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In the industry material classification and quality control are key challenges that require
speed and accuracy. Automation of material classification using machine learning classi-
fiers would provide a unified method that enables faster and more accurate classifications
while reducing human errors. The focus of this study is to research industrial classifica-
tion of material based on the material’s features. One of the most common classification
approaches is to use spectrometer analysis where aborption, emission or scattering prop-
erties of the material are analyzed at different wavelengths using a spectrometer. The
goal of this study is to develop a machine learning model for the case industry that can
classify materials based on spectrometer analysis. For this study the case industry has pro-
vided a dataset of 30 000 material classications with 200 unique classes. To develop the
model several pre-processing methods, data balancing methods and classification meth-
ods that have achieved good results were experimented. In the conducted experiments
the best 95% validation accuracy was achieved with a model that used unscaled data, was
balanced with Synthetic Minority Oversampling Technique (SMOTE) and was classified
with the Random Forest (RF) classifier.
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Teollisuudessa materiaalien luokittelu ja laadunvalvonta ovat keskeisiä haasteita, joissa
vaaditaan nopeutta ja tarkkuutta. Materiaalien luokittelun automatisointi koneoppivien
luokittelijoiden avulla tarjoaisi yhtenäisen menetelmän, joka mahdollistaisi nopeamman
ja tarkemman luokittelun samalla vähentäen inhimmillisiä virheitä. Tässä tutkimuksessa
perehdytään teollisuuden materiaalin luokitteluongelmiin, jossa pyritään luokittelemaan
materiaaleja niiden ominaisuuksien perusteella. Luokittelutavoista yksi yleisimpiä tapoja
on luokitella teollisia materiaaleja spektrometrianalyysilla, jossa spektroskoopilla mi-
tataan materiaalin absorptio-, emissio- tai hajontaominaisuuksia eri aallonpituuksilla. Tutkimuk-
sen tavoitteena on kehittää koneoppiva malli kohdeteollisuudelle, joka pystyy luokittele-
maan materiaaleja spektrometrianalyysin perusteella. Kohdeteollisuus antoi tutkimuksen
käyttöön 30 000 materiaalin luokittelun tietokannan, joka sisälsi 200 eri luokkaa. Mallin
kehittämiseksi testattiin useita esikäsittelymenetelmiä, datan tasapainottamismenetelmiä
ja luokittelumenetelmiä, jotka ovat saavuttaneet hyviä tuloksia aiemmissa tutkimuksissa.
Suoritetuissa kokeissa parhaan 95 %:n validointitarkkuuden saavuttivat malli, joka käytti
skaalaamatonta dataa, joka oli tasapainotettu SMOTE-menetelmällä ja luokiteltu RF-
luokittelijalla.
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1 INTRODUCTION

1.1 Background

Material classification is a problem where material is classified into classes based on the
material’s features. These features can be dimensions, mass, spectral properties among
others, which from prior knowledge are known to differ between classes. Material clas-
sification has its applications in quality control such as in food safety where material is
classified to determining ripeness or possible contamination [1]. Material classification is
also utilized in multi-class classification such as classifying marine plastic debris [2], and
in recycling various scrap metals [3].

This study focuses on automating industrial material classification with machine learning
methods. More specifically this study focuses on determining the best pre-processing–
data balancing–classification pipeline for classifying specific industry material. Currently
the classification is done manually from concentration measurements by using past knowl-
edge, notes and industry experience to determine the correct material code, which is slow,
consumes working hours and requires extensive knowledge which can all lead to mis-
classification in a rapid paced industrial environment. For these reasons an automated
solution is required which sets the goal of this study to implement a machine learning
model, that is able to rapidly and accurately classify material to save working hours and
minimize human error in the process. The industry has a non-public record of 30 000 ma-
terial classifications with 200 different classes which are used in the training, validation
and testing of the model. Singular records consist of chemical composition information
processed from raw spectrometer data paired with correct material code.

Multiclass classification is needed to solve the problem, for which supervised learning
is implemented with known classes. The architecture in Figure 1 shows the three main
components of the classification architecture: pre-processing where data is normalized
and filtered, data balancing where unbalanced data is addressed and classification that is
a trained classifier which is responsible for the final decision.

Figure 1. Architecture for the model.
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1.2 Objectives and delimitations

The main objective of this thesis is to experiment on different pre-processing, data bal-
ancing and classifier combinations to find the optimal combination which classifies the
material most accurately. The classifier is then compared with the latest data to determine
the final test accuracy. The specific objectives of the thesis are:

1. Perform preliminary feasability test whether the data is suitable for machine learn-
ing classification.

2. Compare possible methods for pre-processing, data balancing and classification by
experimentation with hyperparameters.

3. Select the best combination.

One delimitation is that the minority classes which have too few samples to be accurately
learned, are ignored.

1.3 Structure of the thesis

The thesis is structured as follows: Chapter 2 provides an overview of prior research on
material classification in industrial settings using spectrometer measurements. Chapter
3 describes the proposed evaluation methods, which are based on the best practices de-
rived from the previous work. This chapter is further subdivided into pre-processing, data
balancing, and classification subchapters, which provide a detailed view of the proposed
methods. Chapter 4 describes the experiments and the results obtained. Chapter 5 ana-
lyzes the results and describes possible future research. Finally, Chapter 6 concludes the
thesis by summarizing the work conducted and the achieved results.
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2 MATERIAL CLASSIFICATION IN INDUSTRIAL AP-
PLICATIONS

2.1 Classification for recycling

2.1.1 Plastic classification

With the ever increasing plastic waste the need for plastic classification for recycling is
becoming more concerning issue where rapid and accurate machine learning solutions
are needed [4]. Classification of plastics has been studied in the classification of marine
plastic debris [2], in the classification of recycled plastic waste [5] and in the classification
of black plastics [6]. Example of plastic classification using spectrometer features is
visualized in Figure 2 [7].

The study by A. Michel, et al. [2] focused on classification of marine plastic debris us-
ing different spectroscopy techniques such as Laser Induced Breakdown Spectroscopy
(LIBS), Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR)
and Near-Infrared Spectroscopy (NIR). The goal of the study was to determine by exper-
imentation the spectroscopy - classifier pair with the highest accuracy across all customer
grade plastic types. For experiments the plastic samples were selected with differing color,
opaqueness and thickness, which were then rinsed and cleaned for the spectrometer mea-
surements to eliminate surface contamination. Classification was done using k-Nearest
Neighbors (k-NN), Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM) classfiers.

The study by Y. Yang, et al. [5] focused on classification of plastic waste using portable
NIR spectrometer to achieve effective recycling. The goal of the study was to test different
pre-processing methods with Principal Component Analysis (PCA) to cluster different
plastic types in three principal component space for dimension reduction and for visual
inspection. After the pre-processing and dimension reduction different classifiers were
tested to find by experimentation the best classifier for the given problem.

The study by F. Gruber, et al. [6] focuses on the problem of black plastic classification
using spectroscopy features. The goal of the study is to experiment with different spec-
troscope types to determine the ones that are not absorbed by the black surface of the
plastics and have the strongest discrimination between different plastic types. For experi-
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ments the plastic samples were cryogenicically grinded and measured with spectrometer,
pre-processed and classified using k-NN, LDA and SVM classifiers.

Figure 2. Near-infrared spectroscopy set-up for plastic sorting [7].

2.1.2 Metal classification

According to World Steel Association from the year 2000 to 2020 the production of crude
steel has doubled which reflects the increase in consumption of steel products [8]. This
increase in consumption has led to increased steel recycling which in part is possible due
to the biggest steel based products being transportation machinery, industrial machinery
and electrical equipment which can be efficiently recycled [9]. Metal classification for
recycling has been studied with the classification of scrap metal [3] and the classification
of aluminum grades [10].

The study by J. Gurell, et al. [3] studied the classification of scrap metal by utilizing
LIBS for rapid metal scrap classification. The goal of the study was to determine if it
is possible to discriminate between different metals and also different steel alloys. To
conduct the experiments the outer layers of the scarp metal sample were evaporated from
the measurement region using pulse laser. This was done to remove any possible surface
contaminations such as corrosion or paint. The measurements were then measured using
LIBS and classified using LabVIEW-software.

The study by D. Jossue, et al. [10] studied the classification of aluminum scrap to three
commercially interesting classes by utilizing LIBS and machine learning. The goal of
the study was to determine if LIBS measurements and trained classifiers can be used to
discriminate between different metals and different aluminum sub-classes. The measure-
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ments were conducted using setup visualized in Figure 3 and pre-processed using simple
binning to discretize the spectra. For the classification different traditional classifiers were
utilized such as LDA, SVM and RF. More advanced CNNs were also experienced with
different pretrained networks.

Figure 3. Laser-induced breakdown spectroscopy for aluminum classification [10].

2.2 Quality control for products

Quality control and product safety is an important issue to society as a whole, as they form
the basis of human health which impacts directly upon social development, environment
and stability [11] [12]. The complexity of quality control comes from hard to detect faults
such as counterfeit medical products and seafood contaminated by heavy metals. Qual-
ity control for products has been studied in the detection of heavy-metal contaminated
seafood [1] and quality control in pharmaceuticals [11].

The study by G. Ji, et al. [1] focused on detecting heavy-metal contamination in Tegillarca

granosa clam species which is one of the most important commercial seafood product in
East Asia [1]. The goal of the study was to experiment if it is possible to discriminate
between clean and heavy-metal contaminated samples of Tegillarca granosa by using
spectroscopy and machine learning. To conduct the experiment the samples were cleaned
and prepared which were then analyzed with spectrometer displayed in Figure 4, after
which the spectrometer measurements were pre-processed and finally classified as clean
or contaminated using SVM and RF classfiers.
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The study by J. C. Martinez, et al. [11] focuses on similarity classification of the pharma-
ceutic called acetaminophen based on spectrometer measurements obtained from the sam-
ples. The goal of the study was to compare acetaminophen products from thirteen differ-
ent pharmaceutical laboratories against a control supplied by governmental health depart-
ment. The measurements were conducted using Raman spectroscopy and pre-processed
with PCA, after which Naive Bayes classifier was used to classify similarity to control
sample.

Figure 4. Diagram of the laser-induced breakdown spectroscopy (LIBS) set-up utilized in seafood
quality control [1]

2.3 Summary

Although the studies differ by topic and by the methods which the observation data is
gathered, they all have in common the problem of finding the optimal classifier by ex-
perimentation. The optimal classifier is the classifier with the highest validation accuracy
that is found by cross-comparing different classifiers with hyperparameter tuning. The
summary of the optimal classifiers with different studies is presented in Table 1. The
accuracies were selected from experiments that were conducted on pre-processed spec-
trometer data to reflect more accurately the industry problem of this thesis.

Furthermore Convolutional Neural Network (CNN) classifiers were ignored because the
industry problem of this thesis uses pre-processed chemical composition data, that does
not contain any structural information which is essential for CNN models [13]. Other
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deep learning methods were also ignored because from prior knowledge it is known the
problem is linear and simplistic although labor-intensive.

In a summary, although the studies are from different fields with different objectives and
datasets, they all share a commonality in using a spectrometer for measuring spectral
properties of a specific material and certain pre-processing to turn the spectra into dis-
cretized chemical composition measurements. With this information the classifiers men-
tioned in Table 1 are studied more closely and experimented with in this thesis. In Table 1
accuracy is the overall ratio of correct guesses (Equation 13), while precision is the ratio
of true positive predictions over every true prediction [13]. The information of the data
used in the studies is displayed in Table 2. Compared to the other studies the study by
D. Jossue et al. [10] doesn’t have equal class distribution, but instead contains the three
classes in proportions of 44%, 27% and 29% of total data.

Table 1. Comparison of classifiers used in the studies.

Classifiers
Study k-NN LDA SVM RF / ENSEMBLE CNN
D. Jossue et al. [10] - 0.73p 0.66p 0.80p 0.80p

A. Michel et al. [2] 0.97 0.99 0.92 - -
Y. Yang et al. [5] 0.99 - 0.99 - -
F. Gruber et al. [6] 0.90 0.86 0.87 0.90 0.94
G. Ji et al. [1] - - 0.87 0.93 -

Table 2. Comparison of the data used in the studies.

Data
Study Number of

classes
Number of

total samples
Data type

D. Jossue et al. [10] 3 983 LAB-LIBS
A. Michel et al. [2] 6 180 ATR-FTIR
Y. Yang et al. [5] 10 2000 Pynect NIR-S-G1 NIR
F. Gruber et al. [6] 12 400 Fluorescence spectrometer
G. Ji et al. [1] 5 150 LIBS
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3 MACHINE LEARNING METHODS FOR PIPELINE

3.1 Data scaling

Data scaling is the first step in the three-step pipeline before data balancing and classifi-
cation. The aim of data scaling is to scale features to similar magnitude, so that no feature
would have disproportionate influence on the classification [14] [13]. Some classifiers are
very sensitive to feature scales which if not supplied with scaled data can lead to erroneous
learning and evaluation [14].

Data scaling to a certain range is used to scale features into same range of magnitude. The
simplest form of scaling is Min-Max normalization [13] where all features are scaled to
the range of [0,1]. Normalization is a different form of scaling, where features are scaled
to have standard deviation of 1. Different methods of scaling are tested including option
of not scaling the data at all.

3.1.1 Min-Max normalization

Min-Max normalization [13], which transforms the data to the range of [0,1] where min-
imum value is 0 and maximum value is 1. Min-Max normalization is represented by

Z =
x−min(x)

max(x)−min(x)
(1)

where x is the data, min(x) is the smallest x-value, max(x) is the largest x-value and Z
is the transformed data. For replication purposes the minimum and maximum values are
stored in a file.

3.1.2 Maximum absolute scaling

Maximum Absolute Scaling (MaxAbs scaling) [15] only scales the observations without
centering or shifting them in anyway. MaxAbs scaling is represented by the function
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Z =
x

max(|x|)
(2)

where x is the data, max(|x|) is the maximum absolute value of x and Z is the transformed
data. For replication the maximum absolute value is stored in a file.

3.1.3 Standard score standardization

Standard score [13] also known as z-score is a method used to transform data to zero mean
and unit standard deviation. For standard score standardization the mean and standard
deviation of the data are calculated. Using the mean and standard deviation calculated
from the data the same data is then transformed using functions

µ =

∑
xi

N
, σ =

√∑
xi − µ

N

Z =
x− µ

σ

where x is the observations, N is the number of observations, µ is mean, σ is standard
deviation and Z is the transformed data. For the purpose of replication for scaling the test
data, the mean and standard deviation calculated from the training data are stored in a file.

3.1.4 Robust scaler

Robust scaler [15] scales and centers the value by using interquartile range where Q1 is
the median of the lower half of the data and Q3 is the upper half of the data. To calculate
the quartiles the data is to be sorted from lowest to highest and split from the median
into the lower and upper halves. Then the medians from the lower and upper halves are
calculated and assigned as Q1 and Q3 respectively. With these quartiles the equation of
the scaling can be expressed as

Z =
x−Q1

Q3 −Q1
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where x is the input value and Z is the scaled value.

3.2 Data balancing

The rare class problem in classification is a situation where the classes are imbalanced
by containing minority and majority classes [16]. More formally imbalanced dataset is a
dataset that contains significant or extreme disproportionate of class samples for different
classes [17]. In real life classification problems the rare classes and rare cases are usually
the most interesting ones in the form of anomaly detection and otherwise rare occurrences
[17]. Real life examples include credit card fraud detection [18] anomaly detection in
videos [19] and object recognition [20].

3.2.1 Class weights

For class weighting, very simplistic implementation is applied, which is calculated for
each class. The weighting is based on simplified version of the method introduced by
Gary King and Langche Zeng [21] by calculating weight for each of the classes with the
inverse of its sample frequency as

wi =
N

K · ni

where N is the total number of samples in the whole dataset, K is the number of classes
in total and ni is the number of samples in the class i.

With this method, the minority classes are assigned greater weights that increases the
importance of individual samples. On the other hand, the majority classes are assigned
lower weights, making the individuals less important. However, the weights are calculated
so that the weight of the class multiplied by the number of samples in the class always
equals same value for all classes, with this each class has equal importance as a whole in
the learning process. Visualization of example weights are displayed in Figure 5.
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Figure 5. Example of inverse frequency weights

3.2.2 Synthetic Majority Oversampling Technique (SMOTE)

SMOTE is an oversampling technique which aims to over sample minority classes by
generating new data points by interpolating the original data points. SMOTE aims at
generating large and less specific decision regions instead of small and specific regions by
introducing new synthetic data points joining existing data points with k nearest neighbors
[22]. SMOTE is presented in Algorithm 1.

Algorithm 1 SMOTE [22]
Input: Sample matrix(k, M, N)
Output: New sample(1, N)

1. Set random sample from the class as pivot,

2. Select the k-nearest neighbors from the pivot sample,

3. Calculate the difference vector between one randomly selected neighbor and the
pivot,

4. Multiply the difference vector with a random number from [0,1] constant distribu-
tion,

5. Generate the new data point as point = pivot+ vector,

6. Repeat the whole process as many times as required,

This operation is repeated until the desired number of synthetic samples is reached. The
algorithm is visualized in Figure 6.
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Figure 6. SMOTE visualized

3.2.3 Adaptive Synthetic Sampling Approach (ADASYN)

Adaptive Synthetic Sampling Approach (ADASYN) is synthetic oversampling technique
used in imbalanced learning problems to synthetically sample minority classes. Com-
pared to SMOTE, ADASYN focuses on generating data points for minority classes that
are harder to learn than those that are easier to learn [23]. ADASYN is described in
Algorithm 2.

3.3 Classification

Classification in machine learning is a supervised learning task, where the goal is to as-
sign labels or classes to data samples based on their features [13] [14] [24]. The primary
objective of classification is to determine decision boundaries or functions that can distin-
guish different classes from each other. These decision boundaries or functions, receive a
set of features as input and output a class label that corresponds to the class of the given
instance. The correct labeling is learned from a training dataset, which pairs different
samples with their known class labels. By doing so, the training algorithm can penal-
ize the classifier for any incorrect classifications and gradually improve its accuracy in
classifying new instances.

3.3.1 k-Nearest Neighbors (k-NN)

k-NN is a supervised classifier that uses the k number of nearest train samples to vote for
the class of the pivot point [25] [26]. For this thesis k-NN was used as the benchmark
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Algorithm 2 ADASYN [23]
Input: Sample matrix(k, M, N)
Output: New sample(1,N)

1. Calculate the degree of class imbalance d = ms/ml,

2. If d < dth, where dth ∈ (0, 1] is the maximum tolerated degree of imbalance,

(a) Calculate the number of synthetic data samples that are to be generated for the
minority class

G = (ml −ms)× β (3)

where β ∈ [0, 1] is the desired level of balance. β = 1 stands for fully balanced
data set,

(b) For each sample xi ∈ minorityclass, find k nearest neighbors by using Eu-
clidean distance, and calculate ratio ri

ri = ∆i/k, i = 1, . . . ,ms (4)

where ∆i is the number of samples in the k nearest neighbors of xi,

(c) Normalize ri with

r̂i = ri/
ma∑
i=1

ri (5)

so that
∑

i r̂i = 1,

(d) Calculate the number of synthetic samples to generate for each minority sam-
ple xi

gi = r̂i ×G (6)

where G is the number of samples to be generated for the minority class as
defined in Equation 3,

(e) For each xi generate gi synthetic data samples according to the steps by loop-
ing from 1 to gi,

i. Choose random data sample xzi from the k nearest neighbors for data xi,
ii. Generate the synthetic data sample with

si = xi + (xzi − xi)× λ (7)

where (xzi − xi) is the difference vector in n dimensional space and λ ∈
[0, 1] is a random number,

classifier due to its’ simplistic and naive nature, and because k-NN methods have reached
good results in plastic classification [2], mould classification [27] and other material clas-
sification problems [28]. The fundamental concept of the k-NN algorithm involves the
classification of samples, which is based on their closest train samples through a majority
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voting scheme. In this scheme, k nearest neighbors of the classified sample are selected to
vote with their own respective classes. Ultimately, the class that gains the highest number
of votes is the decision for the predicted sample. The algorithm for deciding the class of
an arbitrarily chosen sample is described in Algorithm 3.

Algorithm 3 K-NN [22]
Input: k, Observation space(M, N), Sample(M, 1)
Output: Class label(1)

1. Calculate the Euclidean distance di from the sample point x to every observation
mi,

d(mi, x) =
√

(mi1 − x1)2 + (mi2 − x2)2 + · · ·+ (min − xn)2 (8)

2. Select the k nearest observations by taking the observations with smallest distances
mink(di),

3. Get the corresponding labels ωi for the k nearest observations mink(di),

4. Calculate the most frequent class label ω̂ by taking mode from the labels ωi

ω̂ = mode(ω1, ω2, . . . , ωi) (9)

5. Return the most frequent class label ω̂ as the predicted label for sample x,

3.3.2 Linear Support Vector Machine (SVM)

The support vector machine is a type of supervised learning classifier that constructs a
set of hyperplanes to divide the high dimensional input space into class specific regions
[29]. The basic idea behind SMV is to find hyperplanes that can best separate the input
data into distinct classes. SVM constructs these hyperplanes by using support vectors
which are data points that best separate the different classes, which also maximize the
margin between the different classes. The hyperplanes are fitted using optimization that
maximizes the margin and minimizes the classification error. Figure 7 displays a simple
2-dimensional SVM where two classes blue and green are separated by a hyperplane
w ∗ x− b = 0 where w is the normal vector of the hyperplane, x is the position vector in
the 2-dimensional space, and b is the margin value. The hyperplane is spanned by using
the support vectors, which are the bold dots in the figure. These support vectors lie closest
to the hyperplane and define the margin of the SVM. The margin is bounded by the dotted
lines in the figure, which intersect the support vectors.
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For the first SVM classifier a linear kernel is utilized which retains the data in its original
space without any transformations. Linear kernel SVM has reached good results with
plastic classification [2] and heavy-metal contamination classification [1], making it vi-
able classifier to compare and study. Linear SVMs works well with linearly separable
data, but cannot perfectly fit problems with non-separable data [30]. Using this knowl-
edge it is possible to estimate the linear separability of the data by fitting linear SVM with
zero error tolerance. If the fit is possible, it indicates the data might be linearly separable,
but if not the data contains non linearity [14].

SVM classifier is visualized in the Fig 7 [31]. In the figure two classes blue and green are
separated by a hyperplane w ∗ x− b = 0. The purpose of this hyperplane is to act as the
decision boundary, that can classify given input sample into certain class based on which
side of the decision boundary the sample resides.

Figure 7. Example of SVM decision boundary with the b margin which separates the blue class
from the green class [31].

3.3.3 Radial Basis Function (RBF) kernel SVM

Radial Basis Function (RBF) is a kernel that is utilized for the previously mentioned
SVM [30]. Compared to linear kernel the RBF kernel maps the input space into non-
linear, distance based space from a center point. The RBF mapping can be represented
by
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K(X1, X2) = e−
||X1−X2||

2

2σ2 (10)

where X1 is the support vector from which the Euclidean distance is calculated from, X2

is any observation in the observation space to which the distance is calculated to, σ is
hyperparameter that determines the standard deviation used in the distance metric [32].

3.3.4 Decision Tree Classifier

The decision tree is a classifier that classifies new samples into their corresponding classes
using one or several decision functions in a successive manner [33]. Furthermore deci-
sion trees can be visualized by a tree diagram with one root node, a number of interior
nodes and a number of terminal nodes. Classification starts from the root node moving
downwards based on the result of the node’s decision function into a number of interior
nodes with each their own decision functions, and finally ending in a terminal node which
will be the final class prediction. Simple decision tree for arbitrary {x, y, z} ∈ R inputs
is visualized in Figure 8.

Decision trees are commonly trained by using the Gini impurity criterion [34] or the Shan-
non information gain criterion [35]. The training criterion determines how the algorithm
chooses the best split at each node of the tree. Gini impurity measures the degree of im-
purity of a set of samples, and the algorithm chooses the split that minimizes the Gini
impurity of the child nodes using the following function:

G(n) = 1−
∑
i

n2
i /N

2 (11)

where n is the number of samples in each class, and N is the total number of samples at
a given node [34]. The Shannon information gain, on the other hand, measures the reduc-
tion in entropy achieved by a split, and the algorithm chooses the split that maximizes the
information gain of the child nodes using the following function:

h(n) = −
∑
i

ni

N
−
∑
i

ni log ni (12)
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where similarly n is the number of samples in each class, and N is the total number
of samples at a give node [34]. The training process continues recursively until all leaf
nodes are pure, or until a stopping criterion is met, such as reaching a maximum depth or
a minimum number of samples per leaf node. Once the tree is trained, it can be used in
classification of new samples by inferring the trained model.

Figure 8. Decision tree visualized for {x, y, z} inputs with four different classifications.

3.3.5 Random Forest Classifier

The random forest is a classifier that utilizes multiple decision tree classifiers by letting the
decision trees vote for the most popular class. More formally random forest is a classifier
consisting of a collection of tree-structured classifiers {h(xxx,Θk), k = 1, . . . } where the
Θk are independent random vectors where each tree casts a vote for the most popular class
for input xxx [36] [37]. The basic idea of random forest with voting system is visualized in
Figure 9 [38].
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Figure 9. Simplified random forest [38].
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4 EXPERIMENTS

4.1 Data

The data used in this study consists of 30,000 material classifications with 200 different
classes which are used for training, validation, and testing each selected machine learning
model. Each record in the dataset contains chemical composition information from pre-
processed spectrometer data and its associated material code. As is with many real life
problems with multiple classes, the studied dataset presents a rare class problem [39], as
evidenced by the class frequency figure depicted in Figure 10. In the figure the samples
have been binned into 250 bins based on their class and sorted from most common classes
to rare classes. The subclass problems, where one class is subsumed within another class,
were initially identified in the data. However these cases were considered insignificant by
the industry and were consequently excluded from the dataset.

Figure 10. Histogram of the class frequency in the dataset.

The data was obtained from an industrial application that has remained relatively unal-
tered for several years, which allows the use of dated data in the training without intro-
ducing biases into the learning process. Furthermore, the bias is controlled by the fact
that the data was collected by on-site experts with extensive experience in the industry,
ensuring the reliability of the class labels.

More specifically the structure of the data is shown in Table 3, where each row starts
with an unique identifier index, which is followed by several dozen chemical composition
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concentration measurements, and ended with the corresponding class label which is a
class unique serial number. Furthermore the data were provided in the csv file format.

Table 3. Mockup of the data structure used for the model training.

Example data structure
Index Chemical 1 Chemical 2 Chemical 3 Chemical n Class label

1 . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . .
n . . . . . . . . . . . . . . .

4.2 Evaluation criteria

The evaluation of the models was done using cross-validated mean accuracy, where the
accuracy is multi-class accuracy which is the proportion of correct classes over every
tested class as [13]

acc(f, D) =
1

m

m∑
i=1

(f(xi) = yi) (13)

where the accuracy function has two input parameters, the model’s inference function f

and the evaluated test data D, where D contains the features x and the true labels y, and
finally m is the length of the evaluated test data D. In the function, for each of the i data
element a comparison is made whether the inference of the function f returns the true
class label yi with input xi. If every inference with input xi returns the correct true label
yi the accuracy is 1.

4.3 Description of experiments

4.3.1 Chosen methods for experimentation

The chosen methods for experimentation are chosen from the methods utilized by the
previous studies which achieved good results. The following methods were chosen to be
tested for pre-processing the data:
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1. Min-Max normalization

2. Maximum absolute scaling

3. Standard score normalization

4. Robust scaler

For data balancing the following methods were chosen to be tested:

1. Class weights

2. SMOTE

3. ADASYN

For classification the following methods were chosen to be tested:

1. k-NN

2. SVM

3. RBF

4. Decision tree classifier

5. RF

4.3.2 Linear separability

Linear separability of the data was tested with visual observations of PCA dimension
reduced sets and by attempting to fit linear SVM to the data. The first method of visual
observation builds on the property of PCA where the principal components are a linear
combination of the original factors [40]. With this information, if two or more classes
are clearly linearly separable with visual PCA inspection with reasonably high explained
variance of the principle components, it can be used as indicative of linear separability.
Visualization using PCA is displayed in Figure 11. The second method is to evaluate the
linear separability by fitting linear SVM to the data. If the data can be classified using
linear SVM with reasonably high accuracy that is indicative of linear separability, which
is a direct property of linear SVM where the SVM algorithm aims at separating the classes
by using a combination of linear hyperplanes [29] [41].
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Figure 11. Three most common materials in two component PCA

4.3.3 Grid search

The grid search is an exhaustive hyperparameter tuning algorithm for given discrete set
of of parameter options [15]. Grid search works by iterating through every possible com-
bination of given parameter options and records the evaluation metrics for each combina-
tion. For example, when hyperparameter tuning RBF SVM with two parameters C and
gamma the parameter options are as follows:

. . . = {10−3, 10−2, 10−1, 100, 101, 102, 103}

Cparams = {0.001, 0.01, 0.1, 1, 10, 100, 1000}

Gammaparams = {0.001, 0.01, 0.1, 1, 10, 100, 1000}

which represents log-uniform distribution which is a common way of searching for hy-
perparameters where magnitudes are compared rather than linear scales [15]. The grid
search is a useful tool for iterating over a range of parameters by comparing sets of param-
eters, instead of attempting to test every parameter combination which is impossible [13].
However, there is a trade-off between computational cost and quality of estimation, which
leads to the challenge of selecting the optimal parameters sets.

Another common way of searching for hyperparameters is using a randomized search
which samples given parameter distributions for given n times rather than systematically
going through every given combination as the exhaustive grid search does [42] [15]. Al-



30

though the randomized search has been studied to result in models that are as good or
even better than those tuned with grid search [42], the grid search was still utilized in
most cases where the models had a limited number of hyperparameter options, in order to
fully search the hyperparameter space for better understanding of the models.

4.4 k-fold cross-validation

In k-fold cross-validation, the data is split into k subsets (or folds) of similar sizes, where
the first fold is selected as the validation data and the rest of the folds are used to train the
model [14]. For optimal results each subset should maintain the original data distribution
which can be achieved by stratified sampling [13]. After the first model has been trained
and validated, the second model is trained and validated by using the second fold as
validation and the rest of the folds as training. The final accuracy of the k-fold cross-
validated model is the average of the k training iterations. The concept of k-fold cross-
validation is visualized in Figure 12 [15].

Although k-fold cross-validation is a computationally expensive process, since the model
is trained k times instead of traditional one time, it offers a more robust and accurate
estimation of the model than a singular training would. Because of these properties k-fold
cross-validation has become a widely used standard practice in model training [13] and
machine learning libraries [15].

The rationale for utilizing k-fold cross-validation as an accuracy metric, is the uncertain
distribution of the training data, which poses challenges when using a traditional random
split into training and validation sets. The traditional random split does not ensure that
the validation data accurately represents the problem, especially in rare class problems.
In rare class problems, if all samples of a rare class X are selected as validation data,
the model will fail to learn the rare class X , resulting in decreased accuracy. Also, if a
rare class X is absent from the validation set, the accuracy metric will increase despite
the model’s inability to learn the rare class X . Therefore k-fold cross-validation provides
a more reliable and unbiased approach to estimate model performance by reducing the
impact of data randomness and ensuring that classes are better represented in both training
and validation sets. [43] [15]

For this thesis, 5-fold cross-validation was utilized. This means that the data was split
into five subsets of equal size with each subset serving as validation data once, while the
rest of the data was used for training. The results obtained from each of the five iterations
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were then averaged to provide accuracy metric for each model.

Figure 12. Cross-validation visualized [15]

4.5 Results

The findings were gathered through hyperparameter optimization of each model, which
involved exhaustive testing of discrete options or evaluation of values at various intervals
for continuous variables. Since the training was computationally heavy and thus was time-
consuming significant time, the testing was conducted in multiple batches, each of which
trained the model 100 times, utilizing given pre-processing, data balancing, and classifier
options. As the training progressed, models that could not be further improved due to
their limited hyperparameter options, such as k-NN, AdaBoost, and LDA, were excluded
from subsequent testings. These methods were exhaustively searched, and were found
inferior to the other methods with higher hyperparameter spaces as seen in Table 5. The
models with higher hyperparameter spaces were SVM, RBF and RF which were tested
further with more batches.

Table 4 presents the top five models sorted by their validation accuracy. The hyperparam-
eters of the models were opitmized using validation accuracy. The test accuracy is the
model’s accuracy for unseen data that is not filtered which explains the drop in accuracy.
Based on these results in Table 5 RF classifier has the highest accuracy for this problem,
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with SVM with RBF kernel following as the second best option. Conversely, k-NN, LDA
and AdaBoost had the lowest accuracies and in so are the inferior alternatives. From the
results, LDA and random forest are the most stable models as they have minimal standard
deviation of accuracy compared to other models. On the contrary, k-NN and AdaBoost are
the most unstable models having the highest standard deviations, which are over twenty
times greater than those with LDA and random forest.

Table 6 and Table 7 display the accuracies for RF models with different pre-processing
and data balancing techniques. The results suggest that the selection of pre-processing
and data balancing methods has a minimal effect on the model’s performance, especially
when compared to other classifiers that have significantly higher standard deviations of
accuracy, as shown in Table 1. Also, the optimal combination of pre-processing and data
balancing for Random Forest is the use of unscaled data that has been balanced using
either SMOTE with k=5 or SMOTE with k=10, as their accuracies are highly similar.

Table 4. Comparison of the top-5 models ranked by validation accuracy.

Top-5 models
Rank Validation

accuracy
Test

accuracy
Pre-
processing

Data bal-
ancing

Classifier

1 0.9546 0.7338 Unscaled
data

SMOTE
k=10

Random
forest

2 0.9544 0.7312 Minmax
scaler

SMOTE
k=5

Random
forest

3 0.9542 0.7350 Standard
scaler

SMOTE
k=5

Random
forest

4 0.9535 0.7317 Maxabs
scaler

SMOTE
k=5

Random
forest

5 0.9535 0.7327 Maxabs
scaler

SMOTE
k=10

Random
forest
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Table 5. Comparison of different classifiers.

Validation accuracies of different classifiers
Rank Classifier Mean accuracy Max accuracy Standard

deviation of
accuracy

1 Random forest 0.951 0.955 0.004
2 SVM RBF 0.926 0.940 0.014
3 SVM linear 0.924 0.940 0.012
4 LDA 0.916 0.924 0.007
5 k-NN 0.833 0.931 0.074
6 AdaBoost 0.405 0.525 0.086

Table 6. Random forest pre-processing, with highest accuracies bolded.

Validation accuracies of RF with different pre-processing options
Pre-processing Mean accuracy Max accuracy Standard deviation

of accuracy
Unscaled data 0.953 0.955 0.001
Maxabs scaling 0.951 0.954 0.004
Robust scaler 0.952 0.953 0.001
Minmax scaler 0.952 0.954 0.002
Standard scaler 0.949 0.954 0.006

Table 7. Random forest data balancing, with highest accuracies bolded.

Validation accuracies of RF with different data balancing options
Data balancing Mean accuracy Max accuracy Standard deviation

of accuracy
No balancing 0.947 0.951 0.004
SMOTE k=5 0.951 0.954 0.006
SMOTE k=10 0.953 0.955 0.001
ADASYN 0.952 0.953 0.001
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5 DISCUSSION

5.1 Current study

The obtained results of each method with the considered new dataset are similar to the
previous work presented in Table 1. Specifically, the accuracies achieved by the SVM
and random forest models are found to be comparably high, consistent with the findings
of prior work. Moreover, in the previous studies that utilized both SVM and random
forest methods, the latter was observed to outperform the former, as is also confirmed in
this study. However, the k-NN algorithm yielded significantly lower accuracy in contrast
to the previous work, and the underlying cause of this discrepancy remains unclear.

When comparing machine learning models, it is worth considering how they handle dif-
ferent preprocessing steps, such as feature scaling or normalization. Some models, such
as k-NN, PCA and SVM models, are known to be sensitive to the scale of features and
may require normalization to perform well [44]. However, tree-based models such as ran-
dom forest and decision tree classifiers are not affected by the scale of features, making
normalization unnecessary in many cases [45]. This explains why random forest was un-
affected by the pre-processing method, while it did have an effect with k-NN and SVM
methods which are known to be influenced by the scale of the data [14].

The reason why tree-based models are not affected by feature scaling is the way they are
constructed. In a decision tree, nodes are split based on maximizing information gain
or minimizing impurity. The threshold values used to split the data into equal portions
at each node are determined by the information gain or impurity of the feature, rather
than the actual feature values themselves. As a result, the decision making process is not
influenced by the scale of the features. [36]

In addition according to Aurélien Géron [24], normalization may have a negative impact
on the performance of tree-based models. When features are normalized, the differences
between them may be reduced, which can make them less informative for the model. In
some cases, normalization may even introduce artificial patterns or correlations that do
not exist in the original data, leading to overfitting and poor generalization performance.

The model was further evaluated in co-operation with the professionals from the case
study industry, and was deemed as a working solution. This evaluation was conducted us-
ing permutation feature importances [15] to extract the importances of the input features.
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These features were then analyzed by the professionals and verified as being crucial in
distinguishing between classes.

The current study demonstrates that the RF classifier with inverse weights and no data
scaling, results in comparable, and in some instances better, performance to previous
studies on material classification utilizing spectrometer analysis. However, it is important
to note that the reference studies had minimal spectrometer data pre-processing, com-
pared to the current case study where the data was pre-processed into chemical compound
concentrations from the raw spectrometer data. Although the previous studies had very
different datasets with varying levels of pre-processing, those studies that used the RF
classifier achieved the highest accuracy. The findings of this case study indicate that the
RF classifier is the most effective classifier in industrial material classification that utilize
spectrometer analysis.

5.2 Future work

As previously discussed, the RF algorithm achieved a remarkable degree of accuracy and
was verified by previously mentioned professionals in having learned from the correct
features. However, since the data suffer of a major rare class issue, a significant pro-
portion of the training samples from the minority classes had to be discarded to prevent
overfitting, which could have made the model unstable and inaccurate. This could be im-
proved by gathering more diverse data from the rare classes, and by experimenting with
different data balancing methods and their combinations. Several data balancing meth-
ods that combine multiple techniques have been reported to produce better outcomes in
comparison to using a single method alone [17] [39]. Some of these methods combine
oversampling methods with undersampling methods, in order to better balance the data
and address the rare class problem.

Another future improvement would be to include the classes that exhibit subclass prob-
lem, and experimenting with more advanced non-linear classifiers such as the Multi-layer
Perceptron classifier (MLP) classifier and deep neural networks that can classify them
efficiently. As of the current state these subclasses that are contained inside one another
are not of interest. Advanced non-linear classifiers such as the MLP and deep neural net-
works are known to find complex patterns and structures in the data [13], which could
help when dealing with classes than can have multiple subclasses.
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6 CONCLUSION

In this thesis, a classifier model was constructed and trained for classifying industrial
material from a case industry. The training data consists of 30,000 pre-processed spec-
trometer analysis from over 200 different material classes. The model was constructed
from three parts, with the first part being data scaling to normalize and center the data,
the second part being data balancing to address the rare class problem, and finally the
third part being the classifier. Several methods for each data scaling, data balancing and
classifier were tested in different combinations to find the combination with the highest
classification accuracy.

The Random Forest (RF) classifier with unscaled data and the SMOTE data balancer was
found to be the highest accuracy yielding combination. The found results correlate with
the previous studies where random forest methods has had great classification success in
different industrial fields. The trained classifier was further verified by industry profes-
sionals from the extracted feature importances the model had learned. Finally, several
improvements were recognized such as improved data collection for addressing rare class
problem, and MLP and deep learning classifiers for addressing subclass problem.
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