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Abstract

Dick Carrillo Melgarejo
Improving the design of cellular networks beyond 5G for smart grids
Lappeenranta 2023
95 pages
Acta Universitatis Lappeenrantaensis 1086
Diss. Lappeenranta–Lahti University of Technology LUT
ISBN 978-952-335-963-5, ISBN 978-952-335-964-2 (PDF), ISSN 1456-4491 (Print),
ISSN 2814-5518 (Online)

In the last decade, wireless technologies have emerged to support vertical applications.
For instance, many wireless communication technologies are becoming key enablers of
specialized smart grid applications. However, critical applications are still in the evalu-
ation phase, and they are not deployed commercially yet. At present, 5th generation of
mobile network (5G) is not yet capable of enabling critical applications that require a low
latency and a high reliability. Bridging this gap is the main target of the present doctoral
dissertation.

The doctoral dissertation considers the standard International Electrotechnical Commis-
sion (IEC) 61850 as a reference benchmark. This standard defines the foundation of a
widely used protocol in smart grid applications, which is currently deployed mostly in
wired networks.

To enable the application of the standard IEC 61850, the wireless communication inter-
face should meet certain requirements. These requirements define specialized key per-
formance indicators (KPIs) on latency, throughput, and reliability. As the complexity
of functionalities to support the IEC 61850 KPIs goes beyond the current 5G design, a
generic framework is proposed to enable and facilitate the identification, design, and in-
tegration of wireless cellular networks with the protocol IEC 61850.

The umbrella defined by the proposed framework aims to enable the radio access net-
work (RAN) slicing, which is a cellular network functionality adopted recently by the
wireless industry to add isolation between services sharing the same radio resource. Un-
der this umbrella, this doctoral dissertation focuses on specialized cellular communication
functions at the physical layer (PHY) and media access control (MAC) layer to enable
each RAN slice.

In the PHY layer, a mathematical framework is provided to evaluate the generalized fre-
quency division multiplexing (GFDM) waveform without the necessity of longer simu-
lations. Based on this framework, key metrics like bit error rate (BER), sum rate, and
outage probability can be derived analytically.

In the MAC layer, a dynamic allocation of RAN slices is proposed using deep-reinforcement



learning (DRL) to enable IEC 61850 messages. Here, the performance of the solution is
measured based on each service-level agreement (SLA) defined for each RAN slice.

In the final chapter, a summary of the dissertation and other complementary information
is provided. The chapter discusses the key outcomes of the study and its potential im-
pact on the 3rd Generation Partnership Project (3GPP) standard toward 5G-advanced and
6th generation of mobile network (6G). The chapter also highlights the impact of the
proposed framework on other industrial verticals, such as mining, oil, and gas industry.

Keywords: Connectivity in smart grids, RAN slicing, GFDM, deep reinforcement learn-
ing, sub-1GHz bands
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Na última década, surgiram tecnologias sem fio para dar suporte a aplicações verticais.
Por exemplo, muitas destas tecnologias estão se tornando os principais facilitadores de
aplicações especializadas em redes inteligentes. No entanto, aplicações críticas ainda es-
tão em fase de avaliação e ainda não foram implantadas comercialmente. Por exemplo, o
5G ainda não é capaz de habilitar aplicações críticas que requerem baixa latência e alta
confiabilidade. Suplir esta necessidade é o principal objetivo da presente dissertação de
doutorado.

Esta dissertação de doutorado considera a norma IEC 61850 como benchmark de refer-
ência. Este padrão define a base de um protocolo amplamente utilizado em aplicações de
smart grid, que atualmente é implantado majoritariamente em redes cabeadas.

Para permitir a aplicação do padrão IEC 61850, o canal de comunicação sem fio deve
atender certos requisitos. Esses requisitos definem indicadores de desempenho especial-
izados como latência, taxa de transferência e confiabilidade. Como a complexidade das
funcionalidades para suportar o IEC 61850 KPIs vão além do design atual do 5G, nós
propomos uma estrutura genérica para permitir e facilitar a identificação, implementação
e integração entre as redes celulares sem fio com o padrão IEC 61850.

O guarda-chuva definido pelo framework proposto visa habilitar o RAN slicing, que é
uma funcionalidade de rede celular adotada recentemente pela indústria sem fio para adi-
cionar isolamento entre serviços que compartilham recursos de rádio. Esta dissertação de
doutorado enfoca em funções especializadas de comunicação celular nas camadas PHY e
MAC.

Na camada PHY, fornecemos um modelo matemático para avaliar a forma de onda GFDM
sem a necessidade de extensas simulações. Com base nessa estrutura, as principais métri-
cas, como BER, sum rate e probabilidade de outage, podem ser derivadas analíticamente.

Na camada MAC, propomos uma alocação dinâmica de RAN slicing usando DRL para
habilitar mensagens específicas do IEC 61850. Aqui, o desempenho da solução é medido
com base a cada SLA definido para cada RAN slice.



Para resumir, discutimos os principais resultados do estudo e seu potencial impacto no
padrão 3GPP visando o 5G-advanced e 6G. Também destacamos o impacto da estrutura
proposta em outras verticais industriais, como mineração, petróleo e gás.

Keywords: Conectividade em smart grid, RAN slicing, GFDM, deep reinforcement
learning, sub-1GHz bands
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d variance of the transmit symbol block d

σ2
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LTE long-term evolution
MAC media access control
MDMS metering data management system
MEC mobile edge computing
MIMO multiple-input multiple-output
ML machine learning
MLP multi-level perspective
MMSE minimum mean squared error
MMS manufacturing message specification
mMTC massive machine-type communication
MSE mean-squared error
MTU master terminal unit
MU merging unit
NAN neighborhood-area networks
NB-IoT narrowband IoT
NLOS non-line-of-sight
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QAM quadrature amplitude modulation
QCI QoS class identifier
QoS quality of service
RANA RAN architecture
RAN radio access network
RAT radio access technology
RB resource block
RIL RAN isolation level
RIS reconfigurable intelligent surface
RL reinforcement learning
RQ research question
RRC root raised cosine
RSF RAN slicing function
RSM RAN slicing management
RSRP reference signal received power
RSSI received signal strength indication
RTP real-time pricing
RTU remote terminal unit
RU radio unit
SAS substation automation system
SC-FDE single carrier frequency domain equalization
SCADA supervisory control and data acquisition
SCL substation configuration language
SCSM specific communication service mapping
SDN software-defined network
SE spectral efficiency
SIC successive interference cancellation
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SINR signal-to-interference-and-noise ratio
SIP session initiation protocol
SLA service-level agreement
SNR signal-to-noise ratio
SON self-organizing network
SST slice/service type
SV sampled value
TCP/IP transmission control protocol/Internet protocol
TCP Transmission Control Protocol
TDMA time division multiple access
TOU time of use
TR technical report
TS technical specifications
UAV unmanned aerial vehicle
UCA utility communication architecture
UDP User Datagram Protocol
UE user equipment
URLLC ultra-reliable low-latency communication
V2G vehicle to grid
V2I vehicle to infrastructure
VHF very high frequency
WAM wide-area measurement system
WAN wide area network
WLAN wireless Local Area Network
WRAN Wireless Regional Area Network
WiMAX worldwide interoperability for microwave access
XML extensible markup language
ZF zero-forcing
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1 Introduction

Science may set limits to knowledge,
but should not set limits to

imagination.

— BERTRAND RUSSELL

Actions to mitigate climate change require effective operations in large-scale infrastruc-
tures, especially in the energy system. Recently, the European Union (EU) has set the goal
of a digital green transition to make Europe the first climate-neutral continent by 2050.
Following this objective, an intermediate target was defined to reduce net greenhouse gas
emissions by at least 55% by 2030.

The Global e-Sustainability Initiative (GeSI) published the SMARTer2030 report, issued
in June 2015 [1]. In the report, it is stated that the greenhouse gas emissions of the in-
formation and communication technology (ICT) sector are expected to decrease to 1.97%
of the global greenhouse gas emissions by 2030. By the use of ICT, energy companies
are also looking for more efficient and alternative ways to generate energy in a reliable
manner and bring down emissions. ICT-enabled smart grids have the potential to gen-
erate significant efficiency improvements in existing grids to facilitate the integration of
distributed and renewable energy. By 2030, ICT-enabled solutions have the potential to
reduce global CO2e emissions by 1.8 Gt CO2e and save 6.3 billion MWh of energy by
improving supply and demand management, grid efficiency gains, and integration of re-
newables. In this context, the most recent advances of ICT could support a more effective
operation of electricity grids, creating a smart grid [1].

The smart grid is a modern electric power grid infrastructure that aims to enhance relia-
bility and efficiency through high-power converters, automated control, sensing, modern
communication infrastructure, metering, and demand response optimization. The smart
grid represents a convergence of sensors, actuators, control technology, computers, and
communication to improve the consumption efficiency of the electric power grid.

For a smooth operation of smart grids, the communication infrastructure should be scal-
able and pervasive. This connectivity is essential to improve the quality and reliability of
the power supply and reduce the risk of an electricity blackout. Nowadays, wired connec-
tivity is the most popular choice in the power system industry; however, wireless solutions
are gaining popularity. Considerations between wired or wireless communication depend
on several factors. These factors can involve, e.g., geographical topography, costs, and
operational requirements. For instance, smart grids use a combination of wired and wire-
less communication technologies, depending on the infrastructure.

However, wireless communication alternatives have some advantages over wired com-



28 1 Introduction

munication, such as a low cost and connectivity in inaccessible areas. For these reasons,
many factors and requirements have to be considered for each case to decide which com-
munication technology could be employed. For example, wireless communication is less
costly to implement in a complex infrastructure and easier to install in some areas. On
the other hand, wired connection will not necessarily suffer from interference issues like
wireless solutions may do. For the above-mentioned reasons, both types of communica-
tion are necessary in a smart grid to support specialized requirements.

Importantly, the requirements that the smart grid sets for connectivity technologies con-
sider essential features, such as ultra-low latency supporting 3 ms in critical applications;
very high reliability with 99.999% of packet lost; a very high bandwidth and data rates
up to 1 Gbps; and supporting an extremely high density of devices. In some cases, the
communication device should consider a very low energy consumption to meet the targets
of battery life duration [2].

Based on the above, we provide an overview of the main objectives and research ques-
tions in the next section.

1.1 Overall aim, objectives, and research questions
Based on the current scenario described above, our target is to focus on the design of
wireless technologies to support smart grids. Thus, this doctoral dissertation aims to
provide solid scientific foundations for radio access network techniques to support these
vertical applications. For this purpose, an RAN framework is proposed to enable the
usability of three key technologies, which are the main focus of this study.

• The first technology is RAN slicing, which aims to provide critical trade-offs be-
tween service isolation and efficiency in radio resource allocation.

• The second technology is generalized frequency division multiplexing (GFDM),
which aims to be an alternative waveform in future wireless networks.

• Finally, the third technology is a machine learning approach supporting the physical
layer of the cellular network based on DRL.

The study on GFDM is based on random matrix theory as a mathematical tool. The RAN
slicing scenarios were studied by using Monte Carlo and complex system simulations. In
the case of DRL, a system model simulator based on Python was integrated into a Ten-
sorFlow machine learning model to evaluate the RAN slicing scenarios. To assess the
performance of the DRL, we considered a cellular network simulator based on C++ as a
benchmark.

The scientific outputs of this study are achieved by using tools such as random matrix
theory, Monte Carlo, and complex system simulations, which are integrated with ma-
chine learning platforms, such as TensorFlow. To serve readers and researchers, a public
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Figure 1.1: Overall description of the content and target of the dissertation, including the
respective publications.

Github repository is shared in some contributions.

This doctoral dissertation aims to contribute to the ongoing trend in 5G/6G research, em-
phasizing technologies that focus on waveforms and radio resource management facili-
tated by machine learning to enable vertical applications. For this purpose, the framework
proposed in this doctoral dissertation aims to integrate the essential elements that com-
pose the RAN slicing framework following current 3GPP premises.

Based on this framework, this dissertation aims to provide scientific contributions in the
PHY layer focusing on GFDM, which was a 5G waveform candidate with a high potential
to become a 6G waveform candidate. Another PHY layer target is RAN slicing, which
is an approach that is being discussed in the current evolution of the specification 3GPP
Rel. 18 planned to be frozen at the end of 2023.

In the MAC layer, the contributions are not limited to the application of DRL to improve
the scheduling of RAN slicing resources in challenging scenarios. The main aims of the
dissertation are illustrated in Fig. 1.1.
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To achieve the objectives described above, the following research questions (RQs) are
formulated:

RQ1 What are the limitations (if any) of existing wireless technologies for current cellu-
lar networks to serve smart grid communications, especially for protection / sub-
station operation?

This starting research question aims to explore and comprehensively define the state
of the art in smart grid communication technologies to figure out the current require-
ments. In particular, this question focuses on current communication protocols,
standards, use cases, and requirements for smart grid communications with the em-
phasis on critical applications as protection / substation operations. This question
concerns the possibility to identify potential mismatches between cellular network
protocols and widely used smart grid communication standards, which limit the
employment of cellular technologies in critical applications.

Hypothesis: Currently, the widely used protocol is IEC 61850, which was designed
to enable smart grid communications in wired Ethernet. There are studies introduc-
ing IEC 61850 in applications using wireless technologies. However, the limitations
of current cellular standards enabling critical applications are not known. Our hy-
pothesis is that there is a mismatch between the current cellular standard and the
standard IEC 61850 for protection / substation operation.

Impact: By identifying those potential mismatches, new tailored cellular network
protocols for dedicated critical smart grid communication could be proposed in
standardization for future generations of cellular systems.

Novelty: Although similar studies can be found in the literature, none of them have
constructed in a systematic way a method to assess the performance of smart grid
communication protocols over wireless cellular networks. The novelty of this dis-
sertation is that we propose such a method to analyze and evaluate the performance
of the standard IEC 61850 with current cellular technology, demonstrating its fea-
sibility.

Methodology: The methodology of this study is based on a top-down approach. It
starts with an analysis and understanding of the smart grid industry. The analysis is
used to identify some communication benchmarks, which are mostly related to pop-
ular wired communication technologies, such as fiber and copper communication.
These technologies usually follow some requirements defined by specific standards
or protocols. For instance, the standard IEC 61850 defines strict requirements for
critical and non-critical messages. Furthermore, a test bed is used to evaluate the
performance of a 4th generation of mobile network (4G)/5G network in a real sce-
nario that aims to transport IEC 61850 messages. This output helps us to get an
objective indicator of the current status of the state of the art of cellular networks
supporting smart grid communications. Based on this outcome, a framework is pro-
posed to complement the current 5G standard to enable IEC 61850 messages, all
together in the same protocol solution.
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RQ2 In what conditions generalized waveforms—which are yet not part of current cel-
lular standards—can outperform the existing solutions, potentially allowing new
smart grid applications in indoor and outdoor environments?

The current cellular technology is based on a waveform family employing orthog-
onal frequency division multiplexing (OFDM). This waveform is based on orthog-
onal spectrum allocation, which can be redesigned to achieve better performance,
which may benefit the operation of smart grid communications for critical applica-
tions. In this respect, GFDM is a strong candidate for the next generation of cellular
networks, including improved energy efficiency among other benefits, such as full
legacy support to OFDM.

Hypothesis: To enable critical functionalities of smart grid applications, other
waveforms beyond OFDM must be considered. For instance, GFDM has some
features that outperform OFDM in scenarios, whose channel models are usually
based on Rayleigh distributions.

Considering the new challenging applications for cellular networks, such as smart
grid communications, our hypothesis is that GFDM is capable of outperforming
OFDM under a diversity of scenarios.

Impact: If GFDM outperforms OFDM in terms of physical layer performance
metrics, like peak-to-average power ratio (PAPR), then critical applications might
be feasible to be supported by wireless communications. Therefore, we expect this
to have a positive impact on the deployment of cellular networks for substation
communications.

Novelty: Although many studies have been carried out on generalized waveforms,
none of them have demonstrated that GFDM outperforms OFDM when the receiver
is based on a minimum mean squared error (MMSE) decoder operating on non-line-
of-sight (NLOS).

RQ3 Is it possible to improve the performance of current cellular technology through ma-
chine learning techniques to better serve smart grid communications, specifically
in supporting critical applications?

The current 5G standard (3GPP Rel. 15/16/17) considers a specific machine learn-
ing technique in improving subnet orchestration in the core network. However,
there are no machine learning applications in the radio interface or radio access net-
work defined by the standard yet. Only at the beginning of the year 2022 a study
item was initiated with the aim of evaluating the impact of machine learning on
three representative use cases, namely beam management, channel state informa-
tion (CSI) prediction, and enhanced positioning. This study is part of the ongoing
standardization meetings related to 3GPP Rel. 18, which should be frozen in the
first quarter of 2024.

In the specific case of smart grid communications operating in cellular networks,
there are many critical applications that rely simultaneously on three classes or
RAN slices, namely ultra-reliable low-latency communication (URLLC), massive
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machine-type communication (mMTC), and enhanced mobile broadband (eMBB).
These RAN slices carry a diversity of messages, some of them related to critical
applications. As these slices share the same radio resources, machine learning tech-
niques can be used to effectively solve the radio resource management as is done in
similar problems in other domains.

Hypothesis: In the context of smart grid communication, our hypothesis is that
DRL, which is a class of machine learning techniques, is effective to solve radio
resource allocation for smart grid communication, as well as other types of appli-
cations.

Impact: machine learning can solve (in operational time) optimization/allocation
problems in RAN slicing scenarios using DRL, providing better performance than
traditional computationally expensive distributed optimization. The solution is flex-
ible and adaptable compared with deterministic optimization.

Novelty: The machine learning approach to solve resource allocation of RAN slic-
ing is novel and flexible to be used in different verticals including smart grid com-
munications supporting critical applications, for which a suitable solution has not
been found so far.

In summary, the scientific contributions of this work refer to the improvement of the
operational strategies and methods to efficiently use wireless communication to support
smart grid communications.

1.2 Outline of the doctoral dissertation
This doctoral dissertation is structured as a report of a collection of papers, introducing
the main concepts that constitute the core of this study, providing the necessary back-
ground information, and summarizing the overall contributions of the publications devel-
oped throughout this doctoral study. Thus, the structure of this dissertation is as follows:

Chapter 1 presents the background of the research, terminology, methodology, research
questions, and objectives of the dissertation. In addition, each research ques-
tion is explained, placing special emphasis on the description of hypotheses,
impacts, and novelty.

Chapter 2 provides some background information to facilitate a better understanding of
the critical contributions explained in the next chapter.

Chapter 3 outlines the main contributions of Publications I–V. These contributions are
mapped into some building elements that are part of the proposed RAN slicing
framework.

Chapter 4 focuses on the main outcomes of this dissertation; a generic framework is
proposed to support verticals. Finally, the main conclusions are highlighted
and discussed.
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2 Background information

The more original a discovery, the
more obvious it seems afterwards.

— ARTHUR KOESTLER

In this chapter, background information of relevant topics is provided to enhance the ex-
planation of the critical contributions of this study. Essential information of smart grids
with the focus on substation automation systems (SASs) is presented in Section 2.1. Com-
plementing the overview of smart grids, Section 2.2 includes highlights of communication
technologies supporting smart grids. Section 2.3 focuses exclusively on a brief literature
review of wireless communication technologies supporting IEC 61850. Complementing
the previous section, a brief definition and features of the IEC 61850 protocol is included
in Section 2.4. Section 2.5 introduces relevant technologies that are considered in the 5G
standard supporting smart grids. To get a better understanding of network slicing, a short
list of features is considered in Section 2.6. Complementing the previous information, a
high-level description of waveforms beyond 5G is provided in Section 2.7 with the em-
phasis on GFDM. To finalize the background information, relevant concepts of machine
learning and its application in cellular networks are addressed in Section 2.8.

2.1 Smart grid

A smart grid is an electrical grid that includes an advanced metering infrastructure, smart
distribution boards and circuit breakers, renewable energy sources, energy-efficient re-
sources, distribution of surplus electricity, and sufficient utility-scale broadband connec-
tivity [3, 4, 5]. Smart grids are characterized by electronic power conditioning and control
of the production and distribution of electricity [4].

In smart grids, substations play an essential role: they represent nodes connecting cables
to power sources and power lines to distribute and transmit electricity. For instance, extra
high voltage (EHV) lines are connected through transmission substations, which control
the conversion of EHV into high voltage (HV) by using transformers and deliver a variety
of voltage levels to distribution substations.

Specifically, the SAS aims to replace operators by performing automatic functions to
guarantee safe and reliable service of electric power distribution and transmission. The
typical SAS functions include data acquisition, control, protection, monitoring, and re-
mote access communications.

Nowadays, in the context of the SAS, protective relays are intelligent electronic de-
vices (IEDs), which are microprocessor-based electronic devices with a dedicated com-
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mon communication interface. In practice, IEDs exchange information that can be saved
locally or remotely for detailed log registration and processing. This information enables
utilities to employ asset management programs (life extension, advanced planning, and
predictive maintenance) and enhance reliability. It is important to remark that one impor-
tant enabler of every SAS is a reliable and low-latency communication network.

The size of an SAS is usually larger in the EHV transmission substations than in the
HV distribution substations. However, both share similar functionalities. For instance,
the sensors measure very high voltage and current quantities, and the IEDs or protection
relays perform the logical protection. These devices sense electrical voltage and current
quantities to calculate measurement values that are monitored by the protection algorithm.
For example, when a parameter exceeds a threshold or a setting value, the protection al-
gorithm reacts according to a logical sequence. In such cases, a trip signal is usually sent
to the associated circuit breaker to disconnect a bus or a line in the occurrence of a fault.
For further detail on the SAS, see [6].

As the SAS supports a variety of functionalities, it is important to define a network archi-
tecture occupying a specific geographic area. A generic architecture can be based on the
following three levels:

• Station level: At this level, the main target is to incorporate monitoring, supervi-
sion, and related operations. It is usually located in a shielded room to provide a
high-level overview of the whole station. The main functionalities are installed in
computers that have access to corporate data through a wide area network (WAN).
At this level, human machine interfaces (HMIs) are used to monitor and send com-
mands to the substation equipment and devices.

• Bay level: At this level, control and protection devices are scaled to perform spe-
cific functions. The devices are IEDs and protective relays, which are connected to
local area network devices, such as Ethernet nodes. Here, the devices are able to
perform power control and protection functions autonomously to receive data from
the station level, as well as to handle faults at the process level. Many bays can be
deployed in one substation; for this purpose, there is cooperation between devices
located in adjacent bays or other substations.

• Process level: This is the level at which the EHV and HV power equipment (bus-
bars and transformers) are installed and connected. This level also includes the
connection of buses, lines, feeders, instrumentation, and transformers.

Further details of the three levels are given in [7]. The structure of an SAS representing
the station, bay, and process levels is illustrated in Fig. 2.1.

In early substation automation systems, hardwired cables were used to connect power pro-
cess types of equipment (e.g., instrument transformers and circuit breakers) with devices
(e.g., protective relays and remote terminal units). Nowadays, modern communication



2.1 Smart grid 35

Figure 2.1: Structure of a substation automation system representing station, bay, and
process levels.

technology enables the replacement of hardwired connections by using Ethernet ports.
Thus, the transmission of physical parameters takes place via network message frames
using specialized communication protocols to encapsulate and deliver these parameters.
The use of Ethernet in the transport layer allowed the development and implementation
of network application protocols in industrial control facilities. These protocols enabled
substation manufacturers to integrate several functions into a single or several IEDs.

Many proprietary protocols have been developed to support and enable connectivity in
SASs. These protocols are required to maintain data interoperability when a substation
project involves multiple protocols, devices, and equipment from a diversity of suppliers.
For instance, since 1986, the Electric Power Research Institute (EPRI) identified the issue
of diverse protocols in substation installations without a common standard. Consequently,
the EPRI released the protocol utility communication architecture (UCA) 1.0 at the end
of 1991. The release of the UCA specified the use of the manufacturing message spec-
ification (MMS) and the integrated utility communication (IUC). Therefore, the EPRI
organized a forum with Northern States Power Company (NSP) to discuss the implemen-
tation of the MMS across multiple communication platforms. UCA 2.0 was released in
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1999 as a substation implementation document. It was published as the 1550 technical
report (TR) of the Institute of Electrical and Electronics Engineers (IEEE). This TR was
used as a foundation for the standard IEC 61850, which is the benchmark considered in
this dissertation. Details of the evolution of this protocol are given in [8].

2.2 Communication technologies supporting smart grids

Ideally, a smart grid should have high-quality communication networks compared with
the traditional power grid in terms of latency, reliability, and synchronization. To achieve
this target, two fundamental milestones should be accomplished:

• Two-way communication capabilities between customers and utilities.

• Control and real-time monitoring of most of the power grid devices.

An improved two-way communication network is applied to control new renewable en-
ergy sources besides energy storage units. Moreover, an enhanced monitoring and control
system can provide relevant information to prevent system failures or blackouts. Both
fundamental features are mandatory, considering the complexity of the smart grid. Thus,
to better understand the role of ICT in smart grids, a generic framework is defined.

The target of this framework is to provide a generic and clear overview of the entire com-
munication network used on the smart grid. It also facilitates analysis of the integration
between physical smart grid components. This framework reveals the information flow
between smart grid entities, such as utilities, customers, and power stations. Moreover, it
enables researchers and developers to propose and implement special features.

Another advantage of defining this ICT framework is that it facilitates the definition of
requirements for technologies and equipment used in the implementation of applications.
These requirements are fundamental inputs to be enabled by the wireless communication
technologies studied and evaluated in this research work.

Moreover, with detachable microgrids 1 and renewable energy sources, which are difficult
to control and predict, optimal control of the power grid is extremely hard and expensive
to implement with only the information and computing resources from utilities. In this re-
spect, the generic ICT framework would be the catalyst to highlight such problems. This
is essential information for grid planners to add extra tools, such as cloud computing, ma-
chine learning applications, and data analytics.

1A microgrid is a small-scale electricity network connecting consumers to an electricity supply. A
microgrid may have a number of connected distributed energy resources.
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Generic ICT framework

This ICT framework, originally proposed in [9], aims to enable relevant inputs to system-
level designers to address requirements in terms of efficiency and reliability of the smart
grid. To make the illustration clearer, the generic ICT framework is described using de-
mand response as the main use case. This ICT framework considers three types of net-
works:

• Local-area networks used to enable connectivity with households;

• Private networks, to provide connectivity to utilities and service providers;

• Internet, provided by a third-party Internet service provider (ISP).

The two-way communication is possible because of the convergence of these three types
of networks. This ICT framework is systematized into four entities: internal data collec-
tors (i.e., customers and grid monitoring sensors), a service provider or a utility company,
power generators, and external information sources. These entities are illustrated in Fig.
2.2, where an overview of the proposed ICT framework is shown.
Between all elements of the ICT framework, the smart grid is directly related to the service
provider, internal data collectors, and power generators. Likewise, external information
sources provide insightful information to the smart grid operations.

Communication networks and technologies

Nowadays, communication in the smart grid is achieved through the convergence of pri-
vate and public networks. Utilities maintain and deploy private networks. Public net-
works, such as cellular connections and the Internet, are offered by third-party service
providers.

The wide-area measurement systems (WAMs) transmit monitoring data as phasor mea-
surement unit (PMU) data by using private networks. The reasons for deploying private
networks are security, reliability, and cost.

In the smart grid, the communication networks consist of home area networks (HANs),
neighborhood-area networkss (NANs), and WAN. For example, in the case of advanced
metering infrastructures (AMIs), an HAN is established within a household, linking a
smart meter and smart appliances with actuators and sensors. Smart meters upload me-
tering using the data aggregate units (DAPs), and the metering data management sys-
tem (MDMS) provides storage, management, and processing of meter data.

Some other wireless technologies used in smart grids have been widely employed in
HANs and NANs to cover the last-mile communication systems. HAN and NANs are
considered in the smart grid because of their flexibility in deployment and environmental
adaptiveness, especially in extreme situations. Numerous works have studied the HAN as
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Figure 2.2: Generic ICT framework to support the smart grid connecting external sources,
customers, service providers, utility companies, and power generators.

a network with a small coverage area and a low rate of data transmission, including a sin-
gle smart meter as the collector and several smart appliances. Both wireless and wire-line
technologies can be applied to HANs. The wireless transmission technologies include
Wi-Fi, Bluetooth, ZigBee, and Z-Wave.

2.3 Wireless communication supporting IEC 61850

The promising standard IEC 61850 brings new features to SASs, and these features can be
considered also in other micro grid scenarios. The standard provides fault event record-
ing, flexibility of measurements, protection and control functionalities, supervision, and
other interconnected functions within substations. The standard IEC 61850 enables in-
teroperability among IEDs, protection relays, and equipment manufactured by different
vendors in the substation automation market.

By default, the standard IEC 61850 is deployed on wired Ethernet networks because it
supports critical applications with very strict requirements on latency and reliability in
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the communication networks.

From the viewpoint of networking, the standard IEC 61850 is an application protocol that
defines specific requirements for the lower open systems interconnection (OSI) layers.
In the link-level layer, the User Datagram Protocol (UDP) and the Transmission Control
Protocol (TCP) support the standard IEC 61850. As stated above, in the MAC and PHY
layers, the popular networking technology is Ethernet, which is usually used in wired net-
works.

If a communication designer aims to switch from a wired to a wireless technology, it is
important to use the requirements defined by the standard as a reference and evaluate them
for the candidate communication technologies [10]. In the case of wireless technologies,
there are a diversity of studies on evolving 4G and 5G networks. In most of these cases,
the analysis is limited to noncritical messages and test scenarios with very ideal test bed
scenarios. To provide an overview of the most relevant studies of IEC 61850 on wireless
systems, the current state of the art is summarized in the following paragraphs.

For instance, [11] evaluated a wireless Local Area Network (WLAN) technology in a
power distribution substation that interchanges information by using IEC 61850 mes-
sages. The study is based on the measurement of noise interference at 27.6 and 13.8
kV distribution substations, including circuit breaker switching operations. A high-level
evaluation of the application performance was carried out for smart distribution substa-
tion monitoring, protection, and control setup. The results of this study indicated that IEC
61850 generic object oriented substation event (GOOSE) messages supporting a protec-
tion and control setup achieved a delay of 3.5 ms when the IEDs were separated by a
distance of 45 m.

In [12], Gaouda et al. performed an experimental validation of a merging unit (MU) that
transmits data measurements using the standard IEC 61850. A supervisory control and
data acquisition (SCADA) system and the MU were communicated over Ethernet and a
WiFi operating at 5 GHz. Thus, the capability of the MU to acquire real-time sampling
was evaluated when the wireless network was used as media transmission. The laboratory
experiment indicated that the wavelet-based digital signal processing (DSP) technique in
the MU as a smart tool can monitor, control, and protect the power grid using the standard
IEC 61850 over wireless networks.

An optimization framework was proposed in [13] to deploy a distributed algorithm using
a local wireless network and a quasi-distributed approach on a wide-area Internet-based
cloud. Here, the IEC 61850 interoperability protocol was adopted to achieve a certain
delay performance. To perform the evaluation, a hardware-based prototype IED was de-
veloped using embedded systems. The experimental results indicated that the proposed
framework meets the communication requirements.

A diversity of information models for vehicle to infrastructure (V2I) and vehicle to grid
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(V2G) communication based on the standard IEC 61850 were proposed in [13]. The au-
thors performed an end-to-end delay evaluation of the proposed communication network
over different vehicular ad-hoc networks. The evaluation of the results carried out by sim-
ulation using the Riverbed modeler indicated that a lower overhead on different routing
protocols enabled IEC 61850 messages to meet the delay requirements.

In [14], Hussain et al. proposed a backup protection scheme using a wireless commu-
nication channel operating in an unlicensed radio spectrum. Following some specific
constraints, a radio cognitive network was considered to support the transportation of IEC
61850 messages. With a relative comparison, the proposed scheme will cut the costs of
building backup protection systems in a substation. The reliability and time delay anal-
ysis performed in the study indicated an acceptable performance when healthy and fault
conditions were evaluated.

An anti-islanding protection method called Loss of Mains was proposed in [15]. The
application standard was based on the IEC 61850 MMS protocol over a global system
for mobile communications (GSM) cellular network. The proposed methodology enables
some advanced approaches employing a wide variety of information available in the smart
grid. A lightweight IED was implemented using low-cost embedded systems and open-
source libraries. The performance measurement on a wireless network indicated that the
MMS message was transmitted with the expected reliability and latency defined in the
standard IEC 61850.

Moreover, a study reported in [16] proposed the implementation of coordinated operation
between a microgrid controller and a distributed energy resource (DER) using the stan-
dard IEC 61850 over a wireless network. Here, the reactive power management system
was implemented using the standard IEC 61850 in the application layer and long-term
evolution (LTE) in the transport layer. An LTE simulator was used considering a proper
mapping between the LTE stack and the standard IEC 61850. In the simulation, specific
QoS class identifier (QCI) classes were considered to prioritize the IEC 61850 messages
(GOOSE, sampled value (SV), and MMS). The end-to-end delay estimated by a network
simulator indicated that the wireless network using LTE brought extra advantages when
compared with other technologies, such as WiFi and worldwide interoperability for mi-
crowave access (WiMAX).

An inclusive survey was conducted in [17] on time synchronization, which plays a key
role in industrial Internet of Things (IoT) applications. The benchmark is based on IEEE
1588 precision time protocol (PTP), which was complemented with advanced features
to improve the internal clock stability, transmission delay, processing delay, and PTP
transported in wireless communications to support the standard IEC 61850 and another
advanced application protocols. It was concluded that the clock synchronization protocol
is still an open issue considering the necessity for an efficient symbol timing synchroniza-
tion mechanism that allows exact timestamp message recognition and decryption.
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The impact of communication on the performance of a microgrid was discussed in [18].
The approach was based on the definition of requirements for the network based on the
response of three levels (primary, secondary, and tertiary) of a hierarchical control ap-
proach. This contribution identified standards, networking protocols, and communication
technologies in which the cellular network and the standard IEC 61850 were extensively
analyzed. After an analysis of the influence of wired and wireless connectivity on the
microgrid performance, it was concluded that in the particular case of current cellular
technologies, more robust schemes are required to reduce communication degradation
when compared with wired communication. According to the study, further aspects, such
as security, resilience, and interoperability, will require continued efforts in research and
practical applications.

The feasibility of the implementation of IEC 61850 services in a public LTE infrastruc-
ture was evaluated in [19]. The authors provided a detailed description of the protocol
stack defined by the 3GPP standard and concluded that a regular LTE cannot meet the
stringent latency requirements of such services. Thus, they introduced a new LTE quality
of service (QoS) class and a new LTE scheduler to prioritize and automate the traffic with
respect to regular cellular users, such as human-centric traffic. The IEC 61850 messages
that are part of the evaluation are MMS and GOOSE. The results are evaluated through
a system simulator platform based on the achievable latency and throughput metrics. The
authors concluded that a proper LTE scheduler is a strong requirement to meet the perfor-
mance requirements of the standard IEC 61850.

An integration framework to enable the transmission of the IEC 61850 MMS in a wireless
network operating in remote areas was proposed by Dehalwar et al. in [20]. The contri-
bution is based on the integration of a cognitive radio based on IEEE 802.22 2 and the
standard IEC 61850. Considering that the superframe structure of IEEE 802.22 is capable
of sending data on uplink, Dehalwar et al. analyzed the specifications and requirements
of the standard IEC 61850. Based on the analysis, it was concluded that the performance
classes of the standard IEC 61850 can use the MMS for transmitting synchrophasors and
teleprotection over IEEE 802.22. Thus, the integration of the standards IEC 61850 and
IEEE 802.22 can provide better communication facilities in a smart grid.

In a master’s thesis [21], the performance of a private LTE network was evaluated to
examine the readiness and applicability of the standard IEC 61850. The target of this
work was to investigate the performance of phasor communication over a cellular net-
work to evaluate metrics such as reliability, availability, throughput, and latency. The
results indicated that the nonpublic LTE supporting the IEC 61850 stack is suitable only
for noncritical applications. This is due to the fact that the latency and reliability obtained
in the study were, on average, 45 ms and 99.7 %, respectively. According to the study, the
worst performance was visible in periods of the day in which the network is being used

2It is a long-distance wireless specification for a Wireless Regional Area Network (WRAN) that can
support long-distance wireless communication for low-latency, high-volume, reliable, and secure commu-
nication.
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by other applications, such as web browsing, messaging, and other full buffer traffic.

The performance of the standard IEC 61850 over a WLAN for various smart distribution
substation applications was investigated in a doctoral dissertation [22]. The initial objec-
tive was to measure the noise level of a variety of substations. The noise was modeled
because of the PDF to simulate the substation environment employing OPNET. 3 Further,
a hardware prototype was developed to enable the application of the standard IEC 61850
on WLAN. The results indicated that the average delay of IEC 61850 messages were in
compliance with scenarios with high SINR values. The latency indicated the worst per-
formance when the distance of the devices was extended to further 100 m. Finally, the
test bed results and the simulation results were compared to highlight the accuracy of the
simulation model considered in OPNET.

2.4 Definition and features of the IEC 61850 protocol

A technical committee released the first edition of the standard IEC 61850 around 2003
with core parts including TR, technical specifications (TS), and international standards
(IS).

The first four parts cover definitions, general requirements, and system and project man-
agement. The fifth part addresses communication requirements for devices and function
models. The sixth part provides some examples to illustrate the description languages,
such as the substation configuration language (SCL) and the IED capability description
with extensible markup language (XML)-based files. In the seventh part, the basic com-
munication structures, abstract communication service, data classes, and logical nodes
are explained. It also includes the mapping of the MMS communication service to the
International Organization for Standardization (ISO)/IEC layer interface, i.e., ISO/IEC
8802-3 (Ethernet). In the ninth part, the standard emphasizes the SV mapping to a serial
unidirectional multidrop point-to-point link and ISO/IEC 8802-3.

In 2012, the second edition of IEC 61850, entitled Communication Networks and Sys-
tems for Power Utility Automation, was released. In 2016, the standard added a new
release that focused particularly on a time synchronization mechanism with a precision
time protocol profile. In this edition, many parts were updated with an extension to other
power system applications, including, e.g., communication between substations and net-
work control centers, DER, and recommendations for redundant architectures. In the sec-
ond release of this edition, communication redundancy recommendations were defined
for the GOOSE and SV messages services. As indicated in [23], in this new release, the
standard recommends the high-availability seamless redundancy (HSR) and the parallel
redundancy protocol (PRP) as redundancy with a zero recovery time.

In relation to the SAS scenarios, the standard aims to enable interoperability among de-

3A popular industry-trusted communication networking simulator tool
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vices. It also aims to integrate subsystems to build an overall SAS system.

The standard IEC 61850 is enabled by several devices that have certain features, such
as data models with a logical node (LN) and common data classes (CDC); reporting of
GOOSE and SV messages; support of XML based on IED capability description files;
interoperable control, measurement, monitoring, and protection functions; substation de-
vices that can be configured through the SCL language; and communication service in-
terfaces.

The IED as a physical device has an interface linked to the communication network, and it
has at least one network address. The standard incorporates one or more logical devices,
enabling a single physical device to act as a gateway for multiple devices.

Messages and requirements of the standard IEC 61850

The IEC 61850 communication services exist in horizontal and vertical schemes. The
transmission of messages in a vertical communication scheme is usually carried out be-
tween database archives, operation, and engineering at the station level and IEDs at the
bay level. The horizontal communication scheme is usually found within substations, and
it is carried out between IEDs.

The typical data transmitted from the process level to protection and control IEDs at the
bay level are related to power values, such as voltage, current, and frequency. The stan-
dard IEC 61850 enables IEDs to behave according to specific rules from the network
perspective through the definition of the abstract communication service interface (ACSI)
models, detailed in [24].

The ACSI is an independent network interface that defines the semantics of service mod-
els emphasizing their attributes and identifying what these services provide. This abstrac-
tion is necessary to separate the SAS data models from the communication technology.
In other words, ACSI provides compatibility with SAS devices with the latest commu-
nication technologies. This mapping is carried out through the specific communication
service mapping (SCSM) that defines message encoding and syntax, such as GOOSE
message transmission and peer-to-peer services for SV messages.

The standard IEC 61850 considers a multicast transmission of specific messages using
the communication scheme of a publisher/subscriber without acknowledgment, such as
GOOSE and SV. It also considers the connection-oriented association using client/server
networking to transport the MMS, which is transmitted over a transmission control pro-
tocol/Internet protocol (TCP/IP). As many applications in SASs require real-time and
low-latency performance, the Ethernet frames are encapsulated directly without overhead
data of the middle layers. Important to consider from the communication point of view is
the mapping of IEC 61850 messages as illustrated in Fig. 2.3.
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Figure 2.3: Communication services: direct mapping of real-time messages to the Ether-
net layers.

• Manufacturing message specification (MMS) specifications: It is a public proto-
col that has a proven implementation track report in the field of process control. The
standard IEC 61850 uses the MMS because it has a rich library of objects and ser-
vices. The standard maps objects into MMS objects, and it easily supports naming
and service models.

For client/service mapping of the MMS protocol, the standard specifies the SCSM,
which has a full TCP/IP stack above the Ethernet layer.

The MMS is used to transmit noncritical data services embedded in reliable appli-
cation (upper layer) protocols. The MMS is suitable for communication between
station-level workstations and bay-level IEDs for many purposes, such as reporting,
status polling, and sending commands.

Inside the substation, many applications use MMS services, e.g., HMI, SCADA,
and IEDs configuration.

• Generic substation events (GSE): These events are used to transmit information
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between control and protection applications. The standard IEC 61850 defines this
message in [25] as a peer-to-peer communication to transfer defined data objects
when their attributes change.

GSE has two types of message services: GOOSE and the generic substation status
event (GSSE), the latter being the backward compatibility for UCA GOOSE. The
GOOSE carries long datasets, whereas the GSSE carries binary data that represent
state changes. Both enable information exchange between the input data values of
one IED and other IEDs by multicast communication.

In general, any IED can play a role of a publisher and a subscriber. GOOSE and
GSSE messages are used to compute data for internal use, such as local interlocking
condition processing comparing received switch positions.

For time-critical applications, GOOSE requires a real-time performance class. This
low-latency communication requirement enforces directly embedding of a GOOSE
dataset into an Ethernet frame, instead of using TCP or UDP as a transport layer.

At the substation bay level, IEDs exchange input and output statuses via multicast-
GOOSE messages.

• Measured sampled value (SV): The standard enables transmission of sampled
values of current, voltage, and frequency, as well as other process values. This
is possible because some communication interfaces are defined to include digital
communications, such as the process switchgear with integrated electronics, and
nonconventional current and voltage transformers with a digital communication in-
terface.

The transmission of SV messages is sensitive to transmission delays, as defined in
[24]. For this reason, to avoid processing delay in the middle layers, the standard
maps SV messages directly into the Ethernet layer. The information that is trans-
mitted in the SV contains measured values, which are sampled and digitized by
specialized sensors in the MU. These measurements are encapsulated into Ethernet
frames by using a specialized mapping defined in [25, 24].

2.5 5G standards supporting smart grids
The 3GPP is the main standardization organization that defines the specifications shaping
the technology that is developed by the communication industry. It relies on the partici-
pation of the main players in the wireless communication industry.

Compared with 4G, which was mostly focused on supporting human-to-human commu-
nication, one of the major drivers of 5G is to support industrial applications. Aligned
with this target, the Radiocommunication Sector of the International Telecommunica-
tion Union (ITU-R) issued the International Mobile Telecommunications-2020 standard
(IMT-2020) to set specific requirements and use cases to be considered in 5G. To achieve
these targets, the 3GPP started to specify 5G since 3GPP Rel. 15 and its evolution named
5G-advanced since 3GPP Rel. 18. A brief description of the main features that are being
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specified with a high impact on smart grid applications is given in the following.

Since 3GPP Rel. 15, the standard started to define the specifications of 5G. However,
only after this release, fundamental features that are required by IEC 61850 messages
were determined. For instance, in 3GPP Rel. 16 the URLLC, time-sensitive networking,
private networks, and NR unlicensed spectrum were specified [26].

In 3GPP Rel. 17, new improvements were specified, such as a neutral host for private
network enhancements, RedCap or new radio (NR)-light for industrial IoT, and network
automation [27, 28, 29].

In 3GPP Rel. 18, a study on 5G smart energy and infrastructure is being completed,
and the energy vertical is discussed in a technical report related to cyber-physical control
applications. Other key features are developed in this release, such as RedCap, timing
resiliency, and time synchronization [30].

It is important to remark that in the current 3GPP rel. 18 (5G Advanced), the target is to
study and define the first use cases using artificial intelligence (AI)/machine learning (ML)
at the radio access level. These studies will define the main foundations of the application
of artificial intelligence to the upcoming 3GPP releases that will shape the 6G [31].

2.6 Network slicing
Network slicing provides a network-as-a-service model with unique allocation flexibility
of resources based on dynamic demands. The slice-based 5G network has significant
features to support the smart grid. These features are described in the following.

• Service isolation: Network resources of one service can be isolated from others
without affecting each other. In addition, the security and reliability of each slice
can be improved.

• Tenant-oriented virtual network: A network slice supports slice tenants to oper-
ate their own dedicated networks. The tenant could be an individual customer or
a vertical industry company that rents and occupies network slice instances from
network slice providers.

• Guaranteed SLA: Service assurance of supporting QoS expectations, which is
driving end-users to negotiate a specific SLA.

• Customization capabilities: The 5G slicing architecture enables implementation
of customized end-to-end networks according to the service requirements.

• Mobile edge computing: Edge computing moves network resources that are typi-
cally implemented in the cloud to closer/edge virtualized networks to enable a low
end-to-end (E2E) delay access network.
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• Distributed architecture: Distributed information processing and storage archi-
tecture is ideally suited for services requiring low latency and localized decision-
making.

The stakeholders that are beneficiaries in the network slicing ecosystems are the net-
work slice subnet instance (NSSI) provider, the intermediate-network slice instance (NSI)
provider, the end-to-end network slice instance (E2E-NSI) provider, the network slice ten-
ant, and the end customer.

This ecosystem enables new business use cases that have direct benefits for power system
utilities and also for operators with a specialized value chain. This value chain has a di-
rect dependence on the power system utilities, which are related to power system actors
between generation, transmission, distribution, and prosumers.

The opportunities of this new business model will change the way in which utilities de-
ploy the communication infrastructure, being in most of cases private networks using a
variety of communication technologies that support individual use cases without any pos-
sibility to integrate them into a unified network. With network slicing, smart grid utilities
can meet special requirements and also create additional business benefits through new
cost savings and use cases.

The service business model forces operators to move beyond a fixed rental fee per device.
Therefore, part of the charge cost should be defined based on the performance-based SLAs
and KPIs, which could also be complemented by the added value on each power system
utility requirement.

2.7 Waveforms beyond 5G: GFDM
Spectrum is a very important and expensive resource to operators, and therefore, it must
be used as efficiently as possible to deliver increased system and user throughput. One ob-
vious approach to increase the efficiency of using spectrum is to increase the bandwidth,
which implies that not only the traditional licensed spectrum is used, but also unlicensed
spectrum sharing is deployed [32]. Besides that, in the last few years, a new wave of re-
search has focused on investigating the millimeter and terahertz wave spectrum [33, 34].

Another fundamental element used in wireless communication with a high impact on
the efficient usage of spectrum is the waveform design. Here, the use of orthogonal
multiple access techniques before 4G mostly relied on frequency division multiple ac-
cess (FDMA), time division multiple access (TDMA), and code division multiple ac-
cess (CDMA). However, to support the exponential system capacity and data rate in 4G,
the LTE cellular system used OFDM to enable the use of orthogonal frequency-division
multiple access (OFDMA), which provides the capability to assign different subcarriers
to different users and enables a finite number of orthogonal resources. However, OFDM
has certain disadvantages; for instance, using cyclic prefix (CP) overhead usually results
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in a loss of spectral efficiency, sensitivity to frequency and timing offsets, high out-of-
band emission, and high PAPR. Eventually, these drawbacks cause signal distortion and
high energy consumption.

For 5G NR, the standard selected the OFDM-based waveform because it satisfies the re-
quirements and properties such as simple channel estimation and low complexity equal-
ization. However, new alternatives in the waveform design, such as filtered OFDM, win-
dowed OFDM, and universal filtered OFDM, have been proposed to reduce the out-of-
band (OOB) emission.

Future mobile systems, such as 6G, will be characterized by a wide variety of different
use cases. It implies that flexible time–frequency allocation becomes necessary. In this
respect, the other group of waveforms, consisting of filterbank multicarrier (FBMC) [35]
and GFDM [36], completely discards the orthogonality to achieve better spectral and tem-
poral characteristics.

To achieve ultra-low OOB emission, FBMC uses linear filtering and relies on the soft
transition of its filter tail to combat multipath fading because it does not use a CP [35, 37].
In the case of GFDM, it uses circular filtering to ensure a block-based waveform with no
filter tails. Using a single CP protects multisymbol transmission to enhance temporal effi-
ciency. In this work, the focus is on GFDM; however, the proposed framework addressed
in the contributions of this dissertation is not limited to it.

GFDM uses circular shifted filters for pulse shaping and reduces out-of-block leakage and
is based on an independent modulation block consisting of a number of subcarriers and
subsymbols. The subcarriers are filtered with a prototype filter circularly shifted in time
and frequency. It allows reducing the OOB emissions. However, the subcarrier filtering
causes nonorthogonal subcarriers and increases intersymbol interference (ISI) and inter-
carrier interference (ICI). On the receiver side, an efficient scheme such as matched filter
with iterative interference cancellation is used, and it achieves the same performance as
OFDM systems. It is important to remark that OFDM and single carrier OFDM can be
regarded as special cases of GFDM.

Discrete signal model of GFDM

The GFDM system setup under consideration is set to transmit a complex symbol block
ds,k at the sth time instant and the kth subchannel containing S ×K data symbols (s =
0, . . . , S − 1; k = 0, . . . , K − 1). Assuming that the data symbols are independent and
statistically identical (x[n]), the GFDM signal is written as

x[n] =
S−1∑
s=0

K−1∑
k=0

ds,k gs,k[n] (2.1)
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where gs,k[n] denotes the circular time-frequency-shifted version of the prototype filter
g[n]. The filter g[n] is usually a root raised cosine (RRC) defined by the roll-off factor
that represents the rate at which the lobes of the function (or ripples) decrease. Basically,
if the bandwidth of the function is B when the roll-off is 0, then it becomes 2B when the
roll-off is 1.

The discrete prototype pulse shaping g[n] is expressed as

gs,k[n] ≜ g[(n− sK)N ] e
j2πnk/K , (2.2)

where N = S×K, and (.)N denotes a modulo-N operator with a rectangular window. To
simplify the circular convolution, the transmitter filter g[n] is usually designed as being
circular with a period of n mod N . It is also noteworthy that in (2.2) the GFDM shifting
step is K in the time domain and 1/K in the frequency domain.

In the case of asynchronous subcarriers, the design should employ continuous discrete-
time Fourier transform (DTFT) of the prototype pulse shaping. Under the assumption of
perfect synchronization, the pulse shape can be carried out in the frequency domain so
that only the first and last S samples of (2.2) have nonzero values to ensure that the ICI is
limited to adjacent subcarriers [38].

Transmitter block

Let us first use (2.1) to rewrite the elements of the transmit symbol block in a single
vector as: d = [dT

0 , . . .dT
s−1]

T and ds = [ds,0, . . .ds,K−1]
T with the variance σ2

d , where the
operator [.]T represents the vector transpose.

The vector form of x[n] (n = 0, . . . , N − 1) can be formulated as

x = Ad, (2.3)

where x = [x[0], . . . x[N − 1]]T ∈ CN×1 and A ∈ CN×N , which denotes the modulation
matrix or the self-interference matrix of the GFDM system. This matrix can be defined
as A = [G0, . . .GS−1] so that Gs represents the N ×K matrix of gs,k[n] coefficients, i.e.,

Gs =


gs,0[0] gs,1[0] · · · gs,K−1[0]
gs,0[1] gs,1[1] · · · gs,K−1[1]

...
... . . . ...

gs,0[N − 1] gs,1[N − 1] · · · gs,K−1[N − 1]

 . (2.4)

A CP of the length Ncp is added to the GFDM signal x to prevent interblock interference
over a frequency selective fading channel (FSFC). Then, the transmitted signal is given
by xcp = [x(N −Ncp + 1 : N); x].
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Receiver block

Without loss of generality, we assume a circular symmetric complex (CSC) channel h =
[h1, h2, · · · , hL]

T , where hr denotes the complex baseband channel coefficient of the rth
path (1 ≤ r ≤ L). We also consider that Ncp ≥ L, which means that the CP length must
be higher than the delay spread of the multipath channel [39]. Additionally, the channel
coefficients related to distinct paths are assumed uncorrelated. Then, the received signal
has the length Nt = Ncp +N + L− 1, and it can be modeled as

ycp = h ∗ xcp + νcp, (2.5)

where the symbol ∗ denotes linear convolution operation, and νcp is the additive white
Gaussian noise (AWGN) signal with the variance σ2

ν , and it is also represented by a vector
of the length Nt.
Before starting the decoding process, the CP introduced at the transmitter has to be re-
moved. Here, the frequency-domain equalization (FDE) properties can be employed so
that the linear convolution in (2.5) becomes a circular convolution. Thus, the resulting
received vector after the CP removal can be expressed as

y = HchAd + ν, (2.6)

where the vector ν represents the AWGN signal of the length N with the variance σ2
ν , and

Hch ∈ CN×N is the circular Toeplitz matrix based on the vector h, and can be written as
[40]:

Hch =



h1 0 · · · 0 hL · · · h2

h2 h1 · · · 0 0 · · · h3
... . . . · · · ...
hL hL−1 · · · · · · · · · · · · 0
0 hL · · · · · · · · · · · · 0
... . . . · · · ...
0 0 hL · · · · · · h1


. (2.7)

The matrix Hch has a very special pattern. Each row is a circular shift of the first row. To
estimate the transmitted complex data symbols d̂, we consider a matrix G by using the
following equation:

d̂ = G y, (2.8)

The design of the demodulation prototype filter G depends on the demodulator selection,
such as zero-forcing (ZF) and MMSE. The main contribution of this doctoral dissertation
focuses on scenarios in which the MMSE is considered on the receiver side.

2.8 Machine learning-aided cellular networks

Machine learning is a tool that was popularized by a diversity of data science applications
in a huge universe of applications in many verticals, such as self-driving cars, robotics,
and smart grids. In the last years, image recognition based on machine learning methods
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was supporting many end-user applications for security and entertainment purposes. In
wireless communication networks, the most popular application of machine learning is
related to orchestration in the network layer. Here, the target is to enhance the resource
scheduling of complex systems [41, 42], which has traditionally relied on empirical solu-
tions.

There are three machine learning categories using neural networks:

• Supervised learning: When the learning of the neural network depends on ground
truth labeling or labeling data. The main application of supervised learning is to
make inferences.

• Unsupervised learning: In contrast to supervised learning, here, the main task is
to cluster samples without the necessity to use labeled or ground truth data. The
goals of unsupervised learning are mainly clustering and reducing dimensionality
to compress the data.

• Reinforcement learning (RL): Here, the task is to learn through trial and error. In
this type of task, no one labels data, and no user collects or explicitly designs the
collection of data. In simple words, the goal in reinforcement learning (RL) is to
act.

In RL, the computer program that takes decisions is referred to as an agent. Agents learn
through trial and error: they try something, observe, learn, try something else, and so
on [43]. The environment, in turn, is represented by a set of variables related to a specific
problem. Then, the set of decisions that the agent can take is mapped in the state space.
The subset of a state that the agent can observe is known as an observation. It is important
to note that tasks that have a natural ending, are called episodic tasks. Finally, agents may
take several time steps and episodes to learn and solve a task.

In recent years, the application of machine learning in wireless cellular networks has
gained in popularity. For example, machine learning models can extract sequential and
spatial features from time-varying received signal strength indication (RSSI) [44]. An
auto-encoder can be used to reduce the overhead of CSI reporting from the user equip-
ment (UE) to the next-generation NodeB (gNB), when a massive multiple-input multiple-
output (MIMO) setup is used in the cellular network [45]. Other machine learning models
can closely approximate universal and complex functions with similar performance but
with a much lower model and computational complexity. In addition, DRL supports the
implementation of a self-organizing network (SON) with self-optimization capabilities to
achieve specific KPIs as spectral efficiency [46].



52 2 Background information



53

3 Contributions

Not everything that can be counted
counts, and not everything that counts

can be counted.

— ALBERT EINSTEIN

In this chapter, the fundamental contributions of this dissertation are summarized. The
contributions are organized into the following subtopics that are mapped onto their re-
spective publications:

• RAN slicing enabling the standard IEC 61850 is summarized in Section 3.1. Here,
a framework is proposed to enable the IEC 61850 by using a cellular network. This
section addresses the main discoveries made in Publication I.

• Modeling GFDM in wireless scenarios is summarized in Section 3.2. Here, the
main discoveries related to the analytical model proposed for the GFDM system
are based on the contributions of Publication III and Publication V.

• Finally, the interference mitigation in wireless scenarios with machine learning
is summarized in Section 3.3. Here, Publication II and Publication IV are the
sources of discoveries.

To highlight the value of each contribution to the current state of the art that defines the
5G-NR, the main architecture elements of the RAN are mapped with the main contribu-
tions of each Publication I–V. This mapping is illustrated in Fig. 3.1.
In all subtopics, the focus is on the research questions defined in the first, introductory
chapter, and on providing answers to them.

3.1 RAN slicing enabling the standard IEC 61850
RAN slicing technology can deliver tailored radio resources to smart grid communication.
In this context, this contribution first studied the network demand of messages defined in
the IEC 61850 protocol. These messages were classified and mapped according to their
latency, reliability, and service priority requirements.

To support this contribution, a novel RAN slicing framework was proposed in the upcom-
ing cellular network domain to support smart grid communication. A wireless network,
based on the proposed framework, was used to enable connectivity in a substation protec-
tion and control scenario to evaluate the system spectrum efficiency. This framework is
intended to inspire new opportunities for communication and power system industries.

In the context of the dissertation, this section aims to answer research questions RQ1 and
RQ3.
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RQ1 What are the limitations (if any) of existing wireless technologies for current cellu-
lar networks to serve smart grid communications, especially for protection / sub-
station operation?

RQ3 Is it possible to improve the current cellular technology through machine learn-
ing techniques in order to better serve smart grid communications, specifically in
supporting critical applications?

Recently, many smart grid applications have gained popularity as a result of the evolution
of communication network technologies. Usually, these smart grid applications rely on
wired communication. However, wireless connectivity is becoming popular, especially
in noncritical applications. On the other hand, the wireless communication industry is
evolving to support services that require high throughput, a high density of users, and
low-latency connectivity. It is the case of 5G, which is a key enabler of the current cellu-
lar wireless connectivity around the world.

Among the critical novelties brought by 5G and beyond systems, RAN slicing emerges
as an enabling platform for the efficient integration of smart grid connectivity solutions
over a shared radio interface, as proposed by network slicing. Thus, RAN slicing is a
complement of network slicing in the radio resource domain. It splits the radio resources
into logically isolated radio networks, in which one slot can be interpreted as an RAN
slice.

Figure 3.1: 5G New Radio protocol stack based on the current 3GPP Rel. 17 specification
mapped with Publications I–V.
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In clear contrast to previous mobile network generations, the 5G system-level design
leverages cloud-native concepts to allow disaggregation and virtualization of network
functions, which are well defined in TS 3GPP 23.501. For instance, network slicing con-
stitutes a key enabler for integrating the segmented connectivity landscape of smart grid
services over a common core and the RAN network. A slice-based network addresses
efficiently the inherent smart grid service heterogeneity. It provides significant benefits,
such as service isolation, a tenant-oriented virtual network, a guaranteed SLA, customiza-
tion capabilities, mobile edge computing (MEC), and a distributed architecture.

The opportunities of this new business model are expected to change the way that utilities
deploy communication infrastructure. In the most common scenario, such an infrastruc-
ture is comprised of private networks using a variety of communication technologies. For
example, Ameren is a publicly traded utility providing energy services for approximately
2.4 million customers across 167,759 square kilometers in Illinois and Missouri [47].
Ameren used a private LTE network for AMI or AMI backhaul, substation backhaul, dis-
tribution and gas system sensors and controls, and monitoring and control of customer-
owned distributed energy inverters. With this intention, Ameren strove to eliminate dis-
parities in network solutions and standardize a single robust one for the field area network.
Using a private LTE network, they aim to simplify the operation from over 15 network
solutions to only two (LTE and mesh networks for metering) [47]. This example indicates
the potential relevance of the 5G nonpublic networks (NPN) in the smart grid setting.

Nowadays, the service business model forces operators to move beyond subscription-
based charges and fixed rental fees per device. As a result, part of the charging cost
should be defined based on performance-based SLAs and KPIs, which could also be com-
plemented by the value added on each power system utility requirement.

In the coming years, smart grid utilities will be able to address specialized requirements
using a unique infrastructure based on network slicing premises. They will also have the
chance to reap additional business benefits through cost savings and new use cases.

In the smart grid, wireless connectivity supports noncritical applications. However, these
applications serve specific purposes with proprietary protocols and lower bandwidth, and
are implemented in shared frequency bands. In addition, these wireless interfaces are not
suitable for some of the new demands. For instance, in the case of distribution automa-
tion, an unlicensed 900 MHz mesh radio network is usually used between devices. Here,
the data of these devices are aggregated using a backhaul in a separate licensed 900 MHz
system [48]. As an alternative, this backhaul is replaced and extended by private LTE
networks with very promising results [49]. These private LTE networks also assist users
in the field, providing different QoS wireless services, such as voice and full buffer traf-
fic. In remote areas, some LTE/WiFi gateways are used to provide a WiFi calling method
using session initiation protocol (SIP)-trunking for smartphones. In some scenarios, such
as the capacitor bank controller, a narrowband IoT (NB-IoT) 200KHz channel is consid-
ered [50]. Following the success of 4G private networks to support industrial markets, the
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deployment of private 5G networks is expected to support critical verticals, such as the
smart grid.

The target is to unify the above-mentioned radio access technologys (RATs) into a unique
infrastructure. However, the proliferation of proprietary protocols, technologies operating
in both licensed and unlicensed bands, and uncoordinated signal processing techniques
disable the chance of a unique infrastructure. Therefore, 5G supports critical applica-
tions and also proposes network slicing to support different applications, such as eMBB,
mMTC, and URLLC using end-to-end isolated networks in the same physical infrastruc-
ture. One important enabler of network slicing is RAN slicing [51], which is not yet
specified by 3GPP. In this sense, the proposed framework aims to ease the integration
of the standard IEC 61850, used as a communication protocol in smart grid applications,
and RAN slicing. This integration provides important advantages over the current RATs
used in the field in terms of local spectrum license, the overall cost of the system, easy
reconfiguration, security, data-driven approach, control of essential infrastructure, and
performance guarantees based on artificial intelligence / machine learning (AI/ML) tech-
niques.

3.1.1 Categorization of 5G-enabled smart grid services

To better understand the impact of the proposed RAN slicing framework, it is important
to point out that, in general, a smart grid has two parallel infrastructures: the power
system with multidirectional power flow and the two-way communication system. Both
infrastructures are enablers of the proposed categorization of the following 5G-enabled
smart grid services:

• Smart distribution automation;

• Wide-area monitoring, control, and protection;

• Metering data acquisition;

• Integration of distributed generation;

• Volume and price balancing.

These services are detailed in brief to understand the critical role of the proposed RAN
slicing framework. The role of RAN slicing is highlighted in each service, including the
specific slice/service type (SST) indicator.

1. Smart Distribution Automation: Sophisticated, reliable, and low-latency com-
munication forms the backbone of a smart distribution automation system. It al-
lows power distribution systems to rearrange themselves when a fault occurs (for
loss reduction, load balancing, and service restoration), restricting the problem to
a smaller area without violating metrics, such as line power flow limits and bus
voltage.
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In this context, a smart distribution automation system enabled by the proposed 5G
and beyond framework aims to achieve real-time situational awareness and quasi-
real-time analysis of the grid behavior by supporting advanced functionalities [52],
such as:

• Efficient load flow examination for balanced and unbalanced distribution sys-
tems.

• Short-circuit analysis, which is the process of estimating voltages and currents
in the power system in undesired conditions.

• Automated feeder reconfiguration for loss reduction— in the network con-
figuration, it is performed by closing (generally open) and opening (usually
closed) switches in the network. The greater the number of switches is, the
greater the possibilities for reconfiguration.

• Optimized service restoration in a distribution system, which is a task that
aims to locate and isolate a fault that occurs in a feeder of a distribution system,
and subsequently restore supply by appropriate switching actions.

• Automated feeder reconfiguration for load balancing, which is a key feature to
ensure an adequate power supply to minimize the losses and avoid an exces-
sive voltage drop. It is a critical application to enable demand response, distri-
bution generation, decentralized renewable energy, microgrids, and demand-
side management.

• Automated location of faults, which is a key tool to support the identification
of faulted components, speed up restoration, improve system reliability, and
reduce outage time.

Role of RAN slicing in smart distribution automation: As it is a critical service,
it should be enabled by a URLLC slice to guarantee low latency and high reliabil-
ity. As the majority of the messages are mostly related to automated commands,
these messages will require a low bandwidth with a low density of users. However,
the service priority should be very high. Based on the standard definitions of net-
work slicing, this service should be enabled by SST value 2, which is related to the
URLLC slice.

2. Wide-Area Monitoring, Control, and Protection: The main task of a transmis-
sion system operator is to accurately manage the high-voltage power system. The
main mission is to guarantee quality, affordability, and safety. To execute this task,
applications based on complex analysis and software are used. Usually, these appli-
cations require significant information to predict smart grid evolution in every oper-
ating condition. To supply this information, a wide area measurement system is re-
quired. Usually, it is implemented by using digital devices, such as PMUs, to record
sensible information, such as geographical positioning and high sampling rate dy-
namic power system data. The wide area measurement system depends strongly
on the communication between actuators, controllers, and sensors through a shared
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communication network. These measurements are critical to provide alerts, espe-
cially during unexpected conditions. In addition, the monitoring system can also be
used in enhancing equipment maintenance applications and replacements.

By exploiting a 5G and beyond communication infrastructure, wide-area monito-
ring systems aim to enhance traditional SCADA systems, offering advanced super-
vision features, such as:

• Supervisory control and data acquisition, which is based on three essential
functions: supervisory control, alarm display and control, and data acquisi-
tion. This system includes a master terminal unit (MTU) in the control center,
a remote terminal unit (RTU) as a stand-alone data acquisition and control
unit, IED, which is a small industrial computer that operates devices such as
relays, switches, and mechanical timers. All of these are connected through a
communication system between the control center and the remote site.

• Synchronized phasor measurement system, which is driven by an advanced
device that measures voltages and currents and computes the phase between
them. This device is composed of a PMU that acquires the electrical waves
in a power system, and a phasor data concentrator (PDC) that receives syn-
chrophasors from a poll of PMUs or other PDC to create a coherent record of
simultaneously recorded data. As synchrophasors transmit sensible informa-
tion and are continuous stream data, they have strict communication system
requirements in terms of low latency and bandwidth.

• Digital fault recorder to archive sensible and accurate waveforms related to
fault events. It aims to get information in the prefault, postfault, and fault
stages. The recorded information is used for offline processing.

• Digital protective relay (DPR), which is based on advanced microprocessor
technology to distinguish faults in power systems by processing current and
voltage waveforms.

• Circuit breaker monitoring (CBM) is an electronic device that keeps track of
circuit breakers. It works in real-time to gather information in scenarios in
which the breakers are operated manually or automatically by the control and
protection equipment if necessary.

Role of RAN slicing in wide-area monitoring, control, and protection: As this
service has a mix of requirements in terms of latency and reliability, it should be
enabled by SST value 1 that supports eMBB, SST value 2 that supports URLLC,
and finally, SST value 3 to support mMTC applications. As the target is to gather
a massive number of sensor information, it will require a medium bandwidth with
a medium density of users. In addition, the service priority should be very high or
medium.

3. Metering Data Acquisition: The AMI, constitutes one of the critical components
of the smart grid. Smart meters are continuously evolving into sophisticated com-
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puting units, which should process, gather, and deliver user consumption infor-
mation to data aggregation units for additional processing and analysis. In addi-
tion, AMI systems can take advantage of the distributed information processing
and storage architecture of 5G and beyond core networks, supporting virtualized
edge computing platforms for localized decision-making. They also enable a well-
organized energy demand management system as well as precise forecasting and
analysis of future energy needs. The smart grid uses smart meters for continuous
monitoring and adjusting the consumption of electricity. The smart meter system
transfers collected data to service providers at equal time intervals. This is done to
enable customer billing, data reduction, work management, distribution planning,
peak demand, quality of service monitoring, distribution network analysis, outage
management, time-based demand data analysis, and service interruption. The AMI
integrates several technologies, such as

• Smart devices comprise the end user device that enables data collection and
measurements required in specific time intervals with the time stamping fea-
ture.

• Communication by a highly reliable network, because a large number of smart
meters are required to transmit the gathered information to computers for anal-
ysis.

• Data management system is typically a centralized module that aims to man-
age the multimodular structure of the smart grid.

Role of RAN slicing in metering data acquisition: As this service requires a
medium/low latency, it should be enabled by SST value 3 to enable mMTC appli-
cations in the AMI systems. As the target is to gather a massive amount of sensor
information, it will require a medium/high bandwidth with a low/medium density
of users. In addition, the service should be between low and medium priority.

4. Integration of Distributed Generation: With the increasing efforts worldwide to
reduce carbon-intensive energy supply, a variety of different generation plants and
equipment are connected to the electrical distribution networks, for instance, pho-
tovoltaic systems, combined heat and power (CHP), wind turbines, solar thermal,
fuel cells, micro-CHP, flywheels in marine renewable technologies, and flow bat-
tery storages.

The proposed 5G and beyond framework has the potential to provide safer and more
reliable connectivity to the distributed generation units. It has a positive impact on
smart grids, especially in using renewable energy sources and providing them with a
higher fault tolerance. In this context, the proposed connectivity framework should
be capable of supporting the advanced control techniques and networking schemes
for a seamless process, particularly when the energy storage capacity is low.

Role of RAN slicing in the integration of distributed generation: As this service
requires a medium/low latency with high reliability, it is enabled by SST value
2 and SST value 3 to enable URLLC and mMTC applications, respectively. As
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the target is to integrate sensor measurements between distributed generators with
short package information, it will require a short bandwidth with the capacity of
supporting a medium/high density of users. Furthermore, the service should be
between medium and high priority.

5. Volume and Price Balancing: Demand response (DR) is one of the core elements
of the smart grid. It embraces a diversity of electricity-pricing schemes, such as time
of use (TOU) pricing, real-time pricing (RTP), and critical peak pricing (CPP), and
a variety of algorithms for controlling appliances.

In this use case, a reliable and extensive cellular network with capabilities offered
by 5G networks and beyond can enable prosumers to collaborate in the production
of energy on a peer-to-peer basis. This decentralized strategy aims to determine
prices accurately.

Role of RAN slicing in volume and price balancing: As this service requires
a medium/high latency with a medium/low reliability, it is enabled by SST value
1 and SST value 3 to enable eMBB and mMTC applications, respectively. Con-
sidering that the data transmitted in the wireless communication network require
considerable data rates, a medium/high bandwidth with a medium/high density of
users is needed. However, the service is of low priority compared with other smart
grid services.

3.1.2 5G and beyond RAN slicing framework supporting the IEC 61850 protocol

The application protocol defined in the standard IEC 61850 was originally defined con-
sidering that Ethernet supports lower protocol stack layers on a wired interface. Thus, in
terms of physical layer communication, it is expected to provide a reliable and predictable
channel because it is usually static without significant variability and usually offers a high
bandwidth, as in the case of fiber optics. In the case of wireless channels, the chances
of external impairments and different coherence bandwidths are higher than in the wired
counterpart. Therefore, the 5G, which is specified by 3GPP since the release 15 until the
current release 17, is based on key technologies such as:

• Legacy 4G waveform: OFDM aims to reduce intercarrier interference, which is a
desired feature in multicarrier systems, such as 5G;

• New numerology for the radio frame to operate on different subcarrier bandwidth
sizes to enable URLLC capabilities;

• Advanced channel coding;

• Antenna array technology to increase the spectral efficiency based on the spatial
domain together with MIMO;

• Functional split of RAN to provide flexibility in the deployment of critical applica-
tions;
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• High bandwidth capabilities on the mmWave spectrum;

• Usability of machine learning to manage the core network through software-defined
network (SDN).

However, the standard has not yet specifications on RAN slicing, especially to support
industrial vertical communication protocols, such as IEC 61850. The reality is that IEC
61850 messages and consumer applications could share the same resources, such as the
frequency spectrum. However, IEC 61850 users and typical cellular network users do not
share exactly the same network requirements. For instance, in the case of mobile network
users, a high bandwidth and low costs are usually the best and suitable choices. In con-
trast, IEC 61850 users mostly require low-latency communications and a high reliability
to enable specialized smart grid services. Thus, QoS awareness of device-specific aspects
and traffic requirements is critical for their success.

In the state of the art there are many RAN slicing frameworks to enable vertical appli-
cations. However, most of them are generic realizations of preallocation resources at the
network level and dynamic scheduling at the 5G Node B (gNodeB) level using traditional
scheduling methodologies [53]. In other studies, RAN slicing uses artificial intelligence
for scheduling radio resources [54]. However, they consider generic and noncompatible
requirements with the standard IEC 61850 and fixed transmission power allocation.

The proposed RAN slicing framework to enable the standard IEC 61850:
The novelty of the proposed RAN slicing framework is that the QoS policies are defined
based on the dynamic requirement of the IEC 61850 application protocol, and the building
elements provide a high level of flexibility to support dynamic allocation, simultaneously
supporting any SLA level.

In practice, there are two different approaches to model each RAN slice. RAN slicing
approach A considers dedicated subchannels or subsets of the total bandwidth for each
RAN slice as illustrated in Fig. 3.2. Another option is to consider RAN slicing approach
B, which adds more sharing granularity to the front end of the RF module and also re-
quires sophisticated methodologies, such as successive interference cancellation (SIC), to
guarantee the performance in the highly resource sharing scenario.

In the proposed framework, we considered RAN slicing approach A because it is the
most suitable deployment scenario. Thus, substantial interference is to be expected when
two or more gNodeBs are providing connectivity. To mitigate the interference between
gNodeBs, a deep reinforcement learning model schedules the subchannels across differ-
ent gNodeBs focusing on a specific target, such as spectral efficiency maximization. We
complement the traditional resource blocks (RBs) scheduling with individual power allo-
cation on each UE.

The requirements introduced by the standard IEC 61850 are the main target of the pro-
posed RAN slicing framework. This framework comprises five building elements, viz.
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Figure 3.2: Illustration of both RAN slicing approaches in the physical layer mapped in
the generic cellular network architecture specified by 3GPP Rel. 17. On the left, RAN
slicing approach A, and on the right, RAN slicing approach B.

Figure 3.3: Illustration of the RAN slicing framework to enable the IEC 61850 data flow.
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the RAN architecture (RANA), the RAN isolation level (RIL), the RAN slicing func-
tion (RSF), the RAN slicing management (RSM), and the Intelligent RAN slicing sched-
uler (IRSS). These elements are illustrated in Fig. 3.3 and summarized in the following:

1. RANA:

It considers the fundamental RAN architecture elements such as the radio units
(RUs), the distributed units (DUs), and the centralized unit (CU) can support the
heterogeneous IEC 61850 requirements. These functional elements are determined
and configured based on the RANA index value. For instance, when RANA=1,
a centralized architecture is enabled to support IEC 61850 messages that match
classes with end-to-end latency levels of ≥20 ms. Alternatively, a configuration
with a higher RANA index enables an entirely distributed architecture that depends
on the flexible deployment of combinations of DUs and RUs. In the former case,
the IEC 61850 critical messages are transmitted using a functional split near the
CU to achieve lower latency levels, e.g., IEC 61850 performance classes Type-1A
and Type-4 messages with a ≤10 ms or ≤3 ms time requirement according to the
standard IEC 61850-5.

2. RIL:

Considering that isolation means that a slice does not interfere with other slices,
this building element sets the required segregation level among slices, reflecting a
trade-off between isolation and efficiency. In this context, this framework proposes
a conservative isolation policy on base stations (BSs). Thus, each RAN slice defined
by this framework is carried in one specific subchannel, which is orthogonal to other
subchannels.

3. RSF: This building element is predominantly associated with functionalities per-
formed in the baseband processing units. Two well-defined subelements carry out
a partition of these functionalities.

The RSF1 comprises the 5G/NR features and involves the scalable 5G/NR frame
structure and numerology. This subelement is associated with fundamental PHY
and MAC layer functions, such as puncturing, scheduling, and tiling.

Another subelement is the RSF2, which consists of tailored baseband features to
support vendor-specific operations or not yet specified technologies in the stan-
dard. It is associated with beyond-5G technical enhancements, preparing the next-
generation connectivity enablers to be incorporated in the IEC 61850 RAN slicing
framework.

4. RSM:

This element monitors the necessary capabilities of the preceding RANA, RIL, and
RSF elements. The RSM is a high-level scheduler of RAN slicing elements as part
of its management and supervisory role. The role of the RSM needs to consider
the different SLAs of IEC 61850 messages designated by upper layers and the core
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network. As illustrated in Fig. 3.3, the RSM uses the data traffic awareness block
to evaluate, analyze, and model the IEC 61850 data traffic.

5. IRSS:
It is the cognitive element of the proposed framework. It has the task of acting
as the scheduler of functionalities over the other framework elements. Thus, the
IRSS guarantees the key network metrics that evaluate the system performance.
This is done by assisting other elements with machine learning algorithms as RL
to improve the system performance metrics, such as SINR and spectrum efficiency,
which indirectly enhances critical network metrics, such as latency, reliability, and
throughput. In the scope of RL, an agent learns to interact with its environment
(radio channel impairments, such as interference, and fading).

3.1.3 Radio resource management proposed using machine learning

Every BS enables independent learning agents or ML models. However, the proposed
learning scheme follows a multiagent strategy. Two policies are considered for each agent.
One policy is to choose the associated RAN slice, and the other one is to set the power
transmission level.
The DRL methodology considered the following components:

• Agents: the agents are deployed in the BSs.

• Policies: The design considers two policies: π1 to select a specific RAN slice and
π2 to set an adequate transmission power for each user.

• Actions: Two sets of actions are considered; the first set has discrete actions related
to the indication of RAN slices, and the second set has continuous action to select
the transmission power for each individual user.

• States: A state is composed of a finite-order list of information related to the RAN
slice allocation, the spectral efficiency (SE) and gain inference in each individual
user.

• Rewards: In general, the reward value is proportional to the receiver spectral ef-
ficiency of each UE. The spectral efficiency of every UE is evaluated under the
condition that neighborhood agents are not transmitting. As a consequence, if the
SE value is considerable, then the target agent is penalized. On the opposite side, if
the SE maintains a homogeneous value, then the BS is rewarded.

The solution considers two different policies. However, the DRL is not capable of explor-
ing and exploiting both policies simultaneously. For this reason, the DRL makes use of
two optimization approaches. The first is a Deep Q-network that optimizes a stochastic
policy to enhance the RAN slice indication. The second is a Deep Q-network that opti-
mizes a deterministic policy with the target to select a satisfactory power transmission. It
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is important to note that the second deep Q-network depends on the decision of the first
one to define its state inputs prior to setting the transmit power of the agent.
Finally, some implications and generality related to the existing knowledge, as well as
future potential applications, are summarized in the following.

• Implications of the results: The results obtained in Publication I indicate that
the current cellular networks can use the proposed RAN slicing framework. This
RAN slicing definition enables the selection of the isolation level to support specific
applications. In the case of the standard IEC 61850, a very conservative setup is
advisable, as used in this work. However, the framework is flexible enough to avoid
the need for another functional split setup.

• Generality (limitations) of the results: The present architecture is based on the
current functional split defined in the 3GPP Rel. 17. However, some specific sig-
nalization with a high specification impact is expected but not considered in this
dissertation.

3.1.4 Summary

In this contribution, we proposed a categorization of 5G-enabled smart grid services to
identify and map standardized 5G slices in services like smart distribution automation;
wide-area monitoring, control, and protection; metering data acquisition; distributed gen-
eration integration; and volume and price balancing. In addition, considering the key re-
quirements defined in the standard IEC 61850, a 5G and beyond RAN slicing framework
was proposed to enable a smooth integration between power system devices and wireless
communication devices. Finally, based on the proposed RAN slicing framework, a so-
lution for radio resource management was proposed using a deep reinforcement learning
scheme.

3.2 Modeling GFDM in wireless scenarios

An analytical derivation of the SINR for GFDM signals on Rayleigh fading channels
with MMSE receivers was the target of Publications III and V related to the modeling
of GFDM. This research contribution aims to complement the RIL module defined in
the RAN slicing framework proposed in the previous section. Specifically, enhancing the
performance of the physical layer by using the GFDM’s flexibility has a strong potential
to enable sophisticated applications, which would enhance the operation of smart grids,
especially in the most demanding cases in terms of reliability and latency. Thus, in the
context of the dissertation, this section aims to answer research question RQ2.

RQ2 In what conditions generalized waveforms—which are yet not part of current cel-
lular standards—can outperform the existing solutions, potentially allowing new
smart grid applications in indoor and outdoor environments?



66 3 Contributions

In the last decade, GFDM has arisen as a potential alternative to OFDM for current cel-
lular networks and beyond [55]. OFDM relies on rectangular pulse shaping, which is the
main source of sizeable OOB radiation. Moreover, the CP used in each OFDM block
reduces the spectrum efficiency, which is more notorious in highly frequency selective
channels [56]. In contrast, GFDM can carry data symbols in a well-localized prototype
filter in both the frequency and time domains [57]. This characteristic reduces the CP
percentage, and consequently, the OOB emission is mitigated [56].

In recent studies, GFDM has attracted great attention as a waveform to be used in fu-
ture cellular networks. For instance, in the case of integration of satellite and terrestrial
communication, the research community proposes a solution based on GFDM to support
the expected demand considering a more compatible and robust physical layer wave-
form [58]. This integration is only feasible if a flexible waveform is compatible with
OFDM. Because in GFDM there is great flexibility to set the number of subcarriers and
subsymbols, GFDM is compatible with CP-OFDM and discrete-Fourier-transform-spread
OFDM (DFT-S-OFDM) [59, 58]. In other words, GFDM covers the 5G standardized
waveform OFDM and single carrier frequency domain equalization (SC-FDE), which
represent GFDM corner cases [60, 61].

The main motivation of this study is to propose a mathematical framework to obtain an
analytical model of the SINR through the semiclosed form of its PDF. Publication III
contributes to fill a gap in the literature by deriving a semiclosed expression of such a
distribution when the GFDM system employs MMSE receivers on Rayleigh channels.

The Rayleigh fading channel is used to model NLOS links, which is a popular wireless
communication scenario for many applications. In this context, the proposed analytical
model can be employed in a potential analysis that considers technologies related to 5G
and beyond. This scenario could be applied to smart grid use cases that are deployed
inside a substation, in which there are many cluttering elements that increase the chances
of NLOS links.

The motivation to use the linear MMSE equalizer is based on the fact that it is a classic
functional block and that it is ubiquitous in digital communications [62]. Another rea-
son is that MMSE is also the building block of more advanced communication schemes.
However, the existing performance analyses of GFDM and MMSE on Rayleigh channels
are far from complete.

Another important contribution is based on Publication V. Here, the distribution of the
PDF of the SINR was obtained to achieve the analytic calculation of important wireless
metrics, such as outage probability, achievable sum rate, outage capacity, spatial diversity,
BER, and channel hardening.
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3.2.1 Semiclosed analytical PDF of the SINR obtained on fading channels

In wireless communication theory, the use of random variables is one of the most popular
approaches to analytically model features, especially in the physical layer.
In the case of Rayleigh fading channels, a complex channel coefficient is represented by

h = hr e
−jθ, (3.1)

where θ is a random variable defined by a uniform distribution between−π and π, and hr

is a random variable defined by
hr = |h|. (3.2)

Here, in general, the real (hRe) and imaginary (hIm) parts of h have the same variance
equal to σ2
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the center of the bivariate distribution. Thus, we obtain the PDF of the magnitude of h
represented in (3.2), which is an independent and identically distributed Rician channel
realization defined by
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A very important property is that the Rayleigh distribution is a corner case of the Rice
distribution. Thus, when the Rician fading channel parameter V is zero, it becomes a
Rayleigh random variable.
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This particular contribution considered the distribution of the Rayleigh fading channel to
represent specific smart grid scenarios in the communication system model. This system
model considers that a GFDM waveform is transmitted on a Rayleigh fading channel.
However, it can be extended to Rician fading channels.

On the receiver side, it is common to consider linear receivers, such as MMSE. MMSE is
used to maximize the SINR of the GFDM signal transmitted through the wireless channel.

Considering a generic system model, the GFDM signal is used as an input of the channel
model block with the variable x. The output of the channel model block is represented by
the variable y, and this signal is used as the input of the linear receiver MMSE. Following
a similar sequence, the output of the MMSE receiver is represented by the random vari-
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able z. The target of the contribution is to mathematically obtain the distribution of the
random variable z when the fading channel is modeled by a Rayleigh distribution.

To better illustrate the above-mentioned scenario, an illustrative system model is shown
in Fig. 3.4. In this particular system model, a variety of random variable transformations
were considered using mathematical tools to approximate random variables with specific
distributions by matching the first and second moments.

Finally, the distribution of the SINR of the random variable z was obtained analytically
based on a semiclosed model, which is the primary outcome and contribution of Publica-
tions III and V.

3.2.2 Performance metrics obtained analytically by using the PDF of the SINR

Based on the previous contribution, in which the PDF of the SINR of the signal z was
obtained, a variety of performance metrics can be found analytically.
Considering that MMSE is used on the receiver side, it can be shown that the SINR of the
nth data symbol can be expressed as

γn =
1

MMSEn

− 1 =
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]
nn

− 1. (3.7)

where the operator (.)† represents the Hermitian conjugate of a matrix, IN is a N × N
identity matrix, and p is the average signal-to-noise ratio (SNR), given by p = σ2
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ν .

Note that (3.7) has the same form of [63, eq. (7.49)], being thus not restricted to binary
signals, and its derivation is based on the second-order statistics of the input signals [64].

As it was stated in [65], the BER for the l-th probability (Pb) of error (E) given by a
specific SINR (γn) of aM-quadrature amplitude modulation (QAM) constellation can be
expressed as
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where γn is the postprocessing SINR for the nth received symbol given in (3.7). The γn
random variable has a PDF (pγ (γn)), which was already obtained analytically in Subsec-
tion 3.2.1. With all these elements, the BER is obtained analytically in Publications III
and V by using the following generic model:
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Figure 3.4: Illustration of the GFDM system model. Here, the numbers in black cir-
cles indicate the main signal points. In (1), we have the input signal after the mapping
modulation represented by the variable x. In (2), we have the GFDM modulation matrix
represented by the variable A. In (3), the discrete version of the channel output and after
the CP is extracted, which is represented by the variable y. In (4), the block represents the
linear receiver, in this specific case the MMSE. Finally, in (5), the discrete output of the
estimated symbols represented by the variable z.
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Pb(E) =
1

N
×

N−1∑
n=0

∫ ∞

0

Pb(E|γn) pγ (γn) dγn (3.9)

In the case of the achievable ergodic sum rate for the MMSE receiver is given by (3.10),
which was already used in [66].

Rmmse(γn, N) =
N∑

n=1

Eγn [log2(1 + γn)]

=
N∑

n=1

∫ ∞

0

[log2(1 + γn)] pγ(γn) dγn, (3.10)

Following a similar approach, the PDF of the SINR is also used to obtain analytically
the outage capacity taking into consideration that the variable γn represents the SINR of
the nth data symbol, and thus, it is possible to calculate the nonergodic capacity of the
nth data symbol by log2(1 + γn) [67, 68]. However, to evaluate the outage capacity, it is
important to note that there are N = S ×K symbols. Afterward, we obtain the GFDM
capacity by

Cγn =
N∑
r=1

log2(1 + γn) = N log2(1 + γn). (3.11)

Thus, as we know the PDF of γn (already obtained in Subsection 3.2.1), it is possible to
calculate the PDF fCγn

(Cγn) of the random variable Cγn by traditional random variable
transformation

fCγn
(Cγn) =

d

dγn
pγ(γn)

∣∣∣∣
γn=2Cγn/N−1

(3.12)

By definition, the outage indicates the probability that the random variable Cγn falls below
an arbitrary data rate Rout Thus, the outage probability is

Pout = P [Cγn < Rout]

= FCγn
(Rout)

(3.13)

where FCγn
(Cγn) is the cumulative distribution of the random variable Cγn . In our con-

tribution, the cumulative distribution defined before calculates the outage probability for
any arbitrarily Rout.

In summary, the previously mentioned mathematical formulations enable the analytic cal-
culation of BER, outage probability, and sum rate for GFDM on Rayleigh fading channels.
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3.2.3 Semiclosed approximation compared successfully with simulation in different
scenarios

The PDF of γn (the SINR when the GFDM signal is transmitted on Rayleigh fading
channels) has as the main target of approximating the Monte Carlo simulation as well as
possible in different scenarios.

The Monte Carlo simulation is based on the generation of discrete samples of the GFDM
signal. This data generation considers the GFDM modulation matrix, which contains
important GFDM parameters, such as the roll-off (pulse shape), and the number of sub-
carriers and subsymbols. The generated GFDM signal is transmitted over a Rayleigh
fading channel. The fading channel is simulated using a Rayleigh distribution. Assuming
a circular symmetric complex (CSC) channel (Rayleigh ), we also consider that the CP
length must be higher than the delay spread of the multipath channel [39]. Additionally,
the channel coefficients related to distinct paths are assumed uncorrelated.

Before starting the decoding process, the CP introduced at the transmitter is removed.
Here, the FDE properties can be employed so that the linear convolution introduced by
the CP becomes a circular convolution. Thus, the received vector is modeled as:

y = HchAd + ν, (3.14)

where the vector ν represents the AWGN signal of the length N = K × S with the vari-
ance σ2

ν , S represents the number of subsymbols, K represents the number of subcarriers,
A is the GFDM modulation matrix, d represents the transmitted complex data symbols,
and Hch is the N ×N circular Toeplitz matrix.

To estimate the transmitted complex data symbols, we consider the MMSE received ma-
trix. The received vector y is distorted by (i) self-interference coming from GFDM in-
herent nonorthogonality and (ii) frequency selectivity introduced by the channel impulse
response. Thus, the SINR of the nth data symbol can be expressed as (3.7).

Equation (3.7) is used in the Monte Carlo simulation and in the analytical model to gen-
erate the simulated and analytical version of BER, sum rate, and outage probability.

For instance, in the case of BER, it is shown in Fig. 3.5 that the analytical version follows
the tendency of the simulation. In this figure, the evaluation considered the following
parameters: K = 128, S = 9, roll-off = 0.1. The multifading channel is based on the ITU
Veh-A channel with paths [0 310 710 1090 1730 2510] ns with the chip rate 1 Mcps, and
the average power of each path is [0 -1 -9.0 -10.0 -15.0 -20.0] dB.

Finally, in the case of outage probability, we obtained results presented in Fig. 3.6 for a
sum rate outage of R = 3 b/s/Hz. Here, the GFDM signal considers the following param-
eters: for N = 6 with roll-off=0.1, and power delay profile σ2

m = e−0.75m, m = 1 . . . L;
N = 40 with roll-off=0.1, and power delay profile σ2

m = e−0.1m, m = 1 . . . L; N = 1152
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Figure 3.5: BER for different modulation schemes. Here, the simulated and analytical
derivations are compared.

with roll-off=0.1, and power delay profile σ2
m = e−0.48m, m = 1 . . . L;. This metric is

very important to evaluate different GFDM parameters in different channel models be-
cause it is directly related to the reliability of the communication network. As mentioned
in the previous section, some IEC 61850 messages have strict requirements in this re-
spect to guarantee the transmission of critical information between devices that constitute
a specific smart grid application.

In the proposed GFDM framework, we introduced a semiclosed form of the SINR when
the GFDM signal is transmitted on Rayleigh channels. The numerical analysis considered
the key GFDM parameters, a Rayleigh fading channel, and FSFC parameters to evaluate
the performance of the analytical and simulated models. In all cases, the semiclosed form
indicated a high accuracy, even at lower and high SINR values. A negligibly small inac-
curacy appears in the outage probability metric at higher SINR values.

To evaluate the accuracy of the proposed analytical semiclosed model of the BER, a mean-
squared error (MSE) was calculated between the simulated and analytical approximation
for three different scenarios. This analysis is shown in Fig. 3.7. In this evaluation, the
following parameters were considered: N = 6, the number of channel delay taps L = N ,
and the power delay profile is defined by σ2

m = e−0.48m, m = 1 . . . L. Scenario 1 is
defined by roll-off=0.1 . Scenario 2 is defined by roll-off=0.5 and Scenario 3 is defined
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Figure 3.6: Probability of outage versus SNR for different values of sum rate outage (R)
and N = S ×K.

.

by roll-off=0.9. In general, the accuracy is degraded when the roll-off is around 1.

In all scenarios, it is observed that the accuracy is lost when the modulation scheme is in-
creased. For instance, in scenario 1, the 4QAM modulation gets an MSE of almost 10−9,
and the 1024QAM modulation obtains an MSE of 10−6.

3.2.4 Summary

In this contribution, we proposed a semiclosed analytical model to represent the PDF of
the SINR of GFDM signals when Rayleigh fading channel models was considered. Based
on the analytical PDF, some important physical layer metrics were calculated, such as
BER, achievable sum rate, and outage probability.

These channel models are typical in smart grid scenarios, which are characterized in some
cases by NLOS links, especially in scenarios as substations, in which every element aims
to transmit specialized IEC 61850 messages through high-density clutters or power sys-
tem devices.
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Figure 3.7: Accuracy analysis of the proposed semiclosed BER for three different scenar-
ios. Scenario 1 is defined by roll-off=0.1, Scenario 2 defined by roll-off=0.5, and Scenario
3 defined by roll-off=0.9.

3.3 Mitigating interference with machine learning
In the last decade, the evolution of cellular networks has attracted attention in many in-
dustries, e.g., agribusiness, sheep transportation, and power systems. Some of these in-
dustries require a larger cell radius than regular commercial systems and usually do not
require a highest throughput in most of the cases, especially to support IoT applications.
Thus, using low frequency ranges to carry band base information becomes an interesting
approach to increase the cell radius and maintain the band base functionality of the cel-
lular network, which can be built on 4G or 5G technology. In contrast to the advantage
of using low frequencies on cellular radio, there is a fundamental disadvantage that is
related to the intercell interference, which is a challenging characteristic in smart grids
because of the widespread measuring elements whose data need to be communicated to
enable an improved operation of the electricity network. This problem is the target of this
contribution, which aims to answer research question RQ3.

RQ3 Is it possible to improve the current cellular technology through machine learn-
ing techniques in order to better serve smart grid communications, specifically in
supporting critical applications?

Using low frequencies in cellular networks is becoming a sustainable and lucrative op-
tion for vertical industries. For instance in Brazil, some verticals like agribusiness and



3.3 Mitigating interference with machine learning 75

power systems are introducing cellular networks to support IoT applications for monito-
ring, controlling, and supervising devices using very high frequency (VHF) bands. These
cellular systems operate at 250 MHz, 450 MHz, and 700 MHz frequencies to achieve a
cell coverage between 10 and 50 km.

By using IoT, many vertical industries aim to connect every physical object to the Internet,
as part of the digitalization process of regular procedures. Usually, digitalization requires
connectivity in dense urban and rural areas. Urban areas are typically well supported by
telecom operators. However, access can be difficult in rural areas, and long distances
must be covered, which means that operators expect a low return on investment. For
that reason, the use of private networks is becoming popular between industrial verticals
and also between network vendors. For instance, the feasibility of LTE in the 800 MHz
frequency band was tested to serve rural areas [69] and [70], respectively. In [71], LTE
machine-type communication (LTE-M) and NB-IoT were evaluated with the network op-
erating in the 800 MHz frequency band. In [72], a 4G network was investigated in the
field to identify the opening features that are aimed to be bridged by 5G in rural scenarios.

One important drawback of using cellular networks is the ICI, which is effectively atten-
uated by using beamforming and massive arrays in current 5G networks. However, these
approaches cannot be used in sub-1GHz bands. To address this issue, in [73], a flexible
tool was provided to implement traditional frequency reuse (FR) schemes in the LTE.
The FR evolves from a static to a dynamic procedure based on an intercell interference
coordination (ICIC) algorithm. The complexity of this algorithm increases like in typi-
cal resource allocation algorithms [74], which in the specific case of a smart grid should
deal, for example, with a diversity of QoS requirements in terms of latency, reliability,
and transmission rate as defined by the standard IEC 61850. This has an impact in a rural
scenario because coverage requirements and sparse user locations. As a consequence, the
operational and capital expenditures (OPEX/CAPEX) of IoT network providers are not
attractive to service providers [75, 76].

In this contribution, we proposed a solution that aims to schedule the FR allocation by us-
ing a DRL approach. The radio simulator was calibrated with real measurements obtained
in the field from a network operating at 250 MHz. Further details in each contribution are
discussed in the following.

3.3.1 Simulation and calibration with real field data

The band between 225 MHz and 270 MHz was allocated to the Private Limited Service
(SLP) on a primary and nonexclusive basis [77] in 2010 in Brazil. In this context, a cel-
lular network was developed and implemented using an LTE band base operating at 250
MHz to provide connectivity within a radius of 50 km. The cellular network operates in
the frequency division duplex (FDD) mode within the 5 MHz bandwidth. The channeling
used in this deployment followed the distribution defined in Table 3.1. The cellular sys-
tem was deployed in a rural area with the radio parameters described in Table 3.2.
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Table 3.1: Channeling used in the broadband system operating in the 250 MHz band.

Central Frequency (MHz) Channels (Based on Band Duplexing Type
Res. 555 - ANATEL)

228.75 (Uplink), 251.25 (Downlink) 1, 2, 3, 4, 5 A FDD
237.50 (Uplink), 265.00 (Downlink) 7, 8, 9, 10, 11 B FDD

Table 3.2: Key system parameters of the cellular network deployed in the field.

Element Name/Feature Quantity / Information
BSs 3 units
UEs 10 units

Frequency band Band A
Bandwidth 5 MHz (25 RBs)

Duplexing type FDD
Antenna height in BS 40 m
Antenna Height in UE 3.5 m

Transmission power - UE 30 dBm
Transmission power - BS 43 dBm

The link-level evaluation achieved the expected physical layer KPIs. However, the system-
level analysis in which many base stations were involved faced radio impairments because
of intercell interference. This scenario motivated the study related to this scientific con-
tribution.

To evaluate the intercell interference, we used a system-level simulator that is based on
C++. This simulator provides an abstraction of the physical layer with a proper repre-
sentation of the channel propagation that is suitable to be calibrated. Thus, the first step
was to perform field measurements to build a dataset with information of reference signal
received power (RSRP), throughput, SINR, and system coverage. For instance, at a cell
radius of 40 km the system achieved a data rate up to 2 Mbps in downlink as shown in
Fig. 3.8. In the same figure, a comparison is made between the prediction of coverage in
the SINR obtained by simulation and the radio measurements obtained in the drive test
after the calibration. Here, we can infer the capability of cellular networks operating in
sub-1GHz bands to support typical applications on transmission or distribution lines, such
as protection and control systems enabled by a wireless system with a large coverage and
specialized schemes to enhance the cellular performance based on IEC 61850 messages
and their respective requirements.
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Figure 3.8: (a) Comparison of the driving test in intense colors compared with the cover-
age prediction obtained by simulation with less intense colors. (b) A transmission rate of
2 Mbps was obtained in a range of 40 km.

The simulator was calibrated based on a modification of the evolved-UTRA absolute ra-
dio frequency number (EARFCN) configuration. With this setting we guarantee that the
simulator will calculate the propagation in the correct VHF band. We also calibrated the
large-scale model attenuation of the wireless channel in the simulator. It was done by
modifying the parameters of the Okumura–Hata model [78].
After fitting and applying an MSE regression, the model parameters were modified to the
following values

L = Lurban − 4, 78(log f)2 + 18, 33 log f − 15,94, (3.15)

and

Lurban =69, 55 + 26, 16 log f − 13, 82 log ht − A(hr)+

(20,9− 6, 55 log ht) log d, (3.16)

This contribution was a key enabler of the next scientific evaluation because it guarantees
that the simulation results are in compliance with the real scenarios. This is an important
milestone because most of the state-of-the-art studies are limited to generic assumptions,
which usually underrepresent some specific wireless scenarios.

3.3.2 Frequency reuse based on machine learning

To evaluate different frequency reuse schemes, a mathematical model was introduced in
Publication IV. Here, the downlink is offered to a group of UEs in a geographical area
A, and the I BSs are part of the set I. Each BS i ∈ I serves an area Ai, such that
∪∀i∈IAi = A and Ai ∩ Ak ̸= ∅ for any i ̸= k ∈ I. In other words, it is expected
that there is a significant intersection between cells. The metric to be used to compare
the different schemes is the throughput in the downlink. Thus, we defined the downlink
spectral efficiency achieved by the frequency reuse at subchannel m, at the user n, in the
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time slot t from the BS located at xi to a UE located at y ∈ Ai is

C(t)n,m(xi, y) = log2

(
1 + γ(t)

n,m(xi, y)

)
, (3.17)

where γ(t)
n,m(xi, y) is the SINR at the user n, on the subchannel m, in the time slot t, which

is defined in (3.18)

γ(t)
n,m(xi, y) =

[
β
(t)
l,m g

(t)
l→n,m(xl, y) p

(t)
l

]
l=n∑

v ̸=l

β
(t)
v,m g

(t)
v→n,m(xv, y) p

(t)
v + σ2

n

, (3.18)

where β
(t)
v,m indicates the subchannel selection m, which is transmitted from the BS v in

the time slot t, g(t)v→n,m(xv, y) indicates the downlink channel gain from the BS v to the
user n on the subchannel m in the time slot t when the UE is located in the position y and
the BS in the position xv , p(t)v is the transmit power of the BS v in the time slot t, and σ2

is the additive white Gaussian noise power spectral density at the user receiver n

g(t)v→n,m(xv, yn) = h(t)
v→n(xv, yn)

∣∣∣α(t)
n→l,m

∣∣∣2 , t = 1, 2, · · · , (3.19)

where h
(t)
v→n(xv, yn) = L is the path loss on a linear scale, which is calculated using the

calibration done in the simulator with the drive test information, and finally, α(t)
n→l,m is the

small-scale Rayleigh fading.

The proposed model is a generalization of different fractional frequency reuse (FFR)
methodologies. These methodologies are differentiated with the binary variable β

(t)
v,m to

choose one specific subchannel m used by the BS v. The same framework considers
power transmission in each BS, which is modeled with the variable p

(t)
v .

In Publication IV we presented a diversity of FR schemes. From this list of schemes, the
main contribution comes from the machine learning approach that is based on DRL. It
aims to schedule dynamically the subchannels used in the FR.

In this contribution, to improve the explanation of the radio optimization using DRL, we
define a radio optimization problem. Here, the subchannels and power vectors in the time
slot t are denoted by:

β(t) =
[
β
(t)
1,1, β

(t)
1,2, · · · , β

(t)
N,M

]T
(3.20)

and
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p(t) =
[
p
(t)
1 , · · · , p(t)N

]T
(3.21)

Using (3.17), we define the sum-rate maximization problem as

max
p(t),α(t)

N∑
n=1

C(t)n (xi, yn)

s.t. 0 ≤ p(t)n ≤ Pmax,∀n ∈ N ,

β(t)
n,m ∈ {0, 1},∀n ∈ N , ∀m ∈M,∑

m∈M

β(t)
n,m = 1,∀n ∈ N ,

(3.22)

where

C(t)n =
M∑

m=1

C(t)n,m(xi, yn) (3.23)

The nonconvex problem in (3.22) is handled considering that it is a multiagent learning
scheme where each transmitter, mounted in each BS, operates as an independent learning
agent as described in Subsection 3.1.3.

An extended explanation of the algorithm is detailed in Algorithm 1. This type of archi-
tecture is similar to a generative adversarial network (GAN), where both a discriminator
and a generator participate in a game [79]. The generator generates a fake subchannel
selection, and the discriminator evaluates how good the fake information generated with
its representation of the radio environment is. Over time, the generator can create fake
information that cannot be distinguished from the discriminator. Similarly, an actor and
a critic are participating in the game. However, both of them are improving over time,
unlike GAN.

Actor–Critic is a method that allows tackling challenging problems. The actor can be seen
as a policy gradient algorithm, and the value function that evaluates policies is considered
to be a critic.

A similar approach used in Publication IV was applied in Publication II, in which the
aim is to optimize the performance of a system of flying base stations (FBSs). Here, the
BSs are considered to be deployed in unmanned aerial vehicles (UAVs). Thus, the wire-
less channel model is updated to prioritize a 3D model in which the height is evaluated
with a probabilistic model. In this new contribution, we also consider an ideal backhaul,
because our main target was the radio optimization of a cellular system supporting a di-
versity of services. The radio optimization was carried out by using a similar architecture
of DRL. The performance in most of the scenarios was satisfactory.
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Algorithm 1 Algorithm of the deep reinforcement learning approach.
▷ Main Loop

1: while Stop Criteria not met do
2: SUBCHANNEL SELECTION()
3: POWER CONTROL()

▷ Subchannel selection
4: function SUBCHANNEL SELECTION()

▷ Agent subchannel Selection
5: State set design← s

(t)
n,m (setting base station and UE pairs for each specific state)

6: Training by Critic and Actor Network
7: Training by ACTOR NETWORK()
8: Training by CRITIC NETWORK()
9: Reward function design

10: Update Policies: Ω, γ
11: Repeat until optimal policies are achieved

▷ Power Control
12: function POWER CONTROL()

▷ Agent Selection
13: agent← a

(t)

n,a
(t)
n

∈ Apower = [0, 1]

14: State set design← s
(t)

n,a
(t)
n

15: Training by deep-Q Network
16: Reward function design
17: Update Policies: θ
18: Repeat until optimal policy is achieved

▷ Actor Network
19: function ACTOR NETWORK()

▷ Action Selection
20: agent← a

(t)
n ∈ Asubchannel = {1, · · · ,M} =M (frequency reuse selection)

21: State set design← s
(t)

n,a
(t)
n

22: Learning based is based on policy gradient
23: Update Policies: Ω

▷ Critic Network
24: function CRITIC NETWORK()

▷ Agent feedback
25: Evaluation on −→ a

(t)
n

26: adjustment on −→ a
(t)
n

27: Evaluate the action produced by the Actor
28: Update Policies: γ
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3.3.3 Summary

In this contribution, we demonstrated the performance of an optimization based on DRL
in a FR setup. This FR setup is a popular scheme to perform a static schedule of subchan-
nels on the available bandwidth when the cellular system operates at sub-1GHz frequen-
cies, such as VHF. In this particular study, the system operates at 250 MHz to achieve
a radius of 50 km. As the main drawback of this approach is the intercell interference,
we proposed a dynamic scheduling of the frequency reuse or subchannels by adopting a
machine learning approach.

We considered deep reinforcement learning based on a conjunction of an actor network
and a critic network, which are part of a continuous learning scheme used in machine
learning. With this methodology, the system is capable of scheduling the radio resources
dynamically over time. This means that there is no intermediate process that would mod-
ify the learning process, but it is updated online by itself.

A similar approach was considered in a different setup in which the BSs were mounted
on a set of UAVs, named FBS by the state of the art. In this new application, a 3D channel
model is considered to accurately model the new environment. However, similar machine
learning was considered with satisfactory results in terms of throughput and latency per-
formance.

In the scope of the smart grid, this wireless scenario is feasible in smart grid use cases
that are based on a private network operating in sub-1GHz bands because of the large
coverage to support critical applications on distribution or transmission power lines by
using IEC 61850 messages.
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4 Discussion and conclusions

Prediction is very difficult, especially
about the future.

— NIELS BOHR

In this chapter, comments and forecasts are made on potential new approaches associ-
ated with the proposed RAN slicing framework. This is done considering each individual
building element of the framework. Furthermore, an extension of this framework is pro-
posed to support other vertical applications. Finally, the conclusion summarizes the main
contributions of this dissertation.

4.1 Forecasting new approaches to support smart grids
The proposed RAN slicing framework, which aims to support the messages that are part
of the standard IEC 61850, provides a diversity of elements. Each element represents spe-
cific wireless communication network functionalities that can enable the use of a diversity
of cellular communication applications.

In the RANA, the system engineering design can take advantage of the distributed flexibil-
ity of DUs and the CU to support different IEC 61850 messages aligned to their specific
requirements of latency, throughput, and reliability. In some cases, in the functionality
that enables URLLC by specialized waveforms such as GFDM, the expectation is that
resources deployed in the edge are used massively. In other cases where latency is not the
main target, some radio network functions can be deployed through backhaul or fronthaul
to support another features, such as reliability, a high user density, and throughput.
In the case of the RIL, isolation is a parameter that can be considered between a con-
servative and an optimistic range. In particular, messages that require high reliability can
consider the use of orthogonal radio resources to reduce the chances of interference. Some
messages can be transmitted over shared radio resources. However, it is necessary to use
specialized technologies that are capable of operating in scenarios even with interference.
For instance, non-orthogonal multiple access (NOMA) is a strong candidate to support
this specific level of isolation.

The RSF is probably the building element with a direct impact on the physical layer tech-
nologies that are not limited to the waveform design. It can also consider technologies
that are nowadays discussed on the research edge, such as cell-free massive MIMO to
move from a cellcentric communication to a usercentric approach; reconfigurable intelli-
gent surface (RIS) to control the radio propagation through transceivers that are capable of
modifying the phase and gain of reflected surfaces; energy harvesting communication to
support energy efficiency, especially in IoT devices or with reduced capabilities; finally, it
can consider the semantic communication, regarded by the academy as the breakthrough
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beyond the Shannon paradigm.

In the current proposal of the RAN slicing framework, the IRSS considered a centralized
DRL to enhance and schedule the available radio resources. This implies that in real de-
ployment, there is a strong dependence on fronthaul and backhaul to enable connectivity
between base stations (agents), which can represent an expensive infrastructure to opera-
tors. Another approach can consider application of the DRL in a decentralized manner. In
other words, a distributed learning process supported by federated learning can enhance
the performance of the system based on a decentralized scheduling system.

4.2 Present and future transition in wireless communication and power
systems

During the elaboration of this dissertation, the author had the chance to interact with ex-
perts in the field on both industries, power systems, and wireless communication. Based
on this interaction, some important heuristic takeaways on the integration of both indus-
tries were raised.

To formalize some of these speculative thoughts, the multi-level perspective (MLP) method-
ology was used to explain the present and future of wireless communication and power
systems. For this specific MLP evaluation, It is important to note that the smart grids are
within the context of the power system industry, and wireless communication is mostly
represented by cellular networks. Another important remark is that the focus of this analy-
sis is on the application of wireless communication technologies supporting critical smart
grid applications. The MLP is represented by three levels: niche innovations, sociotechni-
cal regimes, and sociotechnical landscapes. Details of each level definition are described
in [80].

Technological niches or niche innovations are mostly related to the micro level, where
radical novelties usually emerge. These novelties are initially unstable and act as incu-
bation rooms. They are conducted and advanced by small networks of dedicated actors,
such as outsiders or marginal actors.

The sociotechnical regimes refer to shared cognitive routines in an engineering commu-
nity and explain patterned development along technological trajectories. Policymakers,
scientists, users, cultural habits, and special-interest groups contribute to the process of
patterning it.

The sociotechnical landscape is composed of an exogenous environment beyond the di-
rect influence of niche and regime actors, such as deep cultural patterns, macroeconomics,
and macropolitical developments. Rotation at this level usually takes place slowly.

An illustrative description of the present and future of both industries is given in Fig. 4.1.
In the sociotechnical dimension, the wireless communication industry rarely achieves sta-
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bilizing trajectories because of its continuous evolution, especially in the last decades—
since 4G, the current research and development of 5G, until the current academic research
on 6G. In contrast, the power system industry is represented by a regime that is stabilized
and rigid, usually with resistance to new innovations on using wireless communication
for critical applications because of its conservative nature.

In the technological niches, both industries are always generating new innovations and
research outcomes. However, the power industry is usually locked in because of the
stabilized and conservative sociotechnical regime. On the other hand, the wireless com-
munication industry is influenced by the expectation of the sociotechnical landscape and
the sociotechnical regime to remain a series of new generations, such as 5G in 2010 and
6G in 2022 and beyond.

Finally, in the case of the sociotechnical landscape, the power system industry is charac-
terized by a slowly evolving landscape in the medium/long term. The landscape of the
wireless communication industry is opposite to the power system industry because it is
usually represented by a turbulent sociotechnical landscape, driven mostly by the digital-
ization of verticals and new user experiences that require low-latency and high-reliability
data communication.

Our personal expectation in the future is that the current effort in the research and de-
velopment of 6G in the wireless industry will have an impact on the power system land-
scape around 2035 or before. This disruptive change of scenario in the power system will
represent an inflection point that will generate new user experiences, new policies, and
especially new markets and user preferences.

4.3 Proposing a generic framework supporting verticals
In this research work, our main motivation is the power system vertical. However, the
same framework can be applied to a diversity of industrial verticals. For example, the
mining industry requires connectivity in remote and sometimes uninhabitable scenarios.
In some cases, connectivity is required in underground mines, which usually involves high
personnel costs. Thus, solutions that aim to increase safety and reduce human errors call
for the utilization of special machines, which require specialized and flexible connectivity.
In the case of oil and gas industry, connectivity is usually required in both onshore plants
and offshore operations. Here, the impact of the RAN slicing framework is relevant, es-
pecially to provide flexibility in the selection of the isolation level in the RIL element to
discriminate a diversity of applications in scenarios in which backhaul and fronthaul are
limited.

In the last few years, the COVID-19 pandemic has been a catalyst that highlighted the
fundamental role of connectivity in the lives of citizens and also in the communication
networks supporting hospitals. In this context, the proposed framework may enhance
specialized radio slices in specialized medical applications requiring low-latency com-
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Figure 4.1: MLP representation in the time and degree of structure domains for both
industries: power systems and wireless communication. Here, the analysis is based on
critical applications in power systems enabled by wireless communication systems.

munication for remote operations and high-density user communication for full-buffer
applications.
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Other industrial verticals that can be supported by the proposed framework are, e.g., the
chemical industry, the steel production industry, the heavy-duty trucking industry, the
maritime shipping industry, and the aviation industry.

In all cases there is a lack of mapping between current communication networks (in some
cases still using wired technologies) and the cellular network is not yet specified, at least
not in the 3GPP forum.

4.4 Conclusions
Achieving the goals of the digital green transition to make Europe the first climate-neutral
continent by 2050 depends on mitigation actions in large-scale infrastructures, such as en-
ergy systems. Here, the use of cutting-edge communication technologies plays a funda-
mental role in connecting all elements in the smart grid. For this purpose, a RAN slicing
framework was proposed to enable the standard IEC 61850 supporting smart grid appli-
cations.

The proposed RAN slicing framework provides flexibility and adaptability based on the
use of all building elements, such as RANA, RIL, RSF, RSM, and IRSS. This framework
can be used in future standardization efforts to create interfaces and maps between the
current IEC 61850 standards and 3GPP standard evolution.

Based on the proposed framework, two building elements were the main focus of the
study. The first is the RSF; here, we considered the GFDM as a waveform with high
chances to complement current OFDM systems. In this context, our contribution was
related to an analytical methodology that enables the evaluation of the GFDM system in
Rayleigh channels. Here, we obtained a semiclosed form of the SINR on Rayleigh distri-
bution. This mathematical model enabled us to obtain key KPIs, such as BER, achievable
sum rate, and outage probability.

Another building element of the proposed RAN slicing framework is the IRSS. Here, a
DRL approach was adopted to efficiently schedule the RAN slices. Here, the SLA was
evaluated following the system requirements established by the standard IEC 61850.

In summary, the current cellular network cannot support critical applications in the smart
grid industry. However, an alternative is the RAN slicing framework that provides a set of
building blocks or elements to enable low-latency and reliability requirements with spe-
cialized improvements in the scheduling of the radio resources with a DRL approach.

It is expected that before 2035, critical smart grid applications will be enabled by 6G and
disruptive technologies, such as machine learning applied to radio interface functionali-
ties, such as RAN slicing to support a diversity of vertical industries.
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Abstract—Fifth-generation (5G) and beyond systems are ex-
pected to accelerate the ongoing transformation of power systems
towards the smart grid. However, the inherent heterogeneity in
smart grid services and requirements pose significant challenges
towards the definition of a unified network architecture. In
this context, radio access network (RAN) slicing emerges as a
key 5G enabler to ensure interoperable connectivity and service
management in the smart grid. This article introduces a novel
RAN slicing framework which leverages the potential of artificial
intelligence (AI) to support IEC 61850 smart grid services. With
the aid of deep reinforcement learning, efficient radio resource
management for RAN slices is attained, while conforming to
the stringent performance requirements of a smart grid self-
healing use case. Our research outcomes advocate the adoption
of emerging AI-native approaches for RAN slicing in beyond-
5G systems, and lay the foundations for differentiated service
provisioning in the smart grid.

Index Terms—RAN slicing, smart grid, smart substations, 5G,
IEC 61850.

I. INTRODUCTION AND MOTIVATION

IN recent years, the ongoing modernization of the aging
power systems towards the smart grid has mainly relied on

three prevailing trends: (i) large-scale information acquisition,
with the massive deployment of smart meters to keep track
of energy consumption; (ii) reliable monitoring, protection,
and control, where intelligent electronic devices (IEDs) offer
situational awareness and rapid fault detection; and (iii) inte-
gration of distributed energy resources (DERs), which results
in high power system dynamics and a growing need for real-
time grid supervision to ensure stability. On top of the drivers
mentioned above, the deregulation of energy markets and the
need for advanced security against hostile cyberattacks have a
significant impact on the transformation of power systems.

Instrumental to this paradigm shift is the underlying com-
munication infrastructure deployed for robust, scalable, and
reliable connectivity among the power system components [1].
Connectivity in power systems currently involves a plethora
of technologies, ranging from optical fibers and power line
communication to wireless technologies and satellite networks.
Among those, wired connectivity schemes have been exten-
sively used in power systems for localized mission-critical
applications. Notwithstanding, wireless solutions exploit the
advantages of lower deployment/maintenance cost and their
intrinsic scalable characteristics to offer enhanced grid func-
tionalities [2]. For example, in distribution automation, IEDs
need to timely exchange protection-related messages for fast
decision-making to avoid extensive disturbances to the entire
grid. On the other hand, advanced metering installations re-

quire highly scalable network deployments to manage meter
readings from consumers located at disparate spatial locations.

The advent of fifth-generation (5G) and beyond communi-
cation networks is expected to revolutionize traditional power
systems by supporting a wide range of real-time and au-
tonomous operations [3]. Unlike previous mobile network
generations, 5G systems are designed to enable three key
generic services with broadly diverging operational require-
ments, i.e., enhanced mobile broadband (eMBB), massive
machine-type communication (mMTC), and ultra-reliable low-
latency communication (uRLLC). Cellular networks are pro-
gressively becoming ubiquitous with omnipresent applicability
in vertical industries. Thus, the business potential of 5G in the
smart grid domain can be remarkably high with the realization
of unprecedented use cases, such as millisecond-level precise
load control, decentralized fault detection and self-healing
operation, and predictive maintenance of grid infrastructure
[4]. Among the pivotal 5G novelties, radio access network
(RAN) slicing allows the partition of radio resources into
logically isolated radio networks, each one interpreted as a
RAN slice. RAN slicing is recently gaining momentum as an
enabling platform for the integration of vertical services over
a shared physical infrastructure.

One of the key challenges for the realization of RAN
slicing relates to the efficient resource management among
RAN slices, each of them customized to meet diverse quality-
of-service (QoS) requirements. A RAN soft-slicing approach
based on network-level resource pre-allocation is proposed
in [5] to enable opportunistic resource sharing among slices
and support instantaneous service demands. With the aim of
improving resource utilization efficiency, the RAN slicing con-
trol strategy in [6] adopts multiple time-resource granularities,
where radio resources can be dynamically shared between
slices. However, the potential of RAN slicing on addressing
the inherent smart grid service heterogeneity has not yet been
adequately explored in the literature. Focusing on smart grid
service provisioning, this article introduces a beyond-5G RAN
slicing framework using the IEC 61850 standard to define
smart grid communication requirements. In summary, our
contribution is threefold:

1) We present a comprehensive categorization of 5G-
enabled smart grid services, highlighting the role of
RAN slicing on their efficient integration.

2) We propose a novel RAN slicing framework empowered
by artificial intelligence (AI) for the accommodation of
IEC 61850 services in beyond-5G systems.

3) We demonstrate the feasibility of our approach in a smart
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TABLE I
CATEGORIZATION OF 5G-ENABLED SMART GRID SERVICES AND THEIR RELATIONSHIP WITH NETWORK SLICES

Service category Latency Reliability Bandwidth Node density Service priority SST value
Smart distribution automation Low High Low Medium/Low High 2 (uRLLC)
Wide-area monitoring, control,
and protection

Low/Medium High/Medium Medium/Low Medium Medium/High 1 (eMBB),
2 (uRLLC),
3 (mMTC)

Metering data acquisition Medium/High Medium/Low Medium/High High Low/Medium 3 (mMTC)
Distributed generation
integration and microgrids

Low/Medium High Low Medium/High Medium/High 2 (uRLLC),
3 (mMTC)

Volume and price balancing Medium/High Medium/Low Medium/High Medium/High Low 1 (eMBB),
3 (mMTC)

grid self-healing use case, where efficient radio resource
allocation is achieved while conforming to peculiar QoS
requirements.

The rest of the paper is organized as follows: Section II
presents a classification of smart grid services enabled by 5G
systems and their associated slices. Section III describes key
aspects of RAN slicing and highlights the major benefits for
smart grid communication from technological and business
perspective. Section IV introduces our proposed RAN slicing
framework for IEC 61850 services, with a comprehensive
description of its building blocks. Section V outlines our AI-
based methodology and presents a performance assessment
pertaining to a smart grid communication scenario. Finally,
concluding remarks are summarized in Section VI.

II. CLASSIFICATION OF 5G-ENABLED SMART GRID
SERVICES

Two interdependent domains form the smart grid infrastruc-
ture: i) a hierarchical power system, covering multi-directional
power flow steps from generation to final consumption; and
ii) a two-way communication system, enabling extensive infor-
mation exchange. In what follows, we provide a categorization
of 5G-enabled smart grid services and we highlight the rela-
tionship with 5G network slices based on their requirements.

A. Smart Distribution Automation

Distribution automation allows power distribution systems
to reconfigure themselves when a fault occurs, restricting the
problem to a smaller area [2]. Rapid fault location, isolation,
and service restoration offered by IEDs and other controllable
units reduce the total outage time and the number of inter-
ruptions. 5G-enabled distribution automation aims to achieve
real-time situational awareness and quasi-real-time analysis
of the grid behaviour by supporting advanced functionalities,
e.g., automated feeder switching and optimized restoration
dispatch. Such operations are often linked to stringent per-
formance requirements, i.e., very low end-to-end latency and
ultra-high reliability, falling under the uRLLC network slice.

B. Wide-Area Monitoring, Control, and Protection

Power system operators install sensors on critical grid
components, such as power lines and transformer banks, to
measure equipment status parameters. Such measurements
provide real-time alerts for abnormal conditions and outage
information to support utilities in predicting equipment main-
tenance and replacement. By exploiting 5G and beyond com-
munication infrastructure, wide-area monitoring systems aim

to enhance traditional supervisory control and data acquisition
(SCADA) systems, offering advanced supervision capabilities
[3]. Since the characteristics of the monitoring elements vary,
this service category requires a synergistic mix of uRLLC,
mMTC, and eMBB slices.

C. Metering Data Acquisition

The massive deployment of smart meters for large-scale
information acquisition constitutes one of the principal com-
ponents of next-generation power systems [7]. Smart meters
continuously evolve to sophisticated computing units, which
gather, process, and transmit user consumption information
to data aggregation units for further processing and analysis.
The advanced mMTC capabilities of beyond-5G systems are
instrumental for generating unprecedented volumes of meter-
ing information. In addition, advanced metering systems can
leverage the distributed information processing and storage
architecture of 5G and beyond core networks, supporting fog
computing platforms for localized decision-making.

D. Distributed Generation Integration and Microgrids

By providing higher fault tolerance and islanding detection,
5G-enabled smart grids enable safer and more reliable connec-
tions of distributed generation units, e.g., solar photovoltaic
panels, wind turbines, and natural-gas-powered fuel cells. The
increasing penetration of renewable energy sources gives rise
to the microgrid paradigm, which acts as a single controllable
entity concerning the grid, i.e., operation in either a grid-
connected or island mode. Integrating intermittent renewable
sources and microgrid management require advanced control
techniques and networking schemes for seamless operation,
especially when the energy storage capacity is low. The
diverse requirements introduced by this service category are a
combination of traditional uRLLC and mMTC network slices.

E. Volume and Price Balancing

The introduction of smart grid has pushed the roll-out
of demand response programs with flexible management of
energy consumption at consumer ends in response to supply
conditions regulated by the utility providers [4]. Through
extensive information exchange provided by 5G networks,
energy consumers can be transformed into prosumers, who
interact and collaborate by producing, consuming, storing,
and exchanging energy on a peer-to-peer basis. Such de-
centralized energy optimization strategies, performed locally,
allow markets to determine prices accurately, resulting in cost
savings. Considering a high number of prosumers and market
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information exchanges with historical load data, this service
category requires a combination of mMTC and eMBB.

Table I summarizes the categorization of 5G-enabled smart
grid services with their associated network slice(s), indicated
by the standardized slice/service type (SST) index. It is worth
noting that each SST may be linked to diverse requirements
within the same slice, with the aid of a slice differentiator
parameter which builds customized fine-grained slices.

III. RAN SLICING FOR THE SMART GRID

This section highlights key aspects of RAN slicing, under-
lying the benefits of integrating the multi-faceted connectivity
landscape of smart grid services, from both technological and
business perspectives.
A. Key Features

In stark contrast to previous mobile network generations,
the 5G architecture leverages cloud-native concepts to allow
the disaggregation and virtualization of network functions [8].
By leveraging virtualized network function management, smart
grid services can be instantiated in a flexible manner, following
a network-as-a-service model. This architectural shift towards
network softwarization allows differentiated handling of smart
grid traffic types, and ensures their harmonic coexistence with
proper allocation of storage, computing, processing and radio
resources. A slice-based 5G RAN can efficiently address the
inherent smart grid service heterogeneity, as illustrated in
Fig. 1, and offers significant benefits summarized as follows:

1) Service isolation: Network resources of a smart grid
service can be isolated from other service resources in a
resilient manner without violating the agreed service-level
agreements (SLAs). In addition to increased security/privacy,
service isolation offers a higher reliability potential owing to
the guaranteed resources required to achieve stringent perfor-
mance requirements, e.g., ultra-high reliability for protection-
related functions in substation communication.

2) Tenant-oriented virtual network: RAN slice tenants are
able to operate their own dedicated network and manage the
provisioning of customized network components based on the
adopted business models. The tenant can be an individual
energy consumer or a power system utility that leases and
occupies RAN slice instances. By allowing partial/full control
of the virtualized end-to-end networks to tenants, RAN slicing
clearly differentiates from other network sharing techniques,
offering new roles to energy players.

3) Guaranteed SLA: RAN slicing offers differentiated ser-
vice provisioning with QoS guarantees based on negotiated
SLAs. A management and orchestration entity is responsible
for mapping the requirements established in SLAs into the
functional elements of RAN slices. Due to the mission-critical
nature of certain smart grid services, SLA monitoring needs to
be predictive while ensuring efficient radio resource utilization.
In this context, the exploitation of emerging AI techniques
holds the promise of conforming to SLAs by exploiting slice
state information.

4) Customization capabilities: The implementation of cus-
tomized functions is a key RAN slicing feature, given the
highly diverse service ecosystem in smart grids. By lever-
aging edge computing, decision-making and intelligence can
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Fig. 1. RAN slicing supports a variety of smart grid services, creating multiple
isolated logical networks on top of an underlying physical infrastructure.

be shifted closer to the network endpoints, achieving faster
response times and targeted operational actions. Agile function
placement facilitates the support of new use cases and often
results in reduced installation/operational cost for utilities.

5) Distributed architecture: RAN slicing promotes a de-
centralized structure of the smart grid against the traditional
model, in which non-cooperative systems are deployed and
managed independently in a hierarchical manner. On-demand
deployment of virtual functions facilitates the seamless inte-
gration of DERs and paves the way towards a prosumer-centric
vision of future power systems. Smart grid protection services
requiring low latency can be performed autonomously rather
than being delegated to a central management unit [3].

B. Business Potential

The support of 5G-enabled smart grid services via RAN
slicing comes along with a continuously rising number of
subscriptions and traffic demand, giving rise to significant
business opportunities. The stakeholders, i.e., the beneficiaries
in the network slicing ecosystem, consist of the network slice
subnet instance (NSSI) provider, the intermediate-network
slice instance (NSI) provider, the end-to-end network slice
instance (E2E-NSI) provider, the slice tenant, and the end
customer. In some cases, multiple network slice providers
may coexist to provide an E2E slice, while in other busi-
ness scenarios a single mobile network operator (MNO) may
undertake the role of E2E slice provider. The service-based
business model promoted by RAN slicing, motivates MNOs
to move beyond traditional subscription-based schemes with
fixed rental fees to more flexible pricing policies and direct
value propositions to the smart grid utilities, e.g., revenue split
schemes and incentive strategies. As a result, the new elec-
tricity business models on ownership, operation, maintenance
as well as usage, will be defined according to performance-
based SLAs and relevant key performance indicators of the
electrical infrastructure, which could be complemented by the
added value on each utility.

From the perspective of power system utilities, service
provisioning and cost efficiency empowered by RAN slicing,
in conjunction with the deregulation of the energy sector,
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Fig. 2. Comparison between a RAN slicing framework and wireless RATs,
such as LTE, NB-IoT, Wi-Fi, and IEEE 802.15.4, when applied as standalone
connectivity solutions for smart grid services.

reinforce new business practices. The opportunities of this
evolving market context are expected to alter the way trans-
mission/distribution system operators use connectivity tech-
nologies in the grid. Leveraging RAN slicing, novel use cases
and diversified requirements can be supported using a unique
communication infrastructure with significant cost savings.

A qualitative comparison between RAN slicing and existing
radio access technologies (RATs) for the smart grid is illus-
trated in Fig. 2. It is worth noting that in terms of technology
availability, existing RATs have an essential advantage com-
pared with RAN slicing, related to the maturity of communi-
cation standards and the already well-established ecosystems
adopting such technologies. The same applies when local
spectrum licenses are in force. Nonetheless, enhanced security
mechanisms, reconfiguration capabilities, overall system cost,
control of the critical infrastructure, and incorporation of
artificial intelligence are some of the aspects where RAN
slicing demonstrates clear superiority.

IV. THE PROPOSED FRAMEWORK

The diverse QoS requirements in the smart grid provide
a fertile ground for the application of an agile RAN slicing
approach. Our methodology is devised to cope with the rising
complexity of supporting 5G-enabled smart grid services,
achieving not only more manageable RAN slices but also
conforming to the business propositions sought by network
operators and smart grid utilities. The proposed framework
complements the RAN slicing enhancements introduced in
[9], by bridging the gap between IEC 61850 services and the
3GPP-standardized radio resource sharing strategies.

A. The IEC 61850 Standard

In terms of power industry communication standards, the
IEC 61850 standard is of particular note. Originally defined to
cover the stringent requirements for automation within electri-
cal substations, IEC 61850 emerges as a versatile interoperable
standard that can be applied beyond the substation bound-
aries to facilitate intersubstation message exchange, wide-
area transmission of synchrophasor information and DERs’

communication. IEC 61850 promotes abstract and application-
specific data models and services that are decoupled from
the underlying communication technologies. As the applica-
bility of the standard expands continuously, there is growing
research interest to integrate IEC 61850 services with wireless
protocols and overcome the physical limitations and high
installation costs of the default Ethernet technology.

The IEC 61850 standard defines the performance classes
and communication requirements for various message types
exchanged between power system components. In this context,
the IEC 61850 message classification can be intrinsically
associated with the RAN slicing concept. In particular, Type-
1 and Type-6 messages impose requirements that fall under
the uRLLC slice, as they are linked to real-time substation
protection actions and time synchronization, respectively. For
instance, in line phase comparison for analog protection, Type-
1 messages must be delivered with ultra-high reliability levels,
i.e., a packet loss rate in the order of 10−5 [10]. Other message
types, related to continuous IED data streams (or large file
transfers) and sporadic medium-speed event reports, can be
mapped to eMBB and mMTC slices, respectively.

B. RAN Slicing for IEC 61850 Services

Our RAN slicing framework aims to accommodate IEC-
61850 services over a single shared infrastructure and lays
the foundation for a fine-grained service management in the
smart grid. As illustrated in Fig. 3, it is primarily composed
of a number of interworking functional components with
programmable capabilities, aiming at a flexible instantiation
of IEC 61850 services. In what follows, we provide a concise
description of the building elements defined for RAN slicing.

1) RAN architecture (RANA): The next-generation NodeB
(gNodeB) is a key component in the RAN slicing architecture.
It provides RAN slice subnets which consist of the centralized
unit (CU), multiple distributed units (DUs) and multiple ra-
dio units (RUs). Heterogeneous IEC 61850 requirements can
be supported by appropriate RAN operating principles that
involve different functional roles among the RUs, the DUs
and the CU. Such roles are determined based on the RANA
index value, offering QoS flexibility to MNOs to select the
appropriate deployment option. For certain RANA values, the
transmission of IEC 61850 message types follows a centralized
(i.e., client/server) architecture to support traffic types with
moderate end-to-end latency levels. On the other hand, proper
RANA configurations may also enable a (fully) distributed
architecture that relies on a disaggregated functional split
to DUs and/or RUs. In this case, processing functions are
primarily located closer to the DUs and/or RUs, achieving
lower latency levels for critical IEC 61850 messages, e.g., IEC
61850 traffic types with ≤10ms or ≤3ms latency budgets [10].

2) RAN isolation level (RIL): Considering that isolation
represents the state in which the performance degradation of
one slice does not impact the performance of other slices
[11], the RIL functional element defines the required isolation
level among slices, which reflects a trade-off between isolation
and system efficiency. In an inter-slice sharing strategy, radio
resource management for IEC 61850 messages reduces the
associated slice tenant costs. On the other hand, a conservative
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Fig. 3. A functional RAN slicing framework to support wireless connectivity for IEC 61850 services.

isolation policy employs dedicated radio resource assignments,
conforming to stringent security and privacy enforcements.

3) RAN slicing function (RSF): This building element
is mainly associated with the functionalities performed in
the DUs. To ensure a future-proof element design, a par-
tition of these functionalities is carried out into two well-
defined subelements. The RSF1 comprises the already stan-
dardized 5G/NR functionalities and involves the scalable
5G/NR numerology on the frame structure [11]. This subele-
ment is associated with fundamental RAN functions, such
as tiling, scheduling and puncturing. Tiling refers to the
assignment of radio resources into different tiles defined in the
time/frequency space, which can be individually configured
according to the IEC 61850 service requirements and the re-
spective SLAs. Scheduling refers to the allocation of radio re-
sources, while traffic puncturing allows efficient multiplexing
of various IEC 61850 services by prioritizing the transmission
of time-sensitive message types. On the other hand, the RSF2
subelement consists of customized baseband functionalities to
support vendor-specific operations or features not yet specified
by standards. It considers beyond-5G technical enhancements,
paving the way for next-generation connectivity enablers to be
incorporated in the RAN slicing framework.

4) RAN slicing management (RSM): This component mon-
itors the necessary capabilities of the aforementioned RANA,
RIL and RSF elements. With a supervisory and management
role in the RAN domain, the RSM handles RAN slice in-
stantiation and lifecycle management of IEC 61850 services.
The RSM interacts with the data traffic awareness module,
a specialized function used to process, analyze and evaluate
the IEC 61850 data flows. Its intent-driven operation needs to
rigorously consider the diversified SLAs of IEC 61850 services
designated by the core network. The fundamental hallmark
of RSM element is therefore to guarantee a harmonic co-
existence of multiple RAN slices and their respective SLAs.

5) Intelligent RAN slicing scheduler (IRSS): This element
adds cognition to the proposed framework. The key operation
of IRSS lies in the knowledge extraction from the aggregated
IEC 61850 traffic for RAN slice scheduling and radio resource
assignment. The exploitation of advanced AI techniques by
the IRSS holds the promise of achieving a high degree of
automation and operational efficiency for RAN slicing. Radio
resource allocation in IRSS needs to ensure an efficient multi-
plexing of IEC 61850 services by prioritizing the transmission
of time-sensitive message types. To ensure such contextual
decision-making, the IRSS interacts with all aforementioned
elements of the framework for RAN slice awareness, e.g., SLA
monitoring and resource isolation.

V. PERFORMANCE ASSESSMENT

A. Network Scenario

To evaluate the feasibility of the proposed RAN slicing
framework, we consider the smart grid self-healing scenario
in [12], where automatic reconfiguration occurs after a short-
circuit fault. The IEDs, smart substation controllers (SSCs),
and merging units (MUs) are equipped with 5G interfaces to
transmit IEC 61850 messages in a multicell network topology.
As illustrated in Fig. 4, connectivity is provided by gNodeBs
deployed to provide coverage in the different segments of
the power system delimited by the IEDs and SSCs. Three
RAN slices are considered, corresponding to the generic object
oriented substation event (GOOSE), sampled value (SV), and
manufacturing message specification (MMS) services in IEC
61850. In particular:

1) GOOSE slice, supporting uRLLC-type information ex-
change between IEDs, to isolate the fault and restore
power supply in other power system segments. Short
transmission latency of GOOSE messages is critical to
minimize the impact on power system stability.

2) SV slice, supporting uRLLC-type information exchange
between MUs and IEDs. SV messages contain current
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and voltage measurements with accurate timestamp data.
Similar to GOOSE, stringent latency requirements apply.

3) MMS slice, supporting mMTC-type information ex-
change between IEDs and SCADA centers, to moni-
tor the power system segments. Such messages have
relatively moderate latency requirements compared to
GOOSE and SV slices.

Path loss model, radio configurations and simulation assump-
tions follow the 3GPP specifications in [13]. Radio resource
blocks are shared among the active IEC 61850 communication
links; thus, each smart grid device suffers from co-channel
interference caused by other devices sharing the same resource
blocks. Dynamic scheduling for RAN slices is necessary to
efficiently manage resource allocation, minimize interference,
and prioritize specific IEC 61850 messages according to SLAs.

B. IRSS Implementation

To address the joint radio resource assignment and power
control problem for smart grid devices, the IRSS employs
two deep reinforcement learning (DRL) algorithms which col-
laboratively aim to maximize the achieved spectral efficiency
of all active IEC 61850 communication links. DRL models
sequential decision-making problems with an agent and an
environment interacting and exchanging information in the
form of states, actions, and rewards [14]. With the aid of deep
neural networks for function approximation, smart grid devices
successively learn two policies to determine their assigned
radio resources and transmit power levels, and maximize the
expected sum of rewards. The reward function, common for
both algorithms, takes into account i) the achieved spectral
efficiency of each smart grid device and ii) the interference
level caused to other devices. As illustrated in Fig. 5a, IRSS
employs the following two learning layers:

• A deep Q-network (DQN) algorithm is considered for
resource assignment to the different RAN slices. DQN
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Fig. 5. (a) DRL-based IRSS implementation for radio resource assignment
and power control of smart grid devices. The DQN layer provides the resource
assignment decision to the actor-critic algorithm, which, in turn, determines
the transmit power levels. (b) RAN slice performance assessment for three
IEC 61850 services in terms of latency and SLA violation rate in a smart grid
self-healing use case. For slices labeled with symbol +, DRL-based IRSS takes
into account the beyond-5G configuration options for RANA, RIL and RSF
elements. Latency requirement for time-sensitive GOOSE and SV services is
set to 0.3 ms and 0.5 ms, respectively, whereas a latency budget of 40 ms is
specified for MMS services [10].

is a value-based algorithm, applicable to environments
with discrete action space. To strike a balance between
exploring state-action pairs and exploiting knowledge, we
adopt a Boltzmann policy to steer exploration towards
more promising actions off the Q-value-maximizing path,
instead of selecting all actions with equal probability [14].
During training, experiences gathered by older policies
are stored in a replay memory, and are reused to improve
sample efficiency.

• An actor-critic algorithm is applied to manage the contin-
uous action space for transmit power allocation. In actor-
critic schemes, two components are learned jointly; an
actor, which learns a parameterized policy, and a critic
which learns a value function to evaluate state-action
pairs. The actor first receives as input the resource block
assignment decision from the DQN layer. Using a learned
value function, the critic provides a reinforcing signal to
the actor which can be more informative for a policy
than the rewards from the environment. In our method,
we learn an advantage function as the reinforcing signal,
which measures the extent to which an action is better
or worse than the policy’s average action in a state. The
estimation of advantage function is performed using an
exponentially weighted average of a number of advantage
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estimators with different bias and variance [15].

C. Results

The top plot in Fig. 5b illustrates the latency performance
for GOOSE, SV and MMS slices for two different simulation
setups. In particular, the transmission latency for each IEC
61850 communication link is measured as the ratio of the
packet size (prescribed in [10]) over the achieved throughput.
In the first setup (i.e., slices labeled with symbol +), the DRL-
based IRSS element takes into consideration the beyond-5G
configuration options for RANA, RIL and RSF elements, as
described in Section IV. In this case, the augmented state-
action space for each smart grid device opens up the possibility
of discovering better states and ways of acting in the quest for
the optimal resource and power decisions. In the second setup,
the DRL-based IRSS element uses default 5G configurations
for resource assignment and power control according to [13].
It can be observed that IRSS achieves superior latency perfor-
mance in the first setup compared to the second one, while
conforming to the SLA requirements for GOOSE, SV and
MMS slices as specified by the RSM element. The considered
SLAs refer to the latency requirements for IEC 61850 services,
and an SLA violation occurs when the achieved latency level
becomes higher than the threshold value [10]. In addition,
IRSS learns to prioritize time-sensitive GOOSE and SV ser-
vices, resulting in significant latency reduction compared to
the default 5G configuration. This, in turn, leads to fewer SLA
violations, as illustrated in the bottom plot of Fig. 5b.

We note that the transient latency behavior for all RAN
slices identified in the first time slots is attributed to the
exploration phase of the DRL-based IRSS, which may result
in suboptimal actions by each smart grid device. However, as
training progresses, the rate of exploration gradually decays,
and smart grid devices learn better policies for their assigned
resources and transmit power levels.

VI. CONCLUDING REMARKS

The smart grid paradigm undoubtedly represents an essen-
tial showcase for 5G and beyond systems, mainly because
of the heterogeneous connectivity landscape and the wide
range of service requirements. In this context, RAN slicing
poses elevated merit for a fine-grained smart grid service
management with a shared communication infrastructure. At
the same time, the proliferation of AI techniques for sequential
decision-making problems offers remarkable benefits in RAN
slice management. This article introduced an AI-native RAN
slicing framework for the integration of IEC 61850 services in
beyond-5G systems. Our proposed framework comprises mul-
tiple functional elements which interoperate towards intent-
driven RAN slice management. The feasibility of our approach
was demonstrated with the aid of a smart grid self-healing
scenario with diversified QoS requirements. By resorting to
two DRL-based algorithms, the joint resource allocation, in-
terference minimization, and IEC 61850 message prioritization
can be efficiently handled, while conforming to SLAs.

In the path forward, we will direct our efforts towards the
design of traffic forecasting modules for IEC 61850 services,
and their incorporation in our RAN slicing framework. This

will facilitate predictive slice provisioning by ensuring traffic-
aware admission control policies. The introduced signaling
overhead for RAN slicing control will also be quantified.

ACKNOWLEDGMENT

This paper is partly supported by Academy of Finland
via: (a) FIREMAN consortium CHIST-ERA/n.326270; (b)
EnergyNet Research Fellowship n.321265/n.32886/n.352654;
(c) X-SDEN project n.349965; (d) 6G Flagship (n.346208).
This research is also supported by the joint Baltic-Nordic
Energy Research programme project “Guidelines for Next
Generation Buildings as Future Scalable Virtual Management
of MicroGrids [Next-uGrid]” (n.117766), and Finnish public
funding agency for research, Business Finland under projects
5GVIIMA and IFORGE, the projects are parts of 5G Test
Network Finland (5GTNF) and Smart Otaniemi ecosystems.
The work of Charalampos Kalalas was supported by FIRE-
MAN project CHIST-ERA-17-BDSI-003 funded by the Span-
ish National Foundation (PCI2019-103780). The work of Petar
Popovski was, in part, supported by the Villum Investigator
Grant “WATER” from the Velux Foundation, Denmark.

REFERENCES

[1] V. Gungor et al., “Smart Grid Technologies: Communication Technolo-
gies and Standards,” IEEE Trans. Ind. Informat.,, vol. 7, no. 4, pp. 529–
539, Nov. 2011.

[2] Q.-D. Ho et al., “Challenges and research opportunities in wireless
communication networks for smart grid,” IEEE Wireless Commun.,,
vol. 20, no. 3, pp. 89–95, Jun. 2013.

[3] M. Cosovic et al., “5G Mobile Cellular Networks: Enabling Distributed
State Estimation for Smart Grids,” IEEE Commun. Mag., vol. 55, no. 10,
pp. 62–69, 2017.

[4] P. Ahokangas et al., “Business Models for Local 5G Micro Operators,”
IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 730–740, 2019.

[5] J. Li, W. Shi, P. Yang, Q. Ye, X. S. Shen, X. Li, and J. Rao,
“A hierarchical soft ran slicing framework for differentiated service
provisioning,” IEEE Wireless Commun., vol. 27, no. 6, pp. 90–97, 2020.

[6] J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and H. Abou-
Zeid, “Intelligent radio access network slicing for service provisioning
in 6g: A hierarchical deep reinforcement learning approach,” IEEE
Transactions on Communications, vol. 69, no. 9, pp. 6063–6078, 2021.

[7] W. Meng et al., “Smart grid neighborhood area networks: a survey,”
IEEE Netw., vol. 28, no. 1, pp. 24–32, Jan. 2014.

[8] 3GPP, “Technical Specification Group Services and System Aspects;
System architecture for the 5G System (5GS); Stage 2,” Technical
Specification (TS) 23.501, Mar. 2020, version 16.4.0.

[9] ——, “Technical Specification Group RAN; NR; Study on enhancement
of Radio Access Network (RAN) slicing,” 3rd Generation Partnership
Project (3GPP), Technical Specification (TS) 38.832, Jun. 2021, version
17.0.0.

[10] “Communication Networks and Systems in Substations – Part 5: Com-
munication Requirements for Functions and Device Models,” IEC-
61850, Standard, 2004.

[11] S. E. Elayoubi et al., “5G RAN Slicing for Verticals: Enablers and
Challenges,” IEEE Commun. Mag., vol. 57, no. 1, pp. 28–34, 2019.

[12] R. Ricart-Sanchez, A. C. Aleixo, Q. Wang, and J. M. Alcaraz Calero,
“Hardware-Based Network Slicing for Supporting Smart Grids Self-
Healing over 5G Networks,” in 2020 IEEE International Conference
on Communications Workshops (ICC Workshops), 2020, pp. 1–6.

[13] 3GPP, “Technical Specification Group Radio Access Network; Evolved
Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF)
requirements for LTE Pico Node B,” 3rd Generation Partnership Project
(3GPP), Technical Report 36.931, 03 2022, version 17.0.0.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advantage
estimation,” 2015. [Online]. Available: https://arxiv.org/abs/1506.02438



8

Dick Carrillo [S’01, M’06] (dick.carrillo.melgarejo@lut.fi) received the
B.Eng. degree (Hons.) in electronics and electrical engineering from San
Marcos National University, Lima, Perú, and the M.Sc. degree in electrical
engineering from Pontifical Catholic University of Rio de Janeiro, Rio de
Janeiro, Brazil, in 2004 and 2008, respectively. Between 2008 and 2010, he
contributed to WIMAX (IEEE 802.16m) standardization. From 2010 to 2018,
he worked with the design and implementation of cognitive radio networks
and projects based on 3GPP technologies. Since 2018 he is a researcher at
Lappeenranta–Lahti University of Technology, where he is also pursuing the
doctoral degree in electrical engineering. His research interests are mobile
technologies beyond 5G, energy harvesting, intelligent meta-surfaces, cell-
free mMIMO, and RAN Slicing. Since 2022, he is a Senior Standardization
Specialist at Nokia Bell Labs, where he is contributing on shaping the 3GPP
release 18 standard (5G-Advanced).

Charalampos Kalalas [S’15, M’18] (ckalalas@cttc.es) received the Ph.D.
degree (Cum Laude) in Signal Theory and Communications from the Tech-
nical University of Catalonia (UPC) in 2018. He holds an Electrical and
Computer Engineering degree (2011) from the National Technical University
of Athens (NTUA), Greece, and a M.Sc. degree in Wireless Systems (2014)
from the Royal Institute of Technology (KTH), Sweden. He is currently a
Researcher with the Sustainable Artificial Intelligence research unit at the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA).

Petra Raussi (petra.raussi@vtt.fi) received the M.Sc. degree in electrical
engineering from LUT University, Lappeenranta, Finland in 2018. She is
currently a doctoral candidate at the Department of Electrical Engineering
and Automation, School of Electrical Engineering, Aalto University, Espoo,
Finland. In 2016, she was a Research Assistant with the School of Energy
Systems, LUT University, Lappeenranta, Finland. Since 2017, she has been
first a Research Trainee, a Research Scientist, and currently a Senior Scientist
with the VTT Technical Research Centre of Finland, Espoo, Finland. Her
research interest includes power system communication and automation, 5G
and beyond for critical data exchange, distributed control, and real-time
systems.

Diomidis Michalopoulos [S’05, M’10, SM’15]
(diomidis.michalopoulos@nokia-bell-labs.com) is Department Head of
Device Standardization Research, Nokia, Germany. He and his team conduct
research on 5GAdvanced/6G networks and devices, with emphasis on
physical layer and radio access aspects. Prior to joining Nokia he was
employed by the University of British Columbia, Canada, and the University
of Erlangen-Nuremberg, Germany. Diomidis obtained the Engineering and
PhD degree from the Aristotle University of Thessaloniki, Greece. He
received the Marconi Young Scholar award from the Marconi Society and
various prizes for academic excellence, including the Banting fellowship
in Canada. Diomidis is currently the industry-academia collaboration
coordinator within the IEEE EMEA region.

Demóstenes Z. Rodríguez (M’12-SM’15) received the B.S. degree in
electronic engineering from the Pontifical Catholic University of Peru, and
his M.Sc. and Ph.D. degree from the University of São Paulo in 2009 and
2013, respectively. He is currently an Adjunct Professor with the Department
of Computer Science, Federal University of Lavras, Brazil. He has a solid
knowledge in Telecommunication Systems based on 15 years of professional
experience. His research interest includes QoS-QoE in multimedia services
and new generation networks.

Heli Kokkoniemi-Tarkkanen (heli.kokkoniemi-tarkkanen@vtt.fi) received
the M.Sc. in applied mathematics and computer science from the University
of Jyväskylä, Jyväskylä, Finland in 1995. Since 1992, she has been working at
VTT Technical Research Centre of Finland in several positions, currently as a
Senior Scientist. She has over 28 years of experience in commercial, military,
and research projects covering various aspects of wireless communication
from radio wave propagation modeling and network simulation to early-phase
product development. In recent years, she has been focusing on QoS, latency,
and reliability aspects by piloting and testing 5G services in new mission-
critical vertical use cases such as protection and control of smart energy grids
and harbor automation.

Kimmo Ahola (kimmo.ahola@vtt.fi) received the M.Sc. degree from the
University of Jyväskylä, Jyväskylä, Finland in 1997. From 1996 to 1997,
he was a Research Trainee with VTT Technical Research Centre of Finland.
From 1997 to 2001, he worked as a Research Scientist with VTT Technical
Research Centre of Finland. Since 2001, he has been working as a Senior
Scientist and between 2006 and 2013 as a Team Leader in Adaptive Networks
team. He has participated and led software development in several national and
European projects. Lately, his research interests have focused on 5G networks,
software defined networking (SDN), network functions virtualization (NFV),
cloud infrastructures, and security in network and cloud infrastructures.

Pedro H. J. Nardelli [M’07, SM’19] (pedro.nardelli@lut.fi) is Associate
Professor (tenure-track) at LUT University and also Academy of Finland
Research Fellow. He is also the coordinator of the Strategic Research Area
for Energy Vertical of the 6G Flagship at University of Oulu.

Gustavo Fraidenraich (gf@decom.fee.unicamp.br) graduated in Electrical
Engineering from the Federal University of Pernambuco, UFPE, Brazil, in
1997. He received his M.Sc. and Ph.D. degrees from the State University
of Campinas, UNICAMP, Brazil, in 2002 and 2006, respectively. From 2006
to 2008, he worked as a Postdoctoral Fellow at Stanford University (Star
Lab Group) - USA. Currently, Dr. Fraidenraich is Assistant Professor at
UNICAMP - Brazil and his research interests include Multiple Antenna
Systems, Cooperative systems, Radar Systems and Wireless Communications
in general. He has been associated editor of the ETT journal for many years.
Dr. Fraidenraich was a recipient of the FAPESP (Fundação de Amparo à
Pesquisa do Estado de São Paulo) young researcher Scholarship in 2009.

Petar Popovski [S’97, A’98, M’04, SM’10, F’16] (petarp@es.aau.dk) is a
Professor at Aalborg University, where he heads the section on Connectivity
and a Visiting Excellence Chair at the University of Bremen. He received
his Dipl.-Ing and M. Sc. degrees in communication engineering from the
University of Sts. Cyril and Methodius in Skopje and the Ph.D. degree from
Aalborg University in 2005. He is currently an Editor-in-Chief of IEEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. His research
interests are in the area of wireless communication and communication theory.
He authored the book “Wireless Connectivity: An Intuitive and Fundamental
Guide”, published by Wiley in 2020.



Publication II 

Carrillo, D., Pokorny, J., Seda, P., Narayanan, A., Nardelli, P., Rasti, M., Hosek, J., Seda, M., 
Zegarra, D., Koucheryavy, Y., and Fraidenraich, G. 

Optimizing Flying Base Station Connectivity by RAN Slicing and Reinforcement 
Learning 

Reprint with permission from 
IEEE Access 

 Vol. 10, pp. 53746–53760, 2022 (in press) 
© 2022, IEEE 





Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Optimizing Flying Base Station
Connectivity by RAN Slicing and
Reinforcement Learning
DICK CARRILLO MELGAREJO1,2,3, JIRI POKORNY4,5, PAVEL SEDA4, ARUN NARAYANAN1,
PEDRO H. J. NARDELLI1, MEHDI RASTI1, JIRI HOSEK4, MILOS SEDA6,
DEMÓSTENES Z. RODRÍGUEZ7, YEVGENI KOUCHERYAVY5, GUSTAVO FRAIDENRAICH2

1Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology (LUT), Lappeenranta, Finland. (e-mail:
name.lastname@lut.fi).
2School of Electrical and Computer Engineering, State University of Campinas, Brazil.
3Nokia Bell Labs, Espoo, Finland.
4Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology. (e-mail: @vut.cz).
5Unit of Electrical Engineering, Tampere University, Korkeakoulunkatu 7, 337 20 Tampere, Finland. (e-mail: evgeny.kucheryavy@tuni.fi).
6Institute of Automation and Computer Science, Faculty of Mechanical Engineering, Brno University of Technology.
7Department of Computer Science, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil.

Corresponding author: Dick Carrillo Melgarejo (e-mail: dick.carrillo.melgarejo@lut.fi).

This paper is partly supported by Academy of Finland via: (a) FIREMAN consortium CHIST-ERA-17-BDSI-003/n.326270, and (b)
EnergyNet Research Fellowship n.321265/n.328869; and by Jane and Aatos Erkko Foundation via STREAM project.

ABSTRACT The application of flying base stations (FBS) in wireless communication is becoming a
key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims
to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework;
this optimization considers that FBSs’ location was already defined previously. This framework splits
the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing
individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation
indicates that the proposed framework generally outperforms the spectral efficiency of the network that
only considers the heuristic predefined FBS location, although the gains are not always significant in some
specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of
service-level agreement (SLA) to indicate the performance of the framework.

INDEX TERMS Flying Base Stations, UAVs, Location Optimization, Wireless Communication,
Deep-reinforcement Learning.

I. INTRODUCTION
Extensive developments in the field of unmanned aerial
vehicles (UAVs) have opened many opportunities for new
applications in both private and public domains, such
as surveillance, transportation, environmental monitoring,
industrial monitoring, agriculture services, and disaster relief
[1], [2]. Recently, the increasing number of use cases employ
UAVs as wireless hotspots or relays to extend network
coverage in areas where it is required. Moreover, nowadays,
there are UAV applications used as a tool for communications
at the application level, for example, information sharing
in social media or searching for missing persons. Another
example is the recent floods in Germany [3], which showed
that the infrastructure is still quite vulnerable. Therefore,

it is worth pursuing solutions to overcome problems when
the regular communication infrastructure stops working.
Thus, the use of UAVs provides an essential resource for
allowing the continuity of communications and supporting
human operators to continue to communicating in search and
rescue operations, thereby guaranteeing efficient operation
[4]. In such scenarios, the option of rapidly and efficiently
deploying a fleet of drones is crucial in quickly establishing
a communication network capable of saving lives, especially
as it might be difficult to use terrestrial means comprising
temporary networking equipment, such as a cell on wheels
in natural disasters. This feature makes UAVs unique and
crucial for deployment in such use cases [5].

In addition, deploying UAVs as flying base stations
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(FBS) has also recently emerged as a feasible response to
highly localized traffic demands in next-generation cellular
networks [6], [7]. Using UAVs in such a way provides
an opportunity to exploit their agility of motion to improve
the air-to-ground link capacity by optimal air placement [8],
[9]. Typically, the above-mentioned use cases consider
significantly large areas where multiple UAVs must be used.
However, this leads to two major problems. First, the UAVs
must be positioned to optimally cover as many users as
possible [10], [11]. Second, the intracell and intercell
interference must be mitigated [12]. The first problem can be
effectively approached by using heuristic algorithms. These
algorithms can provide a solution with a low computational
time and good results, as shown in [13], for example. In the
case of intracell interference, the system performance can be
improved with a variety of multiple access techniques, such
as orthogonal frequency-division multiple access (OFDMA).
When intercell interference is taken into account, some
popular schemes, such as frequency reuse, graph theory,
and cooperative multi-point (CoMP) [9], [14]–[18], can be
employed.

In our previous work [13], we addressed the UAVs position
optimality using an heuristic methodology. However, the
radio channel interference problem was not addressed in
detail. The present work extends [13] by employing a
representative wireless channel model. In addition, we
proposed a radio access network (RAN) slicing framework
that enables the allocation of radio resources (slices) carrying
specific data services. Our proposed framework aims to
accommodate a diversity of services over a single shared
fifth generation (5G) infrastructure and lays the foundation
for fine-grained service management in FBS networks. We
have considered that an agile RAN slicing framework is an
appropriate solution to achieve the performance requirements
introduced by verticals on 5G communication networks.
The RAN slicing framework comprises several interworking
functional components, aiming at a flexible instantiation
of radio services, that can cope with the increasing
complexity of supporting FBS services. In our work, we
consider three slices: enhanced mobile broadband (eMBB),
ultra-reliable low-latency communication (URLLC), and
massive machine-type communications (mMTC).

The allocation of these slices is achieved by optimizing
a cost function that is directly related to the spectral
efficiency (SE) of the downlink data transmission, which
is constrained by the maximum power transmission and
the number of RAN slices. A cellular network based on
subchannels usually has a high probability of intercell
interferences in the edge cell. To solve this intricate
allocation problem, we introduce an intelligent component
in the framework—i.e., a deep reinforcement learning (DRL)
model—that improves the system performance and manages
the radio resource allocation minimizing the interference. By
using our proposed interference management methodology
to optimize the SE on each RAN slice, specific service-level

agreement (SLA)1 can be achieved between the network
service provider and the customer.

To facilitate readers comprehension of this paper, the main
contributions of this paper are summarized as follows:
• enhancement of the UAV location distribution

algorithm proposed in [13], using a proper air-to-ground
channel model to enable aa appropriate interference
analysis.

• a novel RAN slicing framework is proposed to enable
the use of advanced machine learning techniques, such
as DRL.

• we propose a distributed DRL approach to mitigate the
downlink interference, in which each FBS operates as
an independent learning agent.

• three representative scenarios of FBSs are described and
analyzed in detail to compare the SLA performance
between the DRL and the benchmark.

• a multiagent learning technique is proposed to optimize
a nonconvex problem in the FBS system model.

The rest of the paper is organized as follows. The model
finding optimal placement of UAVs in a given area, used as
benchmark in this research work, is presented in Section II. In
Section III, the RAN slicing framework is defined, including
the system model and the DRL methodology to allocate the
radio resources. A detailed description of the optimization
sequence is given in Section IV. The simulation setup is
presented in Section V. Numerical results together with a
thorough comparative performance analysis are discussed in
Section VI. Our concluding remarks and future work are
presented in Section VII.

II. UAV LOCATION OPTIMIZATION
The effective deployment of UAVs across a selected area is a
difficult task that falls into the category of NP−complete
class of problems [19]. To address this task, we enhance
the model presented in [13] for location covering of the
UAV deployment in on-demand connectivity scenarios. The
enhancement focuses in the elimination of interference for all
pairs of newly added centres and for new and existing centres.
The proposal in [13] did an extended explanation of the UAV
location methodology. The main idea of this deployment was
to select a feasible locations where UAVs can be located by
this heuristic methodology. Based on that, the optimization
algorithm selected the suitable UAV location to compose a
list of UAVs and their respective locations.

A. DEPLOYMENT MODEL
To facilitate the understanding of the model, we provide the
terminology used in the rest of this paper adapted to the
terms used in the literature in Table 1. To localize the suitable
positions for the FBS deployment, location optimization
problems is taken as inspiration. Currently, there exist several

1SLAs establish customer expectations regarding the service provider’s
performance and overall quality. It is a contract between the network service
(NS) provider and the customer.
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TABLE 1. Mapping mathematical terminology to communication networks
terminology.

Mathematical Terminology Wireless Networks Terminology
Facility UAV or FBS node.
Demand A user demanding certain level of

network connectivity in a given area.
Capacity Throughput that is requested by the sum

of user requirements in a given area to
be covered.

Multiple service A user requires to be potentially covered
by the x UAV or FBSs.

Existing service Usually FBS nodes that already exist in
the area to be covered and should remain
after the reconfiguration or deployment
phase.

facility location problems dealing with many real-world
use cases. Simply, they can be divided into location set
covering problems (LSCPs) [20], and maximal covering
location problems (MCLPs) [21]. The LSCP targets the
minimization question in which the number of facilities that
satisfy the network requirements and the need to be located
is minimized. On the other hand, in the MCLP, a predefined
number of resources tries to maximize its coverage. The main
division is based on the available resources. Because these
models have been used for a wide range of applications, they
are not tied to telecommunication network deployment only.
Hence, to the best of our knowledge, there is a gap in the
literature that [13] aims to bridge for these models and the
use case of UAV deployment. As a gap, we see the following
factors (or their combination in one model):

(i) Separating the capacity of facilities or locations
covering both downlink and uplink. This may differ for
each location or facility.

(ii) Consideration of the existing services; for the use
case of UAVs, it is essential to consider the existing
infrastructure that can serve at least some demand from
the locations to be covered ad hoc.

(iii) Splitting capacity requirements from one location to
only one facility at a given moment.

(iv) Covering some locations with zero or a higher number
of facilities. This is crucial for the must-have locations
where it is not acceptable to lose the connectivity.

(v) The oversimplified wireless interference is based on
the overlaps between cellular cells. We eliminate the
interference by Eq. (8) and (9).

In [13], it is assumed that coverage availability is
guaranteed. Capacity considerations are critical in the
5G-and-beyond deployments that expect a significant
increase in network traffic. This is due to the growth of
services that have considerably higher network throughput
requirements, such as the growth of high-definition
videos, augmented reality (AR) / virtual reality (VR),
machine-to-machine communication, and other very
intensive or demanding services in terms of network
requirements. In particular, we have to deal with a high
density of users that are simultaneously connected. For

the existing facilities Ef and their corresponding decision
variables xi, where i ∈ Ef , we set this parameter to 1, which
means that all the existing facilities are taken into account.
The allocation of capacity requirements between uploads
and downloads represents a split of 100 Mbps to 80 Mbps
for download (more extensive) and 20 Mbps for upload. In
addition, we still need to satisfy the requirement that the
demand j both for download and upload must be assigned
to the same facility i.

To derive a mathematical model, let us set the following
notation:
• I = a set of facility sites (UAV or FBS) 1, 2, . . . ,m;
• J = a set of demand areas (customers) 1, 2, . . . , n;
• dij = the shortest distance between facility i and demand
j;

• Dmax = maximum distance which will be accepted for
operation between the facilities and demands;

• lj = number of facilities required for servicing demand
j;

• xi ∈ {0, 1}, where xi = 1 means that facility i is
selected, while xi = 0 means that it is not selected.

• Nj = {i|dij ≤ Dmax} = the set of facilities i that can
cover the demand location j;

• Cui = upload capacity of facility i;
• Cdi = download capacity of facility i;
• auj = upload amount of demand at j;
• adj = download amount of demand at j;
• yij ∈ {0, 1} = nonfragmented demand from location j

is assigned (1) or is not assigned (0) to facility i.
Now, we set out the following model extracted from [13]

to minimize the number of required FBSs and maximize the
cellular coverage area.

min
∑
i∈I

xi, (1)

subject to
∀j ∈ J :

∑
i∈Nj

xi ≥ lj (2)

∀j ∈ J :
∑
i∈Nj

yij = 1 (3)

∀i ∈ Nj : Cui xi ≥
∑
j∈J

yija
u
j (4)

∀i ∈ Nj : Cdi xi ≥
∑
j∈J

yija
d
j (5)

(∀i ∈ I)(∀j ∈ J) : yij ≤ xi (6)

∀i ∈ Ef : xi = 1 (7)

(∀i ∈ I−Ef )(∀j ∈ I−Ef )(i 6= j) : dij ≥ (xi+xj−1)dmin

(8)
(∀i ∈ I − Ef )(∀j ∈ Ef ) : dij > dminxi (9)

∀i ∈ I : xi ∈ {0, 1} (10)

VOLUME 4, 2021 3



(∀i ∈ I)(∀j ∈ J) : yij ∈ {0, 1} (11)

Constraint (3) guarantees that the demand j is assigned to
only one facility at a given moment. All selected facilities
must have a sufficient sum of their capacities for uploads and
downloads to cover all upload and download demands (in
practice, this is an ideal case that network operators are trying
to reach with the available resources), this is guaranteed
by constraints (4) and (5). If a facility is selected to be
removed from the network infrastructure, none of the demand
should be assigned to it; this constraint is given by (6). In
[13], the interference is simplified to minimize the coverage
overlaps defined by the cells. Finally, consider the following:
if dij , i ∈ I, j ∈ I is the distance between the facilities i and
j, then we can set that for all pairs of selected facilities, the
facilities will have a distance greater or equal than a certain
threshold, which is guaranteed by constraint (8).

Further, as it is typical in the state of the art dealing with
location coverage with model enhancements, authors in [13]
provided an alternative maximization model that considers a
predefined number of new facilities (not yet optimized) to be
located and covered as much area as possible:

max
∑
i∈Nj

∑
j∈J

yij(a
u
j + adj ), (12)

subject to the same constraints as in the minimization
model, but with the addition of the following constraint for
a predefined number of new facilities.∑

i/∈Ef

xi = p (13)

Note that this model targets the localization of FBS nodes,
which defines the benchmark. This information is used as
input in the optimization of FBS based on (RAN) slicing
framework, which is detailed in Section III-E.

The brief explanation of the algorithm implementing
the model is detailed in Algorithm 1. The GetInputData
part represents the list existing facilities, expected/existing
demands with coordinates, and additional important
metadata. For the CoveringModel computation part the
heuristics needs to implement repair operator satisfying all
the model constraints (e.g., adding new UAVs or FBSs to the
list of solution to satisfy the capacity requirements).

B. CONSIDERATIONS OF THE COMPUTATIONAL
COMPLEXITY MODEL
The size of the search space is determined by the number of
all possible selections of facilities. Form facilities, according
to the binomial theorem, it is equal to(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

m

)
= (1 + 1)m − 1 = O(2m).

(14)

Furthermore, we need to find the most complex condition
in extended models for m < n (where n is the number

Algorithm 1 Algorithm that optimizes the UAVs or FBSs
location.

. Main part
1: function FINDLOCATIONS
2: GetInputData
3: Generate theoretical possible UAVs locations
4: Apply CoveringModel() with these data
. Covering model

5: function COVERINGMODEL()
6: Generate possible solutions
7: Apply repair operator providing feasible solutions
8: Apply selected heuristics to find optimal solution

Suitable locations for the UAV deployment

of demand areas) to find the resulting computational
complexity. In the minimization model, these are (6) and
(11) in the corresponding equations of the maximization
model, which require m · n operations. This is based on the
fact that the resulting time complexity of these models is
O(2mmn) [13].

III. RAN SLICING FRAMEWORK
To complement the benchmark described in Section II, in this
section we describe the proposed RAN slicing framework.
We employ the standardized definitions of RAN slicing
in 5G, the system channel model, the radio optimization
problem formulation, and our proposed approach using DRL.

A. FRAMEWORK DESCRIPTION
The diverse performance requirements introduced by
5G communication networks are fertile ground for the
application of an agile RAN slicing framework. Our
proposed framework aims to accommodate a diversity of
services over a single shared 5G infrastructure and lays
the foundation for fine-grained service management in FBS
networks. This RAN slicing framework primarily comprises
several interworking functional components, aiming at
a flexible instantiation of radio services. The proposed
architecture is devised to cope with the rising complexity
of supporting FBS services, achieving not only more
manageable RAN slices but also conforming the business
propositions sought by network operators and service
provider stakeholders.

This framework comprises orthogonal physical resources
that split the available bandwidth to support a specific
number of network slices. In this specific work, we
consider three slices: eMBB, URLLC, and mMTC. In a
cellular network based on subchannels, the RAN slicing
framework is exposed to a high probability of intercell
interference, specially in the edge cell. To address this
issue, we incorporate an intelligent component in the
framework to manage the radio resource allocation using
DRL. This interference management aims to achieve specific
SLA policies between the network service provider and
the customer by optimizing the SE on each RAN slice.
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A graphical description of the concept of the proposed
framework is shared in Fig. 1. The system model and the
DRL methodology are detailed in the following section.

B. SYSTEM MODEL
Consider a set I of I FBS providing downlink wireless
service to a group of user equipments (UEs) in a geographical
area A. Each FBS i ∈ I serves an area Ai, such that
∪∀i∈IAi = A and Ai ∩ Ak 6= ∅ for any i 6= k ∈ I. In other
words, we consider that when UAVs are allocated by the
optimization algorithm presented in Section II, it is possible
that some cells have a significant intersection between them.

The path loss of the air-to-ground communication link
from a typical FBS located at xi ∈ R3 to a typical ground
UE that is located at y ∈ R3 is given as follows [22]:

h(t)v→n[dB](xi, y) = 20 log10

(
4πfc‖xi − y‖

c

)
+ ξ(xi, y),

(15)
where fc is the carrier frequency of FBS downlink
communications, ‖xi − y‖ is the FBS–UE distance, c
is the speed of light, and ξ(xi, y) is the additional path
loss of the air-to-ground channel, compared with the
free space propagation. The value of ξ(xi, y) can be
modeled as a Gaussian distribution with different parameters
(µLOS, σ

2
LOS) and (µNLOS, σ

2
NLOS) for line-of-sight (LOS)

and non-line-of-sight (NLOS) links, respectively. Then, the
downlink spectral efficiency achieved by the RAN slice m,
the user n, at the time slot t from the FBS located at xi to a
UE located at y ∈ Ai is

C(t)n,m(xi, y) = log2

(
1 + γ(t)n,m(xi, y)

)
, (16)

where γ
(t)
n,m(xi, y) is the signal-to-interference-plus-noise

(SINR) at the user n, on the RAN slice m, at the time slot
t, which is defined by (17)

γ(t)n,m(xi, y) =

[
β
(t)
l,m g

(t)
l→n,m(xl, y) p

(t)
l

]
l=n∑

v 6=l
β
(t)
v,m g

(t)
v→n,m(xv, y) p

(t)
v + σ2

n

, (17)

where β(t)
v,m is the binary variable that indicates the RAN

slicing selection m transmitted from the UAV v at time t,
g
(t)
v→n,m(xv, y) indicates the downlink channel gain from the

FBS v to the user n on the RAN slice m in the time slot t
when the UE is located in the position y and the FBS in the
position xv ∈ R3 , p(t)v is the transmit power of the UAV v
in the time slot t, and σ2 is the additive white Gaussian noise
power spectral density at the user receiver n.

g(t)v→n,m(xv, yn) = h(t)v→n(xv, yn)
∣∣∣α(t)
n→l,m

∣∣∣2 , t = 1, 2, · · · ,
(18)

where hv→n(xv, yn) is the path loss in a linear scale, which
is calculated in (15), and α(t)

n→l,m is the small-scale Rayleigh
fading.

The probability of having an LOS link between the FBS j
located at xj and the UE located at y is given by [22]:

PLOS(xj , yi) =
1

1 + a exp

(
− b
[
180
π σ(xj , y)− a

]) ,
(19)

where a and b are constant values that depend on the

communication environment, σ(xj , y) = sin−1

(
Hj

‖xj−y‖

)
is the elevation angle, and Hj is the altitude of the FBS j.
Then, the average downlink SE between an FBS i and the
UE at n located in yn ∈ Ai will be:

C̄(t)n,m(xi, yn) =PLOS(xi, yn)C(t)LOS
n,m (xi, yn)

+ (1− PLOS(xi, yn))C(t)NLOS
n,m (xi, yn).

(20)

C. RAN SLICING IN 5G
A simplified 5G logical architecture is composed of a core
cloud, an edge cloud, and an RAN. The core cloud provides
generic control plane signalization, slice management,
mobility management, and authentication. The edge cloud
performs some user plane functions as a packet/service
gateway (P/S-GW) to improve latency communication on
critical applications. It also enables data forwarding, control
plane functions, and mobile edge computing platforms,
such as content storage servers. In the radio access plane,
the 3rd Generation Partnership Project (3GPP) defines
the next-generation RAN (NG-RAN), which is comprised
of next-generation NodeBs (gNBs) connected to the core
network. This architecture is used to support the network
slicing approach proposed in 5G. In this aspect, there are two
types of subnets in the 5G slicing architecture: core network
slice subnets and RAN slice subnets.

In the core network slice subnets, the network slicing
operation used in the core network is controlled by
the network slicing management. It is composed of the
virtualized network function management (VNFM), the
software-defined network (SDN) controller, the management
and orchestration unit, and the virtualized infrastructure
management (VIM). The VNFM maps the physical network
functions to virtual machines (VMs); the SDN controller
manages and operates the entire virtual network; the VIM
allocates virtualized resources to VMs; and the management
and orchestration unit creates, activates, and deletes network
slices based on the service requirements.

In the RAN slice subnets, the gNB is a crucial enabler
of network slices. It provides RAN slice subnets that are
composed of a centralized unit (CU), multiple distributed
units (DUs), and multiple radio units (RUs). The gNB
functionalities are distributed in a flexible manner between
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FIGURE 1. The RAN Slicing framework emphasizing the role of the DRL module. In this particular case we consider that each slice uses dedicated physical
resources in each FBS. Thus, the cognition element optimizes the interference reduction using the deep-reinforcement learning approach.

the CU, DUs, and RUs. To manage their life cycles, the
standard specifies the RAN network slice subnet template
(NSST) and two management entities, such as the RAN
network slice subnet management function (NSSMF) and the
network function management functions (NFMFs) [23].

The core network slice subnets have been studied and
developed in the current 5G with outstanding results.
However, the RAN slicing is still an open topic, and it
is not yet standardized. The RAN slicing aims to improve
the efficient usage of available physical radio resources and
simultaneously guarantees the SLA policies imposed in each
slice.

D. REINFORCEMENT LEARNING AIDED UAVS

Machine learning is an approach that has become
increasingly popular for sequential decision-making on
wireless communication networks with applications in many
diverse areas, such as smart grids, self-driving cars, and
robotics. There are three machine learning categories,
depending on the nature of the information or feedback
available to the learning system: (i) supervised learning;
(ii) unsupervised learning; and (iii) reinforcement learning
(RL). In this paper, we use RL as the primary approach for
optimizing the cost function based on spectral efficiency.
RL is a technique that is concerned with how agents
should determine the sequences of actions in an environment
that will maximize cumulative rewards [24], [25]. It is a
trial-and-error process where an agent interacts with an

unknown environment in a sequence of discrete time steps
to achieve a task. At time t, the agent first observes
the current state of the environment, which is a tuple of
relevant environment features and is denoted as S(t) ∈ S,
where S is a set of possible states. It then takes an action
a(t) ∈ A from an allowed set of actions A according to
a policy that can be either stochastic, i.e., π with a(t) ∼
π(.|S(t)) or deterministic, i.e., µ with a(t) = µ(S(t)).
Because the interactions are often modeled as a Markov
decision process, the environment moves to a next state
S(t+1) following an unknown transition matrix that maps
state–action pairs onto a distribution of successive states,
and the agent receives a reward S(t+1). Overall, the above
process is described as an experience at t + 1 denoted as
e(t+1) = (S(t), a(t), r(t+1), s(t+1)).

The goal is to learn a policy that maximizes the cumulative
discounted reward at time t, defined as follows:

R(t) =

∞∑
τ=0

γτr(t+τ+1), (21)

where γ ∈ (0; 1] is the discount factor.
RL has been growing in popularity because it does not

require an extensive network model. Instead, its learning
process is based on the interactions with the environment
that produces its optimal strategies. Owing to the possibility
of combining RL with deep learning [26], DRL is a highly
suitable method for solving problems with a high number
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of states and low prior knowledge, which is the case of the
resource allocation scenario in RAN slicing.

DRL has recently been used in problems related to
UAVs [27]–[31]. Moreover, the DRL approach has been
exploited and applied to the problem of UAV position and
resource allocation. In [30], the authors proposed a DRL
algorithm based on echo state network (ESN) cells for
optimizing the UAV path, cell association to minimize the
intercell interference level, transmission delay, and transmit
power level. In [32], the ESN algorithm was used based
on a multiagent Q-learning approach, which was employed
to predict the future positions of UEs and determine the
positions of UAVs. However, this work did not consider
UAV cooperation and capacity limitations of fronthaul links
between UAVs and regular base stations. Further, for the
optimization of FBS placement, the studies in [27], [28],
[33] used an RL algorithm. In this work, we present an
RAN slicing framework based on a DRL methodology that
complements the location optimization model obtained in
[13] by adding a radio channel model and optimizing the
RAN slice resources between multiple FBSs covering an
arbitrary area.

E. RADIO OPTIMIZATION PROBLEM FORMULATION
To apply the DRL methodology explained in the previous
subsection, we define the radio optimization problem that this
paper aims to optimize. Thus, details of the cost function and
its constraints are defined in the following.

Denoting RAN slices and power vectors in the time

slot t as β(t) =
[
β
(t)
1,1, β

(t)
1,2, · · · , β

(t)
N,M

]T
and p(t) =[

p
(t)
1 , · · · , p(t)N

]T
respectively, we define the sum-rate

maximization problem as

max
p(t),α(t)

N∑
n=1

C̄(t)n (xi, yn)

s.t. 0 ≤ p(t)n ≤ Pmax,∀n ∈ N ,
β(t)
n,m ∈ {0, 1},∀n ∈ N ,∀m ∈M,∑
m∈M

β(t)
n,m = 1,∀n ∈ N ,

(22)

where C̄(t)n =
∑M
m=1 C̄

(t)
n,m(xi, yn).

The nonconvex problem in (22) requires a highly
complex approach that could also increase the computational
complexity. To handle this nonconvex problem, we consider a
multiagent learning scheme, where each transmitter, mounted
in each FBS, operates as an independent learning agent.
Each agent successfully executes two policies to determine
its associated RAN slice and transmission power level. The
proposed multiagent approach is easily scalable to more
extensive networks and can operate with local information
after training.

The components of the DRL methodology considered
based on the system model described before is composed by:

• Agents: in the multiple learning approach, the FBSs
represent the agents.

• Policies: two well defined policies are considered. π1
to choose an specific RAN slice, and the π2 to select a
proper power level for each user.

• Actions: we consider two well defined group of actions.
The discrete actions related to the selection of RAN
slices, and the continuous action to choose the power
transmission for each individual user.

• States: It is composed by a tuple of information related
to the RAN slice allocation, the SE, interference in each
individual user, gain and interference in each user.

• Rewards: a proportional value of the SE in each
receiver (UE) is used as reward. It considers the
following criteria: the SE is evaluated in every user with
the condition of one neighbourhood base station (BS)
or agent is not transmitting. Thus, if the SE value is
significant, then the BS being evaluated is penalized. In
contrast, if the SE remains, then the BS is rewarded.

At the beginning of each time slot, each agent successively
executes two policies to determine its associated transmission
power level and RAN slice selection. For this purpose,
the DRL considers two optimization approaches. The first
considers a Deep Q-network to optimize a stochastic policy
that aims to improve the RAN slice selection. A second
Deep Q-network optimizes a deterministic policy to select a
suitable power transmission value. The agent of the second
Deep Q-network requires the RAN slice decision of the
first approach to determine its state input before setting the
transmit power of the agent. A brief explanation of this
approach is done in Algorithm 2.

IV. DESCRIPTION OF THE PROPOSED SOLUTION
This paper aims to complement and enhance the output
obtained in [13], which is not optimal if evaluated in a real
scenario. Thus, the resource allocation that we propose is
conditioned to the prelocation of each FBS obtained using
the methodology presented in Section II. As the benchmark
does not consider any channel model to evaluate the intracell
and intercell interference, it can get suboptimal results in
practical wireless scenarios. In particular, we aim to address
the following research questions that arise during the FBS
network deployment in a real scenario:
• What can be the potential improvements based on the

FBSs prelocation defined in [13]?,
• What is the performance of the simulation setup when

different services are supported by the FBS network?,
• Is it possible to develop a practical optimization method

that is capable of improving the performance of FBSs?.
To address these questions, we use a standard simulation

model defined by 3GPP and a RAN slicing framework
proposed in Section III, which is proposed to analyze the
network performance using a DRL methodology to optimize
the radio resources.

The whole optimization process is divided into three
phases— data matrix generation, FBS location minimization,
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Algorithm 2 Algorithm of the DRL approach.
. Main Loop

1: while Stop Criteria not met do
2: RAN SLICE SELECTION()
3: POWER CONTROL()

. RAN slice selection
4: function RAN SLICE SELECTION()

. Action Selection
5: action← a

(t)
n ∈ ARAN-Slice = {1, · · · ,M} =M

6: State set design← s
(t)
n,m

7: Training by a deep-Q Network
8: Reward function design
9: Update Policies: π1

. Power Control
10: function POWER CONTROL()

. Action Selection
11: action← a

(t)

n,a
(t)
n

∈ Apower = [0, 1]

12: State set design← s
(t)

n,a
(t)
n

13: Training by a deep-Q Network
14: Reward function design
15: Update Policies: π2

and RAN slicing optimization—as shown in Fig. 2. Here,
Stages 1 and 2 have already been applied and verified in the
original publication [13]. Details of each stage are described
in the following paragraphs.

A. STAGE 1—DATA MATRIX GENERATION
In this stage, users are generated randomly and uniformly
in one specific and fixed area. The FBSs are generated
according to the desired radius. The larger the radius is, the
lower the number of FBSs is required. A larger radius causes
a higher percentage of overlaps. Note that Stages 1 and 2 do
not take interference into consideration. Thus, interference
has to be avoided by limiting the radio overlapping. The
users are given random data rate requirements according to
the traffic mix. The output of this stage is a matrix whose
rows represent all FBSs and columns represent all users. The
matrix is filled with zeros if the user is inside the specific FBS
cell radius, and otherwise, it is filled with ones. This matrix
is completed and used as the input for Stage 2.

B. STAGE 2—FBS LOCALIZATION
This stage is composed of a software service that uses the
output of Stage 1. This stage aims to optimize the rows of the
generated matrix so that the customer requirements are met.
In this stage, we apply the optimization model from Section
II-A. Because the complexity of selecting the optimal rows
(FBSs) from the matrix is O(2m), heuristic algorithms are
applied. As a consequence, we use the differential evolution
and cuckoo search algorithms with repair operators presented
in [13]. The output of the computation is a set of FBSs (with
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FIGURE 2. Optimization flow diagram showing major steps and stages. Here,
we emphasis the optimization done in the benchmark (in yellow) and highlight
the DRL approach (blue).

their locations from the previous stage) that should be used in
the network deployment. Further, the location of each FBS
is used as an input to Stage 3, considering a representative
interference channel model.

C. STAGE 3—OPTIMIZATION OF RAN SLICES
We add an interference model based on the 3GPP standard
to complement the previous stages to analyze and mitigate
downlink interference. Then, we calculate the SINR, defined
in (17), for each user considering the signal strength coming
from the serving UAV and from the FBSs that are interfering
with that specific user n. Using (22), our simulation model
calculates an optimal spectral efficiency for each user n
following the proposed DRL approach on the RAN slicing
framework defined in Section III.

V. SIMULATION SETUP
Two scenarios were designed to emphasize the gain of
the optimization models that were previously explained. In
both cases, 1000 users were deployed following a uniform
distribution in a specific area. Subsequently, in accordance
with the constraints in each scenario, the FBSs location
optimizer determined the coordinates of each FBS. The
constraints are mostly related to the cell radius, that depends
on the radio frequency operation, and throughput demand of
each user or group of users.
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Using the predetermined FBSs location, we consider a
specific wireless system model. This system model considers
an infinity backhaul capacity on each FBS. However, the
offered bandwidth is limited in each FBS. The wireless
system simulation considers that only a specific number
of users are capable of getting the access stratum (AS)2

interface. Thus, most of the users are in the RRC_IDLE and
RRC_INACTIVE states, as defined in the 5G new radio (NR)
standard. The remaining users that passed the random access
procedure at the medium access control (MAC) layer are in
the RRC_CONNECTED state.

To facilitate the analysis, we consider that each FBS is
capable of supporting a fixed number of users N in the
RRC_CONNECTED state. Based on this assumption, the
cellular network is simulated with L FBSs, and each FBS
supports K RAN slices. As we consider only downlink
transmission, the interference that each user suffers from
nonserving FBSs is calculated following the assumptions
defined in the 3GPP TR 36.931 Ver. 16 specifications. The
height altitude for all FBSs is 20 m.

The DRL and the wireless system model are deployed
in Python. The machine learning implementation is done
using TensorFlow libraries to implement the deep Q-network
setup. The deep neural network used in the simulation has
3 hidden layers with 200, 100, 50 fully connected neurons.
The batch size is 128. The epsilon-Greedy Algorithm, used in
this work, considers a maximum ε equal to 0.1 and an εdecay
of 0.9995. The implementation and further hyper-parameters
are available in the following Github URL http://www.github.
com/TBD.

Three different scenarios were defined, considering
aspects such as a fixed number of FBSs (Scenario 1), and
coverage maximization with a fixed number of users in the
desired coverage area and in each cell (Scenarios 2 and 3,
respectively).

2AS is a functional interface that is responsible for transporting data over
the wireless connection and managing radio resources.

TABLE 2. Comparison of parameters used in Scenarios 2 and 3.

Number of
Users (N ) –
Scenario 2

Number of
Users (N ) –
Scenario 3

Number of
FBS (L)

Cell Radius in
meters

114 152 38 50
114 76 19 75
114 44 11 100
114 32 8 120
114 24 6 140
114 16 4 160
114 16 4 180
114 12 3 200
114 8 2 300

A. SCENARIO 1—FIXED NUMBER OF AVAILABLE FBSs
This scenario considersL = 20 FBSs covering a specific area
and supporting N = 100 users. To facilitate the analysis,
it is considered that each FBS has N/L = 5 attached
users. This scenario aims to identify an optimal cell radius
supporting N users in the RRC_CONNECTED state. A
graphical description of this scenario is shown in Fig. 4.

B. SCENARIO 2—MAXIMIZING THE NETWORK
COVERAGE I
In this case, the number of FBSs (L) is defined by the
optimization outputs of Stages 1 and 2, which were described
in Section IV. Using Fig. 3 as a reference, the values of X
and Y are 400 m. Thus, the number of FBSs is a function
of cell radius; e.g., the larger the cell radius is, the smaller
the number of FBSs needs to be deployed. In this scenario,
the number of users N in the RRC_CONNECTED state is
always the same in the area defined by X and Y. This scenario
is illustrated in Fig. 5.

C. SCENARIO 3—MAXIMIZING THE NETWORK
COVERAGE II
In this case, the number of UAVs (L) is defined by the
optimization outputs of Stages 1 and 2, which were described
in Section IV. Based on Fig. 3, the value of X and Y is fixed
at 400 m. In this scenario, the number of N users in the
RRC_CONNECTED state varies when the number of FBSs
changes, as it is stated in Table 2. Each cell radius has a
fixed number of N users in the scenario. Fig. 6 depicts this
scenario.

VI. ANALYSIS AND RESULTS
A. ANALYSIS OF SCENARIO 1
The spectral efficiency obtained in Scenario 1 is presented
in Fig. 7. Here, different cell radii between 50 m and 300
m are evaluated. In the same figure, the first 500 iterations
of the first episode3 (between 1 and 10000 iterations) are
compared with the first 500 iterations of the second episode
(between 10001 and 20000 iterations). The policy, defined
in Subsection III-D, is almost null in the first iterations; the

3With episode we refer to a complete sequence of interactions, from start
to finish. In our simulations, one episode is completed after 10 000 iterations.
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FIGURE 4. Visual description of Scenario 1. Here, the number of FBSs is a fixed, e.g., in this figure there are 11 UAVs. When the cell radius has a relatively high
value with respect to the area of interest, the chances to have intercell interference is increased (cell radius 1). However, when the cell radius is small (cell radius 2),
the chances of cell interference are reduced.

spectral efficiency is very low, similar to a random allocation
of RAN slicing resources. At the beginning of episode 2, the
spectral efficiency improves quickly despite that a new user
deployment is considered.

To facilitate the interpretation of the simulation results, the
average spectral efficiency in each scenario is calculated. For
instance, Fig. 8 presents the results of Scenario 1 before and
after applying the RAN slicing resource allocation. Before
applying the resource allocation, the maximum spectral
efficiency is almost 1.5 bps/Hz for the cell radius of 50
m. The spectral efficiency decreases for the other cell radii
when the cell radius is increased. This output represents the
network performance when only Stages 1 and 2, described
in Section IV, are considered. However, the performance is
improved in all cell radii after applying the DRL approach.
In all cases, the spectral efficiency is improved. For instance,
the cell radius of 75 m achieves a spectral efficiency of more
than 3.5 bps/Hz, representing a gain of 2 bps/Hz compared
with the setup without optimization.

B. ANALYSIS OF SCENARIO 2

In Fig. 9, the spectral efficiencies of six different cell radii
were obtained after 30 000 iterations. In contrast to Scenario
1, the reinforcement learning approach yields a moderate
improvement in the SE when compared with the original

benchmark scenario. The best performance is obtained by the
small cell radius of 50 m.

In Fig. 10, the lowest interference for Scenario 2 is for the
cell with the radius equal to 100 m. However, this cell radius
does not get the highest spectral efficiency because FBSs are
deployed in such a way that the desired signal is not so strong
when compared with cell radii of 50 and 75 m.

C. ANALYSIS OF SCENARIO 3
In this scenario, the SE indicates that the cell with a radius
equal to 160 m obtains an SE of 4.5 bps/Hz, which is the best
performance when compared with the previous scenarios.
The interference in Fig. 10 indicates that in all cell radii
of this scenario, the interference is above -100 dBm, which
represents a less aggressive scenario in terms of interference
when compared with the previous scenarios.

D. ANALYSIS OF THE RAN SLICING NETWORK
PERFORMANCE
The proposed RAN slicing framework enables the analysis of
the SE performance of individual RAN slices. We considered
that the cellular network supports three different RAN slices
following the 5G requirements defined in [34]. One slice
supports eMBB, the second supports URLLC, and the third
supports mMTC. To show the performance of this RAN
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FIGURE 5. Visual description of Scenario 2. Here, the number of FBSs is not fixed. For instance, in this figure there are 11 UAVs for cell radius 1, and 75 UAVs for
cell radius 2. When the cell radius has a relatively high value with respect to the area of interest, the chances to have intercell interference are increased (cell radius
1). However, when the cell radius is small (cell radius 2), the chances of cell interference are reduced. Here, the number of users (UEs) is fixed for both cell radius in
the area of interest.

FIGURE 6. Visual description of Scenario 3. Here, the number of FBSs is not fixed. For instance, in this figure there are 11 UAVs for cell radius 1, and 75 UAVs for
cell radius 2. Here, the number of users (UEs) is the same in every cell; in this illustrative representation every cell has four users. When the cell radius has a
relatively high value with respect to the area of interest, the chances to have intercell interference are not significant (cell radius 1). However, when the cell radius is
small (cell radius 2), the chances of cell interference are increased because the number of users in the area of interest is increased.

VOLUME 4, 2021 11



50m

75m

100m

120m

140m

160m

200m

220m

240m

260m

280m

300m

Cell Radius

0 2000 4000 6000 8000 10000

iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p

e
c

tr
a

l 
E

ff
ic

ie
n

c
y

 (
b

p
s

/H
z
)

pre-trained

policy effect on

a new user‘s

deployment

FIGURE 7. Spectral efficiency versus number of iterations obtained in
Scenario 1 considering a diversity of radio cells. The first 500 iterations do not
consider any pretrained DRL policy; after iteration 500 the policy gets a better
understanding of the radio channel environment with a small degradation
followed by a continuous improvement in most of the cells, especially in cells
with small radius.

50
 m

75
 m

10
0 

m

12
0 

m

14
0 

m

16
0 

m

20
0 

m

22
0 

m

24
0 

m

26
0 

m

28
0 

m

30
0 

m

Maximum Cell Radius

0

0.5

1

1.5

2

2.5

3

3.5

M
e

a
n

 S
p

e
c

tr
a

l 
E

ff
ic

ie
n

c
y

 (
b

p
s

/H
z
)

Before Optimization

After Optimization

FIGURE 8. Mean of spectral efficiency of Scenario 1 comparing a diversity of
cell radius before and after the RAN slicing resource allocation.

slicing framework, we considered the cell radius equal to 50
m in Scenario 2.

In Fig. 11, we show the improvement in the time domain
of the policy generated by the DRL model to prioritize the
slice that supports URLLC data transmission over the other
RAN slices. Based on the spectral efficiency of the previous
figure, Fig. 12 shows the performance of each RAN slice
in terms of delay. Here, the performance is improved only
after the time slot 400, which means that the DRL policy has
enough understanding of the RAN slicing environment. In
the same Fig. 12, we present another way to visualize the
performance of each RAN slice though SLA violation. Here,
we can verify that the SLA violation of the URLLC slice
only happens when the DRL model is starting to improve the
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FIGURE 9. Mean spectral efficiency performance of different cell radii
deployed for Scenarios 1, 2, and 3.
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FIGURE 10. System interference of different cell radii deployed for Scenarios
1, 2, and 3.

policies defined by the optimizer. The other RAN slices still
present frequent SLA violation, especially the slice related
to mMTC, which is mainly used for noncritical applications.
However, this SLA violations can be improved if the RAN
slicing target is relaxed, which is feasible in non-critical
applications.

VII. CONCLUSIONS
In this paper, we have proposed a RAN slicing framework
that enables the allocation of radio resources (slices)
carrying specific data services since it can achieve the
diverse performance requirements introduced by 5G wireless
systems. Our proposed framework aims to accommodate a
diversity of services over a single shared 5G infrastructure
and lays the foundation for fine-grained service management
in FBS networks. In particular, we have demonstrated that
the DRL model with the proposed RAN slicing approach
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is suitable for improving the SE of a predefined location
distribution of FBSs. Three scenarios were considered to
evaluate the performance of the proposed framework. These
scenarios were generated by modifying key parameters,
such as the number of FBSs and cell radius, and the
optimization target of the predefined FBSs location. In all
cases, the SE performance was improved when compared
with the benchmark performance. However, the proposed
methodology was more suitable for Scenario 3 because
it presented a wireless network setup with low intercell
interference.

The SE performance obtained in Scenarios 2 and 3
indicates that the deployment of the proposed framework in
real scenarios can consider both approaches, and the specific
cell radius should be chosen based on the network scenario.
For instance, when there is a high density of users, Scenario
2 with a cell radius of 50 m is the most suitable setup to

improve the SE system performance. On the other hand, if
there is a moderate or low user density, Scenario 3 with a cell
radius of 160 m will yield a better performance.

Potential future work that we have identified after the
elaboration of this paper could include but is not limited
to running a simulation on a setup with different radii on
each FBS; adding another dimension to the analysis, based
on the flying level or altitude of each FBS; and generating a
full optimization of FBS location considering a cost function
based on the system SE.
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Bit Error Probability for MMSE Receiver in GFDM
Systems

Dick Carrillo, Santosh Kumar, Gustavo Fraidenraich, and Luciano Leonel Mendes

Abstract—In this paper, we consider the minimum mean-
square error (MMSE) receiver for the generalized frequency
division multiplexing system (GFDM) over frequency selective
fading channels (FSFC). We derive an approximate probability
density function (PDF) for the signal-to-interference-plus-noise
ratio (SINR). This expression allows us to obtain a new ap-
proximate, but rather accurate formulation for the bit error
probability (BER) for aM-QAM modulation scheme. Our results
resort on the pivotal properties exhibited by eigenvalues of a
circulant matrix. Since the entries of the channel matrix Hch

are complex Gaussian distributed, and the eigenvalues are given
as a weighted sum of its entries, the joint eigenvalue distribution
is also Gaussian. Comparisons of the simulated and analytical
results validate our formulation and allow a quick and efficient
tool to compute the bit error rate for the GFDM system.

Index Terms—GFDM, Gamma approximation, MMSE, SINR.

I. INTRODUCTION

Several important waveforms have been recently proposed
for fifth generation of mobile network (5G). One of these
technologies that is being proposed for low latency and
high throughput is called Generalized Frequency Division
Multiplexing (GFDM) [1]. It employs circular filtering in
order to keep the signal well localized in time and frequency
domains [2]. GFDM uses a single cyclic prefix (CP) for several
time-slots, increasing the spectral efficiency even for Ultra
Reliable Low Latency (URLL) applications. This waveform
can also cover Orthogonal Frequency Division Multiplexing
(OFDM) and Single Carrier Frequency Domain Equalization
(SC-FDE) as corner cases, making it compatible with legacy
technologies [3]. GFDM has proven to be flexible enough to be
tailored for the different 5G scenarios [4]. The main drawback
presented by GFDM is the self-interference when Matched
filter (MF) is employed at the receiver side. This disadvantage
can be mitigated by using zero-forcing (ZF) or minimum mean
square error (MMSE) receivers, but with performance loss
when compared with orthogonal waveforms. In [1] and [2],
analytical expressions for the signal-to-interference-and-noise
ratio (SINR) over additive white Gaussian noise (AWGN)
channel, assuming MF and ZF receivers were provided. A
similar study is performed in [5] for MMSE receiver over
AWGN channel.

However, an analytical expression for the SINR, assuming
a MMSE receiver over frequency-selective channel (FSC) has
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hitherto remained unavailable. In this paper, we derive an
approximate probability density function (PDF) for the SINR,
which can be used to derive a new closed-form expression
for the bit error rate (BER), assuming a quadrature ampli-
tude modulation (QAM) constellation. The proposed model
is compared with computational simulations, showing that the
expression proposed in this paper agrees with the Monte Carlo
simulations in all investigated scenarios.

To the best of our knowledge, no similar results have been
published in the literature before.
A. Transmitter

GFDM is a generic circular filtering multicarrier system
that could be represented using matrix notation and can be
rewritten as in [5]. So, x = Ad, where A is the modulation
matrix GFDM and the vector d represents the complex data
symbols d = [d0 d1 · · · dN−1]T with variance σ2

d . A cyclic
prefix (CP) of length Ncp is added to the GFDM signal x
to prevent inter-block interference over FSC. Therefore, the
transmitted signal is given by xcp = [x(N −Ncp + 1 : N); x].
B. Receiver

Let h = [h1, h2, · · · , hL]T be the channel impulse response
vector where hr, for 1 ≤ r ≤ L, represents the complex
baseband channel coefficient of the rth path, which we as-
sume to be zero-mean circular symmetric complex Gaussian
(ZMCSC). We also assume that the channel coefficients related
to different paths are uncorrelated, and that Ncp ≥ L. The
received vector of length Nt = Ncp + N + L − 1 is given
by ycp = h ∗ xcp + νcp, where the symbol (∗) denotes the
linear convolution, νcp is the AWGN vector of length Nt
with variance σ2

ν . After removing the CP on the receiver side,
the linear convolution in (1) resumes to circular convolution,
which means that frequency-domain equalization (FDE) can
be exploited. After the CP removal, the received vector can
be written as,

y = HchAd + ν, (1)

where ν is the AWGN vector of length N with variance σ2
ν

and Hch is a circulant Toeplitz matrix based on vector h given
as [5]

Hch =



h1 0 · · · 0 hL · · · h2
h2 h1 · · · 0 0 · · · h3
...

. . . · · ·
...

hL hL−1 · · · · · · · · · · · · 0
0 hL · · · · · · · · · · · · 0
...

. . . · · ·
...

0 0 hL · · · · · · h1


(2)

The received vector y is distorted due to (i) self-interference
coming from GFDM inherent non-orthogonality, and (ii) fre-
quency selectivity introduced by the channel impulse response.
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At this point, MMSE equalization is used to estimate the
transmitted complex data symbols.

The authors in [6] have presented an expression for the
SINR of the nth data symbol given as,

γn =
1

MMSEn
− 1 =

1[
(IN + p

N (HchA)†HchA)−1
]
nn

− 1,

(3)
in which the operator (.)† represents the Hermitian-conjugate
of a matrix, and p is the average SNR given as p = σ2

d/σ
2
ν .

II. APPROXIMATE DISTRIBUTION FOR γn

The representation in (3) of the SINR allows to use the
known results of the eigenvalue distribution of circulant ma-
trices. Unfortunately, all the known results in the literature
consider that the elements of the columns of Hch are non-zero.
Our approach presents the particularity that only L elements
are different from zero. In order to address this constraint, we
consider a matrix H given as [7]

H =


h1 hN · · · h2

h2 h1 · · · h3

...
... · · ·

...
hN hN−1 · · · h1

 , (4)

where hr (r = 1, ..., N) is complex Gaussian distributed with
zero mean and variance σ2

r , and therefore with probability
density function

phr (hr) =
1

2πσ2
r

exp

(
−|hr|

2

2σ2
r

)
. (5)

To obtain Hch from H, we can consider the limit σr → 0 for
r = L + 1 to N . As a consequence, in this limit the joint
probability density of h1 to hN would be

ph(h1, ..., hN ) =

L∏
r=1

1

2πσ2
r

exp

(
−|hr|

2

2σ2
r

)
·

N∏
s=L+1

δ(hs).

(6)

Here δ(·) represents the Dirac delta function and for a
complex argument it represents the product of two delta
functions involving the real and imaginary parts, respectively.

Consider the matrix defined in (4). It, being a circulant
matrix, possesses the normalized eigenvectors given by [7]

φj =
1√
N

[
1, ωj , ω

2
j , . . . , ω

N−1
j

]T
, j = 1, ..., N, (7)

where ωj = exp

(
i
2π(j − 1)

N

)
, j = 1, ..., N (8)

are the N th roots of unity, and i represents the imaginary unit.
The corresponding eigenvalues are given by [7]

λj =
N∑
r=1

hr ω
N−r+1
j . (9)

These complex eigenvalues have joint probability density
given by

pλ(λ1, ..., λN ) =

N∏
j=1

1

2πΦ2
exp

(
−|λj |

2

2Φ2

)
, (10)

where Φ2 =
∑N
r=1 σ

2
r . Thus, the eigenvalues are i.i.d. Gaus-

sians with zero mean and variance Φ2 for both the real and

imaginary parts. The unitary matrix U that diagonalizes H is
described by

Ujl =
1√
N
ωl−1
j , l, j = 1, ..., N, (11)

and is nothing but the normalized DFT matrix [8]. We now
consider the limit σr → 0 for r = L + 1 to N , in order to
obtain the joint probability density of eigenvalues appropriate
to Hch. This results in the same expression as (10), and now
we may write Φ2 =

∑L
r=1 σ

2
r .

Although we have derived the joint eigenvalue density of
Hch, we actually need that of HchA. In this case, the product
HchA is not a circulant matrix in general, and therefore it does
not seem feasible to obtain a closed-form expression for the
joint density of eigenvalues. However, we try below to obtain
some approximate results, which turn out to be rather good
for roll-off factors between 0 and 1. Owing to the Hermiticity
of matrix p (HchA)†HchA, we can write down its eigenvalue
decomposition as Ũ†DŨ, where Ũ is a unitary matrix, not
in general a DFT matrix U, and D is a diagonal matrix with
eigenvalues of p (HchA)†HchA. We should note that this is
equivalent to considering the singular value decomposition√
pHchA = VMŨ†, where V is another unitary matrix

and M = diag(µ1, ..., µN ) contains the singular values. This
then yields p (HchA)†HchA = ŨM†MŨ† and therefore,
D = M†M. Consequently, the MMSEn is given by

αn =

[(
I+

p

N
(HchA)†HchA

)−1
]
nn

(12)

=

[
Ũ
(
I+

1

N
M†M

)−1

Ũ†
]
nn

=

N∑
r,s=1

Ũnr

(
1 +

1

N
|µr|2

)−1

δrsŨ
∗
ns

=

N∑
r=1

(
1 +

1

N
|µr|2

)−1

|Ũnr|2

where δrs is the Kronecker delta. At this point we observe
that if A had been a circulant matrix, then Ũ would be same
as the DFT matrix given by (11), for which |Unr|2 = 1/N .
Moreover, in this case {µj} will be equal

√
p times the product

of eigenvalues of Hch and A, giving us

αn =

N∑
r=1

1

N + |µr|2
. (13)

For the roll-off factors between 0 and 1, as a leading approxi-
mation, we use this expression for a general modulation matrix
A. We also notice that for this approximation, αn is same
for all n. Within this assumption eigenvalues of HchA are
approximately the product of eigenvalues of Hch and A. As
will be seen in the simulations, this assumptions holds very
well for roll-off factors between 0 and 1. The symmetrized
joint probability density of {µj} is this case is given by

pµ(µ1, ..., µN ) ≈ 1

N !

∑
{q(j)}

[
N∏
j=1

1

2πpΦ2|χq(j)|2

× exp

(
− |µj |2

2pΦ2|χq(j)|2

)]
. (14)

Here the sum involves all N ! permutations of
{q(1), q(2), ..., q(N)} over {1, 2, ..., N}. We should point
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out that this expression would be exact if A happens to be
a circulant matrix, and would describe the eigenvalues of√
pHchA, the latter being also circulant.

For N = 1, exact PDF’s of αn and γn can be readily
obtained using (13), (14), or directly using (3), as there is
just one element in the matrix. Dropping the index ‘1’, for
simplicity, we find the PDF’s of α and γ to be, respectively,

pα(α) =
1

2pΦ2|χ|2α2
exp

(
− (1− α)

2pΦ2|χ|2α

)
, 0 < α ≤ 1,

(15)

pγ(γ) =
1

2pΦ2|χ|2
exp

(
− γ

2pΦ2|χ|2

)
, 0 ≤ γ <∞. (16)

However, for general N , it does not seem feasible to derive
the PDF of αn, and that of γn, in an exact manner. Therefore,
we aim for an approximation using the mean (µ) and variance
(σ2) of αn, which can be found using the joint PDF (14) as

µ = E[αn] = −
N∑
j=1

[
1

Ψ2
j

exp

(
N

Ψ2
j

)
Ei
(
− N

Ψ2
j

)]
, (17)

σ2 = E[α2
n]− (E[αn])2

=
N∑
j=1

[
1

NΨ2
j

+
1

Ψ4
j

exp

(
N

Ψ2
j

)
Ei
(
− N

Ψ2
j

)
− 1

Ψ4
j

exp

(
2N

Ψ2
j

)
Ei2
(
− N

Ψ2
j

)]
, (18)

where Ei(x) represents exponential integral function and
Ψ2
j = 2pΦ2|χj |2. (19)

Note that since Ei(x) = −Γ(0, x) for x > 0, we may write the
result in terms of the incomplete Gamma function Γ(0, x). The
derivations of (17) and (18) rely on exploiting the symmetry
among eigenvalues in (14) and then switching over to polar
coordinates. The desired expressions then follow on using the
following integrals (with a, b > 0):∫ ∞

0

ρ

a+ ρ2
e−bρ

2

dρ = −1

2
eab Ei(−ab), (20)∫ ∞

0

ρ

(a+ ρ2)2
e−bρ

2

dρ =
1

2a
+

1

2
beab Ei(−ab). (21)

With the information of mean and variance, we propose a
Gamma approximation for the PDF of αn as

pα(αn) ≈ 1

Γ(k) θk
αk−1
n exp

(
−αn
θ

)
, (22)

where the parameters k and θ are found using the mean and
variance of αn as θ = σ2/µ and k = µ2/σ2. So, the PDF of
SINR, which is given as a function of αn as γn = 1

αn
− 1,

turns out to be

pγ(γn) ≈ 1

Γ(k) θk
(1 + γn)−1−k exp

(
− 1

(1 + γn)θ

)
. (23)

Fig. 1 shows the mean error between (17), calculated using our
approximate joint eigenvalue distribution given in (14), and
the exact value, computed by simulation of the mean value
of (12). The roll-off factors varies from 0.1 to 0.9. As it can
be seen, the error is always less than 3%, which validates our
approximation.
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Fig. 1. Percentage error between (17), calculated using the approximate
eigenvalue distribution given in (14), and the exact value computed by
simulation of the mean value of (12), for roll-off factors varying from 0.1 to
0.9. This scenario considers 64 sub-carriers and 3 sub-symbols

III. ANALYTICAL DERIVATION OF THE BER
As it was stated in [9], the BER for the lth bit error

probability of M-QAM constellation can be expressed as

Pb(E|γn) =
1

log2
√
M

log2
√
M∑

l=1

1√
M

(1−2−l)
√
M−1∑

t=0

{
(−1)

⌊
t 2l−1
√
M

⌋

(24)

×
(
2l−1 −

⌊
t 2l−1

√
M

+
1

2

⌋)
× erfc

(
(2t+ 1)

√
3log2M γn
2(M− 1)

)}
,

where γn is the post-processing SINR for the nth received
symbol given in (3). The average bit error probability can be
written as

Pb(E) =
1

N
×
N−1∑
n=0

∫ ∞
0

Pb(E|γn) pγ (γn) dγn. (25)

Applying (23) and (24) into (25) leads to

Pb(E) ≈
1

N

N−1∑
n=0

∫ ∞
0

1

log2
√
M

log2
√
M∑

l=1

1
√
M

(1−2−l)
√
M−1∑

t=0

{
(−1)

⌊
t 2l−1
√
M

⌋

(26)

×
(

2
l−1 −

⌊
t 2l−1

√
M

+
1

2

⌋)
× erfc

(
(2 t+ 1)

√
3log2M γn

2(M− 1)

)}

×
1

Γ(k) θk
(1 + γn)

−1−k
exp

(
−

1

(1 + γn)θ

)
dγn.

Using the Taylor series expansion for ex =
∑∞
u=0 x

u/u!, we
can get a series representation to this integral, as expressed in
(27), where 1F̃1 is the regularized Confluent Hypergeometric
function, and η = (2r + 1)

√
3 log2M
2(M−1) where r is the index of

the second sum in (27).

IV. PERFORMANCE ANALYSIS

The subsequent results are obtained through BER simulation
using the GFDM parameters K (subcarriers), M (subsym-
bols), Root Raised Cosine (RRC) as prototype filter, roll-off
factor, and power delay profile σ2

m = e−0.2m, m = 1, . . . , N .

A. Simulation Results

Figure 2 compares the analytical and simulated Cumulative
Density Function (CDF) with roll-off factor 0.1, assuming
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Pb(E) ≈
1

log2
√
M

log2
√
M∑

l=1

(1−2−l)
√
M−1∑

r=0

∞∑
t=0

θ−t−k(−1)

⌊
2l−1r√
M

⌋
+t

2
√
Mt!(t+ k)Γ(k)Γ(t+ k + 1)

(
2 sec(π(t+ k))

⌊
1

2

(
2lr
√
M

+ 1

)⌋(
πη(−t− k) 1F̃1

×
(

1

2
;−t− k +

3

2
; η2
)

+ Γ(t+ k + 1)

(√
πη2(t+k)

1F̃1

(
t+ k; t+ k +

1

2
; η2
)
− cos(π(t+ k))

))
+ 2kΓ(t+ k + 1)

)
(27)

three different signal-to-noise ratios (SNRs) (0 dB, 5 dB, and
10 dB). In all cases, the analytical model agrees with the
simulated CDF of γn, which means that the approximation
presented in (23) can be used to estimate the SINR.

Figure 3 shows the results with exponential power delay
profile considering only the first L = 2 elements and nulling
the others, M = 3, and K = 32 for the scenario 1, and M = 5,
and K = 64 for scenario 2. In both cases, the modulations
4-QAM and 16-QAM are considered. The simulation and
theoretical curves show an excellent agreement. These results
validate our analytical approximation for the BER and show
that they can be used to analyze the performance over FSC
channels.
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Fig. 2. Simulated and analytical CDF of γn obtained using the distribution
of SINRn given in (23), with M = 32, K = 5, roll-off factor of 0.1 for
different values of SNR.
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L = 2, Roll-off= 0.9), scenario 2 (M = 5, K = 64, L = 2, Roll-off= 0.5),
with modulation 4-QAM and 16-QAM, and exponential power delay profile.

V. CONCLUSION

In this paper, we have employed an analytical approach to
calculate the SINR for GFDM waveform using the MMSE re-
ceiver, considering the influence of frequency selective fading
channels. The pivotal properties exhibited by eigenvalues of a
circulant matrix form the basis of the mathematical model used
to obtain the sought-after SINR statistics. Our approach relies
on finding a gamma-distribution approximation for the MMSE
variable αn. Subsequently, the corresponding approximate
distribution for SINR variable γn has been derived based on
the relationship γn = 1/αn−1. This distribution then allowed
us to obtained a series representation for the BER for a general
M-QAM constellation. The proposed mathematical model has
been evaluated in several scenarios: using modulation schemes
such as 4QAM and 16-QAM, and also varying the SNR
between 0 dB and 30 dB. In all cases considered, the analytical
predictions have agreed extremely well with the simulated
CDF and BER, thereby validating the efficacy our results
to analyze BER behavior for MMSE receiver in GFDM and
similar systems.
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ABSTRACT The growing demand for Internet of Things (IoT) applications in agribusiness increases the
necessity of reliable and secure connectivity in rural areas. Thus, in the particular case of Brazil, some
initiatives aim to take advantage of frequency bands dedicated to limited private services. For instance,
cellular networks based on orthogonal frequency-division multiple access (OFDMA) in 250 MHz bands
require specialized adaptations because the interference between cells increases when these systems operate
in the Very High Frequency (VHF) band. This work presents an analysis based on a reliable simulation
of interference mitigation in OFDMA systems at 250 MHz using a network simulator. The simulator is
calibrated with data obtained in the field by an extensive and rigorous drive test. Therefore, the analysis is
based on a comparison of traditional frequency reuse schemes with a machine learning approach based
on deep reinforcement learning (DRL) to reduce inter-cell interference. The numerical results indicate
that the DRL approach outperforms the traditional frequency reuse (FR) schemes in four different typical
agribusiness scenarios.

INDEX TERMS Frequency reuse, Internet of things, deep reinforcement learning, customized cellular
networks, 250 MHz.

I. INTRODUCTION

THE Internet of Things (IoT) is an emerging and
promising technology that aims to revolutionize the

world through the connection of every physical object to
the Internet. Although the IoT concept is generic, involving
Internet connections in highly dense urban areas for a
diversity of applications, many solutions are being developed
for use in rural areas to support applications that today are
being prioritized by the pandemic [1] (remote education,
remote working, and remote healthcare), and also the
agribusiness market [2]. Thus, relevant characteristics of
rural regions, such as difficult access and long distances

involved, have a direct impact on the development of IoT
solutions for pandemic [3] and agribusiness scenarios [4].
Unfortunately, most of the technologies offered by telecom
operators in urban areas are not available in remote areas,
which makes it difficult to use adequate transport layer
technologies to support IoT applications. Therefore, the use
of very high frequency (VHF) bands is emerging as a
technical solution to improve the propagation and optimize
the coverage of wireless communication systems [5].

The increasing connectivity demand in rural areas has
driven several research and development projects into
designing cellular network solutions for this specific
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scenario. Several wireless technologies are compared in [6]
to provide Internet access in rural areas. Long-Term
Evolution (LTE) arises as a solution that can provide a variety
of services for rural IoT environments. For instance, the
feasibility of an LTE network in the 800 MHz frequency band
to serve rural areas in India and Spain is presented in [7]
and [8]. The details of planning an LTE network operating
in the 900 and 1800 MHz frequency bands in Indonesia are
presented in [9]. In [10], the coverage and capacity of LTE
IoT technologies, namely LTE machine-type communication
(LTE-M) and narrowband IoT (NB-IoT), are analyzed in
Denmark through an intensive drive test with the network
operating in the 800 MHz frequency band. In [11], a Fourth
Generation (4G) network is analyzed in the field in order to
identify gaps that aim to be supported by Fifth Generation
(5G) in rural scenarios.

One important drawback of using cellular networks
in sub-1GHz bands, such as 250 MHz, is the inter-cell
interference. To address this issue, in [12], a flexible tool
was provided to implement traditional FR schemes in the
LTE. Details of these FR techniques are described in a
comprehensive survey of inter-cell interference coordination
(ICIC) techniques in [13]. These techniques aim to improve
the basic FR concept to mitigate or avoid interference
between cells. As the FR evolves from a static to a dynamic
procedure, the ICIC algorithm complexity increases such as
typical resource allocation algorithms [14]. Such an increase
in complexity requires higher processing capabilities of the
base station, thereby having an impact on the final cost.
This may not be an issue when a dense urban scenario is
considered, where cells become smaller in order to meet
the increasing demands of the traffic of a large number
of users [15]–[17]. However, when it comes to a rural
scenario, the extensive coverage requirements and the sparse
user occupation of the cell discourage the cellular network
deployment. Thus, there is a demand for simple and cheaper
solutions that will not bring a significant increase in the
operational and capital expenditures (OPEX/CAPEX) of IoT
network providers [5], [18].

Recently, artificial intelligence methodologies for cellular
network optimization have been gaining popularity.
Especially in radio resource management, the allocation
of resources is a difficult task. For instance, in [19], a
deep reinforcement learning-based decentralized multiagent
power control algorithm was proposed to improve the
sum rate of a cellular network. In [20], multiagent deep
reinforcement learning-based autonomous channel selection
and transmission power selection were used to reduce the
co-channel interference in a cellular network. However, to
the best of author’s knowledge, there is no similar approach
with a proper comparison of traditional FR schemes with
this deep reinforcement learning approach, especially in 250
MHz bands.

One of the primary motivations of this study is to compare
the performance of traditional FR schemes with radio
resource scheduling allocation based on deep reinforcement

learning.
To establish the framework of our study, we provide a

brief contextualization of the problem and a description
of the particular scenario in Brazil and highlight the main
contributions of this paper in the following subsections.

A. PROBLEM CONTEXTUALIZATION
As the rural scenario requires an extensive area cell coverage,
the operation in a lower frequency band can make the
provision of IoT services feasible for many agribusiness
applications, such as precision farming, livestock control,
storage monitoring, and automation of agricultural processes.
However, the usage of lower frequency bands also implies
higher inter-cell interference. An advanced solution is the
use of directional antennas aimed at narrowing the radiation
lobe of each sector and reducing the secondary lobes [21].
However, because of the low availability of off-the-shelf
directional antennas for this frequency range, spectrum
allocation and channel reuse control techniques, such as ICIC
techniques, stand out as a viable solution for performance
improvement in a VHF propagation scenario.

As the orthogonal frequency division multiplexing access
(OFDMA) allows more specific occupation of the spectrum
on a shorter time basis, the allocation management of
resources for each user in the cell can be optimized in order
to reduce the interference between cells. In such a way, a
minimum quality of service (QoS) can be reached in different
regions of the cell after applying techniques such as FR.
Following this assumption, each resource block (RB) can be
assigned with a specific transmission power to cell users in
different time and space domains to reuse the neighbor cells.

B. THE PARTICULAR SCENARIO IN BRAZIL
In 2010, the Brazilian National Agency of Telecommunications
(ANATEL) released Resolution 555 [22], which allocates
225 MHz to 270 MHz to the private limited service (SLP)
on a primary and nonexclusive basis, aiming to modernize
the radios that occupy this band. In this context, this paper
presents a broadband system based on the LTE protocol
stack, which was adapted and developed to operate in VHF
bands. The target is to provide broadband IoT services to
the agribusiness markets, because the coverage of large areas
of plantations or pastures is favored by the best propagation
in the range of VHF. This broadband technology has shown
satisfactory results in terms of the radius of cell coverage and
the ability to support several IoT solutions. As the 250 MHz
frequency band is not available worldwide for such purposes,
there is a lack of studies that analyze the performance of an
LTE network in this scenario.

C. CONTRIBUTION
The main contributions of this study are the following:

• An open-source simulator is calibrated with data
obtained in a driving test on a real scenario of the
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network operating in 250 MHz in Brazil. Thus, our
results provide a strong representation of what is
expected in real scenarios.
(https://gitlab.com/aikonbrasil/freuse250mhz).

• A novel FR is proposed based on a deep reinforcement
learning scheme to schedule sub-bands and power
transmission simultaneously.

• The performance of typical FR schemes is evaluated
and compared with the proposed approach in a cellular
network operating in 250 MHz.

• An open source simulator is calibrated with data
obtained by a drive test on a real scenario of the network
operating in 250 MHz in Brazil. Thus, our results
provide a strong representation of what is expected in
real scenarios.

With the network simulator already calibrated to simulate
real scenarios, we execute a performance analysis of
ICIC techniques, presenting improvements in the system,
especially in scenarios with high interference. Furthermore,
we propose an algorithm that can be easily implemented in
the deployed base stations in order to reduce interference
considering performance for different scenarios.

The paper is organized as follows. Section II describes
the cellular network developed for agribusiness applications
that are used to obtain field measurements in 250 MHz.
The adaptation of the ns-3 simulator to the field test
network is detailed in Section III. Section IV gives a
summary of the FR algorithms considered in this study.
In Section IV-D, the algorithm proposed in this work is
described. Section V provides details of the simulation
campaign. In Section VI, the simulation results are presented
and discussed. Conclusions and future work are addressed in
Section VII.

II. DEPLOYMENT IN A REAL SCENARIO
Resolution 555 of the National Agency of Telecommunications
(ANATEL) of Brazil, which allocates the 225 MHz to
270 MHz band to the Private Limited Service (SLP) on a
primary and non-exclusive basis [22], was published in 2010
with the intent to modernize the radios operating in this band.
In this context, a broadband system was developed based
on the LTE to operate at this frequency band to provide
broadband IoT services to the agribusiness market because
the best propagation range of VHF favors the coverage of
large areas of plantations or pastures.

The developed system is based on the protocol stack
defined by the 3GPP LTE Release 81 [23] for the base station
(BS) and cellular terminal (User Equipment or UE) software.
The developed LTE system operates in the FDD (Frequency
Division Duplex) mode, with a 5 MHz bandwidth, within the
Resolution 555 bands described in Table 1.

The broadband system operating in the 250 MHz band
was installed in a rural area of the interior of São Paulo

1The same approach also applies to 5G new radio, since it is also based
on OFDMA as stated in [11].

TABLE 1. Channeling used in the broadband system operating in the
250 MHz band.

Central Frequency (MHz) Channels (Based on Band
Res. 555 - ANATEL)

228.75 (Uplink), 251.25 (Downlink) 1,2,3,4,5 A
237.50 (Uplink), 265.00 (Downlink) 7,8,9,10,11 B

TABLE 2. Key features of the broadband system operating in the deployed
250 MHz band.

Element Name/Feature Quantity / Information
Base station 3 units

UE’s (Terminal) 10 units
Frequency Band Band A

Bandwidth 5 MHz (25 RBs)
Type of duplexing FDD

BS Antenna Height 40 m
UE Antenna Height 3,5 m

Transmission power of each UE 30 dBm
Transmission power of each BS 43 dBm

belonging to a sugarcane plantation. The characteristics of
the elements used to assemble this cellular network are
described in Table 2.

A. DEPLOYED BROADBAND SYSTEM ARCHITECTURE
The field installation of the broadband system operating
in the 250 MHz band was performed according to the
architecture described in Fig. 1. In this Figure, it is
possible to differentiate the main components of a cellular
network, e.g., the evolved packet core (EPC), which is
responsible for managing each user’s features, such as
charging, QoS, connectivity with external networks, IP
packet addressing (Internet Protocol), paging processes, and
user authentication. The other elements, installed in the field
and taking care of the air interface, are part of the access
network. The access network consists of the BS and the user
terminal (UE). Note also in Fig. 1 that the UEs were installed
on machines that participate in the sugarcane process. It is
also possible to identify the network used as backhaul, called
point-to-point (P2P) radio, in addition to other technologies
used in IoT applications.

B. FIELD MEASUREMENTS
Field measurements were performed considering the
topology shown in Fig. 2. In this Figure, it is observed that
the distance between the base stations varies between 20 and
24 km. Fig. 2 also indicates the region to most likely present
interference between cells.

A field measurement procedure was developed to collect
data regarding throughput, signal to interference plus noise
ratio (SINR), and system coverage. The system achieved a
cell radius up to 40 km with an acceptable SINR value that
enabled a data rate up to 2 Mbps (downlink).
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FIGURE 1. Agribusiness architecture deployed in the field using a broadband wireless network based on an OFDMA network, such as the LTE.

FIGURE 2. Topology of the broadband system operating in the 250 MHz band
used for field measurements.

III. CALIBRATION OF SIMULATION TOOLS
Because the ns-3 simulator only supports some bands
defined by the LTE standard, it was necessary to adapt the
EARFCN (evolved-UTRA absolute radio frequency number)
configuration so that the protocol stack of the simulator
considers the propagation calculations of the VHF band.
Fig. 3 shows the addition of the coverage of each cell when
the system operates in the 250 MHz band in comparison with
the operation at 700 MHz (EARFCN=12).

Using the values of the received signal strength indicator
(RSSI), SINR, and throughput measured in the field, a

FIGURE 3. Adaptation of the configuration of the ns-3 LTE module to support
the 250 MHz band. (a) Signal strength obtained in the ns-3 with EARFCN =
12 modified to operate in the 250 MHz band. (b) Signal strength obtained in
the ns-3 with the original EARFCN = 12 operating in the 700 MHz band. The
color bar represents the measured signal strength in dBm.

calibration was made in the model of large-scale attenuation
of the wireless channel used in the simulator. Among the
large-scale models defined for the ns-3 simulator, the one
that best adapted to the values measured in the field was the
Okumura–Hata model [24]. The calibration process consists
of altering the parameters of the Okumura–Hata empirical
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formula so that the values of simulated RSSI, SINR, and
throughput are very similar to measurements obtained in the
field.
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FIGURE 4. Calibration of the modified Okumura–Hata path loss model based
on RSSI field measurements.

Signal attenuation in open rural areas in the classical
Okumura–Hata formula is given by

L = Lurban − 4, 78(log f)2 + 18, 33 log f − 40, 93, (1)

where f is the frequency of the transmitted carrier and
Lurban is the loss given in the urban environment, which,
in turn, is calculated by

Lurban =69, 55 + 26, 16 log f − 13, 82 log ht −A(hr)+

(44, 9− 6, 55 log ht) log d, (2)

where ht and hr are the heights of the transmitting and
receiving antennas, respectively, A(hr) is a correction factor
as a function of hr and the size of the city, and d is the
distance between the transmitter and the receiver.

Thus, (1) and (2) were altered to fit the values obtained by
the field measurements, resulting in

L = Lurban − 4, 78(log f)2 + 18, 33 log f − 15,94, (3)

and

Lurban =69, 55 + 26, 16 log f − 13, 82 log ht −A(hr)+

(20,9− 6, 55 log ht) log d, (4)

respectively. Table 3 shows the SINR values measured at
points of the drive test and those obtained with the ns-3
simulator after the change of the model proposed in (3) and
(4).

IV. SYSTEM MODEL AND FREQUENCY REUSE
ALGORITHMS
Consider a set I of I BSs providing downlink wireless
service to a group of user equipments (UEs) in a geographical
area A. Each BS i ∈ I serves an area Ai, such that
∪∀i∈IAi = A and Ai ∩ Ak 6= ∅ for any i 6= k ∈

TABLE 3. Comparison of the measured values with the values obtained by
the simulator after calibration.

Location SINR Measured SINR in Simulator
Spot 1 25,5 dB 26,5 dB
Spot 2 23 dB 25 dB
Spot 3 27,8 dB 25 dB

I. In other words, it is possible that some cells have a
significant intersection between them. Then, the downlink
spectral efficiency achieved by the subchannel m, the user
n, at the time slot t from the BS located at xi to a UE located
at y ∈ Ai is

C(t)
n,m(xi, y) = log2

(
1 + γ(t)

n,m(xi, y)

)
, (5)

where γ
(t)
n,m(xi, y) is the SINR at the user n, on the

subchannel m, at the time slot t, which is defined in (6)

γ(t)
n,m(xi, y) =

[
β

(t)
l,m g

(t)
l→n,m(xl, y) p

(t)
l

]
l=n∑

v 6=l
β

(t)
v,m g

(t)
v→n,m(xv, y) p

(t)
v + σ2

n

, (6)

where β
(t)
v,m is the binary variable that indicates the

subchannel selectionm transmitted from the BS v at the time
slot t, g(t)

v→n,m(xv, y) indicates the downlink channel gain
from the BS v to the user n on the subchannel m in the time
slot t when the UE is located in the position y and the BS in
the position xv , p(t)

v is the transmit power of the BS v in the
time slot t, and σ2 is the additive white Gaussian noise power
spectral density at the user receiver n

g(t)
v→n,m(xv, yn) = h(t)

v→n(xv, yn)
∣∣∣α(t)
n→l,m

∣∣∣2 , t = 1, 2, · · · ,
(7)

where h(t)
v→n(xv, yn) = L is the path loss on a linear scale,

which is calculated in (1), and α
(t)
n→l,m is the small-scale

Rayleigh fading.
It is important to note that based on this framework, the

possibility of using fractional frequency reuse (FFR) is based
on the proper definition of the binary variable β(t)

v,m to choose
one specific subchannel or band m, which is used by BS v.
Another important parameter considered in FFR schemes is
the proper consideration of the power transmission in each
BS, which is modeled with the variable p(t)

v .
In this work, we implement five methodologies, one

methodology based on a deep reinforcement learning
approach to define the FR dynamically, and four static
algorithms derived from [12].

Based on the system model described before, we define
these five methodologies of FR in the following.

A. HARD FREQUENCY REUSE
As in traditional cell reuse, the band is divided into N
subchannels, and each of the neighboring N BSs uses one of
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them. Such division ensures less interference between BSs,
at the cost of less intelligent resource allocation. A didactical
representation of this scheme is shown in Fig. 5. Using (6) as
a reference, each BS v transmits into one specific subchannel
m.

B. STRICT FREQUENCY REUSE
The band is divided into N + 1 subchannels used by all BSs.
In each cell-edge, the BSs use a different sub-band to avoid
interference. A representation of this scheme is shown in Fig.
6.

Here, the inter-cell interference comes from disjoint sets
of the interior subchannel, which is reused by all BSs.

C. SOFT FREQUENCY REUSE
The band is divided into N subchannels; each neighboring
BS uses a different subchannel at the edge and center of each
cell; thus, the entire band can be used.

Here, a power control β ≥ 1 is considered for the transmit
power to generate two different classes: Pint = p

(t)
v and

Pedge = βp
(t)
v , where Pint is the transmit power of the base

station if the user y is an interior user, and Pedge is the transmit
power of the base station if y is a cell-edge user.

The interfering base stations are also divided into two
classes: Iint, which consists of all interfering base stations
transmitting to cell-interior users on the same subchannel of
one specific user with a transmission power of Pint, and Iedge,
which consists of all interfering base stations transmitting
to cell-edge users on the same subchannel with the power
transmission Pedge.

A heuristic approach proposed in [25] concluded that
a typical value of subchannels is between 2 and 20. To

FIGURE 5. Hard FR scheme.

FIGURE 6. Strict FR scheme.

FIGURE 7. Soft FR scheme.

FIGURE 8. Dynamic Strict FR scheme.

accomplish this, a power control factor β ≥ 1 is introduced
to the transmit power to create two different classes, Pint and
Pedge, where Pint is the transmit power of the base station if
the user is an interior user, and Pedge is the transmit power of
the BS if the user is in the cell-edge network.

A didactic representation of this scheme is shown in Fig.
7.

D. DYNAMIC STRICT REUSE
The algorithm proposed in this Section is based on the Strict
FR. Here, the band is also divided intoN+1 subchannels, but
the size of each subchannel is proportional to the number of
UEs within the region that each subchannel is serving. Thus,
we will refer to this algorithm as Dynamic Strict FR.

To calculate the size of each subchannel, the BSs must
communicate with each other in order to discover how many
UEs are serving. A representation of this scheme is shown in
Fig. 8.

The size ωi of the edge subchannel of BS i and the size θ
of the subchannel in the center of each BS are given by

ωi =
ai(

n∑
i=1

ai

)
+ b

, (8)

and
θ =

b(
n∑
i=1

ai

)
+ b

, (9)

where ai is the number of UEs at the edge of BS i, and b is
the maximum number of UEs at the center of all BSs. .
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Algorithm 1 Algorithm used in Dynamic Strict FR scheme.
. Defining the subchannel bandwidth in the edge and in
the cell center.

1: while Stop Criteria not met do
2: for i=1 do i=i+1
3: b← number of Users at the center of the cell
4: ai ← number of Users at the edge
.Calculating bandwidth for users near the cell center and
users in the edge. Iteration in each BS i.

5: ωi ← a bandwidth based on the number of users
in the edge using Eq. 8.

6: θ ← a bandwidth based on the number of users
in the center of the cell using Eq. 9.

7: end for
8: end while

E. DYNAMICS BASED ON DEEP REINFORCEMENT
LEARNING APPROACH
To improve the understanding of this methodology,
we expand the explanation into a description of deep
reinforcement learning and the particular cost function that
is used to maximize the throughput in the following.

1) Deep Reinforcement Learning
In machine learning there are three categories; depending on
the nature of the information or feedback available to the
learning system, these categories are:
• supervised learning;
• unsupervised learning;
• reinforcement learning (RL).

In this paper, we use RL as the approach for optimizing a
specific cost function with specific constraints to optimize the
system throughput [26], [27]. It is a trial-and-error process
where an agent interacts with an unknown environment in a
sequence of discrete time steps to achieve a specific target
or task. At time t, the agent first observes the current state
of the environment, which is a tuple of relevant environment
features and denoted by S(t) ∈ S, where S is a set of possible
states. It then takes an action a(t) ∈ A from an allowed set of
actions A according to a policy that can be either stochastic,
i.e., π with a(t) ∼ π(.|S(t)) or deterministic, i.e., µ with
a(t) = µ(S(t)). The interactions are modeled as a Markov
decision process. For this reason, the environment moves to
a next state S(t+1) following an unknown transition matrix
that maps state–action pairs onto a distribution of successive
states, and the agent receives a reward S(t+1). Overall, the
above process is described as an experience at t+ 1 denoted
by e(t+1) = (S(t), a(t), r(t+1), s(t+1)).

The goal is to learn a policy that maximizes the cumulative
discounted reward R(t) at time t, defined as follows:

R(t) =
∞∑
τ=0

γτr(t+τ+1), and γ ∈ (0; 1] (10)

Owing to the possibility of combining RL with deep learning
[28], deep reinforcement learning (DRL) is a highly suitable

method for solving problems with a high number of states
and low prior knowledge, which is the case of the FR
allocation scenario in the available subchannels.

2) Cost Function Definition
Here, we define the radio optimization problem to be
optimized. To this end, details of the cost function and its
constraints are defined in the following.

The subchannels and power vectors in the time slot t are

denoted by β(t) =
[
β

(t)
1,1, β

(t)
1,2, · · · , β

(t)
N,M

]T
and p(t) =[

p
(t)
1 , · · · , p(t)

N

]T
, respectively. Using (5), we define the

sum-rate maximization problem as

max
p(t),α(t)

N∑
n=1

C(t)
n (xi, yn)

s.t. 0 ≤ p(t)
n ≤ Pmax,∀n ∈ N ,

β(t)
n,m ∈ {0, 1},∀n ∈ N ,∀m ∈M,∑
m∈M

β(t)
n,m = 1,∀n ∈ N ,

(11)

where C(t)
n =

∑M
m=1 C

(t)
n,m(xi, yn).

The nonconvex problem in (11) requires a highly
complex approach that could also increase the computational
complexity. To handle this nonconvex problem, we consider a
multiagent learning scheme, where each transmitter, mounted
in each BS, operates as an independent learning agent. Each
agent successfully executes two policies to determine its
associated subchannel and transmission power level. The
proposed multiagent approach is easily scalable to more
extensive networks and can operate with local information
after training.

At the beginning of each time slot, each agent successively
executes two policies to determine its associated transmission
power level and subchannel. The agents are represented by
the BSs, and the environment is the wireless communication
channel model in which every agent or BS aims to optimize
the network performance based on UEs’s location. The
DRL considers two different optimizations. The first case,
enclosed in the red dotted square in Fig. 9, considers a
Critic network and an Actor network [29] (both based on a
Deep Q-network) to optimize the stochastic policy that aims
to improve the subchannel selection. In the same Figure, a
second Deep Q-network, enclosed in the blue dotted square,
aims to optimize a second policy; a deterministic policy
is used to select a suitable power transmission value. The
agent of the second Deep Q-network requires the subchannel
decision of the first approach to determine its state input
before setting the transmit power of the agent. A brief
explanation of the algorithm is detailed in Algorithm 2.

V. SIMULATION
In order to evaluate the traditional FFR algorithms in the
OFDMA system operating in 250 MHz, we use the ns-3
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FIGURE 9. Architecture used by the deep reinforcement learning approach in the Monte Carlo simulation. The reinforcement learning policies Ω, θ, and γ are
obtained by using a deep learning gradient descent.

Algorithm 2 Algorithm of the DRL approach.
. Main Loop

1: while Stop Criteria not met do
2: SUBCHANNEL SELECTION()
3: POWER CONTROL()
4: end while

. Subchannel selection
5: function SUBCHANNEL SELECTION()

. Agent Selection
6: agent← a

(t)
n ∈ Asubchannel = {1, · · · ,M} =M

7: State set design← s
(t)
n,m

8: Training by Critic and Actor Network
9: Reward function design

10: Update Policies: Ω, γ
11: end function

. Power Control
12: function POWER CONTROL()

. Agent Selection
13: agent← a

(t)

n,a
(t)
n

∈ Apower = [0, 1]

14: State set design← s
(t)

n,a
(t)
n

15: Training by deep-Q Network
16: Reward function design
17: Update Policies: θ
18: end function

simulator, which is widely known and tested by the scientific
community [30]. The ns-3 simulator is a discrete event
simulator written in open-source C++. In this work, the
cellular network module known as LENA [31] is adopted.
This ns-3 module was chosen in this work because it
produces accurate results when compared with commercial
devices [32]. To evaluate the DRL model, we use Python and
TensorFlow, which is a free and open-source software library
for machine learning and artificial intelligence.

Both simulators are adjusted to the parameters described in
Table 2 to reflect a real scenario as accurately as possible. The
BSs are positioned as shown in Fig. 2, following the same
topology as that used in the field. Here, each simulation has
a duration of 2.5 s of network time.

The simulations are configured to evaluate the total
downlink capacity. Thus, the generated traffic is a constant bit
rate (CBR) over the user datagram protocol (UDP) transport
protocol.

In order to evaluate the FR algorithms, the UEs are
positioned in four different representative scenarios in
agribusiness industry:

(I) UEs on the edge – Twenty simulations are performed
with the UEs positioned at the edge of the cell. Starting
with only one UE, each simulation adds a UE for each
BS.

(II) UEs on the center – The UEs are positioned in the
center of the cell in an area of low interference. In the
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same way as Scenario (I), the number of UEs for each
simulation is increased until the number of twenty UEs.

(III) UEs near to one BS – Twenty simulations are
performed, where eighty UEs are positioned randomly
in a region close to only one BS and connected in that
BS.

(IV) UEs randomly positioned – One hundred simulations
are performed with eighty UEs in the coverage area at
random positions and connected to the BS with the best
signal.

Scenarios (I), (II), and (III) reflect a situation where the
UEs are all positioned close to each other. In the specific
application of sugarcane cultivation, this type of scenario
reflects a situation in which transport trucks connected to
the Internet move together to receive or deliver sugarcane.
Such scenarios may reflect other crop and livestock farming
applications, such as cattle monitoring in limited pasture
areas [33] or precision rotational grazing techniques [34],
among other cases.

Scenario (IV) simulates a more generic case with random
positioning that aims to analyze the behavior of the system
with a large number of UEs.

A graphical representation of these scenarios is given in
Fig. 10. Here, we emphasize the radio coverage of the cell
radius in each BS. The main aspect of this Figure is the
location of users, which is reflected on the final system
throughput for each FR scheme.

The performance metrics used to compare these FR
methodologies are the following:
• throughput per UE for Scenarios (I), (II), and (III);
• throughput per BS and cumulative distribution function

(CDF) for Scenario (IV).

VI. RESULTS
In this Section, the results obtained in all defined scenarios
are presented in terms of spectral efficiency to show the
learning curve of the methodology based on DRL. After that,
the average throughput is obtained for all scenarios defined
before.

A. DEEP REINFORCEMENT LEARNING APPROACH
Considering a setup defined by Scenario I, the FR based on
DRL is evaluated and presented in Fig. 11. The first iterations
indicate that the performance of each subchannel is very
low. However, when the number of iterations is increased,
the deep-Q network and the policies provide better resource
allocation, with a gain of 5 compared with the spectral
efficiency in iteration 10 and iteration 25000.

It is important to remark that the spectral efficiency is
combined with the bandwidth defined in Table 2 to obtain
the throughput, which is used in the next results.

B. SCENARIO I
Fig. 12 shows the results of the simulations for the throughput
per UE in Scenario (I). In this case, the high interference

limits the performance of the system, reducing the throughput
of the UEs. When all UEs are in a region of high interference,
the FR based on DRL achieves a better performance when
compared with the traditional FR schemes. However, the
Hard FR algorithm presents the best performance when
there are two or fewer users to be served. Because the
methodology based on DRL optimizes the subchannel and
power transmission allocation per UE, it has a better
performance when the number of UEs is greater than 2.
This performance remains until the number of UEs is lower
than 14 simultaneous users. Because the Hard FR divides
the spectrum for each BS, this algorithm is the second best
methodology that guarantees less interference but with no
flexibility for changes in spectrum allocation. The Soft FR
technique performs very close to Hard FR because the UEs
are located on the border of the cell, and the division of
the subchannels is done in the same way as the Hard FR.
However, the Soft FR algorithm has the advantage of greater
flexibility in the allocation of RBs, in case the UEs are
in a situation of lower interference. The Dynamic Strict
FR algorithm also divides the subchannels like the other
two algorithms after some parameter calculation defined
in (8) and (9). However, its performance is close to the
Soft FR technique. The Strict FR technique presents a less
satisfactory performance because it reserves only part of
the available band to the UEs on the edge of the cell.
Finally, as expected, using no algorithm is the worst choice
because resources are not being used efficiently under the
high interference scenario.

C. SCENARIO II
When all UEs are in a situation of less interference (Scenario
(II)), the results indicate that there is no need for any FR
algorithm. In this scenario, not using any algorithm is the
alternative that guarantees the highest throughput, because
the UEs can transmit over the entire band with a very low
probability of inter-cell interference, as it is shown in Fig. 13.
We also note that the Soft FR technique outperforms similarly
because it allows the BSs to use the entire band in the middle
of the cell. By reserving a subchannel for the UEs with more
significant interference, the algorithm of Strict FR shows a
poor performance. The Hard FR algorithm divides the band
between BSs, reducing its performance. The Dynamic Strict
FR technique presents an intermediary performance because
of its time for calculating the proper quantity of RBs for
each BS. The methodology based on DRL achieves a similar
performance to the Dynamic Strict FR when the number
of simultaneous UEs is smaller than eight. However, when
the number of UEs is increased, the performance tends to
improve the average throughput.

D. SCENARIO III
When all UEs are connected to the same BS (Scenario (III)),
the result is similar to Scenario (II), i.e., a scenario with a
very low probability of interference. As the Hard FR and the
Strict FR algorithms reserve a specific subchannel in each BS

VOLUME 4, 2021 9



Dick Carrillo Melgarejo et al.: Dynamic Algorithm for Interference Mitigation Between Cells in the 250 MHz Band

FIGURE 10. Four scenarios evaluated for each FR methodology; in each case, the user distribution is modified based on agribusiness applications.
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FIGURE 11. Spectral efficiency result in Scenario I when the DRL approach is
considered to carry out the FR between three subchannels in the 250 MHz
band.

that is not serving any user, both show an inefficient use of the
available resources, which explains their poor performance.
As presented in Fig. 14, the Soft FR, the Dynamic Strict FR,
the no-algorithm use case, and the FR based on DRL achieve
a better performance without any significant difference.

E. SCENARIO IV
The results of the simulation campaign for Scenario (IV) are
shown in Figs. 15 and 16 to represent the throughput and
the cumulative distribution function of the UE throughput
per BS, respectively. In general, in this scenario it is always
convenient to use some FR methodology. However, as the
UEs are positioned randomly using a uniform distribution,
the FR based on DRL outperforms the other traditional
methodologies.

We can see in Fig. 15 that in the 60% percentile of the
measurements, the hard FR and the methodology based on
DRL achieves a better throughput than the other traditional
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methodologies. However, as we analyze Fig. 16, we observe
that the great part of UEs (almost 60%) have a throughput
very close to zero (less than 0.1 Mbps). The Hard FR
and the Dynamic Strict FR algorithms provide a minimum
throughput of 0.1 Mbps for almost all UEs. As the Soft
FR algorithm allows all cells to use the entire band in the
center, the interference increases for UEs in the transition
region between the cell center and the cell border. A result
of this is that approximately 70% of the UEs have an average
throughput below 0.1 Mbps. It can be verified that the average
throughput of 40% of the UEs is below 0.1 Mbps when
the Strict FR technique is adopted. The Dynamic Strict FR
algorithm provides a higher fairness between the UEs, as
approximately 90% of the UEs have an average throughput
between 0.1 and 0.2 Mbps. Finally, the CDF indicates that
the performance of the algorithm, which is based on DRL,
outperforms the other traditional methodologies.

VII. CONCLUSIONS
The need for IoT applications in agribusiness has driven the
development of cellular broadband systems using sub-1GHz
bands owing to the long-range transmission required by
connectivity in rural areas. However, the propagation in such
bands implies an increase in interference, which usually
degrades the system performance.

This work compared the performance of a cellular network
using traditional FR schemes with a data-driven approach
based on DRL when the system is operating in 250 MHz,
which is a band not yet standardized and which has received
limited attention in the literature so far. The simulation tools
were calibrated using data gathered in drive test sessions
using a real cellular network operating in the 250 MHZ
band. Thus, the results of this work provide a strong ground
because they are obtained considering a real setup as a
benchmark.

Four scenarios were defined to represent typical
agribusiness setups in terms of UE distribution. In Scenarios
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FIGURE 12. Average UE throughput for Scenario (I).
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FIGURE 13. Average UE throughput in Scenario (II).

I and IV, the approach based on DRL achieves a better
performance than the traditional FR schemes. In Scenarios
II and III, the cellular system performance reaches a
better performance when no FR methodology is considered.
However, the approach based on DRL improves its
performance when the number of simultaneous connected
UEs is increased.

A. FINAL REMARKS
The importance of using machine learning schemes on
FR allocation is an attractive approach, especially in
methodologies that aim to maximize the allocation of
resources in high-interference scenarios. A widespread
scenario in agribusiness applications is the grouping of UEs
in a cell region, either at the edge or center of the cell. The
gain of using fractional reuse techniques is apparent when
the analysis is performed with UEs located at the edges of
the cells (Scenario (I)). For instance, in a system with four
UEs per cell in Scenario I, the average throughput per UE
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increased from 0.15 Mbps to 1.13 Mbps when using the Hard
FR or Soft FR algorithm when compared with a scenario
that did not use any FR scheme. A similar comparison
between the methodology based on DRL and not using any
algorithm indicates that the average throughput is increased
from 0.15 Mbps to 1.83 Mbps. In practice, it means that the
UE can support video services (throughput over 800 kbps)
instead of just supporting telemetry services (over 100 kbps)
when any FR scheme is used.

When the agribusiness application requires fairness, i.e.,
all UEs with a minimum throughput, the FR based on
DRL is the most acceptable alternative in high-interference
scenarios, such as Scenario (IV). The methodology performs
satisfactorily in low-interference scenarios when the number
of simultaneous users is increased, such as in Scenario (III).

B. FUTURE WORK
The paper suggests that a similar approach can be handled
on 5G New Radio operating in sub-1GHz because it is

also based on OFDMA, specifically in the evolution of
5G-Advanced, which is standardized by the 3GPP Rel. 18.

Other interesting topic of future work would be to analyze
beyond 5G networks to compare the performance of cell-free
massive MIMO [35] in rural scenarios with the schemes
proposed in this paper.
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Abstract—This paper investigates the achievable sum rate and
the outage capacity of generalized frequency division multiplex-
ing systems (GFDMs) with minimum mean-square error (MMSE)
receivers over frequency-selective Rayleigh fading channels. To
this end, a Gamma-based approximation approach for the
probability density function of the signal-to-interference-plus-
noise ratio is presented, based on which accurate analytical
formulations for the achievable sum rate and outage capacity are
proposed. The accuracy of our analysis is corroborated through
Monte Carlo simulation assuming different GFDM parameters.
Illustrative numerical results are depicted in order to reveal the
impact of the key system parameters, such as the number of
subcarriers, number of subsymbols, and roll-off factors, on the
overall system performance.

Index Terms—Achievable sum rate, GFDM systems, outage
capacity, MMSE receivers.

I. INTRODUCTION

Along the last years, Generalized Frequency Division Mul-

tiplexing (GFDM) has arisen as a potential alternative to

Orthogonal Frequency Division Multiplexing (OFDM) for

beyond 5G systems due to its promising bandwidth efficiency

improvements [1]. Specifically, GFDM filters each subcarrier

with a well-localized prototype filter and has low out-of-band

(OOB) emission [2]. GFDM is also designed with a cyclic

prefix (CP) that can be used by a large number of transmitted

symbols instead of appending a CP per symbol, as in the

OFDM case [3]. It has also been shown that GFDM can be

harmoniously integrated with multiple-input multiple-output

(MIMO) channels [2].

Despite of the above attractive features, GFDM has some

deficiencies. In particular, it leads to self-interference among

the transmitted symbols, which needs be equalized using,

for instance, linear receivers as minimum mean square error

(MMSE) to recover individual input samples from channel

output. In this case, MMSE has the advantage of having low

complexity compared to other non-linear receivers. However,

fundamental performance limits of such an interesting combi-

nation, i.e., GFDM and MMSE receivers, are still unknown.

Moreover, the current available literature dealing with GFDM

systems only provides a handful of studies dealing with the

sum rate of these systems. For instance, Seungyul et al. in

[4] derived the data rates of GFDM systems for two types

of channels: additive additive white Gaussian noise (AWGN)

channel and Long-Term Evolution (LTE) Pedestrian B chan-

nel. However, such results relied on numerical approaches

that were only valid for specific scenarios, limiting their

generalization and practical usefulness.

Aiming to fill partly the gap that exists in the literature,

this paper investigates the achievable sum rate and outage

capacity of GFDM systems employing MMSE receivers and

undergoing frequency-selective Rayleigh fading. To this end,

a Gamma-based approximation approach for the probability

density function (PDF) of the signal-to-interference-and-noise

ratio (SINR) is presented, based on which, accurate analyti-

cal formulations are attained. The idea behind the proposed

approximation relies on the framework proposed in [5]. The

accuracy of our analysis is corroborated through Monte Carlo

simulation assuming different GFDM parameters. Illustrative

numerical results are depicted in order to reveal the impact of

the key system parameters, such as number of subcarriers,

number of subsymbols, and roll-off factors, on the overall

system performance. To the best of the authors’ knowledge,

our theoretical results have not been reported in the literature

yet and they can be used as a benchmark for future wireless

communication studies.

The remainder of the paper is organized as follows. Section

II describes the system model along with specific details

for the transmitter and receiver blocks. Section III extends

the description of the Gamma-based approximation approach

proposed in [5], and applies it subsequently in Sections IV

and V to derive closed-form accurate approximations for the

achievable sum rate and the outage capacity, respectively.

Section VI presents illustrative numerical results, which are

corroborated by means of Monte Carlo simulations. Finally,

Section VII concludes the paper.

II. SYSTEM MODEL

The considered GFDM system setup is designed to transmit

a complex symbol block ds,k at the sth time instant and kth

subchannel containing S ×K data symbols (s = 0, . . . , S −
1; k = 0, . . . ,K − 1). Assuming that the data symbols are

independent and identical, the GFDM signal can be written as

x[n] =
S−1
∑

s=0

K−1
∑

k=0

ds,k gs,k[n], (1)



where gs,k[n] denotes the circular time-frequency shifted ver-

sion of the prototype filter g[n], being expressed as

gs,k[n] , g[(n− sK)N ] ej2πnk/K , (2)

where N = S ×K and (.)N stands for modulo operator. To

simplify the circular convolution, the transmitter filter g[n] is

usually designed as being circular with a period of n mod

N . Also, it is noteworthy that in (2) the GFDM shifting step

is K in time domain and 1/K in frequency domain. Next,

the transmitter and receiver blocks of the considered GFDM

system setup will be described.

A. Transmitter Block

Let us first use (1) to rewrite the elements of the transmit

symbol block in a single vector as: d = [dT
0 , . . . d

T
s−1]

T and

ds = [ds,0, . . . ds,K−1]
T , with variance σ2

d . The vector form

of x[n] (n = 0, . . . , N − 1) can be formulated as

x = Ad, (3)

where x = [x[0], . . . x[N − 1]]T and A, with dimension N ×
N , denotes the modulation matrix or self-interference matrix

of the GFDM system. This matrix can be defined as A =
[G0, . . .GS−1] so that Gs represents the N × K matrix of

gs,k[n] coefficients, i.e.,

Gs =











gs,0[0] gs,1[0] · · · gs,K−1[0]
gs,0[1] gs,1[1] · · · gs,K−1[1]

...
...

. . .
...

gs,0[N − 1] gs,1[N − 1] · · · gs,K−1[N − 1]











.

(4)

A CP of length Ncp is added to the GFDM signal x

to prevent inter-block interference over frequency selective

fading channel (FSFC). Then, the transmitted signal is given

by xcp = [x(N −Ncp + 1 : N); x].

B. Receiver Block

Without any loss of generality, we assume a zero-mean

circular symmetric complex (ZMCSC) Gaussian channel h =
[h1, h2, · · · , hL]T , where hr denotes the complex baseband

channel coefficient of the rth path (1 ≤ r ≤ L). Consider

also that Ncp ≥ L, which means that the CP length must

be higher than the delay spread of the multipath channel

[6]. Additionally, the channel coefficients related to distinct

paths are assumed uncorrelated. Then, the received signal has

length Nt = Ncp +N + L− 1 and can be modeled as

ycp = h ∗ xcp + νcp, (5)

where the symbol ∗ symbolizes linear convolution operation,

νcp is the AWGN signal with variance σ2
ν and it is also

represented by a vector of length Nt.

Before starting decoding process, the CP introduced at

the transmitter needs to be removed. The frequency-domain

equalization (FDE) properties can be employed so that the

linear convolution in (5) becomes a circular convolution. So,

the resulting received vector after CP removal can be expressed

as

y = HchAd + ν, (6)

where vector ν represents the AWGN signal of length N with

variance σ2
ν and Hch is the N × N circular Toeplitz matrix

based on vector h, and can be written as[7]:

Hch =

























h1 0 · · · 0 hL · · · h2
h2 h1 · · · 0 0 · · · h3
...

. . . · · ·
...

hL hL−1 · · · · · · · · · · · · 0
0 hL · · · · · · · · · · · · 0
...

. . . · · ·
...

0 0 hL · · · · · · h1

























. (7)

The matrix Hch has a very special pattern. Specifically, every

row is the same as the previous row, just shifted to the right

by 1 (wrapping around “cyclically” at the edges). That is,

each row is a circular shift of the first row. To estimate the

transmitted complex data symbols d̂, we consider a matrix G

using the following relationship

d̂ = G y, (8)

where G denotes the MMSE receiver matrix.

Mathematically, the MMSE receiver matrix G is defined by

the following:

G = (HchA)† (pIN + (HchA)†(HchA))−1, (9)

where the operator (.)† represents the Hermitian-conjugate of

a matrix, IN is a N ×N identity matrix, and p is the average

signal-to-noise ratio (SNR), given by p = σ2
d/σ

2
ν . Based on

the MMSE receiver, it can be shown that the SINR of the nth

data symbol can be expressed as

Γn =
1

MMSEn
− 1 =

1
[

(IN + p
N (HchA)†HchA)−1

]

nn

− 1.

(10)

Note that (10) has the same form of [8, Eq. (7.49)], being

therefore not restricted to binary signals and its derivation is

based on the second-order statistics of the input signals [9].

III. APPROXIMATION APPROACH FOR Γn

By analyzing (10), it can be verified that the product HchA

is not a circular matrix. In this case, a closed-form expression

for the joint PDF of the eigenvalues seems unfeasible. How-

ever, an accurate approximation for such statistics has been

previously proposed in [5]. This approximation follows some

assumptions that are described in the following subsections.

Firstly, we will describe how the joint PDF of the eigenvalues

of the matrix Hch is obtained. Then, we will provide further

insights on how to obtain the joint PDF of the eigenvalues

of the matrix HchA. Finally, we will describe the procedure

to obtain the approximation of the PDF of the SINR of Γn,

which will be based on a Gamma approximation.



A. Joint Probability Density of Eigenvalues of Hch

Let us consider a general matrix H, as defined in [10], where

each channel coefficient is represented by hr (r = 1, ..., N)
defined by a complex Gaussian distribution with zero-mean

and variance σ2
r . Thus, the PDF of hr (independent and

identically distributed Rayleigh channel realizations) can be

expressed by

phr
(hr) =

1

2πσ2
r

exp

(

−|hr|2
2σ2

r

)

. (11)

The matrix H is defined as

H =











h1 hN · · · h2
h2 h1 · · · h3
...

... · · ·
...

hN hN−1 · · · h1











. (12)

From probability theory concepts, it can be shown that the

joint PDF of {h1 . . . , hN} can be expressed as

ph(h1, ..., hN ) =

N
∏

r=1

1

2πσ2
r

exp

(

−|hr|2
2σ2

r

)

. (13)

Following the property of circulant matrices, as the one

expressed in (12), the normalized eigenvectors are always the

same [10]. Thus, the normalized k-th eigenvector v(k), where

k = 0, 1, . . . , N − 1, can be expressed as

v(k) =
1√
N

(

ω0k
N ω1k

N ω2k
N . . . ω

(N−1)k
N

)T

, (14)

In this case, the variables ωjk
N can be determined as

ωjk
N = e

2πi
N jk, (15)

where i represents the imaginary unit, and j = 0, 1, . . . , N−1.

Note that (15) represents the N th root of unity.

By its turn, the matrix F, whose columns are the eigenvec-

tors, can be defined as

F =
(

v(0) v(1) v(2) . . . v(N−1)
)

, (16)

which has the following entries

Fjk = v
(k)
j = ωjk

N . (17)

Note that the operation of multiplying a vector by matrix F

represents the discrete Fourier transform (DFT) of that vector.

With this in mind, we can define the vector ĉ as

ĉ = Fc =
(

λ∗0, λ
∗
1, λ

∗
2, . . . , λ

∗
N−1

)

, (18)

where c denotes the first row of H, and ĉ stands for the

DFT of vector c, also representing the vector composed by

the eigenvalues of c.

We proceed similarly with F, which is also a unitary matrix,

to diagonalize H based on the following relationship

diag(λ∗j ) = F†HF, (19)

where, for both cases, λ∗j has entries defined by

λ∗j =
N−1
∑

k=0

hkω
kj
N . (20)

Based on the fact that each hk is complex Gaussian

distributed with zero-mean and variance σ2
r , the complex

eigenvalues λ∗j have joint PDF being given by

pλ∗(λ∗1, ..., λ
∗
N ) =

N
∏

j=1

1

2πΦ2
h

exp

(

−
|λ∗j |2
2Φ2

h

)

, (21)

where Φ2
h =

∑N
r=1 σ

2
r , leading to a PDF that has zero-mean

and variance Φ2
h for both real and imaginary parts.

Note that all the previous analysis was related to matrix

H. In order to extend the procedure to matrix channel Hch,

we now consider the limit σr → 0 for r = (L + 1), (L +
2), . . . , N so that we are able to analyze HchA. Let us first

use the following relationship defined by

diag(λj) = F†HchF. (22)

To obtain the complex eigenvalues λj of Hch, we first define

the joint PDF of the eigenvalues as

pλ(λ1, ..., λN ) =

N
∏

j=1

1

2πΦ2
exp

(

−|λj |2
2Φ2

)

. (23)

Then, we can finally write the variance of matrix Hch as Φ2 =
∑L

r=1 σ
2
r .

B. Joint Probability Density of the Eigenvalues of
√
p HchA

By inspection, one can notice that the product HchA is

not necessarily a circulant matrix. Let us consider the main

product factor of (10) that is represented by p (HchA)†HchA,

which is an Hermitian matrix. We can employ a singular value

decomposition strategy so that

√
pHchA = VMU, (24)

where V and U are unitary matrices, and M =
diag(µ1, ..., µN ) contains the singular values of

√
pHchA.

From (24), we obtain

p (HchA)†HchA = UM†MU†, (25)

since V†V = I.

From (10), Γn can be rewritten in terms of αn so that

Γn =
1

αn
− 1, (26)

where αn is defined based on (25) as

αn =

[

(

I+
p

N
(HchA)†HchA

)−1
]

nn

=

[

U

(

I+
1

N
M

†
M

)−1

U
†

]

nn

. (27)



Using summation notation, (27) can be re-expressed by

αn =

N
∑

r,s=1

Unr

(

1 +
1

N
|µr|2

)−1

δrsU
∗
ns, (28)

or by

αn =

N
∑

r=1

(

1 +
1

N
|µr|2

)−1

|Unr|2. (29)

Based on the condition that HchA is a circulant matrix, then

U holds same condition as the DFT matrix given by (19)

and (14). As a result, the square of the absolute value of

Unr, represented by |Unr|2, is equal to 1/N . In this case,

the eigenvalue {µr} equals to the product of
√
p, eigenvalues

of Hch, and eigenvalues of A. Consequently, αn can be

approximated by

αn ≈
N
∑

r=1

(

1 +
1

N
|µr|2

)−1 ∣
∣

∣

1√
N

∣

∣

∣

2

≈
N
∑

r=1

1

N + |µr|2
. (30)

As properly demonstrated in [5], this assumption holds

very well for different parameter configurations of matrix A,

including different roll-off factors of prototype filter g[n].

Based on above, the symmetrized joint PDF of {µj}, j =
0, 1, . . . , N − 1), can be accurately approximated by

pµ(µ1, ..., µN ) ≈ 1

N !

∑

{q(j)}

[

N
∏

j=1

1

2πpΦ2|χq(j)|2

× exp

(

− |µj |2
2pΦ2|χq(j)|2

)

]

, (31)

where the sum involves all N ! permutations of

{q(1), q(2), ..., q(N)}, with q(j) being the indices of

{χ}, which are the eigenvalues of the matrix A.

Now, considering the joint PDF of eigenvalues of
√
p HchA,

as shown in Eq. (31), the next step is to find accurate

approximations for the PDF of the random variables αn and

Γn, which will be detailed next.

C. Statistics for αn and Γn

In order to compute an approximation for the PDF of αn,

we should first obtain its mean (µ) and variance (σ2). To this

end, we depart from the joint PDF given in (31) and use the

relation given in (30), which results in the mean value for αn

[5]

µ = E[αn] = −
N
∑

j=1

[

1

Ψ2
j

exp

(

N

Ψ2
j

)

Ei
(

− N

Ψ2
j

)

]

. (32)

We proceed similarly to compute the variance of αn, which

is given by [5]:

σ
2 = E[α2

n]− (E[αn])
2

=
N
∑

j=1

[

1

NΨ2
j

+
1

Ψ4
j

exp

(

N

Ψ2
j

)

Ei
(

− N

Ψ2
j

)

− 1

Ψ4
j

exp

(

2N

Ψ2
j

)

Ei2
(

− N

Ψ2
j

)

]

, (33)

where Ei(x) represents the exponential integral function,

which is defined by

Ei(x) = −
∫ ∞

−x

e−t

t
dt. (34)

In addition, Ψ2
j is given by the following relation:

Ψ2
j = 2pΦ2|χj |2, (35)

where Φ2 =
∑N

r=1 σ
2
r and χj denotes the jth eigenvalue of

matrix A.

Then, the PDF of αn can be approximated in terms of the

incomplete Gamma function as

pα(αn) ≈
1

Γ(k) θk
αk−1
n exp

(

−αn

θ

)

, (36)

where Γ(·) denotes the Gamma function [11, Eq. (8.310)],

θ = σ
2/µ, and k = µ

2/σ2.

Based on the approximation above, we can easily reach at

an accurate approximation for the PDF of Γn after appropri-

ate substitutions and using standard statistical procedure for

random variables transformation, i.e.,

pΓ(Γn) ≈
1

Γ(κ) θκ
(1 + Γn)

−1−κ exp

(

− 1

(1 + Γn)θ

)

.

(37)

IV. ACHIEVABLE SUM RATE

Assuming independent decoding at the receiver, the achiev-

able ergodic sum rate for MMSE receiver is given by [12]:

Rmmse(Γn, N) =

N
∑

n=1

EΓn
[log2(1 + Γn)], (38)

which can be rewritten as

Rmmse =

N
∑

n=1

∫ ∞

0

[log2(1 + Γn)] pΓ(Γn) dΓn

≈
N
∑

n=1

∫ ∞

0

[

log2(1 + Γn)
1

Γ(κ) θκ
(1 + Γn)

−1−κ

exp

(

− 1

(1 + Γn)θ

)]

dΓn, (39)

to solve the Integral in (39) let α = −1/θ and consider that
∫ ∞

0

log(x+ 1)

(x+ 1)p
dx = − d

dp

∫ ∞

0

dx

(x+ 1)p

=
1

(p− 1)2
,ℜ(p) > 1

(40)



and

exp

(

α

(1 + Γn)

)

=
∑

j≥0

αj

j! (Γn + 1)j (41)

the equation for Rmmse could be re-written as

R
mmse

≈
N (−ακ)

Γ(κ) log(2)





∑

j≥0

∫ ∞

0

log(1 + Γn)

(1 + Γn)κ+1

αj

j! (1 + Γn)j
dΓn





≈
N (−ακ)

Γ(κ) log(2)





∑

j≥0

αj

j!

∫ ∞

0

log(1 + Γn)

(1 + Γn)j+κ+1
dΓn





≈
N (−ακ)

Γ(κ) log(2)





∑

j≥0

αj

j!

1

(j + κ)2





≈
N (−ακ)

Γ(κ) log(2)

(

κ
2

2F2(κ, κ;κ+ 1, κ+ 1;α)
)

(42)

where 2F2(·, ·; ·, ·; ·) represents the Generalized Hypergeo-

metric function [13, pp.555-566.]. Then, using the residue

theorem to the integral representation of the function

Gm,n
p,q

(

a1,...,ap

b1,...,bq

∣

∣

∣

∣

∣

z

)

, which is the Meijer’s G-function [11, Eq.

(9.301)] and replacing θ = −1/α, the Eq. (42) could be finally

defined as

Rmmse ≈ N

Γ(κ) log(2)

(

Γ
(

κ,
1

θ

)(

log(1/θ) + log(θ)
)

+

G 3,0
2,3

(

1,1
0,0,κ

∣

∣

∣

∣

∣

1

θ

)

− Γ(κ)(log(θ) + ψ(0)(κ)))

)

,

(43)

where ℜ(κ) > 0, and ψ(0)(z) = Γ′(z)/Γ(z) is the Polygamma

function.

V. OUTAGE CAPACITY

Considering that the variable Γn represents the SINR, it is

possible to calculate the non-ergodic capacity CΓn
of the nth

data symbol by CΓn
= log2(1 + Γn) [14], [15]. However,

to calculate the outage capacity of the system, it should be

considered that there are N = S × K symbols. Then, we

calculate the GFDM system capacity by

CΓ =

N
∑

n=1

log2(1 + Γn) = N log2(1 + Γn). (44)

So, as we know the PDF of Γn from (37), it is possible

to calculate the PDF of the random variable CΓ, which is

represented by fCΓ
(CΓ) and computed using random variable

transformation, i.e.,

fCΓ
(CΓ) =

(1 + Γn)
−1−κ e

−1
θ(1+Γn)

Γ(κ)θκ N
log(2) (1+Γn)

∣

∣

∣

∣

Γn=2CΓ/N−1

=

e−
2−CΓ/N

θ

(

2−CΓ/N

θ

)k

log(2)

NΓ(k)
,

(45)

The outage probability of the system associated with a given

transmission rate is defined as the probability that the random

variable CΓn
falls below an arbitrary data rate value, which

is named as Rout. Accordingly, the outage probability for the

GFDM system is therefore given by

Pout = P [CΓ < Rout]

= FCΓ
(Rout)

(46)

where FCΓ
(CΓ) is the cumulative distribution of CΓn

defined

by

FCΓ
(CΓ) =

∫ Rout

∞

fCΓ(CΓ) dCΓ (47)

In order to solve the (47), we use the following variable sub-

stitution: t = 2
−CΓ
N

θ in (45). So, dt = −2−CΓ/N

N θ log(2) dCΓ.

FCΓ
(CΓ) =

∫ ∞

2−CΓ/N

θ

(

e−t tκ−1

)

dt =

Γ

(

κ, 2
−CΓ
N

θ

)

Γ(κ)
,

(48)

where the function Γ(a, x) ≡
∫∞

x
ta−1e−tdt is the upper

incomplete Gamma function.

VI. PERFORMANCE ANALYSIS

To validate the analytical formulations of the achievable

sum rate and outage capacity defined in (39) and (46), we

employ Monte Carlo simulation to demonstrate the accuracy

of the proposed models. The simulation considers different

parameters for the GFDM system, namely the prototype filter

defined by a root raised cosine (RRC) with a specific roll-

off factor, and the number of sub-carriers and symbols. The

channel is modeled as a FSFC, for different sizes of the L,

power delay profile modeled by σ2
m = e−0.2m, m = 1, . . . , L.

The power transmission for data symbols (σ2
d) is equal to 1.

So, the SNR values (p = σ2
d/σ

2
v) depend only of the noise

variance.

A. Achievable sum rate results

Figure 1 presents the achievable sum rate for some number

of sub-carriers as K = 8, 32, 128, number of sub-symbols

as S = 3, 5, the roll-off factors = 0.1, 0.9, and the number of

channels steps is L = 2. In all cases, the analytical approxima-

tion (represented by lines) matches with high accuracy with the

Monte Carlo simulation (represented by markers), indicating

the effectiveness of the proposed approach.

As the performance analysis itself, the achievable sum

rate is presented as a function of the SNR (p) using a

logarithmic scale in the achievable sum rate axis. The greater

the N = S.K, the higher the achievable sum rate value.

For example, when the SNR is 30 dB the achievable sum

rate for the case with K=8 and S=3 is less than 100 bps/Hz.

For the same SNR value, the achievable sum rate for K=128

and S=5 is approximately 400 bps/Hz. Based on this result,

we can conclude that the mathematical model described in

(39) is approximating the achievable sum rate with acceptable

accuracy in scenarios using a roll-off=0.1 and roll-off=0.9.
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Fig. 1. Simulated and analytic achievable sum rate for GFDM for different
values of k,S, roll-off, and L. The abbreviations S. and A. mean simulation
and analytical respectively.
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Fig. 2. Probability of outage versus SNR for different values of Rout for
GFDM (S = 3, K = 32, L = 2) with Roll-off= 0.9. Every Rout is in
bps/Hz, and the abbreviations S. and A. means simulation and analytical,
respectively.

B. Outage results

We considered the following GFDM parameters: K = 32,

S = 3, L = 2, and roll-off= 0.1. Many curves were generated

based on the assumption that an arbitrary data rate is fixed.

These data rates vary from 20 bps/Hz until 80 bps/Hz. As less

the value of the data rate, much is the chance of a specific

scenario to be in outage. For example, for a Rout = 20 bps/Hz

and a SNR value of 10 dB the outage probability is equal to

0.3. In the same analyse point, for a Rout = 80 bps/Hz the

outage probability is increased to 0.95.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we studied the achievable sum rate and the

outage for a GFDM system in closed-form employing MMSE

receivers over FSFC based on a Gamma-distribution approx-

imation for the random variable that define the SINR. the

accuracy of the proposed model was evaluated with different

GFDM parameters and channel conditions. For instance, that

the outage probability when the SNR= 20 for the Rout = 25
bps/Hz is less than 5%. As future works, we plan to extend

this work to more performance metrics, providing a thorough

comparison of the GFDM and other techniques as OFDM.
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