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Abstract
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68 pages
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Diss. Lappeenranta–Lahti University of Technology LUT
ISBN 978-952-335-943-7, ISBN 978-952-335-944-4 (PDF), ISSN 1456-4491 (Print),
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The unprecedented growth of distributed energy resources (DERs) has brought limitless
opportunities to reshape the energy infrastructure and instigate urgent reforms for techno-
economic advancements, business models, sustainability, environmental impacts, and re-
source management. The incorporation of DERs is a remarkable choice to replace fossil
fuels-based generation and transform the electric power grid from a centralized into a
decentralized network, unlocking the opportunities for a green, sustainable, and cost-
effective energy ecosystem. To realize this transformation, the concept of the Energy
Internet (EI) has emerged aiming to combine DERs, such as renewable energy resources,
energy storage systems, flexible loads, and other energy networks, such as heat and gas
networks, through advanced information and communication technologies (ICTs). In this
context, this doctoral dissertation first puts forward the basic foundation of the EI and
proposes a universal definition through an extensive review of the state of the art. The EI
powers a revolutionary technological transformation in the power system by integrating
multiple energy networks, intelligent devices, smart metering infrastructure), and flexi-
ble management of energy resources by packetized energy management (PEM). What is
more, the potential challenges and key requirements, such as system complexity, system
security, and social acceptance, are identified for establishing the EI framework.

Second, this dissertation investigates the two essential features of the EI in the context
of managing energy resources in smart homes: the home energy management system
(HEMS) and the energy router (ER). Primarily, the hierarchical structure of the HEMS is
described comprehensively considering the key components, demand response (DR) ben-
efits, and energy management solutions based on heuristic optimization methods (HOMs).
The main objectives accomplished by the HEMS are efficient energy management plans
for smart homes, minimizing the electricity bill for smart home users, and reducing the
peak-to-average ratio. This accomplishment of the HEMS benefits smart home users and
maintains stable power grid operation in peak demand. Moreover, energy management
solutions provided by the HEMS are tested in the case of a cyberattack to validate the
performance of the HEMS in terms of the resilience index.

Last but not least, a comprehensive ER system is designed to provide efficient PEM
plans for smart homes based on the energy packet scheduling parameters, energy packet
transaction parameters, grid-connected photovoltaic systems, and energy storage systems.



First, the key features of the ER-based PEM are comprehensively described and a system
model is developed for single and multiple smart homes including their formulation and
respective constraints to jointly minimize the average aggregate system cost. The joint
optimization problem is mathematically solved through the implemented HOMs. The
simulation-based results are analyzed, and it is demonstrated that the designed ER-based
PEM system is capable of minimizing the average aggregated cost and providing efficient
PEM plans for a single home or multiple homes in varying weather conditions.

Keywords: energy internet, energy router, heuristic optimization, packetized energy man-
agement, demand response
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1 Introduction

This chapter provides the general background, motivation, and aims of the doctoral disser-
tation. It also covers the research questions and scientific contributions of the dissertation.

1.1 Background

Electricity is a vital source for the human well-being and the global economic develop-
ment [1]. Today, the electricity demand is growing exponentially because of the unprece-
dented rise in the global population and different types of electricity-consuming devices
[2]. This increasing trend demands electric power grids to produce a sufficient amount of
electricity to maintain a balance between demand and supply. Generally, electric power
grids are large and complex networks of separated power grids that are connected in a
centralized fashion through long-haul transmission lines and distribute electricity to the
consumers. However, since the inception of the electric power grid, it has faced twofold
serious problems. First, it is highly reliant on the combustion of nonrenewable energy
resources, such as coal, oil, and natural gas, which leads to the depletion of resources
and severe climate changes including flooding and glacial melting. Second, the aging and
centralized structure of the electric power grid is limited to a one-way flow of power, i.e.,
from generation to end consumers without leveraging renewable-based energy resources
and advanced communication technologies [3]. To address these problems, the concept of
a smart grid has emerged, which has transformed the electric power grid and integrated re-
newable energy resources (RESs) and advanced technologies [4]. The smart grid enables
a high penetration of RESs, such as photovoltaic (PV), wind, and biomass energies, and
supports the bidirectional flow of power and information through smart devices: e.g., the
Internet of Things, smart meters, and smart management systems [5]. The smart grid can
be defined as: “an electric system that uses information, two-way, cyber-secure commu-
nication technologies, and computational intelligence in an integrated fashion across the
entire spectrum of the energy system from the generation to the endpoints of consumption
of the electricity” [6].

The emergence of the smart grid has provided a breakthrough to deal with the major con-
cerns of the electric power grid. Yet, it still lacks in providing flexibility in the following
aspects: distributed access of multienergy carrier systems and massive integration and
scheduling of renewable generation and electrical devices [7]. In addition, the smart grid
accommodates communication technologies to connect only one form of energy network
(i.e., electricity) in a centralized way without considering other energy networks including
thermal and heat energy [8]. This makes smart grid features inadequate and limited, and
hence, has paved the way for the evolution of smart grid known as the Energy Internet
[9], [10]. The term Energy Internet (EI) was coined by Jeremy Rifkin and refers to “an
intelligent grid that transforms power grid into an info-energy net, allowing millions of
people who produce their own energy to share surpluses peer-to-peer” [11]. The EI is
regarded as the next version of the smart grid dominated by internet and communication
technologies. The EI enables the following features that make it superior to the smart
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The legacy centralized 

power systems Smart grids Energy internet

(a) (b) (c)

Figure 1.1: (a) Separate power grids connected together through long-distance transmis-
sion lines in a centralized fashion. (b) An intelligent or a smart grid integrates advanced
sensing technologies, control methods, and integrated communications into the current
electricity grid. (c) The power grid will be transformed into an info-energy net, allowing
energy sharing and trading [12].

grid: (i) it merges the multiple energy networks, i.e., electricity networks, gas networks,
and heat networks; (ii) it incorporates smart sensing and management equipment, i.e.,
energy routers, smart meters, and EI access equipment; and (iii) it provides scheduling,
sharing, and trading of energy resources [12], [13]. Figure 1.1 presents an overview of
the traditional power grids, smart grids, and the EI.

Essentially, the EI is a radical transformation of the power industry and orchestrates en-
ergy generation sources through internet and communication technologies, smart control
devices, and intelligent management methods [14], [15]. To enable these features of the
EI, particularly ER is envisioned as a pivotal component and resembles the role of an
internet router in the data network in terms of connecting and sharing various resources.
Broadly speaking, an ER is entitled to enable multiway communication, power conversion
technologies, and a unified way to utilize energy resources through plug-and-play services
[10]. At the residential level, the ER plays a crucial role in managing the demand–supply
equilibrium and provides demand response (DR) applications. DR assists smart home
users to reshape their energy usage profile in response to DR programs. DR can be de-
fined as “a tariff or program established to motivate changes in electric use by end-use
customers, in response to changes in the price of electricity over time, or to give incentive
payments designed to induce lower electricity use at times of high market prices or when
grid reliability is jeopardized” [16].

Recently, packetized energy management (PEM) has been introduced as a method of DR
that aims to motivate consumers by scheduling their energy packet demand while ensur-
ing the quality of service (QoS) [17]. PEM is an interesting approach derived from the
data transmission in a communication network, which means that in the same way as data
can be broken into packets, energy can also be broken into energy packets. The energy
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packet refers to “fixed power consumed by the load during a predefined time interval, e.g.,
1 kW in an hour” [18]. PEM in conjunction with the ER is expected as one of the key at-
tributes of the EI network for controlling energy usage and meeting the demand for smart
homes. In this context, this doctoral dissertation presents the background of the EI along
with supporting technologies and potential challenges and provides energy management
solutions for smart homes in terms of home energy management systems (HEMs) and ER-
based PEM systems. In addition, the dissertation extends the research contributions by
describing the architecture of HEMSs and ER-based PEM systems and designing system
models based on the core objectives, distinctive characteristics, associated constraints,
and heuristic-based optimization methodology. The following subsections highlight the
general objectives and research questions, scientific contributions, and organization of the
dissertation.

1.2 General objectives and research questions
This doctoral dissertation aims to provide the modeling of an energy management sys-
tem for the optimal use of energy resources on customer premises under the EI paradigm.
Firstly, a comprehensive description of the EI is provided and a universal definition of
the EI is inspected by reviewing the state of the art, technological features, and imple-
mentation challenges. Secondly, the energy management system for smart homes known
as the HEMS is proposed to optimize the scheduling of the energy consumption demand
of smart homes based on DR-based flexibility. The operation of the HEMS is also in-
vestigated under a specific type of cyberattack to evaluate the degree of resilience in the
scheduling processes. Finally, the modeling of the ER-based PEM system is proposed to
minimize the average system cost considering the energy packet scheduling parameters,
transactions of energy packets, rooftop panels, and management of the energy storage
system. The main foci of the study are summarized as:

• A general definition of the EI is proposed by investigating numerous concepts, as-
sumptions, scopes, and application areas of the EI.

• Extensive details of the HEMS are provided in terms of the framework, key features,
and scheduling operation. The operation of the HEMS is also assessed against the
specific type of cyberattacks on the energy pricing model.

• An ER-based PEM system is developed to provide flexible PEM plans for grid-
connected smart homes and to minimize the average system cost based on the joint
optimization of: scheduling parameters, transactions of energy packets, rooftop
panels, and management of the energy storage system.

To support our research, we focus on three research questions: Q1, Q2, Q3.

Q1 What is the Energy Internet? Further, how does it impact the development of the
electric power grids? What are the design and technological measures that must be
taken to implement the Energy Internet?
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Based on Q1, this dissertation extensively describes the evolution of the electric power
grid to the EI based on three general perspectives: physical development of the EI net-
work, its technological development, and requirements. The technological development
covers the EI-based devices and management methods/algorithms to control and optimize
the operation and integration of large-scale distributed energy generation. The answer of
Q1 also leads us to focus further on the management aspect of the EI for residential cus-
tomers by means of a demand–supply equilibrium and economic flexibility while lever-
aging HEMSs and ERs and management methods.

Q2 What are the hierarchical steps and advantages of designing an HEMS for a smart
home? Further, what are the critical impacts of a cyberattack against the HEMS
during the scheduling process of energy usage and on the electricity bills of the
smart home customer?

Based on Q2, the impact of the HEMS on managing the energy resources for smart home
customers is analyzed. Q2 also drives to shed light on the architecture and operation of
the HEMS by investigating the impact of cyberattacks on the HEMS operation during the
scheduling process of energy consumption. Therefore, based on Q2, the performance of
the HEMS is evaluated considering the allocation of energy usage and the resilience index
against cyberattacks. In addition, Q2 guides us to expand our research and examine smart
EI-based devices, such as ERs, in the context of energy management for smart homes.

Q3 What is the role of ERs in developing the EI network and enabling optimal PEM
plans for smart homes considering multiple agents, such as household loads, energy
packet transactions, rooftop panels, and energy storage systems?

We continue to research various EI-based devices, such as HEMSs, ERs, and others. In
Q3, we aim to analyze the role of ERs in the EI network and design an ER-based system
to jointly optimize household loads and energy sources. Different from the existing work,
Q3 sheds light on the role of ER-based systems in enabling PEM plans for smart homes
where multiple agents are operating at various instants.

1.3 Scientific contributions

This doctoral dissertation provides energy management solutions for a smart home user
to manage energy usage based on economic and demand-side flexibility. The main set
contributions of the dissertation are as follows:

1. A comprehensive description of the EI concept is put forward considering various
understandings and interpretations of the EI. The core technologies of the EI in-
clude ERs, smart metering infrastructure, software-defined networks, and energy
management and control models. Lastly, the potential challenges and requirements
are identified for the formation of an EI network, such as system complexity, system
security, and standardization (Publication I).
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This contribution provides a thorough analysis of the EI concepts described in the state of
the art and proposes a conceptual definition of the EI underpinning its scope of applica-
tions. The development of the EI allows to integrate cutting-edge technologies, combine
multiple energy networks to balance demand and supply, and enhance the energy effi-
ciency, coordination and control, and real-time management of energy resources in the
power industry. At the same time, the implementation of the EI raises several challenges,
including system complexity, system security, and standardization, to name but a few.

2. An HEMS architecture is designed for a smart home based on DR-based flexibility
with the aim to promote economic benefits and efficiently control the power peaks
(Publication II). The designed HEMS is investigated under a cyberattack to ana-
lyze the operation and degree of resilience of the scheduling process of the HEMS
(Publication III).

This contribution provides extensive details of the HEMS architecture, its key character-
istics, and scheduling operations. The HEMS enables energy management solutions for
smart home users based on heuristic optimization methods to improve energy efficiency,
reduce the electricity bill, and flatten the load profile. In addition, the scheduling operation
of the HEMS is assessed against a specific type of cyberattacks in terms of the resilience
index. The results demonstrate the scheduling process of energy consumption under cy-
berattacks on the HEMS and performance metrics, such as electricity bill, shaving the
power peaks, and resilience index.

3. The modeling of an ER-based PEM system is developed for a smart home that aims
to provide PEM plans for a smart home while jointly optimizing energy usage con-
sidering household loads, PV systems, storage systems, and the utility grid. A case
study for smart homes is conducted to evaluate average aggregated system cost
parameters (Publication IV). The modeling ER-based PEM system is extended
to a joint optimization problem for multiple smart homes with their respective at-
tributes and constraints, a set of heuristic methods, and varying weather conditions
(Publication V).

The contribution of this work lies in the modeling of an ER-based PEM system for single
and multiple smart homes. The ER-based PEM system provides efficient management
plans for smart homes based on the joint optimization of energy scheduling parameters,
transactions of energy packets, rooftop panels, and management of the energy storage
system. A comprehensive analysis of the ER-PEM system is carried out based on well-
known heuristic optimization methods and their hyperparameter selection. The results
demonstrate that the ER-PEM system is capable of solving the joint optimization problem
as well as providing flexible PEM plans for smart homes in terms of minimization of the
average system cost. Figure 1.2 provides a summary of the above discussions and presents
an overview of the dissertation.
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1.4 Organization of the doctoral dissertation
Chapter 1 This chapter provides the general background, motivation, research questions,

and scientific contributions of the dissertation.

Chapter 2 This chapter offers a comprehensive description of the EI concept underpin-
ning its scope of application, core technologies, and requirements.

Chapter 3 This chapter introduces the research methodology implemented in the doc-
toral dissertation. The optimization problem and heuristic optimization are
delineated based on their key steps.

Chapter 4 This chapter presents a summary of the research publications. The research
publications based on the research questions are highlighted. The research
aims and context of publications are explained in brief. Finally, a summary
and key contributions of the chapter are presented.

Chapter 5 This chapter provides the conclusion of the dissertation and highlights topics
of future research.
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2 Energy Internet
This chapter provides the background of the key concepts explained and employed in this
doctoral dissertation and Publications II–V. The contents of this chapter are mostly based
on the extensive literature review presented in Publication I.

2.1 Background

The integration of internet-oriented technologies has transformed the smart grid into a
next generation of power grids known as the energy internet (EI). The EI incorporates
various energy systems (solar, wind, gas, and heat) to relieve the dependence on fossil
fuels, promote sustainability and economy, and address environmental concerns. The
concept of EI was first proposed by Jeremy Rifkin in [19], where the EI is anticipated to
be an internet-enabled grid that combines multienergy systems through real-time informa-
tion and communication technologies (ICTs). The idea of the EI has received widespread
attention in the research community across the world, in particular, in Europe, China, and
the United States, and scientists have come up with different understandings of the EI. For
example, in Germany, the EI is known as the Internet of Energy (E-Energy), and the aim
of E-Energy is to digitally connect the power generation side to the transmission, distribu-
tion, and consumption sides employing ICTs [20]. In China, the broad perspective of the
EI is defined by the organization called Global Energy Interconnection Development and
Cooperation Organization (GEIDCO), which aims to connect renewable-based generation
globally [21]. Further, systematic research was established by the United States Future
Renewable Electric Energy Delivery and Management (FREEDM) Systems Engineering
Research Center, which presented the basic assumptions, architectural requirements, and
initial implementation plan of the EI [13]. Since then, the EI has been defined from differ-
ent understandings and perspectives. The summary of the EI concepts is given as follows:

2.1.1 EI as a smart grid

The EI is typically known as a smart grid or an advanced version of a smart grid, which
means that the EI has essential features of smart grid technologies and internet-enabled
communication. For example, Tsoukalas et al. described the EI in [22] as follows: “An
implementation of smart grids is EI, where energy flows from suppliers customers like
data packets do in the Internet”; a similar description of the EI is also given in [23],
where the authors presented an analogy between the EI and an internet network, e.g., they
considered functions of an internet router and packet-based transmission in an EI network.
Although the description of the EI in the context of a smart grid and an internet network
is promising, the authors did not identify the framework and potential features of the EI.
Subsequently, the authors in [8] and [10] elucidated the concept of EI in the context of the
FREEDM structure and also pointed out the differences between the EI and smart grids in
terms of the physical structure, key characteristics, and communication design. Chinese
researchers [24], [25], in turn, viewed the EI as a strong smart grid and entitled it Global
Energy Internet that would connect the RESs on a global scale and enable sustainable,
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green, and secure energy network across the globe.

2.1.2 EI as a quantum grid

Interestingly, a group of researchers in [26] explored a unique perspective of the EI in
terms of the quantum grid. The quantum grid identified the basic structure of the EI
and provided an analogy between the electrical grid and the data network in certain as-
pects. For instance, the authors explained the energy packet-based transmission in the
EI network, where addresses can be assigned to system nodes such as generation plants,
consumers, and transmission lines similar to the data network. The system nodes are re-
ferred to as quantum grid routers that function to optimize, control, and efficiently route
the energy packets. The perspective of the quantum grid-based EI complemented the pre-
liminary idea of the EI as well as described the packet-based power transmission, opening
the door for future research directions, such as the physical transmission of energy pack-
ets [27], the power packet distribution network [28], and packetized energy management
[14]. Moreover, recently, Wang et al. [8] have studied the physical design aspects of the
EI including technological development and communication requirements considering the
FREEDM architecture.

2.1.3 EI as a cyber-physical system

Based on the existing interpretations and perspectives, it is clear that the electrical power
grid is the core of the EI concept. The EI, from a physical development point of view,
merges various energy system networks (e.g., PV, wind, heat, and gas) to address en-
ergy demand challenges and implement real-time energy sharing. Similarly, the EI, from
a system design point of view, incorporates internet technology to provide coordination
among energy system networks and real-time communication between energy generation
sources and energy users. In this regard, we provide a comprehensive definition of the
EI as “a cyber-physical system in which physical energy infrastructures and physically
distributed RRs are interconnected and managed via a software-defined cyber energy net-
work using packetized energy management techniques.” The transmission of energy is
carried out by an energy router (ER), and it is ascribed to packet-based energy transmis-
sion. Subsequently, the ER performs tasks such as packetized energy management (PEM),
control and coordination of the sub-energy routers, optimal decision-making, and energy
conversions for the energy system networks. Hence, the EI can also be seen as a large
cyber-physical system (CPS), where physical and cyber systems are combined through
cutting-edge technologies, e.g., software-defined networks, information processing, smart
metering infrastructure, real-time communication technologies, and control systems [29].
Figure 2.1 presents the basic structure of an EI. A detailed description of the crucial EI
technologies is provided in the coming subsection.

2.2 Technological development of the EI
The EI is a large complex architecture, and the development of the EI requires support
from multiple disciplines and advanced technologies. Here, we will discuss fundamental
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technologies required to build an EI infrastructure, e.g., ERs, integration of DERs, smart
metering infrastructure, and a software-defined network.

2.2.1 Energy router

Interconnecting various energy commodities, controlling the power flow, and enabling
ubiquitous sharing of energy are important features of the future EI structure. To enable
these features, an ER is envisioned that is inspired by the internet router and acts as the
core component of the EI. Initially, the idea of the ER was developed by the FREEDM as
a solid-state transformer (SST) that supports the following tasks.

• To carry out power conversion and distribution at different voltage levels to provide
flexible delivery of energy resources;

• To unify various energy networks and allow the use of energy flexibly through plug-
and-play interfaces;

• To support the communication infrastructure and enable management of energy
generation sources and ubiquitous loads in an energy commodity through distributed
grid software.

Based on the above tasks, three types of ERs have been described [10]: (a) an SST-based
ER; (b) a multiport converter-based ER; and (c) a power line communication-based ER.
Particularly, types (a) and (b) are responsible for the integration, electronic conversion,
and management of energy resources, while type (c) provides the transmission of energy
and processes the information and communication flow.

2.2.2 Distributed energy resources

Distributed energy resources (DERs) are the basic foundation of the EI network and
enable clean, sustainable, and affordable RRs and distributed storage devices (DSDs).
Since the early 2000s, the penetration of massive DERs, specifically PV and wind en-
ergy, has been rapidly increasing and making an imminent impact on the electrical power
grid infrastructure [30]. The integration of DERs is promised to provide solutions to
energy crises, low investments, and environmental concerns. On the other hand, it also
gives rise to potential problems, e.g., related to the control and management of DERs,
voltage/frequency control, and fault management. Thus, to tackle these problems, the
FREEDM system has described three significant features of the EI: distributed grid intel-
ligence (DGI), internet equipment management (IEM), and intelligent fault management
(IFM). The key roles of these features are summarized in [13]:

• DGI acts as a central component in the FREEDM and provides real-time manage-
ment of loads, DERs, and DSDs through DGI software.

• DGI provides the stability of the grid by improving the power quality, system effi-
ciency, and power factor unity.
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• IEM acts as an electronic component and provides power conversion at low voltage
levels to residential users.

• IEM provides bidirectional power flow and enables plug-and-play features for the
users.

• IFM acts as a fault isolation component and provides isolation and reconfiguration
during and after a fault and ensures to maintain the stability of the grid during the
operation of DERs-based generation.

2.2.3 Advanced metering infrastructure

In the EI network, advanced metering infrastructure (AMI) plays a significant role to col-
lect, monitor, and precisely identify data using two-way communication by applying in-
ternet technologies. In the AMI, various systems, ubiquitous smart metering, and sensing
devices are interconnected to collect, measure, and analyze real-time information from
energy generation, transmission, and consumption. For example, on consumer premises,
smart meters are installed to obtain energy consumption information and exchange it with
the distribution system operator or the utility grid to monitor, observe, and enable features
like demand-side management (DSM) and DR. DSM, together with DR, offers various
programs/plans to encourage consumers to adjust their electricity usage with respect to
prices of electricity in a certain time interval. The key advantages of the AMI are as
follows [31].

• It facilitates bidirectional communication between smart meters and the utility grid.

• It collects and monitors energy usage information to address the peak demand and
awareness among energy users through DSM and DR to improve the reliability and
stability of the grid.

• Analysis of the power flow allows the system operator to react to faults and inex-
plicable variations in the energy consumption profile.

2.2.4 Software-defined network

The software-defined network (SDN) is an emerging approach for enabling ubiquitous
communication, efficient routing, and control functionality of highly interconnected mul-
tiple energy systems of the EI network through software. The SDN monitors and com-
municates the status of energy in various energy networks (heat, electricity, chemical, and
others) via the ER and maintains an energy equilibrium in the EI network. Further, the ef-
ficient routing and control functionality of the SDN makes energy accessible and available
to everyone and enables ubiquitous sharing between energy networks and users to balance
the demand. The SDN splits the EI network into three separate planes: the energy plane,
the data plane, and the control plane [32]. The energy plane is related to the physical flow
of energy, the data plane provides the energy-based data, and the control plane enables
the flexible coordination between the energy plane and the data plane through dynamic
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reconfiguration. As a result, the EI structure becomes more flexible, highly reliable, and
self-organized. The key features of the SDN described by [33] are summarized below:

• It facilitates the coherent coupling of interconnected networks through internet-
style ubiquitous communication.

• It allows a separation between the energy plane, control plane, and data plane,
which helps to develop various technologies independently.

• It enhances the coordination and cooperation among energy networks and enables
the self-organization of resources through ubiquitous sharing.

2.3 Energy management systems in the EI
In this subsection, we provide a brief overview of the energy management systems for the
smart homes in the EI network described in Publications II–V.

2.3.1 Home energy management system

The unprecedented growth in the prevalence of IoT devices and smart home appliances
has led to significant fluctuations in the load curve and increased power demand, which
causes immense stress on the efficient operation of the electrical power grid. Recently,
HEMSs (home energy management systems) have gained significant attention in ad-
dressing fluctuating load curves and power peaks [34]. The HEMSs aim to encourage
renewable-based energy generation, reduce carbon emissions, and manage the energy de-
mand of household appliances to enhance the stable and reliable operation of the power
grid [35].

Typically, an HEMS is installed in smart homes and communicates with the utility grid
through a smart meter to employ demand response-based (DR) programs. DR programs
allow smart home users to alter the energy profile of household appliances with respect
to the price of electricity and offer a monetary incentive while doing so [36]. An HEMS
based on DR programs performs two main tasks: it controls and optimizes the energy
consumption of household loads and reduces electricity bills for smart homes. To do so,
the HEMS utilizes two broad categories of DR: (i) incentive-based and (ii) price-based
DR. The incentive-based DR offers monetary incentives or discounts on the electricity
bill to users based on curtailing or shifting energy usage during power peaks. The main
types of the intrinsic DR are direct load, demand bidding, and interruptible/curtailable
programs. On the other hand, price-based DR provides the electricity price for a specific
duration of time, and based on the price, consumers can adjust their energy usage and re-
duce their electricity bill [37]. The HEMS, together with DR programs, enables twofold
advantages: from the utility grid’s point of view, it assists in reducing power peaks and
improving power quality, whereas from the consumer’s point of view, electricity bills can
be reduced to modify energy usage patterns. The price-based DR includes time of use
(ToU), real-time pricing (RTP), and critical peak pricing (CPP) [37]. The classification
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of DR programs is presented in Figure 2.2. In this context, this dissertation presents
the architecture of the HEMS and describes the scheduling process under a price-based
DR program. Figure 2.3 shows the internal architecture of the HEMS based on four key
blocks: (i) a data aggregator; (ii) software and network management; (iii) an appliance
management system; and (iv) algorithm management. These four blocks are connected
through a communication channel and perform different functions to achieve the objec-
tive of optimal resource allocation of energy usage considering the cost and demand of
electricity. For example, the function of the data aggregator is to receive data from smart
meters about the price signal and energy production, i.e., the utility grid, PV systems,
and storage systems and shared with the algorithm management (AM) and software and
network management (SNM) blocks. The function of SNM is to collect data from the
data aggregator and the appliance management system and process the flow of instruc-
tions in the HEMS after output from the AM block. The AM block is an essential part of
the HEMS and provides the scheduling process under DR programs with the objective to
reduce the electricity bill and facilitate optimal resource allocation of energy usage. The
scheduling operation of the HEMS is explained in Publications II–III and discussed in
brief in Chapter 4. Next, we focus on cyberattacks in the HEMS.

2.3.2 Cyberattacks in the HEMS

Despite its features, the HEMS is vulnerable to cyberattacks during the transmission of
pricing signals and communication between the utility grid and smart meters. Typically,



32 2 Energy Internet

Appliance 

Management

 System

Software & Network 

Management

 Data 

AggregationPricing Information  

Energy Transaction

     

Heuristic Algorithms

User Interfaces

AppliancesAppliances

Figure 2.3: Internal architecture of the HEMS.

cyberattackers target smart meters (as they are key components between the HEMS and
the utility grid and lack basic security protocols) and induce a false data injection (FDI) to
manipulate energy supply–demand information, grid network states, and energy pricing
signals [38]. The impact of the FDI attack on the electricity pricing signal was studied
in [39] by Tan et al., who described two major types of cyberattacks on smart meters: (i)
scaling and (ii) delay. In scaling cyberattacks, the prices advertised to smart meters are
compromised by a scaling factor (so that the meters will use the wrong prices), while de-
lay attacks mean corruption of timing information (so that the meters will use old prices).
Accordingly, Giraldo et al. proposed [40] countermeasures against these types of cyber-
attacks and evaluated the proposed countermeasures to enhance the stability of the entire
system. Figure 2.4 presents possible cyberattacks on the communication infrastructure
between the utility grid and the end users. It is shown that the communication channel
is exposed to three types of cyberattacks: (i) a direct attack on the utility grid, where the
adversary manipulates the pricing signal and injects fake pricing information into the sys-
tem; (ii) a direct attack on smart meters and tampering of data; and (iii) an attack on the
communication node between the utility grid and the end users.

In the above context, this dissertation investigated the impact of a direct attack on smart
meter where a cyberattacker has the resources to tamper with smart meter and inject cor-
rupted ToU pricing data. The cyberattacker aims to mislead the scheduling operation of
HEMS by injecting (fake) arbitrarily peak prices. The fake pricing signal is fed to the
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Figure 2.4: Cyberattack scenarios: Attacker 1 aims to induce fake pricing data or energy
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HEMS to perform scheduling operations, which certainly fabricates a mismatch between
the energy generation and consumption and hence impacts the demand–supply balance
and electricity cost. On this point, Chapter 4 discusses the critical impacts of a cyberat-
tack and Publication III presents the simulation results to demonstrate the performance of
HEMS against cyberattack.

2.3.3 Packetized energy management systems

As mentioned previously, packetized energy management (PEM) is one of the essential
aspects of the EI network. PEM provides energy packet-based scheduling for smart home
users while ensuring the quality of service (QoS) [17]. Originally, the concept of PEM
was derived from the data network; like data can be broken down into packets, energy can
also be split into energy packets [18]. In addition to PEM, the ER is another attribute of
the EI that resembles a data network. The features of the ER include the interconnection
of various energy networks via ICTs, power conversions, IEM and IFM operations, and
real-time PEM. Therefore, in this dissertation, we explored the functionalities of the ER
in Subsection 2.2.1, and now, the concept of PEM is combined with the ER (an ER-based
PEM system) to enable features such as flexible scheduling and economic transactions of
energy usage. Moreover, the ER-based PEM system is designed for smart homes based
on multiple agents, i.e., household loads, PV generation, energy storage systems, and the
utility grid, and their associated constraints. The objective of the ER-based PEM system
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is to provide PEM plans for smart home users and minimize the average aggregated cost
of the system. An overview of the ER-based PEM system is shown in Figure 2.5, and the
modeling of multiagents (MAs) is investigated in Publications III and IV and discussed
in brief in Chapter 4.

2.4 Requirements and challenges

As mentioned above, the EI is a broad concept that accommodates the major energy sys-
tems including electricity, heat, gas, and others. Therefore, the establishment of the EI
framework not only requires technological advancement but also a common agreement
from social, business, and policy-making perspectives. Hence, this section identifies the
fundamental requirements and challenges of the EI framework.

2.4.1 System complexity

The EI is a large and complex network of interconnected systems that must simultane-
ously satisfy, e.g., the requirements of communication, power flow, and control [41], [42].
Considering the communication requirements, latency is the main challenge. For exam-
ple, electric grid protection requires a communication latency of 8–12 ms, whereas the
requirement is even stricter in the case of machine-to-machine communication. Similarly,
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in the case of power flow and control, the demand for advanced power electronics is high
to provide efficient conversion as well as the desired level of frequencies and voltage.
The application of power electronics is of great significance in the EI network, e.g., plug-
and-play interfaces; however, efficiency and reliability are challenges that call for special
attention.

2.4.2 System security

The bidirectional flow of energy, communication, and information is simultaneously pro-
cessed, monitored, and controlled in the EI through, e.g., ubiquitous intelligent sensing,
metering, ERs, HEMSs, and IoT devices. These millions of ubiquitous devices transmit,
share, and communicate in real time, which makes them prone to many security chal-
lenges and causes serious threats to the stability, operation, and efficiency of the electrical
grid. In addition, the development of advanced technologies, such as machine-type com-
munication, forecasting, cloud/edge computing, and big data analytics generate a large
amount of data that can be manipulated by adversaries and may lead to serious damage as
described in [43]. The major security challenges can be malware injection, fake energy
pricing, and denial-of-service (DoS) attacks. To overcome these attacks, researchers from
different disciplines must design robust control methods/algorithms for reliable, feasible,
and secure EI networks.

2.4.3 Social acceptance and policy-making

To support the progress of EI technologies, social acceptance is an essential factor to be
involved in the implementation and employment of advanced technologies. The steps for
social acceptance may include awareness of environmental repercussions and adequate
knowledge of technologies, benefits of the technologies in terms of cost evaluation and
comfort support, and openness and trust-based decision-making. A high acceptance level
means a low social resistance, which leads to smooth policy-making. The policy-making
process also requires addressing challenges such as standardization, incentivization, and
private or public sector participation [44].

2.5 Summary

This chapter presented a background of the dissertation based on the concepts explained in
Publications I–V. First, the chapter provided the background of the EI in terms of different
interpretations and perspectives considering state-of-the-art works and proposed a defini-
tion of the EI in accordance with the physical architecture and system design aspects.
Second, the potential supporting technologies of the EI were described for the implemen-
tation of the EI network. Then, the impacts and functions of energy management systems
were discussed to cope with energy demand issues in energy communities. Lastly, the
essential requirements and technological challenges of the future EI were identified in-
cluding system complexity, system security, social acceptance, and policy-making. In
the following chapters, we provide: a methodology implemented in Publications II–V, a
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summary of each publication presented in the dissertation, and implications of the results
based on the research questions and publications.
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3 Methodology
This chapter presents the methods used in Publications II–V to solve the scheduling opti-
mization problem.

3.1 Optimization methods
Generally, optimization includes an extensive list of problems with the aim to find suitable
solutions under certain circumstances [45]. The classification of optimization problems
depends on or varies from problem to problem, i.e., there is no unified approach. However,
the optimization problem can be designed based on the following: problem formulation,
problem modeling, problem optimization, and implementation [46]. In addition, there
are several ways of modeling optimization problems; for example, classical optimization
models include: mathematical programming models, combinatorial optimization, con-
straint satisfaction models, and nonanalytic models. Similarly, the optimization problem
can be solved by using a wide range of methods or algorithms depending on the com-
plexity of the problem. Typically, the two broad categories of optimization methods are
exact and approximate or heuristic methods [46]. According to [46], exact methods obtain
optimal solutions and guarantee their optimality while heuristic (approximate) methods
generate high-quality solutions in a reasonable time for practical use but there is no
guarantee of finding globally optimal solutions. Figure 3.1 reflects the classification of
the optimization methods.

3.2 Heuristic optimization methods
A heuristic method refers to discovery or problem-solving through repeated search and
evaluation [45]. Unlike exact methods, heuristic methods are capable of finding quality
solutions for large-size problems in a reasonable time. However, the obtained solutions
cannot be guaranteed to be optimal solutions, yet they can be regarded as rather easily
reachable solutions. In the last two decades, heuristic methods have become popular for
the following main reasons [46]: fast computation time, ability to deal with complex and
large-scale problems, easy implementation and real-time problem-solving applications,
scalability, and flexibility. For these reasons, heuristic algorithms have been applied in
many areas such as engineering design, machine learning, planning and scheduling prob-
lems, and others [46].

Recently, metaheuristic methods1 have been introduced as an improved version of heuris-
tic optimization methods in terms of efficient, practical, and quality solutions. Explicitly
speaking, metaheuristic algorithms have two essential features: exploration and exploita-
tion, which give them an edge over other optimization methods [45]. Exploration means
exploring the global search space through a diverse set of (generated) solutions, while

1Moreover, it can be noted that the terms metaheuristic and heuristic can be used interchangeably as
there is no consensus on their definitions [45]. Note that in this dissertation, we have used the terms
algorithm and method interchangeably.
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exploitation refers to exploiting the local search space through a set of existing solutions.
The combination of exploration and exploitation greatly impacts the quality of the solu-
tions by preventing them from falling into a trap in the local optimum and enhancing the
diversity of the solutions. Hence, the combination of these features in heuristic methods
enhances the possibility of reaching optimal solutions and desired objectives. Further,
based on the above-stated advantages and features, this dissertation employs four main
heuristic methods. In the next subsections, we cover the implementation steps of heuris-
tic methods based on the designed system model (Publications II–V) and briefly indicate
their problem-solving advantages.

Exact methods

Branch and cutBranch and
 bound

Branch and 
price

Constraint 
programming

Dynamic 
programming

A*, IDA*
Branch  and 

X

Problem 
specific 

heuristics

Approximation
algorithms

Single 
solution-based 

algorithms 

Population-based 
algorithms 

Metaheuristics

Heuristics/
approximate 

methods

Optimization 
methods

Figure 3.1: Classification of the optimization methods, A∗, IDA∗–iterative deepening
algorithms [46].

3.2.1 Genetic algorithm

Genetic algorithm (GA) is a population-based heuristic algorithm and was first proposed
by John and his colleagues between 1960 and 1970 [47]. The GA steps follow the biolog-
ical evolution process, which is based on the famous theory of natural selection proposed
by Charles Darwin [48]. Since then, numerous variants of GA have been derived and
employed in many optimization problems ranging from discrete systems to continuous
systems, graph theory to pattern recognition, and multiobjective optimization [45]. The
GA optimization involves the following main steps: selection, crossover, and mutation.
Initially, the population is generated randomly, and individuals in the population are se-
lected for the evaluation, crossover, and mutation process. In the crossover, parents (two
individuals) from the population swap their segments using the crossover probability with
each other to generate a new individual (offspring) as shown in Figure 3.2. There are sev-
eral variants of crossover steps (i.e., single point, two points, multiple points) to enhance
the search efficiency of the GA. After crossover, the mutation process is applied by flip-
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ping the selected individuals based on the mutation probability. Similarly, mutation can
be performed in many ways, i.e., for a single site and multiple sites; however, multiple site
mutation may lead to a low convergence or even wrong solutions. Subsequently, modified
individuals (solutions) are further evaluated and compared with existing individuals, and
the best individuals (which performed better on the objective function) are selected in the
generation while others are modified. This process continues until termination criteria
(minimization of the objective function) are satisfied. It is worth noting that the choice of
crossover and mutation process (crossover and mutation are often called stochastic oper-
ators) is essential to achieve the desired level of exploration and exploitation of the search
space. The schematic representation of stochastic operators is shown in Figure 3.2. In this
dissertation, GA is implemented to solve the optimization problem based on the following
steps:

1) Population generation:
Initially, a set of individuals are generated randomly and transformed into a binary string
such that Ix ∈ {1 if P0(x) > 0.5, otherwise 0}, Ixy, y ∈ [1,L], where Ix is the binary string
in the population (P0), and L is the length of a vector indicating the status of appliances
either ON or OFF during t. The following algorithm parameters are set initially: P0,
crossover (Cbt), mutation (Mbt), and their probabilities Pc, Pm, respectively.
2) System inputs: The input values in Publications II–V and algorithm-specific variables
are set with upper and lower bounds.
3) Evaluation: The objective function is evaluated as presented in Publications II–V with
the set of constraints.
4) Updating P0: The set of individuals in P0 are modified/selected based on the tourna-
ment selection and go through crossover and mutation with a probability range between
0 and 1. In each iteration, stochastic operators are applied (until the generations reach a
preset number) to achieve optimal solutions and minimize the objective function.

GA is the most commonly used optimization algorithm in various fields of engineering.
The key advantages of the GA include dealing with complex engineering problems, par-
allel operation of the parameters, and exploration of search space in different directions
(through stochastic parameters) and convergence characteristics. Besides its advantages,
GA is sensitive toward the appropriate choice of algorithmic parameters, for example,
crossover and mutation rate, selection parameters, and population size. Moreover, there
are several variants of GA developed to improve its algorithmic features and formulate
hybrid parameters utilizing the advantages of other heuristic algorithms.
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Figure 3.2: Schematic representation of stochastic operators: crossover and mutation [45].

3.2.2 Harmony search algorithms

The harmony search algorithm (HSA) is a new metaheuristic algorithm and was first pro-
posed by Geem and his colleagues in 2001 [49]. The concept of HSA originated from
musicians’ improvisation actions, meaning that the musicians aim to look for the best
possible (optimal) harmony state out of three possible states: playing a musical note from
memory, playing a musical note by adjusting the pitch ratio, and generating a random
note. To formalize these states in terms of the optimization process, HSA is classified
into three main steps: initialization of the harmony memory (HM), improvisation, and
upgradation of the HM. The initialization process starts with random generations of the
population, and individuals in the population are analyzed based on the objective func-
tion. Next, an improvisation process starts, in which a new HM is created considering
the following: HM consideration rate (HMCR), pitch adjusting ratio, and randomization.
In order to effectively utilize the HM, the HMCR is assigned values between 0 and 1,
which reflects on the convergence of the solution, for example, if the probability of the
HMCR is low, then the selection is based on specific sets of HMs, which results in a slow
convergence rate, and vice versa. Further, the pitch adjusting ratio and the randomization
process are applied to improve the local search and enhance the exploration of the solu-
tions in the HM, respectively. Finally, existing and new HMs are evaluated and compared
based on the objective function, and the worst HM is replaced. This process continues
until the termination criteria (minimization of the objective function) are satisfied. In this
dissertation, HSA is implemented to solve the optimization problem based on the follow-
ing steps [45]:

1) Population generation: Initialize the harmony memory (HM ) size and other param-
eters of the algorithm, such as the HM consideration rate (HMc), the pitch adjustment
ratio (Pa), and the minimum and maximum bandwidths (bmin, bmax). HM is generated
using (3.1):

xi,j = xmin
j + randi(x

max
j − xmin

j ) (3.1)

2) Inputs: The input values in Publications II–V and the algorithm-specific variables are
set with upper and lower bounds.
3) Evaluation: The objective function is evaluated as presented in Publications II–V with
the set of constraints.
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4) Updating HM size: The individuals in HM are updated based on (3.2). The new sets
of harmony are further diversified using Pa according to (3.3).

HM =

{
HM ∈ HMold with P (HMc)

HM ∈ HMnew with P (HMc− 1)
(3.2)

HM =

{
Y es with P (Pa)

No with P (1− Pa)
(3.3)

In each iteration, the HSA operators P (HMc) and P (Pa) are applied to HM to strive
for optimal solutions until the generations reach a preset number.

Moreover, it can be noted that the steps of HSA, i.e., pitch adjusting and randomization,
show a resemblance to the crossover and mutation process of GA. However, unlike GA,
HSA does not depend on binary encoding and decoding. Furthermore, the structure of
HSA is easy to implement because of only a few mathematical requirements, and as it is
insensitive to the algorithmic parameters, it can be applied to solve complex optimization
problems regardless of objective function complexities, e.g., continuous, discontinuous,
linear or nonlinear, and stochastic.

3.2.3 Binary particle swarm optimization

Binary particle swarm optimization (BPSO) is another class of heuristic algorithms de-
veloped by Kennedy and Eberhart in 1995 [50]. The BPSO follows the steps that mimic
the social behavior of swarms. The swarm refers to the irregular or random movements
of individuals/particles in the search space similar to a flock of birds or school of fishes.
In BPSO, the particles adjust their velocities to achieve the best position (compared with
the previous position) and the global best position. In each iteration, when particles find a
better position (than the previous position), the search space is modified and particles with
the better position are named as the current best particles. The main aim of the algorithms
is to find the global best position g⋆ for the n particle considering the current best parti-
cles c⋆, and the algorithm repeats its steps in each iteration until an optimal–suboptimal
solution is achieved. Next, we discuss in brief the basic steps of BPSO considering our
designed joint optimization problem.

1) Population generation: Initially, particles in the swarm (S0) are generated, and each
particle has two features: (i) position (−→psr) and (ii) velocity (−→vr ). Equation (3.4) is used
to generate psr of the particle r.

−→psr(t) = −→psr(t− 1) +−→vr (t) (3.4)

where −→psr,−→vr ∈ Rn represent the position and velocity of the particles, and −→psr(t− 1) is
the prior position of the particle in S0. The initial values of −→psr are opted between [0, 1].
2) System inputs: The input values in Publications II–V and algorithm-specific variables
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are set with upper and lower bounds.
3) Evaluation: The objective function is evaluated as presented in Publications II–V with
the set of constraints.
4) Updating S0: The best particles (those which perform better on the objective) during
the evaluation process are named as pbest. To update the S0 for the optimal values, the
particles in the S0 are further refined/adjusted according to:

−→vr (t) = −→vr (t− 1) + α1rand1

(
pr −−→psr(t− 1)

)
+ · · ·

α2rand2

(
pg −−→psr(t− 1)

) (3.5)

−→vr (t) =
{−→vrmax if−→vr > −→vrmax

−→vrmin if−→vr < −→vrmin

(3.6)

where α1.rand1 and α2.rand2 represent random weights for pr (local) and pg (global)
positions of the particles, respectively. −→vrmax and −→vrmin indicate the maximum and min-
imum velocities of the particle r at a random point, respectively, as calculated by (3.6).
The updated particles in S0 are further tested in the evaluation step to achieve the best
values (until the generations reach a preset number).

BPSO is a swarm intelligence technique, and it has been applied to many engineering
problems because of the following advantages over other optimization techniques: BPSO
can achieve better solutions because of its ability to find the current best particles that
help BPSO to converge faster, modify its search space, and improve diversification with-
out discarding the worst solutions. Further, BPSO can be easily implemented because
of the simple steps and few control parameters. In addition to these advantages, BPSO
can still be modified in terms of memory, which means that BPSO does not record the
movement (path) of each particle, making it memoryless, and hence, this aspect of BPSO
can be further improved.

3.2.4 Differential evolution

Differential evolution (DE) was first developed in 1995 by Storn and Price [51]. DE
is a population-based optimization algorithm applied in several engineering applications
including signal processing, robotics, control systems, artificial intelligence, neural net-
works, and others [51]. Like any heuristic algorithm, the DE search starts with a ran-
domly generated population followed by mutation and crossover cycles and selection.
Initially, the algorithm generates a random population between upper and lower bounds
using Equation (3.7). The individuals in the population are modified through mutation
and crossover steps to obtain diverse and optimal solutions. The mutation process in DE
follows two substeps, i.e., three random vectors, e.g, vr1, vr2,, and vr3 are selected from
the given population based on the target vector, and then their weighted difference is
added to generate a mutant vector using Equation (3.8). The mutation process of DE pro-
vides an exploration of the given search space. After mutation, a new vector is formed,
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known as the trial vector by the crossover process. Typically, two main variants of the
crossover process are suggested in [51]: exponential and binomial crossover. However,
the binomial crossover is commonly explored, where the trial vector value is taken either
from the target vector or the mutant vector in each iteration considering the crossover rate.
Finally, the selection process is executed and the best individuals are selected based on
the objective function. This process continues until the termination criteria (minimization
of the objective function) are satisfied. In this dissertation, DE is implemented to solve
the optimization problem based on the following steps:

1) Population generation: Initially, population P1 is generated using (3.7) with pUe , p
L
e

being the upper and lower bounds of P1, respectively:

P1 = pLe + randi(p
U
e − pLe ) (3.7)

where P1 ∈ Rn, and randi is a uniformly distributed random number between 0 and 1.
2) System inputs: The input values in Publications II–V and algorithm-specific variables
are set with upper and lower bounds.
3) Evaluation: The objective function is evaluated as presented in Publications II–V with
the set of constraints.
4) Updating P1: P1 is updated through a mutation process using (3.8), and a new trial
vector Tv is obtained by crossover using (3.9).

Mde = vr1 + F (vr2 − vr3) (3.8)

Tv =

{
Mde if rand(j) ≤ cr
P1 if rand(j) > cr

(3.9)

where F is a constant between [0, 2] and controls the amplification of search space,
vr1, vr2, and vr3 are the vectors (randomly) chosen from P1, and r1, r2, r3 are positive in-
tegers ∈ {1, 2, 3, 4...n}. Through crossover (cr), a new trial vector is generated according
to (3.9). The updated individuals in P1 are further tested in the evaluation step to achieve
the best individuals until generation reaches a preset number.

DE is a popular optimization algorithm and well-suited for solving complex optimization
problems in various disciplines of engineering due to its simple steps, few controlling
parameters, and easy implementation. Apart from its simplicity, DE is still evolving and
several variants of DE are established to improve its convergence speed and accuracy.

3.3 Summary
This chapter presented the research methodology employed in Publications II–V. A brief
overview of the heuristic optimization methods was given; it was shown that heuristic
methods are popular owing to their applicability in various fields of science and hav-
ing a fast computation time for solving complex problems through easy implementation
steps. In addition, heuristic methods have advantages over exact methods because of their
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two essential features: exploration and exploitation. Hence, in this dissertation, heuristic
methods: GA, BPSO, HSA, and DE were implemented to solve optimization problems
according to the designed system model in Publications II–V. The essential steps, working
structure, and benefits and pitfalls of each algorithm were presented.

In particular, Publications II and III employed two well-known heuristic methods GA and
HSA to solve the optimization problem for enabling cost-effective energy plans at smart
homes under two main case studies: scheduling of HEMS and the impact of cyberattacks
on the operation of the HEMS. Publications IV and V, in turn, employed an extended
set of HOMs, BSPO and DE, to solve the joint optimization problem at smart homes to
achieve minimization of the average aggregated system cost. Moreover, the simulation re-
sults obtained in Publications II–V indicate that the designed heuristic methods in various
case studies perform efficiently by solving the optimization problem and accomplishing
the desired objectives. In the next chapter, we provide a summary of Publications II–V.
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4 Publication Summary

4.1 Publication highlights
This chapter provides a summary of the publications included in this doctoral disserta-
tion. The summary covers the research aim and context as well as research contributions
and sheds light on the research questions raised in the dissertation. Particularly, the dis-
sertation is based on five main publications, which provide a broad overview of the EI
framework and a heuristic-based energy management system for smart homes. The pub-
lications along with their titles and research questions are shown in Figure 4.1. In addition,
the publications are summarized under the following headings: research aim and context,
and research contributions. Besides the listed publications, this dissertation also includes
collaboration work and book chapters that are related but not relevant to the focus of the
studies.

Publication I Title I: What is Energy Internet? 

Concepts, technologies, and future 

directions

Research Q1: 

What is the Energy Internet? Further, how does it 

impact the development of the electric power grids? 

What are the design and technological measures that 

must be taken to implement the Energy Internet?

Publications IV and V

Title II:  A heuristic-based home energy 

management system for demand response

Title III: Home Energy Management 

Systems: Operation and Resilience of 

Heuristics Against Cyberattacks

Publications II and III

Research Q2:

 

What are the hierarchical steps and advantages of 

designing an HEMS for a smart home? Further, what 

are the critical impacts of a cyberattack against the 

HEMS during the scheduling process of energy usage 

and on the electricity bills of the smart home customer?

Title IV: Packetized Energy Management 

Controller for Residential Consumers

Title V: Benchmarking of Heuristic 

Algorithms for Energy Router-Based 

Packetized Energy Management in Smart 

Homes

Research Q3: 

What is the role of ERs in developing the EI network 

and enabling optimal PEM plans for smart homes 

considering multiple agents, such as household loads, 

energy packet transactions, rooftop panels, and energy 

storage systems?

Figure 4.1: Publications I–V and their respective research questions.
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4.2 Publication I

Title of Publication I: What is Energy Internet? Concepts, technologies, and future
directions

4.2.1 Research aims and context

The EI is known as the next generation of power grids owing to its distinctive features
of integrating multi-energy systems and internet-enabled ICTs to ensure flexible energy
demand and supply. To understand the physical architecture and system design of the EI,
we begin our research by reviewing the background of the EI in terms of different mean-
ings and perspectives considering state-of-the-art works. It was discovered that previous
studies have examined the technological features of the EI without focusing on the differ-
ent interpretations and definitions of the EI, and hence, to present the concept of EI, its
physical architecture, and system design aspects, the research question Q1 is developed
and addressed in Publication I:

Q1 What is the Energy Internet? Further, how does it impact the development of the
electric power grids? What are the design and technological measures that must be
taken to implement the Energy Internet?

Based on Q1, Publication I comprehensively describes the background of the EI concept
and its impact on the development of the modern grid in terms of the physical architecture
and system design. As mentioned above, the EI is a broad concept that integrates multiple
energy systems (e.g., PV, wind, heat, gas) to provide flexible, affordable, uninterruptible,
and sustainable electricity. Previously, there have been different interpretations and per-
spectives of the EI without any agreement on its definition, e.g., the EI as a strong smart
grid, the EI as a global energy internet, and the EI as a quantum grid. In this context,
we examine the state-of-the-art works and combine the different understandings of the
EI concept to propose a definition of EI in terms of the physical architecture and system
design. The proposed definitions of the EI indicate the incorporation of large-scale DERs
and DSDs and a tight coupling with other energy networks through cutting-edge technolo-
gies, such as internet-style communication, ER, SDN, AMI, and intelligent devices. This
publication provides a brief description of the technological development of the EI and
identifies the potential requirements and challenges, such as system complexity, system
security, social acceptance, and policy-making.

4.2.2 Summary

The main contributions of Publication I—presented in Chapter 2—are summarized below.

• An extensive description of the EI concepts is presented including the existing and
current perspectives based on the state of the art. Subsequently, a universal defini-
tion of the EI is proposed in terms of the physical architecture and system design.
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• Technological development of the EI network that includes a brief overview of
cutting-edge technologies, such as ERs, DERs, AMI, and SDN.

• Finally, the potential challenges and requirements of the EI network are highlighted
based on system complexity, system security, social acceptance, and policy-making.

4.3 Publications II and III

Title of Publication II: A heuristic-based home energy management system for demand
response
Title of Publication III: Home energy management systems: Operation and resilience of
heuristics against cyberattacks

4.3.1 Research aims and context

The HEMS is an essential component of smart homes to monitor, control, and schedule
smart home appliances to achieve objectives such as reducing the cost of electricity and
scheduling energy consumption profiles. The HEMS also communicates with the utility
grid through a smart meter to employ DR programs. Hence, we conducted a study to
design a hierarchical structure of the HEMS and to investigate the scheduling operation
of the HEMS and its resilience under an FDI cyberattack. The research question Q2 is
developed and addressed in Publications II and III:

Q2 What are the hierarchical steps and advantages of designing an HEMS for a smart
home? Further, what are the critical impacts of a cyberattack against the HEMS
during the scheduling process of energy usage and on the electricity bills of the
smart home customer?

To answer Q2, a comprehensive study is conducted in Publication II and Publication III,
where the hierarchical steps of HEMS are described thoroughly including advantages
of designing an HEMS, scheduling operation, and cybersecurity aspects of the HEMS.
Particularly, Publication II presents fundamental building blocks of the HEMS and the
impacts of a cyberattack against the HEMS during the scheduling process. Further, Publi-
cation III provides the design steps for the scheduling operation of household loads based
on heuristic optimization methods. The main aspects of the system model are summarized
below.

Classification of smart home loads

The smart home accommodates appliances that are categorized into two main classes:
schedulable appliances and nonschedulable appliances. Schedulable appliances are flexi-
bly controlled based on their energy usage, which means that their energy can be sched-
uled at various times when the price of electricity is high, and vice versa, whereas non-
schedulable appliances, also known as fixed-power appliances, operate continuously, and
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their energy consumption cannot be scheduled, shifted, or delayed (e.g., TV and mi-
crowaves). We assume that i ∈ {1, 2, 3, ..., N} that consume energy e ∈ {1, 2, 3, .., E}
time period t ∈ {1, 2, 3, .., T0}. Let’s assume U i

t to be energy consumed by the appliance
i at time t. The total energy consumption of all appliances N over T0 is computed as

EN
T0

=

T0∑

t=1

N∑

i=1

U i
t × πi

t ∀ t ∈ {t1, t2, t3, .., T0} (4.1)

where πi
t is a binary parameter and denotes the operational status of the appliance i at

time t, i.e., π ∈ [0, 1], if π = 0, the appliance i is not consuming energy, and vice versa.

Electricity pricing model

The price-based DR is an essential feature of DR activities. The price-based DR includes
various dynamic electricity schemes, e.g., ToU, RTP, CPP, and inclined block rates. These
electricity pricing schemes together with the HEMS play a vital role to motivate con-
sumers to adjust their energy usage, and as a result, provide the benefits of reducing the
electricity bill and alleviating stress on the power grid. In Publications II and III, we em-
ploy the ToU pricing scheme, and based on that, the HEMS provides energy scheduling
plans to shave the power peaks and reduce the energy cost. Mathematically, the cost of
electricity is expressed as:

CN
T0

=

T0∑

t=1

N∑

i=1

U i
t × πi

t × γi
t ∀ t ∈ {t1, t2, t3, .., T }. (4.2)

Cyberattacks

In Publication III, we consider a cyberattack scenario where the adversary can compro-
mise the pricing signal and inject tampered data with the aim to mislead the energy
scheduling process of the HEMS. Thus, instead of the original pricing signal, the HEMS
reshapes the load curve based on the fake pricing signal, which may lead to higher peaks
and consequently, destabilize the operation of the power grid as well as increase the fi-
nancial loss. To measure the resilience of the HEMS against such kinds of attacks, we
mathematically express the resilience index as

RI =
(
1− CA − CO

CO

)
× 100 (4.3)

where CA shows the total cost of electricity when the system is under attack, and CO
represents the total cost with the HEMS.

Peak-to-average ratio

Peak-to-average ratio (PAR) is the peak load demand and the average of total load de-
mand over a day [52]. PAR is related to the energy usage of consumers and the amount
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of energy generated by the power grid. Generally, the system operator monitors the PAR
of the consumers to address the power peaks. The PAR is computed as in [53]:

DPAR =
Gpeak

Gavg

. (4.4)

Here, Gpeak and Gavg represent the maximum and average aggregated loads in time slot
(t)

Problem formulation

Based on the above discussion, we consider EN
T0

, CN
T0

, and DPAR to be the parameters to
schedule the energy demand and minimize the bill of electricity. We formulate the elec-
tricity cost model for the EMS based on: (i) energy allocation of household appliances;
(ii) electricity pricing schemes; and (iii) PAR. Thus, the objective function and constraints
are formulated as follows:

Minimize

T0∑

t=1

N∑

i=1

CN
T0

(4.5)

Et,min ≤ Et ≤ Et,max (4.6)

Dmin
PAR,t ≤ DPAR,t ≤ Dmax

PAR,t (4.7)

N∑

i=1

T0∑

t=0

xi
t = HN

T0
(4.8)

Constraints (4.6) and (4.7) indicate the minimum and maximum values of the energy
consumption and PAR during a time step t. Constraint (4.8) means that the scheduling
process of the total energy consumption remains constant.

Research results and contributions

The simulation results are produced for single and multiple homes cases, and the energy
consumption profile is obtained from [54]. The cost of electricity is computed based on
the pricing signal from [55].
In Publication III, the simulation results are shown for a smart home in a single day con-
sidering the metrics: (a) scheduling of energy consumption; (b) PAR; and (c) electricity
cost. The operation of the HEMS is also evaluated for the following scenarios: (a) single
smart home user with a time resolution of one hour and 30 minutes and (b) multiple smart
homes (30 and 50) with a time resolution of one hour and 30 minutes.

The result in Figure 4.2 represents cases with the HEMS (GA-HEMS and HSA-HEMS)
and without the HEMS for the given metrics. It is evident from Figure 4.2 that a smart
home with the HEMS (GA-HEMS and HSA-HEMS) attempts to schedule the energy
usage of household loads to mitigate the power peaks and shifts the energy usage into off-
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Figure 4.2: Unscheduled case without the HEMS and cases scheduled with the GA-
HEMS and HSA-HEMS for: (a) energy consumption by appliances; (b) PAR; and (c)
electricity cost.

peak hours, which reduces the PAR and also the cost of electricity. For example during
peak hours (i.e., from 7 to 11 a.m. and from 5 to 7 p.m.) when the prices of electricity are
high, 20.8 cent/kWh, the GA-HEMS and the HSA-HEMS shift the load to the off-peak
time hours, and as a result, compared with the case without the HEMS, the PAR is re-
duced to 15% and 5.8%, and the cost of the consumer bill is minimized to 0.9% and 3.8%
by the GA-HEMS and the HSA-HEMS, respectively. Importantly, the designed HEMS
(GA-HEMS and HSA-HEMS) is scalable and optimizes energy consumption, reducing
the PAR and the cost of the electricity in scenarios (a) and (b). A detailed statistical anal-
ysis of scenarios (a) and (b) in terms of the PAR and electricity cost is presented in Table
4.1.

In Publication II, the resilience of the designed HEMS (GA-HEMS and HSA-HEMS)
is evaluated based on an FDI cyberattack on the electricity pricing signal. The cyberat-
tacker aims to mislead the HEMS operation (which is based on heuristic algorithms GA
and HSA) and manipulate the price signal with arbitrary peak prices, which leads to a de-
mand and supply mismatch and economical loss of the power system. The RI metric for
the designed HEMS (GA-HEMS and HSA-HEMS) is evaluated and shown in Figure 4.3.
The result in Figure 4.3 shows that the designed HEMS performs reasonably well in the
case of an attacked pricing signal and attains 99.8% and 97.8% values of RI, respectively.
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Figure 4.3: Resilience of the GA-HEMS and the HSA-HEMS represented by the re-
silience index.

Table 4.1: Comparative performance based on numerical results. The following symbols
are used in the table: Rd is the reduction measured in %, PAR is the Peak-to-average ratio,
S60 is the single user with a time slot of 60 minutes, M10

60, M10
30, M50

60, M50
30 are multiple

users 10 and 50 with time slot 60 and 30 minutes, respectively.

Without HEMS With GA-HEMS With HSA-HEMS

Cases Cost (¢) PAR Cost (¢ Rd) PAR Rd Cost ( ¢ Rd) PAR Rd

S60 1347.9 6.13 0.9 15 3.98 5.8

M10
60 13479 61.36 0.71 14.6 1.37 11.94

M50
60 67394 306.79 0.98 17.41 1.83 12.02

M10
30

26569 15.34 1.41 6.51 1.67 12.05

M50
30

13285 76.70 1.36 11.86 1.64 10.52

4.3.2 Summary

The main contributions of Publications II and III are the following:

• First, the hierarchical structure of the HEMS is described comprehensively taking
into account its key components and functionality, and the critical impacts of a
cyberattack against the scheduling operation of the HEMS.

• The HEMS is designed based on heuristic optimization algorithms (GA and HSA)
to provide efficient energy management plans, minimize the electricity bill for smart
home users, and mitigate power peaks and the PAR. The scalability of the HEM is
also evaluated in the scenarios of multiple smart homes and various time resolu-
tions.

• The operation of the HEMS (GA and HSA) is tested under a cyberattack, partic-
ularly an FDI attack on the electricity pricing signal, and the performance of the
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HEMS is evaluated in terms of the resilience index.

4.4 Publications IV and V

Title of Publication IV: Packetized Energy Management Controller for Residential Con-
sumers
Title of Publication V: Benchmarking of Heuristic Algorithms for Energy Router-Based
Packetized Energy Management in Smart Homes

4.4.1 Research aims and context

In the EI network, the energy router (ER) is the key component for merging various energy
systems through real-time internet-enabled communication and performing packetized
energy management (PEM). Therefore, we investigate the ER functionality in terms of
PEM for smart homes, which consist of energy source elements (i.e., the utility grid and
grid-connectible PV systems) and energy consumption elements, i.e., smart appliances
(flexible or nonflexible) and energy storage systems. These elements in smart homes are
often classified as agents. Hence, the ER-based PEM system aims to devise PEM plans
for multiple agents at smart homes to minimize the average aggregate system cost. In this
context, the research question Q3 is formulated and addressed in Publications IV and V:

Q3 What is the role of ERs in developing the EI network and enabling optimal PEM
plans for smart homes considering multiple agents, such as household loads, energy
packet transactions, rooftop panels, and energy storage systems?

To answer Q3, Publication IV presents a packetized energy management controller (P-
EMC) for a single smart home based on heuristic optimization algorithms to accomplish
minimization of the average aggregate system cost. Publication V extends the previous
research work by defining the structure of the ER based on an extensive literature review.
Subsequently, the ER-based PEM model is upgraded with a systematic integration of mul-
tiple smart homes and their associated attributes considering an extended set of heuristic
optimization algorithms. The main aspects of the system model in Publications IV and V
are summarized below.

Load modeling

In Publications IV and V, we present load modeling based on the following features:
smart homes j ∈ {1, 2, 3, ...,M} consist of loads i ∈ {1, 2, 3, ..., N} that consume energy
packets e ∈ {1, 2, 3, .., E} in discrete time slots t ∈ {0, 1, 2, 3, ..., T0 − 1} in the energy
ecosystem. The energy packets are characterized based on the following features: energy
packet arrival time (ϱj,it ), energy packet demand (P j,i

t ), scheduling time for energy packets
(ζj,it ), length of energy packets (ςj,it ), departure time of energy packets (τ j,it ), and delay
during the scheduling period (dj,it,max). Based on these features, we assume U j,i

t to be the
energy packets consumed by load i in smart home j at time t. The total energy packets
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consumed by N loads and M smart homes in the time period T0 is given by

PM,N
T0

=
M∑

j=1

N∑

i=1

T0−1∑

t=0

U j,i
t × P j,i

t (4.9)

similarly, the scheduling delay experienced by N loads and M smart homes in time period
T0 is given by

d
M,N

T0
=

1

M

M∑

j=1

T0−1∑

t=0

M∑

i=N

dj,it , 0 ≤ d
j,i

T0
≤ d

j,i

T0,max, dj,it,min ≤ dj,it ≤ dj,it,max (4.10)

where dj,it is the scheduling delay experienced by load i in smart home j and can be
computed as dj,it =

ζj,it −ϱj,it

dj,it,max−ςj,it

; considering (4.9) and (4.10), we assume Kd(d
M,N

T0
) a cost

function incurred due to d
j,i

T0
and hence, our goal is to minimize this cost Kd(d

M,N

T0
).

Electricity pricing model

Typically, smart homes are equipped with a rooftop PV system, and they generate energy
either to meet their energy demand only or to sell surplus energy. The buying and sell-
ing of energy apply an electricity pricing mechanism. Therefore, Publications IV and V
present an electricity pricing model to provide flexibility for energy packet transactions
between utility grids and smart home users via a packetized energy service provider (P-
ESP). We assume that smart home j buys energy packets at the price of Kj,buy

t and sells
the energy packets at the cost of Kj,sell

t . Kj,buy
t and Kj,sell

t are computed as:

Kj,buy
t = Hj,sell

t

(
P j,i
t − (Ej

t,pv + Ej,s
t )

)
, if PM,L

t > Ej
t,pv + Ej,s

t (4.11)

Kj,sell
t = Hj,buy

t

(
(Ej

t,pv + Ej,s
t )− PM,L

t

)
, if Ej

t,pv + Ej,s
t > PM,L

t (4.12)

where Hj,buy
t and Hj,sell

t are the buying and selling prices of energy packets from/to the
utility grid via a P-ESP, respectively. The P-ESP is an agent that provides energy trad-
ing (buying and selling) to the smart homes and the utility grid based on the following
equations:

Hj,buy
t =

{
Hj,sell

t RDS
t + J buy

t (1−RDS
t ) if 0 ≤ RDS

t ≤ 1

Jsell
t otherwise

(4.13)

Hj,sell
t =

{
Jsell
t Jbuy

t

(Jbuy
t −Jsell

t )RDS
t +Jsell

t

if 0 ≤ RDS
t ≤ 1

Jsell
t otherwise

(4.14)
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RDS
t in (4.13) and (4.14) represents the demand–supply ratio, positive values of RDS

t

indicate that smart homes have surplus energy that can be sold to the utility grid, and
0 < RDS

t < 1 show that the price of energy packets is dynamically adjusted between J buy
t

and Jsell
t , while RDS

t = 0 means that smart homes have insufficient energy, and additional
energy must be bought to meet the demand. Finally, (4.15) is represented as the energy
packet transaction cost (K

tx

t ):

K
M,tx

T0
=

1

M

T0−1∑

t=0

M∑

j=1

(
Kj,sell

t −Kj,buy
t

)
. (4.15)

The buying and selling criteria of energy packets are restricted to (4.16), which means that
the scheduling process of the total energy packets remains constant, and (4.17) bounds
the upper and lower energy packets. Similarly, the buying and selling processes of energy
packets are restricted between the maximum and minimum limits.

M∑

j=1

N∑

i=1

T0−1∑

t=0

xj,i
t = HM,N

T0
(4.16)

P j,i
t,min ≤ xj,i

t ≤ P j,i
t,max, 0 ≤ Hj,buy

t ≤ Hj,buy
t,max, 0 ≤ Hj,sell

t ≤ Hj,sell
t,max (4.17)

PV systems

Smart homes accommodate rooftop PV panels to generate electricity and meet their en-
ergy needs. The energy generated by PV systems of smart homes is as follows [56]:

EM
T0,pv

=
M∑

j=1

T0−1∑

t=0

Ej
t,pv (4.18)

where Et,pv = ηpv × Apv × Iir(1 − 0.005(Kt((t) − 25)), ηpv, Apv, and Iir indicate the
conversion efficiency, the area of the generator, and the solar irradiance, respectively.
Further, 0.005 is the constant value employed for the (TCF) temperature correction factor,
and Kt represents outdoor temperature. We assume that Ec

t,pv is the amount of energy used
from Et,pv in (4.19) considering the following constraints (4.20) and (4.21) as

Ec,j
t,pv = min

{
xN,M
t , Ej

t,pv

}
(4.19)

0 ≤ Ej
t,pv ≤ Ej

t,pv − Ec,j
t,pv (4.20)

Ej
t,pv + Eg

t ∈ [0,min{Smax, E
j,s
t,max − Ej,s

t }]. (4.21)

(4.19), (4.20) state that the Et,pv can be delivered to the scheduled load first, and the re-
maining amount of energy Ec,j

t,pv (if any) is then stored in the battery according to (4.21). In
addition, the ER provides the optimal decision on whether to store (charged) or not store
(not charged) energy in the battery considering joint optimization. The next subsection
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explains the operation of the energy storage system.

Energy storage systems

During time instant t, the energy storage system, i.e., the battery, can operate in three
modes: ti can store charges (charging), discard charges (discharging), and remain inactive.
The source of battery charging can be either a combination of PV energy and a P-ESP, or
the battery can be charged independently from both sources. The battery discharges its
energy to meet the energy packet demand, wheres during the inactive mode the operation
of charging and discharging is halted. Equation (4.22) calculates the amount of energy
currently in the battery.

Ej,s
t+1 = αtE

j,s
t + η

(+)
t

(
Ej

t,pv + Eg
t

)
− η

(−)
t

(
kj
t

)
, Ej,s

t,min ≤ Ej,s
t ≤ Ej,s

t,max (4.22)

We assume that the battery only charges if a(+)
t = 1 and Ej

t,pv + Eg
t > 0; otherwise, the

battery does not store charge. Further, the total amount of charging at any time instant
should not exceed the upper bound, i.e., 0 ≤ Ej

t,pv + Eg
t ≤ Smax. On the other hand,

the discharging amount of the battery is also constrained between the maximum and min-
imum values, i.e., 0 ≤ kj

t ≤ kj
max. The battery starts the discharging mode if a(−)

t = 1
and kj

t > 0, where kj
t is the amount of discharge by battery for a smart home j at time

t. The charging and discharging modes of the battery incur a degradation cost and can be
computed as [57], [58]

c
j,(+)
t = hr

ht

{(
Er,j

pv +Eg
r

Et,pv+Eg
t

)w0

× exp
w1(

Et,pv+E
g
t

E
r,j
pv +E

g
r
−1)

}
(4.23)

c
j,(−)
t = hr

ht

{(
kr
kt

j

)w2

× expw3(
kt

j

kr
−1)

}
. (4.24)

Based on c
j,(+)
t and c

j,(−)
t , the battery degradation cost for smart home j at t is computed

by (4.25), and its average is expressed mathematically by (4.26).

Kj,s
t = a

(+)
t c

j,(+)
t + a

(−)
t c

j,(−)
t , a

(+)
t + a

(−)
t ≤ 1 (4.25)

K
M,s

T0
= 1

M

M∑
j=1

T0−1∑
t=0

Kj,s
t (4.26)

Problem formulation

We assume an energy flow vector θt ≜ [Eg
t , E

c
t,pv, E

r
t,pv, k

j
t ] and indicate the control ac-

tions for smart homes at time slot t. The objective of the study is to find an optimal policy
{θT0 , d

M,N
T0

} and minimize the average aggregated cost of the system, which is based on

the scheduling delay cost of the energy packets (Kd(d
M,N

T0
)), the transaction cost of the

energy packets (K
M,tx

T0
), and the battery storage cost (K

M,s

T0
). Hence, the problem is for-
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Table 4.2: Comparative performance based on numerical results; HOMs (heuristic opti-
mization methods), Red (reduction), PEC (packetized energy cost), ASC (average system
cost).

HOMs d
i

T0
vs d

i

T0,max %Red PEC (procured) %Red ASC

P-EMC with GA 53.09 37.65 4.7

P-EMC with BPSO 42.60 7.5 5.14

P-EMC with DE 44.60 11.5 1.35

mulated as:
minimize:
{θT0 , d

M,N
T0

}
Kd(d

M,N

T0
) +K

M,tx

T0
+K

M,s

T0
(4.27)

where dj,it ≜ [d1,1t , d2,2t , ..., dM,N
t ], and Kd(d

M,N

T0
) ≜ [Kd(d

1,1

T0
), Kd(d

2,2

T0
), ..., Kd(d

M,N

T0
)].

The above cost function (4.27) and its constraints are formulated as joint optimization
problems to obtain optimal energy control in terms of energy scheduling and energy trans-
actions. The joint optimization problem is solved by employing a heuristic optimization
method. The heuristic optimization method is exhaustively discussed in this section.

Table 4.3: Hyperparameters of the HOMs

HOMs Hyperparameters Selection I Selection II Selection III Selection IV

GA

Cbt 1 2 3 4
Mbt 1 2 3 4
Pc,Pm [0.9, 0.1] [0.8, 0.2] [0.7,0.5] [0.5,0.4]

BPSO

−→vrmax,
−→vrmin [4,-4] [6,-6] [8,-8] [10, -10]

α1 = α2 1 3 3 5
−→vr 2 3 4 8

DE

F 0.7 0.8 0.9 0.5
Pce 0.9 0.8 0.7 0.5
pL,ue [30, 100] [60, 150] [70, 200] [100, 300]

HSA

HMc 0.9 0.8 0.7 0.5
Pamin,max [0.01, 1] [0.05, 1] [0.5, 1] [0.05, 1]

bmin,max [0.001, 1] [0.002, 1] [0.004, 1] [0.02, 1]
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4.4.2 Research results and contributions

The following datasets are used for the simulation results: (i) the power ratings and clas-
sification of the household loads are described in [59]; (ii) for the computation of PV
generation, the parameters solar irradiance and temperature of a specific day and time
horizon T0 are obtained from [60]; (iii) the bilateral trading and transaction of energy
buying or selling are computed using data from [61]; and (iv) the energy storage param-
eters are acquired from [58]. We also assume hyperparameters of the HOMs ((heuristic
optimization methods)) as presented in Table 4.3.

The simulation results in Publication IV evaluate the minimization of the average ag-
gregated cost of the system for a smart home based on the HOMs: GA, BPSO, and DE.
The aggregated cost system consists of the load scheduling delay cost, the energy packet
transaction cost, and the battery degradation cost. The relative performances of the HOMs
(GA, BPSO, and DE) are evaluated and summarized in Table 4.2.

The scheduling of the energy packets incurred d
i

T0
; the greater value of d

i

T0
means that

scheduled energy packets can be delayed, which, in turn, reduces the average system
cost and consequently, the user QoS is compromised. The scheduling process of the
HOMs (GA, BPSO, and DE) impacts the transaction cost of the energy packets, i.e., when
the HOMs are employed, the packetized energy cost (buying) is reduced in comparison
with the unscheduled case (without the P-EMC). This shows that the P-EMC based on
HOMs efficiently solves the joint optimization problem of energy packet scheduling, en-
ergy packet transactions, and battery management and minimizes the average aggregated
cost of the system.

Publication V is an extension of the previous work and provides simulation results for
multiple smart homes based on the joint optimization of energy packet scheduling param-
eters and storage system management. As stated above, smart homes equipped with an
ER-based PEM system are responsible for providing PEM plans by managing MAs con-
sidering their respective attributes and constraints. Hence, we evaluate the performance
of the ER-based PEM system to address the average aggregated cost. The average ag-
gregated cost is based on the scheduling delay cost, the energy packet transaction cost,
and the battery degradation cost. Therefore, a joint optimization problem is formulated
and solved by employing HOMs (GA, BPSO, DE, HSA) and their hyperparameter se-
lection in Publications I–IV. The results show that the ER-based PEM system provides
cost-effective PEM plans for a smart home and an energy community of multiple homes,
and in general, reduces the cost of the system. The statistical analysis of the ER-based
PEM system including performance metrics is presented in Table 4.4. It is worth noting
that during the unscheduled case, i.e., when the optimization process is not applied, the
energy packet transactions are unidirectional, which simply means the smart homes only
procure energy packets. On the other hand, the HOMs enable two-way energy packet
transactions and empower smart home users not only to manage their energy demand but
also sell excess energy packets. Consequently, the ER-PEM system based on the HOMs
provides efficient management plans for smart home users and flexible and economical
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Table 4.4: Average energy transactions between smart homes and the P-ESP. The symbol
H’sS represents the hyperparameters’ selection and the cost of the energy is computed in
dollars.

HOMs H’sS d
i

T0
vs d

i

T0,max
P-ESP

Energy (buy)
P-ESP

Energy (sell)
Daily
bill Monthly bill

Unscheduled – – 1.90 – 1.90 57

GA
Scheduled

I 30.05 1.79 0.61 1.18 35.4
II 33.05 1.46 0.61 0.85 25.5
III 33.10 1.55 0.61 0.94 28.2
IV 31.29 1.62 0.72 0.90 27

BPSO
Scheduled

I 33.10 1.85 1.04 0.81 24.3
II 35.02 1.53 1.13 0.40 12
III 34.2 1.49 1.13 0.36 10.8
IV 33.36 1.46 1.19 0.27 8.1

DE
Scheduled

I 31 1.83 0.51 1.32 39.6
II 33 1.62 0.51 1.11 33,3
III 33 1.65 0.51 1.14 34,2
IV 32.09 1.63 0.61 1.02 30.6

HSA
Scheduled

I 32 1.99 0.89 1.1 33
II 33.2 1.69 0.89 0.8 24
III 32 1.66 0.89 0.77 23.1
IV 32 1.64 0.91 0.73 21.9

energy packet transactions. Moreover, the performance metric d
i

T0
vs. d

i

T0,max indicates

that when the values of the maximum allowable delay (d
i

T0,max) are relaxed, the value of

the average experienced delay (d
i

T0
) is increased and reflects the sublinear relationship. It

is noteworthy that the average of d
i

T0
can be controlled between extreme values to achieve

flexibility and QoS. However, it impacts the average cost of the system because of the
trade-off relationship between d

i

T0
and the average cost of the system. In addition, the

performance of the designed ER-based PEM is evaluated and validated for three different
days over a time horizon T0: winter–summer–spring in terms of the average aggregated
system cost.

4.4.3 Summary

The main contributions of Publications IV and V are the following:

• An extensive literature review is conducted to compare the state of the art with the
designed ER-based PEM systems in terms of research methods, research contribu-
tions, and research gaps.

• A comprehensive ER-based PEM system model is designed for single and multi-
ple smart homes including MAs, i.e, energy packet scheduling parameters, energy
packet transaction parameters, PV systems, and energy storage systems. The joint
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optimization problem is presented based on MAs with their associated characteris-
tics and constraints.

• The ER-based PEM addresses the joint optimization problem by implementing
well-known HOMs: GA, BPSO, DE, and HSA. The performances of the HOMs
and their associated hyperparameters are evaluated in terms of the average aggre-
gated system cost, i.e., energy packet transaction cost, scheduling delay cost, and
battery degradation cost. The performance of the ER-based PEM system is val-
idated for smart home users with varying weather conditions to provide efficient
PEM plans and minimize the average aggregated cost of the system.
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5 Conclusion and future work
This chapter presents the conclusion of the doctoral dissertation by summarizing the in-
vestigations carried out on the research questions, state-of-the-art research works, and the
key scientific contributions.

5.1 Summary
The dissertation gives a comprehensive description of the EI concepts and energy man-
agement models for smart home users to provide efficient scheduling of energy usage and
cost-effective plans. The dissertation raises three research questions, Q1, Q2, and Q3,
and answers them by reviewing the state-of-the-art research methods and bridging the
research gaps. Subsequently, energy management models are developed and case stud-
ies are presented at the end of the chapters to summarize the research and demonstrate
the contributions of the study. The contributions of the dissertation are summarized as
follows:

• A universal definition of the EI is put forward based on an exhaustive study of the
state-of-the-art research. Particularly, the impacts of the EI are comprehensively
described in the context of the physical architecture and system design. The phys-
ical architecture of the EI integrates multiple energy networks, such as distributed
energy networks, heat networks, and gas networks, and interconnects them through
prominent technologies, e.g., ICTs, ER, AMI, SDN, HEMS, and PEM. These tech-
nologies play an essential role in establishing an EI; however, they also pose several
potential challenges in terms of system complexity, system security, social accep-
tance, and policy-making.

• Following a description of an EI infrastructure, this dissertation investigates en-
ergy management systems at the residential level in terms of HEMS and ER-based
PEM systems. Initially, a comprehensive modeling of an HEMS is described in-
cluding hierarchical structure, key characteristics, DR activities, and HOMs-based
scheduling operations. The scheduling operation of the HEMS is performed based
on well-known HOMs. HOMs are widely used optimization methods for the fol-
lowing reasons: fast computation time, ability to deal with complex problems, easy
implementation, and essential features, i.e., exploration and exploitation. This dis-
sertation focuses on four HOMs: GA, BPSO, HSA, and DE and presents the essen-
tial steps, working structure, and benefits and pitfalls of each method. In particular,
the scheduling operation of the HEMS is designed based on GA and HSA to achieve
the following objectives: efficient energy management plans for smart homes, min-
imizing the electricity bill, and reducing the PAR. In parallel, the scheduling oper-
ation of the HEMS is tested under an FDI cyberattack, and the performance of the
HEMS is evaluated without a cyberattack and with a cyberattack throughout the day
considering the resilience index metric. The simulation results show that the HEMS
is capable of achieving the key objectives as well as a high degree of resilience even
during a cyberattack.
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• Next, a comprehensive and unique approach to an ER-based PEM system is de-
signed for smart home users to enable flexible, economical, and controllable con-
sumption of household energy. An ER-based PEM system is modeled based on the
joint optimization problem of household loads, energy price model, rooftop PV sys-
tems, and energy storage systems. Subsequently, the joint optimization problem is
solved through HOMs (GA, BPSO, DE, HSA), and the performance of the HOMs is
evaluated under various hyperparameters, i.e., Selections I–IV, varied seasonal con-
ditions, i.e., summer–spring–winter, and constraints of the following parameters:
load scheduling delay cost, energy procurement cost, and battery degradation cost.
The simulation results demonstrate that ER-based PEM systems provide efficient
PEM plans and minimize the average aggregated cost of the system.

5.2 Future work
This doctoral dissertation presents a broad overview of the EI paradigm and its applica-
tions, particularly in designing system models for the energy management of smart homes
by employing optimization algorithms. The system model can, however, be further devel-
oped by incorporating various energy systems and exploring the technical, technological,
and economic aspects in the energy community.

• The generic role of the ER and its applications in the EI: In Publication I, we
described the EI and its architecture comprehensively based on the system design.
However, the generic role of the ER in terms of interconnecting, controlling, and
managing various energy systems can still be explored further. In addition, Publi-
cations IV and V provided an insight into the management aspects of the ER; yet, it
is highly important to investigate the generic architecture of the ER, i.e., combined
aspects of communication, power electronics, and management, to enable flexible
services in the EI network.

• Flexible integration of various energy systems: In this dissertation, our main fo-
cus was to provide energy management for smart homes with limited integration of
PV systems and energy storage systems. However, the future EI will integrate other
energy networks, such as heat and gas networks to meet the needs of energy users.
Hence, the joint optimization problem developed in Publication V can be updated to
systematically integrate various energy networks and solve the optimization prob-
lem on a global scale.

• Cybersecurity system: The future EI will integrate ubiquitous Internet of Things
(IoT) devices, ubiquitous energy sharing, and ubiquitous communication. There-
fore, a cybersecurity systems model is an essential part of the EI network. In
this dissertation, Publication III investigated the cybersecurity aspects of the smart
home. However, we aim to extend our work by incorporating various kinds of cy-
berattack strategies, detection of cyber threats, and reliable and robust solutions for
cyberattack challenges.
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ABSTRACT The climate change crisis, exacerbated by the global dependency of fossil fuels, has brought
significant challenges. In the medium to long term, extensive renewable-energy-based electrification is
considered to be one of the most promising development paths to address these challenges. However, this is
tangible only if the energy infrastructure can accommodate renewable energy sources and distributed energy
resources, such as batteries and heat pumps, without adversely affecting power grid operations. To realize
renewable-energy-based electrification goals, a new concept—the Energy Internet (EI)—has been proposed,
inspired by the most recent advances in information and telecommunication network technologies. Recently,
many measures have also been taken to practically implement the EI. Although these EI models share many
ideas, a definitive universal definition of the EI is yet to be agreed. Additionally, some studies have proposed
protocols and architectures, but a generalized technological overview is still missing. An understanding of
the technologies that underpin and encompass the current and future EI is very important to push toward a
standardized version of the EI that will eventually make it easier to implement it across the world. In this
paper, we first examine and analyze the typical popular definitions of the EI in scientific literature. Based
on definitions, assumptions, scope, and application areas, the scientific literature is then classified into four
different groups representing the way in which the papers have approached the EI. Then, we synthesize these
definitions and concepts, and keeping in mind the future smart grid, we propose a new universal definition
of the EI. We also identify the underlying key technologies for managing, coordinating, and controlling
the multiple (distributed or not) subsystems with their own particular challenges. The survey concludes by
highlighting the main challenges facing a future EI-based energy system and indicating core requirements
in terms of system complexity, security, standardization, energy trading and business models and social
acceptance.

INDEX TERMS Energy Internet, energy management, smart grid, Internet of Things, communication.

I. INTRODUCTION
Recently, the depletion of easily accessible traditional fossil
fuels and growing concerns about the environmental reper-
cussions of fossil fuel use have resulted in significant research
focus on the development of alternative energy resources.
Electricity generation has traditionally relied heavily on fos-
sil fuels, which has resulted in environmental damage and

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

increased atmospheric carbon dioxide (CO2) levels [1], [2].
In addition, the traditional power grid faces other issues
that hinder changes to a more sustainable energy system,
e.g., (i) its centralized structure with one-way power flows,
(ii) inadequate participation of consumers, (iii) weak mar-
ket mechanisms, and (iv) other sustainability and economic
challenges [3]–[5]. In attempting to address these issues,
the concept of a smart grid has become a popular and highly
researched paradigm [6]–[8]. A smart grid offers two-way
energy and communication flow, incorporates consumers’
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decisions, and provides a platform to integrate distributed and
automated systems that manage the energy flow [9]–[11].

Despite the considerable promise of the smart grid and
its many attractive features, current research has indicated
that it also has many shortcomings, e.g., inadequate utiliza-
tion of energy forms like biomass, chemical and heat sys-
tems, a dependency on existing structures, which results in
inefficient routing or scheduling, and security weaknesses
[12]–[14]. Following the trend of smart grids and in view of
the significant technological progress of the (data) internet,
the concept of an energy internet (EI) has been advanced.
A preliminary conceptual example of the EI was discussed by
the prestigious magazine The Economist in 2004 [15], where
an intelligent grid—called the ‘‘EI’’—anticipates two-way
flow of (various forms of) energy and information using
internet-oriented technologies that leverage real-time data,
improved power line qualities, and various sensors and
micro-power sources. More systematic research with the EI
as its core started in the late 2000s. For example, Tsoukalas
and Gao [16], [17] presented the basic assumptions, architec-
tural requirements, and prototype implementation for build-
ing an internet-type of ‘‘energy network’’. In [16], the basic
assumptions of an EI are summarized as: virtual storage,
dynamic pricing capabilities, and architectural requirements,
including smart metering infrastructure, load and price fore-
casting, etc. The work also examined resemblances between
the internet and electric networks. However, the authors did
not undertake analyses of the technological aspects and key
equipment required, such as energy routers having the plug-
and-play services needed to implement the technology.

Around the same time, E-Energy (Internet of Energy)
was initiated by the Federal Ministry of Economics and
Technology, Germany. The E-Energy model mainly focuses
on sustainable energy systems that are digitally connected
throughout the entire power system—from generation to
transmission, distribution, and consumption—using informa-
tion and communication technologies (ICTs) (see Table 1
for a complete list of acronyms.) [18]. In 2010, in the US,
the future renewable electric energy delivery and manage-
ment (FREEDM) system center proposed an initial imple-
mentation plan to construct an EI. The FREEDM system
aimed to incorporate numerous pivotal technologies as
essential features of the EI, e.g., plug and play interfaces,
large-scale distributed generation and storage units, and
information and power electronics technologies [19]. Later,
in 2011 and 2013, preliminary researches were conducted
in China to develop a future electric power grid with the
integration of new technologies in an EI [20], [21] (respec-
tively). And shortly afterward, in 2015, a Chinese organi-
zation, the ‘‘Global Energy Interconnection Development
and Cooperation Organization’’ (GEIDCO), founded the
first dedicated organization to promote and encourage the
sustainable development of a global EI [22].

In previous researches and scientific literature, the
conceptual basis and implementation requirements of an
EI have been investigated by considering features and

TABLE 1. Nomenclature.

sub-components, such as the architectural design, large-scale
integration of ICTs, and the key components and design
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FIGURE 1. Overview of the structure of the paper and the technological challenges reviewed.

challenges [23]–[26]. Initially, some of the early researchers,
such as Cowan and Daim [24], viewed the EI in terms of
a smart grid; however, as the EI concept developed, more
recent researchers have started to approach the EI as an
independent paradigm different from the smart grid and the
EI is now described as an enabler of the smart grid. Some
works, for example, [25], [26], have explicitly highlighted
the key differences between the smart grid and the EI.
In [25], the authors identified the communication challenges
and standards required to build an EI framework. The same
group of researchers in [26] outlined the architecture of an EI
based on the FREEDMsystem, alongwith a description of the
design of EI components—particularly energy routers—and
presented key challenges to the EI. These works examined
the EI framework, but the management of EI resources and
the controlling methods required remained unaddressed. In
another work, [27], the EI concept is considered with a focus
on smart grid applications integrated with the Internet of
Things (IoT). Other researches, such as [28], have focused
on the communications devices and architectures within the
EI and have examined specific components of the EI, for
example, the energy router architecture.

Today, the EI has become a topic of extensive ongoing
research. Nevertheless, no coherent and comprehensive def-
inition of the EI exists, and consequently, many different
interpretations and conceptualizations of the EI can be found
in the literature. In this paper, we try to systematize the
existing literature to map the differences and similarities of
existing contributions to the definition of the EI. As shown
in Fig. 1, we first examine the many different meanings and
definitions of the EI concept as a ‘‘smart grid’’, ‘‘global grid’’,
‘‘quantum grid’’, and other miscellaneous viewpoints. We
present our comprehensive universal definition of the EI as

a ‘‘cyber-physical system,’’ and elaborate on this conceptual
basis of the EI, its main characteristics, the core technologies
needed to construct the EI framework. In consideration of
coordination and management of EI resources, we briefly
describe different control schemes, management strategies
and optimization models. Additionally, we highlight the key
requirements and challenges facing the EI with the aim of
exploring further development of the EI concept.

The remainder of the paper is structured as follows.
Section II provides a classification of different contribu-
tions concerning IE. In Section III, we comprehensively
describe the technical features and key technologies of the EI.
Section IV introduces the control methods and coordination
schemes needed for the optimal use of EI resources, and the
concluding section, Section V, highlights the requirement and
challenges in EI infrastructure. Finally, Section VI concludes
this article.

II. EI CONCEPTS
As noted in Section I, no consensus exists on a definition of
what constitutes an EI, and researchers have examined the
EI idea using different definitions, interpretations, and per-
spectives. In this section, we will discuss the most common
definitions of the EI.

A. EI AS A SMART GRID
In the past decade, most research efforts have explained the
EI in terms of a smart grid. For example, [24], [41]–[46]
refer explicitly to the EI as a smart grid or consider the EI
an essential feature of a smart grid, and some papers interpret
the EI as a web-based smart grid [47]–[52]. Tsoukalas and
Gao [16] described the EI as follows: ‘‘An implementation
of smart grids is EI where energy flows from suppliers to
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TABLE 2. Distinguishing features of smart grid and the energy internet (EI).

customers like data packets do in the Internet.’’ In their
work, they investigate the assumptions underlying the EI,
the prerequisites to restructure the delivery of energy, and
the infrastructure needed to construct an internet-type energy
network. Similarly, the EI is viewed in [53] as an advanced
form of smart grid and the analogy between internet networks
and energy networks is highlighted, as can be seen in (Fig. 2).

FIGURE 2. Comparison of energy flows in internet and power system
networks [53].

However, interpreting the EI as a smart grid is not the
only approach to its definition. In [26], for example, the EI
is described in terms of how its characteristics differ from a
smart grid. The EI system is considered to have three main
components [25]—energy subsystem, network subsystem,
and information subsystem—that are interconnected with
ICTs. The work explores various technologies and core com-
ponents of the EI in comparison to the smart grid. Among
them is the energy router, which is a fundamental component
not only responsible for connecting subsystems in real-time
but also for enabling two-way communication and energy

FIGURE 3. Overview of the subsystems of an EI defined in [25].

flow, as shown in Fig. 3.Wang et al. [54] similarly expounded
the physical structure of the EI and categorized it into three
levels, in this case; trans-regional, regional, and user level.
A key difference with the smart grid mentioned in the work
is the consolidation of various forms of energy, such as
electricity, heat, peat, and gas at a regional and user level
through an intelligent component known as an integrated
energy distribution system (IEDS). In addition, the other key
differences discussed in two articles ( [25], [54]) and in [24],
[27], [28] are summarized in Table 2.

B. EI AS A GLOBAL EI
A promising idea explored by Liu et al. in [55] is the EI as a
global energy internet (GEI) and a ‘‘strong’’ smart grid on a
much larger scale. The GEI would interconnect RERs glob-
ally (including solar, wind, hydro, and geothermal), assure
optimal management and coordination of these resources,
and consequently ensure a clean, sustainable, and secure
energy network across the globe. The authors put forward
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three aspects requiring further research: the system dynam-
ics model, simulation methods, and multiagent game theory.
The construction of a GEI is, however, a major undertaking
and requires investigation of many areas, e.g., investment
planning, investment decision making, coordination and/or
interaction between countries and technical considerations.

Accordingly, in [56], the authors investigated the techno-
logical aspects of GEI and proposed an economic dispatch
framework that is practically verified in South Asian coun-
tries. The framework focused on technical problems related to
a GEI and explored reinforcement of the share of RERs while
simultaneously handling uncertainty constraints and power
regulations. The work additionally proposed an algorithm,
the alternating direction method of multipliers (ADMM),
to protect sensitive information of the countries involved and
to enable reliable exchange of energy and communications.

C. EI AS A QUANTUM GRID
A unique approach to describing the EI is presented in [57]
where the EI is viewed in the context of a quantum grid (QR).
The so-called quantum grid integrates internet revolutionized
communication and resembles the electrical power grid in
certain aspects. For example, power transmission is attributed
as energy packets similar to data packets, and power trans-
mission lines and nodes are allocated addresses just like
the internet network (IP addresses). In addition, the power
nodes are referred to as quantum grid routers (QGR) and
their functions are: (i) to optimize and control the energy
generation resources, such as distributed energy resources,
bulk power generation, and consumption; and (ii) to achieve
quick restoration and self-healing. The basic layers of the QR
network comprise a power plan, routing and control plan, and
business plan. These plans are fully connected by leveraging
the ICT, which thereby enables the QGR to exchange infor-
mation in various layers by means of energy packets based on
routing and control plans.

Other concepts similar to theQR include packetized energy
management [58], the digital power grid [59], the physical
energy packet transmission [60], and the local area packetized
network [61]. The relationship between the different forms
of packetized energy management and the EI is considered
in [62] and deeply explained in IV-C.

D. OTHER MISCELLANEOUS VIEWS ON EI
Some research studies have elaborated the EI in a different
way. For example, Energy + Internet is studied in [63],
which compared the challenges inherent in the business
model and management of integrated energy resources, ser-
vices, and policies in a traditional energy system and a new
Energy+Internet system.

In [64], Feng and Xiaoli explored the EI as ‘‘people
oriented’’ that anticipated the wellbeing of the users by
establishing communication channels between the users
and energy systems. They argued that an economical and
environment-friendly ‘‘best energy service’’ is the ultimate
demand of the users. Seen from the technology point of view,

the communication, information, and processing technolo-
gies used must connect the energy production systems with
the consumer/prosumer and provide intelligent management
and optimization of energy resources.

E. EI AS A LARGE-SCALE CYBER-PHYSICAL SYSTEM
After examining the various interpretations of the EI, it can
be seen that the EI is a broad concept merging numerous
energy-based networks (heat, gas, electricity, etc.) to provide
a unified platform for better coordination and sharing of
the energy resources. Consequently, development of the EI
architecture is complex and multidisciplinary. In this article,
we investigate the EI framework from the perspective of
energy delivery and transactions in the electricity network and
analyze complementary technologies.

Our proposal is a natural extension of the idea of the EI as
a quantum-like grid enabled by packetized energy manage-
ment, detailed in Section II-C. We argue that the EI is most
accurately and universally represented as a software-defined
‘‘energy network of networks,’’ such as power generation
networks, storage networks, data management networks, and
distributed generation networks, as shown in Fig. 4. Each
network is interconnected through three layers, i.e., energy,
communication, and information. The core component
responsible for organizing the three layers at the local level
are the sub energy routers (SERs). Further, we argue that the
EI can be most clearly approached using the idea of ‘‘discrete
or packetized energy,’’ as emphasized in [62], [65]. The SERs
communicate with each other through (discrete) energy pack-
ets that are akin to the data packets in the internet network.
The SERs also exchange the obtained information with the
core server (CSR). The CSR is the heart of the whole system
and it performs the following functions: (i) accumulation of
all information resources; (ii) control and coordination of
the SERs; and (ii) packetized energy management (PEM)
by leveraging information from SERs and making real-time
optimal decisions for the distribution of resources.

Seen in the way described above, the EI can thus be viewed
as a cyber-physical system (CPS), since it it comprises the
features of physical systems and cyber systems simultane-
ously. Physical systems like electricity generation resources
must be controlled and managed according to the instructions
received from the cyber-systems, i.e., the SERs, CER, smart
meters, sensors, and embedded systems. Thus, we define the
EI as follows: a cyber-physical system in which physical
energy infrastructures and physical distributed RERs are
interconnected and managed via a software-defined cyber
energy network using packetized energy management tech-
niques. Such a comprehensive definition and architecture
cannot be designed without the integration of cutting-edge
technologies including real-time communication technolo-
gies, control systems, information processing, smart meter-
ing infrastructure, and software-defined network. Moreover,
it is also essential to organically deploy such technologies
with management and planning strategies while taking into
account EI requirements and challenges.
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FIGURE 4. Basic structure of an EI comprising multiple networks, such as a distributive energy resources network, energy storage network, data
management network, and internet and communication networks with features, like Plug and play, intelligent soft ware, sub energy routers, and smart
meters.

F. SUMMARY
The overall concept of an EI was discussed based on defini-
tions and uses that have been presented in the literature. The
main studies on the topic are summarized in Table 3, where
their reasoning is indicated. It is worth mentioning that none
of the surveys consider the EI as a large-scale CPS enabled by
a PEM system. Such a definition is, however, of importance
for the technologies used. In the next section, we will present
the key technological enablers of the EI.

III. SUPPORTING TECHNOLOGIES FOR EI
In this section, we discuss pivotal technologies that can
contribute to the implementation of the EI.

A. ENERGY ROUTER
The energy router (ER) is essential equipment for realizing
a functioning EI infrastructure. The ER concept was first
proposed by FREEDM [19] and included features such as
conversions of forms of energy and voltage levels, high power
quality, and plug and play interfaces. The former two ser-
vices provide flexible and optimal utilization of energy and
ensure reliability of the system, and the latter ensures ease of
operation. The ER proposed in FREEEDM was based on a
solid-state transformer (SST), and its architecture comprised
three layers: physical control (power and energy), distributed
grid intelligence (DGI), and communication layer.

The first layer is designed to provide flexibility in the
physical system and to manage conversion, for example,
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TABLE 3. Summary of the relevant research work.

from high voltage alternating current (AC) to direct cur-
rent (DC) as rectification, DC to DC (different voltage levels)
as a chopper, and DC to AC as inversion, and also to provide
low-level voltage for the AC bus. The second layer is the
communication layer, which regulates the bidirectional flow
of information and communication and uses technologies
such as Ethernet, wireless LAN, and fiber optics. Lastly,
the DGI layer utilizes information from the communication
layer and coordinates other SSTs to enable optimal decision
making and improve energy efficiency and utilization. Criti-
cal features of the SSTs are plug-and-play services, flexible
power control and optimal energy flow [68].

Three types of ER based on SST, multiport converters
(MPC), and power line communication (PLC) are described
in [31], [66], [67]. The authors expounded a similar func-
tionality of SST as proposed by FREEDM, i.e., the transfor-
mation of various forms of energy and regulation of voltage
and current levels using power electronics devices. The MPC
is specifically designed for the low-level voltage distribution
network, i.e., for homes and buildings, and it manages the
subsystems, including generation resources and storage sys-
tems, to maintain and balance the energy supply.

The PLC layer is a key layer in an ER and responsible
for the simultaneous flow of energy and information by
leveraging time division and multi-path transmissions. It is
noteworthy that PLC is economical as it uses the same power
line for energy and communication flow; however, it has

shortcomings as regards bandwidth requirements, low data
rates, and signal attenuation. Many researches have tried to
address these shortcomings and improve the efficiency and
reliability of PLC. For instance, the authors in [67], [69], [70]
considered the electrical network similar to a data network;
the energy is split into energy packets like data packets in the
internet network. The energy packets are transmitted using
transmission techniques such as time-division multiplexing
(TDM). In TDM, the energy packets are tagged with header
(source of generation) and footer (source of consumption)
information and multiplexed over the transmission network.
When these packets arrive at the load side, the ER distributes
the packets to the final destination address. To improve
energy efficiency of the transmission network, it is also
important to utilize interference mitigation techniques. The
architecture of the three types of ER is presented in Fig. 5.

B. ENERGY HUB
Energy hub (EH) was an important concept in the project
Vision of Future Energy Networks [71]. The EH is a system
that combines various energy networks, including electricity,
heat, and gas to meet the demand of the end users. The EH
offers two key features: flexibility and reliability; that is,
it has the flexibility to utilize energy from different energy
networks, and thus, it is not dependent on a specific energy
source. This, in turn, increases the reliability of the system,
particularly from the consumers’ perspective. In addition,
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FIGURE 5. Types of energy router: (a) Solid-state-based energy router, (b) Multi-port converter-based energy router, and (c) Power-line-
communication-based energy router adopted from [31], [66], [67].

the authors explored the feasibility of the combined transmis-
sion of different energy forms and proposed a device known
as an energy interconnector. Combined transmission of dif-
ferent energy forms improves the system efficiency. A simple
example would be that any heat losses in the electrical system
could be used for regulating the temperature in the heat or
gas network, which ultimately reduces the overall system
losses. However, studies have shown that in such a combined
network, commonmode failures could result in a catastrophic
collapse [72].

EH concepts are described more comprehensively in [73]
that compares four key components of an EH—(variety of)
energy inputs, storage systems, converters, and optimal out-
put of EH models. Drawbacks in existing EH models are also
discussed and methods are suggested for the management
of EHs; features that would improve the sustainability of
future energy systems are also proposed. Using a similar
approach, Parisio et al. [74] described the EH model in a
control-oriented manner and optimized the energy schedul-
ing problems using mixed-integer linear (MIL) formulation.
Wang et al. [75] applied MIL programming using a graph
theory approach for the optimal planning of multiple energy
systems (MESs) in EH.

C. ENERGY INTERNET ACCESS EQUIPMENT
In the EI infrastructure, the various energy generation net-
works, energy storage networks, and distributed energy
resources (DERs) are connected to provide fully and flexi-
ble energy supply. In addition, the electricity market facil-
itates energy trading with the energy suppliers or between
prosumers by adopting effective demand response strate-
gies. To enable these services, energy internet access equip-
ment (EIAE) is proposed in [40] as a way to connect and
monitor energy usage and energy supply in real-time. Three
prominent features of such EIAE are the following: (i) EIAE
as end users’ cyber-physical terminal media act as interfaces
and measure, observe, and control all DER-using devices;
(ii) EIAE enables interactions between end users and energy

generation and supplies components in the EI using measure-
ments, observations, and controlling methods; and (iii) EIAE
is possibly the final execution component/device in the EI
that provides all the aforementioned services. The authors
highlight the differences between ER and EIAE to empha-
size the novel features of EIAE. These novel features are
succinctly summarized as follows: ‘‘EIAE should have cas-
cading capabilities that enable bidirectional circulation of
information flow and energy flow as well as aggregation and
re-transmission.’’ The other technical features of EIAE are
perceptibility, controllability, autonomy, unified access, and
cyber-physical capability. The key differences among ER,
EH, and EIAE are presented in Table 4.

D. INTELLIGENT ENERGY MANAGEMENT
The EI infrastructure relies on fast and reliable informa-
tion, leveraging smart and intelligent energy management
systems. In this context, FREEDM [19] proposed an intel-
ligent energy management (IEM) software that interacts with
DERs, storage systems, and end users and enables plug and
play features. Unlike a supervisory control and data acqui-
sition (SCADA) system, the IEM has a distributed and flat
architecture that makes it scalable and sustainable. IEM pro-
vides optimal utilization of RERs and cooperates with the
storage system under contingencies or when grid power is
not available. In essence, IEM performs multi-objective tasks
and adapts the load demand curve, minimizes the operational
costs and circuit losses (in SST), and regulates the voltage.
In order to achieve these objectives, IEM requires recognition
and incorporation of renewable distributed resources, on-time
energy and power dispatch, and most importantly, a robust
algorithm to control and distribute tasks efficiently.

E. DISTRIBUTED ENERGY RESOURCES
The envisioned EI has to be highly flexible to accommo-
date DERs while maintaining sustainability and availabil-
ity of power generation. The EI encompasses numerous
DERs that, along with other complementary technologies
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TABLE 4. Distinguishing features of the energy router (ER), energy hub (EH), and energy internet access equipment (EIAE).

such as storage systems, play an important role to opti-
mize energy management. However, the controllability and
management of DERs and storage systems face numerous
challenges and sustainability issues, including high com-
putational burden, frequency design requirements, commu-
nication topologies, etc. Yazdanian and Mehrizi-Sani, [76]
reviewed distributed control and management techniques that
can potentially improve computational capabilities and coop-
eration between growing numbers of DERs, power grids,
and end users. In the same vein, Ding et al. [77] discussed
a novel strategy—‘‘event-triggered communication’’—for
optimal control between communication devices in DERs.
Their proposed strategy considered the communication com-
plexity and attempted to enhance coordination between
DERs, which, in turn, improves the reliability and flexibil-
ity of the energy management. The authors also described
trade-offs between communication resources and control per-
formance. Choi et al. [78] designed a hierarchical distributed
architecture and agent-based smart management that facil-
itates cooperation between homes and energy generation
resources. The designed hierarchical architecture acts as a
cloud and provides information and processing, data acqui-
sition, and communication while the edge network makes
autonomous decisions through an intelligent agent. Other
research works have employed a fractional order proportional
integral derivative (PID) controller with robustness [79];
explored test-beds for two levels of energy management and
control systems [80]; and examined agent-based controlling
techniques [81].

F. SMART METERING INFRASTRUCTURE
Smart and intelligent sensing devices are of great impor-
tance in the EI. Smart devices such as smart meters pro-
vide accurate data measurement, control, and predictions.
As an essential component of advanced metering

infrastructure (AMI), smart meters collect real-time informa-
tion of energy generated from various sources and the energy
consumed by the end users. Based on this information, smart
meters together with demand-side management (DSM) and
demand response (DR) offer potential benefits to end users
and energy suppliers. For instance, from the end users’ point
of view, smart meters allow the end users to know about their
electricity consumption, pricing tariffs, and real-time updates
through a user interface often known as ’’home energy man-
agement system (HEMS)." This information helps consumers
to manage energy usage and to achieve reductions in their
electricity bills. Seen from the point of view of the utility
companies, the peak load can be curtailed, shifted, or pre-
dicted by implementing DR programs, thereby improving the
energy efficiency of the system [82].

Alahakoon and Yu [83] studied smart meters, their frame-
work, and potential applications. They found that the infor-
mation received by smart meters such as power generation,
consumption, and power quality can be used to enhance
system stability and reliability. Their proposed framework
identified prospective features of smart meters in terms of
data analytics capability, technological perspectives, and
stakeholder applications, and the work also detailed the lim-
itations of existing smart metering infrastructure. However,
future requirements and challenges such as communica-
tion latency, bandwidth, real-time processing, security, and
privacy need to be addressed effectively. To focus on the
communication aspects of smart meters, Fan et al. [84] exam-
ined the smart meter communication framework, the cur-
rent challenges, technological solutions, and areas requiring
further research, e.g., scalable inter-networking, interoper-
ability, self-organization, and DR applications. In addition,
the authors emphasized the need for the standardization of
information and communication strategies for the deploy-
ment of smart meters and other devices to enable efficient
and reliable energy transactions in smart grids.
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Recently, the security concerns of AMI and smart meters
are muchmore demanding and researchers have given serious
attention to this topic. For example, Ghosal and Conti [85]
investigated the key management system (KMS) of the AMI
and discussed the role of defensive approaches to provide a
secure communication and management system. The secu-
rity challenges in AMI systems are, for example, consumer
privacy preservation, potential cyberattacks against system
resiliency, and electricity theft. Similarly, the authors in [86]
proposed an information-centric network and key manage-
ment scheme to ensure data integrity, confidentiality, and
authentication of widespread smart meters. To tackle these
threats and enable an efficient KMS, it is essential to deploy
standardized ICTs, intelligent softwares, and potential solu-
tions such as key graph technique, authentication (based)
technique, and hybrid approaches [85], [87].

G. PEER-TO-PEER ENERGY TRADING
The EI is an interconnected, open, smart, and user-centric sys-
tem that makes secure and reliable peer-to-peer (P2P) energy
transactions and delivery feasible. As such, P2P allows pro-
sumers to take part in the electricity market by selling their
excess energy [88] or reducing their energy demand [89]. By
doing so, the prosumers canmake full use of DERs and conse-
quently reduce electricity costs. P2P energy trading has many
potential benefits, such as reducing peak (demand), lowering
overall operational and investment costs, lowering reserve
capacity requirements, and improving energy efficiency and
power system reliability [90]–[92]. It is, therefore, important
to investigate the technical and energy market requirements
of P2P energy trading and an effective way to encourage
customers to take part in the trading.

The architecture of P2P energy transactions is explored
in [93], which investigates both the physical layer responsible
for the transmission of electricity and the virtual layer pro-
viding secure transmission communication for energy trad-
ing between prosumers. The work examined the challenges
faced by both layers including security concerns, dynamic
pricing market, and cost reduction. To address these chal-
lenges, relevant technical approaches, such as constrained
optimization, game theory, auction theory, and blockchain
are essential to designing P2P architecture. In the same fash-
ion, Zhang et al. [94] designed a four-layer model for low
voltage (LV) microgrid through the ‘‘Elecbay’’ platform
leveraging the game theory approach. Alam et al. [95] devel-
oped a P2P energy trading approach at the microgrid level
among smart homes. Their objective was to incorporate stor-
age systems and microgrid trading and distribute the energy
cost equitably ensuring Pareto optimality.

H. SOFTWARE-DEFINED NETWORK
To meet the diverse communication demands and utilize
the interconnected technologies efficiently, the adoption of
a software-defined network (SDN) has emerged as an inno-
vative networking approach. The SDN aims to improve
routing strategies by establishing resources programmable

software networks. The SDN and EI have been studied in
[96]–[98]. Zhong et al. [96] investigated software defined
EI (SDEI) architecture from three perspectives: energy flow
plane (EP), data plane (DP), and control plane (CP). These
planes function independently and incorporate new technolo-
gies to upgrade their infrastructure. The EP is responsible for
the physical flow and control of energy. The DP collects and
analyzes the information from various energy sources and
services, including generation data fromDERs and consump-
tion data from households. The CP is the key layer and is
responsible for dynamically controlling and configuring the
DP and EP layers by enabling flexible cooperation between
them; maintaining a balance between demand and supply;
and programming ER optimally. The ER, on the other hand,
supports P2P communication and energy flow and is clas-
sified into three categories: the ER at transmission (ER-T),
the ER at distribution (ER-D), and the ER at consumption
(ER-C). The authors discuss the interesting example of EVs
to demonstrate the application of an SDEI in a mobility
management system and to illustrate the potential challenges
facing energy service providers. A similar approach for an
SDN was developed in [97], where the SDN architecture was
split into three layers. The infrastructure layer accommodates
various energy networks, including network equipment such
as the ER and switches. The middle layer, or the control
layer, controls the data obtained from the infrastructure layer
and is interlinked with the top layer known as the applica-
tion layer. Additionally, the authors highlighted the concept
of an intelligent energy controller (similar to the IEM in
FREEDM) that receives data from multiple energy sources
and sorts the data before sending it to the control or data
center. Another interesting study [98] explores an SDN for the
communication architecture of the EI at two levels, microgrid
level (ML) and global grid level (GGL). In the study, the pro-
posed communication architecture is evaluated based on the
reliability, security, and latency features. Test bed cases of the
proposed framework for the ML and GGL were presented,
and it verified low latency and improved reliability results.

I. SUMMARY
This section introduced the main technological enablers of
the EI identified in the literature. Table 5 lists the technolo-
gies, their main features and existing challenges, and presents
some observations about the technologies. In the following
section, we will discuss how these different elements can be
used to coordinate and manage the distributed resources that
lay the foundation for an EI.

IV. COORDINATION CONTROL AND MANAGEMENT
In an EI, various generation resources, storage components,
consumption devices, and other elements must interact to
maintain the stability and sustainability of the electricity
infrastructure. Consequently, a robust and effective coordina-
tion and control scheme is necessary to ensure seamless oper-
ation of the EI. In this section, we will discuss coordination
control and management strategies in the EI.
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TABLE 5. A summary of the key technologies in EI.

A. CONTROL AND COORDINATION SCHEMES
As we have seen, the EI structure is anticipated to be decen-
tralized with the dominant integration of DERs accompanied
by (AC or DC) microgrids (MGs) and microgrid clusters.
Both AC and DC MGs are the essential units of the future
EI, providing prominent benefits, such as improved relia-
bility and stability of power grids, enhanced energy usage
efficiency, and others listed in [99], [100]. However, MGs
face many challenges including proportion power sharing
and voltage regulation [101]. A great amount of research has
been reported to control power-sharing proportion through
multi-agent theory [101]–[103] and voltage (frequency) reg-
ulation through secondary control schemes [104]–[106]. Cor-
respondingly, the authors in [107] have demonstrated a coor-
dination and controlling scheme that provided insight on
energy sharing among MGs incorporating energy, storage
networks, and DERs, and maintaining a stable operation
of the power system simultaneously. To accomplish better
coordination, Sun [108] et al. analyzed a hybrid strategy and
proposed a power-sharing unit (PSU) aiming to make full

use of DERs in MGs with the help of a modified droop
control approach using single-phase back-to-back converters.
However, it is pertinent to note that droop-control schemes
have shortcomings in terms of voltage synchronization,
power sharing tradeoffs, and dependencies of load frequency
and voltage [108], [109]. Therefore, the authors in [110] came
upwith an interestingmulti-agent-based consensus algorithm
to enhance the coordination and controllability of theDERs in
the EI. The useful results of the researches can be summarized
as follows:
• The synchronization of the voltages of various DERs,
storage networks, and other EI elements with the main
grid enables the EI to operate as a spinning reserve
system;

• Coordinated control of the EI elements decreases energy
costs; and

• Using MA systems, the EI infrastructure can flexibly
achieve the desired power sharing among DERs.

The authors in [111], [112] described improved droop
controlled schemes, while centralized control schemes and
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a multi-agent-based system are described in [113] and [114],
respectively. Furthermore, communication among MGs and
other generation resources is another important issue that
needs the development of comprehensive ICT infrastructure
along with control methods. The methods investigated in
[115]–[118] are event-based control and predictive control.
Table 6 gives a brief summary of the controlling methods.

TABLE 6. A brief summary of the controlling methods.

B. MANAGEMENT AND OPTIMIZATION MODEL
Thus far, research has tended to focus on the EI infrastructure/
architecture [16], [19], [26], [28], ER [66], [68], [70], and
frequency or voltage control [121], [122]. However, an impor-
tant aspect of the power system is the energy management
problem (EMP) in which an energy management system
should be setup to achieve the goals of the EI. Typically,
an EMP is designed as an optimization problem and solved
using different approaches such as centralized, decentralized,
or distributed methods. The centralized approaches provide
global or near-optimal solutions. However, with the fast
growth in DERs, many of these approaches do not always
converge to an optimal point, while at the same time imposing
strict conditions on the system, such as considerable compu-
tational complexity, and strict communication requirements.
Distributed approaches, on the other hand, are robust, and
enable fast computations and communication, and they are,
thus, more popular.

The EMP for microgrids or smart grids has been explored
widely in the literature [123]–[125]. The EMP with DSM
has been analyzed for minimization of the cost of the system
[126], [127] and the electricity bill of the consumer in the
residential sector with a HEMS [128]–[131]. Subsequently,
the problem has been approached using meta-heuristics, such
as PSO [132], GA [133], HSA [134], and others [135]–[137],
with the objective of optimally scheduling energy consump-
tion and improving the reliability and stability of the power
grid.

The EMP for an EI differs somewhat from the aforemen-
tioned methods because the EI is envisaged as an extensive
collection of numerous energy generation networks, DERs
networks, storage networks, etc., with large numbers of
prosumers. Designing the EMP for the EI remains a major
challenge because many of the previously studied smart-
grid-based methods do not scale adequately. Nevertheless,
some researches have attempted to tackle the EMP problem in
the EI. For example, Sun et al. in [122] discussed EI features

and proposed an innovative framework for energy manage-
ment. Their model is complicated and incorporates other
networks, including heating and gas. Therefore, the authors
introduced a distributed-consensus-ADMM algorithm to
solve the EMP problem. The proposed algorithm optimally
manages the energy demand/output, taking into account
customers’ participation in the energy market. In the same
context, other works [70], [138], [139] have attempted to
manage and optimally allocate multi-energy sources such as
PV, wind, and storage using intelligent ERs. Guo et al. [70]
explored the hierarchical optimization method for the EH
and ER in an EI to preserve privacy and information. The
authors’ approach comprised two levels: a lower level and
an upper level. In the lower level, the optimal dispatch of
energy is accomplished by providing the operation plans and
integrating DERs in EH. In the upper level, on the other hand,
the ER is employed to ensure secure and effective communi-
cation among other EHs and ERs. Chen et al. [138] designed
a novel ER that enables bidirectional power flow, optimizes
energy reallocation, and integrates other energy generation
resources such as PV, wind, and storage. The proposed ER
solution is easily scalable, capable of providing plug and play
services, and improves the power quality by addressing the
load-energy fluctuations. Gao et al. [139] modeled the ER
based on probabilistic approaches aiming for energy trading
and energy scheduling using a cloud computing tool.

C. PACKETIZED ENERGY MANAGEMENT
PEM is an interesting approach toward energy management
and coordination of energy generation. The PEM concept is
analogous to data transmission in a communication network;
just like data is broken into packets, energy can also be
broken into discrete packets. In this sense, energy packets or
chunks represent a fixed power for a certain time duration,
e.g., 1 kW in 1 minute (i.e., 0.0166 kWh of energy). Using
PEM, the energy demand and supply can be aligned with the
dynamic generation and consumption resources. Moreover,
PEM brings benefits such as flexible decision-making, fair-
ness, responsiveness, and scalability [58].

Recently, efforts have been made to implement PEM
using physical [58] or virtual energy packets [61].
Takahashi et al. [60] claim that power distribution through
discrete or PEM can be a game-changing approach toward
energy management, energy control, and energy wastage
reduction. In their work, they designed the ER such that it
dispatched power packets with a destination address attached
to each packet. Moreover, the power packets from distinct
sources are distributed and transmitted through routers and
delivered to the end users as per the attached address. The
power packets-based distribution network also integrates
storage capability and is a feasible solution for PEM. How-
ever, packet congestion is still problematic and requires
economical solutions.

Zhang and Baillieul [140] developed a packetized direct
load current solution for a thermostatically controlled load
(TCL). They employed queuing theory to provide effective
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control of TCL, reduce power peaks, and smooth energy
consumption oscillation. The authors extended their earlier
work in [141] where they presented a model based on energy
packet requests and withdrawals, which considers the total
waiting time and mean waiting time of appliances. To achieve
maximum utilization of power packets and meet urgency
requirements, Ma et al. [142] adopted a deferred acceptance
technique with heuristics algorithms to solve the scheduling
problem. More recently, Zhang et al. proposed a protocol for
P2P energy packets dispatched in a ‘‘local area packetized
power network ’’ using the branch-and-bound (BB) method
with dynamic programming [143]. In [144], the authors
demonstrated a PEM for DERs and proposed a macro model
that considers the Markov chain and deferrable loads like
electric vehicles and imposes the criteria of accepting and
rejecting active energy packets during the state of charging
and discharging. They analyzed the quality of service (QoS)
guarantee and the accuracy of the model.

At the same line, Nardelli et al. [62] examined the
implementation of the EI concept through PEM for resi-
dential sector loads. Their work considers a cyber-physical
domain where flexible loads request energy as virtual energy
packets from servers or a common inventory. The inven-
tory is then responsible for the optimization and manage-
ment of resource allocation based on prioritization, etc. To
achieve QoS, the authors emphasized the role of massive
machine-type communication (MTC) with ultra-reliable low
latency. Nardelli and his group further extended their work
in [145] and proposed PEM for flexible loads in the res-
idential sector. Their work considers a cyber-physical sys-
tem in which three types of loads send requests as virtual
energy packets to the energy server through a residential
energy router. The energy server can accept or reject the
requests based on the energy available and prioritization
rule/algorithm used. The proposed management algorithm
addresses the peak load consumption and coordinates energy
demand efficiently.

V. FUTURE PERSPECTIVES
Although the EI combines many promising features and ver-
satile technologies, it requires co-ordination and co-operation
between numerous energy, information and communication
networks, which raises a number of challenges, such as sys-
tem complexity, system security, efficiency, standardization
issues, social acceptance, and energy trading and business
models. We will now discuss the challenges (Fig. 6) that
should be addressed in future researches.
• System complexity:An EI structure is built on multiple
systems, which makes design, control, and optimization
of the entire multi-level system comprising communica-
tion, information, and energy infrastructure very com-
plex. On the one hand, the EI potentially offers exciting
features based on latest technologies in communication
and information but, on the other hand, reliability, effi-
ciency, and robustness remain key issues hampering its
implementation. Gungor et al. [146] used a three-layer

division to discuss the communication requirements of
potential smart grid applications to ensure flexible uti-
lization of energy sources with advanced technologies:
the application layer, power layer, and communication
layer. A wide range of technologies is analyzed and the
work also investigates the management of communica-
tion and information processing independently for each
layer. Another interesting work [147] has investigated an
energy-efficient infrastructure for communication and
information for three cases: home area networks, neigh-
borhood area networks, and wide-area networks.

• Latency: Latency is defined in [148] as ‘‘the time
between when the state occurred and when it was acted
upon by an application.’’ To enable plug and play ser-
vices and fully utilize the energy at all times, latency
requirements have to be very strict. For example, in an
electric substation, the communication latency for pro-
tection information is 8–12 ms, and for controlling and
monitoring purposes is 16 ms [98]. These requirements
could be even stricter in the case of MTC, as discussed
in [149], and in the EI.

• Power electronics technologies: With the unprece-
dented integration of energy resources into the existing
power system, EI components such as the ER, EH,
and EIAE must provide robust conversion of energy
resources as well as desired frequencies and voltages.
In AC/DC MGs, power electronics-based devices are
the leading technologies for power sharing and volt-
age restoration, as mentioned in IV-A. Achieving
high-quality power supply in terms of efficiency and
reliability is another challenge that needs to be overcome
by leveraging efficient power electronics technologies
(e.g., wide band-gap power semiconductors) and con-
version systems.

• Efficiency: A core objective of the EI is to achieve
improved efficiency compared to traditional power grids
and smart grid. However, this is not easy because the
aim of EI is to incorporate massive utilization of RERs.
Indeed, it is important to manage, control, and optimize
all RERs efficiently. The multiple energy vectors in
an EI provide flexibility to accomodate and optimize
the energy flow in an efficient manner to some extent.
Furthermore, the two main drivers for improving effi-
ciency in the EI are; the scheduling or management
methodology in the physical energy delivery infrastruc-
ture, and in the ICT system. Both of them are briefly
discussed below.

• Energy scheduling and management: To maintain
flexible demand and supply, special attention should be
given to the EMP due to the multi-layer architecture
of the EI. Thus far, a few researches have discussed
some control and management schemes, particularly
centralized and distributed management. However,
better and smarter energy management strategies must
be employed for the optimal scheduling of energy
resources. This also has the knock-on effect of
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FIGURE 6. Challenges and requirements for advancing the energy internet (EI) technologies; future researches can focus on
addressing these challenges.

encouraging prosumers to take part in the energy trans-
actions using DR and DSM. Moreover, the efficient
management of the storage network could also benefit
both consumers and suppliers and lead to an overall
economic and stable power grid.

• Information and communication network: The infor-
mation and communication network (ICN) layer is the
key for realizing a high-functioning EI. A fast and robust
ICN network allows quick and seamless co-ordination
and control of the complex EI network. However,
it is still challenging to efficiently process and quickly
communicate big data from different RERs and to
improve the system performance. Some studies such as
[150], [151] have discussed the information layer and its
transmission in the EI. Another work [98] proposed an
SDEI as an advanced approach to meet the demands and
requirements of ICN. However, this is still an emerging
research area that requires standard and efficient proto-
cols for ICN. As discussed in [62], the development of
the fifth generation of mobile systems (5G) and other
solutions, such as edge computing for vertical applica-
tions, point toward a promising pathway to realize the
EI in a more cost-effective manner.

• System security: In the EI, the multiway flow of infor-
mation and communication is monitored and controlled
by widespread and heterogeneous devices including the
ER, smart meters, etc. These ubiquitous devices bring
many security concerns for the ICN and energy net-
work [152]. The issue of system security deserves great
attention because inadequate security can pose a severe
threat to system reliability, stability, and efficiency.
Generally, the EI architecture relies strongly on the ICN
to control, predict, manage, combine, and coordinate
the energy resources. However, ICNs are vulnerable to
cyberattacks that can jeopardize EI operations. Cyberat-
tacks that could threaten system stability include denial-
of-service (DoS) attacks, malware injection, and fake
energy pricing [153]. To secure the stability and safety
of the entire infrastructure, appropriate control system
approaches and security detection techniques should be
utilized.

• Standardization: To promote and implement the EI in a
comprehensive manner, a set of well-defined standards
should be established with global-level collaborations
among governments, regulatory authorities, and indus-
tries [154]. Since the EI represents a comprehensive
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multi-layer system that combines power generation,
transmission, and consumption with ICN and inter-
net technology, standard protocols and standardization
are necessary to fast-track worldwide implementations
using best practices. Many interoperability and commu-
nication standard protocols are already available for the
smart grid, such as IEEE P2030, IEEE P2030.1, and IEC
60870 [146], [155], and a few of them are applicable
to the EI, e.g., ISO/IEC /IEEE1880, IOT-G230MHZ,
and TD-LTE230. Nevertheless, there is a great need to
establish further standard protocols [25], [38].

• Energy trading and business models: To support
and strengthen the EI applications, new policies for
energy trading and innovative business frameworks are
an urgent and critical requirement. The business poten-
tial of EI-enabled smart grids should be investigated
as a way to engage energy users to perform trading
and decision making. Governments and policymakers
have an important role in facilitating energy market
participation. Zhou et al. [156] considered a three-layer
business management module for the EI. The module
is associated with big data analytics from MESs and
numerous services and applications to perform business
management operations and tasks. To be able to develop
an effective business model for the EI, stakeholders
such as energy providers, regulators, operators, and
prosumers must deepen their collaboration and facilitate
cooperation on a larger scale.

• Social acceptance: The EI can only be realized by
involving energy users fully and by making the best
possible use of advanced technologies. Social awareness
should be promoted extensively through the following
steps: (i) improving or changing users’ perceptions of
modern technologies; (ii) promoting or publicizing the
EI concept; and (iii) involving users in decision making.
Recently, the social acceptance of various renewable
technologies, such as PV or wind energy, has achieved
considerable attention [157], and there is a similar
need for tailored policies, business models, and open
interactions to advance EI development.

VI. CONCLUSION
In this paper, we have reviewed the current definitions and
conceptual basis of the EI given in the scientific literature;
analyzed and categorized the scientific literature into broad
categories; and proposed a modern universal definition that
broadly captures the concept of the EI and its scope of
applications. Further, we have also reviewed the technolo-
gies underpinning the EI paradigm and its implementations.
We have presented the requirements that need to be fulfilled
before our envisioned EI is implemented to its fullest extent
and definition. And finally, we have explained the challenges
that need to be overcome for the EI to be a successful tech-
nology in the future.

The EI is a technological paradigm whose promise is
based on the ongoing remarkable advances in ICTs, power

electronics technologies, and artificial intelligence methods.
However, as indicated in this review, several challenges need
to be addressed before the EI becomes a reality. These chal-
lenges can be broadly summarized into three categories as
follows:

• Technological challenges related to the technological
maturity and efficiency of the distributed devices in the
network, ICT infrastructure, cyber-security and privacy,
management algorithms, etc.

• Policy challenges such as the need for standardization,
modernized constructive regulation, and incentivization
of private- or public-sector participation.

• Social challenges such as the need for public acceptance,
improving societal welfare, etc.

Currently, tremendous progress is being made to overcome
these bottlenecks, and some versions of the EI have been
practically implemented, for example, by using packetized
energy concepts [158]. The EI has steadily grown to gain
acceptance and become a popular research topic with sig-
nificant practical benefits. Thus, the EI clearly has tremen-
dous potential to radically transform the energy distribution
technology and business, especially in the electricity sector.
Indeed, the EI concept promises to make the electricity grid
a truly intelligent grid.
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Abstract—The so-called Internet of Things (IoT) and advanced
communication technologies have already demonstrated a great
potential to manage residential energy resources via demand-side
management. This work presents a home energy management
system in that focused on the energy reallocation problem where
consumers shall shift their energy consumption patterns away
from peak periods and/or high electricity prices. Our solution
differentiates residential loads into two categories: (i) fixed power
appliances and (ii) flexible ones. Therefrom, we formulate our
problem as constraint optimization problem, aiming to reduce
the electricity cost based on day-ahead prices and the peak-to-
average ratio. To solve this problem, two well-known heuristics,
the Genetic Algorithm (GA) and the Harmony Search Algorithm
(HSA), are employed. These two approaches are compared to
the case where no reallocation happens. Our numerical results
show that both methods; GA and HSA can effectively reduce
the electricity cost by 0.9%, 3.98 %, and PAR by 15%, 5.8%,
respectively.

Index Terms—demand-side management, heuristics, genetic
algorithm, harmony search algorithm

I. INTRODUCTION

Smart grid technologies, smart meters and demand response
have enabled consumers to know their demand profile in more
details, while helping the system operator to improve the
efficiency and reliability of the power system [1]. In particular,
demand-side management (DSM) has great impact on grid
operation by, for example, facilitating the incorporation of
renewable resources, and by allowing the consumers to ac-
tively participate in electricity dispatch. As part of this broader
concept, demand-response (DR) is defined as [2]: “Changes
in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to
induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized”.

In this context, DR can categorized into two aspects,
viz. incentive and price-based programs [3]. Incentive based
programs involve customers’ participation to reallocate their
energy consumption in off peak hours in response to which
a reward (bill credit payment) is given to them for their
participation in the program. Incentive programs are direct
load control (DLC), curtailable load, demand bidding & buy
back, emergency & demand. On the other hand, price-based
programs involve various pricing signals at different times to
reduce energy consumption by providing monetary benefits
to the consumers. It includes time of use, real time pricing,
inclined block rate, critical peak pricing and day ahead pricing

[4]. In a recent research, price-based DR has been studied
widely in residential sector, particularly, in home energy
management system (HEMS). For instance [4]–[8], various
HEMS models in the context of DR have investigated to
achieve optimal energy consumption of household appliances
using optimization model, aiming to reduce electricity cost,
balance energy demand, and improve energy efficiency.

In general, HEMS plays a significant role in energy man-
agement of residential sector and allows exchange of energy
consumption information with the utility to improve energy
profile as well as the reliability of power grid. The work in [4]
comprehensively described HEMS architecture, DR programs,
smart grid technologies, communication protocols, and various
decision making algorithms like artificial intelligence (AI) and
heuristic scheduling algorithms. These algorithms are consid-
ered as an essential part towards the energy optimization and
load shifting operations in HEMS. Fan-Lin and Xiao-Jun in
[5], designed a residential energy usage framework using ge-
netic algorithm (GA) which attempts to maximize re-trailer’s
profit. The home appliances are classified in two groups (shift
able and curtail able) and hourly energy usage is predicted in
accordance with the electricity price and temperature signal.
In another work [6], a multi-objective problem is applied
to control energy consumption of household micro-grid and
hybrid differential evolution is used to solve the scheduling
problem. In a similar context with a recent work [7] authors
have been explored the HEMS based on hybrid optimization
technique to manage energy consumption of smart appliances
in 24 hours time slots depending upon pricing tariffs and
coordination among appliances. In [8], authors extended their
previous work and incorporated various time slots, peak to
average ratio (PAR), and multiple homes scenarios with much
improved hybrid technique bacterial flower pollination algo-
rithm (BFPA).

Kai Ma et al. further developed an optimization problem
in [9] and investigated the trade-off between electricity cost
and discomfort cost. In [10], a generalize HEMS discussed
based on GA to schedule energy consumption and minimize
operational cost of electricity considering user satisfaction
constraints. Similarly, reference [11] adopted GA based on
DSM (GA-DSM) strategy to distribute the power in indus-
trial area effectively. In an other contribution [12], authors
interested to analyze scheduling mechanism in domestic sector
using binary particle swarm optimization (BPSO) to optimize
energy consumption of household in pre define time intervals.
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Different from GA and BPSO, authors in [13] have been
proposed an improved algorithm binary backtracking search
algorithm (BBSA) to balance energy usage and effectively
control cost. The simulation results of BBSA and BPSO are
compared which shows effectiveness of BBSA. In the same
fashion authors in [14], [15] introduced practical pricing and
green energy scheduling plan with an aim of minimizing
overall electricity cost while applying different approaches
such as, non linear programming and game theory algorithm,
respectively. In the same sense, but with different approach,
we develop here an efficient DR strategy to lessen the cost and
the peak-to-average ratio of energy usage, which is expect to
contribute towards the green house emissions and fuel wastage.

Our goal here is to explore the energy consumption be-
haviour for residential consumer in order to shift some specific
loads trying to shape the load curve, accordingly. This paper
proposes an optimization model for scheduling energy con-
sumption of various kind of appliances, which are classified
into two groups based on their features and parameters, namely
fixed power and flexible power appliances. We compare the
performance of three different approaches: optimization via
GA, optimization via harmony search algorithm (HSA), and
no optimization (i.e., no load shift is performed). Our results
compare the cost and the peak-to-average ratio in the three
scenarios, showing that designed algorithms have the best
performance. Our contributions are summarized as:

‚ We develop DR strategy to address the peak load shaving
problem and flexibly control the household appliances
specifically, at times when prices of electricity are high.

‚ To address the problem, we develop system model consid-
ering the household appliances and classifying them into
two types; fixed power and flexible power appliances. The
energy consumption of the appliances are managed and
controlled considering the time of use pricing model.

‚ In order to solve the problem, we establish optimization
model along with two well known heuristics; GA and
HSA.

‚ We analyze three different scenario: Without HEMS,
With HEMS-GA, and With HEMS-HSA. For example,
with HSA-HEMS the cost and PAR are reduced to 3.98%
and 5.8 %, respectively.

‚ We demonstrate the proposed solution is scalable for
various scenarios by testing the designed algorithm with
multiple users case i.e., 10 users and 50 users considering
different time resolutions (60 minutes and 30 minutes).

The rest of the paper is organizes as follows. Section II
states the system model used here, including the problem
formulation, its input parameters and the optimization methods
used. Section III presents the numerical results and the perfor-
mance evaluation of the three different scenarios. Section IV
conclude this paper and propose some potential future work.

II. SYSTEM MODELING

In this work, we investigate the energy reallocation problem
of peak hours based on DR strategy. We consider home energy
management environment where each home is equipped with

HEMS with the function of optimizing energy consumption
of household appliances based on different input parameters
as electricity price and type of load. The two way of commu-
nication between HEMS and utility enabled the consumers
to alter the energy usage based on electricity price signal.
The electricity price depends on the demand of energy, higher
the demand the higher will be the electricity cost and vice
versa. The demand information of energy is transmitted by
smart meters to utility via IoT network. The peak energy
demand (of home appliances) can be controlled appropriately
by addressing the PAR. So that, we assorted home appliances
into two types based on their features and priorities, namely,
fixed and flexible loads [16], [17].

In order to support the communication infrastructure, ad-
vance metering infrastructure (AMI) is an essential element
in smart grid. AMI combines multi-way communication, data
management system and particularly, smart metering system.
This enables smart meters (SM) to measure and collect the
information of energy consumption in an accurate and precise
way. Moreover, this information is also exchanged between
HEMS and utility industry simultaneously in a real time sce-
nario. The communication between HEMS and utility industry
also enables the user to take part in DR strategies and manage
the energy demand effectively. On the other side, users in
home can monitor the information such as available energy,
energy consumption, price of energy in the next hour, etc.,
using various interfaces e.g., smart phones, computers etc.,
and adjust energy consumption based on a DR strategy.

A. Appliances classification

Appliances are classified here into two types, namely fixed
power and flexible power appliances, as discussed next.

1) Fixed power appliances: pAfixed
S q fixed power appli-

ances are ceiling fan, lamp, or TV, these have fixed power con-
sumption profile and operational time and due to continuous
power supply HEMS will not schedule fixed power appliances
i.e., Afixed

S,h “ Efixed

2) Flexible power appliances: pAF
S q Flexible power appli-

ances can be controlled and their energy consumption profile
are scheduled by HEMS. Their operation is attributed as
incentive-based pAF

S,I) and price-based (AF
S,P). The energy

usage of (AF
S,I) is curtailed considering DR strategy. Various

pricing signals can be adopted to reallocate the load demand
from peak to off-peak hours to achieve cost reduction. The
price based flexible appliances are of two types (i) non-
interruptible and (ii) interruptible. The operation time inter-
val of non-interruptible appliance must not be halted during
their operating time by HEMS such as, washing machine
and iron. Interruptible appliances can be interrupted in any
time period like, during the peak demand or high cost of
electricity generation e.g., air condition and water heater. The
energy usage of interruptible appliances are presented below:
Eflexmin ď Eflex ď Eflexmax . The power rating (PR) and
operational time interval (OTI) are shown in the Table I
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B. Electricity pricing model

Pricing tariff refers to various pricing scheme for designated
time frame. DR based pricing tariff plays important role to
allow active participation of consumer in residential sector.
Among various pricing tariffs discussed in the literature [3],
[4], [17], we opted time of use pricing model in our simulation
results. It is briefly discussed below:

Time of use: Time of use (TOU) pricing scheme reflects
price of electricity in different time of interval including,
off peak, mid peak, and peak hours. TOU tariff imparts the
average electricity cost of power generation during different
time periods and allows the consumers to manage their energy
usage voluntarily instead of being forced by utility. In the
same way, consumers have the flexibility either to use the
electricity in peak time interval (which yields higher cost)
or off peak (lower cost due to less stress on generation
resources). Typically, TOU is spreading widely and used in
many countries for residential sector consumers. For instance,
TOU tariff is implemented in USA, Canada, and Ireland, and
customers pay their bill according to fixed prices in different
time periods i.e., during off , mid, and peak hours [3], [18],
[19]. We have used TOU taken from [20]. An example of TOU
is given in Fig. 1.

The total cost of electricity can be expressed using ToU
pricing γ, and states of the household appliances π as:

CT ptq “
T
ÿ

t“1

Eptq ˆ πptq ˆ γptq. (1)

C. Cost function and energy demand

Let AS represents set of appliances and Pfixedptq, PF ptq
denote the energy consumption of fixed and flexible power
appliance in time ptq. The total energy consumption pPT ptqq
in each time period t ε TS={1,2,....T }, then considering this
definition total energy usage during t εT can be calculated
as Eptq “

řAS

A “ 1
pPT ptqq. The overall cost is expressed

mathematically as:

ET “
T
ÿ

t“1

AS
ÿ

A“1

ˆ

Eptq ˆ πptq ˆ γptq
˙

. (2)

In above equation, the first term on the right side computes
the cost of electricity in each time slot t; the second term
computes amount of energy used in t-th hour of the day; π is
the decision variable that represents ON and OFF states of the
appliances. As we are interested in reducing electricity cost,
nevertheless the reallocation of energy into off peak hours is
also an imperative step to improve the functionality of the grid.
Therefore, PAR is computed as:

PAR “
Gpeak
Gavg

“

Tmax
tεTS

Eptq
řT
t“1 Eptq

, (3)

where Gpeak and Gavg indicate the maximum and average
aggregated load in any time slot (t).
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Fig. 1: TOU electricity price tariff, left to right side: price for one day with
time slots 60 and 30 minutes.

D. Objective function

In general, the focus of this work is to jointly minimize
the cost of energy and PAR. To accomplish the objective,
HEMS is considered to schedule the energy usage of AS using
optimization problem.

Objectives

$

’

&

’

%

Cost minimization
PAR
Energy optimization

The ET represents the total energy usage cost; PAR is the ratio
of maximum aggregated energy consumed and mean value of
the total energy. The constraints related to objective are as
follow:

T
ÿ

t“1

ΨWith´HEMS ď

T
ÿ

t“1

ΨWithout´HEMS (4)

γi,t “

#

1, @ t P OTI

0, otherwise
(5)

T
ÿ

t“1

ΥAS ,t “ ΥOTI @t P TS (6)

PARSCH ď PARUNSCH (7)

0 ď Eptq ď GT (8)

The equations (4) to (8) represents the constraints of the
designed model. The constraint (4) illustrates the total cost of
the energy "With-HEMS" must be less or equal to "Without
HEMS". Constraint (5) shows appliances states, "1" indicates
ON and "0" OFF state. The constraint (6) means the OTI of
each appliance should be completed before and after schedul-
ing. The constraint (7) reflects that PAR should be remained
less or equal to case (Without-HEMS). The last constraint
describes that energy consumption of household should not
exceed the total available energy.

E. Optimization techniques

1) Genetic Algorithm (GA): is meta heuristic algorithm
and inspired by the theory of natural evolution. GA is one
of the most applied algorithm in various field of computer
science and engineering due to the fast computational time
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and easy implementation of many complex problems. Among
them GA is one of the most applied algorithm in various
field of computer science and engineering [21]. GA is in-
fluenced by biological evolution process which is based on
genetic inheritance and natural selection. GA is population
based heuristic algorithm and starts with the initialization of
population then each candidate in the population (known as
genes) is evaluated using objective function. To select better
candidate for the next iteration, we introduce tournament
selection. The role of selection is to select best individuals
(parent) for recombination and replacement process. Usually,
recombination (crossover) and replacement (mutation) are the
main driving agents to modify the population and provide
diverse search space. In our designed model, we implemented
GA that is associated with binary representation where “0"
indicates the OFF and “1" shows ON state. Then, each
candidate in the population is tested by objective function.
Two point crossover and uniform mutation are introduced
to achieve better results. After crossover and mutation the
new set of candidates again evaluated and compared with
previous candidates. The stopping criteria is maximum number
of population size, and the allocation is the best candidate that
satisfies the objective function.

2) Harmony Search Algorithm (HSA): is a popular meta
heuristic algorithm inspired from musical improvisation pro-
cess [22]. It is developed with an aim to search best state
of harmony. This (best) harmony in the music is similar to
optimization process to find global optimal solutions for a
given objective function. HSA is an idealising mapping from
the qualitative improvisation into quantitative formulation,
and hence transforming musical harmony into optimization
process. The HSA steps are given in the following.

Step 1: In the beginning, HSA parameters are initialized
such as, size of harmony memory (HMS), harmony memory
consideration rate (HMCR), bandwidth distance (BW), pitch
adjustment rate (Par), harmony memory (HM), and total
improvisations (NI).

Step 2: In the second step, initial random population is
generated using Eq (4). This uniformly random distributed
population is stored and analyzed in HM then evaluated using
objective function.

A0
i,j “ Xmin

j `BjpX
max
j ´Xmin

j q, (9)

where Xmax
j and Xmin

j are the upper and lower limits and
j=1,2,3,..HM.

Step 3: In this step, a set of new vectors known as
harmony vectors are generated based on the criteria, HMCR,
(1-HMCR), and Par. The stored values in HM are then selected
with HMCR and Par probability or it can be opted randomly
from HM with the probability of (1-HMCR). In the designed
model, it is important to select the best set of candidates from
HM in order to effectively minimize objective function. The

TABLE I: Appliances’ characterization

Appliance Class PR (kWh) OTI (hours)
Ceiling fan fixed 0.075 14
Lamp fixed 0.1 13
TV fixed 0.48 7
Oven fixed 2.3 6
Washing machine flex 0.7 8
Iron flex 1.8 7
Air conditioner flex 1.44 10
Water heater flex 4.45 8

Fig. 2: Single user, Legend: (a) and (b) Energy usage profile for 60 minutes
time resolution (c) PAR (d) Electricity cost

above discussion can be mathematically expressed as [23]:

Anew “

#

Aεta1i, a2i, a3i . . . aHMu, With P pHMCRq

Aεta1, a2, a3 . . . ANu, With P p1´HMCRq
(10)

Anew “

#

Y ES, With P pParq

NO, With P p1´ Parq.
(11)

In each iteration this process searches new best harmony
(solution) and replaces the worst individual in HM. The
process is terminated when stopping criteria (total number of
improvisation) is met.

III. SIMULATION AND EXPERIMENT RESULTS

In this section, we conduct the simulation results based
on metrics energy consumption, electricity cost, and PAR.
To present the performance of optimization algorithms, we
investigate the experimental results of particularly eight appli-
ances including; four fixed power, two non-interrupt-able, and
two interrupt-able flexible power appliances. The fixed power
appliances consume fixed power and cannot be scheduled
by HEMS (e.g., fan, lamp, TV, and oven). However, non-
interrupt-able appliances operate on fixed power and can not
stop their operation during scheduling time period (e.g., wash-
ing machine and iron) we assume that HEMS will schedule
the iron operation after washing machine. While, interrupt-able
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(a) (b)

Fig. 3: Energy consumption information (a) 10 users with time slots of 60 minutes and 30 minutes (b) 50 users with time slots of 60 minutes and 30 minutes

Fig. 4: PAR and electricity cost information. Legend: (a)10 users with timeslot
60 minutes (b) 10 users with time slot 30 minutes (c)50 users with time slot
60 minutes (d) 50 users with time slot 30 minutes

appliances (air condition and water heater) can be controlled
and scheduled based on the pricing signal in any time period.
To present our results, we consider energy consumption of
household appliances for one day with time resolution of
one hour (t) (starting from 12 am to the next day 12 am)
and the TOU pricing tariff for Winter season (November 1,
2018 - April 30, 2019). Moreover, we also demonstrate that
above scenario can be used for multiple users and various time
resolutions such as; 10 users with time resolution 60 and 30
minutes and 50 users with time resolution 60 and 30 minutes.

As mentioned earlier, energy scheduling is one of the core
motivation of this work, therefore, HEMS is designed based on
the optimization algorithms; GA and HSA. Fig. 2 represents
load profile (a and b), PAR (c) , and electricity cost (d) in
one day. It is seen in Fig. 2 that each algorithm attempts
to schedule energy profile in off peak time (i.e., 21-th hour
evening time to 7-the morning time) when the price of energy
is low (6.5 cents/kWh). While in peak hours (7 to 11 and 5
to 7 (am)) with price 13.2 cents/kWh, the maximum energy
is consumed 8.72 kWh by "Without HEMS" whereas, GA-

HEMS and HSA-HEMS accounted for 8.67 kWh and 7.14
kWh, respectively. On the other hand, Fig. 3a and Fig. 3b
illustrate the energy consumption of the household appliances
for 10 and 50 users with time horizon of 60 and 30 minutes.
The maximum energy consumption is 9.35 kWh for single user
and 93.5 kWh for 10 users with time span of 60 and 30 minutes
while these consumption are flexibly control and shifted to off-
peak times in order to reduce the electricity bill. Furthermore,
the maximum consumption in case of 50 users (both time
interval) are also optimized by GA-HEMS and HSA-HEMS
by 9.82 % and 6.20 %, respectively.

The effectiveness of designed HSA-HEMS and GA-HEMS
is also evaluated by the PAR, defined as the maximum aggre-
gated load (i.e., peak load) to average load used by consumer.
The PAR values is reduced to 15% and 5.8% by GA and HSA,
respectively, compared to the scenario i.e., "Without HEMS".
Moreover, in Fig. 4 (left side) , we demonstrate the PAR for
scenarios ;multiple users (10 and 50) with the time resolution
of 60 and 30 minutes. Out of all maximum reduction of PAR is
17.41 %, which can be seen for 50 homes with time interval 60
minute. Thus, It shows that the energy consumption is shifted
from peak to off- peak time period, proving that GA-HEMS
and HSA-HEMS can manage energy consumption adeptly .

Fig. 4 (right side) presents the comparison of electricity.
It can be observed that the deployment of HSA-HEMS and
GA-HEMS reduces the cost in contrast to the case "Without
HEMS". Since both algorithms attempt to reduce the cost of
the electricity, however, among all (a), (b), (c), and (d) the
maximum cost is reduced 1.83% by HSA-HEMS in case of
50 users and 60 minutes time slots. It is also seen that cost of
energy is maximum (13285 cents for 50 users and 30 minutes
time slots) for one complete day "Without HEMS", because
most of the energy is used either in peak time or mid peak,
while on the contrary, HSA-HEMS and GA-HEMS reduce
the cost (1.64%) and (1.34%), respectively, in response to
pricing tariff. The statistical analysis of the designed scenarios
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TABLE II: Comparative performance based on numerical results. Costs are in cents (¢) and Red. means reduction.

Without HEMS With GA-HEMS With HSA-HEMS
Designed case Max EH Cost (¢) PAR % EH Red. % ¢ Red. % PAR Red. % EH Red. % ¢ Red. % PAR Red.
1 user; 60 min 9.35 1347.9 6.13 9.30 0.9 15 3.95 3.98 5.8
10 users; 60 min 93.50 13479 61.36 7.74 0.71 14.6 6.20 1.37 11.94
50 users; 60 min 467.50 67394 306.79 9.82 0.98 17.41 6.20 1.83 12.02
10 users; 30 min 93.50 26569 15.34 6.20 1.41 6.51 6.20 1.67 12.05
50 users; 30 min 467.50 13285 76.70 9.00 1.36 11.86 5.40 1.64 10.52

is provided in Table II.

IV. CONCLUSION

In this paper we designed heuristic model combing with
DR strategies for optimizing energy consumption in residential
sector. Considering HEMS environment, we modeled our opti-
mization problem using various types of household appliances,
electricity pricing tariffs, and energy demand. The results
show that designed algorithms; GA and HSA can effectively
optimize energy consumption, reduce electricity cost by 0.9
%, 3.98 %, and PAR by 15 %, 5.8 %, respectively. Also
with the different number of users and timescales, the relative
performance of both algorithms is effective and minimized the
cost and PAR accordingly. As a result, efficient management
of resources, peak shaving (power grid), and improve energy
usage rate of power grid can be achieved. Simulation results
illustrate that both heuristics illustrated the potential of those
heuristics in terms of electricity cost and PAR. Besides, it is
also shown that DR-based strategies encourage the consumer
to manage their energy consumption by shifting the peak hours
into off peaks.

In future works, we expect to include distributed energy
resources and pollution emitted at time of electricity genera-
tion, then it would become multi-objective problem (cost and
pollution minimization). We also plan to analyze the impact
of cyber-attacks in the price signals used by the HEMS.
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I
nternet of Things (IoT) and advanced communica-
tion technologies have demonstrated great potential 
to manage residential energy resources by enabling 
demand-side management (DSM). Home energy 
management systems (HEMSs) can automatically 

control electricity production and usage inside homes 

using DSM techniques. These HEMSs wirelessly collect 
information from hardware installed in the power system 
and homes with the objective of intelligently and efficient-
ly optimizing electricity usage and minimizing costs. 

However, HEMSs can be vulnerable to cyberat-
tacks that target the electricity pricing model. The 
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cyberattacker manipulates the 
pricing information collected by 
a customer’s HEMS to misguide 
its algorithms toward nonoptimal 
solutions. The customer’s elec-
tricity bill increases, and addi-
tional peaks are created without 
being detected by the system 
operator. This article introduces 
demand response (DR)-based 
DSM in HEMSs and discusses DR 
opt imizat ion using heur ist ic 
algorithms (HAs). Moreover, it 
addresses the possibilities and 
impacts of cyberattacks, their effectiveness, and the 
degree of resilience of HAs against them. This arti-
cle also opens research questions and shows pro-
spective directions.

Home Energy Management Systems 
Smart grid technologies and smart meters have enabled 
customers to know their demand profiles in greater 
detail while helping electr icity grid operators to 
improve the efficiency and reliability of the power sys-
tem [1]. This encourages both customers and grid 

operators to modify load energy 
demand profiles to achieve differ-
ent objectives, such as optimizing 
the usage of renewable energy, 
reducing peak loads, or moving 
some loads to off-peak times, 
such as nighttime and weekends. 
Such DSM has become important 
and popular recently because it 
facilitates the incorporation of 
renewable energy sources (RESs) 
into the power system by custom-
ers. At the same time, grid opera-
tions are significantly impacted 

by the active participation of customers in electricity 
dispatch. To implement DSM and optimize electricity 
usage, residential customers often employ HEMSs. 
These play a significant role in the energy management 
of the residential sector and allow the exchange of ener-
gy consumption information with the utility to improve 
the energy profile and reliability of the power grid.

An HEMS (Figure 1) is an information and manage-
ment system to automatically (or semiautomatically) 
monitor and control the electrical energy production 
and usage within a household by processing the 
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Figure 1. An HEMS in the electrical power system. SM: smart meter (subscript indicates j = {1,2,3..N}).

Home energy 
management systems 
can automatically 
control electricity 
production and usage 
inside homes using 
DSM techniques.
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information collected from hard-
ware installed in the electrical 
power system and household. 
The typical objective of an HEMS 
is to minimize the customer’s 
costs. Bidirectional communica-
tion among the HEMS, smart 
meters, utility, and power grid 
enables the HEMS to meet its 
objectives by, for example, imple-
menting a peak-shaving strategy 
while considering the electricity 
price signal. 

An IoT network, along with an 
advanced metering infrastruc-
ture (AMI), supports the bidirectional communication 
and enables robust data management systems, strong 
network connectivity, and smart metering systems. 
The deployment of an AMI makes it possible for smart 
meters to measure and collect useful information, such 
as the energy consumption, available (generated) ener-
gy, or energy price in the next hour, in a precise and 
t i mely ma n ner.  Moreover,  t h i s  i n for mat ion i s 
exchanged between the HEMS and utility simultane-
ously in real time. As a result, customers can take 
par t in DSM strateg ies and manage the energy 
demand effectively.

Figure 2 illustrates the operations of a typical HEMS. 
Four components—the data aggregator (DA), software 
and network management (SNM), appliance manage-
ment system (AMS), and HA—interface with each other 
to form the HEMS. The DA receives energy pricing and 
production information and sends this to the SNM and 
HA. The AMS component collects data about appliances, 
such as energy consumption, operation time interval, 
data received from user interfaces, and so on, and 
exchanges them with the HA and SNM. Thereafter, the 
HA executes the scheduling task and sends the results (a 
new schedule and so on) to the SNM, which operates as 
the primary control and management component, man-
aging the accumulated data of the DA, HA, and AMS 
components and processing the flow of instructions in 
the network. 

HEMSs and their characteristics have been exten-
sively investigated in the last decade, and a compre-
hensive descr iption of HEMS architectures, DSM 
approaches, smart grid technologies, communication 
protocols, and various decision-making algorithms 
can be found in [2]. This article focuses on the opera-
tional aspects of HEMSs and assesses their resilience 
against a specific type of cyberattack. Such an attack 
is def ined by fake pr ice signals that are used as 
inputs to the HEMSs to alter their load schedule. To 
the best of the authors’ knowledge, this important 
aspect has not yet been studied in the l iterature. 
Before we discuss the details of the proposed study, 

we brief ly introduce the main 
ideas behind DR and the sched-
uling algorithms. 

Demand Response
The goal of an HEMS is to enable 
and support DSM to meet specific 
objectives, such as the minimiza-
tion of customers’ electricity bills, 
utility costs, or system costs. DSM 
is typically achieved by offering 
financial incentives to customers, 
inducing behav iora l changes 
through education, using higher-
efficiency loads, increasing diver-

sity factors, using distributed energy resources, or other 
measures [3]. The continuous integration of RESs into the 
power system has made it important to enable effective 
DSM to match the power supply with the load.

DR methods, which offer financial incentives to cus-
tomers, are popular and highly researched techniques to 
achieve DSM since they incentivize RES integration along 
with DSM. DR is defined as [4]:

a tariff or program established to motivate changes in 
electric usage by end-users from their normal con-
sumption patterns in response to changes in the price 
of electricity over time, or to give incentive payments 
designed to induce lower electricity use at times of 
high wholesale market prices or when system reliabil-
ity is jeopardized. 

HEMSs nearly always employ DR methods to achieve 
their goals.
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Figure 2. The typical operations of an HEMS. 
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power supply with  
the load.
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DR can be categorized into 
two types: incentive- and price-
based programs [5]. In an incen-
tive-based program, customers 
participate by reallocating their 
energy consumption in off-peak 
hours, in response to which a 
reward (a bill credit or payment) 
is given to them. Incentive-based 
programs involve direct load con-
trol, load curtailing, emergency 
DRs, and so on.

On the other hand, a price-based 
program is a more indirect means 
of achieving DR. In this approach, 
different pricing signals are sent 
at varying times to customers. As 
a result, customers are induced 
to reduce their energy consump-
tion at certain times to take 
advantage of possible monetary benefits. Price-based 
programs include time-of-use (TOU) tariffs, real-time 
pricing, inclined block rate, critical peak pricing, and 
day-ahead pricing [2], [6], [7]. In recent research, price-
based DR has been widely studied in the residential sec-
tor, particularly in HEMSs.

For price-based DR, the price tariff scheme, i.e., the 
price bands for different designated time intervals, 
including off-peak, midpeak, and peak hours, is impor-
tant. The TOU tariff scheme is widely used in many 
countries for customers in the residential sector. It 
provides the average electricity cost of power genera-
tion during different time periods, thereby enabling 
customers to manage their energy usage voluntarily. 
Customers have flexibility to use electricity either in 

the peak time interval (which 
yields a higher cost) or off peak 
(at a lower cost as a result of less 
stress on the grid).

In this case, DR algorithms 
depend on the flexibility offered 
by home appliances. An appli-
ance is flexible if its energy con-
sumption can be shifted in time 
within the boundaries of end-user 
comfor t requ i rements whi le 
maintaining the total consump-
tion [8]. Home appliances can be 
divided into two types based on 
their characteristics and priori-
ties [9], [10]: 

◆ �Fixed-power appliances have a
fixed power consumption pro-
file and operating time, e.g.,
ceiling fans, lamps, and TVs.

◆ Flexible-power appliances can be controlled, and
their energy consumption profiles can be scheduled
by the HEMS. Their operation can be controlled by
incentive- or price-based programs. These loads can
be further categorized into two types—uninterrupt-
ible and interruptible—depending on whether their
operations can be interrupted or not. Table 1 lists
the appliance classes of fixed and flexible home
appliances with their power ratings and operating
times [9]–[11].

Heuristic Scheduling Algorithms
Many techniques have been explored to exploit the 
flexibility in home appliances and perform DR-based 
optimization. A typical approach is to cleverly adapt 
optimization techniques to solve linear and nonlinear 
objective functions. Recently, artificial intelligence 
(AI)-based methods have also become popular. Heuris-
tic scheduling (HS) algorithms comprise an important 
group of techniques to realize energy optimization and 
load-shifting operations in HEMSs. Many HAs have 
been explored previously, depending on the problem 
setup and conditions [2], [7], [11]–[19]. Among the vari-
ous optimization techniques, the genetic algorithm (GA) 
and harmony search algorithm (HSA) are two impor-
tant ones that are particularly suitable for solving con-
straint-optimization-based scheduling problems and 
the flexible selection criteria of achieving an optimal 
(balanced) combination of exploration and exploitation 
[11], [20], [21]. 

Genetic Algorithm
GA is a widely applied algorithm due to its fast compu-
tational time and easy implementation of many com-
plex problems [22]. It is a metaheuristic algorithm 
inspired by the theory of natura l evolution and 

Appliance Type PR (kWh) OT (h)

Ceiling fan Fixed 0.075 14

Lamp Fixed 0.1 13

TV Fixed 0.48 7

Oven Fixed 2.3 6

Washing 
machine

Flexible (uninterruptible) 0.7 8

Iron Flexible (uninterruptible) 1.8 7

Air 
conditioner

Flexible (interruptible) 1.44 10

Water heater Flexible (interruptible) 4.45 8

Table 1. Home appliance characteristics: 
The type, power rating (PR), and 
operating time (OT).

DR methods, which 
offer financial 
incentives to 
customers, are 
popular and 
highly researched 
techniques to 
achieve DSM since 
they incentivize RES 
integration along  
with DSM.
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evolutional processes like genetic inheritance and nat-
ural selection.

GA is an iterative process in which a population of 
potential candidate solutions is first randomly generat-
ed. The population in each iteration is called a genera-
tion. All of the individual candidates (known as genes) 
in the population are then evaluated using a fitness 
function (i.e., the problem objective). The best candi-
dates are stochastically selected from the current gen-
eration, and their genomes are modified 
by recombinat ion (crossover) a nd 
replacement (mutation) to form a new 
generation of candidate solutions, which 
is then used in the next iteration. The 
stopping criteria for the algorithm are 
the maximum population size and best 
candidate allocation that satisfy the 
objective function.

Harmony Search Algorithm
HSA is a popular metaheuristic algorithm 
inspired by the musical improvisation pro-
cess [23]. Consider a music orchestra that 
improvises to find and perform the most 
harmonious and melodious music. Each 
musician in an orchestra corresponds to 
a decision variable, and an instrument’s 
pitch range corresponds to the set of 
possible values of the decision variable. 
The musical harmony produced by the 
musicians at a certain time can be con-
sidered as the solution vector for an iter-
ation. An audience’s aesthetic judgment 
of the music can be related to the fitness 
of the objective function. Just like a 
musical orchestra attempts to find (or 
play) the best music possible by improv-
ing it over time, the optimization algo-
rithm aims to progressively find the 
optimal solution. Thus, HSA is an ideal-
ized mapping from qualitative improvisa-
tion into a quantitative formulation, 
where musical harmony concepts are 
applied to an optimization process.

Representative Simulations  
for Demand Response in Home  
Energy Management Systems
Some simulation results are now provid-
ed to demonstrate the performance of 
the optimization algorithms GA and HSA. As 
the household loads, the eight appliances 
listed in Table 1 are investigated with the 
given power ratings and operating time 
periods. Since the uninterruptible appli-
ances cannot be shifted after they start 

operating, the HEMS schedules the operation of the iron 
after the washing machine. Interruptible appliances, on 
the other hand, are scheduled based on the pricing signal 
in any time period. The energy consumption of the house-
hold appliances for one day (starting from 12 a.m. to 
12 a.m. the following day) with a scheduling resolution of 
1 h (t) is considered. The TOU pricing tariffs for the sum-
mer (1 May to 31 October 2019) and winter (1 November 
2018 to 30 April 2019) seasons are taken from [24].
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Figure 3. The electricity costs per hour under the TOU pricing scheme 
for a day each in the (a) summer and (b) winter seasons without 
and with the two Has: GA and HSA.
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Figure 3 presents a comparison 
of the electricity costs for three 
cases—without an HEMS as well 
as with a GA- and an HSA-
HEMS—in the summer and win-
ter seasons. The deployment of an 
HSA- and a GA-HEMS led to lower 
total costs compared to the case 
without an HEMS. The energy 
cost was highest without an 
HEMS because most of the energy 
was used in either the peak or 
midpeak times. Between the two 
a lgor i t h m s ,  t he  HSA- H EMS 
reduced the cost by 43.55% and 
11.91% in the summer and winter 
seasons, respectively, while the GA-HEMS reduced it by 
23.37% and 18.91%, respectively.

Cyberattacks
In a smart grid, the real-time exchange of information, 
especially data collected from smart meters, electricity 
pricing markets, and utility companies, requires a secure 
and protective layer of the communication channel [25]. 
However, the complex structure of the smart grid and pro-
liferation of smart devices make it vulnerable to cyber-
attacks. A typical cyberattack in a smart grid is the 
injection of false data into the system to distort the ener-
gy demand, grid network states, and electricity pricing 
signals [26], [27].

How Cyberattacks Work
Tan et al. [28] studied the impact of security threats on a 
real-time pricing system, which could destabilize the 

electricity market or even cause 
severe failures. They delineated 
defensive measures against two 
classes of data integrity attacks: 
sca l ing (the meter reads an 
amplified version of the actual 
prices) and delaying (the meter 
uses old pr ices). In [29], the 
authors systemically examined 
the arbitrary injection of pricing 
(data) signals and proposed coun-
termeasures based on a cumula-
tive sum control chart technique 
to identify the attacks. The injec-
tion of false data creates a dispar-
ity between the generated and 

consumed power, which subsequently leads to two major 
problems: 1) the instability of the entire system and 2) an 
increase in the operational costs by the addition of 
forged data to the electricity market [30]–[32].

Figure 4 depicts possible cyberattacks on a cyber-
physical system comprising the communication infra-
structure of various components associated with a 
smart grid connected to an end-user household. The 
util ity collects information related to the energy 
demand (generation, consumption, and price) through 
the AMI and transmits this information to the smart 
meters and end users through an IoT or Wi-Fi network.

The hierarchical communication infrastructure 
shown is exposed to three kinds of cyberattacks [32]. 
First, an adversary can attack the utility’s main system 
(computer devices) and change the pricing curve. Sub-
sequently, this information is sent to the end users, and, 
based on the fake price, the HEMS schedules their 

loads. Second, an attacker can directly 
attack smart meters at or near the end-
user household and tamper with the 
received (or transmitted) data . An 
adversary can also attack any access 
point in the Wi-Fi network, create a 
(fake) access point, and send false pric-
ing data to the smart meter.

Cyberattack Scenario
Consider an HEMS that employs HS algo-
rithms to perform DR-based optimization 
based on the received price signals. As dis-
cussed in [29], a smart meter or other 
receiver can often be hacked with mini-
mum effort due to the lack of security 
measures. Let us examine a scenario 
where an attacker has the resources to 
hack into a smart meter and inject cor-
rupted (price) information. The cyberat-
tacker aims to mislead the heuristics to 
induce a higher electricity bill or peak 

Attacker 1 Attacker 2

Power Grid

Utility

Smart Meter

End User

Power and Communication
Direct Attack

False Information Attack

Figure 4. A cyberattack on a cyberphysical system: Attacker 1 
attempts to inject the wrong pricing data or alter the energy demand 
information, and Attacker 2 attempts a direct attack on the utility to 
change the energy demand and/or production. 

GA is a metaheuristic 
algorithm inspired 
by the theory of 
natural evolution 
and evolutional 
processes like genetic 
inheritance and 
natural selection.
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demand by modifying the peak 
prices arbitrarily, which increas-
es the mismatch between the gen-
erated energ y a nd energ y 
demand. For example, in the case 
of TOU tariffs in winter, the peak 
time prices of 20.8 cents/kWh 
occur from 7 a.m. to 11 a.m. and 
from 6 p.m. to 8 a.m. [23]. The 
attacker can now alter these peak 
prices by either shifting them to 
the off-peak t ime or simply 
directly lowering the prices, 
wh ich,  i n tu r n,  i ncrea ses /
decreases the electricity bill.

In such a scenario, how do 
the designed models using GA 
and HSA react when the system 
is attacked and forged pricing informa-
tion is injected? To analyze this, assume 
that the adversary particularly targets the 
peak prices of the energy demand, i.e., 
from 7 a.m. to 11 a.m. and from 6 a.m. to 
8 a.m. Figure 5(a) presents the electricity 
costs for a day in winter after a cyberat-
tack has occurred. The GA-HEMS and 
HSA-HEMS attempt to schedule the ener-
gy consumption as before, but the elec-
tricity costs naturally increase. However, 
this increase is not very high: with the 
GA, the cost rises by 0.15% compared to 
the optimal cost achieved earlier without 
the cyberattack, and, with the HSA, the 
cost grows by 1.8%. 

The resilience of any algorithm against 
cyberattacks can be characterized by mea-
suring how much the forged pricing data 
affect the performance of the considered 
system metrics (here, electricity costs) in 
the designed scenario. A simple way to 
measure the resilience is by using a resil-
ience index (RI) as follows:

C
C C

100 100RI
O

A O
#= -

-d n � (1) 

where CA  and CO  represent the total 
electr icity cost when the system is 
under attack and otherwise, respective-
ly. In both cases, the total cost is opti-
mized by using the HEMS. Thus, the RI 
gives a measure of accuracy of the HA 
against cyberattacks. [ %] .100RI 3! -  

%100RI =  means that the algorithm is 
extremely resilient ( ) .C CA O=  As the 
amount of deviation from the optimal 

cost increases, the RI decreases 
from the maximum of 100%, and it 
becomes negative when .C C2A O2  
A negative RI means that the algo-
rithm’s performance is poor; the 
new cost is more than twice the 
actual cost.

Figure 5(b) presents the RI for the 
designed model for a day. The GA-
HEMS maintains a good and some-
what constant RI across the day, 
whereas the HSA sometimes has a 
poor RI. Further, the overall RI values 
for GA and HSA for the entire day 
were 99.8% and 97.8%, respectively. 
Thus, even though the cyberattacker 
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Figure 5. The impact on the electricity costs for a day when a 
cyberattacker changes the TOU pricing. Two heuristic optimization 
algorithms, GA and HSA, optimize the costs for the HEMS. (a) The 
electricity costs per hour under the cyberattack case. (b) The 
resilience of the GA-HEMS and HAS-HEMS—represented by an RI.

HSA is an idealized 
mapping from 
qualitative 
improvisation into 
a quantitative 
formulation, where 
musical harmony 
concepts are applied to 
an optimization process.
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attempts to mislead the designed 
heuristic approaches with fake price 
information, both of the designed 
algorithms perform robustly against 
these attacks, providing a similar 
performance to the case without 
active management.

Conclusion: Cyberattacks 
and Future Power Systems
Modern power systems (MPSs) have 
added flexibility and coordination by 
utilizing information and communica-
tion technologies and AMI. MPSs 
have now gradually transitioned into a complex cyberphysi-
cal energy system (CPES). The cyber layer has made it 
possible for MPSs to not only become more responsive to 
faults and other systemic problems but also coordinate 
production and load energy by reacting faster and smart-
er to changes. Moreover, individual households are 
empowered to install HEMSs to manage their own pro-
duction and load as well as interactions with the power 
system. The efficient transformation of an MPS into 
a CPES is doubly important today because global 
climate change issues have made it necessary to inte-
grate large amounts of RESs into the power system.

However, this transformation comes with a price: 
vulnerability to cyberattacks. MPS control and opera-
tions are more visible to external actors, and the strong 
interactions between the cyberphysical layers in a 
CPES increase the MPS’s vulnerability to cyberattacks. 
Moreover, power electronic converters, which are key 
enablers for integrating RESs into MPSs, are typically 
controlled by employing a hierarchical three-stage 
structure, namely, primary, secondary, and tertiary lay-
ers. This means that the MPSs have additional vulnera-
bilities and possible attack points in different layers of 
the system. A cyberattacker can take advantage of any 
software flaws or failures in any layer of the CPES and 
create harmful disturbances in the system.

How MPSs will deal with such cyberattacks in the 
future will be critical to ensure their stability and  
performance. Advanced and resilient technologies  
and mitigation measures have to be developed and 
implemented at every level. Hierarchical stages in MPSs 
enforce different timescales of operation, giving great 
f lexibility to design mitigation techniques against 
cyberattacks. At the same time, these measures can 
also be cheated if the attacker has access to multiple 
points to design coordinated attacks [33]. Data-driven 
techniques are a computationally viable platform to 
identify such anomalies. Robust and resilient control 
strategies using watermarking [34] and state observers 
[35] could be smartly employed to infiltrate such cyber-
attacks in the primary and secondary control layer by
guaranteeing faster action.

For researchers and industry 
practitioners, the development of 
countermeasures to mitigate the 
impacts of cyberattacks, includ-
ing financial and data losses, pri-
vacy invasions, and so on, is a 
fascinating and highly relevant 
area of investigation today. After 
all, a safe and secure electrical 
power system is an important 
part of a safe and secure society.
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Abstract—In this paper, we investigate the management of
energy storage control and load scheduling in scenarios consider-
ing a grid-connected photovoltaic (PV) system using packetized
energy management. The aim is to reduce an average aggregated
system cost through the proposed packetized energy management
controller considering household energy consumption, procure-
ment price, load scheduling delays, PV self-sufficiency via gen-
erated renewable energy and battery degradation. The proposed
approach solves the joint optimization problem using estab-
lished heuristics, namely genetic algorithm (GA), binary particle
swarm optimization (BPSO), and differential evolution (DE).
Additionally, the performances of heuristic algorithms are also
compared in terms of the effectiveness of load scheduling with
delay constraints, packetized energy transactions, and battery
degradation cost. Case studies have been provided to demonstrate
and extensively evaluate the algorithms. The numerical results
show that the proposed packetized energy management controller
can considerably reduce the aggregated average system cost up
to 4.7%, 5.14%, and 1.35% by GA, BPSO, and DE, respectively,
while meeting the packetized energy demand and scheduling
delays requirements.

I. INTRODUCTION
As a result of the high penetration of renewable energy

resources (RERs) and modern communication technologies,
power system operations have been improved considerably in
terms of sustainability and economics [1]. The RERs have
now become an alternative solution to replace fossil fuels and
protect environmental concerns. Among RERs, photovoltaic
(PV) energy with the storage system is the most feasible
and fast-spreading technology due to storing surplus energy,
improving energy efficiency, and enhancing the stability of
the system. Though promising, energy generation from PV is
stochastic in nature to time which affects the lifetime of the
storage system due to the frequent charging and discharging
rate and hence, becomes less successful to manage fluctuating
peak load demand (PLD) [2]. Therefore, PV with a storage
system may not be the simple solution for the PLD problem.
In this regard, energy management techniques (EMTs) are

the potential way to address optimally the PLD problem
and reduce energy usage cost considering demand response
strategies (DRS) and the exchange of surplus energy between
smart homes and interconnected microgrids.

Recently, numerous EMTs have been exploited to determine
economical and optimal energy allocation plans considering
energy sources (like PV and grid energy) [1]–[4] and DRS
with dynamic pricings [5]–[7] subject to the various household
loads, quality of service [8], [9] and energy trading [10]–[12]
constraints. For instance, the authors in [5], [6] studied energy
scheduling of residential users to reduce the peak to average
ratio (PAR) and minimize energy cost. Ahmed et al. [7] exam-
ined consumer behavior patterns for the prediction of future
aggregated load and analyzed different user reference models,
comfort, and control parameters of appliances in the context
of activation delay. Some authors [8], [9] proposed packetized
energy management (PEM) approach to address the demand
of thermostatically controlled loads (TCL) and validate the
quality of service (QoS). In contrast, the authors in [1]–[4],
[10]–[12] focused on incorporating RERs together with battery
storage system and management techniques. Shafie et al. [10]
investigated energy cost minimization and consumer satisfac-
tion level in home energy management system (HEMS) under
demand response programs (DRPs), while Dinh et al. [11]
conducted a study for optimizing energy consumption costs
and participating in bilateral energy trading with the main (ex-
ternal) grid. Similarly, other authors [1]–[3], [12] proposed an
HEMS model to reduce the peak load and energy usage costs,
while Leithon et al. [4] considered joint optimization of energy
scheduling at consumer and trading for profit maximization.
Some of the former works [5]–[7] have addressed consumer-
centric problems such as load scheduling and energy cost
minimization, but they ignored the integration of RERs and
bilateral energy trading. Others [8], [9] considered interesting
PEM approaches, but they did not discus the role of energy
retailers (i.e., utilities) that coexist with consumers and provide
pricing mechanisms. In subsequent works [1]–[4], [10]–[12],
RERs with battery storage systems were incorporated in the978-1-6654-4875-8/21/$31.00 c©2021 IEEE
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system model, but the impacts of user inconvenience and PEM
approaches have not been explicitly studied. Further, the above
mentioned works have less thoroughly investigated bilateral
energy exchange between the consumer and utility (except
[10]–[12]). Moreover, most of the existing works (e.g., [5]–[7]
[1]–[4], [10]–[12]) have not been considered PEM approach
specifically.

In this paper, we propose a packetized energy management
controller (P-EMC) and present a joint energy scheduling and
storage system management for PV system with the aim to
minimize the energy packet transactions cost, load scheduling
delays, and cost of the storage battery degradation. The battery
can be charged from roof-top PV panels and an on-grid
(external) power grid. For the PV system, we assume that
energy generation from PV system will first serve the load, and
the remaining energy is stored in the energy storage system.
We consider three types of loads and characterized them based
on arrival time, length of operation time, unit energy packets
demand, and maximum allowable delay. For batteries, the
constraints are related to the charging/discharging operation,
and the resulting degradation costs.

The main contributions of the paper are:
• We propose a packetized energy management controller

(P-EMC) for the household loads with the characteristics
such as unit energy packets (EP), the cost of EP, and
scheduling of the EP. We also model the internal pric-
ing mechanism for the EP transactions considering the
respective constraints.

• The internal pricing model provides a general criteria
(subject to constraints) for bilateral energy trading be-
tween users and the energy packet service provider.

• The proposed P-EMC solves a joint stochastic optimiza-
tion problem considering well-known optimization algo-
rithms such as genetic algorithm (GA), binary particle
swarm optimization (BPSO), and differential evolution
(DE).

II. SYSTEM MODEL
Consider a residential smart home connected with renewable

and non-renewable energy sources, an energy storage system
(i.e., an energy storage battery), and collection of household
loads as shown in Fig. 1. The energy generation sources
include an external utility grid and a roof-top photo-voltaic
(PV) system. A P-EMC is installed in the smart home to
perform the following tasks: (i) communicate with the energy
sources, storages and loads in the system; and (ii) devise
and actuate optimal PEM schedules for the considered energy
sources, storage and loads.
A. Load model

The smart home loads i ∈ {1, 2, ..., L} are energy con-
sumption elements that operate at discrete time slots t ∈
{0, 1, 2, ..., T0 − 1}. Each load is characterized by different
attributes as follows; Load arrival time (λit), Scheduling start
time (Si

t), Length of operation time (ρit), Maximum allowable
delay (dit,max), Load departure time (γit), and Unit energy
packets demand (Ei

t). Consider that load i consumes energy
in the form of discrete value packets, and each discrete packet

Fig. 1: Schematic diagram of the residential smart home

is denoted by Ei
t . Where, Ei

t =
Ej−Ej−1

tk−tk−1
, ∀ j ∈ {1, 2, ..., J}

and ∀ k ∈ {1, 2, ...,K} as illustrated in Figure 1.
Let nit be the number of unit Ei

t demanded by load i at time
slot t. The total energy packets demanded by all the loads
(L) over the entire scheduling horizon (T0) is given by the
following equation.

EL
T0

=
L∑

i=1

T0−1∑

t=0

nit × Ei
t (1)

Let dit be the actual delay incurred by load i at time slot t
after serving, such that,

dit =
Si
t − λit

dit,max − ρit
(2)

In (2), if λit = Si
t then dit=0, and the load is immediately

served. Otherwise, it is delayed as per (2). A greater value
of dit in (2) means downgraded comfort level of the end-user.
Thus, (3) is formulated to imposed user QoS based lower and
upper limits on dit.

dit,min ≤ dit ≤ dit,max (3)

Following up on (2) and (3), the average experienced delay
of a specific load i over the entire scheduling horizon T0 is
calculated as follows.

d
i

T0
=

1

T0

T0−1∑

t=0

dit, (4)

Finally, (5) is formulated to ensure that the user QoS based
average bounds (0 and d

i

T0,max) on d
i

T0
are satisfied over the

entire scheduling duration T0.

0 ≤ diT0
≤ diT0,max (5)

Let Cd(d
i

T0
) be the function to denote the cost incurred due

to d
i

T0
under the assumptions that Cd(.) is a non-decreasing

continuous convex function and its derivative C ′d(.) < ∞.
Thus, the objective here is to minimize Cd(d

i

T0
).
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B. Internal price model
Smart home customers either have a deficiency or a surplus

of energy packets. Energy deficient customers can buy energy
packets from the external grid through an energy packet
service provider (P-ESP) to meet their demand. Similarly,
customers with surplus energy packets can sell them back to
the external grid through the P-ESP to avoid energy wastage.
Buying and selling of energy packets is carried through an
internal pricing model of the P-ESP [13], which considers
constraints of feed-in-tariff of the utility, and demand-and-
supply ratio (RDS

t ) within the energy packet sharing zone.
The P-ESP acts an agent for all the smart home prosumers. It
buys energy packets from the prosumers in homes and utility
grid at unit prices P buy

t and Qbuy
t , and sells energy packets to

them at unit prices P sell
t and Qsell

t , respectively.

P sell
t =

{
Qsell

t Qbuy
t

(Qbuy
t −Qsell

t )RDS
t +Qsell

t

if 0 ≤ RDS
t ≤ 1

Qsell
t otherwise

(6)

It is evident from (6) that: (i) if RDS
t = 0, the smart home

prosumers do not sell energy packets and the required number
of energy packets are procured from the utility at Qbuy

t ; (ii)
if RDS

t ≥ 1, the smart home prosumer has an energy packet
surplus and this surplus is fed back to the utility at Qsell

t ; and
(iii) if 0 < RDS

t < 1, the selling price is dynamically adjusted
between Qsell

t and Qbuy
t . On the other hand, internal energy

packet buying price is defined in (7) considering internal
energy packet selling cost, P-ESP’s charge and utility’s charge.

P buy
t =

{
P sell
t RDS

t +Qbuy
t (1−RDS

t ) if 0 ≤ RDS
t ≤ 1

Qsell
t otherwise

(7)

In (7), 0 < RDS
t < 1 means that the total energy packet

demand is greater than the total energy packet supply of the
smart home prosumers in the energy packet sharing zone, and
this energy packet deficiency is fulfilled by buying energy
packets from the utility at Qbuy

t .
Based on the load and the internal price models in this

article, the cost of buying and selling energy packets from
and to the utility at time slot t via P-ESP can be expressed by
(8) and (9), respectively, as follows.

Cbuy
t = P sell

t

(
EL

t − (Epv
t + Es

t )
)
if EL

t > Epv
t + Es

t (8)

Csell
t = P buy

t

(
(Epv

t + Es
t )− EL

t

)
if Epv

t + Es
t > EL

t (9)

Thus, the average cost of energy packets transactions (C
tx

t )
can be calculated by the following equation.

C
tx

t =
1

T0

T0−1∑

t=0

(
Csell

t − Cbuy
t

)
(10)

The objective is to maximize the prosumer’s energy packet
revenue by minimizing the difference between total energy

packets selling and buying. However, this buying and selling
of energy packets is constrained by the following equations:

L∑
i=1

T0−1∑
t=0

xit = EL
T0

(11)

Ei
t,min ≤ xit ≤ Ei

t,max (12)

Ei
t − xit ≤ Bmax (13)

In the above, (11) implies that flexible loads can be scheduled
to operate at other allowable time slots (xit); however, in doing
so, the total energy packet demand must be kept constant.

Similarly, (12) ensures that the scheduling of flexible loads
(xit) should not violate user’s base energy packet demand
(Ei

t,min) and the upper bound of supply capacity (Ei
t,max),

Finally, (13) imposes a constraint on the feed-in energy packets
when the utility prohibits selling of additionally generated
energy packets (Bmax) due to grid security issues.

C. PV system
The smart home prosumers are equipped with roof-top PV

panels generating renewable energy. Adopting the model in
[14], let Epv

t be the amount of harvested energy from the PV
source at t, such that,

Epv
t = ηpv ×Apv × Iir(1− 0.005(Ta((t)− 25)) (14)

where ηpv is conversion efficiency of the PV system Apv

is the area of the generator, Iir is the solar irradiance at
time t, 0.005 is temperature correction factor and Ta is the
outdoor temperature. We assume that Epv

t is firstly given to

the scheduled load at t (xLt =
L∑

i=1

xit), and the remaining (rpvt ),

if any, is stored in the energy storage system. Let the consumed
portion of Epv

t be cpvt , such that,

cpvt = min
{
xLt , E

pv
t

}
(15)

0 ≤ rpvt ≤ Epv
t − cpvt (16)

It is worth noting here that charging and discharging activities
of energy storage battery incur a degradation cost in it. Thus,
the decision to store the unused portion of Epv

t (i.e., rpvt ) in the
battery is taken by the packetized energy controller installed
in the smart home.

D. Energy storage system
Depending on the current energy packet demand and sup-

ply conditions, energy storage system can be characterized
by three possible states: charging, discharging and idle. For
instance, it can be charged from a roof-top PV system, or a P-
ESP or a combination of both. Similarly, it can be discharged
to meet the energy packet requirement of different loads. In
an idle state, it is neither charging nor discharging. These state
transitions are bounded by the following set of constraints.

0 ≤ rpvt + Eg
t ≤ Hmax (17)

0 ≤ kt ≤ Kmax (18)
Es

min ≤ Es
t ≤ Es

max (19)
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Specifically, (17) ensures that the total charging amount at
time slot t (rpvt + Eg

t ) does not exceed its upper bound
(Hmax). While, (18) limits the total discharging amount at t
(kt) by its upper bound (Kmax), and (19) imposes minimum
and maximum capacity constraints (Es

min and Es
max) on the

current energy state of the battery (Es
t ). The dynamics of the

current energy state of the storage battery evolve according to
the following equation.

Es
t+1 = αtE

s
t + η

(+)
t

(
rpvt + Eg

t

)
− η(−)t

(
kt

)
(20)

In (20), αt accounts for a decay rate in the battery with
the passage of time, and η

(+)
t and η

(−)
t denote the charg-

ing and discharging efficiencies, respectively. Let a(+)
t ,

{1, if rpvt +Eg
t > 0; 0, otherwise} indicate whether a charging

activity occurred (a(+)
t = 1) or not (a(+)

t = 0). Similarly,
a
(−)
t , {1, if kt > 0; 0, otherwise} is defined to track

the occurrence of a discharging activity. These charging and
discharging activities incur degradation cost in the battery,
denoted by c

(+)
t and c

(−)
t , respectively. Based on extensive

analyses of the authors in [15], the degradation costs in the
storage battery at t can be modelled as follows.

c
(+)
t = hr

ht

{(
rpvr +Eg

r

rpvt +Eg
t

)w0

× exp
w1(

r
pv
t +E

g
t

r
pv
r +E

g
r
−1)
}

(21)

c
(−)
t = hr

ht

{(
kr

kt

)w2

× expw3(
kt
kr
−1)
}

(22)

In (21) and (22), if the actual cyclic depth-of-charge (i.e., rpvt +
Eg

t ) and depth-of-discharge (kt) are kept at their rated values
(i.e., rpvr +Eg

r and kr), then the lifetime of the storage battery
is affected by current variations corresponding to their rated
values. Thus, from (21) and (22), the battery degradation cost
is modelled at t is given in (23) and its average over the T0
duration is given in (24).

Cs
t = a

(+)
t c

(+)
t + a

(−)
t c

(−)
t (23)

C
s

T0
= 1

T0

T0−1∑
t=0

Cs
t (24)

Our aim is to minimize the average degradation cost in (24).

III. PROBLEM FORMULATION

Let θt , [Eg
t , c

pv
t , r

pv
t , kt] be a vector of energy flow control

actions at time slot t. Here, our objective is to minimize an
average aggregated system cost consisting of: (i) the cost of
energy packet transactions (selling and buying) with the P-
ESP (C

tx

T0
), (ii) the cost of household load scheduling delays

(Cd(d
I

T0
)), and (iii) the cost of energy storage battery degra-

dation (C
s

T0
). Our aim is to find an optimal policy {θt, dIt }

while minimizing the average system cost. Thus, the problem
is formulated as follows.

minimize
{θt, dIt }

Cd(d
I

T0
) + C

tx

T0
+ C

s

T0

Subject to: (2),(3),– (9), (12), (13), (15) – (19), and

rpvt + Eg
t ∈ [0,min{Hmax, E

s
max − Es

t }] (25)

kt ∈ [0,min{Kmax, E
s
t − Es

min}] (26)

Where, dIt , [d1t , d
2
t , ..., d

L
t ], and Cd(d

I

T0
) ,

[Cd(d
1

T0
), Cd(d

2

T0
), ..., Cd(d

L

T0
)]. Clearly, the above problem

is a joint stochastic optimization problem between the three
considered system costs. This joint scheduling makes the
problem very difficult to solve by traditional mathematical
optimization techniques [16]. Therefore, in the next section,
we solve it through heuristic optimization techniques.

IV. OPTIMIZATION TECHNIQUES

Heuristic algorithms are often used to solve joint stochastic
optimization due to: (i) their ability to solve high dimensional
and complex problems with a fast convergence rate, (ii) ease
in implementation, and (iii) capable of avoiding local optima
in pursuit of a global optima [16]. We solve the optimization
problem in Section III via three popular heuristic algorithms:
genetic algorithm (GA), binary particle swarm optimization
(BPSO) algorithm, and differential evolution (DE) algorithm.
Their brief description is given next (more details in [16]).

A. Genetic Algorithm (GA)
1) Generate an initial population of solutions (i.e., P0) ran-

domly and binary encode it such that Xa ∈ {1 ifP0(a) >
0.5, otherwise 0}. Each binary coded individual Xab, b ∈
[1, k] is a k-dimensional vector denoting ON and OFF
states of a given load.

2) Use {Eg
t , E

pv
t , Es

t , E
i
t , P

sell
t , P buy

t } as the inputs, and
equations (2),(3),(5),(14),(20) to determine the objective
function in Section III.

3) Determine the fitness of each individual in P0 with
respect to the objective function in step 2 above.

4) Adopt the process of tournament selection and select
the best individuals (who perform better on objective
function) from P0, as parents.

5) Employ local crossover and bit-flip mutation with a
probability between 0 and 1 to reproduce new individ-
uals and update P0.

6) Repeat step 2 above until the individuals in P0 approach
the optimal values or the total number of generations
reach a preset number.

B. Binary Particle Swarm Optimization (BPSO)
1) Randomly generate an initial swarm (S0) in a pair

(−→psi,−→vi ), where the vector −→psi ∈ Rn represents the
position of the particles and −→vi corresponds to their
velocity −→vi ∈ Rn. Here, −→psi is computed with respect
to −→vi as follows.

−→psi(t) = −→psi(t− 1) +−→vi (t) (27)

where −→psi(t− 1) is the previous position of the particle
in the swarm.

2) Evaluate each particle in the swarm using the input val-
ues from {Eg

t , E
pv
t , Es

t , E
i
t , P

sell
t , P buy

t } and equations
(2),(3),(5),(14),(20) to determine the objective function
in Section III. If the evaluated particle minimizes the
objective function then remember the particle as pbest.
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3) Update S0 and −→vi of each particle in the swarm using
(28), while respecting the upper and lower bounds of −→vi
in (29).−→vi (t) = −→vi (t− 1) + α1rand1

(
pi −−→psi(t− 1)

)
+ · · ·

α2rand2

(
pg −−→psi(t− 1)

)

(28)

−→vi (t) =
{−→vimax if−→vi > −→vimax

−−→vimax if−→vi < −−→vimax

(29)

In (28), α1.rand1 and α2.rand2 are random weights for
local and global positions (pi and pg) of the particle,
respectively. And −→vimax and −−→vimax are the maximum
and minimum velocities of the particle at any point,
respectively. Note that −→psi is bounded between [0,1].

4) Evaluate the updated swarm (S1) by comparing it with
S0 using objective function in Section III and select
the particles with lowest value of objective function and
refer their position as pgbest.

5) Repeat step 4 above until particles in S1, S0 approach
the optimal values or the total number of generations
reach a preset number.

C. Differential Evolution (DE)
1) Generate an initial population Pe ∈ Rn randomly using

(30), where Pe = [pe1, pe2, pe3, pe5, · · · pen].
Pe = pLe + randi(p

U
e − pLe ) (30)

pUe , p
L
e are the upper and lower bounds of Pe, respec-

tively, and randi is the uniformly distributed random
number between 0 and 1. Note that the individuals in
Pe represent the operation states of appliances.

2) Generate a mutation (Mde) vector using equation (31)
to determine the objective function in Section III con-
sidering values from {Eg

t , E
pv
t , Es

t , E
i
t , P

sell
t , P buy

t } and
equations (2),(3),(5),(14),(20).

Mde = vr1 + C(vr2 − vr3) (31)
Where C is a constant between [0,1], vr1, vr2, and
vr1 are three vectors randomly picked up from Pe and
r1, r2, r3 are positive integers ∈ {1, 2, 3, 4...n}.

3) Generate a new trial vector Tv through crossover be-
tween Pe and Mde using (32). Calculate objective func-
tion based on Tv. Step (2) and (3) are compared to
achieve minimal value of objective function.

Tv =




Mde if rand(j) ≤ cr
Pe if rand(j) > cr (32)

4) Repeat step 3 above until individuals in Pe approach the
optimal values or the total number of generations reach
a preset number.

V. RESULTS AND DISCUSSION
Considering a scheduling horizon of one day (i.e., 24 hours),

let the PV system generate a maximum energy Epv
t,max=9.62

kWh with ηpv=18%, and Apv=0.5. For simulation purpose,
the solar irradiance and temperature data are taken from [14].
The maximum battery storage capacity is set at 20 kW. In
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simulations, surplus energy packets are fed back to the utility
via P-ESP with minimum and maximum P sell

t are 0.06 cents
and 0.57 cents, respectively [17]. Similarly, energy packets
are bought from utility at P buy

t which fluctuates between 0.6
cents/kWh and 3.7 cents/kWh [18].

Figure 2 illustrates the relative performance between the
selected algorithms (GA, BPSO and DE) in terms of aver-
age experienced load scheduling delay against the maximum
allowable delay. It can be seen from the figure that as the
maximum allowable delay requirement of loads (d

i

T0,max)
is relaxed/increased, their average experienced delay (d

i

T0
)

also increases. However, the increase in d
i

T0
is sublinear for

all the compared algorithms as compared to the increase in
d
i

T0,max. For example, GA has achieved d
i

T0,max=53.09, which
is greater than BPSO and DE by 11.03 % and 19.03% ,
respectively. This means scheduled load can be delayed which
in turn reduces the average system cost and consequently the
user QoS is compromised.

Figure 3 depicts the relative performance of the selected
algorithms (GA, BPSO and DE) employed in the P-EMC
and a special case without the P-EMC in terms packetized
energy transactions that involve both selling to and buying
of energy packets from the utility. As shown in the figure,
without P-EMC case has a selling cost of 34.9 cents and
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a buying cost of 108.08 cents in a day. When optimization
algorithms are employed, the selling costs are increased to
88.9 cents, 54.4 cents, and 57.9 cents for P-EMC with GA,
with BPSO, and with DE, respectively. Similarly, the buying
costs are decreased to 67.33 cents, 99.74 cents, and 95.51 cents
for P-EMC with GA, with BPSO, and with DE, respectively.
It is can be seen that GA has a higher selling cost than BPSO
and DE, because GA tends to schedule the load in later time
slots (achieves greater delay) and utilizes the harvested energy
from the PV system and the storage system in a more efficient
manner, thus it sells greater amount of energy to the utility.
This means that the optimization algorithms help to allocate
the energy resources effectively and also facilitate the user
to sell back the surplus energy to the utility grid via P-ESP.
Further, BPSO and DE moderately schedule the load at time
slots when energy from PV system is less or not available.
Hence, achieving a relatively lower selling cost than GA.

Figure 4 reflects the impact of battery capacity on the
average system cost under the selected algorithms. It is evident
from the figure that when increase in the battery capacity
induces a decrease in the average system cost for all the
selected algorithms including the unscheduled special case of
without P-EMC. A higher battery capacity provides more flex-
ibility in scheduling loads at low peak hours. Thus, resulting
in reduced average system cost. The optimization algorithms
reduced average system cost to 4.7%, 5.14% and 1.35% by
P-EMC with GA, BPSO, and DE, respectively.

VI. CONCLUSION
This paper proposed P-EMC for a residential smart home

considering household loads, energy transaction cost, PV
energy generation and energy storage system. The proposed P-
EMC employs the internal pricing model and solves the joint
stochastic problem using optimization algorithms such as; GA,
BPSO, and DE. Simulation results have shown that optimiza-
tion algorithms are capable to schedule the load effectively
and reduced the energy procurement cost to 37.65%, 7.5%,
and 11.5% by GA, BPSO, and DE, respectively. Furthermore,
the proposed P-EMC helps the consumer to sell surplus energy
up to 88.9 cents, 54.4 cents, and 57.9 cents with the help of
GA, BPSO, and DE, respectively. In the future, we aim to
extend our case study for the different PV generation profiles

and pricing signals and analyze the level of accuracy of each
designed optimization algorithm.
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Abstract—This article presents an ER-based PEM strategy for
PV integrated smart homes to jointly optimize their load scheduling
delays, energy transactions cost, and battery degradation cost. The
proposed approach incorporates a MA case, where, the ER acts
as a main selecting agent realized by all other system elements.
This leads to a combinatorial optimization problem, which can
be effectively solved by heuristic optimization methods (HOMs),
namely, genetic algorithm (GA), binary particle swarm optimiza-
tion (BPSO), differential evolution (DE) algorithm, and harmony
search algorithm (HSA). Specifically, we investigate the impact
of the hyperparameters of the HOMs on the designed ER-based
PEM system. Simulations are carried out for multiple smart homes
under varying weather conditions to evaluate the effectiveness of
HOMs in terms of selected performance metrics. Results show
that the ER-based PEM reduces the average aggregated system
cost, ensures economic benefits by selling surplus energy, while
meeting customers energy packet demand, satisfying their quality-
of-service, and operational constraints.

Index Terms—Energy Internet (EI), energy router (ER),
heuristic algorithms, packetized energy management systems
(PEMs).
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MAs Multiagents.
PEM Packetized energy management system.
P-ESP Packetized energy service provider.
PEC Packetized energy cost.
PLC Power line communication.
RRs Renewable resources.
QoS Quality-of-service.
SDN Software-defined network.

Indices and Superscripts
t Time step.
max Maximum.
min Minimum.
— Average.
′ Derivative.
i Superscript for load from 1 to N .
j Superscript for smart home from 1 to M .
t Superscript for time period from 1 to T0.
r Subscript for particle in the swarm.

Main Symbols
Cbt Crossover operator.
Mbt Mutation operator.
dj,it Delay experienced by a load i in a smart home j

at time t.
Ej

t,pv Harvested amount of PV energy by a smart home
j at t.

Ej,s
t Battery state of energy of a smart home j at t.

P j,i
t Energy packets demand by a smart home j at t.

PM,N
T0

Total energy packets demanded by M smart
homes of N loads over T0.

Eg
t Energy packets supplied by utility grid.

Hj,buy
t Energy packets procured by a smart home j from

Eg
t .

Hj,sell
t The E packets sold by a smart home j to Eg

t .
RDS,j

t Demand-and-supply ratio at time t.
Jbuy
t P j,i

t procured by P-ESP from Eg
t at t.

Jsell
t P j,i

t sold by P-ESP to utility grid at t.

Kd

(
d
M,N
T0

)
Cost function based on average delay experi-

enced by M smart homes M of N loads over
T0.

Kj,buy
t Cost of P j,i

t buying by j from utility grid at t.
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Kj,buy
t Cost of P j,i

t selling by j from utility grid at t.

K
M,tx
T0

Average cost associated with the transactions of
energy packets for M smart homes over T0.

K
M,s
T0

Average cost associated with charging and dis-
charging activities for M smart homes over T0.

xj,i
t Time slots available for scheduling of P j,i

t .
P j,i
t,min Lower bound of the P j,i

t .

P j,i
t,max Upper bound of the P j,i

t .

Bmax Upper bound of Jbuy
t .

Ej,s
t Amount of energy charged in a storage system of

a smart home at t.
kjt Amount of energy discharged from storage sys-

tem of a smart home at t.
Ej,s

t,max Per slot upper bound on amount of energy
charged in storage system by a smart home at
t.

kjmax Per slot upper bound on amount of energy dis-
charged in a smart home at t.

Ej,s
min Per slot minimum required Ej,s

t for a storage
system.

Ej
t,pv Amount of energy harvested from PV by a smart

home.
c
j,(+)
t Admission cost for the charging event of a storage

system in a smart home at t.
c
j,(−)
t Admission cost for the discharging event of a

storage system in a smart home at t.
Ej,c

t,pv Consumed portion of PV energy stored by j at t.

Ej,r
t,pv Residual portion of PV energy by smart home in

the battery at t.
EM

T0,pv
Amount of energy produced by PV panel for all
smart homes M over T0.

Smax Upper bound on the total amount of energy stored
in a battery.

I. INTRODUCTION

OVER the past few decades, electric power system has been
influenced greatly by the integration of large-scale RRs.

The RRs (represented by solar panels and wind turbines) have
become inevitable for alleviating energy prices and mitigating
environmental concerns [1], [2]. Yet, energy generation from
RRs is intermittent making them less reliable for a stable op-
eration of the power system [3]. Recently, EI has been widely
investigated to combat the intermittency in renewable generation
through Internet-oriented technologies, such as ERs, plug and
play services, and PEM [4], [5], [6].

In the EI paradigm, ER is an integral part, analogous to a
router in an Internet network [7]. ER provides real-time commu-
nication among users and the utility grid and performs manage-
ment of RRs, flexible and nonflexible household loads, rooftop
PV panels, and storage system often classified as agents [8].
Thus, ER is regarded as an essential element that interfaces
multiple agents (MAs) and enables energy resource allocation
in smart homes exploiting demand-side management (DSM)
[9], [10].

PEM as a part of the DSM can be utilized to meet energy
packet demand of smart home customers by scheduling flexible
energy packets while ensuring their QoS constraints [11]. In
PEM, energy is delivered to the customer loads in the form of
energy packets that represent fixed power consumed by the load
during a predefined time interval, e.g., 1 kW in an hour [12]. In
this sense, this article focuses on the ER-based PEM (ER-PEM)
framework for smart homes and provides resource allocation of
MAs operating at various times instants. In addition, ER-PEM
enables cost-effective solutions for smart users considering QoS,
energy transactions between ER and utility grid, PV energy, and
storage system.

However, a limited amount of work has been done in the above
context and most of the literature has either focused on commu-
nication and control aspects [5], [6], [7], [9], [13] or on energy
management aspects of ER [11], [12], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23]. For instance, authorsin [5] and [6],
described the role of the ER in EI networks, investigated design
challenges in terms of communication typologies, governance
models, and security concerns. Gao et al. [7] studied an ER-
based system to investigate the communication and reliability
of multiple ERs and energy trading for green cities in EI. Guo
et al. in [9] proposed secure energy routing protocols for the
optimal energy dispatch between energy hubs (EH) considering
power transmission constraints in the EI. Tu et al. [13] proposed a
modular-based ER strategy for connecting dc micro grid clusters
with ac grids. The other references investigated the operation of
ER based on the management aspects [11], [12], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], for example, authors in [11]
and [12] evaluated the QoS metric for load allocation problem
using PEM system. Li et al. [14] proposed an optimization-
based strategy for the integrated energy system to minimize
the cost of the EH using ER applications. In [15], the authors
examined optimization problems for home energy management
systems (HEMS) in the context of the EH, while the authors
in [16] and [17] formulated an energy management solution
for operational costs and CO2 minimization considering contin-
gency constraints in microgrids. Ahmad and Khan [18] solved
the joint optimization problem through Lyapunov optimization
considering renewable sources, loads, and energy procurement
prices, whereas Carli et al. in [19] proposed scheduling algo-
rithms for solving an online optimization problem in microgrids
and daily cost minimization through the DSM was achieved.
Demand response (DR) methods were proposed in [20] and
[21] to control the peak to average ratio (PAR) and to reduce
systems costs, while the authors in [22] and [23] investigated
HEMS with DSM to reduce energy costs and peak power
consumption, considering user’s requirements over a finite time
horizon.

It is suggested from the above literature review that most
of the previous works have investigated energy management
solutions e.g., [16], [17], [18], [19], [20], [21], [22], [23] or
the control and routing aspects of the ER [7], [9], [15] without
considering distinctive and key aspects of EI, such as ER, MAs,
and PEM. Although authors in [11] and [12] have studied PEM-
based solutions, however, their system model has not provided
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TABLE I
COMPARISON OF THE STATE-OF-THE-ART WORKS WITH OUR DESIGNED SYSTEM MODEL

adequate analysis of design aspects of energy packets, for in-
stance, arrival time, unit energy packet demand, scheduling start
time, departure time, and allowable service delay. In contrast,
the designed ER-PEM system is a unique architecture and in-
corporated distinctive design aspects of EI and ER-PEM system.
Moreover, the designed ER-PEM system not only accomplished
the objectives (i.e., to minimize average aggregated system costs
based on, energy packet transactions cost, load scheduling delays
cost, and battery degradation cost) but also carried a compara-
tive analysis of the heuristic optimization methods (HOMs) in
terms of different sets of hyperparameters and different seasons.
Table I briefly summarizes the models in the previous work and
also compares the previous models with the designed ER-PEM
system in this article.

In the above context, we present an ER-PEM system for
multiple smart homes to achieve optimal energy plans in terms
of management of MAs based on heuristic optimization meth-
ods. Specifically, we account for key attributes of the smart
homes, i.e., energy packet scheduling and pricing parame-
ters, and constraints of roof-top panels and energy storage
system in the context of ER-PEM system. The goal of ER-
PEM is to minimize an average aggregated system cost by
solving a joint optimization problem of load scheduling and
storage management. The minimization of an average aggre-
gated system cost is subject to constraints of energy demand,

scheduling delay parameters, storage system management and
energy procurement parameters. To this joint optimization prob-
lem, we employ HOMs: genetic algorithm (GA), binary particle
swarm optimization (BPSO), differential evolution (DE), and
harmony search algorithm (HSA). Finally, we present simulation
results and analyze the relative performance of HOMs and
the impact of their hyperparameters on the designed ER-PEM
system.

The major contributions of this work are summarized below.
1) A comprehensive system model is presented for smart

homes based on an ER-PEM system. The model consists
of multiple smart homes and their associated character-
istics including energy packet attributes and delay con-
straints, PV energy generation, battery storage system, and
energy packets’ transactions.

2) An energy pricing model ([24], [25]) is tailored for
energy packet exchange (buy and sell) between smart
homes and packetized energy service provider (P-
ESP). The model provides flexibility for economic en-
ergy transactions while conserving the demand–supply
ratio.

3) The joint optimization problem is solved by implementing
four well-known HOMs—GA, BPSO, DE, and HSA—
and their performance and suitability for the designed
system model are benchmarked.
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4) A comprehensive case study is conducted to evaluate
HOMs and their associated hyperparameters in terms av-
erage aggregated system cost parameters.

Note that this work is an extension of [26] and it contributes
in the following ways.

1) Literature review is extensively updated with state-of-the-
art research methods in terms of their contributions and
potential research gaps.

2) Unlike a single smart home in [26], the ER- PEM model
in this article is upgraded with a systematic integration
of multiple smart homes, their respective attributes and
constraints considering an extended set of HOMs and
varying weather conditions.

3) The relative performance analysis of HOMs is carried
out based on the joint optimization problem of load
scheduling and storage management in the ER-PEM
system.

In addition, simulation scenarios are extended to investigate
the impact of the HOMs’ hyperparameters on energy packet
transactions and their associated service delays.

The rest of this article is organized as follows. Section II
formulates the problem and provides the system model. A brief
overview of heuristic optimization is given in Section IV. Sim-
ulation results are presented in Section V. Finally, Section VI
concludes this article.

II. SYSTEM MODEL

Fig. 1 depicts conceptual overview of ER-PEM system.
Where Fig. 1(a) shows the interaction of ER with MAs, utility
grid, and P-ESP, and Fig. 1(b) represents three main building
blocks of the ER: a power electronics module, a communica-
tion module, and a management-and-control module [7]. The
power electronics module can be a solid-state transformer, in-
verters, and converters to provide circuitry-based active control
of energy flows. The management module is responsible for
allocating energy resources and providing optimal energy usage
plans to satisfy users’ demand and cost requirements. The power
electronics and management modules are connected through a
communication module that may consist of a wired network,
e.g., PLC and fiber optics (FOs), a wireless network, e.g.,
WiMAX, cognitive radio (CR), and a SDN, or a combination
of both [5]. Potentially, the ER can act like a plug-and-play
interface for smart homes to connect to or disconnect from
traditional energy sources, PV sources, battery storage systems,
and electrical loads. In this work, we mainly focus on packetized
energy optimization via an energy management module carrying
the following tasks: 1) devise and manage schedules for energy
packets transactions considering all connected sources, storage,
and loads; and 2) coordinate with the P-ESP for economic energy
transactions.

A. Load Model

A set of smart homes j ∈ {1, 2, . . .,M} accommodate
loads i ∈ {1, 2, . . ., N} that operate at discrete time slots t ∈
{0, 1, 2, . . ., T0 − 1} in a local energy community. The loads

Fig. 1. (a) Illustration of the ER-PEM system. (b) Main modules of an ER.

are energy consumption elements in each smart home, and they
are characterized by different attributes as follows.

1) Load arrival time (�j,it ): The time slot at which a request
for a given load arrives in a smart home j.

2) Unit energy packets demand (P j,i
t ): In a smart home, we

consider the energy is consumed in the form of discrete
value packets by load i and each energy packet is repre-
sented byP j,i

t . Here,P j,i
t = Pe−Pe−1

tk−tk−1
,∀ e ∈ {1, 2, . . ., E}

and ∀ k ∈ {1, 2, . . .,K}, as shown in Fig. 2.
3) Scheduling start time (ζj,it ): Time slot at which the load is

actually scheduled.
4) Length of operation time (ςj,it ): The number of time slots

during which the load completes its operations.
5) Maximum allowable delay (dj,it,max): The maximum

amount of delay (i.e., the number of time slots) that can
be tolerated prior to the load being scheduled.

6) Load departure time (τ j,it ): The time slot at which the load
departs after completing its operation.

Let U j,i
t be the number of unit energy packets P j,i

t demanded
by a smart home j of load i at time slot t. The total energy
packets required by all smart homes (M ) with loads (N ) during
scheduling horizon (T0) is computed by

PM,N
T0

=

M∑

j=1

N∑

i=1

T0−1∑

t=0

U j,i
t × P j,i

t . (1)
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Fig. 2. Energy pricing under P-ESP. (a) Energy packet and (b) energy pricing
model.

During appliance scheduling, the following user defined QoS
constraint should be satisfied:

�j,it ≤ ζj,it + ρj,it ≤ dj,it,max. (2)

Equation (2) ensures that a given appliance i in a smart home j is
scheduled at t without violating its delay requirement (dj,it,max),

considering its arrival time (�j,it ) and its length of operation
time (ςj,it ). During the scheduling duration (T0), appliances
with dj,it,max > 0 can be delayed from their respective arrival

times (�j,it ’s), thereby adding flexibility to the load scheduling
process. However, this flexibility (i.e., load scheduling delay)
may adversely affect user comfort, if it goes beyond a specific
user-defined level. Let dj,it be the delay experienced by load i in
smart home j at t after serving [23], [27], such that

dj,it =
ζj,it − �j,it

dj,it,max − ςj,it

(3)

in which, if �j,it = ζj,it then dj,it = 0, and the load is served
immediately; otherwise, delay is incurred. A greater value of dj,it

in (3) reflects the downgraded comfort level of the smart home
user. Thus, (4) is modeled to impose user QoS-based lower and
upper limits on dit

dj,it,min ≤ dj,it ≤ dj,it,max. (4)

Using (5), the average delay incurred of any load i in a smart
home j during T0 is obtained as

d
M,N
T0

=
1

M

M∑

j=1

T0−1∑

t=0

M∑

i=N

dj,it . (5)

Finally, (6) guarantees that the user QoS-based average bounds

(0 and d
j,i
T0,max) on d

j,i
T0

are satisfied during scheduling horizon
T0

0 ≤ d
j,i
T0

≤ d
j,i
T0,max. (6)

From the above analysis, it is clear that load scheduling, if al-
lowed to operate under user QoS-based allowable delay bounds,
adds flexibility to the scheduling process. However, this flexi-
bility may have a counter-productive effect on user comfort if it

goes beyond the user QoS-based specifications. LetKd

(
d
M,N
T0

)

be a function to indicate the cost due to d
j,i
T0

based on the
assumptions that Kd(.) is a nondecreasing continuous convex
function and its derivativeK ′

d(.) < ∞. Thus, here our objective

is to minimize Kd

(
d
M,N
T0

)
.

B. Energy Price Model

Smart homes, equipped with ERs and energy sources, are
either having insufficient or adequate energy packets. Energy-
insufficient smart homes have a greater energy demand than
their locally generated and stored energy, and smart homes
which possess adequate energy packets have a smaller en-
ergy demand than their locally generated and stored en-
ergy. Energy-deficient smart homes can buy energy packets
(Hj,buy

t = [Hj,buy
t,1 , . . ., Hj,buy

t,i , . . ., Hbuy
t,I ]) from an utility grid

through a P-ESP to satisfy their demand. On the contrary,
smart homes with excess energy packets can sell (Hj,sell

t =

[Hj,sell
t,1 , . . ., Hj,sell

t,i , . . ., Hsell
t,I ]) back to the utility grid through

the P-ESP. This process of energy packets exchange (buying and
selling) is conducted by an energy pricing model of the P-ESP,
which is formulated based on the constraints of feed-in-tariff
of the utility, and demand-and-supply ratio (RDS

t ) within the
energy packet sharing zone. The P-ESP acts as an agent for M
smart home prosumers. It can buy energy packets from smart
homes and the utility grid at unit prices Hj,buy

t and Jbuy
t , and

sells energy packets to them at unit prices Hj,sell
t and Jsell

t ,
respectively [24]. This can be formulated as

Hj,sell
t =

{
Jsell
t Jbuy

t

(Jbuy
t −Jsell

t )RDS
t +Jsell

t

if 0 ≤ RDS
t ≤ 1

Jsell
t otherwise.

(7)

It is noticed from (7) that:
1) if RDS

t = 0, the smart home prosumers have insufficient
energy packets to sell therefore, energy packets are bought
from the utility at Jbuy

t ;
2) if RDS

t ≥ 1, the smart home prosumer possess surplus
energy packets which can be sold back to the utility grid
at Jsell

t ;
3) if 0 < RDS

t < 1, the energy packets selling price is dy-
namically regulated between Jsell

t and Jbuy
t .
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Meanwhile, considering the energy packet selling cost, P-
ESP’s charge and utility’s charge, an energy packet buying price
is defined as

Hj,buy
t =

{
Hj,sell

t RDS
t + Jbuy

t (1−RDS
t ) if 0 ≤ RDS

t ≤ 1
Jsell
t otherwise

(8)
where in (8), 0 < RDS

t < 1 shows that the overall energy pack-
ets demand are greater than the total energy packet supply of
the smart home prosumers in the energy packet sharing zone,
and this energy packet insufficiency is satisfied by procuring
energy packets from the utility grid at Jbuy

t . In-line with the
above context, let Kj,buy

t indicates the cost of energy packets
bought by smart home j from the utility grid at time slot t via
P-ESP

Kj,buy
t = Hj,sell

t

(
PM,L
t − (Ej

t,pv + Ej,s
t )

)

if EM,L
t > Ej

t,pv + Ej,s
t (9)

here in (9), Hj,sell
t represents the selling cost of energy pack-

ets, PM,L
t is the total energy packets demands at time t, and

Ej
t,pv, E

j,s
t are available energy from rooftop PV and energy

storage system at time instant j. It is also assumed that a smart
home j buys energy packets only if the total energy packets
demand can not be satisfied by Ej

t,pv + Ej,s
t . Similarly, (10)

formulates the cost of energy packets sold by smart home j to
the utility grid at time slot t via P-ESP

Kj,sell
t = Hj,buy

t

(
(Ej

t,pv + Ej,s
t )− PM,L

t

)

if Ej
t,pv + Ej,s

t > PM,L
t . (10)

Further, the smart home users can sell the surplus energy packets
given that Ej

t,pv + Ej,s
t must be greater than demand of PM,L

t .
As per [25], eq. (9) and (10)] the average cost of the energy
packets transaction (K

tx
t ) can be expressed as

K
M,tx
T0

=
1

M

T0−1∑

t=0

M∑

j=1

(
Kj,sell

t −Kj,buy
t

)
. (11)

Here, the goal is to maximize the prosumer’s energy packet rev-
enue by minimizing the difference between Kj,sell

t and Kj,buy
t .

However, the process of energy packets buying and selling is
constrained by the following:

M∑

j=1

N∑

i=1

T0−1∑

t=0

xj,i
t = HM,L

T0
(12)

P j,i
t,min ≤ xj,i

t ≤ P j,i
t,max (13)

0 ≤ Hj,buy
t ≤ Hj,buy

t,max (14)

0 ≤ Hj,sell
t ≤ Hj,sell

t,max (15)

Hj,i
t − xj,i

t ≤ Bmax (16)

where (12) implies that ERs can schedule the flexible loads in
smart homes at other allowable time slots (xj,i

t ), while keep-
ing the total energy packets demand constant. Likewise, (13)
guarantees that the scheduling of flexible loads (xj,i

t ) must not

exceed smart home’s base energy packet demand (P j,i
t,min) and

the upper bound on supply capacity (P j,i
t,max).Constraints (14)

and (15) ensure that energy procurement and selling criteria
should be controlled and can not exceed given limits i.e.,Hj,buy

t,max

and Hj,sell
t,max. Finally, (16) constraints on the feed-in energy

packets when the utility grid restricts the selling of additionally
generated energy packets (Bmax) due to grid security issues.

C. PV System

As mentioned earlier, roof-top PV panels are installed in the
smart homes converting solar energy to electrical energy. Based
on the model in [28], let Et,pv be the total amount of harvested
energy from the PV panels by M smart homes over the entire
horizon (T0) such that

EM
T0,pv

=
M∑

j=1

T0−1∑

t=0

Ej
t,pv (17)

from (17), Et,pv can be calculated as Et,pv = ηpv ×Apv ×
Iir(1− 0.005(Kt((t)− 25)), the symbols ηpv, Apv , and Iir
signify conversion efficiency, generator area, and solar irradi-
ance, respectively. While 0.005 is the value use for temperature
correction factor (TCF), andKt respesents outdoor temperature.
Let Ec

t,pv be the energy consumed from Et,pv in (18) with
respective constraint (19) as given as follows:

Ec,j
t,pv = min

{
xN,M
t , Ej

t,pv

}
(18)

0 ≤ Ej
t,pv ≤ Ej

t,pv − Ec,j
t,pv (19)

Ej
t,pv + Eg

t ∈ [0,min{Smax, E
j,s
t,max − Ej,s

t }]. (20)

From (18) and (19), it is clear that Ej
t,pv is firstly supplied to

the scheduled load in j at t (xN,M
t =

∑M
j=1

∑N
i=1 x

i,j
t ), and

the remaining part (Er
t,pv), if any, is stored in an in-home energy

storage system (according to (20). It is worth noting that charging
and discharging events of the battery cause a degradation cost in
it. Hence, to manage charging or discharging events, PEM-ER
can determine whether to store or not the conserved portion of
Ej

t,pv (i.e., Er,j
t,pv) in the battery based on joint optimization.

D. Energy Storage System

During the time horizon T0 the energy storage system can
be operated by three possible states: 1) charging; 2) discharg-
ing; 3) idle considering the current energy packet demand and
supply conditions. That is, during charging state, it can either
be charged from the PV panels, the P-ESP, or a combination of
both. Likewise, during discharging state, it can be discharged to
satisfy the energy packet need of various loads. In an idle state,
it is neither charging nor discharging. These state transitions are
bounded by the following:

kjt ∈ [0,min{kjmax, E
j,s
t − Ej,s

min}] (21)

0 ≤ Ej
t,pv + Eg

t ≤ Smax (22)

0 ≤ kjt ≤ kjmax (23)
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Ej,s
t,min ≤ Ej,s

t ≤ Ej,s
t,max. (24)

Specifically, (21) and (22) imply that charging and discharging
demand at time t can be met by the available energy in the
battery. (22) also limits that the total charging amount (Ej

t,pv +
Eg

t ) at time slot t does not exceed its upper limit (Smax), while
(23) restricts the total discharging amount in j at t (kjt ) by its
upper bound (kjmax). Equation (24) imposes per slot minimum
and maximum capacity constraints (Ej,s

t,min and Ej,s
t,max) on the

current energy state of the battery (Ej,s
t ). The current energy

state of the battery system is computed as

Ej,s
t+1 = αtE

j,s
t + η

(+)
t

(
Ej

t,pv + Eg
t

)
− η

(−)
t

(
kjt

)
(25)

in (25) αt, η
(+)
t , and η

(−)
t signify decay rate in the battery, the

efficiencies of charging and discharging activities, respectively.
Let a

(+)
t � {1, if Ej

t,pv + Eg
t > 0; 0, otherwise} specify

whether an event charging occurred (a(+)
t = 1) or not

(a(+)
t = 0). Likewise, a

(−)
t � {1, if kjt > 0; 0, otherwise} is

considered for a discharging event. In this regard, charging
and discharging events lead to degradation cost in the battery,
indicated by c

(+)
t and c

(−)
t , respectively. Based on a thorough

analysis in [29], [30], [31], [32], and [33], the battery degradation
costs at t can be formulated as follows:

c
j,(+)
t =

hr

ht

{(
Er,j

pv + Eg
r

Et,pv + Eg
t

)w0

× exp
w1(

Et,pv+E
g
t

E
r,j
pv +E

g
r

−1)
}

(26)

c
j,(−)
t =

hr

ht

{(
kr

kt
j

)w2

× expw3(
kt

j

kr
−1)

}
. (27)

In (26) and (27), cj,(+)
t , cj,(−)

t represent battery degradation cost
occur due to its charging and discharging activities in a smart
home j. It can be noted that the lifetime of the battery storage
system depends on fast variation of charging (i.e., Er,j

t,pv + Eg
t )

and discharging (kjt ) activities, however, if charging and dis-
charging are kept at their rated values then the lifetime of the
storage battery is affected by current variations corresponding
to their rated values. Therefore, based on (26) and (27), the
degradation cost of a the battery in a smart home j at t is given
in the following, its average is computed over T0 as:

Kj,s
t = a

(+)
t c

j,(+)
t + a

(−)
t c

j,(−)
t , a

(+)
t + a

(−)
t ≤ 1 (28)

K
M,s
T0

=
1

M

M∑

j=1

T0−1∑

t=0

Kj,s
t . (29)

The objective here is to minimize the average battery degradation
cost in (29).

From the above discussions, it is clear that minimizing (30)
is a joint stochastic optimization problem between the three
considered system costs. And solving this problem through
traditional mathematical optimization techniques is computa-
tionally expensive and required high assessment [16], [17], [18].
Therefore, in the next section, heuristic optimization techniques
are adopted to solve the joint stochastic optimization problem
of (30).

III. PROBLEM FORMULATION

Let θt �
[
Eg

t , E
c
t,pv, E

r
t,pv, k

j
t

]
be an energy flow vector and

control actions for smart homes at time slot t. The aim here is
to minimize an average aggregated system cost which consists
of the following parts:

1) the energy packet transactions cost (selling and buying)

with the P-ESP (K
M,tx
T0

);

2) household load scheduling delays cost (Kd(d
M,N
T0

));

3) energy storage battery degradation cost (K
M,s
T0

).

Our aim is to find an optimal policy {θT0
, dM,N

T0
}, while

minimizing the average system cost. Thus, the problem can be
formulated as

minimize:
{θT0

,dM,N
T0

}
Kd

(
d
M,N
T0

)
+K

M,tx
T0

+K
M,s
T0

(30)

where dj,it �
[
d1,1t , d2,2t , . . ., dM,N

t

]
, and Kd

(
d
M,N
T0

)
�

[
Kd

(
d
1,1
T0

)
,Kd

(
d
2,2
T0

)
, . . .,Kd

(
d
M,N
T0

)]
. The cost function

in (30) and the formulated constraints in (6)–(24) are related to
energy scheduling, energy procurement, and energy control as
discussed in the previous Sections II-A and II-D. Clearly, the
optimization problem in (30) is a joint stochastic optimization
problem between the three considered system costs. This
joint scheduling makes the problem difficult to solve by
traditional mathematical optimization techniques [12], [13],
[14]. Therefore, in the next section, heuristic optimization
techniques are adopted to solve the joint stochastic optimization
problem of (30).

IV. OPTIMIZATION TECHNIQUES

Heuristic optimization techniques are generally employed to
solve scheduling problems due to their ability to solve high
dimensional and complex problems with fast convergence, ease
in implementation, and local optima avoidance capabilities [20],
[21], [22], [23]. Thus, we employ the following well-known
heuristic algorithms: GA, BPSO [34], DE, and HSA [35] meth-
ods. These algorithms are briefly discussed in the following.

A. Genetic Algorithm

The GA [35] is employed to solve the joint optimization
problem in (30) through the following steps.

1) Population generation: Initialize a set of random popula-
tion (P0) such that Xa ∈ {1 if P0(a) > 0.5, otherwise 0}. The
individuals in P0 are binary coded Xab, b ∈ [1, k] where k is a
dimensional vector denoting the operation of load as ON and OFF

states. The algorithm parameters; P0, crossover, mutation types
(Cbt, Mbt), and probabilities (Pc, Pm), respectively, where bt is
the set of positive integers.

2) System inputs: Obtain the input values of
PM,L
T0

, dj,it , Eg
t , E

j
t,pv, E

j,s
t , Pt and set upper and lower bounds

according to Section II.

3) Evaluation: Calculate Kd(d
M,N
T0

),K
M,tx
T0

, and K
M,s
T0

with
the given constraints (2), (4), (6)–(10), (13), (16), (18)–(24).
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4) Updating P0: The set of individuals in P0 are modified
and go through crossover and mutation with a probability range
between 0 and 1. In each iteration, stochastic operators are
applied (until generations reach a preset number) to achieve
optimal solutions and minimize (30).

B. Binary Particle Swarm Optimization

The joint optimization problem in (30) is solved via the
BPSO [35] algorithm through the following steps.

1) Population generation: Initialize the swarm (S0) in a pair
(−→psr,−→vr ) using (31). The algorithm parameters are set, including
maximum and minimum velocities of the particles, normal
distribution between 0 and 1. The position psr of the particle
r is computed as

−→psr(t) = −→psr(t− 1) +−→vr(t) (31)

where −→psr,−→vr ∈ Rn represent position and velocity of the par-
ticles and −→psr(t− 1) is the prior position of the particle in S0.

2) System inputs: Obtain the required input values as men-
tioned in Section IV-A with upper and lower bounds according
to Section II.

3) Evaluation: Calculate Kd(d
M,N
T0

),K
M,tx
T0

, and K
M,s
T0

with
the given constraints (2), (4), (6)–(10), (13), (16), (18)–(24). The
particles in this evaluation are named as pbest.

4) Updating S0: For the optimal values of S0, the search space
is refined/altered according to

−→vr(t) = −→vr(t− 1) + α1rand1 (pr −−→psr(t− 1)) + · · ·
α2rand2 (pg −−→psr(t− 1)) (32)

−→vr(t) =
{−→vrmax if −→vr > −→vrmax−→vrmin if −→vr < −→vrmin

(33)

whereα1.rand1 andα2.rand2 are random weights for pr (local)
and pg (global) positions of the particles, respectively. In (33)−→vrmax and −→vrmin signify the maximum and minimum velocities
of particle r at random point, respectively. It is to be observed
that −→psr is constrained between [0, 1]. The updated particles in
S0 are further tested in the evaluation step to achieve best values
(until generations reach a preset number).

C. Differential Evolution Algorithm

The joint optimization problem in (30) is solved through the
DE algorithm [36] involving the steps given below.

1) Population generation: Initial population P1 ∈ Rn is ob-
tained from (34) with pUe , p

L
e being the upper and lower bounds

of P1, respectively, where randi is a uniformly distributed ran-
dom number between 0 and 1.

P1 = pLe + randi(p
U
e − pLe ). (34)

2) System inputs: Obtain the required input values as mentioned
in Section IV-A with upper and lower bounds according to
Section II.

3) Evaluation: Calculate Kd

(
d
M,N
T0

)
,K

M,tx
T0

, and K
M,s
T0

while respecting the constraints given in (2), (4), (6)–(10), (13),
(16), and (18)–(24).

4) Updating P1: P1 is updated through mutation process using
(35) and new trial vector Tv is obtained by crossover using (36)

Mde = vr1 + F (vr2 − vr3) (35)

Tv =

{
Mde if rand(j) ≤ cr
P1 if rand(j) > cr

(36)

where F in (35) is a constant between [0, 1], vr1, vr2, and vr3
are the vectors (randomly) chosen from P1 and r1, r2, r3 are
positive integers∈ {1, 2, 3, 4. . .n}. Through crossover (cr), new
trial vector is generated as per (36). The updated individuals in
P1 are further tested in the evaluation step to achieve the best
individuals until generation reaches a preset number.

D. Harmony Search Algorithm

The joint optimization problem in (30) is solved through the
HSA algorithm [35] implemented via the following steps.

1) Population generation: Initialize harmony memory (HM )
size and other parameters of the algorithm; such as HM con-
sideration rate (HMc), pitch adjustment ratio (Pa), minimum
and maximum bandwidth (bmin, bmax)

2) Inputs: Obtain the required input values as mentioned
in Section IV-A with upper and lower bounds according to
Section II.

3) Evaluation: Calculate Kd

(
d
M,N
T0

)
,K

M,tx
T0

, and K
M,s
T0

while respecting the constraints given in (2), (4), (6)–(10), (13),
(16), and (18)–(24).

4) Updating HM size: The individuals in HM are updated
based on (37). The new harmony is further diversified using Pa
as per (38)

HM =

{
HM ∈ HMold with P (HMc)
HM ∈ HMnew with P (HMc− 1)

(37)

HM =

{
Y es with P (Pa)
No with P (1− Pa).

(38)

In each iteration, HSA operators P (HMc) and P (Pa) are
applied to HM to strive for optimal solutions until generations
reach a preset number.

V. RESULTS AND DISCUSSION

In this section, we present simulation results of the designed
ER-PEM system model based on the selected four HOMs: GA,
BPSO, DE, and HSA. We benchmark the performance of HOMs
based on energy scheduling parameters (i.e., energy balance,
average transactions, average delay, and average system cost
cost) in varying seasons and under different values of HOMs’
hyperparameters.

For simulations purpose, we assume M = 10 smart homes
with the same energy profiles for a finite scheduling horizon of
24 hours (starting from 1:00 A.M. to the next day at 1 A.M.) [37].
Further, PV energy is generated randomly varying over T0

and Iir with E
max
t,pv = 8 kWh for summer season, E

max
t,pv = 5

kWh for spring season, and E
max
t,pv = 3kWh for winter with

ηpv=18%. An energy storage system of E
s
t,max = 5kWh with

αt = 0.8 and η
(+)
t = η

(−)
t = 0.7 is considered. Data related to
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TABLE II
SELECTED VALUES OF HYPERPARAMETERS

Fig. 3. Unscheduled case versus selected optimization algorithms. (a) Demand
and supply balance and (b) energy storage system balance.

solar irradiance and temperature is obtained from the Finnish
Meteorological Institute (FMI) [38]. We consider that smart
home users can buy or sell their energy packets from or to the
utility with Hbuy

t,min = 0.6 cents/kWh, Hbuy
t,max = 3.7 cents/kWh,

Hsell
t,min = 0.06 cents/kWh and Hsell

t,min = 0.57 cents/kWh [39].
We also consider following sets of hyperparameters:

1) selection of Cbt,Mbt, Pc, Pm for GA;
2) selection of −→vimax,

−→vi in, α1, α2,
−→vi for BPSO;

3) selection of F, Pce, p
L
e , p

u
e for DE;

4) selection of HMc,Pamin, Pamax, bmin, bmax for HSA.
The HOMs are analyzed under varied selection sets of their

respective values of hyperparameters as given in Table II. We
run our simulation using MATLAB scripts (version R2018b) on
a 2.5-GHz PC with 32 GB RAM.

Fig. 3 shows energy balance results for the unscheduled case
against the selected HOMs (i.e., GA, BPSO, DE, and HSA). It
is clear from Fig. 3 that energy demand of smart homes is met
from the on-site renewable resources and external power grid. It
can be seen from Fig. 3 that PV energy is insufficient to meet the
energy demand of smart homes, however, it is used efficiently
by HOMs. Whenever possible, the smart homes procure energy
at low prices from the utility grid to meet their energy demand. It

Fig. 4. Average energy transactions between users and P-ESP.

can be further noted from Fig. 3 that the selected HOMs schedule
the demand of smart homes efficiently while respecting system
constraints as discussed in Sections II and III.

Fig. 4 depicts relative performance of the selected HOMs
against the unscheduled case in terms of the PEC involving sell-
ing of energy packets to and buying of energy packets from the
P-ESP over T0. In the unscheduled case [see Fig. 4(a)], energy
packet transactions are unidirectional only, i.e., Et’s are bought
by smart home customers at 2.30$for Et,max. By contrast,
the heuristic algorithms [see Fig. 4(b)–(e)] carry bidirectional
energy packet transactions among smart home customers and
the P-ESP. Fig 4 reflects that the HOMs are efficient to balance
the energy demand of smart homes as well as empower the
smart home customers to sell surplus energy. Particularly, smart
home customers buy energy during 1–5 A.M. When the available
PV generated energy exceeds the demand during day time, the
surplus energy packets are sold back to the P-ESP.

Quantitatively, the selling costs (in $/slot) for GA, BPSO,
DE, and HSA algorithms are 0.61, 1.04, 0.51, and 0.89, respec-
tively. The performance comparison of algorithms shows that the
BPSO and HSA utilize the harvested energy from the PV system
and energy storage system in a more efficient manner than the
GA, and the DE—selling greater amount of energy packets to the
P-ESP. This validates that the heuristic optimization algorithms
allocate energy resources effectively and facilitate customers to
sell back their surplus energy to the utility grid via the P-ESP.
Table III illustrates the buying and selling cost of the M smart
homes on daily and monthly basis. As mentioned previously,
in an unscheduled case, the energy packet transactions are
unidirectional and the daily average buying cost is 1.9 $. By
contrast, with the inclusion of HOMs, smart home customers are
able to sell the surplus energy at an average cost of 0.61, 1,04,
0.51, and 0.89 $ by the GA, BPSO, DE, and HSA, respectively,
as shown in Table III. It can be observed from the table that the
selling cost of energy packets under various hyperparameters’
selection remains constant except for selection IV, where the
cost slightly increases by 0.11 ( $/slot) for GA, DE, HSA, and
0.6 ( $/slot) for BPSO. On the other hand, the procurement cost
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TABLE III
AVERAGE ENERGY TRANSACTIONS BETWEEN SMART HOMES AND P-ESP

Fig. 5. Performance of HOMs under the hyperparameters’ selection I–IV

(a)–(d): average system cost vs d
j,i
T0,max ∀ i, j ∈ [N,M ].

of energy packets varies with the selection of different values of
hyperparameters. Essentially, the inclusion of hyperparameters’
selection (I–IV) reflects that HOMs has improved the scheduling
process (by selling the energy packets and procuring energy
packets at low prices) and reduced the overall PEC of smart
home customers.

Fig. 5(a)–(d) show the impact of load scheduling delay of
the selected algorithms on the average system cost under the
hyperparameters’ selection I–IV. The average system cost is
calculated as energy procurement cost, scheduling delay cost,
and battery degradation cost (as mentioned in Section III). The
average system cost can be increased/decreased based on the
allowable load scheduling delays, which means relaxing the
allowable delay can decrease the average cost of the system
and vice versa. This relation is depicted in Fig. 5 as strict
scheduling delay of the algorithms results in higher average
system cost, whereas when scheduling delay is allowed to relax,

Fig. 6. Delay performance of HOMs under the hyperparameters’ selection

I–IV (a)–(d): d
j,i
T0

vs d
j,i
T0,max ∀ i, j ∈ [N,M ].

the cost of the system is reduced. It is important to note that
this tradeoff can help the users to operate scheduling delays
at their desired level with respect to the average cost of the
system. Similarly, the impact of the hyperparameters’ selec-

tions (II, III, IV) for the average system cost versus d
j,i
T0,max

is also shown in Fig. 5(b)–(d). It is evident from Fig. 5(a)–(d)
that HOMs follow similar behavior, however, the gap between
the performance curves of HOMs is decreasing. Essentially,
this means that selection of different hyperparameter values
improves the randomization process of HOMs and provides
effective solutions to the optimization problems. Fig. 6(a)–(d)

depict a performance comparison of d
j,i
T0

vs d
j,i
T0,max between

HOMs (GA, BPSO, DE, and HSA) based on the hyperparamter
selection I–IV. It can be observed in Fig. 6 that average expe-

rienced delay d
j,i
T0

by load i in a smart home j increases when

the d
j,i
T0,max (maximum allowable delay requirement) is relaxed.
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TABLE IV
DELAY PERFORMANCE OF THE HOMS

Fig. 7. PEM plans for M smart homes. (a) Unscheduled and (b) BPSO-
scheduled.

This behavior ofd
j,i
T0

againstd
j,i
T0,max shows sublinear relation for

the given algorithms. This means during scheduling process, the
operation of the load i can be delayed to obtain flexibility in the
average system cost, however, on the other hand, QoS would
be compromised. It can also be observed from Fig. 6(a)–(d)

that during the scheduling process, BPSO attains d
j,i
T0,max and

compromises QoS most in comparison to other algorithms which
in turn reduces system cost. Note that, in Fig (a)–(c) the HOMs
exhibit the same behavior (sublinear), however, the order of the
algorithms in terms of d

j,i
T0,max has changed due to different set

of hyperparameters selection. This reflects that different values
of hyperparameters can add flexibility to the scheduling process
considering constraints of the scheduling parameters. The order

of the algorithms in terms of d
j,i
T0,max is presented in the Table IV.

It is worth mentioning that the ER-PEM provides the optimal
energy plans for a single home, like HEMS and multiple homes
considering the energy-demand requirement as discussed in
Section II. Thus, for the sake of simplicity, here, we show the
BPSO algorithm to demonstrate the PEM planes for 10 smart
homes separately in Fig. 7. Fig. 7(a) and (b) represents the PEM
plans for ten smart homes at “t” for an unscheduled case and the

Fig. 8. Performance of the BPSO in different seasons condition. (a) d
j,i
T0

vs

d
j,i
T0,max. (b) Average system cost versus d

j,i
T0,max∀ i, j ∈ [N,M ].

BPSO algorithm. It can be observed from Fig. 7(a) that the PEM
plans without scheduling are uniform values for smart homes
during “t” which consequently generates power peaks in peak
hours. In contrast, Fig. 7(b) depicts that the algorithm BPSO
tends to provide diverse PEM plans for each smart home in time
slot “t” and avoids the peak consumption of energy. Fig. 8(a) and
(b) shows the performance of the BPSO algorithm for T0 during
three days: summer–spring–winter in terms of the maximum
allowable delay and the average cost of the system. In Fig. 8(a),
when the season conditions varied from summer–spring–winter,

the value of d
j,i
T0

increases reflecting demanding constraints of
energy storage systems due to the increase in imbalance between

RDS
t . Next, Fig. 8(b) represents the effect of d

j,i
T0,max on the

average system cost considering varied season conditions. The

tradeoff relation between the average system cost and d
j,i
T0,max

can be seen, which represents the average system cost can be
lowered with the stringent load scheduling delay and vice versa.

VI. CONCLUSION

This article presents an ER-based PEM system for MAs at
smart homes in the EI. The goal is to minimize the average
aggregated system cost which consists of load scheduling delay
cost, energy procurement cost, and battery degradation cost. To
achieve the objective, we jointly optimize the energy usage of
smart homes, grid-connected PV energy, and energy storage
system The ER-PEM solves the joint optimization problem con-
sidering the four well-known HOMs: GA, BPSO, DE, and HSA.
Through simulations, the selected HOMs are benchmarked
in terms of energy scheduling parameters, energy scheduling
delays, energy balance, and average system cost parameters.
Moreover, the performance of the ER-PEM is also evaluated
by considering the impact of the hyperparameters of heuristic
techniques and varying weather conditions on ER-PEM system.
The results show that the ER-based PEM minimizes the average
aggregated system cost and provides effective energy plans for
a single smart home and in an energy community of multiple
smart homes and varied season conditions. In the future, we aim
to investigate the impact of electric vehicles integration on the
EI under the assumptions of the proposed model.
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