.59 and
γ = 0.47 were optimized in the process. [24]

In the development process, several scoring terms have been added to the scoring function.
The RT score is calculated via correlation of a logarithmic ratio between two solvents (log
P) values of candidate structures and input RTs. For candidates, log P can be calculated
separately or sourced from PubChem. For RT, log P is estimated by linear model logPU =

a ·RTU + b trained on log P values in the training set. Thus, the score is denoted by

SCRT
=

1

σ
√
2π

e−(logPU−logPC)2/2σ2

. (3)
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Let n be the number of matching peaks in inclusion or exclusion lists. Then, the match
score is calculated by

NCMatch
=

n∑
i=1

Mi, (4)

where Mi ∈ {0, 1}. Then, inclusion and exclusion scores, which allow molecular sub-
structure restrictions, are calculated by

SCIncl
=

NCMatch

maxC′∈L(NC′
Match

)
, (5)

SCExcl
=

n−NCMatch

maxC′∈L(n−NC′
Match

)
, (6)

where maxC′∈L(NC′
Match

) is the maximal value of NCMatch
of the candidates L. Addi-

tional scoring functions including suspect lists and reference information are available,
but not accounted in this study. Users can also provide custom scoring functions, but they
were not provided in this study.[24]

The latest addition is a Bayesian model used to estimate the likelihood of a certain frag-
mentation structure in a given peak. The candidate score SCRawPeak

is calculated from the
resulting probability distribution. This score indicates how well a candidate can explain
the m/z peaks from the training data. It denotes to

SCRawPeak
=

1

−logPL

, (7)

where logPL is log P based on the probability distribution from the Bayesian model.
Finally, the raw score is normalized giving

SCPeak
=

SCRawPeak

maxC′∈C(SC′
RawPeak

)
. (8)

The same analogy can be applied to remaining losses when removing similarities between
the candidate and the unknown structure, denoted by

SCLoss
=

SCRawLoss

maxC′∈C(SC′
RawLoss

)
. (9)

With these new scoring functions, the performance of MetFrag is drastically improved,
especially on negative modes.[23]
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3.2 Sirius

Dührkop et al. [7] developed a full software, called Sirius, for pre-processing and analyz-
ing full LC-MS data sets. It combines multiple separately developed tools, resulting in
a full LC-MS analysis software which is also capable of predicting the chemical formu-
las and compound classes of metabolites, as well as annotate them. Although Sirius is
freely available for academic use, a separate license is required for commercial purposes.
Permission was obtained from the authors for testing the software.

CSI:FingerID is the module responsible for annotation predictions, which is a multiple
kernel learning (MKL) method combined with support vector machine (SVM)s which
was developed by Dührkop et al. [8]. Kernel functions are essential tools that enable ef-
ficient representation of linear patterns in high-dimensional spaces, allowing the kernel
methods to be applied to a broad range of data types and learning tasks. The fundamental
idea behind kernel methods is to embed data into a feature space that is appropriate for
a particular learning task. The embedded data is then analyzed using linear algebra, ge-
ometry, and statistics to uncover patterns.[10] Sirius uses CSI:FingerID as a web service,
which means calculations do not require resources from a local computer.

During the training process, the computation of kernel weights was carried out using
a MKL algorithm. This approach offers an advantage over utilizing a single kernel by
combining multiple kernels to improve the accuracy of the model. The algorithm takes
a set of kernels K = {Kk|Kk ∈ Rn×n, k = 1, ..., q} computed from n data points of
training data as input and produces a set of m chemical fingerprint properties denoted
by Y ∈ {−1,+1}n×m. These chemical fingerprints are unique identifiers indicating the
presence of a particular molecule. Following this, SVMs were trained for each property
in the generated fingerprints. These SVMs can then be utilized to predict the presence of
a particular property in the fingerprint of an unknown compound.[27]

Metabolites’ molecular fragmentations are not well known since they are able to frag-
ment at almost any chemical bond. To estimate these fragmentations, CSI:FingerID uses
so-called fragmentation trees. These trees can be described as directed graphs, where
the root node is the candidate molecular formula and the other nodes are the formulas
of sub-molecules of the parent molecule. If the correct molecular formula is not given
in advance, Sirius generates the candidate formulas using the Senior’s rule [26] with the
most common elements in metabolites [6]. Then, weights for each edge are calculated
by the logarithmic likelihood that a certain fragmentation reaction occurs given the ob-
served MS/MS spectrum. This likelihood is calculated with the chemical properties of the
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molecular formula in addition to the intensity and mass deviation of the fragmented peak
as well as the loss mass as proposed in Kind and Fiehn [15]. Finally, the maximum weight
subtree is searched from the graph giving the score of the candidate molecular formula
from the sum of edge weights.[4, 27]

These fragmentation trees, which can be perceived as a representation of the original
spectra, are then used in kernel functions. CSI:FingerID uses a total of 12 kernels. Shen
et al. [27] defined 11 of these kernels based on different loss-, node- and path-based
characteristics of fragmentation trees, such as the presence and intensities of the trees. In
addition to these, a probability product kernel defined by Kondor and Jebara [16] is used.
Let Tx = (Vx, Ex) be a fragmentation tree for each given spectrum x, and let r and v

be the root node and child node, respectively. For all nodes v ∈ Vx, the intensity of the
corresponding peak is denoted by ix(v), and for each edge e ∈ Ex the intensity of the
terminal node is denoted by ix(e). For path-based kernels, let D[u, v] be a dot product
table between two trees. All used kernels are listed below.

• LB: Loss binary, presence of a loss l in a fragmentation tree Tx, denoted by KLB(x) =

1l∈λ(Ex)

• LC: Loss count, number of losses in a fragmentation tree, denoted by KLC(x) =

Nx(l)

• LI: Loss intensity, takes the average intensity of the terminal nodes i and a loss in a
fragmentation tree into account, denoted by KLI(x) = 1

Nx(l)

∑
e∈Exλ(e)=l ix(e)

• RLB: Root loss binary, presence of root loss ξ = r − v in a fragmentation tree,
denoted by KRLB(x) = 1l∈ξx

• RLI: Root loss intensity, takes the intensity of a root loss into account, denoted by
KRLI(x) = ix(r − l) if r − l ∈ Vx, zero otherwise

• NB: Nodes binary, the presence of node in a fragmentation tree denoted by KNB(x) =

1v∈Vx

• NI: Nodes intensity, takes the intensity of the node into account if it is present in a
fragmentation tree, denoted by KNI(x) = ix(v) for v ∈ Vx, zero otherwise

• CPC: Common path counting, uses the amount of identical sequence of losses for
the subtrees between two fragmentation trees, denoted by D[u, v] =

∑
(1+D[a, b])

• CP2: Common paths of length 2, uses the amount of identical sequence of losses
for the subtrees between two fragmentation trees whose depths are 2, denoted by
D[u, v] =

∑
(1 +D[a, b])
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• CPK: Common paths with PPK score instead of sum of the paths, details omitted

• CSC: Common subtree counting, uses the number of common subtrees between
two fragmentation trees D[u, v] =

∑
(2 +D[a, b])− 1

• PPK: Probability product kernel, defined as a kernel between propability distribu-
tions of the two spectra KPPK(p, p′) =

∫
R p(x)p

′(x)dx

When predicting the unknown fingerprints, first the similarities of unknown spectra a-
gainst all kernels are computed. Then using the trained SVMs, prediction is done result-
ing in candidate fingerprints, which can then be scored by matching them to molecular
structure databases. First, the candidate structures are sourced from the molecular struc-
ture database using m/z and given or predicted molecular formula as well as the computed
chemical fingerprint. These structures are then converted into binary fingerprints. Then,
Bayesian tree network developed by Ludwig et al. [17] is used to determine the similari-
ties between fingerprints.[8]

3.3 Data

The dataset used in the tests contains in-house standards which are separately analyzed
solutions of pure compounds, i.e. the metabolites in the data are known with absolute cer-
tainty. Using unique labels for annotated standards is crucial for matching the predictions
with the correct annotations. However, metabolite naming is not always straightforward,
as many metabolites have multiple commonly used names. Therefore, it is important
to use specific and unique labels for each metabolite to avoid confusion. In this study,
PubChem IDs were chosen as labels for the data because PubChem is the world’s largest
open chemistry database and it was used for retrieving candidate metabolites for annota-
tion. Using PubChem IDs as labels ensured that each metabolite had a unique identifier,
which made it easier to match the predictions with the correct annotations.

Data includes metadata, such as RT, m/z and the molecular formula from each metabolite
as well as normalized and centroided MS/MS spectra. Figure 5 presents a centroided
MS/MS spectrum which is the core of the annotation process. The spectrum is interpreted
as relative intensities in all of the tools used, therefore normalized intensities can be used.
These spectra can be represented as two-dimensional data containing the relative intensity
of each m/z.

Originally, the data contains 240 metabolites. After removing the duplicate data entries,
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Figure 5. Example MS/MS spectrum generated in Sirius

sourcing PubChem IDs, and removing rows missing IDs and simplified molecular input
line entry specification (SMILES) strings, which are needed in the tools used, 155 unique
compounds were left to be used in the testing set. MetFrag has a defined set of precur-
sor ions available, which means it can not predict all compounds. From the testing set,
Metfrag was able to process 137 compounds. Whereas Sirius was able to process all 155
compounds.

3.4 Testing

The conducted study aimed to evaluate the performance of the chosen software tools.
Both of the chosen software can be used in a targeted approach, where the molecular for-
mula is given as an input. Both of them are also capable of a more non-targeted approach,
where the molecular formula is not given in advance. The first round of testing was a tar-
geted search where the molecular formulas were provided. The goal was to see how well
the software can predict the correct metabolite based on given molecular formula. The
second round of testing was otherwise similar to the first test case, but molecular formulas
were not given as input. It was conducted to check how well the software performs in a
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more complex case. This allowed for the assessment of the tools’ performance in a more
complex case, simulating a real project where molecular formulas are not always known
in advance.

Both tools generate multiple potential predictions, ranked from most to least likely, for
each unknown feature based on the scores of the tools. Each prediction also contains
PubChem IDs for predicted annotation. Results were evaluated based on the rank of the
correct annotation among the predicted annotations. The annotation was interpreted as
correct if the labeled ID was found from the predicted IDs of potential prediction. In
addition, Sirius returns a confidence score that represents the tool’s certainty about its an-
notations. This score could potentially reduce manual workload by correlating negatively
with the ranks.

MetFrag requires a separate spectra file and a parameter file as input, which contains the
necessary metadata for the tool to function. The spectra file is a basic tab-separated file
containing intensities of fragmentation peaks for each m/z. Examples for both files are
in Appendix 1. MetFrag was run as a Java archive file (.jar) in the command line, and
commands were executed with a custom parallel wrapper function in R to achieve faster
execution. Sirius, on the other hand, uses a custom spectra file for Sirius (.ms) which
combines the metadata and the spectrum into a single file. These files were generated
with custom R function. While Sirius has a command line tool, these tests were performed
using the graphical user interface, since it was a faster approach to a small study like this
one. An example of the .ms file can be found in Appendix 2.
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4 Results

All results have been summarized in the summary table, which was done based on how
many correct annotations are found within top n ∈ {1, 5, 10, 20}. The summary table
from the first experiment is presented in Table 3. The results show that Sirius outper-
formed MetFrag in all levels. Considering the top 20 candidates, Sirius found the correct
match from 44 % of metabolites, whereas MetFrag was able to only correctly match 10
% of metabolites. Sirius achieves the same results in the top 10 as in the top 20. The
number of correct annotations for MetFrag is reduced by 47 % when considering the top
10 predictions. The correct annotation can still be found from 41 % in the top 5 of Sirius
predictions. MetFrag achieves only 1.3 % on this level. Sirius can correctly annotate 32
out of 155 metabolites whereas MetFrag is not capable of correct annotations.

Table 3. Summary of the results from the targeted experiment.

Sirius MetFrag
Rank Match % Total matches Match % Total matches
1 20.6 % 32 0.0 % 0
5 41.3 % 64 1.3 % 2
10 43.9 % 68 5.2 % 8
20 43.9 % 68 9.7 % 15

The second experiment results are summarized in table 4. When chemical formulas were
not provided in advance, MetFrag was not able to make any correct annotations, even
outside the considered top candidates. On the other hand, Sirius achieved almost identical
results when chemical formulas were not provided. Similar to the first experiment, Sirius
did not find anything new in the top 20 candidates. However, for the top 10 and top 5, the
number of matches decreased by 10% and 11%, respectively. Despite this decrease, the
number of correct annotations remained the same as in the first experiment.

Table 4. Summary of the results from the non-targeted experiment.

Sirius MetFrag
Rank Match % Total matches Match % Total matches
1 20.6 % 32 0.0 % 0
5 36.8 % 57 0.0 % 0
10 39.4 % 61 0.0 % 0
20 39.4 % 61 0.0 % 0

Regarding the scoring performance, MetFrag and Sirius showed different results. Met-
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frag overall score is a value ∈ [0,1], and in both experiments, it had a large number of
confident predictions (score > 0.9) for each compound. On the other hand, Sirius confi-
dently predicted the right chemical formula and often one annotation was separate from
the others in all scoring functions.

To assess the effectiveness of the confidence score of Sirius, Figure 6 shows the distribu-
tion of confidence scores against the corresponding ranks. Pearson correlation ρ = 0.23

was calculated to determine if correct annotation can be found from top ranks based on
the confidence score of Sirius. One outlier, where the rank was 24, was removed from the
correlation test.
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Figure 6. Sirius confidence scores plotted against corresponding ranks. Pearson ρ = 0.23.

In addition, despite not accurately calculating the time taken to process 155 spectra due
to not being able to make equal measurements, time comparison were performed. It was
found that the processing time for MetFrag was a couple of hours, whereas Sirius took
only a few minutes.
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5 Discussion

Based on this study, it is clear that MetFrag falls short when compared to Sirius. To start
with, the tool is limited to being able to process a narrow set of the most common pre-
cursor ions. The precursor ions used in Afekta projects contain a wider selection of ions
which limits the usability of MetFrag in this case. While MetFrag can make a few targeted
annotations correctly, it is not consistent enough to be used in practice since the ratio of
correct annotations is low and the ranks for those are too high. Checking all predictions
would not make the workload easier for the expert. Additionally, the argument made by
Ruttkies et al. [24] that limiting the chemical structure database search by molecular for-
mula may lead to incorrect annotations is proven wrong in the second test case, where
MetFrag is not able to annotate anything without molecular formulas. The score type
weights for MetFrag were not optimized, since results the results from these tests suggest
that the tool is not worthy of further testing.

On the other hand, Sirius showed promising results in the annotation process. Although
it may not reach the level of fully automated annotation, it was able to correctly anno-
tate every fifth compound and approximately 40 % of all correct annotations were found
within the top 10 annotations. This makes Sirius a useful tool for the expert in the anno-
tation process. One approach for semi-automated annotation could have been to rely on
the confidence score of Sirius whether an annotation is correct. However, the correlation
test results prove that the confidence score is not accurate. Although the correlation test
did not show a negative correlation between confidence score and ranks, other factors
suggest confidence in the prediction ability of Sirius. For example, the fact that correct
annotations were not found outside the top 10 predictions relates to confidence in the pre-
diction ability of Sirius. It is possible that the metabolites that Sirius cannot annotate or
that are found in higher ranks may be too complex for the current approach. Additionally,
correct annotations between targeted and non-targeted approaches stay the same, which
also implies that simple metabolites can be annotated confidently. Moreover, the minimal
difference between targeted and non-targeted accuracy proves that Sirius is able to predict
the molecular formula of the compound accurately.

The next step in this study would be testing Sirius in practice with unknown features. If
it turns out successful, an automated pipeline could be applied to ensure a faster work
process. One additional solution could be combining multiple tools in the same pipeline
to obtain different annotations from different tools. In this case, as MetFrag configuration
is too complex to run efficiently and the tool is too slow to run in practice, combining
tools was not tested further. Nevertheless, it can be an efficient solution in the future.
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6 Conclusions

Based on the results of the experiments with MetFrag and Sirius, it can be concluded that
metabolomics data is too complex to be accurately modeled with basic computational
methods. Currently available annotation tools can assist in the demanding task of anno-
tating metabolites but are not yet fully capable of automating the process. The develop-
ment of reliable tools in this field is still in the early stages, with only a few tools meeting
all of the necessary requirements and successfully producing results. Furthermore, the
documentation for many of these tools is often inaccurate or outdated. As metabolomics
research continues to advance, there is a pressing need for further development of com-
putational tools that can accurately and reliably annotate metabolites. Only through con-
tinued improvement and innovation in this field will researchers be able to fully realize
the potential of metabolomics for understanding biological systems and diseases.
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[14] Katajamaa, M. and Orešič, M. (2007). Data processing for mass spectrometry-based
metabolomics. Journal of Chromatography A, 1158(1):318–328.

[15] Kind, T. and Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular
formulas obtained by accurate mass spectrometry. BMC bioinformatics, 8(1):1–20.

[16] Kondor, R. and Jebara, T. (2003). A kernel between sets of vectors. In Proceedings

of the 20th International Conference on Machine Learning (ICML-03), pages 361–368.

[17] Ludwig, M., Dührkop, K., and Böcker, S. (2018). Bayesian networks for mass
spectrometric metabolite identification via molecular fingerprints. Bioinformatics,
34(13):i333–i340.

[18] Lutz, N., Sweedler, J., and Wevers, R. (2013). Methodologies for Metabolomics:

Experimental Strategies and Techniques. Cambridge University Press.

[19] Mattsson, A. (2019). Analysis of LC-MS data in untargeted nutritional
metabolomics. Master’s thesis, Aalto University. School of Science.

[20] National Institutes of Health (2023). Pubchem website. https://pubchem.

ncbi.nlm.nih.gov/docs/statistics. Accessed: 15.3.2023.

[21] Oliver, S. G., Winson, M. K., Kell, D. B., and Baganz, F. (1998). Systematic func-
tional analysis of the yeast genome. Trends in Biotechnology, 16(9):373–378.

[22] Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010). Mzmine 2: mod-
ular framework for processing, visualizing, and analyzing mass spectrometry-based
molecular profile data. BMC Bioinformatics, 11:395.

[23] Ruttkies, C., Neumann, S., and Posch, S. (2019). Improving metfrag with statistical
learning of fragment annotations. BMC bioinformatics, 20(1):1–14.

[24] Ruttkies, C., Schymanski, E., Wolf, S., Hollender, J., and Neumann, S. (2016).
Metfrag relaunched: incorporating strategies beyond in silico fragmentation. Journal

of Cheminformatics, 8(3).

[25] Sasse, M. and Rainer, M. (2022). Mass spectrometric methods for non-targeted
screening of metabolites: A future perspective for the identification of unknown com-
pounds in plant extracts. Separations, 9(12):415.

[26] Senior, J. K. (1951). Partitions and their representative graphs. American Journal of

Mathematics, 73(3):663–689.

https://pubchem.ncbi.nlm.nih.gov/docs/statistics
https://pubchem.ncbi.nlm.nih.gov/docs/statistics


28

[27] Shen, H., Dührkop, K., Böcker, S., and Rousu, J. (2014). Metabolite identification
through multiple kernel learning on fragmentation trees. Bioinformatics, 30(12):i157–
i164.

[28] Smith, C., Want, E., O’Maille, G., Abagyan, R., and Siuzdak, G. (2006). Xcms:
Processing mass spectrometry data for metabolite profiling using nonlinear peak align-
ment, matching, and identification. Analytical Chemistry, 78(3):779–787.

[29] Stein, S. (2012). Mass spectral reference libraries: An ever-expanding resource for
chemical identification. Analytical Chemistry, 84(17):7274–7282.

[30] Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M.,
Van der Gheynst, J., Fiehn, O., and Arita, M. (2015). Ms-dial: data-independent ms/ms
deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6):523–
526.

[31] Weckwerth, W. and Kahl, G. (2013). The Handbook of Plant Metabolomics. Molec-
ular Plant Biology. John Wiley Sons, Incorporated, Hoboken.

[32] Zhou, B., Xiao, J. F., Tuli, L., and Ressom, H. W. (2012). Lc-ms-based
metabolomics. Molecular bioSystems, 8(2):470–481.



Appendix 1. Examples of MetFrag files

Parameter file:

# d a t a f i l e c o n t a i n i n g mz i n t e n s i t y peak p a i r s ( one p e r l i n e )

P e a k L i s t P a t h = example − d a t a . t x t

# d a t a b a s e p a r a m e t e r s −> how t o r e t r i e v e c a n d i d a t e s

MetFragDatabaseType = PubChem

N e u t r a l P r e c u r s o r M o l e c u l a r F o r m u l a = C9H11Cl3NO3PS

N e u t r a l P r e c u r s o r M a s s = 348 .926284

# I o n i z e d P r e c u r s o r M a s s = 349 .93356

D a t a b a s e S e a r c h R e l a t i v e M a s s D e v i a t i o n = 10

# peak match ing p a r a m e t e r s

F ragmen tPeakMatchAbso lu t eMassDev ia t i on = 0 . 0 2

F r a g m e n t P e a k M a t c h R e l a t i v e M a s s D e v i a t i o n = 50

Precu r so r IonMode = 1

I s P o s i t i v e I o n M o d e = True

# s c o r i n g p a r a m e t e r s

MetFragScoreTypes = Fragmen te rSco re ,

A u t o m a t e d P e a k F i n g e r p r i n t A n n o t a t i o n S c o r e ,

A u t o m a t e d L o s s F i n g e r p r i n t A n n o t a t i o n S c o r e

MetFragScoreWeigh t s = 0 . 3 7 8 , 0 . 4 8 8 , 0 . 1 3 4

# o u t p u t

# SDF , XLS , CSV, ExtendedXLS , ExtendedFragmentsXLS

M e t F r a g C a n d i d a t e W r i t e r = XLS

SampleName = example −1

R e s u l t s P a t h = m e t f r a g / r e s u l t s /

# f o l l o w i n g p a r a m e t e r e s can be k e p t a s t h e y a r e

MaximumTreeDepth = 2

M e t F r a g P r e P r o c e s s i n g C a n d i d a t e F i l t e r = Unconnec tedCompoundFi l t e r

M e t F r a g P o s t P r o c e s s i n g C a n d i d a t e F i l t e r = I n C h I K e y F i l t e r

# NumberThreads = 1

(Continues)



Appendix 1. (continued)

Spectrum file:

96 .95085 11001

114 .96142 841714

124 .98212 30239

142 .99266 55890

153 .01348 160312

171 .02398 618731

197 .92748 1519359

213 .90458 11943

225 .95878 15931

241 .93590 2183

275 .86044 16512

293 .87101 550314

321 .90224 1063710

322 .90593 10373

349 .93349 948212

350 .93711 12565

366 .80088 11456

367 .80119 87667

368 .79739 6865



Appendix 2. An example of Sirius .ms file

>compound B i c u c u l l i n e

> f o r m u l a C20H17NO6

> p a r e n t m a s s 368.113616943359

> i o n i z a t i o n [M+H]+

>numpeaks 19

96 .95085 11001

114 .96142 841714

124 .98212 30239

142 .99266 55890

153 .01348 160312

171 .02398 618731

197 .92748 1519359

213 .90458 11943

225 .95878 15931

241 .93590 2183

275 .86044 16512

293 .87101 550314

321 .90224 1063710

322 .90593 10373

349 .93349 948212

350 .93711 12565

366 .80088 11456

367 .80119 87667

368 .79739 6865
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