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Abstract
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Framework for Digitalizing Different Industrial Sectors via the Internet of Things
Lappeenranta 2023
66 pages
Acta Universitatis Lappeenrantaensis 1117
Diss. Lappeenranta–Lahti University of Technology
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The Industrial Revolution 4.0 (IR4.0) refers to the current era of technological advance-
ments that are transforming the different sectors of productive activities. It brings what
is called Industry 4.0 characterized by the convergence of physical and digital systems
that support the automation of several tasks. In this context, the Internet of Things (IoT)
is enabling companies to make more informed decisions and operate more efficiently by
providing a data network of physical objects that are connected to one another through
dedicated applications. The industrial IoT has emerged as a key component of Industry
4.0, as it enables the collection of vast amounts of industrial data that can be used to op-
timize processes and improve decision-making. Data platforms have been developed to
build and run different IoT applications, i.e., to process the huge amount of data generated
by the IoT devices that are as diverse as the different industrial sectors. Handling such a
massive amount of data is a challenge, leading to an approach usually called big data.

This doctoral dissertation explores different aspects of the IoT and explains how differ-
ent parts of the IoT can work together to support a given application, especially in the
industry. The focus is on the IoT data platforms—systems that enable the deployment
and management of IoT devices. They are essential for data collection, analysis, and vi-
sualization by enabling a set of tools and services for device management, data analytics,
and application development, as well as for support of various communication protocols
and standards. Despite the generality of these processes related to the IoT, each industrial
sector has specific requirements.

To enable companies to implement their specific IoT applications, an IoT platform is
needed. The market offers a multitude of IoT platforms, each sharing similar functionali-
ties but differing in their implementation and underlying technologies. These technolog-
ical advancements present numerous difficulties for businesses and government entities,
especially when dealing with the IoT infrastructure and platforms, which may be unfamil-
iar to many players in the field. Choosing an appropriate IoT platform from the available
choices is a complex undertaking because this decision must consider not only current
requirements but also potential future demands. This dissertation aims to answer the
question: “Is it possible to create a unified framework for the digitalization of industrial
sectors based on the IoT in integration with technologies like big data and analytics and
edge computing?” The study also aims to answer the following subquestions: 1) How



would a unified framework look like that can be used for the selection of an IoT plat-
form based on companies’ business requirements? 2) What happens when such a unified
framework is applied to a specific domain of Industrial Energy Management? and 3) Can
such an approach be deployed in different industrial sectors?

This dissertation offers a unified approach to solve practical deployment issues when
digitalizing operations, taking into consideration particular applications. The main con-
tributions of the dissertation can be summarized as follows. First, 21 key factors of an
IoT platform required for the selection of a suitable IoT platform are identified for dif-
ferent applications considering the indications provided by the management of the indus-
try, following a five-stage procedure. Second, a theoretical framework for an efficient
cyber-physical system design is proposed by covering processes from data collection
to end-user decision-making in order to build an industrial energy management system
(IEnMS). Third, four different solutions based on the proposed approach are constructed
for a diverse set of industrial applications, namely digitalization of a power-to-X plant,
a cyber-physical pyrolysis process to recycle carbon fiber-reinforced polymer compos-
ite wastes, IoT platform selection for an IEnMS, and the data processing architecture of
smart grids.

Keywords: Industrial IoT, IoT platforms, industrial energy management system, cyber-
physical systems
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1 Introduction
The Industrial Revolution 4.0 (IR4.0), which includes cyber-physical systems (CPSs), in-
dustrial Internet of Things (IoT), edge computing, and artificial intelligence, is essentially
a trend toward automation and data exchange in technologies related to different sectors of
material production. Although there is currently no evidence that the expertise of humans
will be replaced by machines, they are often more effective than humans in performing
repetitive tasks, and the combination of machine learning and computational power en-
ables machines to perform extremely difficult tasks [1].

To this end, a development called Industry 4.0, which will be more and more dependent
on the IoT, is currently evolving. The use of digital technologies in industrial processes
produces an ecosystem that is highly connected and intelligent. This technological evo-
lution has a positive effect on diverse applications like industrial automation, predictive
maintenance, energy management, and data-driven decision-making. Industry 4.0 can be
characterized by interconnected, intelligent, and adaptable industrial systems utilizing the
power of the IoT, which may then boost productivity, efficiency, and competitiveness in
the industrial sector. Thus, expertise in the IoT and its supporting platforms in order to
deploy different applications becomes a necessity.

Despite (or because of) the rapid technological development in information and commu-
nication technologies (ICTs), there are still fundamental questions to be solved, especially
when actual solutions must be deployed and successfully operated. One of the problems
is related to the selection of the most suitable choice for running the data processes, con-
sidering the large number of service providers and their specific architectures for data
networks (also with the possibility of in-house operation of the industrial data network).
Other problems arise from the mismatch between the demands of the representatives of a
given industry and what the ICTs can offer.

1.1 Main objective and research questions

In this context, the main objective of this doctoral research is to propose a general, uni-
fied approach to support the selection and deployment of IoT-based solutions in differ-
ent industrial sectors, considering both the specialized technical knowledge and opinions
provided by experts and members of industrial organizations. Specifically, the proposed
framework involves not only the IoT but also big data and analytics to effectively improve
different applications in different industrial sectors. The main objective can be expressed
as the following question: Is it possible to create a unified framework for the digital-
ization of industrial sectors based on the IoT in integration with technologies like big
data and analytics and edge computing? In this dissertation, the top five IoT platforms
(AWS, Microsoft Azure, Google cloud IoT, IBM Watson IoT, and Oracle IoT) have been
selected based on their market shares for considering the key factors of an IoT platform.

To achieve this broad aim, three different intermediate research questions must be an-
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swered:

RQ1: What would a unified framework look like that can be used for the selection of an
IoT platform based on companies’ business requirements?

RQ2: What happens when such a unified framework is applied to a specific domain of
Industrial Energy Management?

RQ3: Can such an approach be deployed in different industrial sectors?

A schematic view of the aforementioned research questions is given in Figure 1.1.

Figure 1.1: Schematic presentation of the research questions to be answered in this doc-
toral dissertation.

1.2 Hypothesis and contributions
Those RQs were posed based on the hypothesis that digitalization of industrial processes
can be made effective through the IoT in connection with the modern technologies like big
data and analytics and edge computing, leading to their cyber-physical operation. How-
ever, to achieve its goals, a proper selection of an IoT platform is needed considering the
specifics of the end application; this was the aim of Publication I, which offers the answer
to RQ1. Besides, to advance toward a specific case, which refers to RQ2, the attention was
turned to an IoT-based deployment of Industrial Energy Management Systems (IEnMS)
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as a timely case study considering the current sustainability actions. This contribution
indicated the path to implement an IEnMS as a technical tool that is part of the energy
policies of a given company. The results were presented in Publication II and Publication
V. The methodology of these two publications (I & II) is based on an in-depth literature
review and expert opinions obtained through questionnaires.

To assess the generality of the proposed framework to select an IoT platform and design
a specific data network architecture to acquire, process, and analyze data, four illustrative
cases of digitalization of industrial operations were investigated, namely cyber-physical
operation of a power-to-X plant (Publication III) and a pyrolysis process (Publication IV),
IoT platform selection for an IEnMS (Publication V), and big data processing architec-
ture for smart grids (Publication VI) as shown in Figure 1.2. These four contributions
demonstrate the potential that the proposed unified framework has, answering RQ2 and
RQ3. It is pointed out that the methodology employed in Publications III–VI was based
on the utilization of the framework developed in Publications I and II but applied in differ-
ent sectors. The research was conducted in collaboration with experts in their respective
fields, bringing an interesting interdisciplinary aspect to these studies.

Figure 1.2: Schematic presentation of the research questions and publications answering
the questions.

1.3 Structure of the dissertation
This doctoral dissertation is structured to answer the above-mentioned research questions
in a sequential manner in the following chapters.

Chapter 1 covers a brief introduction of all the topics included in the dissertation. The
chapter also describes the motivation of the doctoral research and introduces the structure
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of the dissertation.

Chapter 2 contains the background information about the IR4.0, the IoT, IoT platforms,
big data, edge computing, and cyber-physical systems.

Chapter 3 provides the results of the publications and answers the above-mentioned ques-
tions. The chapter highlights the contributions of Publications I–VI, which mainly focus
on the proposed general framework for the digitalization of the operations of different in-
dustrial sectors considering their specific requirements and design options offered by the
IoT platforms.

• Section 3.1 presents the results of Publication I, which answers RQ1. In the publi-
cation, the key factors of the IoT platform are identified from the literature, and five
top IoT platforms are studied based on their market shares. Based on companies’
business requirements, an IoT platform selection framework is designed.

• Section 3.2 highlights the contributions of Publication II, which provides informa-
tion about the Industrial Energy Management System (IEnMS) and how the IoT and
big data analytics are used to facilitate the IEnMS and its operations. This section
answers RQ3.

• Section 3.3 contains the contributions and results of Publications III–VI, the focus
being on the importance and role of the IoT and big data in various industrial ap-
plications including the energy sector (smart grids), an industrial pyrolysis process,
and operation of power-to-X processes. This section answers RQ2 and RQ3.

Chapter 4 concludes the dissertation with a summary of the main scientific contributions
of the work, as well as its implications, limitations, and future perspectives.
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2 Background

2.1 Internet of Things

The Internet of Things, or simply the IoT, refers to how physical objects are connected to
one another over a data network. The IoT uses sophisticated backend systems that require
various capabilities based on the system’s needs. The IoT is already used in many realms
of daily life, including agriculture, homes, health services, transport, and power grids [2].
The idea of the IoT was first introduced by Kevin Ashton in 1999 [3]. After almost 25
years, the IoT is still gaining traction in a number of industrial sectors including logistics,
industrial manufacturing, and multi-energy systems. Connecting the physical and digital
worlds is the main goal of the IoT, which initially used radio frequency identification
system (RFID) technology to identify, track, and monitor different physical elements.
IoT applications today incorporate various types of data acquired from sensors and further
processed in computing devices, moving further and further away from basic RFIDs [4].

2.1.1 Key components of the IoT

The functionalities and importance of the IoT, which are identified in the literature review
presented in Publication I, can be described by addressing its building blocks. There are
six building blocks, as presented in Figure 2.1. These blocks are the components of the
IoT that are working together to support specific applications and solve specific tasks [2].

Identification block: There is a high integration of technologies in the IR4.0, resulting in
a great amount of digitalization and networking in industries, and the number of devices
and the communication involved have increased [5]. The identification block is used for
the identification and tracking of devices within the huge number of devices/objects in
the IoT network to manage and control these devices in an efficient and secure manner.
Devices in the network are identified by their object ID, which contains their name and
address, by using different protocols, such as IPv6 and IPv4, and different methods like
electronic product codes (EPC) and ubiquitous codes (uCode). Because the identification
techniques are not universally unique, it is crucial to distinguish between object identifi-
cation and address [2]. Addressing helps to uniquely identify objects. The identification
block plays a major role in the IR4.0 as it acts as the foundation for the connectivity,
interoperability, security, and data-driven decision-making, which are required for the in-
dustrial automation.

Sensing block: Sensors acquire data of specific processes to then send them to a com-
puting unit (usually in the cloud) that can handle their processing. Often, there are also
actuators or physical hardware like switches that intervene in the physical world through
commands generated in IoT platforms, working in opposition to sensors [6]. This is the
basis of control systems and cyber-physical systems [7].

Communication block: The connectivity part of the IoT is one of the main elements of
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Figure 2.1: Building blocks of the IoT (adapted from Publication I).

the IR4.0 as it provides the physical systems with digital technologies, resulting in the au-
tomation of industrial processes. Connectivity enables collection of data from sensors and
elements (things), real-time decision-making, and integration of digital technologies into
industrial processes. In the IR4.0, the selection of connectivity technologies depends on
several factors, such as data rate, range, application requirements, and reliability. In this
process, many heterogeneous objects communicate with each other and with the platform
to exchange information related to different services by using protocols like MQTT and
CoAP. Through the use of communication technologies like ZigBee, Near Field Com-
munication (NFC), wireless fidelity (Wi-Fi), SigFox, Long Range (LoRa), and cellular
networks, sensors and other devices are linked to the Internet [2, 8].

Computation block: The computation block of the IoT plays a major role in the IR4.0
as it provides the required computing power, performs data processing, providing intel-
ligence, and connects different industrial processes, thus bringing benefits to the IR4.0
[9]. There are two components in the computation block: hardware and software. IoT
applications can be run on many hardware platforms, such as Intel Galileo, Raspberry PI,
UDOO, and Arduino. Like hardware platforms, software platforms are used to carry out
IoT functionalities. The operating system, which is used almost exclusively during the
device activation process, is the primary software platform [2, 8].

Services block: This block comprises the environment that the developers use when cre-
ating new applications considering the existence of already available services, which can
be classified into four categories. There are two types of identity-related services: active
and passive. Active identity-related services are those that broadcast information and use
battery power or a constant power source. Information can be sent or transmitted to an-
other device by active identity-related services. Passive identity-related services require
an external device or mechanism to transmit their identity, because they lack a power
source. Services that deal with passive identities can only read data from objects. The
processes of gathering data from sensors, processing those data, and then sending them to
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the IoT application for processing are referred to as information aggregation services. The
information provided by the information aggregation services is used by collaborative-
aware services to make decisions and take appropriate actions. Everybody who needs
them can get collaboratively aware services from ubiquitous services at any time and any-
where [10, 11].

Semantics block: To efficiently acquire this knowledge, contextualized data processing
leading to cognitive features of the data based on information is required. In this case, ob-
jects are associated with a semantics that is based on, for example, location and utilization
of a resource, its model, and predicted behavior [2, 8].

2.2 IoT platforms
IoT platforms are deployed to provide services to applications that are related to man-
agement, connectivity, and data processing, as well as cyber-security and user interfacing
[12]. As reported in Publication I, there has been a rapid growth in the number of IoT
platforms; in 2020, there were at least 620 IoT platforms, leading to a fierce competition
between service providers [13]. On the other hand, as reported in 2018, the majority of
users are served by the five largest IoT platforms, namely Amazon Web Services (AWS),
Google Cloud, Microsoft Azure, IBM Watson IoT, and Oracle. This, however, brings
challenges for the management and decision-makers of different companies if they wish
to digitalize their internal processes through the IoT.

For companies to select an appropriate IoT platform, a few important factors must be
taken into account based on the specific needs of the application under consideration. It is
not necessary for an IoT platform to have all possible features; rather, the decision should
be a balance between the features for a well-determined context. By examining different
IoT platforms, these factors were identified in the literature [8, 14, 15] and reported in
Publication I.

In this dissertation, the key elements of the IR4.0 are explained [5, 9, 16, 17, 18, 19, 20,
21]. Keeping these points in mind, it is discussed in the following how the IoT platform
selection should be carried out.

Stability: In terms of the IR4.0, stability refers to the ability of businesses, industries, and
societies to maintain a sense of equilibrium, security, and predictability in the face of rapid
technological advancements and disruptions. While the IR4.0 offers numerous opportu-
nities for growth and innovation, it also presents challenges that need to be addressed to
ensure stability. There may be some platforms that are unable to provide customers with
such services. Therefore, a platform that has a good chance of surviving in the market
should be chosen. Here, customers who have previously used the platform can provide
information about it [8].

Scalability and flexibility: In the IR4.0, the term scalability refers to the ability of busi-
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nesses and industries to adapt, grow, and evolve in response to the rapid advancements in
technology and changing market demands. The IR4.0 represents a new era of industrial-
ization characterized by the integration of digital technologies, automation, data analyt-
ics, and the IoT into various aspects of manufacturing and business processes. Initially, a
company may be small, but it may grow over time. Therefore, the IoT platform should be
scalable to the potential growth of the company. The platform should also be adaptable
in terms of technology, because both the consumer demand and modern technologies are
constantly changing [22].

Pricing model: The pricing model for the Internet of Things (IoT) plays a significant
role in the context of the IR4.0. The IR4.0 is characterized by the integration of digi-
tal technologies, including the IoT, into various aspects of industrial and manufacturing
processes. The IoT pricing models need to be flexible and scalable to accommodate the
unique needs of businesses in this era. At the beginning of a contract agreement, some
platform providers offer a low price; however, after that, the price may rise sharply. Ad-
ditionally, some service providers advertise low prices to attract clients, but the contracts
contain only a few features, and adding more features would be expensive. Consequently,
such a platform should be chosen that provides all the features that the company needs at
a price that is in line with its budget [23].

Security: In the context of the IR4.0, security is a critical concern because of the in-
creasing integration of digital technologies, automation, and connectivity in industrial
processes. Ensuring the security of systems, data, and operations is essential to prevent
cyberattacks, protect sensitive information, and maintain the reliability and safety of crit-
ical infrastructure. Security is a crucial component of the IoT, the quality of which should
be high in all platforms. Data encryption, application authentication, secure session initia-
tion, application authentication, cloud security, and device security are just a few possible
types of security that can be used [24].

Time to market: The IR4.0 is characterized by the integration of digital technologies,
data-driven decision-making, and automation into various aspects of manufacturing and
business processes. Reducing time to market is a key objective in the IR4.0 because
it can lead to numerous advantages, including competitiveness, innovation, and respon-
siveness to changing customer demands. The questions of time to market and how the
platform provider will support the company during the process from product conception
to sale should be taken into account when choosing an IoT platform. Some IoT platform
providers provide new clients with quick start packages that can expedite product devel-
opment, shorten the time to market, and provide better solutions [24].

Data analytics and visualization tool: Data analytics and visualization are fundamental
components of the IR4.0, enabling organizations to extract useful insights from the vast
amounts of data generated by connected devices and processes. These insights drive im-
provements in efficiency, productivity, quality, and innovation, ultimately contributing to
the success of the IR4.0. Prospective IoT platform users should determine which platform
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offers the best capabilities to aggregate, analyze, and visualize data before choosing an
IoT platform. Users should pay close attention to how the IoT platform replaces built-in
functionalities by integrating top analytics tools. Prior to choosing an IoT platform, re-
quirements for data analysis and information visualization should be determined [24].

Data ownership: One of the complex and evolving issues of the IR4.0 is the data owner-
ship. The IR4.0 is characterized by the widespread use of digital technologies, the Internet
of Things (IoT), artificial intelligence (AI), and big data analytics, all of which generate
and rely on vast amounts of data. The ownership of these data is a critical concern, which
raises legal, ethical, and economic questions. With IoT data, the ownership of the data is
a challenging issue. Further, laws vary between jurisdictions. For instance, the European
Union (EU) and the United States (US) have different laws and policies regarding data
ownership. The service provider of an IoT platform then must have knowledge of data
rights and the geographic scope of data protection [24].

Cloud infrastructure ownership: The ownership of the cloud infrastructure in the IR4.0
is a complex and evolving landscape. The IR4.0, marked by the integration of digital tech-
nologies, automation, and data-driven processes, relies heavily on cloud computing for
storage, processing, and data accessibility. The public cloud infrastructure is owned and
operated by third-party cloud service providers, such as Amazon Web Services (AWS),
Microsoft Azure, Google Cloud Platform (GCP), and others. These companies own and
manage vast data centers and offer cloud services on a pay-as-you-go basis. Many busi-
nesses and organizations use public cloud services to host their applications, data, and
services, effectively outsourcing the infrastructure ownership to these providers. Some
smaller IoT platform providers only offer the software layer because the hardware in-
frastructure layer is expensive. Some service providers run their services primarily on a
single top platform and certify their platform on one or more of the top public cloud ser-
vice providers. It is important to verify that the provider of the IoT platform is compatible
with the larger enterprise cloud [22].

Extension of legacy architecture: The extent of legacy architecture in the IR4.0 varies
based on industry, organization, and various factors, such as cost, regulation, and risk
tolerance. While many businesses are working to embrace digital transformation and
replace legacy systems with more advanced technologies, the process can be complex
and time-consuming, leading some organizations to continue using legacy systems along-
side newer innovations. IoT devices are made to function with a variety of infrastructure
systems, but the connectivity in an existing IoT is frequently unknown. Therefore, orga-
nizations should consider how new technology generations can work together with older
technology when choosing an IoT platform.

Protocols: In the IR4.0, protocols refer to standardized sets of rules and conventions
that enable seamless communication, interoperability, and data exchange between vari-
ous devices, systems, and components in a connected and automated environment. These
protocols play a crucial role in ensuring the efficient operation of IR4.0 technologies.
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MQTT, HTTP, AMQP, and CoAP are some of the crucial protocols that are supported by
IoT platforms. For example, MQTT is very light and has much lower overheads because
it is binary. As new IoT-enabled devices are constantly being introduced, the chosen IoT
platform should be flexible to support the inclusion of new protocols that are brought by
such a development.

System performance: In the IR4.0, system performance is a critical aspect that per-
tains to the efficiency, effectiveness, and reliability of various technological systems and
processes used in modern manufacturing and business operations. In the IR4.0, where
technologies like automation, data analytics, the IoT, AI, and advanced robotics are heav-
ily integrated, optimizing the system performance is essential for achieving the desired
outcomes. When an event occurs in an IoT platform, a rule-based trigger may be auto-
matically activated. The average time to analyze and handle each event increases as more
devices connect to the IoT platform because they support such a method. Prior to choos-
ing an IoT platform, it is important to understand the measures the provider has taken to
keep the platform performance at a high level.

Interoperability: In the IR4.0, interoperability is a critical concept that relates to the
ability of different systems, devices, machines, and software to connect, communicate,
and work together in a seamless manner. This interoperability is fundamental to the suc-
cess of the IR4.0 as it enables the integration of various technologies and components,
facilitating data exchange and automation. Middleware refers to the software developed
to be in the middle between the end application and the servers supporting the IoT plat-
form. Numerous end applications will use the collected data, and the platform itself may
not even have access to it. The chosen IoT platform should thus enable integration with
open-source ecosystems. The organization that is using the IoT platform can increase its
productivity by ensuring interoperability of the middleware along different data sources.

Redundancy and disaster recovery: In the IR4.0, where downtime and data loss can
have significant financial and operational consequences, redundancy and disaster recovery
are critical investments. These strategies help organizations maintain operational stabil-
ity, protect valuable data, and mitigate the impact of disruptions, whether they are caused
by hardware failures, cyberattacks, natural disasters, or other unforeseen events. IoT plat-
form providers should have specialized infrastructure to handle data during adverse events
(e.g., disasters). Problems related to the IT infrastructure can occasionally occur, either
caused by natural disasters or human errors. The data backup plan schedule and the avail-
ability of failover cluster provision in the IoT platform are issues that must be taken into
account before the selection of an IoT platform.

Attractive interface: In the IR4.0, an attractive interface refers to user interfaces (UI) and
user experiences (UX) designed to be visually appealing, intuitive, and efficient for users
interacting with digital technologies, automation systems, and smart devices. To create an
attractive interface in the IR4.0, businesses often collaborate with UI/UX designers and
usability experts who specialize in designing interfaces that are visually appealing, user-
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friendly, and aligned with the specific needs of the industry. In order to make it simple for
users to access the platform features, the interface of the IoT platform has to be appealing,
user-friendly, and straightforward. All of the services provided to the customers should
be simple to access.

Application environment: The business application environment in the IR4.0 is charac-
terized by the integration of advanced digital technologies and automation into various
aspects of business operations. This transformation has a profound impact on how busi-
nesses operate, innovate, and compete in the global marketplace. The IR4.0 involves
digitalization of the core business processes. This includes the use of sensors and IoT
devices to collect real-time data, cloud computing for data storage and processing, and
adoption of digital workflows to streamline operations. Before choosing an IoT platform,
it is important to take into account three aspects of the application environment: the types
of applications that are preinstalled, the features of the application development environ-
ment, and the common interfaces.

Hybrid cloud: Hybrid cloud solutions play a significant role in the IR4.0 owing to their
ability to address the diverse and evolving needs of businesses in the digital era. IR4.0
technologies generate large volumes of data, which may require a flexible and scalable
IT infrastructure. A hybrid cloud allows businesses to scale their computing and storage
resources up or down based on demand, ensuring that they can handle the data-intensive
workloads of the IR4.0 without significant upfront investments. Hybrid cloud solutions
are essential for businesses in the IR4.0, because they provide the agility, scalability, and
flexibility required to leverage the full potential of digital transformation while effectively
managing data, legacy systems, security, and compliance. They serve as a bridge between
the traditional infrastructure and the cloud-native, data-driven future of the IR4.0. Some
IoT platforms can integrate with current IT systems that are hosted on the premises of
the company. In these circumstances, a hybrid cloud is very helpful because it allows
the management of public and less important operations by the platform while mission-
critical or sensitive processes can be handled locally.

Platform migration: Platform migration in the context of the IR4.0 is the process of
transitioning from legacy systems or platforms to new, digital, and often cloud-based
platforms that leverage advanced technologies to drive innovation, efficiency, and com-
petitiveness. Platform migration is a crucial strategic move for many organizations as they
seek to adapt to the changing industrial landscape. Before migrating to a new platform,
organizations need to conduct a comprehensive assessment of their current systems, pro-
cesses, and technology infrastructure. This assessment should identify the shortcomings
and opportunities for improvement that necessitate a migration. The IoT platform might
not be able to accommodate all the needs of the company over time as it expands. Con-
sequently, a larger IoT platform provider might be required. In order to prepare for any
potential future migration to other IoT platforms, companies should ensure that the cho-
sen IoT platform provider offers clearly documented interfaces, schemas, and application
programming interfaces (APIs).
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Previous experience: Before making a decision, a company should determine whether
the IoT platform provider has experience with the work of the companies that are follow-
ing the IR4.0, and whether this experience is comparable with the company application.
A successful work history in the same field can be viewed favorably.

Bandwidth: In the IR4.0, bandwidth plays a crucial role in enabling the seamless flow of
data between devices, machines, sensors, and systems, which are interconnected as part of
the Industrial Internet of Things (IIoT). It allows the rapid and reliable exchange of data,
supports real-time decision-making, and underpins the interconnected nature of smart fac-
tories and industrial processes in the IR4.0. The availability and capacity of bandwidth
will continue to be a key consideration for organizations looking to fully harness the ben-
efits of the IR4.0. The IoT platform requires low-latency and high-bandwidth networking
for effective data transfer and communication between the processing elements. There-
fore, it is important to confirm that a potential IoT platform provider has a large data pipe
and enough room for expansion.

Edge intelligence and control: Edge computing involves the deployment of advanced
computing capabilities, data analytics, and control systems closer to the edge of the net-
work, where data are generated and actions are executed. Edge intelligence and control
are fundamental components of the IR4.0, enabling faster decision-making, greater effi-
ciency, improved safety, and more responsive industrial processes. By processing data
closer to the source and leveraging advanced technologies like AI and the IoT, businesses
can gain a competitive edge and better adapt to the demands of the IR4.0. Decentraliza-
tion of centralized data processing as in large-scale computing servers is also an option
in some specific cases. This brings the computation close to the network edge. As this
paradigm is becoming more frequent, it is important to ensure that the IoT platform can
support novel topologies to make use of what is called edge intelligence.

2.3 Big data and analytics

The IR4.0 mostly requires the adoption of big data and the related technologies that are
combined to meet the data collection, storage, processing, and analysis requirements [25].
Because of industrial automation in the IR4.0, a huge amount of data is generated by a
variety of sources, including machine controllers, sensors, industrial equipment, people,
social media, and software applications [26], and conventional data processing software
and techniques cannot usually successfully process such big data in order to produce use-
ful information [27]. The term big data refers to all of these massive data entering at rapid
speeds and in various formats (structured, unstructured, and semistructured) [25]. “The
three Vs”: volume, velocity, and variety, are well-known big data properties. The amount
of data generated is associated with volume, the speed with which data are processed is
associated with velocity, and the variation in the sorts (types) of data produced is asso-
ciated with variety [28]. Utilizing massive amounts of data in order to find meaningful
insights, trends, or models is the key to long-term innovation in an IR4.0 factory. For
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Figure 2.2: Big data and analytics.

example, cyber-physical systems continuously generate a large amount of data, which re-
quires the big data techniques to process and help to improve system scalability, security,
and efficiency to achieve the full autonomy in Industry 4.0, and the processed information
is used for future business decisions.

The three Vs of big data, namely volume, velocity, and variety, as shown in Figure 2.2,
are explained in the following.

Volume: Volume refers to the massive amount of data generated, which causes datasets to
become too large for standard database technology. Larger data units, such as terabytes,
petabytes, and exabytes, are used to measure this type of data [28].

Velocity: The velocity of data is the rate at which it is generated, processed, and trans-
ferred in real time [28].

Variety: The type of data (nature of data) varies, indicating whether the data are struc-
tured or unstructured [28].

These three data characteristics determine whether the stream of data can be fairly called
big data. There are steps to handle the big data and extract meaningful information from
them. For the processing of big data, a higher computing power is also needed.

2.4 Local and cloud computing
Computing capability that is confined to a single space can be called local computing. The
servers used in local computing are the units of computing hardware that are dedicated
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Figure 2.3: Cloud computing.

to performing specific tasks within a given physical space of a company. These servers
are built based on the specific needs as indicated in [29]. For example, the data network
used in a university could be considered local computing that meets its data processing
requirements. The term cloud computing, in turn, refers to both the applications delivered
as services over the Internet and the hardware and systems software in the large data
centers that provide those services. Several computer hardware and software that offer
some specific services to the general public result in what is commonly called cloud, as
shown in Figure 2.3.

2.5 Edge computing
The integration of different digital technologies into industrial processes describes the
IR4.0, resulting in increased automation, connectivity, and data-driven decision-making.
Edge computing is critical in enabling and improving these capabilities. Edge computing
is essential for the IR4.0, because it enables real-time decision-making and customiza-
tion while ensuring a low latency, reliable operation, effective bandwidth utilization, data
privacy, and scalability. Industries may fully benefit from the IR4.0 and increase their
efficiency, productivity, and competitiveness by incorporating edge computing into their
infrastructure [28, 30].

As its name entails, edge computing is the data processing paradigm that brings the data
processing closer to the edge of the data network, i.e., closer to the end-application.
In other words, the aim of the edge computing is that computation should be done in
the proximity of data sources [31]. Figure 2.4 depicts the process of edge computing,
where nodes at the network edge are performing several different tasks like computation,
caching, device management, and even training of machine learning algorithms. This ap-
proach has the benefit of reducing the data traffic that will go through the Internet to reach
the cloud.
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Figure 2.4: Edge computing, adapted from [32].

It is also emphasized that the decision between cloud and edge is nuanced. Most of the
industries have shifted their operations to some form of cloud computing together with
the increasing number of IoT devices with the huge amount of data acquired [33]. In the
industrial environment, the increase in this vast amount of data from devices creates many
problems. First, the huge amount of data has to be analyzed, and much of those data may
be irrelevant to the operations. This creates high traffic to the central repository and a
high cost of extra unnecessary storage. Second, the huge amount of data takes more time
to send to the cloud server. This is crucial in many industrial applications, because for
some applications, the difference between seconds and milliseconds can be very impor-
tant. Third, sending data to the cloud and retrieving those data can be very costly [33].

Edge computing filters out the important data and analyzes them locally in real time,
which may improve the speed of data analysis and also the decision-making process [33].

Table 2.1: Differences between the cloud and edge computing paradigms (adapted from
Publication VI).

Point of difference Cloud computing Edge computing

Operations Happens on the cloud platforms,
such as AWS, Azure, Google

Happens on the device
itself

Benefits
Can store a massive amount of data on scalable
hosting in the cloud, which can be accessible

anytime on the Internet

Network can be scalable independently
with each new device that is added to the

system

Suitable use cases Suitable for the operations with extreme
latency concerns

Suitable for the businesses that require
a huge amount of data storage and need

scalable and cost-effective hosting providers
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In [34], a proof-of-concept platform was built for running a facial recognition applica-
tion; the response time in the cloud was recorded to be 900 ms, and by shifting to the
edge the response, the time reduced to 169 ms. In another study [35], cloudlets were
used to offload computing tasks for wearable cognitive assistance, there were significant
improvements in the response time, from 80 to 200 ms, and the energy consumption was
reduced by 30%–40% by cloudlet offloading.

Although edge computing provides some benefits, this does not mean that the importance
of cloud computing can, or should, be ignored, because having a centralized location for
the data storage, process, and analysis still has many benefits. Edge computing can be
used to process sensible information or time-sensitive data, allowing other less critical
data to be processed in the cloud. For example, some data in the cloud may not be needed
immediately but can be later used for machine learning purposes for the improvement of
industrial operations and strategies [36]. A summary of the differences is presented in
Table 2.1, which was first reported in Publication VI.

2.6 Cyber-physical system
The term cyber-physical system (CPS) emerged as one element of the IR4.0. CPS is as-
sociated with the automation and integration of industrial processes, which enable inno-
vative functionalities using new capabilities related to data exchange and processing over
networks. According to [37], CPSs comprise interacting digital, analog, physical, and
human components engineered to function through integrated physics and logic. CPSs
are mostly involved in the digitalization processes of various sectors of life.

In a general way, a CPS consists of a physical process, sensing devices (sensors/actuators),
communication technology, data processing capabilities, and a decision-making mecha-
nism. According to [7], the physical process can be digitalized by using sensing devices to
get the data, and those data are then be sent to the data processing unit using the commu-
nication network. After the data processing, the information is shared either with humans
or machines for decision-making as shown in Figure 2.5. The term CPS was coined by
Helen Gill in 2006, and some key events about the CPS were organized at the National
Science Foundation (NSF) workshop in October 2006 and later in the same year in the
workshop on Network Embedded Control for CPS [3]. In the literature, with the passage
of time, the definition of CPS has been based on six key characteristics, namely hybrid
system, hybrid methods, control, component classes, time, and trustworthiness as shown
in Table 2.2.

CPSs necessarily combine both computational and physical capabilities that can also in-
volve humans, leading to new types of interactions between the physical world through
computation, communication, and control.
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Figure 2.5: Cyber-physical system, adapted from [7].

Table 2.2: Different definitions of CPS as presented in [3].

Source Characteristics Definition
[38] Hybrid Systems “Cyber-Physical Systems (CPS) are integrations of computation with physical processes.”

[39] Hybrid Systems
“CPS addresses the close interactions and feedback loop between the cyber components,

such as sensing systems, and the physical components.”

[38] Hybrid Methods
“The intellectual heart of CPS is in studying the joint dynamics of physical processes, software,

and networks.”

[40] Hybrid Methods
“The dynamics among computers, networking, and physical systems interact in ways that

require fundamentally new design technologies.”

[41] Control
“Cyber-Physical Systems (CPS) integrate computing and communication capabilities with

monitoring and control of entities in the physical world.”

[38] Control
“Cyber-physical systems (CPS) are physical and engineered systems whose operations are

monitored, coordinated, controlled, and integrated by a computing and communication core.”

[42] Component Classes
“CPS is envisioned to be a heterogeneous system of systems, which consists of computing

devices and embedded systems including distributed sensors and actuators. These components
are inter-connected together.”

[3] Component Classes
“The computational and physical components of such systems are tightly interconnected and

coordinated to work effectively together, sometimes with humans in the loop.”

[42] Time
“These concerns are of particular importance in cyber physical systems in which computation

and communication timing and event semantics are independent with physical timing and event semantics.”

[3] Trustworthiness
“Cyber Physical Systems (CPS) are smart networked systems with embedded sensors, processors and
actuators that are designed to sense and interact with the physical world (including the human users),

and support real-time, guaranteed performance in safety-critical applications. ”

[43] Trustworthiness
“A cyber-physical system (CPS) integrates computing, communication and storage capabilities with

monitoring and/or control of entities in the physical world, and must do so dependably, safety, securely,
efficiently and real time.”
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3 Publication overview
In this chapter, the publications included in this doctoral dissertation are presented. The
chapter provides a summary of the research work carried out to achieve the main objective
of the dissertation. For each publication, the motivation, the main context, the link to the
research objectives, the general and specific research questions, the method used, and the
findings and contributions are presented. This dissertation contains six research articles
(Publications I–VI) published in different journals and conferences. The main topics cov-
ered in these publications are the role of the IoT and big data in developing cyber-physical
systems, designing a theoretical framework for the selection of IoT platforms for indus-
trial applications, highlighting the key factors of IoT platforms, and benefits of using the
IoT in different industrial applications. A schematic presentation of the relation between
Publications I–VI and the three research questions introduced in Section 1.3 is given in
Table 3.1.

Table 3.1: Publications I–VI, their titles, and the associated research questions.

Publication Title Related RQ

Publication I
Twenty-One Key Factors to choose an IoT platform:
Theoretical Framework and its Applications

RQ1

Publication II
Industrial Energy Management System: Design of a
Conceptual Framework using IoT and Big Data

RQ3

Publication III
Operation of Power-to-X-Related Processes
Based on Advanced Data-Driven Methods:
A Comprehensive Review

RQ3

Publication IV
IoT framework and requirement for intelligent
industrial pyrolysis process to recycle CFRP
composite wastes: application study

RQ3

Publication V
Unified Framework to Select an IoT Platform
for Industrial Energy Management Systems

RQ2

Publication VI
Smart Grid Information Processes Using IoT and
Big Data with Cloud and Edge Computing

RQ3

3.1 Publication I
Title of Publication I: Twenty-One Key Factors to choose an IoT platform: Theoretical
Framework and its Applications.

3.1.1 Research objectives and the research question answered

The current trend of digitalization is bringing a huge change in the industrial sector, dif-
ferent physical elements, and processes connected to share information. Many industries
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have already started to shift part of their operations to the cloud. The IoT has played
a major role in this, emphasizing the necessity of the proper selection of a suitable IoT
platform based on the specific characteristics of the applications to be digitalized.

Currently, there are plenty of IoT platforms on the market, most of them having similar
functionalities, but with different implementations and underlying technologies. Hence,
selecting a suitable IoT platform for a given company is a hard task. There are multiple
reasons behind this. One reason is the lack of experience in the management of the IoT
and its platforms. A consequence of this is the lack of understanding of the company’s
own requirements in terms of technical specifications for the future IoT deployment.

The specific aim of Publication I was to first highlight the key building blocks of the IoT
for the understanding of its functionality and significance by identifying and verifying
the key factors of an IoT platform. The publication addresses RQ1 of the dissertation by
answering the following specific research question:

How to select a suitable IoT platform for industrial applications?

3.1.2 Rationale and context

Publication I presents a concise overview of the need for understanding the IoT and its
various components, as well as IoT platforms and the key factors associated with them. To
grasp the functionality and significance of the IoT, it is crucial to comprehend its funda-
mental elements, which collaborate to deliver its functionalities and accomplish specific
objectives. This study acknowledges six primary building blocks of the IoT, namely Iden-
tification, Sensing, Communication, Computation, Services, and Semantics.

IoT platforms play a vital role in providing essential services and features to IoT appli-
cations. An IoT platform constitutes a significant part of an IoT solution. When imple-
menting the IoT for business applications and other functionalities, a company needs to
select an appropriate IoT platform. There is a hike in the industrial digitalization, and
companies are shifting their businesses to the cloud. However, there is a gap in the under-
standing of the IoT and IoT platforms. There is a vast array of IoT platforms available on
the market, and finding one that adequately meets the company’s business requirements
poses a challenge. This predicament can be resolved by understanding the key factors of
IoT platforms and aligning them with the company’s business needs.

In this study, 21 key factors of IoT platforms were identified from the literature. Addition-
ally, the importance of these factors was validated by a survey to IoT experts. Moreover,
based on the discussion, a theoretical framework was proposed for the selection of the
IoT platform for companies.
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3.1.3 Research method and data collection

In the study, 21 key factors of an IoT platform were collected, and the importance of
those services was verified by a questionnaire survey sent to experts in different univer-
sities. The data collected for this study are from research articles published in different
scientific journals and conferences. Various websites were studied, including the websites
of different IoT platforms. Initially, a large number of research articles and websites were
studied, multiple articles addressing the same topics were removed, and finally, the sam-
ple was limited to 46 studies.

In the research, a two-round Delphi study was conducted. Based on the literature review,
a questionnaire was designed consisting of 21 questions, each of which was related to the
IoT and the IoT platform as shown in Table 3.2. For the answers, a five-point scale from
1 to 5 was used (1 = “totally agree”, 2 = “agree”, 3 = “neutral”, 4 = “not agree”, and 5 =
“totally disagree”). Fifteen IoT experts from three different universities were selected for
the survey, the response time was two weeks, and the questionnaire was sent by email.
In the first round, 14 experts replied to the questionnaire as shown in Figure 3.1. The
response rate of the first round was relatively high, and the experts (80%) mostly agreed
with the questions. A few experts (6%) disagreed, and some of the experts (14%) gave a
neutral response to some questions.

During the second round of the survey, the same questionnaire was used, however, with a
summary of the experts’ responses of the first round and some explanations of the ques-
tions included. Again, the questionnaire was sent to the 15 experts by email, and the re-

Table 3.2: Questions used in the survey, applying the Delphi method (Publication I).

Q# Survey question
Q1 What is your opinion about the importance of stability of IoT platform?
Q2 What is your opinion about the importance of Scalability of the enterprise of IoT platform?
Q3 Do you think that IoT platform should be flexible with the advancement of technologies?
Q4 Do you think it is important to know about the pricing models before selecting IoT platform?
Q5 Do you think IoT platform should provide security at both the ends, software and hardware?
Q6 Do you think IoT platform can reduce Time to market for the business?
Q7 Do you think IoT platform should support the basic descriptive, predictive and perspective analytics?
Q8 Do you think it is important to know who will own the data collected by IoT platform?
Q9 Is it important to know the application environment of IoT platform?
Q10 Do you think it is important to know the Ownership of cloud infrastructure?
Q11 Do you think extend of legacy architecture in IoT platform is important?
Q12 Do you think Edge intelligence is important for IoT platform?
Q13 Do you think IoT platform needs high bandwidth networking?
Q14 Do you think it is important for IoT platform to support new Protocols and its updated versions?
Q15 Do you think the IoT platform vendors should implement some steps to keep System performance high?
Q16 Do you think the providers should have some dedicated infra to handle customer data if there is some problem in IT?
Q17 Do you think Hybrid cloud is important for IoT platforms?
Q18 Do you think the providers should offer facilities to customers for any possible migration to other IoT platform?
Q19 Do you think IoT platform Interoperability will enable the organization to get higher productivity?
Q20 Is it necessary to check the previous experience of IoT platform, before selection?
Q21 Is it necessary that user interface of the IoT Platform should be simple and attractive?
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Figure 3.1: Expert opinions in the first round (Publication I).
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Figure 3.2: Expert opinions in the second round (Publication I).

sponse time was two weeks. In the second round, 14 experts replied to the questionnaire.
Some of the experts had changed their opinion about some questions; the percentage of
“agree” changed from 80% to 81%, the percentage of “disagree” changed from 6% to
4%, and the percentage of “neutral” increased from 14% to 15%. The results are shown
in Figure 3.2.
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Table 3.3: Results of both the rounds of the Delphi study. The mean and median are taken
from the “agree” values (Publication I).

Survey round 1 Survey round 2
F Factor Mean Median Disagree % Neutral % Agree % Mean Median Disagree % Neutral % Agree %
F1 Scalability 4 4 14% 7% 79% 4 4 0% 7% 93%
F2 Flexibility 4 4.5 0% 7% 93% 4 4.5 0% 7% 93%
F3 Data analytics 4 5 7% 0% 93% 5 5 0% 7% 93%
F4 Disaster recovery 4 4 0% 7% 93% 4 4 0% 7% 93%
F5 Stability 5 5 0% 7% 93% 5 5 0% 7% 93%
F6 Security 5 5 0% 7% 93% 5 5 0% 7% 93%
F7 Data ownership 5 5 0% 7% 93% 5 5 0% 7% 93%
F8 Protocol support 5 5 7% 0% 93% 5 5 0% 7% 93%
F9 System performance 5 5 0% 7% 93% 5 5 0% 7% 93%
F10 Time to market 4 4 7% 7% 86% 4 4 7% 7% 86%
F11 Legacy architecture 4 4 14% 7% 79% 4 4 0% 14% 86%
F12 Attractive interface 5 5 0% 14% 86% 5 5 0% 14% 86%
F13 Pricing model 4 4.5 0% 21% 79% 4 4.5 0% 21% 79%
F14 Cloud ownership 4 4 7% 14% 79% 4 4 0% 21% 79%
F15 Interoperability 4 4 14% 7% 79% 4 4 7% 14% 79%
F16 App. environment 4 4 0% 29% 71% 4 4 0% 29% 71%
F17 Hybrid cloud 4 4 7% 29% 64% 4 4 0% 36% 64%
F18 Platform migration 4 4 7% 29% 64% 4 4 7% 29% 64%
F19 Previous experience 4 4 7% 29% 64% 4 4 7% 29% 64%
F20 Edge intelligence 4 4 14% 29% 57% 4 4 14% 29% 57%
F21 Bandwidth 4 4 21% 21% 57% 4 4 14% 29% 57%
– Percentage – – 6% 14% 80% – – 4% 15% 81%

Table 3.3 shows the results of both rounds with some statistical calculations. For sim-
plicity, “agree” and “totally agree” are merged into “agree”, and “disagree” and “totally
disagree” into “disagree”.

3.1.4 Results and conclusions

The results of both the rounds of the survey are shown in Table 3.3. In the first round, the
percentage of “agree” was 80% , the percentage of “disagree” was 6%, and the percentage
of “neutral” was 14 %. In the second round, the “agree” percentage increased to 81%, the
“disagree” percentage reduced to 4%, and the “neutral” percentage reached 15%.

The top five IoT platforms based on their market share are considered in the theoretical
five-stage methodology of this study for choosing an IoT platform for industrial applica-
tions (see Figure 3.3). The company outlines its business requirements in the first round
and explains how important IoT platforms and components are for the company. In the
second round, the requirements are prioritized by the company as required (R), important
(I), and not necessary (-). The third step compares the features offered by the IoT plat-
forms to the business requirements. The fourth stage involves choosing IoT platforms that
satisfy all of the company’s business criteria or the majority of them. There is a chance
that several IoT systems are able to meet the requirements. In the fifth stage, based on
a comparison of their match to I variables, including, e.g., pricing and time to market, a
company can choose an IoT platform that is appropriate for its business goals. Addition-
ally, it is possible that none of the platforms offer all the necessary functionalities. In that
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Figure 3.3: Theoretical five-stage framework for the IoT platform selection (Publication
IV).

case, the company can decide to study more IoT platforms.

The purpose of Publication I was to develop an objective technique that will assist enter-
prises in choosing the best IoT platform based on their unique business requirements. To
this end, the IoT’s fundamental components were addressed, and it was explained how
they work together to carry out particular activities. Second, based on the literature, 21
essential components of IoT platforms were identified, which were then used in the Del-
phi study to be confirmed with industry experts. The theoretical framework developed for
choosing an IoT platform was tested using five well-known IoT platforms. Publication
I offers thus a broad framework for choosing the best IoT platform for a particular firm
by evaluating its unique requirements in comparison with the capabilities provided by the
various platforms.

3.2 Publication II

Title of Publication II : Industrial Energy Management System: Design of a Con-
ceptual Framework using IoT and Big Data.

3.2.1 Research objectives and the research question answered

An industrial energy management system (IEnMS) can offer several approaches for chang-
ing the profile of the energy demand of companies using ICTs, sensors, and actuators. For
instance, an industrial process can be programmed to run automatically when solar photo-
voltaic (PV) electricity is available. The IEnMS can also track the amount of energy used
by various industrial processes and machines, allowing it to identify undesirable patterns
and alert the appropriate staff to replace them with more energy-efficient models.

The main goals of this study were to identify the existing solutions, highlight their key re-
quirements, and suggest a high-level architecture for the IEnMS that takes into account the
IoT, big data processing, and data analytics while considering relevant aspects collected
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in a survey to experts employed in the relevant industry. Publication II then serves as an
in-depth example that solves RQ3 by answering the following specific research question:

How do the IoT, big data, and analytics support an energy efficient operation in the
industry by the IEnMS?

3.2.2 Rationale and context

Publication II provides the details of the IEnMS. Like in Publication I, the IoT and its
components, IoT platforms, and key factors are addressed, and a framework for the se-
lection of IoT platforms is designed. Publication II focuses on the IEnMS and its compo-
nents, practices, and processes.

An IEnMS is desirable to ensure the successful implementation of the company’s energy
management. This allows the development of an objective method for monitoring, plan-
ning, and regulating the company’s energy consumption and efficiency, and the achieve-
ment of the planned energy-positive goals.

3.2.3 Research method and data collection

In this study, a quantitative research method was used by collecting research data from
previous publications in which the main components like planning/strategy, operation/
implementation, control, organization, and culture of the IEnMS have been identified.
The data were later verified by a detailed questionnaire to experts in ten large companies
to improve the performance of the IEnMS by using the latest technologies like the IoT,
big data, and data analytics in the IEnMS.

The data collected in this study were based on a survey, and a questionnaire was designed
that contains 20 questions with five options: “totally disagree”, “disagree”, “neutral”,
“agree”, and “totally agree” as shown in Table 3.4 with some statistics about the expert
opinions. Representatives of ten large companies replied to the survey.

3.2.4 Results and conclusions

The numbers of respondents choosing “totally disagree” or “disagree” were lower. Some
of the company experts did not respond to some of the questions, such as those about
the development of an energy management team by the energy manager and the lack of
management awareness of the IEnMS. In general, the majority of respondents expressed
that they “totally agreed” or “agreed” with the majority of the points, such as whether or
not the industries should use the IEnMS to take advantage of the newest technologies like
the IoT, big data, and data analytics, and whether or not this will help the industries in
terms of reduced energy consumption, efficient energy use, lower energy bills and costs,
and lower greenhouse gas emissions.
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Table 3.4: Survey questions (Publication II).

S.No Topic Total Disagree Disagree Neutral Agree Totally Agree Mean Median

Q1
An Industrial Energy Management System is good for energy

saving 0% 0% 0% 30% 70% 4.7 5

Q2
An Industrial Energy Management System can reduce

greenhouse gas emissions 0% 0% 0% 50% 50% 4.5 4.5

Q3
There is lack of management awareness in industries for

energy management 0% 20% 30% 30% 20% 3.5 3.5

Q4
An Energy Management System will provide energy saving

opportunities 0% 0% % 50% 50% 4.5 4.5

Q5
The company’s energy policy plays an important role in

designing energy management system 0% 10% 10% 20% 60% 4.3 5

Q6 Long term energy planning is important for industries 0% 0% 0% 30% 70% 4.7 5

Q7
An energy manager should create an energy management

team 0% 0% 30% 40% 30% 4 4

Q8
It is important for the energy manager to be environment

friendly 11% 0% 11% 11% 67% 4.2 5

Q9
It is important that companies should display department-wise
energy usage status using screens to motivate staff members

to save energy
0% 0% 20% 40% 40% 4.2 4

Q10
It is important for companies to give incentives and rewards to

staff to encourage them to achieve energy targets 0% 10% 20% 20% 50% 4.1 4.5

Q11
Companies need some renovation in the existing infrastructure

to improve energy management infrastructure 0% 0% 22% 22% 56% 4.3 5

Q12
It is important for companies to add green energy like solar

and wind energy to their existing energy usage 0% 0% 10% 20% 70% 4.6 5

Q13
Companies should have a strong policy to reduce greenhouse

gas emissions 0% 0% 10% 0% 90% 4.8 5

Q14
Installing sensors on machines, so that these machines can
use IoT-based techniques to share real data with each other,

will lead to improved energy efficiency and performance
0% 0% 0% 50% 50% 4.5 4.5

Q15
Using IoT and Big data in Industrial Energy Management

Systems will facilitate timely identification and prevention of
faults

0% 0% 0% 50% 50% 4.5 4.5

Q16
Companies should invest more in Industrial Energy

Management Systems (IEnMS) 0% 0% 10% 60% 30% 4.2 4

Q17
IoT is helping to improve HVAC (heating, ventilation, and air

conditioning) systems in manufacturing plants. 0% 0% 20% 50% 30% 4.1 4

Q18

IoT devices are capable of collecting a huge amount of real
time data about different machines. Therefore, collecting and

using Big Data is a good option for companies to perform
real time data about different machines.

0% 0% 11% 33% 56% 4.4 5

Q19
IoT and Big Data will make data analysis and processing

easier and will give energy information very quickly and this
can be useful for business decisions in the future.

0% 0% 11% 22% 67% 4.6 5

Q20
Industries should use the latest IoT-enabled technologies in

their Energy Management System to improve energy activities
like efficiency, performance, usage, cost etc.

0% 0% 10% 20% 70% 4.6 5

Figure 3.4 shows the results (with different colors) of the questions asked from the ex-
perts. Here, the purple color indicates the industry expert opinions “totally agree”, light
gray “agree”, light orange “neutral”, red “disagree”, and blue “totally disagree”. The ma-
jority of the companies recognized the importance of the points asked in the 20 questions.
The companies agreed about the importance of the IEnMS in terms of energy efficiency,
energy consumption, and reductions in energy costs and greenhouse emissions by using
renewable energy and the latest technologies like the IoT, big data, and analytics.

Table 3.4 shows the survey questions and the response percentages of the experts. A
design for the IEnMS was presented based on the most recent technologies, the IEnMS
needs, and the opinions of the company experts as shown in Figure 3.5. The design con-
sist of five stages. The first stage is data collecting, during which large amounts of data
are gathered from various sources, including, e.g., machinery, renewable energy sources,
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Figure 3.4: Survey results by topics, in percentages (Publication II).

and CCTV. This volume of data is kept in an inexpensive cloud storage. The second
stage is data acquisition, during which the gathered data are stored in the master nodes
of the Hadoop cluster, which can accommodate numerous data types produced by hetero-
geneous devices. The incomplete data are either fixed or eliminated throughout the data
preparation process. The data are then saved in Flume in one or more channels. In the
third stage, the stored data are sent to the Hadoop Distributed File System (HDFS) repos-
itory, where they are formatted as needed. The large file is divided into several blocks
by the HDFS, and these blocks are stored in various data nodes. The data that are stored
in the HDFS are examined by Yet Another Resource Negotiator (YARN). In the fourth
stage, HIVE is used to run SQL queries on the stored data in the HDFS. The fifth stage
is the last stage, in which the calculated data (information) are shared with the energy
management for, e.g., future planning and decision-making.
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Figure 3.5: Data generation using the IoT and processing with big data. The solid arrows
indicate the data flow from one element to another, and the dashed line shows possible
information about the industrial operations based on the data reports from the IEnMS
(Publication II).

Publication II emphasizes the value of the IEnMS and describes each of its parts in detail.
The IEnMS outlines the procedures and techniques used in industrial energy management,
which are often regarded as supporting activities. The study discussed the advantages that
the IoT, big data, and data analytics provide to the industrial sector as well as why the
IEnMS should use them. In the study, large companies were surveyed in detail, and the
findings indicate that the majority of industrial professionals support the use of contem-
porary technologies in the IEnMS. A theoretical framework was developed for acquiring
energy information by utilizing the IEnMS and contemporary technologies based on the
advice provided by industry experts. In this framework, IoT devices are used to gather
machine data, which are then sent to a database, where the big data process and data an-
alytics are started. Finally, the data-generated information is transmitted to the energy
manager, a specialist in energy management. By using this strategy, businesses should
be able to reduce greenhouse gas emissions while also improving their energy efficiency.
Additionally, the information provided by the data can be used for industrial equipment
maintenance as well as for present and upcoming business decisions.

A survey administered to energy experts in various companies (all the ten companies sur-
veyed) found that improvements in energy efficiency are anticipated to be made by using
the IEnMS as a centralized entity that will support the business in making better strate-
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gic and operational decisions based on data, while enabling an energy-centric operation
through specialized IoT devices, sensors, and actuators.

3.3 Publications III–VI: Cases of CPS and benefits of the IoT

This section highlights the benefits of the IoT in different industrial applications to be op-
erated as a CPS. It also explains how to use the proposed IoT platform selection method-
ology (proposed in Publications I, II) in different industrial applications. The section is
built based on the research work of Publications III–VI to answer RQ2 and RQ3. Pub-
lication V is used to answer RQ2. The specific research questions of these papers are
presented case by case.

3.3.1 Publication III: Operation of Power-to-X cogeneration plants based on ad-
vanced data-driven methods: A comprehensive review.

The main objective of this study was to propose a data-driven approach that enables the
cyber-physical operation of power-to-X industrial plants. This study is based on the work
done in Publication II, in which the key building blocks of the IoT are discussed, and the
operation and principles of the IoT and big data are explained. In this context, the specific
research question is given as follows:

How to use the IoT in power-to-X-related processes based on advanced data-driven
methods?

When introduced, the idea of producing renewable, carbon-neutral fuels that absorb CO2

during production sounded unrealistic. Now, however, this technology is a fact. One of
the primary strategies to accelerate the energy transition will be P2X, especially when
coupled with sector coupling. P2X collects CO2 from the atmosphere and combines it
with green hydrogen to produce a variety of future fuels that are carbon-neutral. Publica-
tion III highlights the importance of data-driven methods used for the collection of data
from the various parts of the methanation reactor (e.g., electricity source, electrolysis,
CO2 capture, hydrogen H2 storage). In this study, the IoT was used for data collection
from the overall process of a methanation reactor. The collected data are stored in an
inexpensive cloud storage, from where the data are transferred to the big data for data
analysis, calculations, and provision of information. Later on, the same calculated data
are passed to the machine learning process for the future predictions, and based on them,
to the future planning and decision-making process. Based on the facts and the current
high-level technologies, a theoretical framework was designed, which will help in all the
processes starting from data collection to the future predictions by using machine learn-
ing.

Publication III employed a quantitative research method, and the data used in the research
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Figure 3.6: Operation of the methanol synthesis. The proposed architecture (Publication
III).

were produced with a Matlab model by one of the coauthors of this publication. Based
on the literature review and the requirements of methanol synthesis, an architecture was
designed for the data gathering from the whole process, and later, the data were stored in
a cloud storage. From there, the data are sent to big data and analytics, from where the
data are available for the machine learning process.

In Publication III, an advanced architecture was designed for a P2G system including
advanced data-driven methods, such as the IoT, big data, and machine learning as shown
in Figure 3.6. In this study, an IoT-based system (architecture) was designed that consists
of four interconnected stages.
The IoT sensor devices are integrated into the entire physical infrastructure (renewable
energy sources, the electrolysis process, and hydrogen and methane storage) of the P2X
process at the first stage in order to collect data. The information collected at this stage
comes from various components of the proposed architecture, such as solar panels, wind
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turbines, air pressure, atmospheric temperature, electricity price, the amount of electricity
used for the electrolysis process and CO2 capture, the amount of H2 produced and stored,
the amount of H2 and CO2 used to produce methanol, and the amount of methanol itself.
The data generated in the first stage are transmitted and saved in a cloud storage in the
second stage, where they are processed further. This stage requires wired or wireless in-
ternet connectivity, or in some situations, access to nearby computer units that use edge
computing or private networks.

In the third stage, the large amount of data that has been stored is sent to big data analyt-
ics tools for additional processing. All types of data, including structured, semistructured,
and unstructured data, are included in the big data. Opportunities to enhance industrial
services are then created by the data that the IoT services generate. For enhanced infor-
mation presentation as part of an expert system, the data produced by IoT sensors, for
instance, can be examined in real time. This will help future decision-making and system
operation. This third stage can be further divided into four phases, to be presented next,
that make up the big data process.

The initial stage comprises the following tasks: Taking into account the requirements
of the intended end application, massive data collected in the second stage are stored.
The collected data are subsequently transmitted to the master node of the Hadoop cluster.
Because of the diversity of data formats from heterogeneous devices, data preparation
is required. Accurate and incomplete data are handled during data preparation, and in-
complete data are either rectified or eliminated. Flume is used to collect data; it gathers,
aggregates, and sends large amounts of data to the Hadoop master node. Flume records
the information it receives through one or more channels.

In the second stage, the data are transmitted to an external Hadoop Distributed File Sys-
tem (HDFS) repository. Then, by storing individual blocks of big files in a number of data
nodes connected to the master node, data are serialized and written in a specific format.
Any sort of data, whether structured, unstructured, or semistructured, can be stored using
the HDFS. DataNodes make up the HDFS clusters. These DataNodes store both the file
system metadata and the actual data together. It is possible to handle jobs on nodes where
the data are present because the two run on the same set of nodes. Data saved in the HDFS
are analyzed using YARN.

In the third stage, by using the tools Hive and Impala, SQL queries can be run on the
HDFS data. HIVE is specifically used for data selection, analysis, and computation on
the relevant data.

Data analytics is the last step, releasing the data that have been processed for use as a
decision-support tool. Hadoop data analytics is carried out by using Scalable Advanced
Massive Online Analysis (SAMOA), a distributed streaming machine learning system.
Finally, the prediction stage is the fourth stage. This stage involves giving the machine
learning or expert system the cleaned-up data from the big data repository, either as a
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training set or a decision-support tool.

Publication III examined the application of current advances in ICT, including the IoT,
big data, and machine learning, in P2X processes. The study specifically focused on
the production of renewable electricity that would profit from the utilization of the most
recent P2X technology. A further objective was to study how to efficiently deploy recent
ICTs to support the operation of P2X applications. In this regard, the paper discussed the
collection, distribution, and processing of data in P2X scenarios as well as the available
technology for putting such CPSs into practice.

3.3.2 Publication IV: IoT framework and requirement for intelligent industrial py-
rolysis process to recycle CFRP composite wastes: application study.

This contribution focuses on the digitalization of a pyrolysis process in industry. The
study is based on the work done in Publication I, in which the key factors of an IoT plat-
form are discussed, and a five-stage theoretical framework is designed to be used to select
a suitable IoT platform for industrial application based on business requirements. This
study answers the following research question:

How to select an IoT platform for an intelligent industrial pyrolysis process?

Publication IV addresses carbon fiber recycling. For decades, the utilization of carbon
fiber-reinforced polymer (CFRP) composites in high-performance applications has in-
creased tremendously. The composites can replace traditional metals in lightweight ap-
plications because of their outstanding mechanical qualities for a low weight ratio. How-
ever, 20 years later, CFRP composites still in use have reached the end of their useful
lives (EoL), raising serious concerns about how to dispose of them. As of now, 62,000
tonnes of CFRP composite trash have accumulated annually, and a forecast states that if
properly disposed of, the amount might rise to 90,000+ tonnes/year. The yearly demand
for virgin CFRP composites is also anticipated to rise from 72,000 to 140,000 tonnes/year
in the same period. The only sustainable solution to achieve a balance is to recycle the
used composites, recover the precious carbon fibers (CFs), and incorporate them into new
composites.

The pyrolysis recycling process to recover CFRP composite wastes is depicted in Figure
3.7. The composite waste is first mechanically shred to minimize its size before being
fed into the system. The pyrolysis reactor is a sealed chamber without any oxygen. To
separate the valuable CFs from the matrix, the procedure is carried out at 550 °C for the
necessary amount of time (dependent on the amount of waste), but in an inert gas atmo-
sphere. The resin leftovers are then oxidized by passing the recovered fibers through a
secondary heating chamber at 200 °C. Finally, the CFs are recycled to produce hot gas
and pyrolytic oil, which can both be utilized as feedstock. Overall, pyrolysis on an indus-
trial scale offers huge long-term advantages.
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Figure 3.7: Pyrolysis process (Publication IV).

It is important to efficiently dispose of the accumulated carbon fiber-reinforced polymer
(CFRP) composite trash. In wealthy nations like the UK and Germany, pyrolysis, the
most efficient thermal-based recycling method to date, has progressed significantly to-
ward industrial scalability. Within such a large operational environment (e.g., higher than
1 tonnes/day operating capacity), even the smallest errors can result in undesirable out-
comes and delays in the workflow. To reflect the various classifications and volumes of
the CFRP composite wastes, the existing semiautomated and, in some cases, fully au-
tomated plants should be regularly updated. An IoT-based approach was suggested to
address these knowledge gaps and errors.

Using the concepts of cyber-physical systems, Publication IV investigated the theoret-
ical integration of an IoT-based framework into the pyrolysis process to recycle CFRP
composite waste. The proposed framework is made up of sensors and actuators that will
be used to gather data and communicate with a central management built as a platform
that will articulate and manipulate data to meet the needs of the recycling process, com-
putationally modeled through logical relations between physical entities. The goal of
integrating IoT technology into industrial-scale pyrolysis is to enhance its performance
and factors like cost, speed, reliability, and scalability. Additionally, the publication ad-
dressed debates on the data acquired from the Internet of Things (IoT) as a trustworthy
source of knowledge in the present decision-making and future advancements in the py-
rolysis process.

Figure 3.8 shows the IoT network that was built for an industrial-scale pyrolysis setup. At
every step that is critical to the process, from the waste feed to the CF recovery, sensors
and actuators are used. The IoT framework is intended to be adaptable and expanded to
a variety of furnaces (pyrolysis process 1, pyrolysis process 2, and pyrolysis process n).
The setup for the pyrolysis process is shown in Figure 3.7. The primary gateway sends
the data collected from each furnace to the cloud for storage, processing, and display.
Additionally, information can be obtained through cloud-based data. Based on that in-
formation, a further business choice can be made in the future that will accurately and
precisely improve and speed up the CF recycling process.
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Figure 3.8: Implementation of the IoT framework in industrial-scale pyrolysis (Publica-
tion IV).

Figure 3.9: IoT schematic of an in-site CF recycling process (Publication IV).

By incorporating physical elements into the digital realm of what is referred to as a cyber-
physical system (CPS), the CFRP waste recycling process will benefit from the deploy-
ment of the IoT. This will make it possible to better regulate the input material moved
by the conveyor, control the furnace temperature, and monitor the creation of char in real
time. As demonstrated in Figure 3.9, the IoT is being utilized to create a cyber-physical
environment where actuators and sensors are connected to a gateway that serves as an
interface to a cloud server. A manager can monitor, manage, or analyze stored data re-
motely in the digital environment.

At the end of the study, the framework for IoT platform selection presented in Publication
I was used to select a suitable IoT platform for the pyrolysis process based on the re-
quirements of the process. The prerequisites for the pyrolysis process aiming at recycling
CFRP composite waste encompass the elimination of manual labor, acceleration of recy-
cling rates (more than 1 ton per day), enhancement of energy efficiency, and improvement
in overall efficiency. Additionally, the framework for IoT platform selection involves de-
termining the necessary heat for processing a specific quantity of CFRP composite waste
and estimating the heat generated during the process. Moreover, in the IoT platform se-
lection process, emissions (both exhaust and external to the system) are calculated. In
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summary, the pyrolysis process necessitates stability, flexibility, scalability, security, an
appealing user interface, data analysis capabilities, and system-wide interoperability. Fur-
thermore, the process requires a user-friendly application development environment for
its IoT cloud-based business application. These pyrolysis process requirements are di-
vided into two categories: ”important” and ”required”. Among them, stability, flexibility,
scalability, security, user-friendly interface, and data analysis are considered ”important”,
while interoperability is deemed ”required”. The pyrolysis process requirements are then
compared with the features offered by five major IoT platforms, as outlined in Table 3.5.
All of the critical pyrolysis process requirements are aligned with the features offered by
the AWS IoT platform. However, Azure falls short in terms of the necessary flexibility
and the required interoperability factor.

Table 3.5: Features provided by IoT platforms [44]

Factors AWS Azure Google IBM Oracle
Scalability Yes Yes Yes Yes Yes
Flexibility Yes - Yes - Yes
Stability Yes Yes Yes - -
Security High High High High High
Data analytics Yes Yes Yes Yes Yes
Disaster recovery Yes Yes No No No
Data ownership - Yes - - -
Protocol support Yes Yes - Yes Yes
System performance Yes - Yes Yes -
Interoperability Yes - - - Yes
App. environment Yes Yes Yes Yes Yes
Cloud ownership Yes Yes Yes Yes
Pricing model Bad Bad Good - -
Legacy architecture Yes - - - Yes
Attractive interface Yes Yes - No -
Time to market Yes Yes Yes
Bandwidth - - Good - -
Edge intelligence Yes Yes Yes - Yes
Hybrid cloud Yes Yes - - -
Platform migration Yes Yes - - -
Previous experience Yes Yes - - -

3.3.3 Publication V: Unified Framework to Select an IoT Platform for Industrial
Energy Management Systems

This publication is based on the work done in Publication I, in which the six main build-
ing blocks of the IoT are explained, and 21 key factors of IoT platforms are identified.
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Moreover, Publication V also uses the key components and requirements of the IEnMS
presented in Publication II. The goal is to answer RQ2. The main research question of the
publication is the following:

How to select an IoT platform for industrial energy management systems based on busi-
ness requirements?

By combining the IoT and big data, Publication V aimed to use the proposed theoretical
framework to choose an appropriate IoT platform for the IEnMS. In order to help different
sectors choose the best IoT platform for the IEnMS based on their unique demands and
business requirements, an objective yet universal methodology was developed. In order
to find the ideal match for their IEnMS, enterprises can use Publication V to help them
conduct a thorough study of their own energy needs and understand the major elements
of their energy management (EnM).

A computer-based system known as an industrial energy management system is used to
gather and measure energy data from the user’s point of use, such as HVAC (heating, ven-
tilation, and air conditioning) units, lighting systems, and water and gas meters installed
on production lines. Below, a more detailed description is given of how the IEnMS is
working by using the IoT and big data.

Build a data collection strategy: A system that is used to gather precise real-time data at
the granular level, as well as data on the location, timing, and type of energy consumption
by various machines. On the incoming supply and the major energy consumer (device),
sensors, smart meters, and submeters are installed in order to collect the data. Possible
targets include, for instance, boilers, production lines, and HVAC systems. The objective
of this section focuses on the data gathering in real time to identify the locations where
most energy is consumed.

Transform raw energy data into useful information: In this step, the acquired data
are processed, evaluated, and transformed into meaningful information. Here, big data
technology is used to import raw data from various machines through IoT devices and
then transform the raw data into valuable information in the form of user-friendly charts,
graphs, and other visuals. Here, the raw data gathered can be tied to production levels,
weather information, human behavior, and other variables that may have an impact on
how much energy is used to produce the key performance indicators.

Assign responsibility, analyze data: The information provided in this stage must be
transformed into reports that are applicable and insightful. This can be achieved by com-
bining the information with knowledge about the facility and some energy management
skills; for instance, the energy manager of the company can carry this out. The informa-
tion of the industrial energy management system is interpreted by the energy manager,
who then combines it with the business procedures to develop goals.
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Figure 3.10: Operation of the IEnMS based on the IoT and big data (Publication V).

Interpret the results and agree an action plan: At this stage, the energy manager has
access to the energy usage reports. To initiate an energy strategy and come to an agree-
ment on an action plan, the energy manager and the energy management team get in touch
with the departments.

After operation of the IEnMS based on the IoT and big data as shown in Figure 3.10,
some requirements for the operation of the IEnMS were collected as shown in Table 3.6.
The selected requirements were then compared with the features provided by the IoT
platforms as discussed in Publication I to select a suitable IoT platform for the IEnMS
business application.

Table 3.6: Requirements of Industrial Energy Management (Publication V).

S No Requirements for IEnM
1 Development and implementation of a plan that includes the energy policy and targets for savings.
2 Organizing different energy activities including the allocation of responsibilities and tasks.
3 Establishment of a team led by an energy manager, who will be responsible to report directly to the high management.
4 Development of policies and procedures, which can include, e.g., energy procurement, usage, and cheap purchases
5 Carrying out the initial energy audit to identify energy saving potentials
6 Planning and implementation of energy efficiency measures
7 Identification of the company-specific key performance indicators that can measure the progress on a regular basis.
8 Implementation of meters for monitoring of the energy consumption in the production processes at regular intervals.
9 Reporting of the information gathered from the data to the high management.
10 Demonstrate the progress via indicators to the high management to increase the interest in the energy management.
11 Training, motivating, and providing information to the employees of the company about energy management activities.

The five stages of the IEnMS (Industrial Energy Management System) framework are ex-
plained in a simplified manner. Considering a company wants to implement an energy
management system to reduce greenhouse gas emissions, save energy, and lower its en-
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ergy costs, it can employ IoT applications for its Energy Management System (EnMS).
To begin with, the company has to familiarize itself with IoT components to understand
what the IoT is and how it functions. Next, IoT platforms and their key features have to be
studied. Although the company may require an IoT platform for its business application,
it may be uncertain which platforms offer the required, specific features, and which is
the most suitable one for the company’s purposes, as explained in Publication I. Once the
company gains knowledge about the IoT, IoT platform factors, and the features provided
by those platforms, it proceeds to stage 1.

In stage 1, the company evaluates each of the 21 IoT platform factors highlighted as im-
portant in selecting a platform as presented in Publication I. This evaluation assists the
company in formulating its business requirements. In stage 2, these factors are catego-
rized as either “required” (R) or “important” (I) for its business needs. For instance, the
company may discover that its required considerations (R) include aspects like scalability,
stability, system performance, user-friendly interface, edge intelligence, time to market,
flexibility, and prior experience. The important considerations (I) can include factors like
pricing, security, data analytics, disaster recovery, and interoperability.

Moving on to stage 3, the company compares the R and I factors with the identified fea-
tures of IoT platforms. The company can select a platform that meets both its I and R
requirements. If multiple IoT platforms fully satisfy the company’s I and R requirements,
it can choose one that excels in meeting its I requirements. Occasionally, none of the
IoT platforms may fulfill all the I and R requirements. In such cases, the company can
explore alternative IoT platforms for its IoT application. In the case of the IEnMS, only
the methodology of how to select an IoT platform based on the company’s requirements
is provided.

3.3.4 Publication VI: Smart Grid Information Processes Using IoT and Big Data
with Cloud and Edge Computing.

This research focuses on the implementation of the IoT and big data in smart grids by
answering the following research question:

How smart grid data are processed using the IoT, big data, and cloud and edge com-
puting?

Power electronics and internet and communication technologies (ICT) have made great
strides in recent years, enabling the transition from the traditional electric grid of the 20th
century to the modern, smart electric grids of the 21st century. Additionally, modern
smart grid (SG) operations are impacted by new technological paradigms like the Internet
of Things (IoT) by enhancing communication, fostering stronger client interactions, and
managing the enormous amount of data generated by smart devices. In this regard, IoT
solutions for data collection, connectivity, and intelligent analytics are becoming more
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Figure 3.11: IoT and edge computing in smart grids using big data analytics (Publication
VI).

prevalent in SG applications.

Cloud computing is frequently used in smart grid applications to handle the computa-
tional needs for effective electricity supply. The number of devices connected to the smart
grid has recently expanded as a result of the emergence of the IoT, including consumer
electronics, measuring tools, and electrical and electronic equipment like smart power
converters, phasor measurement units, and smart meters. A significant amount of struc-
tured, semi-structured, and unstructured data is produced by these heterogeneous devices
that are present in all four stages of a smart grid: generation, transmission, distribution,
and consumption. Utilizing cloud computing to collect, store, and process such massive
amounts of data results in issues with bandwidth, latency, disaster recovery, and cost.

With the increase in data from devices in an industrial setting leads to a number of issues.
At the beginning, a huge amount of data is moved to the cloud for analysis, but the ma-
jority of the data may not be useful to the operations. As a result, this data transmission
leads to increased traffic to a central repository and higher storage costs. Second, signif-
icant delays can occur when sending important data with a low latency of a few seconds
to a few milliseconds, which is necessary for critical industrial operations. Third, both
uploading and downloading data from the cloud can be very expensive.

Edge computing is used to overcome the aforementioned problems in cloud computing.
The benefits of edge computing are that it moves data analysis and services away from
centralized servers, and a lot of data analysis is performed at the source of data collection.

As indicated in Figure 3.11, an architecture that uses the IoT and edge nodes to obtain SG
data was developed for this work. This is the process by which SG data are created, pro-
cessed, and analyzed. Numerous smart meters, sensors, and digital devices produce the
data throughout a certain time period. Generation facilities (e.g., wind farms, solar farms,
conventional power plants), transmission and distribution networks (e.g., phasor mea-
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suring units), or clients (e.g., residential homes, electric vehicles, commercial buildings,
industries) can all generate data. Data from the environment, such as weather, humidity,
temperature, and pressure information, can also be collected. Social media can be used
to gather some useful data, such as details on outside events. Data produced from numer-
ous sources improve the grid reliability. IoT devices like sensors and actuators transfer
the generated data to the IoT network by employing the network technologies 3G/4G/5G,
ZigBee, Wi-Fi, Bluetooth, and wired connectivity.

As the edge nodes are closer to the locations where data are collected in comparison with
the cloud servers, they are usually used to process the critical data that need to be handled
rapidly and without delay. The edge network should be constructed with consideration of
elements including task complexity, server processing power, and network architecture in
order to effectively meet the latency requirements. Edge computing reduces the quantity
of data that need to be transferred to the cloud by dispersing the data among various edge
servers for computational workload. This has an impact on the bandwidth. When the total
number of jobs surpasses the combined processing power of the edge servers, the cloud
and edge computing work together to deliver a high bandwidth as the bits are transported
to the cloud server. A further advantage of edge computing in an SG is the reduction in
failure rate. The edge computing services of the other sections of the grid will function
regularly, without any issues, even if there is an electrical outage in a specific sector of
the grid. On the other hand, if all of the grid’s processing is done in the cloud and there is
a power supply failure because of a natural disaster in the cloud infrastructure, the entire
network will go down.



57

4 Conclusions

The dissertation is related to the digitalization of industries in the era of the IR4.0. In
the work, the main focus was on the industrial digitalization employing the latest tech-
nologies like the IoT, IoT platforms, big data, and edge computing. A key question that
arises during the digitalization of different industrial processes is: Is it possible to create
a unified framework for the digitalization of industrial sectors based on the IoT in
integration with technologies like big data and analytics and edge computing? This
dissertation contributed to solve this challenge by answering the following more specific
questions:

RQ 1: What would a unified framework look like that can be used for the selection of an
IoT platform based on companies’ business requirements?

RQ 2: What happens when such a unified framework is applied to a specific domain of
Industrial Energy Management?

RQ 3: Can such an approach be deployed in different industrial sectors?

To answer the above-mentioned main question and subquestions, detailed research was
conducted and documented in the form of Publications I–VI. Various research methods
were employed to address the importance and challenges in using the latest technologies
like the IoT, IoT platforms, big data, and edge computing in industrial processes from dif-
ferent perspectives to answer the research questions. During the IR4.0 there is immense
growth in the IoT devices, IoT platforms, and their applications.

Therefore, digitalization of industrial processes and services, reliable and efficient IoT
platforms, efficient data analytics, and fast and reliable networking are crucial for suc-
cessfully deploying and adopting these technologies. Based on the company’s business re-
quirements and the features provided by the IoT platforms, a theoretical five-stage frame-
work for IoT platform selection was developed, which provides a solid base for the com-
panies that want to automate their business processes (shifting their business processes
to the cloud) by using the latest technologies like the IoT, big data, and edge computing.
However, the adoption and implementation of these technologies may be challenging,
and companies may hesitate over shifting their business to the cloud. This may be due
to the lack of experience in the IoT and IoT platforms, and hesitation to select a suitable
IoT platform among hundreds of IoT platforms on the market for their business processes.

To overcome the above-mentioned challenges, the dissertation focused first on explaining
the building blocks of the IoT that work together to accomplish a specific task, and on
highlighting the key factors of an IoT platform. Second, a five-stage conceptual frame-
work was designed for selecting a suitable IoT platform for industrial business application
based on the business requirements. Third, different frameworks for implementing the
IoT in different fields of the industrial sector were designed to improve the data collection
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and facilitate the business processes.

The objectives of the dissertation were achieved through the studies presented in Publica-
tions I–VI as follows.

Publication I: The main components of IoT technology that work together to achieve a
specific goal were first identified, and then, 21 key factors of an IoT platform were pre-
sented and studied. The top five IoT platforms (Amazon web services, Microsoft azure,
Google Cloud, IBM Watson, and Oracle IoT) based on their market shares were studied.
Based on the findings, a five-stage theoretical framework was designed for the selec-
tion of a suitable IoT platform for industrial business needs. To the best of the author’s
knowledge, no previous studies have addressed the 21 key factors of an IoT platform in
a systematic manner, and so far, there has been no framework designed for the selection
of an IoT platform for a company’s business application. This study provides a road map
for companies that wish to shift their business to the cloud and need information about
the IoT, its components, IoT platforms, and their key components to select a suitable IoT
platform for their business application. The study was limited to top five IoT platforms
based on their market shares. The same study can be used in various industrial applica-
tions to improve various business processes and plans for future business decisions; this
is achieved by capturing data using IoT sensors, and processing and storing the data by
using an IoT platform.

Publication II: The focus was on industrial energy management motivated by the fact that
a considerable amount of the world’s energy consumption is due to industrial activities,
which greatly increase greenhouse gas emissions. Implementing an energy management
system is one of the best methods to cut down on the energy use in the industrial sector,
but thus far, there has not been a comprehensive framework for an IEnMS that uses the In-
ternet of Things (IoT) and big data. To solve this problem, an architecture for the IEnMS
was designed that can be used by the industries to reduce their energy use, greenhouse
gas emissions, and energy costs. The task was accomplished by utilizing the work done
in Publication I, in which the building blocks of the IoT were defined. In Publication II,
the IoT, big data and analytics were used as the modern technologies to achieve the re-
quirements of the IEnMS. Later in Publication V, the five-stage IoT platform framework
developed in Publication I was used for selecting an IoT platform for the IEnMS. Specif-
ically, an IoT application was employed to collect data by using sensors and actuators,
and the collected data were sent to big data for analytics. The IoT platform was then used
for developing an IoT-based IEnMS.

Publication III: A P2X process was used to convert renewable energy into storable hy-
drogen, chemicals, and fuels through electrolysis and subsequent synthesis with CO2. The
study highlighted the main contributions of Publication I, in which the main six building
blocks of the IoT were defined. The study also highlighted the contributions provided by
Publication II, in which the big data and analytics were explained, and the operation and
requirements of the IoT and big data were elucidated; these contributions include the use
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of advanced data-driven methods and latest technologies like the Internet of Things (IoT),
big data analytics, and machine learning for the efficient operation of P2X cogeneration
plants. The findings were summarized into different operation architectures that use dif-
ferent sensors to collect data from different sources and store them in big data for data
analytics and future predictions by using machine learning.

Publication IV: The proposed framework designed in Publication I for the selection of
an IoT platform for industrial application based on the company’s business requirements
was employed in a pyrolysis process, which is used to efficiently dispose of the accumu-
lated carbon fiber-reinforced polymer (CFRP) composite wastes. In the study, a pyrolysis
process was used to recycle CFRP composite waste, and a theoretical five-stage frame-
work was employed for the selection of a suitable IoT platform to be employed to manage
the process as a CPS. The suggested framework consists of sensors and actuators that are
used to gather data and communicate with a centralized management. It was designed as
a platform that will articulate and manipulate data to meet the needs of the recycling pro-
cess, which was modeled computationally through logical relationships between physical
entities. The publication showed the benefits of using the IoT platform selection frame-
work in the industrial sector.

Publication V: The focus was on the application of the framework introduced in Publica-
tion I into the IEnMS studied in Publication II, where the latest technologies like the IoT
and big data were used for the proper utilization of the IEnMS in an industrial process
to save energy and reduce the energy cost. As there are hundreds of IoT platforms on
the market, and thus, selecting a suitable IoT platform that can meet the business require-
ments is very difficult, the proposed five-stage theoretical framework was used to select
a suitable IoT platform for the IEnMS. The business requirements of the IEnMS were
identified and compared with the features provided by the IoT platform. The platform
that best suits the requirements based on the proposed framework was selected. This ap-
proach provides an objective methodology that can be used to select the most suitable IoT
platform for different IEnMSs based on their particular requirements.

Publication VI: A theoretical framework was used for the effective collection of data
from a large number of devices linked to a smart grid as well as for the processing, stor-
age, and display of the gathered data using a combination of the IoT, edge computing,
big data, and analytics. The publication provided in-depth discussion of the several ad-
vantages of edge computing and big data, including latency, bandwidth, disaster recovery,
and cost in the SG system as a whole, from data collecting to data presentation. The
publication elaborated on some benefits of edge computing and big data related to, e.g.,
latency, bandwidth, disaster recovery, and price of the entire SG system, starting from
data collection to data visualization. The study provided a theoretical discussion of im-
provement suggestions for the smart grid.

These results clearly indicated that it is indeed possible to propose a unified framework to
support different industrial sectors to move toward digitalization of their processes, while



60 4 Conclusions

paying special attention to aspects related to energy and sustainability. In the following,
the dissertation is concluded with a summary of the key contributions and potential future
research directions.

Summary: The dissertation studied and explained the IoT, IoT platforms, and their key
factors in order to answer the question of how to implement the latest technologies in the
automation processes of industrial applications. The contributions of this work can be
summarized as follows:

• Definition and explanation of the IoT and its main components.

• Highlighting of 21 key factors of an IoT platform.

• Design of a theoretical framework for the selection of an IoT platform.

• Proposal for a theoretical framework for the IEnMS using the IoT, big data, and
data analytics to construct an effective cyber-physical system architecture including
steps from data acquisition to the end-user decision-making process.

• Design of a working architecture for the P2X process for long-term storage of re-
newable energy using the latest technologies like the IoT, big data analytics, and
machine learning.

• Theoretical implementation of an IoT-based framework into the pyrolysis process
to recycle CFRP composite waste to manage the process based on the principles of
cyber-physical systems.

• Demonstration of the benefits of using the IoT, edge computing, and big data in
different industrial applications.

Future work: These contributions indicate different directions for further development.
This dissertation provides a theoretical framework and is limited to only five IoT plat-
forms (AWS, Microsoft Azure, Google cloud IoT, IBM Watson IoT, Oracle IoT) selected
based on their market shares. In the questionnaire survey conducted in the study, the ques-
tions presented to the industry experts were limited to certain specific points, and there
were no open questions where the respondents could have added some more factors that
they considered important. In the context of the survey, the threats to validity refer to
the different sources of threats that can affect the reliability and accuracy of the results
of the survey. The validity of the conclusions drawn from the survey can be affected by
the threats. Those threats can be, for instance, selection of a wrong population sample,
nonresponse, social relations, and wrong questions asked. To overcome those threats, the
survey has to be designed carefully, the questions can be tested in advance, and random
sampling can be selected, with the target of reaching a high response rate.

In this study, two surveys were conducted, one survey about the key factors of an IoT
platform (questions in Table 3.2 of Publication I) and another one about the use of present



61

technologies in the IEnMS (questions in Table 3.4 of Publication II). In both the surveys,
the questionnaires were designed in such a way that the questions were specifically related
to the main topics, they were kept simple, and presented in a logical order. The population
sample selected for the survey consisted of experts on the topics. The sample size was
small (15) in the first survey; however, in Delphi studies the minimum number of respon-
dents can be as low as three, and the maximum number can be even eighty [45]. The
survey had two rounds, and IoT experts were selected as the respondents. Fourteen out of
the fifteen candidates responded to the questionnaire, and thus, the response rate was high.

The second survey was about the use of modern technologies in the IEnMS, and experts in
large companies were selected for the survey. Experts from ten companies replied to the
survey, and thus, the response rate was somewhat low. The results of the surveys show
a high interest of the respondents in the survey questions, and most of the respondents
agreed on the statements presented in the questions. From our viewpoint, the results of
our surveys are accurate and reliable.

In the future, the same framework can be applied to any other IoT platform. In the future,
a practical approach can be applied to develop business applications for a specific industry
by selecting a suitable IoT platform (based on the business requirements of that industry)
using the proposed five-stage IoT platform selection framework. For example, an auto-
matic tool could be developed for selecting the most suitable IoT platform given a set of
requirements. Another option is to empirically assess the performance of the IEnMS in
different companies. In addition, the deployment of testbeds of industrial cyber-physical
systems following the framework proposed here may lead to new research challenges.
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Twenty-One Key Factors to Choose an IoT
Platform: Theoretical Framework

and Its Applications
Mehar Ullah , Member, IEEE, Pedro H. J. Nardelli , Senior Member, IEEE, Annika Wolff, and Kari Smolander

Abstract—Internet of Things (IoT) refers to the interconnection
of physical objects via the Internet. It utilizes complex back-
end systems that need different capabilities depending on the
requirements of the system. IoT has already been used in various
applications, such as agriculture, smart home, health, automo-
biles, and smart grids. There are many IoT platforms, each of
them capable of providing specific services for such applications.
Finding the best match between application and platform is,
however, a hard task as it is difficult to understand the implica-
tions of small differences between platforms. This article builds
on previous work that has identified 21 important factors of an
IoT platform, which were verified by the Delphi method. We
demonstrate here how these factors can be used to discriminate
between five well-known IoT platforms, which are arbitrarily
chosen based on their market share. These results illustrate how
the proposed approach provides an objective methodology that
can be used to select the most suitable IoT platform for different
business applications based on their particular requirements.

Index Terms—Components, features, key factors, platform.

I. INTRODUCTION

THE Internet-of-Things (IoT) concept was first coined by
Keven Ashton in 1999 during a presentation to Proctor

and Gamble and later referenced by him in the MIT Auto-ID
Center [2]. IoT is one of the fastest growing technologies that
is gaining momentum in various domains, such as transporta-
tion, healthcare, industrial automation, education sector, etc.
The main idea of IoT is to connect the physical world with
the digital world [3]. The foundation technology for IoT is the
RFID technology, which is used to identify, track, and monitor
any object with RFID tags and allow microchips to trans-
mit the identification information to a reader through wireless
communication [4]. Nowadays, IoT applications have already
moved further away than just simple RFIDs, incorporating
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different sources of data collection from sensors. This data
stream needs to be moved somewhere where this (big) data can
be processed using, for example, machine learning techniques.
This place is what we call an IoT platform.

For companies to run their specific IoT applications, an
IoT platform is then needed. The IoT platform provides
important services and features to applications: endpoint man-
agement, connectivity and network management, analysis
and processing, data management, application development,
security, event processing, monitoring, access control, and
interfacing [5]. From 2015 onward, there has been a rapid
growth in IoT technologies so that the number of connected
devices and platforms has steadily increased. For example,
there were 260 IoT platforms in 2015, which increased to
360 in 2016 and 450 in 2017 [6]. Due to technological
improvements, new IoT devices emerged and the requirements
of the IoT applications and platforms changed [7]. Such a
technological change creates many challenges for businesses,
governments, and companies, which have little experience with
the infrastructure of IoT and IoT platforms. Selecting a suit-
able IoT platform among all existing options is a tricky task
since this decision needs to incorporate not only the current
needs but also the potential future ones [8].

There are hundreds of IoT platforms in the market, most
with similar functionality with differences related to their
implementation and underlying technologies [8]. Our aim with
this article is to first highlight the key building blocks of IoT
for the understanding of functionality and significance of IoT
and identify and verify the key factors of an IoT platform.
With the key factors in hand, we could then propose an objec-
tive and general methodology to compare the different service
providers. In this case, this article develops a theoretical frame-
work that will support companies in selecting a suitable IoT
platform for their business needs. To carry out this article, we
follow three steps: 1) data collection; 2) data verification and
characterization; and 3) application of the proposed frame-
work. These are the questions that were used to guide this
article: 1) what is IoT as well as its building blocks? 2) what
are the important factors of an IoT platform? and 3) what
factors should be considered for selecting an appropriate IoT
platform for specific organizations?

This article covers and extends our preliminary work [1] in
which we have identified 21 IoT platform factors from the lit-
erature and verified those factors using the Delphi method.
This contribution builds upon [1] aiming at developing a

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. IoT building blocks, following the structure proposed by [9].

theoretical framework by comparing the 21 key IoT plat-
form factors with the features provided by the five popular
IoT platforms. Our goal is to provide an objective while gen-
eral methodology that different organizations can apply when
selecting the most suitable platform based on their particular
needs. In other words, this article will support such organiza-
tions to carry out a detailed analysis of their own requirements
and understand the key IoT platform factors in order to find
the best match.

The remainder of this article is organized as follows. In
Section II, we review the IoT building blocks. In Section III,
we identify the key factors of an IoT platform. Section IV
introduces the research method including the results of the
Delphi study. Section V focuses on the comparison of the main
IoT platforms. Section VI concludes this article indicating
potential research paths.

II. IOT BUILDING BLOCKS

To understand the functionality and significance of IoT, it is
essential to understand its building blocks; they are the compo-
nents of IoT, which work together to deliver its functionality.
There are six IoT building blocks that work together and pro-
vide functionality [3], as shown in Fig. 1. In the following,
we will explain each of them in more detail.

Identification Block: The identification method is used to
identify devices in the network. Devices are identified with
the object ID, which is the name of the device and the object
address, which provides the address of the device in the com-
munication network [10]. The main addressing methods of IoT
objects are IPv6 and IPv4 [3].

Sensing Block: Sensors are used for collecting the data of
objects/environment in the communication network and send-
ing the collected data to the destination database or to the
cloud. The data collected is analyzed in the cloud. Actuators,
i.e., hardware mechanical devices such as switches, are also
used in IoT platforms and operate in the opposite way to a
sensor [3], [11], [12].

Communication Block: It contains many heterogeneous
objects that exchange data and various services with each
other and with the platform. The communication block con-
tains IoT communication protocols, such as MQTT and CoAP
that are used to connect different objects to IoT and to send
data from those connected objects to the management system.
The sensors and other devices are connected to the Internet
by communication technologies, such as ZigBee, NFC, UWB,
Wi-Fi, SigFox, and BLE [3], [7].

Computation Block: The computation block consists of two
parts: 1) hardware and 2) software. Many hardware plat-
forms have been built to run IoT applications, for example,
Intel Galileo, Raspberry PI, Gadgeteer, UDOO, and Arduino.
Similarly, there are many software platforms that are used to
perform the functionalities of IoT. The main software platform
is the operating system that runs throughout almost the whole
activation time of the device. The cloud platform is also a
computational component of the IoT; it enables small objects
to send data to the cloud and it facilitates big data process-
ing in real time and helps the end user to obtain knowledge
extracted from the big data [3], [7].

Services Block: IoT services aid IoT application developers
by providing a starting point for development. When devel-
opers know the services available, they mainly focus on
building the application rather than designing the service and
architecture for supporting the IoT application. IoT services
are divided into four categories. Identity-related services can
be divided into two categories: 1) active and 2) passive.
Services that broadcast information and have a constant power
or take power from the battery are active identity-related
services. Active identity-related services can transmit or send
information to another device. Passive identity-related services
have no power source and need some external device or mech-
anism to transmit its identity. Passive identity-related services
can only read information from devices. Information aggre-
gation services refer to the actions of collecting data from
sensors, processing that data, and transferring it to the IoT
application for processing. Collaborative-aware services use
the data provided by the information aggregation services
to make decisions and react accordingly. Ubiquitous services
provide collaborative-aware services anytime to anyone who
needs it anywhere [11], [13], [14].

Semantic Block: IoT provides different services, for which
it needs knowledge, and in order to get that knowledge in
an effective way, IoT uses different machines. Knowledge
extraction can include finding and using resources, modeling
information, and recognizing and analyzing data to reach some
decision and provide the correct service. So it can be claimed
that the semantic block is the brain of the IoT [3], [7], [11].

III. KEY FACTORS OF IOT PLATFORM

An IoT platform is the main part of an IoT solution. There
are hundreds of IoT platform vendors in the market, and find-
ing and selecting a suitable IoT platform that is reliable and

Authorized licensed use limited to: Lappeenrannan Teknillinen Korkeakoulu. Downloaded on October 20,2021 at 06:52:01 UTC from IEEE Xplore.  Restrictions apply. 



ULLAH et al.: TWENTY-ONE KEY FACTORS TO CHOOSE IoT PLATFORM: THEORETICAL FRAMEWORK AND ITS APPLICATIONS 10113

scalable is difficult. However, consideration of some key fac-
tors prior to making a platform selection decision can enable
companies to find and select an appropriate IoT platform for
their business. The platform requirements are context specific
and it is not necessary that a platform includes all the fac-
tors discussed below, but can have a maximum. These factors
were identified from literature by studying various IoT plat-
forms [15]–[19], articles [7], [20], [21], and websites, such
as [22]–[24].

Stability: There are hundreds of platforms in the market,
which might have some open issues. Some platforms might fail
to deliver services to clients. Thus, a platform should be cho-
sen that has high chance of survival in the market. Information
about the platform can be obtained from previous customers
using the same platform [7].

Scalability and Flexibility: Initially, a company might be
small and operates in a small business area but, ideally, over
time, the business will expand and with this growth, the busi-
ness area will also expand. Thus, to ensure that the IoT
platform can support the business throughout its develop-
ment, the platform should be scalable to business needs [7].
Similarly, the platform should be flexible with regard to tech-
nology since modern technology and market demand change
rapidly.

Pricing Model and Business Case: Some platform providers
offer a low price for a period at the start of a contract agree-
ment, after which the price increases greatly. Additionally,
some providers offer a low price to attract customers, but
the contract includes limited features and additional features
have a significant cost if included. Thus, a platform should be
selected that offers full features for the business at a cost that
suits the company’s budget [7], [25].

Security: It is an important aspect of IoT that all plat-
forms should have with high quality. The security may be
device-to-cloud network security, data encryption, application
authentication, secure session initiation, application authenti-
cation, cloud security, and device security (authentication and
up-to-date certification) [26].

Time to Market: When selecting an IoT platform, the ques-
tions of time to market and how the platform provider will
support the business during the journey from product concep-
tion to sale should be considered. Some IoT platform providers
offer quick-start packages for new customers, which can speed
up product development, reduce time to market, and offer
better solutions [26].

Data Analytics and Visualization Tools: Before selecting an
IoT platform, prospective IoT platform users should establish
which platform offers the best capabilities to aggregate, ana-
lyze, and visualize data. In particular, users should consider
how the IoT platform integrates leading analytics toolsets and
uses them to replace built-in functionality. Data analysis and
information visualization requirements should be identified
before selecting an IoT platform [13].

Data Ownership: A complicated issue with IoT data is
the ownership of the data. Different jurisdictions have differ-
ent laws and legal interpretations. For example, the European
Union (EU) has different rules and regulations regarding data
ownership than the United States (U.S.) [27]. Therefore, it is

important to have knowledge of data rights and the territorial
scope of data protection for the IoT platform provider.

Ownership of Cloud Infrastructure: The hardware infras-
tructure layer is expensive and some smaller IoT platform
providers only offer the software layer. Some providers cer-
tify their platform on single or multiple leading public cloud
providers and mostly run their services on a single leading
platform. The compatibility of the broader enterprise cloud
with the IoT platform provider should be checked [28].

Extent of Legacy Architecture: The connectivity in an exist-
ing IoT is often unknown, and IoT devices are designed to
work with a variety of infrastructure systems. Therefore, when
selecting an IoT platform, businesses and organizations should
ascertain how new generations of technology can interlock
with older technology [29].

Protocol: The important protocols supported by IoT plat-
forms are MQTT, HTTP, AMQP, and CoAP. Due to its binary
nature, MQTT is extremely lightweight and has much lower
overheads. As a result of the development in technology, new
devices are coming onto the market. The selected IoT platform
should support new protocols and enable the easy upgrade of
these protocols [23], [30].

System Performance: In an IoT platform, when an event
happens, a rule-based trigger might be invoked automatically.
Since they support such a method, as larger numbers of devices
connect to the IoT platform, the average time to analyze and
handle each event increases. Prior to the selection of an IoT
platform, it should be noted what steps the provider has taken
to maintain the IoT platform performance high enough [31].

Interoperability: The IoT platform solution is middleware.
The data collected will be used by many applications and
may not be available on the platform itself. Consequently,
the selected IoT platform should support integration with
open-source ecosystems. Interoperability will enable the orga-
nization to gain higher productivity [32], [33].

Redundancy and Disaster Recovery: Problems sometimes
occur in the IT infrastructure, either natural or man made, and
IoT platform providers should have dedicated infrastructure to
handle data during such occurrences. Issues that require con-
sideration include the data backup plan schedule and whether
the IoT platform has failover cluster provision [23].

Attractive Interface: The interface provided by the IoT plat-
form should be simple, attractive, and user friendly so that it
is easy for customers to use its functionalities. All the services
offered to the customers should be easy to access.

Application Environment: Three aspects of the application
environment should be considered before selecting an IoT
platform: which applications are available out of the box,
what are the characteristics of the application development
environment, and what are the common interfaces [28].

Hybrid Cloud: Some IoT platforms can fit with existing
IT systems hosted on company premises. In such situations,
a hybrid cloud is very useful as mission-critical or business-
sensitive processes can be handled locally, while public and
less critical operations can be managed by the platform [23].

Platform Migration: Over time, and as the company grows,
the IoT platform may be unable to meet all the company’s
requirements. Thus, a bigger IoT platform provider may
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TABLE I
BASIC FEATURES PROVIDED BY THE FIVE IOT PLATFORMS

be needed. Consequently, companies should ensure that the
selected IoT platform provider provides clearly documented
interfaces, schema, and API for any possible future migration
to other IoT platforms [7], [23].

Previous Experience: Prior to selection, a company should
check whether the IoT platform provider has some experience
of work similar to that of the company application. Successful
working experience in the same area can be considered a good
sign [26].

Bandwidth: For the efficient movement of information and
communication between the processing components, the IoT
platform needs low-latency and high bandwidth networking.
Thus, it should be ascertained that a potential IoT platform
provider has a large data pipe and that there is sufficient room
to grow [23], [34].

Edge Intelligence and Control: The future of IoT plat-
forms is moving toward distributed, offline, and edge intelli-
gence [24]. Devices become more powerful when they are able
to make decisions based on the local data instead of waiting for
every decision from the cloud. Thus, it should be ensured that
the IoT platform has the capacity to support new topologies
and utilize edge intelligence [35].

IV. RESEARCH METHOD AND DATA COLLECTION

The data collection work began with the literature sur-
vey of the research articles and publications related to IoT
and its platforms published in different journals, conferences,
and books. About 200 articles were searched for the selected
topic and 46 were selected for the study. The selected arti-
cles are searched in the IEEE, ACM, and Scopus databases,
Google Scholar and some websites are searched and ref-
erenced. Twenty-one key factors of an IoT platform were
identified from the literature. The preliminary analysis has
been published by the authors in a conference paper [1]. Here
we have selected five platforms as presented in Table I, to be
discussed later. Relevant parts are summarized again here for
clarity within the rest of this article. The collected key factors
of an IoT platform were verified and categorized using the
Delphi method, which is an interactive process to collect and
distill the data using the judgments of experts using a feed-
back loop. This method is a flexible research technique that

Fig. 2. Schematic of the Delphi method for verification and categorization.

Fig. 3. Experts opinion in the first round.

can be used to successfully explore new concepts inside and
outside the information system body of knowledge [36].

We employed here a two-round Delphi study, as shown in
Fig. 2, during the first round of the Delphi study 15 experts
from three different universities were selected based on their
experience in the IoT field. A questionnaire was designed
based on 21 questions related to the key factors of IoT plat-
forms as show in Table V in the Appendix. A five-point Likert
rating scale was used: 1) totally disagree; 2) disagree; 3) neu-
tral; 4) agree; and 5) totally agree. The questionnaire was sent
to the experts by email to be answered within two weeks.
Fourteen experts replied and the response percentage was 93%.
The experts’ opinion of the first round is shown in Fig. 3. In the
first round, the agreed percentage is 80%, disagree percentage
is 6%, and the neutral percentage is 14%.
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Fig. 4. Experts opinion in the second round.

There was little conflict between the opinions of the experts
about the first round questions as shown in Fig. 3, the second-
round questionnaire was designed based on the experts’
opinion of the first round. The original questions were the
same as before, only the summary of the experts’ opinion of
the first round was subsequently sent to the same experts. In
the second round, 14 experts replied and the response per-
centage was 93%. In the second round, some of the experts
have changed their opinion based on the summary of opinions
of the first round. The result is shown in Fig. 4. The agreed
percentage was then 81%, disagree percentage is 4%, and the
neutral percentage is 15%. The results of both the rounds are
shown in Table II. Note that for simplicity, we have merged
“totally agree” and “agree” to “Agree,” and “totally disagree”
and “disagree” values to “Disagree.”

The importance of all the 21 factors of an IoT plat-
form was categorized into three categories in the light of
experts’ opinions. Factors with agree percentage up to 79%
and above are considered very important, factors with agree
percentage between 78% and 64% are considered somewhat
important, and factors with agree percentage less than 60%
are considered as less important. According to experts opin-
ions, the factors stability, security, protocol support, system
performance, disaster recovery, data analytics, scalability, flex-
ibility, data ownership, extend of legacy architecture, pricing
model, interoperability, attractive interface, cloud ownership,
and time to market were considered as the most important
factors. Four factors, application environment, hybrid cloud,
platform migration, and previous experience were considered
as somehow important, and two factors edge intelligence and
bandwidth were considered as less important.

V. PROPOSED METHOD TO COMPARE IOT PLATFORMS

A. Identifying IoT Platforms

IoT applications need a platform to run smoothly and han-
dle the data so that companies can take future decisions based
on the data processed by the IoT platform [37]. Hundreds
of IoT platforms are available and finding the most suit-
able IoT platform for a specific IoT application is becoming
increasingly difficult. The problem is compounded by a lack
of experience and knowledge, and in some cases, a com-
pany may select a platform without adequate requirements
analysis, which later leads to problems [7]. When developing

an IoT application for business needs, IoT platforms are the
first place that can provide the facilities for deploying and
running the business application [38]. There is high compe-
tition between various IoT platforms in the market. In this
article, we have arbitrarily selected five well-known platforms
based on information collected by specialized websites1 and
reports about their market share (e.g., [39]), which we will
then use to demonstrate our methodology to support select-
ing appropriate platform solutions. The selected IoT platforms
are: Amazon Web services (AWS) IoT, Google cloud IoT plat-
form (GCP), Microsoft Azure IoT suite, IBM Watson IoT, and
Oracle IoT. Their basic technical features are compared in
terms of security, data analytics, protocols, visualization tool,
data format, and application environment, as shown in Table I.
Next, we will briefly present these platforms based on their
own descriptions and other specialized references, trying to
mimic how organizations collect information for selecting the
service provider.

Amazon Web Services (AWSs): AWS was launched in
2006 and is the leading platform with 33% market share in
2018 [39]. AWS provides storage space, compute capability,
data management, and other infrastructure resources [38]. It
also offers artificial intelligence (AI) services [15]. AWS has
customers, such as Dropbox, Netflix, and Philips [46].

Microsoft Azure: Azure was launched in 2010 and had in
2018 a market share of 24% [39]. It is capable of data gather-
ing, processing, storing, and using analytics. It also allows IoT
applications to work in a two-way communication [16]. Azure
has customers, such as Apple-iCloud, EasyJet, and Xerox.

Google Cloud IoT Platform: GCP was launched in 2008
having market shares of 12% in 2018 [39]. GCP uses cloud and
edge computing. It offers data analytics and machine learning
while employing Google Maps to track the assets’ positions.
GCP has customers, such as PayPal and Bloomberg [18], [47].

IBM Watson IoT Platform: IBM Watson had a market share
of 18% in 2018 [39] and provides connectivity, analysis,
device management, and information management [19], [48].
IBM Watson employs two-way communication with the end
user and also uses blockchain services. The main customers
are STAPLES and AUTODESK.

Oracle IoT Platform: Oracle2 offers acquisition, analysis,
and integration of data [49], also using edge analytics [17].
The main customers of the Oracle IoT platform are Softbang
LLC and Anson McCade.

B. Proposed Method

Previous studies have also sought to identify relevant factors
for selecting an IoT platform for business. Table III summa-
rizes these. While there is a considerable overlap none of these
prior studies have identified the number or granularity of fac-
tors as in our approach. Therefore, while they are no doubt
suitable for the specific applications and domains within which
they were developed, we have aimed to create a more general

1For example, https://internetofthingswiki.com/top-20-iot-platforms/634/.
2Its market share is not available in [39]; our selection was

based on https://www.zdnet.com/article/top-cloud-providers-2018-how-aws-
microsoft-google-ibm-oracle-alibaba-stack-up/.

Authorized licensed use limited to: Lappeenrannan Teknillinen Korkeakoulu. Downloaded on October 20,2021 at 06:52:01 UTC from IEEE Xplore.  Restrictions apply. 



10116 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 10, OCTOBER 2020

TABLE II
RESULTS OF DELPHI STUDY BOTH ROUNDS. THE MEAN AND MEDIAN ARE TAKEN FROM THE AGREED VALUES

TABLE III
FACTORS FOR SELECTING IOT PLATFORM FACTORS

TABLE IV
REFLECTING THE 21 KEY IOT PLATFORM FEATURES IN THE FIVE MAIN IOT PLATFORMS

approach that can be more widely used across all these cases.
To show how our general framework can be applied to assess-
ing and choosing an IoT platform, in this article, we have

selected the top five IoT platforms based on market share. We
have compared these IoT platforms according to the 21 key
IoT platform factors that we have identified from the literature
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Fig. 5. Comparing key factors with the features offered by the IoT platform.

TABLE V
QUESTIONS USED IN SURVEY, DURING THE DELPHI METHOD

and verified using the Delphi study. We have compared these
21 key factors with the features provided by those selected
five IoT platforms as shown in Table IV.

More specifically, the entries of Table IV have the following
meaning related to the specific feature to be considered: “yes”
means the feature is available, “high” indicates strong, “bad”
shows weak, “good” indicates that the feature is very good,
“-” shows that the feature is unknown, and “no” indicates that
the feature is not available in the platform. In order to iden-
tify and fill the features of the selected five IoT platforms,
different articles [1], [7], [38], [40], [47], [49], [50] have been
studied from many databases. Some websites [15]–[19], [23]
have been used, especially the websites of those selected IoT
platforms. A few white papers [51] have also been studied.

The framework for the selection of an IoT platform is illus-
trated in Fig. 5 as a schematic of the selection procedure. The

whole process consists of five stages. In the first stage, the
company finalizes their business requirements. In the second
stage, the company requirements are applied to prioritizing,
which factors are required (R), important (I), and not required
(-) for this business context. In the third stage, the R and I
factors are compared with the features provided by the five
selected IoT platforms. The IoT platform/s that provide a max-
imum of the features as compared to the requirements are
selected and shifted to stage four. In stage four, there might
be one or many IoT platforms that match the required and
important factors. Stage five is the decision, which is explained
next.

If there is one IoT platform that provides the most required
and important features, then the same IoT platform can be
selected for the business application. But, if there are multiple
IoT platforms providing these features, then the company may
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choose an IoT platform based on the comparison of their
match to I factors, such as pricing, time to market, etc., and
select a suitable IoT platform for their business needs. There
might also be chances that none of the platforms provide all
of the required features; this might indicate that new platforms
should be selected and evaluated accordingly.

The five stages of the framework are explained in a simple
example. A selling company is interested to be on the Web
and uses IoT applications for its business. Initially they were
interested to learn the components of IoT to understand what
is IoT and how it works. Second, they were interested to know
what is an IoT platform and what are the key factors of an IoT
platform. They need an IoT platform for their business appli-
cation but they do not know which platforms are providing
what features and which one is the best. When the company
has the knowledge of IoT, IoT platform factors and the features
those platforms are providing then in stage 1, the company go
through each of the 21 factors that have been identified as
important in choosing a platform and use this to help them to
formulate their business requirements. In stage 2, these fac-
tors are prioritized as being either required (R), important (I),
or not required (-) for their business needs. They find that
their required factors to consider (R) are scalability, time to
market, and flexibility. Their important factors to consider (I)
are pricing and interoperability. In stage 3, the R and I fac-
tors are compared with identified features of IoT platforms.
AWS and Oracle are the platforms that are known to match
all required features; both have the feature of interoperability,
but AWS has the worse pricing model while one for Oracle is
unknown. The company may request the pricing model from
Oracle and then choose based on this.

VI. CONCLUSION

The aim of this article is to build an objective methodology
to support organizations to select the most suitable IoT plat-
form based on their specific needs. To do so, we first reviewed
the building blocks of IoT explaining how they are combined
to perform specific tasks. Second, we identified 21 key fac-
tors of IoT platforms from the literature and then verified
with the expert’s opinion using Delphi studies. Finally, we
have designed a theoretical framework for the selection of the
IoT platform and tested it in five well-known examples. This
article then provides a general framework to select the most
suitable IoT platform for a specific organization by compar-
ing its specific requirements with the features offered by the
different platforms. As future work, we expect to evaluate the
IoT platforms in different vertical cases, such as energy and
Industry 4.0. Our goal is to build an automated procedure that
also includes the possibility of weighing the factors based on
interviews with experts, developers, and programmers from
that particular domain.

APPENDIX

Table V shows the questions used to carry out the Delphi
method employed to validate the proposed 21 key factors.
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ABSTRACT Industrial activities consume a large portion of the total energy demand worldwide and
thus significantly contribute to greenhouse gas emissions. One of the most effective ways to reduce energy
consumption in the industrial sector is to implement an energy management system. Current research into
Industrial Energy Management System (IEnMS) remains insufficient, and to the best of our knowledge, a
holistic framework for an IEnMS using the Internet of Things (IoT) and big data does not exist. This paper
provides a comprehensive systematic literature review of the existing academic publications on IEnMS
from where the main requirements and components of an IEnMS are identified. We further verify this
study by conducting a detailed survey with specialized employees of ten (10) large companies to acquire
expert opinion about using the modern technologies like IoT, big data, and data analytics in IEnMS.
We have then proposed a theoretical framework for the IEnMS using IoT, big data and data analytics
to construct an effective cyber-physical system architecture including steps from data acquisition to the
end-user decision-making process. These findings demonstrate how the suggested framework provides an
objective methodology for selecting the most appropriate IEnMS for various businesses based on their
specific needs.

INDEX TERMS Energy management systems, big data, IoT

I. INTRODUCTION

CLIMATE change is a major global issue that poses a
threat to humanity’s health and safety. It is critical to

not only incorporate renewable energy sources but also the
latest technologies to boost energy efficiency in order to
positively contribute to combat such an urgent issue, and
thus, help to protect current and future generations [1]. There
is a strong vision that energy sector needs a significant shift
from a fossil-fuel-dominated system towards one dominated
by more environmental friendly sources.

One approach is to modify use patterns and increase
energy efficiencies in electrified sectors such as residential,
commercial and industrial [2]. Remarkably, industries do
consume a tremendous amount of energy, estimated as 42.3%
percent of all the energy produced globally [3]. It then
becomes critical to develop and implement energy efficiency
and management policies tailored to the industrial sector’s

specific issues.
In practical terms, industries should be encouraged to

prioritize the management and operation of their own en-
ergy systems to ensure their long-term sustainability. One
approach is to explicitly deploy energy management and
control policies as a viable strategy for reducing energy
consumption, associated energy expenditures, and carbon
emissions in the workplace. Because energy prices have
not been traditionally acted as a strong constraint to the
production size in large scale corporations, and the decrease
of greenhouse gas emissions were not an aim in the 20th

century, industries have usually grown without any specific
focus on energy-related aspects, including energy efficiency
in general and environmental sustainability related to energy
sources in particular. However in the 21st century, the situa-
tion has changed: energy prices indicates a strong tendency
to increase together with an unstable geopolitical situations
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in different producing countries, regulatory issues with nu-
clear sources and a strong push towards emissions decrease
coming from the poor environmental footprint of fossil fuel
energy carriers. As a result, the industrial sector has begun
to place greater emphasis on energy management targeting
at deploying energy efficient solutions by decreasing of con-
sumption, or by using intelligent production schedule. This
may come from the deployment of more efficient equipment,
or from improvements in the process design. These aspects
are also combined with the use of new distributed energy
sources like solar and wind, which can be combined with
new industrial processes related to Power-to-X as long term
storage units. In this context of economical and political
uncertainties, many corporation are today developing long-
term energy strategies to meet the specified energy usage
targets and values.

With the fast pace development of dedicated Information
and Communication Technologies (ICTs), the widespread
of Internet of Things (IoT) is potentially beneficial in this
domain because of the possibility to logically interconnect
production elements through advanced sensors, mainly after
the push towards digitalization that took place during the
pandemics. IoT can play a major role in energy efficient
utilization physical production systems by serving as the
key enabler for an Industrial Energy Management System
(IEnMS) that includes improved situational awareness in
monitoring, increased intelligence and automation in oper-
ation and control, and increased efficiency in energy dispatch
and management to enable cheaper and cleaner energy usage.

In particular, the IEnMS can provide via specific sensors
and/or actuators different ways of intervene in the energy
demand of industries. For example, a given industrial process
can be automatically scheduled to operate during the time
that energy from solar PVs are available. Other case is when
the IEnMS monitors the power demanded by different indus-
trial tools, and thus, it is capable of indentifying the ones
that demand more energy; this might guide the responsible
personnel to replace such tools to most energy efficient ones.
A last example is related to the flexibility of industrial loads
that might be used by controllers and actuators that may
follow operational signals to turn on or turn off (or decrease
or increase the power demanded if this is a feature of the
device/process). It is also important to highlight that home
energy management systems (HEMS), although may share
some of the basic aspects of the IEnMS, has a much more
simplified network architecture based on already existing
local area networks, or already deployed cloud solutions,
which also has less strict constrains if compared to industrial
processes. Also, the way electricity markets are structured
usually leads to a differentiation of industrial and residential
consumers, which has different impact in the functioning of
IEnMS and HEMS.

The complete process of regulating energy consumption,
reducing greenhouse gas emissions, decreasing energy usage,
and achieving considerable cost savings is implemented us-
ing an IEnMS. In this scenario, IEnMS can—and should—be

implemented considering larger time horizons and different
factors, which many times contradicts the usual operational
approaches that aim at short-term minimization of costs or
maximization of profits, only.

This contribution proposes a high-level architecture for
IEnMS that incorporates IoT, big data processing and data
analytics. Although this topic has been extensively studied
[4]–[6] as the basis of HEMS, the focus on IEnMS imple-
mentations are still lacking. HEMS and IEnMS, in particular,
have roughly similar goals, although they face quite different
challenges because of their different concrete aims with
clear diverse operational scales and needs. Our goal is to
give a basic framework that different industrial players can
use to choose the best appropriate IEnMS for their specific
needs. To put it another way, this article expects to assist
industries in doing a complete analysis of their own energy
requirements and comprehending the major components of
their energy management schemes in order to identify the
greatest fit for their IEnMS.

In this context, the aim of this paper is to establish an
energy-centric approach to organize industrial environments
employing the state-of-the-art in ICTs. As argued above, the
existing literature gives far too much attention to HEMS,
leaving IEnMS in the second plane. Here, our aim is to fill
part of this research gap by identifying general guidelines
to construct and operate information systems for different
industries with energy as the main focus. Specifically, this
paper focuses on finding the answers to the following four
questions:

1) What are the current energy management methods in
the industrial sector?

2) What are the main requirements and components of
Industrial Energy Management Systems?

3) What are the views of the energy employees in in-
dustries about the role of using the latest technologies
like IoT and big data in Industrial Energy Management
Systems?

4) How can a high-level architecture for a Industrial En-
ergy Management System be designed that incorpo-
rates latest advanced technologies like IoT and big
data?

To answer these questions, a detailed literature review is
provided to identify the best practices in energy management
in the industrial sector. The results of a survey with experts
opinions whose objective was to identify the importance of
the most advanced ICTs to support the energy management
activities of their corporations is presented, revealing the
willingness to use IEnMS as a tool to support decision-
making in different aspects that concern energy consump-
tion and efficiency, as well as environmental sustainability.
Finally, from the literature review and the survey results,
we have proposed a general framework to build an IEnMS
considering IoT connectivity and big data analysis. Note,
however, that our paper focuses on a high-level design, and
thus, the specific details of which type of IoT devices and
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their respective communication protocols and data frames
are out of our scope. We acknowledge that those aspects
are essential in the deployment of any particular IEnMS,
but our aim here is to provide general designing principles
that should be in place so that the IEnMS would function
properly.

The rest of the paper is organized as follows. Section II
describes the background of the paper, related literature, and
the identified research gap. Section III explains the Industrial
Energy Management and how energy can be managed in
industries. Section IV elucidates a more systematic approach
toward industrial energy management: here, we define and
explain an Industrial Energy Management System and ex-
plain in detail why a systematic approach is both necessary
and beneficial for industrial energy management. Section
V explains working of IoT and big data and contains the
benefits of the combination of IoT and big data. Section
VI presents the survey questions, results and discussion. In
Section VII, we present our proposed theoretical framework
for the Industrial Energy Management System using IoT and
big data. Finally, in Section VIII, we discuss and conclude
the paper.

II. BACKGROUND
Numerous research on industrial decision-making processes
related to energy-related concerns exist, with universal agree-
ment on answers and techniques but considerable disagree-
ments on the long-term repercussions of extreme change.
Some companies believe that investing in Energy Manage-
ment (EnM) programs will have a significant financial ben-
efit, and that the financial impact will be the key factor
motivating EnM program implementation [7], [8]. Other
authors [9], [10] consider that energy policy, pricing, ex-
pertise, and mindset are all energy-related choice factors
that influence EnM programs. More recently, some authors
[1], [11]–[13] have shown that energy-related decisions are
based on the strategic links between the organization’s main
business and goal with any investment. In today’s industrial
sector, the importance and necessity of implementing EnM
for optimal energy use is a well-established reality, and
most organizations acknowledge the need for a correctly
employed energy management system [14]; As a result, many
companies are enacting or have enacted some form of EnM
policy. Nonetheless, there is still a misconception about the
relationship between EnM and Energy Management System
(EnMS), necessitating a thorough research program to further
clarify the differences [15].

According to [16], The procedures and processes by which
the organization strategically handles energy challenges and
management are referred to as EnM. EnMS is the instrument
that is utilized to put those practices and processes into
action. Thus,for example EnMS must be applied in order
to successfully build and apply EnM methods and processes
aimed at reducing energy consumption, cost, and greenhouse
gas emissions. Another study found that participation of top
management as well as almost all of a company’s employees

in all energy-related activities is essential not just for a
successful EnMS deployment, but also to ensure that the best
EnM practices are implemented company-wide [17].

In the literature, EnM has a systematic approach that
comprises of practices and activities that are considered
supporting functions for an industrial EnM.Despite the fact
that EnM is a critical goal at the moment, it has yet to be
fully implemented in the industrial sector. This is due to
the interdisciplinary character of EnM in industries, which
includes numerous aspects other than economics and tech-
nology, such as social acceptance, political viewpoints, and
managerial established procedures. To ensure the effective
implementation of EnM, a type of EnMS applied to in-
dustries—Industrial EnMS (IEnMS)—is desirable, so that
an objective means to monitor, plan, and regulate energy
consumption and efficiency can be built, and the intended
energy positive goals may be met. This is the phase that
is frequently misunderstood, and as a result, the majority
of the industrial sector fails to perform it effectively and
correctly. Furthermore, while IoT and big data are essential
enabling technologies that can be utilized to support compli-
cated energy management processes, their precise roles in the
literature have yet to be determined. These are the research
gaps that have been identified in this study, and they are the
focus of this paper. In the following sections, we’ll first go
through EnM in the context of industry, i.e., Industrial Energy
Management (IEnM), and then show how an IEnMS can be
utilized to accomplish efficient IEnM.

III. INDUSTRIAL ENERGY MANAGEMENT
Growth in the industrial sector, as well as its consequent
increase in energy consumption, is one measure of economic
progress [18]. It is then critical to establish IEnM approaches
that support the efficient use of energy while reducing carbon
emissions to counteract the negative effects of such expan-
sion [3]. In order to enhance their operational efficiency in
this domain and thereby reduce their respective consumption
with their related carbon emissions, many companies have
turned their attention to energy-related issues in the more
recent years. Our studies have revealed that there are few
identifiable key components that IEnM should have: plan-
ning/strategy, operation/implementation, controlling, organi-
zation, and culture. as depicted in Fig. 1 [18]–[22]. The
details of each of these components are presented next.

Planning/Strategy: The Planning/Strategy component is
the initial phase of IEnM, and it is divided into three sections:
(1) Formulation of a company’s long-term energy policy that
is conducive to a successful IEnM [23]. (2) Energy planning
and goal-setting, in which a company establishes plans and
sets goals for future energy usage [24], [25]. (3) Strategic
energy risk management, in which firms assess any sort of
energy-related risk and provide risk management strategies
depending on the company’s financial goals and risk toler-
ance [26].

Operation/Implementation: IEnM’s second component
is made up of three parts: (1) Energy efficiency measures
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FIGURE 1. Components of Industrial Energy Management.

are implemented, in which businesses implement specialized
energy projects and energy efficiency technologies in order to
reduce electricity consumption [27]. (2) Investment decisions
based on energy efficiency, in which corporations perform
systematic economic calculations to determine the return on
investment. [28]. (3) Energy audit, in which organizations
involved in energy management activities assess the status
quo on a regular basis and identify energy-saving opportuni-
ties.There are three sorts of audits:Preliminary audits, general
audits, and detailed audits [27].

Controlling: The third component of IEnM, controlling, is
divided into three parts: energy accounting, performance as-
sessment, and benchmarking.Energy accounting is the prac-
tice of continuously analyzing and reporting energy con-
sumption as well as monitoring energy efficiency [29]. IEnM
includes performance measurement, which defines the key
performance indicators (KPIs) for energy efficiency, which
characterize the relationship between an activity and the
amount of energy consumed [20]. Energy benchmarking is
a performance-oriented activity that can be defined as the
process for comparing energy efficiency between or within
entities. Benchmarking is a useful tool for lowering energy
consumption, prices, and emissions. There are three forms
of benchmarking: company-level benchmarking, industrial
benchmarking, and historical benchmarking [30].

Organization: There are two parts to the organization:
(1) Appointment of an experienced energy manager to keep
top management informed about the energy management’s
actions and progress; the energy manager and top manage-
ment should have a good working relationship [31], [32].
(2) Integration and standardization, in which industrial or-
ganizations’ energy management should be connected with
their production management processes through the use of
Information and Communication Technology (ICT) tools and
standardization [29].

Culture: Culture is the fifth and final component of IEnM,
and it is divided into two parts: (1) Training and educa-
tion:Personnel with adequate basic education to meet the
energy-usage standards are required by the energy manager,

or training may be required [33]. (2) Employee motivation:
Businesses must encourage employees to take an active role
in improving energy efficiency, and they should frequently
award technical and operational personnel [29], [34].

To achieve effective and efficient IEnM that incorporates
the above mentioned components, industries have to im-
plement a comprehensive, company-wide, energy manage-
ment system. We argue here that this can be successfully
performed by an Industrial Energy Management System
(IEnMS). The key features that the IEnMS should have is
presented in the next section below.

IV. INDUSTRIAL ENERGY MANAGEMENT SYSTEM
An ICT solution developed to facilitate the deployment of
an effective IEnM is known as an Industrial Energy Man-
agement System (IEnMS). An IEnMS monitors, analyzes,
and manages the energy demand (and potentially its gen-
eration and storage) in a manufacturing plant following the
schematic presented in Fig. 2. It is also utilized to diagnose
issues like overuse and leaks throughout the entire facility.
IEnMS helps then to dynamically modulate the (supply-
demand) energy profiles based on the current state of the
energy system and to improve the efficiency of the energy
consumption as whole by indicating potential sources of
faults and unexpected performance in terms of energy.

An IEnMS is designed for large scale industrial energy
consumers to manage their energy usage considering that
their specific type of loads are different than residential ones;
in industrial environments the load flexibility and consump-
tion levels are quite specific, considering that some industrial
processes cannot be turned on and off like a household
heating system. To develop an efficient IEnMS based on
their own special needs, industries must follow a set of basic
processes, which can be divided in the following phases: (i)
defining an energy policy and assigning duties, (ii) emphasiz-
ing major energy consumers, (iii) setting measurable goals
and targets, (iv) putting in place actions to accomplish the
goals, (v) determining whether the actions are successful, and
(vi) conducting continuous system evaluations.
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The IEnMS operation can be conceptualized as a cyber-
physical system which required four basic steps, from data
collection to semantic interpretation. In the following, these
steps are systematically presented.

(1) Build data collection strategy: Real-time, precise,
and granular data, as well as information on where and when
the energy was utilized, and by which device, is collected
(machine). Sensors/smart meters, sub-meters, and major en-
ergy consumer devices such as HVAC (heating, ventilation,
and air conditioning) equipment, production lines, boilers,
and other large energy consumer devices are used to collect
data. The goal of this section is to keep track of the real-
time data collection and figure out where the majority of the
energy is being consumed.

(2) Transform raw energy data into useful information:
The collected data is processed, evaluated, and turned into
meaningful information during this step. Big data software is
used to easily extract raw data from IoT devices and convert it
into usable information in the form of user-friendly graphics.
The raw data obtained might be linked to production levels,
weather data, and other variables that influence the amount
of energy consumed to generate the company’s KPIs.

(3) Assign responsibility, analyze data: The information
provided must be transformed into useful and meaningful
reports during this phase; this can only be done by adding
the information to the knowledge of facility, which can be
done by an energy manager.The energy manager’s job is to
understand the information provided by the Energy Manage-
ment System, combine it with the company’s processes, and
create appropriate targets.

(4) Interpret the results, and agree to an action
plan:The energy manager gets access to the energy usage
reports throughout this phase. The energy manager and his
staff begin to speak with the departments in order to establish
an energy strategy and a plan of action.

From the points just mentioned, the IEnMS may enable
different benefits to industries; the main ones are listed next.

• Reducing cost and saving energy: IEnMS enables a
continuous process that can lead to increased energy
efficiency and productivity to lower energy expenses
over time.

• Planning future targets: IEnMS supports the visual-
ization of trends of energy demand, guide the definition
of new strategic and operational goals.

• Reducing greenhouse emissions: IEnMS can be used
to monitor greenhouse emissions from the plant opera-
tion (considering also the energy sources and emissions
produced as byproduct of the industrial process itself).
This is necessary for defining concrete targets related to
emissions.

• Increasing in machine lifespan: Data collected from
IEnMS can also be used for predictive maintenance,
which can result in a longer life cycle for the monitored
machines, also saving natural resources and decreasing
investment costs.

• Mitigation of risk related to fossil fuel: IEnMS may
help to integrate local energy sources by having local
generation from solar and also power-to-X solutions de-
veloped for long-term storage like power-to-gas (PtG).

• Improvement in company projects: Data from
IEnMS, can also be used in improved post-investment
project performance, also indicating how energy use and
carbon emissions tried to be minimized in a systematic
way.

V. WORKING OF IOT AND BIG DATA
IoT and big data refer to two different ICTs that have
emerged in recent years; they have been developed in relative
autonomy, but they are clearly interconnected [35]. IoT is
playing a promising role in connecting the devices/machine
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TABLE 1. Survey questions and the opinions Percentages

S.No Topic Total Disagree Disagree Neutral Agree Totally Agree Mean Median

Q1 An Industrial Energy Management System is good for energy
saving energy saving 0% 0% 0% 30% 70% 4.7 5

Q2 An Industrial Energy Management System can reduce
greenhouse gas emissions reduce greenhouse gas emissions 0% 0% 0% 50% 50% 4.5 4.5

Q3 There is lack of management awareness in industries for
energy management for energy management 0% 20% 30% 30% 20% 3.5 3.5

Q4 An Energy Management System will provide energy saving
opportunities saving opportunities 0% 0% % 50% 50% 4.5 4.5

Q5
The company’s energy policy plays an important role in

designing energy management system in designing energy
management system

0% 10% 10% 20% 60% 4.3 5

Q6 Long term energy planning is important for industries 0% 0% 0% 30% 70% 4.7 5

Q7 An energy manager should create an energy management
team management team 0% 0% 30% 40% 30% 4 4

Q8 It is important for the energy manager to be environment
friendly environment friendly 11% 0% 11% 11% 67% 4.2 5

Q9

It is important that companies should display department-wise
energy usage status using screens to motivate staff members

wiseenergy usage status using screens to motivate staff members
to save energy

0% 0% 20% 40% 40% 4.2 4

Q10
It is important for companies to give incentives and rewards to

staff to encourage them to achieve energy targets
tostaff to encourage them to achieve energy targets

0% 10% 20% 20% 50% 4.1 4.5

Q11
Companies need some renovation in the existing infrastructure

to improve energy management infrastructure to improve
energy management

0% 0% 22% 22% 56% 4.3 5

Q12
It is important for companies to add green energy like solar

and wind energy to their existing energy usage solar and
wind energy to their existing energy usage

0% 0% 10% 20% 70% 4.6 5

Q13 Companies should have a strong policy to reduce greenhouse
gas emissions greenhouse gas emissions 0% 0% 10% 0% 90% 4.8 5

Q14
Installing sensors on machines, so that these machines can
use IoT-based techniques to share real data with each other,

will lead to improved energy efficiency and performance
0% 0% 0% 50% 50% 4.5 4.5

Q15
Using IoT and Big data in Industrial Energy Management

Systems will facilitate timely identification and prevention of
faults

0% 0% 0% 50% 50% 4.5 4.5

Q16 Companies should invest more in Industrial Energy
Management Systems (IEnMS) 0% 0% 10% 60% 30% 4.2 4

Q17 IoT is helping to improve HVAC (heating, ventilation, and air
conditioning) systems in manufacturing plants. 0% 0% 20% 50% 30% 4.1 4

Q18

IoT devices are capable of collecting a huge amount of real
time data about different machines. Therefore, collecting and

using Big Data is a good option for companies to perform
real time data about different machines.

0% 0% 11% 33% 56% 4.4 5

Q19
IoT and Big Data will make data analysis and processing

easier and will give energy information very quickly and this
can be useful for business decisions in the future.

0% 0% 11% 22% 67% 4.6 5

Q20

Industries should use the latest IoT-enabled technologies in
their Energy Management System to improve energy activities

in their Energy Management System to improve energy activities
like efficiency, performance, usage, cost etc

0% 0% 10% 20% 70% 4.6 5

together using data communication network so that they can
share information with each other. These IoT-enabled devices
have generated huge volume of data [36]. The handling
of massive amounts of structured, unstructured, and semi-
structured data results requires special processing for such
big data [37]. The current intensive data processing needs
from IoT devices indicate a promissing path of combining big
data technologies specially aiming at IoT applications [38].
The massive amount of data needs high storage and high
computing power and strong data analytics, as the traditional
database systems are not able to store, process, and analyze
such a huge amount of data [39]. The data generated from
these devices are analyzed and used for the current and future
decision-making processes.

The three primary determinants of big data, known as the
“3Vs of big data," which are volume, velocity, and variety.
The term "volume" refers to the massive amount of data
collected, which causes datasets to be too vast for traditional
database technology to handle. Larger data units, such as
terabytes, petabytes, and exabytes, are used to describe this
type of data. Velocity is the speed with which the data is gen-
erated, processed, and moved around in real time. whereas,
The nature of data, whether it is structured or unstructured,
is a source of variety. Big data analytics can handle massive
amounts of structured, unstructured, and semi-structured data
created by IoT devices in industrial equipment etc. Big data
analytics can help companies produce and store and generate
information from insight the data.
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There are a few requirements that the data network related
to the IoT needs to fulfill in order to support big data analyt-
ics. In the following, we present such necessary features.

Connectivity: Machine-to-machine (M2M) communica-
tion protocols that manage a large number of streams are the
most common foundation for IoT services, and they bene-
fit directly from cloud distributed storage and computation
infrastructure. [40]. Secure connectivity for enormous data
and analytics is the first and most basic requirement of the
Internet of Things (IoT). Because of reliable connectivity,
big data and analytics will be able to efficiently aggregate
and integrate massive amounts of machine-generated sensor
data [41].

Storage: In IoT, big data storage must be able to manage
large amounts of unstructured data while also providing low
latency for analytics. One problem is that there are numerous
sources of IoT data, such as sensor data and social media, and
they are all modeled differently utilizing different communi-
cation protocols and interfaces. Big data technology can help
with data storage for IoT devices, but more solid solutions
are needed.

Quality of services: Quality of service (QoS) refers to
the capacity to ensure a specified level of performance for
a data flow. The IoT network is responsible for providing
the assurance of an effective transmission of data from the
sources that generate large data. The quality of service (QoS)
in an IoT network is critical for big data analytics [42].

Real time analytics: Information regarding IoT-connected
objects is exchanged in real time, and it must be processed
in real time. For most streaming data from web-enabled
devices, big data analytics uses real-time queries to extract
information fast, make choices, and interact with devices and
people in real time [43].

Benchmark: Many corporations have begun to migrate
their operations online utilizing IoT as a result of the rapid
digitization of operations. Benchmarking is critical in this
situation because it allows businesses to compare the quality
of big data and analytics solutions [44].

BENEFITS OF USING IOT AND BIG-DATA IN INDUSTRIES
For the industrial sector, there are numerous benefits of IoT
and big data analytics. They provide information in a better
way for the current and future decisions of the companies, us-
ing which the companies can build future business strategies
and plans. Some of the benefits are listed below.

Improve energy efficiency: Energy is one of the biggest
expenses in the industries, and industries are trying to reduce
and save energy consumption. IoT with the help of big data
is providing help to the industries in achieving that goal
by providing the energy data on the devices level at real
time. This can identify the under-performing devices in the
network, and the energy management team can take the
necessary actions to improve the energy wastage.

Improved forecasting and predictive maintenance: Us-
ing IoT and big data, automated alerts from the device
provide useful information of the machine’s maintenance,

instead of waiting for the historic data. The staff concerned
can know the machine’s health in real time and plan the repair
and replacement more efficiently, saving a lot of time.

Improved product quality: Product quality is the most
important part of the industry. High-quality products improve
customer satisfaction, sales, profit, and ultimately reduce
waste. Using IoT, sensors can detect slight changes in the
configuration, and big data analytics can make quick calcula-
tions and send alerts to the concerned staff. Thus, any defects
can be fixed easily, thereby improving the product quality.

Decrease downtime: Using IoT, the performance of indus-
trial machines is improved; this not only enhances the quality
of the products but also improves the speed and performance
of production, thus helping to complete the production on
time without any issues.

Quick accurate decisions: The decision process in indus-
tries has improved using IoT. Using a machine’s performance
data, which, after collection by the sensor, is calculated by
the big data, the managers take necessary steps to improve
the organizational processes and overall productivity.

Customer satisfaction: The success of a company de-
pends on the customer’s satisfaction. If a company provides
good products of high standards, the customers will recom-
mend the same products to others as well, and the company
business will be high. IoT and big data analytics together thus
facilitate the company to develop high quality products.

VI. SURVEY RESULTS AND DISCUSSION:
The survey conducted in this study contains reply from
ten (10) big companies. The survey questionnaire contains
twenty(20) questions. Table 1 and Figure3 show the survey
questions and answers. The percentage of respondents with
responses of “totally disagree” and “disagree” is almost neg-
ligible. A few of the company’s experts were neutral to some
of the questions, such as those on the lack of management
awareness towards IEnMS and the creation of an energy
management team by the energy manager. In general, most
of the companies expressed the opinion of either “totally
agreed” or “agreed” to most of the points, for example, the
questions about whether the industries should use IEnMS
using the latest technologies like IoT, big data and data an-
alytics and whether this will facilitate the industries in terms
of less energy consumption, efficient utilization of energy,
reduced energy bills and costs and reductions in greenhouse
gas emissions.

Figure 3. gives a pictorial representation of the results.
Here, the purple color shows “totally agree”; light gray
shows “agree”; light orange shows “neutral”; red line shows
“disagree”; and blue shows “totally disagree” opinions of the
industrial experts. Figure 3 shows company results of the
survey questions. In Figure 3, In general, all the companies
were more than 80% in agreement with the twenty ques-
tions that we have asked. The companies agreed about the
importance of IEnMS in terms of energy efficiency, energy
consumption, reduction in energy costs, and reductions in
greenhouse emissions by utilizing renewable energy.
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VII. PROPOSED HIGH LEVEL ARCHITECTURE FOR
IENMS
The huge amount of data generated by the IoT services
creates opportunities to improve industrial services and cus-
tomer values. For example, the data generated from IoT
sensors can be analyzed in real time using big data that can
help to take better presentation of information from the data
and helps better future decisions and will result in continuous
improvements within operations.

The proposed architecture is explained in Fig. 4. The
process is divided into different phases, which are presented
next.

Initial Phase: Data is collected from a variety of sources
in the early phase, including machines, HVAC, data creation
from renewable sources (solar, wind), lighting, CCTV, and a
variety of other energy-consuming devices, using sensors and
actuators. The vast amount of data generated by these devices
is stored in the cloud at a minimum cost.

Second Phase: The second phase is data acquisition, in
which the generated big data is stored in a shared distributed

fault tolerant database depending on volume, velocity, and
variety. The acquired data is then sent to the Hadoop cluster’s
master node(s). Because the data is acquired from a variety
of heterogeneous devices, it may contain a variety of data
formats and information, necessitating data preparation. Ac-
curate and incomplete data are handled in data preparation,
and incomplete data is either repaired or removed. The data
collecting method is carried out using Flume. Flume’s main
job is to gather, combine, and send enormous amounts of data
to the Hadoop master node.Flume stores the data it receives
in a single or several channels.

Third Phase: The data is subsequently transmitted to an
external Hadoop Distributed File System (HDFS) repository,
where it is serialized and written in the desired format. Note
that HDFS works by dividing large files into multiple blocks
and stores these individual blocks on multiple data-nodes
that are linked to master node. HDFS is generic enough that
allows basically all types of data (structured, unstructured or
semi structured data) to store. The serializers rearrange and
alter the Flume data to fit the intended format.The data is
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FIGURE 4. Data generation using IoT and processing with big data. The solid arrows mean data flow from one element to another; dashed line means possible
information about the industrial operations based on the data reports from the IEnMS.

pre-processed, resulting in a unified picture of the data.For
processing, the data is stored in several HDFS clusters.
DataNodes make up the HDFS clusters.In the DataNodes,
the actual data and file system meta data are kept. YARN
analyzes data stored in HDFS; the two run on the same set of
nodes, allowing jobs to be handled on nodes where EnM data
is present.

Fourth Phase: This stage involves running SQL queries.
Hive and Impala are two tools that may be used to run SQL
queries on HDFS data. HIVE is used for data querying,
to select, analyse, and to make calculations on the data of
interest.

Last Phase: Data analytics is the final phase, in which
the calculated data is shared with energy management, par-
ticularly the energy manager, to allow for better planning
and decision-making in order to achieve efficient energy
utilisation, reduced greenhouse gas emissions, increased ma-
chine efficiency, energy policy design, and improved energy
planning, among other things. The tool used in Hadoop for
data analytics is Scalable Advanced Massive Online Analysis
(SAMOA), a distributed streaming machine learning frame-
work that comprises of programming abstraction for dis-
tributed streaming algorithms for data mining and machine
learning applications. Tableau is used for data visualisation
(graphs, reports, and so on). Tableau is a popular tool for
interactive data visualisation.

All in all, the expected outcome of the IEnMS process
can be systematized into two different approaches, namely
operational and strategic. At the operational level, the IEnMS
serves as either an autonomous agent that is capable of
intervening in the energy consumed throughout the targeted
industrial process by, for example, an energy-centric sched-

ule policy of operation or it can be used to monitor the energy
demanded by different industrial tools in order to detect
anomalies in their operation in terms of energy consumption.
At strategic levels, the IEnMS may serve to support adminis-
trative policies targeting sustainability and energy efficiency
by creating detailed data-driven reports that locate the most
energy hungry or energy inefficient devices/processes that
might be the target of future changes. It is nevertheless
important to reinforce that our guidelines are general ones,
which should be valid across different industries and cases;
therefore, we avoid using particular cases and specific stan-
dards that would decrease the scope of our findings.

VIII. CONCLUSIONS
This research highlights the importance of IEnMS and out-
lines its components in detail. The IEnMS describes the prac-
tices and processes of industrial energy management, which
are typically thought of as supporting functions, as well
as how they are carried out. We’ve addressed why IEnMS
should use cutting-edge technologies like IoT, big data, and
data analytics, as well as the benefits they provide to the
industrial sector. To obtain the opinions of industrial experts
about the importance of using the modern technologies in
IEnMS, we conducted a detailed survey of large companies.
The results show that most of the industrial experts are in
favor of utilizing modern technologies in IEnMS. Based on
the industrial experts’ opinions, we have designed a the-
oretical framework for obtaining energy information using
IEnMS and modern technologies. In this framework, the data
from machines are collected using IoT devices and then
transferred to a database from where the big data process
and data analytics begin. The information generated from
the data is finally send to the energy management expert
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(energy manager). Through this approach, industries are ex-
pected to improve their energy efficiency while reducing their
energy consumption, costs, and greenhouse gas emissions.
Moreover, the information retrieved from the data can be
used for the current and future business decisions and for the
maintenance of industrial machines. In particular, a survey
carried out with energy experts from different companies
indicate that gains in energy efficiency are expected to be
achieve using IEnMS as a centralized entity that will support
the company to take better strategic and operational decisions
based on data, while enabling an energy-centric operation
through specialized IoT devices, sensors and actuators. In
future, the same study can be extended to include Power-to-
Gas (PtG) technology that mainly convert the electric energy
(in this case from renewable) into H2 using electrolysis pro-
cess and later synthetic methane using the chemical reaction
called methanation. These two (H2 and methane) can be store
for longer period which can solve the long storage problem
of renewable energy.
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Abstract: This study is a systematic analysis of selected research articles about the Power-to-x (P2X) 1

sector. The relevance of this resides in the fact that most of the world energy is made from fossil 2

fuels, which has been led to a huge amount of greenhouse gas emissions that are the source of global 3

warming. One of the most supported actions against this issue is to produce and use the renewable 4

energy resources, some of which are intermittent like solar and wind. This brings the need for 5

large-scale, longer-period energy storage solutions. In this sense, P2X process chain could play this 6

role: renewable energy can be converted into storable hydrogen, chemicals and fuels via electrolysis 7

and subsequent synthesis with CO2. The focus of this study is to highlight the main contributions 8

that are using the advanced data driven methods and latest technologies like Internet of Things (IoT), 9

big data analytics and machine learning for the efficient operation of P2X cogeneration plants. We 10

summarize our findings into different working architectures and illustrate it with a numerical result 11

that employs machine learning model using the historic data and reduces the prediction error in a 12

specific case of P2X. 13

Keywords: Power to X; IoT; big data; machine learning; electrolysis; methanation; synthetic gas 14

1. Introduction 15

This paper contains a comprehensive review of the operation of power-to-X (P2X) 16

industrial plants following the conceptualization of cyber-physical systems introduced in 17

[1]. It is critical to incorporate not only renewable energy sources, but also cutting-edge 18

energy-efficiency technologies, in order to positively contribute to combating such an 19

urgent issue and thus protecting current and future generations. The problem of climate 20

change is inspiring a wave of helpful innovation. Exciting new concepts that could enhance 21

our way of life are emerging. We cannot afford to waste energy if we are to successfully 22

transition to a clean, dependable, and economical future energy system. Since the energy 23

sector provides the energy needed by people and the economy. Europe is setting the pace in 24

developing the upcoming energy system as it works to cut greenhouse gas emissions and 25

transition to a sustainable society. The EU relies on energy that is safe, inexpensive, and 26

environmentally sustainable, putting consumers first and fostering competition and growth. 27

By doing so, it is estimated that, Cogeneration will serve as the backbone of a resilient, 28

decentralized, and carbon-neutral European energy system by 2050, enabling industry and 29

citizens in Europe to produce clean heat and power locally in a reliable, cost-effective, and 30

efficient manner [2]. 31

One of the primary strategies to quicken the energy transition will be P2X, especially 32

when coupled with sector coupling. A few years ago, the idea of producing renewable, 33

carbon-neutral fuels that absorb CO2 during production sounded like science fiction. This 34

technology is now a fact. P2X collects CO2 from the atmosphere and combines it with green 35

hydrogen to produce a variety of future fuels that are carbon-neutral. Sector coupling and 36

P2X together pave the way for the decarbonization of numerous sectors. In a nutshell, it 37

refers to tying together the energy-producing and consuming sectors, such as transportation 38
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and industry, and converting them all to clean electricity from fossil fuels. The main forces 39

behind sector coupling and P2X are accessible, renewable energy sources like wind and 40

solar electricity. Since decarbonization and electrification go hand in hand, the development 41

of new technologies that increase the viability of electrical power applications is naturally 42

also essential to energy transition plans [3]. 43

Belonging to P2X, also power-to-gas (P2G) systems could play a significant role in 44

the future energy sector, which will rely more on intermittent renewable generation. One 45

route for P2G is to produce methane (CH4), which can be used in place of natural gas, 46

to provide long-term energy storage and variable load. The natural gas infrastructure 47

already in place can be used to transport, store, and make use of produced CH4. P2G’s 48

primary processes are electrolysis to produce hydrogen (H2) from water and the conversion 49

of hydrogen and carbon dioxide (CO2) to methane. A P2G system’s crucial points also 50

include the source, capture, and processing of the necessary CO2. When compared, for 51

instance, to batteries, which are superior for short-term storage, P2G has the advantage 52

of large capacity long-term storage. Utilizing extra low-emission energy is crucial to P2G 53

since without it, the CO2 emissions of the generated CH4 tend to be excessively high in 54

comparison to natural gas and bio gas [4]. 55

The Internet of Things (IoT) is useful in this situation: IoT is able to collect and deliver 56

this precise data from every section starting from power generation to a central place. 57

Once there, it may be assessed before ideally permitting automatic control of the electrical 58

grid. An IoT ecosystem is the end product. Due to the fast digitization of businesses, 59

many organizations have started to shift their business online using IoT. Initially, these 60

businesses were running very smoothly and the organizations where happy with the 61

progress. However, with the growth in the businesses, they face challenges in storing 62

and analyzing the huge amount of data connected through the IoT devices [5]. Finding 63

solutions to those challenges requires some deep understanding of the problems. Big 64

data and big-data analytics have received considerable attention from academia and many 65

organizations. Big data and big-data analytics have found the solution of those challenges 66

by using the big data and analytics platform [6]. 67

With the use of machine learning (ML), which is a form of artificial intelligence (AI), 68

software programs can predict outcomes more accurately, even without having to be 69

explicitly instructed to do so. In order to forecast new output values, machine learning 70

algorithms use historical data as input. Without being specifically programmed to do so, 71

machine learning (ML), a subset of artificial intelligence (AI), enables software systems to 72

improve their propensity to anticipate outcomes. Algorithms that use machine learning 73

predict new values by using historical data as input. When predicting the likelihood of 74

a specific outcome, machine learning refers to prediction as the result of an algorithm 75

that has been trained on past data and applied to current data. The pace at which data is 76

processed and evaluated is accelerated by machine learning. With very slight deployment 77

adjustments, predictive analytics algorithms can now train on even larger data sets and do 78

more in-depth research on a variety of aspects [7]. 79

In this study we have focused on the data driven approaches for P2X technology. 80

In the same study we have highlighted and explained the latest technologies like IoT , 81

big data and analytics, machine learning , Artificial intelligence , P2G technology and its 82

process. Later in this study we have presented a theoretical architecture that contains all 83

these technologies together and shows their progress. 84

The rest of the paper is presented as section 2 contains the related study. Section 85

3 contains the basics and operations of the P2X cogenerations plant. In section 4 we 86

have explained P2X as industrial cyber physical system and in the same section we have 87

explained Internet of Things, artificial intelligence, meta-heuristics, machine learning. 88

big data, and working of big data and at the end of this section we have highlighted 89

requirements of big data analytics in IoT environment. Section 5 contains the theoretical 90

architecture of the P2X cogeneration plant using the latest technologies discussed in 4 and 91
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in same section we have explained data processing for machine learning. Section 6 contains 92

the discussion part of the paper. 93

2. Related study 94

The focus of this study is to highlight the importance of using the advanced data 95

driven methods and latest technologies like IoT, Big data analytics and machine learning 96

for the efficient utilizations and storage of the renewable energy used in the operation of 97

power-to-X cogeneration plants like methanol synthesis using the advanced data driven 98

methods. This study will contribute for the goals to reduce the greenhouse gas emissions. 99

However, in this related study section. 100

A recent study [8] shows that by implementing a mixture of new technologies and 101

apply put some investment can achieve the target of lowering the greenhouse gas emissions 102

(CO2). This can be achieved by the combination of H2 (that can be generated by the 103

electrolysis process by using the electricity generated by the renewable energy sources) and 104

CO2 to generate synthetic natural gas (CH4). This process is called the methanation process 105

and in this process H2 and CH4 is produced by using the electricity from the renewable 106

sources [9]. The process is mainly called the P2X process and in this process, X here are the 107

gases (H2 and CH4). CH4 produced in this process can be stored in the existing gas storage 108

infrastructure and later can be used. 109

Hydrogen itself can be the final product of P2X. Certain amount, sometimes up to 20%, 110

can be blended directly to the existing natural gas grid and utilized by the existing end use 111

equipment. Larger share of H2 requires modifications or conversions to the equipment, due 112

to different properties of H2 compared to natural gas. Additional challenge is the lower 113

energy density of H2, which decreases the energy transport and buffer capacity (linepack 114

swing) of the gas pipelines. [10,11] 115

During another study the author claims that P2X is a better option for the long-term 116

storage of renewable energy sources as H2 and CH4 can be stored for long period of time as 117

compared to battery storage and also reduce the amount of CO2 [12]. From the perspective 118

of a Distribution System Operators DSO, P2G solves the problem of integrating RES both 119

temporally and spatially due to insufficient distribution system capacities. Numerous 120

research papers [12] have addressed the coordination of gas and electricity networks using 121

P2G and other technologies. Several studies [13] evaluate the potentials of P2G on the 122

transmission network level in countries like for example Germany. The authors claim a 123

prediction of about 80 percentage of reduction of CO2 and about 110GW of energy by using 124

the P2X technology by 2050 in the Northern side of the Germany due to high-speed wind 125

and offshore capabilities. 126

There are some studies [14] that shows the requirements of predicting the future 127

locations for the source of RES installations in different areas. They claim that by using the 128

geographical information systems (GIS) services in those location can help in prediction of 129

RES installation locations for generating the energy [15]. The above-mentioned studies are 130

mainly focusing on the importance of RE and P2X technology for generating and storage of 131

energy (H2, CH4) from the RES and also providing the importance of using the GIS services 132

to identify the future RES locations for the installation. But, in our view point there is a 133

research gap as none of the study has shown the data driven approaches for the collection 134

of data from these renewable energy sources and also there is a gap for the future energy 135

prediction using machine learning based of the future data driven from the methanation 136

reactor. 137

In this study we have highlighted the importance of some data driven methods for 138

collection of the data from the methanation reactor and later in the same study using the 139

machine learning approach we have algorithm for the prediction of future energy cost for 140

running the electrolysis process. 141
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3. P2X Cogeneration Plants 142

3.1. Basics 143

The starting point of P2X is the production of hydrogen by water electrolysis, as 144

hydrogen acts as the main energy carrier. There are three main technologies for the hy- 145

drogen production: alkaline electrolysis (AEL), polymer electrolyte membrane electrolysis 146

(PEMEL), and solid oxide electrolysis (SOEL). AEL and PEM are already commercial, while 147

SOEL is at pre-commercial phase. The main technical differences are related to pressure, 148

temperature and dynamic operation. The operating temperature for AEL and PEMEL 149

is about 50–80ºC, and 700–900ºC for SOEL. The maximum operating pressures for AEL, 150

PEMEL and SOEL are 1–60, 4–76, and 10 bar, respectively. PEMEL is the most capable for 151

low part load and fast transients, while AEL is also fast enough for grid frequency services, 152

but has limited part load. SOEL requires more time for start-up and ramping, but is capable 153

for wide load range. [16] 154

Hydrogen can be the final product of P2X, as it can be used directly as a fuel or raw 155

material. Ammonia production and various chemical refining processes contribute to over 156

90% of the global hydrogen consumption of 73.9 Mt/a [17]. However, P2X can be extended 157

by further processing bulk hydrogen to various products and materials. 158

While the most (69%) of the realized P2X projects in Europe do not process hydrogen 159

further, methane is the second most used route (22%) [18]. The third one is methanol, which 160

accounts for 6% of the projects. 161

Production of methane (CH4) has been heavily studied for a long time, but the focus 162

is changing form syngas to CO2 methanation. In addition to hydrogen and CO2, syngas 163

contains also considerable amount of CO which changes the chemical process. Besides 164

the different input composition, the general nature of process operation is changing from 165

steady-state to transient operation of P2X. There are two main technological options for 166

CO2 methanation: biological and catalytic methanation. Methane has gained attention as it 167

can be used to directly substitute natural gas with the existing grid and end use devices. 168

Some commercial reactor concepts are already available. [19] 169

Other possible end products with high potential demand are methanol, dimethyl ether 170

(DME), and Fischer-Tropcsh (FT) products. A significant benefit compared to methane is 171

that the end products are in liquid form, thus increasing the energy density and usage 172

potential. Similarly to the development of the methanation processes, the main challenge is 173

the shift from well-known syngas process to CO2-based process, and the transient operation 174

of the plant. P2X processes for methanol and FT are more developed than for DME. [20] 175

The main structure for each of the P2X process are fairly similar at the upper level. 176

As an example, a simplified process chain for methanol [21,22] is presented in figure 1. 177

Renewable energy sources are the starting point, which provide the main energy input in 178

form of electricity. The produced hydrogen and CO2 are compressed to the operational 179

pressure of the synthesis. Intermediate storage might be required for both hydrogen and 180

CO2, in which gases are stored above the synthesis pressure. After the synthesis, there are 181

transportation and storage demand for the produced methanol. 182

In addition to the presented power and material flows, components consume and 183

produce heat, thus benefit from heat integration [23]. Water and CO2 sources are also 184

needed for electrolysis and CO2 capture [24]. 185
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Figure 1. Working of the methanol synthesis process.
For more comprehensive information, reviews are available for electrolysis [16], metha- 186

nation [19], and power-to-liquids (methanol, DME, FT) [20]. Examples of detailed process 187

models can be found for alkaline water electrolysis [25], methanol synthesis [23], methana- 188

tion [26]. 189

3.2. Operation 190

The operation of a P2X plant can be divided into two levels: scheduling and process 191

control. Scheduling determines how the process interacts with the rest of the energy system, 192

for example when power is used to generate hydrogen. The process control determines 193

how the rest of the plant is operated with the given hydrogen feed. The target of scheduling 194

is to obtain economic optimum, while the process control is used to keep to process within 195

the technical limits, and optimize the technical performance. [27] 196

The scheduling of P2X systems is characterized by the variable energy input (wind and 197

solar power) and price of the energy [21]. The material source of CO2 is often considered 198

rather constant [28]. Additional complexity is created due to different transient capabilities 199

of system components. As an example, distillation is a crucial part of a methanol synthesis, 200

and it is rather difficult to operate in a transient manner [28]. In contrast, electrolysers are 201

able to operate in a very flexible manner [16]. 202

In terms of the P2X process control, there are two extremes: (1) the load of the process 203

follows strictly the inputs, or (2) the load is constant, and the variation of the inputs are 204

leveled out by storage. Storage may be applied for one or several gases [29], or also for the 205

electricity to produce hydrogen [30]. In any case, automation and control is required to 206

start up, shut down, and maintain the process at certain set point. 207

For the scheduling, conventional optimization methods, such as linear programming 208

(LP) or mixed-integer linear programming (MILP) have been used. These methods require 209

usage of simplified physical models, that can be used as optimization constraints as defined 210

by the optimization method. The process control require knowledge about the design and 211

off-design performance, and the procedures of startup and load change. These two levels 212

of operation, scheduling and process control, are interconnected. 213

Both scheduling and process control are effected by the environment in which the P2X 214

plant is operated. The plant can be considered as standalone, so it does not affect to the rest 215

of the energy system, and the only purpose of it is to make the end product with as low 216

cost as possible. In this case, the plant just takes the resources and the prices as an input, 217
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which is a common assumption for techno-economic analyses [23]. Several end products 218

may be considered, such as heat, oxygen, or grid services, but the revenue from them is 219

considered only to decrease the production cost of the main end product [31]. 220

Instead of minimizing the cost of the end product, the target could be maximizing of 221

the revenues and the overall profitability of the P2X plant. This could include also operation 222

as energy storage, by producing electricity back to grid when needed. The difference to the 223

previous option is mainly in the way the costs and revenues are allocated. 224

Another option is that the plant acts as a part of the energy system, and the optimal 225

operation is considered at the system level as in [32]. This way the total system cost can be 226

minimized. However, the operation is not optimized from the point of view of a single P2X 227

plant. 228

As the complete process models for the P2X plants can be very complicated, they can 229

be computationally too heavy to be used for scheduling or real time operation control. 230

Therefore, process models have been simplified to simple set of equations and constraints 231

that can be implemented in the scheduling software, while losing some of the details of 232

the physical model. Another option is to create a surrogate model [33] through machine 233

learning, which is computationally lightweight but can still represent the physical behavior 234

accurately. Cui et al. [34] used NARX model successfully for e-methanol plant. Tahkola 235

[35] studied and compared four different machine learning methods for e-methane plant 236

in Keras neural network: ARX, NARX, LSTM, and GRU. The resulting NRMSE was 237

1.94–3.60%. Shokry et al. [36] trained an AI model with two different knowledge of the 238

chemical process: (1) only input and output signals were available as training data, and (2) 239

mathematical model was available for creation of training data. 240

4. Data-driven operation of P2X Cogeneration Plants 241

4.1. P2X plant as an industrial cyber-physical system 242

Processes that are constituted by logical decision making and physical relations are 243

the definition of what is called cyber-physical systems (CPS) [1]. An important aspect 244

under this concept is that every CPS is composed of 3 layers: physical layer, data layer and 245

decision layer. In the case of P2X plants these layers are defined as following. 246

• Physical layer: This domain includes P2X plants that are used to physically perform 247

the energy conversion. It also contains the measuring devices or sensors used to gather 248

the information on analog variables. In the plant process, the variables from renewable 249

energy sources, CO2 and H2 flow are examples. 250

• Data layer: This domain is where the analog of digital information is processed and 251

converted into useful information about the plants variables. Contains relevant input 252

information such as CO2 capture, spot price values of electricity, synthesis load, H2 253

storage, etc. that can later be injected into machine learning algorithms. 254

• Decision layer: In this domain is where the decision outcomes from the useful in- 255

formation from the data layer are involved. The decision can be either performed 256

automatically by machines or by humans. In the process these decision making can be 257

as the turn ON/OFF scheduling of the plant based on the predicting spot prices and 258

the current state of the electrolyzer for energy storage. 259

The relationship between layers is close and data usually flows in loop from physical- 260

data-decision-physical layer. The standardization of the plant and looking as a CPS serves 261

the purposed to simplify the relation between the layers and find strong points within them 262

to optimize the operation process. Usually communication between layers can also be a 263

key factors as critical applications can be benefit from fast connections. 264

4.2. Optimization methods 265

Optimization consist of the selection of the best element from a dominion space. It 266

involves minimization or maximization of one or multiples variables of a function following 267

a set of constraints. Optimization methods can be divided into two major categories: 268

deterministic and stochastic methods (see Fig. 3). Deterministic methods can reach to a 269
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definite answer without uncertainty while stochastic methods reach to an approximate 270

answer [37]. Moreover, another significant different between this major two classes, is 271

that deterministic methods can take longer time to compute and for stochastic methods 272

a wide range of different algorithms and programming tool-kits have been developed 273

which makes it easier to adapt the objective function depending on the application. A big 274

disadvantage of stochastic methods, is that due to its way to search the dominion space, it 275

might get trapped in local minima (or maxima) when it comes to non-linear functions.

Optimization 

Deterministic Stochastic

Branch 

methods

Enumerative

 methods

Relaxation and 

approximation

 methods

Heuristic 

methods
Monte-carlo

Figure 3. Overview of optimization methods (adapted from [38])
276

4.3. Internet of Things 277

Internet of Things (IoT) one of the rapidly growing technology that is used to connect 278

physical devices (objects) together using different communication techniques. IoT needs 279

connectivity methods to ensure that the devices work, capture, analyze and manage the 280

data accurately. For that purpose, connectivity should be flexible to meet the network 281

performance needed for a wide range of IoT use cases, device types and applications. 282

MQTT and HTTP are the important communication protocols that are used for the efficient 283

connection and sharing of information [39] . The functionality and significance of IoT 284

can be easily understand by studying the important building blocks of IoT; they are the 285

components of IoT, which work together to deliver its functionality. There are six IoT 286

building blocks that work together and provide functionality [40]. In the following, we will 287

explain each of them in more details. 288

Identification block: This is the method that is used to identify devices in the network. 289

There are two options for identifying the devices in the network object ID (name of device), 290

and object address (the address of the device in the communication network) [41]. The 291

main addressing methods of IoT objects are IPv6 and IPv4 [40]. 292

Sensing block: Data is collected from the objects/devices using the sensor using the 293

communication network and the collected data is then send to the cloud where it is analyzed. 294

Actuators, i.e. hardware mechanical devices such as switches, are used in IoT platforms 295

and operate in the opposite way to a sensor [40],[42],[43]. 296

Communication block: The communication block contains heterogeneous objects that 297

are used to exchange data and various services with each other and with the IoT platform. 298

This block contains various IoT communication protocols like for example, MQTT and 299

CoAP that are used to connect different objects to IoT and to send data from those connected 300



Version October 11, 2022 submitted to Energies 8 of 18

objects to the management system. The devices like the sensors and other objects are 301

connected to the Internet by communication technologies like for example, Zig-Bee, NFC, 302

UWB, Wi-Fi, SigFox, and BLE [44], [40]. 303

Computation block: This block contains two portions, software and hardware. The are 304

plenty of hardware platforms that have been built to run IoT applications, for example, 305

Raspberry PI, Intel Galileo, UDOO, Gadgeteer and Arduino. Similarly, there are many 306

software platforms that are used to perform the functionalities of IoT. Operating system is 307

the software the is running almost all the time during whole activation time of the device. 308

The cloud platform is also a computational component of the IoT; it enables small objects to 309

send data to the cloud, it facilitates big data processing in real time and helps the end user 310

to obtain knowledge extracted from the big data [44],[40]. 311

Services block: This is the block that provides the IoT application developers the starting 312

point for IoT application. There are mainly four components of services block. The first one 313

is Identity related services that can be divided into two parts, active and passive. Services 314

that broadcast information and have a constant power or take power from the battery 315

are active identity related services. Active identity related services can transmit or send 316

information to another device. Passive identity related services have no power source and 317

need some external device or mechanism to transmit its identity. Passive identity related 318

services can only read information from devices. Information aggregation services refer to 319

the actions of collecting data from sensors, processing that data, and transferring it to 320

the IoT application for processing. Collaborative aware services use the data provided by 321

the information aggregation services to make decisions and react accordingly. Ubiquitous 322

services provide collaborative aware services anytime to anyone who needs it anywhere 323

[42], [45],[46]. 324

Semantic Block: IoT provides different services and for those services it needs knowl- 325

edge, and for getting that knowledge in a better way, IoT uses different machines. Knowl- 326

edge extraction can include finding and using resources, modeling information, and recog- 327

nizing and analyzing data to reach some decision and provide the correct service. So, it can 328

be claimed that the semantic block is the brain of the IoT [44],[40],[42]. 329

4.4. Artificial intelligence 330

Artificial intelligence (AI) has played a significant role in modern times, it has had 331

a great impact in applications such as image recognition, medical applications, weather 332

forecasting, etc that can be critical making positive changes for society [47]. Plenty of 333

industrial and applications are designed everyday using AI methods, a important key 334

factor for such acceptance is the simplicity and great accuracy to solve real-world problems. 335

AI methods have 3 basic components, data, models and metrics. The amount of data and 336

quality of the data are both important when it comes to AI, the methods uses historical 337

information about the process to learn and model the behaviour between its elements and 338

then be able to perform decision making in latter stages. AI models are based in connections 339

and the more data there is, more re-validation of the model is performed. The models are 340

the creation, training and testing of machine learning algorithms, they differ in each other 341

by the different parametrization inside the layer that makes connections within the data. 342

In order to evaluate the model and produce representative outcomes of the data based on 343

logical decisions, metrics are use to estimate the differences between the model outcomes 344

and data. Overall artificial intelligence has proved to be a powerful tool to deal with many 345

of the problems that couldn’t be solved or that were expensive to solved by providing 346

approximate and enough accurate solutions. AI has taken part of those people who uses 347

simple electronic equipment and its a great promise to potentiate industrial development. 348

Integration of technologies in the frame of the Industry 4.0 would lead to increase efficiency 349

in factories, increase techno-economical ratio and meet environmental urge of reducing 350

carbon footprint [48]. 351
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4.5. Metaheuristics 352

Metaheuristics methods are search techniques that fall behind the heuristics definition 353

without being problem dependant. Usually employed for optimization, metaheuristic 354

techniques perform an intelligent search of the dominion space for a given function without 355

the need of making a rigorous mathematical model [49]. Also metaheuristic algorithm have 356

proven to be flexible and computationally cheap. In terms of the intelligent search provides 357

by the metaheuristic, many principles or techniques have been proposed. Algorithms 358

can be based on evolutionary programmed, trajectory, nature-inspired, ancient inspired, 359

among others. For different application some might be more effective than others and the 360

adaptation from one application to another is a simple task as long as the objective function, 361

the boundaries and the restrictions are well defined. Moreover, similar to machine learning 362

methods, the algorithms count with different parameters that can impact in how the space 363

search is done. A good practice to approach is to tune the parameters by doing multiple 364

rounds in order to find the optimal solution and check several times that the algorithms is 365

not trapped in local minima. Metaheuristics are good candidate for industrial applications 366

in P2X, they often require multi-objective optimization to solve energy scheduling problems. 367

4.6. Machine learning 368

Machine learning (ML) is an artificial intelligence discipline that enables machines to 369

automatically learn from data and previous experiences while looking for patterns to make 370

accurate predictions with minimal human involvement. 371

The working of machine learning can be explained in Figure 4. Initially the machine 372

learning algorithm is trained with the training data-set (old data) in order to create a model. 373

Here the machine learning algorithms are trained with the previous datasets. Once the 374

machine learning model is trained, then the input data is provided to the trained machine 375

learning algorithm for the calculations and future prediction. once the predictions are 376

obtained from the input data, these predictions are evaluated and are matching with the 377

actual results. If the predictions are close to the actual information then the decisions 378

are made based on the predictions. In case the predictions are not close to the actual 379

information(accuracy), then the machine learning algorithm is trained again with some 380

more historic data (training data) and the same procedure is applied again to get a better 381

predictions accuracy that is close to the actual information. 382

4.7. Working of IoT and big data 383

During the digitalization process, IoT devices are increasing and generating huge 384

amount of data that needs to be processed in an efficient way to get information from it. 385

Big data and IoT are the most needed technologies and the companies needs these two 386

technologies to fulfil their business requirements and take effective decisions. IoT and 387

big data are two different technologies, but with a passage of time and the needs for the 388

efficient analysis of data, these two technologies becomes interrelated [50]. IoT is playing 389

an important role in connecting and in communication between those devices and sharing 390

of information between devices and with the IoT platform. The data generated from these 391

devices is analyzed and used for the current and future decision-making processes. The 392

number of IoT connecting devices are increasing, it is estimated that the number of IoT 393

devices will reach to 20 billion in 2020 [51] and may be 50 billion in 2020 [52] and will 394

generate huge volume of data of about 40 Zeta bytes in 2020 [53]. The data collected by 395

these devices can be structured, unstructured and semi-structured data results in big-data 396

[54], and handling, processing and storage of big data is not possible for the traditional data 397

processing technologies and simple data bases. These problems data processing and storing 398

can be handled effectively using the big data technologies to improve the development of 399

IoT [55]. The massive amount of data needs high storage and high computing power and 400

strong data analytics as the traditional databases systems are not able to store, process and 401

analyze such a huge amount of data [56]. Cellular network like 5G is playing promising 402

role for communication and data processing by providing good and fast communication 403
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between the connected objects. 5G is providing the ability to collect high amount of data, 404

speedup the data analysis process, take out information from the data quickly which is 405

used to make better predictions and speedup the decision process [57]. 406

4.7.1. Requirements of big data and analytics in IoT environment 407

IoT main goal is to connect various objects to the internet, collect data from those 408

objects, analyze that data to get some meaningful information that helps the decision- 409

makers to take good future business decisions. The need for big data and analytics to IoT 410

has arisen as a result of the dramatic advancements in technology and business digitization 411

over the past few years, as well as the growth in the number of devices connected to IoT. 412

Big data and analytics have a high potential for extracting valuable information from the 413

enormous amount of data and greatly improving the decision-making processes. Below is 414

a description of the key requirements for big data and analytics in IoT, both functional and 415

non-functional. 416

Connectivity: With the heterogeneous objects in the network and the numerous objects 417

connected to the internet via sensors in a smart environment, connectivity in the IoT is 418

largely ubiquitous. The provision of a dependable connectivity for big data and analytics 419

is the first and most crucial requirement of the Internet of Things. The big data and 420

analytics will have the chance to effectively combine and integrate the enormous amount 421

of machine generated sensor data thanks to the reliable connectivity. Many of the objects in 422

our environment can connect to the high-performance, high-computing infrastructure and 423

support the IoT services using modern wireless networks like Wi-Fi and 4G/5G. [58]. 424

Storage: The requirements of big data storage in IoT is to handle massive amount 425

of unstructured data and provide low latency for analytics. Also, big data technology 426

provides IoT an efficient data storage, processing and facilities to convert the massive 427

amount of unstructured data into useful information which will provide a good foundation 428

for better decision making. There are many sources of IoT data like sensors data, social 429

media, smart phones etc. modeled in various ways and are using different communication 430

protocols and interfaces. The IoT services are mostly based on machine-to-machine (M2M), 431

communication protocols that are required to handle huge number of streams and is taking 432

benefits directly from the cloud distributed storage and computing infrastructure [59]. 433

Quality of services: Quality of service (QoS) refers to the capacity to guarantee a 434

particular level of performance to the data flow. The IoT guarantees an efficient transfer of 435

data from the sources that produce the big data, so the IoT network must be dependable 436

and provide this guarantee. Big data and analytics rely heavily on the QoS in the IoT 437

network. There are a variety of new networking technologies that can be used to build a 438

dependable network, enable real-time event transfer for the Internet of Things, and enhance 439

big data processing power[60]. 440

Real time analytics: IoT is expanding quickly and making important improvements to 441

streaming analytics and quick decision-making processes. Real-time information about 442

the connected IoT objects is being communicated via IoT. Big data and analytics in IoT 443

will accelerate the streaming process and extract the information as quickly as possible. 444

Big data analytics performs real-time queries on the majority of the streaming data from 445

web-enabled objects in order to obtain the information from it quickly, make decisions, and 446

interact with the concerned devices and people in real-time. Big data uses an operational 447

database for the streaming data. [61]. 448

Benchmark: Many organizations have started moving their operations online using 449

IoT as a result of the rapid digitization of businesses. Many of these businesses are having 450

trouble storing and analyzing the enormous amount of data connected through IoT devices 451

as a result of their expansion. It took a keen understanding of the issues to find the solutions 452

to those problems. The academic community and many organizations are very interested 453

in bid data and analytics. By utilizing the big data and analytics platform, big data and 454

analytics have found a way to overcome those difficulties. In this situation, benchmarks 455
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are crucial because they enable organizations to compare the effectiveness of big data and 456

analytics solutions. [62]. 457

5. Example: Theoretical Architecture for Deep learning based activation of electrolyzers 458

This section explains the advanced architecture of the P2G system by including the 459

advanced data driven methods like, IoT, Big data and machine learning. The IoT enabled 460

prediction system, is composed of four interlinked stages. 461

During the first stage, the IoT sensor devices are implemented in the whole infras- 462

tructure (Renewable energy sources, electrolysis process, hydrogen and methane storage 463

etc.) of the P2G system for data collection. During this stage the data from various parts of 464

the proposed architecture for example the data from the renewable source’s solar panels, 465

wind turbine, air pressure, atmospheric temperature, the amount of electricity generated 466

by the energy sources, the amount of electricity provided to the electrolysis process and 467

CO2 capture. How much H2 is generated and stored. How much H2 and CO2 is utilized to 468

generate methanol and how much methanol is produced. 469

In the second stage, the generated data in stage one is stored in the cheap cloud storage 470

for further processing. 471

In the third stage the huge amount of stored data is directed to the Big data analytics 472

tools for further processing. The Big data consist of all the formats (structures, semi 473

structures and unstructured) of data. The huge amount of data generated by the IoT 474

services creates opportunities to improve industrial services and customer values. For 475

example, the data generated from IoT sensors can be analyzed in real time using big data 476

that can help to take better presentation of information from the data and helps better 477

future decisions and will result in continuous improvements within operations. The Big 478

data process is divided into different phases, which are presented next. 479

Initial Phase: The data acquisition stage is where big data generated during the previous 480

phase is stored, depending on its volume, velocity, and variety, in a shared distributed 481

fault-tolerant database. The master node of the Hadoop cluster is then sent the acquired 482

data . Data preparation is necessary because the data may contain a variety of data formats 483

and information because it is collected from a variety of heterogeneous devices. In data 484

preparation, accurate and incomplete data are handled, and incomplete data is either 485

fixed or removed. Using Flume, the data collection method is executed. The primary 486

responsibility of Flume is to compile, combine, and send massive amounts of data to the 487

Hadoop master node. Flume keeps track of the data it receives in one or more channels. 488

Second Phase: Following that, the data is sent to an outside Hadoop Distributed File 489

System (HDFS) repository, where it is serialized and written in the required format. Be 490

aware that HDFS stores individual blocks of large files on numerous data-nodes connected 491

to the master node. It works by breaking up large files into multiple blocks. HDFS is 492

sufficiently all-encompassing to enable the storage of essentially any type of data, whether 493

it be structured, unstructured, or semi-structured. 494

To conform to the desired format, the serializers rearrange and modify the Flume data. 495

Pre-processing the data yields a unified view of the data. The data is kept in various HDFS 496
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clusters for processing. The HDFS clusters are made up of DataNodes. The actual data 497

and file system meta data are stored in the DataNodes. The two run on the same set of 498

nodes, allowing jobs to be handled on nodes where the data is present. YARN analyzes 499

data stored in HDFS. 500

Third Phase: SQL queries are executed during this phase. SQL queries can be executed 501

on HDFS data using the tools Hive and Impala. HIVE is utilized for data querying, data 502

selection, analysis, and computation on the pertinent data. 503

Last Phase:The last step, data analytics, involves sharing the calculated data to facili- 504

tate better planning and decision-making. Scalable Advanced Massive Online Analysis 505

(SAMOA), a distributed streaming machine learning framework that includes program- 506

ming abstraction for distributed streaming algorithms for data mining and machine learn- 507

ing applications, is the tool used in Hadoop for data analytics. To visualize data, use 508

Tableau (graphs, reports, and so on). A well-liked tool for interactive data visualization is 509

Tableau. 510

The fourth stage is the prediction stage. In this stage the calculated data from Big data 511

storage is provided to the machine learning as training and input data-set. The rest of the 512

machine learning process is explained in section 3.6 Figure 4. 513

5.1. Data acquisition and communication network architecture 514
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Figure 5. Working of the methanol synthesis.

5.2. Data processing using machine learning 515

Training data was produced with a Matlab model for 10.0 MW electrolysis, hydrogen 516

storage, and methanol synthesis. Constant efficiency of 65% was assumed for the electrol- 517

ysis, and stoichiometry is considered for the synthesis with a 100% conversion of input 518

gases. A minimum part load of 80% was assumed for the synthesis, and it is not allowed to 519

shut down the synthesis. The capacity of the hydrogen storage is 4.0 hours, determined 520

based on the maximum hydrogen consumption of the synthesis. Feed rate of hydrogen to 521

synthesis is a function of storage level and minimum part load of the synthesis. Capital 522

costs of 750 €/kW, 500 €/kW and 600 €/kg were assumed for the electrolyser, synthesis, 523

and hydrogen storage, respectively. 524
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Figure 6. Optimization outcomes from methanol synthesis. a), Power b), Spot price, c) Synthesis load,
d) H2 storage

An in-house, reduced brute force method was used to determine the operation of the 525

electrolyser, in order to minimize the levelized cost of methane. An example result for a one 526

week operation is presented in figure 6. As can be seen, the hydrogen storage is charged 527

during the periods with cheap electricity, and discharged when electricity is expensive. For 528

the rest of the periods, hydrogen is produced to only maintain the minimum part load of 529

the synthesis. 530
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Figure 7. Regression model outcome compared with the limits obtained from optimization

The model is used to create the training data for the AI model. For this purpose, a set 531

of 310690 days (24 h) were simulated. Each 24 h cycle was initiated with a random storage 532

level, with random hourly electricity price of 0–100 €/MWh. 533

The training data was obtained from Matlab model, and it contains 310690 rows and 534

27 columns. Columns 1 to 24 are electricity prices, column 25 refers to the initial state of 535

hydrogen buffer storage, column 26 is the price threshold to charge storage and column 27 536

is the price threshold to maintain minimum part load of the synthesis. 537

The outcome dataset was then used for training on a deep learning algorithm. The 538

parameters of the algorithm were as follow: 539

• 5 hidden layer activated by ReLU function 540

• 1 output layer activated by linear function 541

• adam optimizer and mean squared error loss function 542

• 20 epoch with bach size of 1000 543
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• 90% dataset for trainning, 10% for testing 544

In term of computational time, the model took about 185 s for training, about 9 s per 545

epoch. The problem was treated as a regression and R2 score obtained was around -0.566. 546

The comparison between curves obtained performing the regression testing and data can 547

be seen in Fig. 7, they compare the upper limits of the price spot to produce hydrogen, 548

based on the the 24 hours spot price and hydrogen buffer store. The variability of the data 549

reflects on the model outcome as the trend is not easily followed. 550

6. Discussion 551

The current review study highlights the use of data driven methods and the use of 552

latest technologies like IoT , big-data and machine learning in the operations of P2X plants 553

by keeping the point that energy is important in all the fields of life.The electricity generated 554

from the fossil fuels is expensive and can rise the greenhouse gas emissions that leads to the 555

global warming. The study focus on the generation of the renewable electricity production 556

by keeping in mind the long term storage of the renewable energy by using the latest 557

technology P2X. The P2X technology can store the renewable energy for longer period by 558

the generation of H2 from the electrolysis process and CH4 from the methanation process. 559

In this study we have discussed the importance of storing the renewable energy (green 560

energy) for a longer period using the latest P2X technology. In the same study we have 561

briefly explained and highlighted the importance of the latest technologies like IoT for 562

data collection from the P2X plant , big-data for gathering the information from the huge 563

amount of data generated by the IoT sensors and machine learning for the future prediction 564

of information based of the data-set from the big-data sources. 565

Long term storage of the renewable energy from various sources like solar, wind etc. 566

is a hard task as batteries are not able to store the energy for a longer period. To overcome 567

the aforementioned problem, a lot of research has been done in the recent years about P2X 568

technology and specially for P2G in the field of energy sector to store the energy in liquid 569

form for longer period using the already build storage infrastructure of H2 and CH4. 570

The value of data is critical in the digital transformation era to support the monitoring, 571

diagnosis, prediction, planning, and optimization of shop floor assets. The collection, 572

transmission, storage, and analysis of the massive amount of available data are critical 573

issues for this purpose. 574

This paper describes how data is gathered, distributed and automatically in P2X tech- 575

nology and introduces existing technologies for implementing distributed data collection 576

systems. P2G technology has enormous potential for electric grid load balancing, renew- 577

able integration, and the hydrogen economy by connecting the power and gas vectors in a 578

flexible utility network capable of storing energy from multiple sources and using it for a 579

variety of applications. It must be made abundantly clear that RES-based energy systems, 580

which gradually phase out fossil fuels, require dependable long-term storage (P2G fulfilling 581

the required criteria only).By producing H2 as an intermediate product, converting energy 582

through electrolysis, and storing the fuel until it has a high power consumption, when it 583

will be converted back into electricity or used for other purposes, P2G differs from other 584

storage technologies. A further step is considered to produce synthetic natural gas (SNG) 585

to be injected into the gas grid, which has advantages over hydrogen or electricity in terms 586

of storage, transport, and uses. It enables cross-sectoral integration of surplus, low-value 587

renewable energy in energy-demanding sectors like transportation or industry, facilitating 588

further decarbonization of these industries while simultaneously opening up new sources 589

of system flexibility in the power sector. 590

According to the findings, P2G schemes are excellent candidates for changing the 591

energy system to one that is more sustainable, at least while the transition is taking place. 592

When non-adjustable power generation temporarily exceeds the loads or if demand cannot 593

be met by the generation capacity, P2G is then continuously used. The potential for storage 594

(residual loads) in both transitional and long-term scenarios can be seen in a yearly model 595

on an hourly basis. It can be added without restrictions to the gas distribution network, 596
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which has significant technical potential for storage, transport, and uses, if it is synthesized 597

properly as shown here (i.e., 99% yield, 95% CH4). 598

If conditions are changed so that the energy systems serve the technology, P2G appears 599

to be a promising strategy in the long run. On the other hand, such strategies are likely to 600

be the only ones capable of addressing transition process to truly sustainable technologies, 601

where base load utilities can be operated more consistently and variable power capacities 602

(RES) are utilized at their maximum possible energy contribution. Concerning the environ- 603

mental component, there are essentially no alternatives to the integration of a very large 604

fraction of renewable in the energy system, where P2G will likely be unavoidable even as 605

technology must improve efficiencies and short-term costs; being technically feasible, it has 606

the potential to manage systems formed by clean power sources that are converted into 607

fuels (hydrogen and methane), whereas RES penetration requires balancing power and 608

seasonal storage of electricity which can be expensive and time-consuming. 609
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Abbreviations 625

The following abbreviations are used in this manuscript: 626

627

P2X Power-to-X
P2G Power-to-gas
IoT Internet of Things
ML Machine learning
SNG Syntatic natural gas
H2 Hydrogen
CH4 Methane
SAMOA Scalable advanced massive online analysis
HDFS Hadoop distributed file system
SQL Sequential query language
QoS Quality of service
AI Artificial intelligence
CPS Cyber physical system
CO2 Carbon dioxide
LP Linear programming
MILP Mixed integer linear programming
GIS Graphical information system
DSO Distribution system operator
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Abstract. The cumulating carbon fiber-reinforced polymer (CFRP) composite wastes need to be disposed efficiently. 

So far, the most effective thermal-based recycling technique, namely pyrolysis, has grown exponentially towards 

industrial scaling in developed countries such as the UK and Germany. Typically, even the slightest mistakes can cause 

unfavorable results and delays in workflow within such a massive operating environment (e.g., > 1 tonnes/day operating 

capacity). The existing semi-automated and, in some cases, fully automated plants should be continuously updated to 

resemble the varying classes and volume of the CFRP composite wastes. To overcome such research gaps and imprecise 

manual errors, Internet-of-Things (IoT) based framework is proposed. This paper studies the theoretical implementation 

of an IoT-based framework into the pyrolysis process to recycle CFRP composite waste to manage the process based on 

the principles of cyber-physical systems. The proposed framework consists of sensors and actuators that will be used to 

collect the data and communicate with a central management constructed as a platform that will articulate and manipulate 

data to satisfy the requirements of the recycling process, computationally modeled through logical relations between 

physical entities. In this case, the management unit can be either controllable or monitored remotely to increase the 

operation time of the plant. Our objective is to propose a scalable method to improve the recycling process, which will 

also help future decision-making in handling recycled carbon fiber. Specifically, this study will go beyond the state-of-

the-art in the field by (i) automatically calculate the mass of the waste and adjust the operating time, temperature, 

atmospheric pressure, and inert gas flow (if needed), (ii) regenerating heat so that after the first batch is recycled, the 

resin high in calorific value will be burned and will be releasing energy, whose generated heat needs to be trapped inside 

the furnace and then regenerated into the system, and  (iii) decrease energy consumption and fasten the process flow 

time. In summary, the proposed framework aims to provide a user-friendly control and temperature monitoring that can 

increase the overall efficiency of the process and avoid possible process shut down or even char formation by a controlled 

atmosphere in the pyrolytic reactor. 

Keywords: IoT Framework, Industrial-scale Pyrolysis, Recycling Carbon Fiber. 

1 Introduction 

Carbon fiber-reinforced polymer (CFRP) composites have been exponentially used in high-performance applications for 

decades. The composites have high mechanical properties for a lower weight ratio making them capable of replacing 

traditional metals in lightweight applications. However, CFRP composites employed 20 years ago have now reached their 

end-of-life (EoL) and raised a significant question about their disposal routes. So far, 62000 tonnes of CFRP composite 

wastes have been cumulating each year, and the forecast predicts that the amount could increase up to 90,000+ tonnes/year 

if not disposed properly. At the same time, the annual demand for virgin CFRP composites also expected to be increased 

from 72,000 to 140,000 tonnes/ year [1]. To establish a balance, recycling the waste composites, recovering the valuable 

carbon fibers (CFs), and reusing them into new composites is the only sustainable option [2]. 

Previously, landfilling and incineration were the popular disposal methods for their composites. However, various 

studies have proved that recycled carbon fibers (rCFs) to be close to their virgin properties, recycling industries have 

invested in a sustainable alternative to recycling CFRP composite wastes. Thermal recycling processes such as pyrolysis 
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and solvolysis using supercritical/ subcritical water or mild solvents have proved to be highly efficient [1]. Recently, a 

novel thermal recycling process [2] capable of recycling CFRP composite wastes with maximum efficiency has resulted 

in clean recycled fibers without disturbing the fibers' structural integrity (fiber direction, arrangement, and length). 

However, all these processes exist on a laboratory scale. Among them, pyrolysis has been successfully established on an 

industrial scale in The UK (Gen 2 Carbon), Belgium (Procotex), and Germany (CFK valley & SGL group). 

Fig. 1 presents the operating principle of the pyrolysis recycling process to recover CFRP composite wastes. First, the 

composite waste is size reduced using mechanical shredding and feeds into the system. The pyrolysis reactor is a closed 

chamber with no oxygen present. However, the process is done in an inert gas atmosphere to separate the valuable CFs 

from the matrix at 550 °C for the required time (depends on the waste quantity). Then, the recovered fibers are passed to a 

secondary heating chamber at 200 °C to oxidize the resin residues. Finally, the CFs are recycled, acquiring pyrolytic oil 

(can be used as feedstock) and hot gas (can be regenerated) [1]. Overall, industrial-scale pyrolysis possesses enormous 

sustainable benefits. 

 

Fig. 1. Overview of the pyrolysis process [1] 

The EU's regulations have moved from landfilling and incineration towards sustainable recycling regulations. In which 

recycling processes with low emissions in carbon footprints are preferred [1]. So, industries utilizing the pyrolysis process 

to recycle CFRP composite waste have to reconsider advanced emission monitoring along with their primary monitorable 

parameters such as pyrolysis temperature, pressure, inert gas flow, heat regeneration, recycled fiber quality, etc. Also, 

considering the type of CFRP composite wastes cumulating, which lacks composite information such as profile, the volume 

of fiber and resin, composite type, resin type, etc., there is a need to implement an advanced monitoring system to moderate 

such industrial-scale process. 

These strategies call for more control and automation. Therefore, applying IoT scheme frameworks can improve the 

overall connectivity bringing significant control, monitoring, and safety to the process [3]. However, the existing semi-

automated and, in some cases, fully automated pyrolysis plants need to be continuously updated and constantly monitored 

to couple with the varying CFRP composite waste types. To overcome such research gaps and eradicate manual errors, 

Internet-of-Things (IoT) based framework is proposed. Typically, an IoT is a network of devices interconnected to each 

other using some communication technology and using sensors and actuators to gather data from different devices and 

send that data to the cloud to store, process, and get information [4].  

This paper studies the theoretical implementation of an Internet-of-Things (IoT)-based framework into the pyrolysis 

process to recycle CFRP composite wastes and manage the process based on the principles of cyber-physical systems. The 

proposed framework consists of sensors and actuators to collect the required data and communicate with central 

management constructed as an IoT platform that will articulate and manipulate data to satisfy the requirements of the 

recycling process, computationally modeled through logical relations between physical entities. Furthermore, this study 

will focus on selecting a suitable IoT platform based on the requirements of the pyrolysis process. Incorporating IoT and 

its platform into the pyrolysis process will improvize the plant by automatically calculating the mass of the CFRP composite 
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wastes and adjusting parameters such as: operating time, temperature, atmospheric pressure, inert gas flow, increase energy 

efficiency, and reduce process flow time. 

2 General IoT framework for recycling carbon fibers  

The focus on implementing IoT technology into industrial-scale pyrolysis was discussed in the following section. First, an 

insight into improving pyrolysis factors such as cost, speed, reliability, scalability, and performance resulting from IoT was 

investigated [5]. Furthermore, discussions on IoT collected data as a reliable source of information in current decision-

making and future improvements into the pyrolysis process. 

2.1 Industrial-scale pyrolysis process and IoT framework 

Fig. 2 presents the implemented IoT network in an industrial-scale pyrolysis setup. The process includes sensors and 

actuators at all the crucial sections (starting from the waste feed till the CF recovering) throughout the process. The IoT 

framework is designed to be flexible and extended to multiple furnaces (pyrolysis process1, pyrolysis process2…... 

pyrolysis process N). Fig. 1 presents the pyrolysis process setup. The gathered data from the individual furnaces are sent 

to the main gateway and forwarded to the cloud for storage, processing, and visualization. In addition, information can be 

taken from data stored in the cloud. Based on that data, a further future business decision can be taken that can improve 

and speed up the CF recycling process with precision and accuracy. 

 

Fig. 2. IoT framework implementation in industrial-scale pyrolysis 

2.2 The role of IoT in process monitoring 

CFRP waste recycling process will be benefited from an IoT deployment by adding physical elements to the cyberworld 

on what is known as a Cyber-Physical System (CPS), as introduced in [4]. This will enable better control of the input 

material transported along with the conveyor, control temperature of the furnace, and real-time monitoring of char 

production.  In Fig. 3, It can be seen how IoT is used to form a cyber-physical environment where sensing and actuators 

are connected to the gateway making the interface to the cloud server. In the cyber world, a manager can remotely perform 

monitoring, control, or analyze stored data. 
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Fig. 3. IoT schematic of an in-site CF recycling process 

2.3 Selection of IoT platform for pyrolysis process  

Fig. 4 presents the framework of IoT platforms. IoT application needs a platform to run smoothly and provide the data to 

make future decisions based on the data received from the IoT platform. Hundreds of IoT platforms are available, and 

finding a suitable IoT platform for a specific IoT application is complex. A lack of experience and knowledge compounds 

the problem, and in some cases, a company may select a platform without adequate requirements analysis, which later 

leads to problems [6]. Companies can select an appropriate IoT platform for their IoT application if they first analyze their 

business requirements and start selecting the IoT platform with precise business requirements and knowing key factors of 

IoT platforms [5].  

 

Fig. 4. Framework for the selection of the IoT platform 

The process for the selection of an IoT platform has five stages. In stage 1, the company identify and finalizes their 

business requirements. In stage 2, the identified requirements are categorized as "Important" or "Required". In stage 3, the 

requirements are compared with the features provided by the IoT platforms. Only the five most important IoT platforms 

based on the market shares are selected in this case. In stage 4, IoT platforms are selected that are capable of fulfilling the 

requirements. Finally, in stage 5, a suitable platform is selected for the business IoT application.   

The requirements for the pyrolysis process to recycle CFRP composite waste are to eliminate the manual work involved 

in the process, speed up the recycling time (> 1 tonnes/day), increase energy efficiency, and increase the overall recycling 

efficiency of the process. Furthermore, it calculates the amount of heat required for a specific amount of CFRP composite 
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waste and estimates the amount of heat generated during the process. Finally, calculates the amount of emissions (exhaust 

and later outside the system). In short, the pyrolysis process needs stability, flexibility, scalability, security, attractive 

interface, data analytics, and interoperability throughout the system process. The process also needs and user-friendly 

application development environment for its IoT business application in the cloud.  

The requirements of the pyrolysis process are categorized into "Important" and "Required" factors. The requirements 

stability, flexibility, scalability, security, attractive interface, and data analytics are considered "Important", and the 

requirements interoperability is considered "Required". The requirements of the pyrolysis process are compared with the 

features provided by the selected five major IoT platforms, as shown in Table 1. All the essential requirements of the pyrolysis 

process were matching with the features provided by the AWS IoT platform. However, Azure lacked the required flexibility and the 

required factor Interoperability.  

Table 1. IoT platform features adopted from [5] 

Factors AWS Azure 
Google 

Cloud 

IBM 

Watson 

Oracle 

IoT 

Scalability Yes Yes yes yes yes 

Flexibility Yes - yes - yes 

Data analytics Yes yes yes yes yes 

Disaster recovery Yes yes no no no 

Stability Yes yes yes - - 

Security high high high high high 

Data ownership - yes - - - 

Protocol support Yes yes - yes yes 

System performance Yes - yes yes - 

Time to market Yes yes - - yes 

Legacy architecture Yes - - - yes 

Attractive interface Yes yes - no - 

Pricing model bad bad good - - 

Cloud ownership Yes yes yes - yes 

Interoperability Yes - - - yes 

App. environment Yes yes yes yes yes 

Hybrid cloud Yes yes - - - 

Platform migration Yes yes - - - 

Previous experience Yes yes - - - 

Edge intelligence Yes yes yes - yes 

Bandwidth - - good - - 

2.4   Communication requirements 

Currently, wireless communication advances have countless open opportunities for industrial applications. They can be 

critical enablers for monitoring and controlling impossible tasks before due to low flexibility and cost [7]. For the past 

decades, requirements for the industrial-scale process have been discussed, but they are bounded to every application. 5G 

cellular communication, evolution from previous 4G networks, has come with an improved set of characteristics that can 

increase the operational performance of industrial applications. Despite all the advantages, challenges such as 

interoperability, quality of service, ease of use, reach, cost, and security remain essential goals to be investigated to ensure 

overall benefit [8]. Please note that the first paragraph of a section or subsection is not indented.  

5G technology achieves superiority due to its main three cornerstones: massive machine-type communications (mMTC), 

ultra-reliable and low latency communications (URLLC) Enhanced mobile broadband (eMBB) [3]. In Fig. 2, the 

communication means can be achieved by 5G wireless communication in the recycling process environment. The main 

argument for choosing this is scalability, flexibility, and cost. A wired communication system will need physical 

installation architecture to increase the cost of a component's change significantly. The communication requirements for 
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the recycling process are as follow: (a) update time (process data) 1.5 ms, (b) transmission time (process data) 0.5 ms, (c) 

distance between logical endpoints 250 m, (d) reliability (redundancy), (e) less than 50 devices connected at the same time. 

The requirements can be achieved by installing one 5G base station inside the recycling building to ensure full connectivity 

between devices and cloud servers and allow remote operability. 

3 Conclusion 

The industrial-scale pyrolysis process to recycle CFRP composite wastes was studied by implementing IoT technology. 

The study proposes implementing sensors and actuators to collect data from the recycling plant and keeping in mind that 

the incoming composite wastes to be recycled will have varying composite types and properties. Therefore, the proposed 

IoT framework will adopt the recycling process conditions according to the composites to unify the standard pyrolysis 

setup. Furthermore, the methods involved in selecting a suitable IoT platform for the data collection, processing, storage, 

and visualization of results were also discussed. Overall, implementing the proposed IoT framework will enhance the 

recycling process adaptability over various CFRP composite waste types. As a result, the proposed IoT framework will 

facilitate the pyrolysis process into efficient energy utilization, reliability, scalability, and reduce the overall recycling time 

and cost. Furthermore, the information generated from the data collection and processing using the IoT platform can 

monitor and maintain the pyrolysis plant. Also, it is capable of influencing current and future recycling business decisions.   
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Abstract—The world population is increasing at a rapid
speed and so are the requirements for everyday life like
energy, technology, and industries. In the past few years,
there has been a huge increase and development in the
industrial sector and new technology like the Internet of
Things (IoT) has played a major role in it. The industrial
sector is consuming a large portion of the energy worldwide
and is contributing a large amount of greenhouse gas
emissions. Hence, they face significant economic, social and
environmental pressures to create energy-efficient processes
and systems of production and directly manage their energy
consumption, looking at aspects beyond direct costs. One
of the effective ways to reduce energy consumption, cost,
and greenhouse gas emissions is to use an industrial energy
management system (IEnMS). The IEnMS uses IoT for (big)
data collection, processing, storing, and visualization. In this
case, one key challenge the industries face is the selection of
an IoT platform among the hundreds of IoT platforms in
the market. In this paper, we adapt our previously proposed
general framework to choose an IoT platform focusing here
on the requirements of IEnMS. The proposed framework
provides an objective methodology that can be used to select
the most suitable IoT platform for different IEnMS based
on their particular requirements.

Keywords— IoT, IoT platform, platform features,
industrial energy management system, framework

I. INTRODUCTION

Energy and climate change are one of the most impor-
tant topics in the public eye. Across every sector whether
it is industry, housing or government, there is an attempt
to save energy and control climate changes [1] because
of the fact that energy is finite and can be used in a
smart and efficient way to protect the current and future
generations [2]. Industry is the one that is consuming
the highest amount of energy and it is estimated that
about 42.3% of the total energy produced in the world
is consumed by the industrial sector [3]. For a company
to be in the race of competition and position themselves as
a market leader in the long run, the company has to give
priority to the management and operation of the company’s
energy system. Due to this reason industry needs more
attention to use effective energy management.

Energy management is one of the promising means
for an industry to reduce energy consumption and related
energy cost and reduce carbon emission. Back in nineties,
energy cost was a small factor for the industrial companies,
this is due to the reason that the energy cost was very
low as compared to the production size and greenhouse
gas emission was not the priority. But within the last
decades the energy and energy sourcing prices in Europe

increased rapidly. Industrial sector is focusing on energy
management in which the company prepares long term
energy policies, planning and targeting for the energy
use. Industrial Energy Management System (IEnMS) is
used to implement this whole process and control energy
consumption, green house emission, reduction in energy
use by a specific percentage and save cost.

The Internet of Things (IoT) is promising to make
the environment smarter and connecting devices to each
other and with the platform for communication and data
exchange. Connected devices are adopting IoT at a rapid
pace. Since IoT is expanding continuously, the need for
connectivity methods grows to ensure that the devices
work, capture, analyze and manage the data accurately. For
efficient connections and sharing of information, commu-
nications protocols like MQTT and HTTP are used [4] .
The best way to store, process and analyse that data within
its infrastructure is by using an IoT platform that comes
with the data processing capabilities [5]. It will not only
allow you to collect data from Industrial machines but can
also help you set up a custom visualization dashboard.

This contribution aims at utilizing our developed theo-
retical framework for selecting a suitable IoT platform for
IEnMS by using IoT and big-data. Our goal is to provide
an objective while general methodology that different
industries can apply when selecting the most suitable
IoT platform for IEnMS based on their particular needs
and business requirements. In other words, this paper
will support industries to carry out a detailed analysis
of their own energy requirements and understand the key
components of their Energy Management (EnM) to find
the best match for their IEnMS. The study will find
the answers of the following questions. 1) What are the
components of EnM in industrial sector? 2) How are the
Industrial energy management systems working using IoT
and big-data? 3) How to design a framework for selecting
a suitable IoT platform for industrial energy management
system by comparing the requirements of IEnMS with the
features provided by the IoT platforms?

The rest of the paper is organized as follows. Sec. II
contains Industrial EnM (IEnM). Sec. III explains IEnMS
and in same section we have explained Industrial Energy
Management system its working. Sec. IV contains Internet
of Things (IoT), IoT platform and the need for IoT plat-
form. Sec. V contains our proposed theoretical framework
for selecting IoT framework for IEnMS. Sec. VI concludes
the paper.



II. INDUSTRIAL ENERGY MANAGEMENT (IENM)

One of the indicators of the economic development is
the fast growth in industrial sector. With the passage of
time the number of industries is growing and so is the
need of energy [6]. The increase in the use of energy will
be continuous with the rapid development in the industrial
sector and the fast growth of the world population and
will create problems like increase in energy price and the
carbon emission. Industry needs energy management to
use energy efficiently and also control carbon emission.
Energy management consists of practices and processes to
improve energy efficiency. As a result, in the recent years
many organizations have put focus on energy related issues
to improve their productions and operations and improve
energy efficiency and thereby reduce energy usage and
energy cost. Industry needs energy management to use
energy efficiently and also control carbon emission.

A. Components of IEnM

In this section we will discuss the important components
of IEnM that we have identified from the literature [6]–
[10]. There are five main components in IEnM plan-
ning/strategy, operation/implementation, controlling, orga-
nization and culture.

Planning/Strategy: The first phase of EnM has three
parts. The first part is the written long-term energy policy
of the company. Second part is energy planning and target
setting in which the industry is making the plans and
setting future targets for the energy use. The target may
be the lowering the green house gas emission, energy con-
sumption, reduction in energy use by specific percentage
etc.. Third part is the strategic energy risk management
that is used to analyze any type of risk the company
can face related to the energy use and how the risk can
be managed by the company’s predetermined financial
objectives and risk tolerance.

Operation/Implementation: The second phase of EnM
that consist of three parts. The first part is Implementation
of energy efficiency measure in which the companies are
implement specific energy projects and energy efficiency
technologies to reduce electricity consumption. The sec-
ond part is the investment decision on energy efficiency
measure in which companies are conducting a systematic
economic calculation to calculate the return of investment.
The third part is the energy audit, in which the companies
within the operations of an energy management constantly
review the status-quo and highlight energy saving poten-
tial.

Controlling: The third phase of EnM that consist of
three parts energy accounting, performance measurement
and bench-marking. Energy accounting is the process of
constant analysis of the energy consumption and measure
the energy efficiency monitoring on a regular basis and is
reported. Performance measurement is an integral part of
EnM and it defines the key performance indicators (KPI)
for energy efficiency. KPI’s are describing the relationship
between an activity and the required energy. Energy bench-
marking is an activity that is focusing on energy perfor-

mance and can be defined as the method used to compare
the energy efficiency between or within entities and is a
useful contribution to reduction in energy use and related
cost and emission. There are three types of bench-marking
industrial benchmark, historical benchmark and company-
wise benchmark. In industrial benchmark, the company
compares its own facilities and process with the facili-
ties and process of other company. In historical bench-
marking the company compares its energy consumption
of a process or facility with its own process or facility
in the early times. In company-wise bench-marking the
company compares its facilities and processes inside the
company.

Organization: The fourth phase of energy management
that consist of two parts. Selection of energy manager
which is based on the experience and should be climate
friendly. There should be a close link between the energy
manager and the top management, and is responsible
to update the top management about the activities and
progress of the energy management. The second part is the
integration and standardization. According to industrial
companies energy management should be integrated with
the production management processes using ICT tools and
standardization. The production process and evaluation of
potential energy saving investment can be controlled by the
ICT tools and the transparency of the industrial companies
can be increased by the standardization.

Culture: The last phase of energy management consists
of two parts. First part is education and training. In
industries at the corporate level or plant level the energy
manager needs man-power which require basic education
to meet the requirements. For this purpose, the industrial
companies need continuous energy related training, which
provides positive impacts on the energy management. Staff
motivation is the second part in which the industrial com-
panies needs to motivate the staff to actively participate in
improving the energy efficiency. In that case the companies
give rewards to the technical and operational staff, which
helps to sustain the momentum and improve the overall
support for the energy management program.

III. FUNDAMENTALS OF IENMS

For an organization to improve its energy performance,
one of the best way is to use an Industrial Energy
Management System (IEnMS). It monitors, controls, and
optimizes energy performance in a plant and measures
the consumption of energy. It is also used to diagnose
problems like over-consumption and leaks across the entire
plant. For energy consumers including industrial, public
sector and commercial organizations an EnMS is a frame-
work to manage their energy usage and can be defined
as “a set of interrelated or interacting elements of a plan
which sets an energy efficiency objective and a strategy
to achieve that objective” [11]. it provides companies
the opportunities to improve energy savings by adopting
energy saving technologies. In most cases for a successful
implementation of EnMS required low investment cost and
specialized expertise and staff training.



TABLE I
REQUIREMENTS OF INDUSTRIAL ENERGY MANAGEMENT [7]

S No Requirements for IEnM
1 Development and implementation of strategic plan that includes the energy policy and specific targets for the energy savings.
2 Organizing different energy activities including the allocation of responsibilities and tasks.
3 Establishment of management team that is leading by an energy manager who will be responsible to report directly to the high management.
4 Development of related policies and procedures which can include energy procurement, energy usage, cheap energy purchases etc.
5 Carrying out the initial energy audit to identify energy saving potentials
6 Planning and implementation of energy efficient measures
7 Identification of the company’s unique key performance indicators which can show the measure progress on a regular basis.
8 Implementation of the energy meters for the monitoring of the energy consumption at the main production processes at a regular interval.
9 Reporting of the information gathered from the data to the high management.
10 Providing progress to the high management so that the management shows interest in the energy management activities.
11 Training, motivating, and proving information to the employees of the company about energy management activities.

Fig. 1. Industrial Energy Management

Industries are required to follow a series of defined
steps to establish a successful EnM. The main steps
required are development of energy policy and assigning
responsibilities, highlighting main energy users, setting
measurable goals and targets, implementing actions to
achieve the goals, checking actions are successful, and
continuous system review as shown in Figure 1.

A. Working of Industrial Energy Management System

An Industrial Energy Management System is a
computer-based system that is used to collect and measure
energy data from the field like HVAC units (heating, ven-
tilation and air-conditioning), lighting system, water and
gas meters installed on production line etc. and provide
that information to the user. The working of IEnMS is
explained below.

Building data collection strategy: A system that is used
to collect real time accurate and granular data and have
the information that where and when the energy has been
used and by which device(machine). The data is collected
by installing sensors/smart meters, and sub-meters on the
incoming supply and the large energy consumer (device).
For example, on the HVAC, production line, boilers etc.
The objective of this part is to monitor the collection of
real-time data that shows where the majority of the energy
being used.

Transform raw energy data into useful information: In
this phase the collected data is analyzed, interpreted and

is converted into useful information. Here the big-data
software is used that can easily import the raw data from
different machines using IoT devices and then convert
the raw data into useful information in the forms of
charts, graphs etc. that is user friendly. Here the raw data
collected may related to the production levels, weather
data, humanity and other factors that could influence
energy usage to generate the key performance indicators.

Assign responsibility, analyze data: In this phase the
information provided needs to be converted into useful and
meaningful reports, that can only be possible by adding
the information to the knowledge of the facility and some
expertise in energy management. This can be done by the
energy manager. The role of the energy manager is to
interpret the information provided by the Industrial Energy
Management System and combine this information with
the company’s process, set the targets.

Interpret the results, and agree an action plan: Here in
this phase the energy usage reports are available to the
energy manager. The energy manager and energy man-
agement team start communication with the departments
to start an energy policy and make agree to an action plan.

IV. INTERNET OF THINGS AND IOT PLATFORM

The term “Internet of Things”, or “IoT”, was introduced
by the British technology entrepreneur Kevin Ashton in
1999 as the title of a presentation at Procter and Gamble.



Fig. 2. Industrial Energy Management System

IoT and can be defined as small and complex systems
that allow businesses, governments, and citizens to adopt
and interconnect physical objects and virtual objects based
on existing and evolving interoperable information and
communication technologies [5]. IoT is a new technol-
ogy paradigm that has emerged as a global network of
machines and devices capable of interacting with each
other and with the platform for collecting, analyzing,
storing and visualizing data generated from the devices
and machines using sensors, actuators, communications,
and analytical tools [12]. IoT is now playing a main role
in Industrial sector by collecting data from machines and
other sources [13] and IoT platform is used to store,
process and perform analytics on the collected data and
provide useful information to be sent to the customer, as
shown in Figure 3.

An IoT platform provides services to IoT devices and
customers and enables IoT device an endpoint manage-
ment, connectivity and network management, processing
and analysis, data management, application development,
access control, security, monitoring, event processing and
interfacing [5]. Recent increase and development in mobile
devices, embedded technologies, cloud computing and
data analytics has resulted in a boom in IoT utilization,
in terms of personal and organizational use, to conduct
information exchange to facilitate recognition, monitoring,
tracing, positioning and administration [5],[6]. The number
of IoT platforms are increasing at a rapid speed, For
example, in 2015 the number of IoT platforms were almost
260, which grew to 360 in 2016, exceeded to 450 in 2017
and reached to 620 in 2019 [14]. Requirements for IoT
platforms, which provide important services and features
for IoT applications, change as new IoT devices emerge
[9]. This complexity in the context of rapid change poses

Fig. 3. IoT for IEnMS

challenges for businesses, governments and citizens that
often have little experience of the infrastructure of IoT
and limited knowledge of how to select an IoT platform
that can meet their current and future needs.

IoT application needs a platform to run smoothly and
provide the data so that the companies take present and
future business decisions based on the data received from
the IoT platform [11]. An IoT platform is the main part
of an IoT solutions. Among the hundreds of IoT platform
vendors in the market, it becomes very difficult for the
companies to find and select a suitable IoT platform that
is best suitable for their business application and which can
fulfil their maximum business requirements. This problem
can be solved by two steps. In the first step, the company
can identify their complete present and future business
requirements. In the second step the company should have
the knowledge of some of the key factors of an IoT
platform before selection. In this way the company can
select a suitable IoT platform for their business application
by comparing the requirements with their features.

V. GENERAL FRAMEWORK FOR SELECTION OF IOT
PLATFORM FOR IENMS

We have aimed to create a more general approach that
can be more widely used across all the cases. To show how
our general framework can be applied to assessing and
choosing an IoT platforms, in this study we have selected
the top five IoT platforms (AWS, Azure, Google, IBM,
and Oracle) based on market share. We have compared
these IoT platforms according to the twenty-one key IoT
platform factors that we have identified in [5]. We have
compared these twenty-one key factors with the features
provided by those selected five IoT platforms as shown in
Table II.

More specifically, the entries of Table II have the
following meaning related to the specific feature to be
considered: ‘yes’ means the feature is available, ‘high’
indicates strong, ‘bad’ shows weak, ‘good’ indicates that
the feature is very good, ‘-’ shows that the feature is
unknown and ‘no’ indicates that the feature is not available
in the platform. In order to identify and fill the features
of the selected five IoT platforms, different articles [5],
[15]–[20] have been studied from many databases. Some
websites [21]–[26] have been used, especially the websites
of those selected IoT platforms. A few white papers [27]
have also been studied.



Fig. 4. IoT platform selection Framework for Industrial Energy Management System

TABLE II
FEATURES PROVIDED BY IOT PLATFORMS [13]

Factors AWS Azure Google IBM Oracle
Scalability Yes Yes Yes Yes Yes
Flexibility Yes - Yes - Yes
Stability Yes Yes Yes - -
Security High High High High High
Data analytics Yes Yes Yes Yes Yes
Disaster recovery Yes Yes No No No
Data ownership - Yes - - -
Protocol support Yes Yes - Yes Yes
System performance Yes - Yes Yes -
Interoperability Yes - - - Yes
App. environment Yes Yes Yes Yes Yes
Cloud ownership Yes Yes Yes Yes
Pricing model Bad Bad Good - -
Legacy architecture Yes - - - Yes
Attractive interface Yes Yes - No -
Time to market Yes Yes Yes
Bandwidth - - Good - -
Edge intelligence Yes Yes Yes - Yes
Hybrid cloud Yes Yes - - -
Platform migration Yes Yes - - -
Previous experience Yes Yes - - -

The framework for selection of an IoT platform is illus-
trated in Fig.4. as a schematic of the selection procedure.
The whole process consists of five stages. In the first stage,
the company finalize their business requirements. In the
second stage, the company requirements are applied to
prioritising which factors are required (R) and important
(I) for this business context. In the third stage, the R and I
factors are compared with the features provided by the five
selected IoT platforms. The IoT platform/s that provide a
maximum of the features as compared to the requirements
are selected and shifted to the stage four. In stage four,
there might be one or many IoT platforms that match the
required and important factors. Stage five is the decision,
which is explained next.

If there is one IoT platform that provides the most
required and important features then the same IoT platform
can be selected for the business application. But, if there
are multiple IoT platforms providing these features then
the company may choose an IoT platform based on the
comparison of their match to ”I” factors and select a
suitable IoT platform for their business needs. There might
also be chances that none of the platforms provide all
of the required features; this might indicate that new

platforms should be selected and evaluated accordingly.
For the IEnMS, the five stages of the framework are

explained in a simple way. A company is interested to start
energy management system to save reduce greenhouse
gas emission, save energy and reduce energy bills. The
company is interested to use IoT application for its EnMS.
Initially the have to learn the components of IoT to
understand what is IoT and how it works. Secondly they
have to study to know what is an IoT platform and what are
key factors of an IoT platform. They need an IoT platform
for their business application but they do not know which
platforms are providing what features and which one
is best. when the company have the knowledge of IoT,
IoT platform factors and the features those platforms are
providing then in stage 1, the company go through each
of the 21 factors that have been identified as important
in choosing a platform and use this to help them to
formulate their business requirements. In stage 2, these
factors are prioritized as being either required (R) and
important (I) for their business needs. They find that their
required factors to consider (R) are for example, scala-
bility, stability, system performance, attractive interface,
edge intelligence, time to market, flexibility, and previous
experience. Their important factors to consider (I) are for
example pricing, security, data analytics, disaster recovery,
and interoperability. In stage 3, the R and I factors are
compared with identified features of IoT platforms. The
platform that is fulfilling the ”I” and ”R” requirements of
the company can be selected. In case there are multiple of
IoT platforms that are offering completely the ”I” and ”R”
requirements of the company, then the company can select
one that is providing the ”I” requirements in a better way.
In some cases it can happen that non of the IoT platform
are providing all the ”I” and ”R” requirements, in this case
the company can search some other IoT platform for their
IoT application.

VI. CONCLUSIONS

The aim of this study is to build an objective methodol-
ogy that can support industries to select the most suitable
IoT platform for their IEnMS based on their specific
needs. To do so, we first highlight the components of
EnM and later we have explained the components and
working of IEnMS. Second, we identified twenty-one
key factors of IoT platforms from the literature. Finally,



we have designed a theoretical framework for selection
of IoT platform for IEnMS and tested it in five well-
known examples. This research then provides a general
framework to select the most suitable IoT platform for
industries to build their IEnMS by comparing its specific
requirements with the features offered by the different
platforms.

We believe industries can select an appropriate IoT
platform for their IoT application, if they first analyze
their business requirements, and start selection of the IoT
platform with clear business requirements and have the
knowledge of key factors of IoT platforms. This study
highlighted important key factors of IoT platform. Those
key factors may cover some of the current requirements
of the IEnMS and can help ensure that current and
future needs of the business are meet. It will facilitate
the companies to select a suitable IoT platform for their
business needs.
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Abstract—Smart grid applications typically use cloud
computing to address the computational requirements for
efficient electricity delivery. Recently, the emerging Internet
of Things (IoT) has resulted in increased number of devices
connected to the smart grid, including consumer gadgets,
measurement equipment, and electrical and electronic de-
vices such as smart power converters, phasor measurement
units, and smart meters. These heterogeneous devices that are
present in all the four stages of a smart grid—generation,
transmission, distribution, and consumption—generate huge
amount of structured, semi structured and unstructured
data. Gathering, storing, and processing such huge data
volumes using cloud computing creates problems of band-
width, latency, disaster recovery, and cost. To overcome these
problems, we present a theoretical discussion on the usage
of IoT, edge computing and big data to collect the data
from smart grid, process the data using edge computing and
big-data analytics, and use the data for smart grid main-
tenance, energy information and future decisions. Further,
we highlight how edge computing and big-data approaches
have mitigated the above mentioned problems by shifting the
control, intelligence, and trust to the edge of the network.

Keywords— IoT, Smart grid, big data, edge computing,
cloud computing

I. INTRODUCTION

The renewable energy-based smart grid (SG) concept
emerged in the early 21st century, motivated by the
necessity to increase renewable energy production in the
electricity grid. The transformation of the 20th century
traditional electric grid to modern 21st century smart
electric grids was enabled by remarkable advancements
in power electronics and internet and communication
technologies (ICT). The integration of the new technolo-
gies enables efficient utilization of the energy produc-
tion and consumption, providing opportunities for new
energy resources like wind and solar etc., allowing the
exchange of generated power from different sources and
also bi-directional flow of power and communication. As
a result, both utility companies and customers have been
installing renewable energy sources (RES), such as solar
and wind energies, inside the distribution grid [1]. Further,
new technological paradigms such as Internet of Things
(IoT) are influencing modern SG operations by improving
communication, achieving better customer relationships,
and handling the huge amount of data generated from the
smart devices. In this sense, IoT is increasingly being used
in SG applications for data gathering, communication, and
smart analytics. For example, energy-based data analytics
from the user to the utility can highly improve efficiency,

reduce congestion, and improve power-supply reliability
in 100% renewable-energy-based SGs in the future [1].

Recently, many industries across sectors have shifted
their business operations to some form of cloud comput-
ing since cloud computing provides some benefits such
as flexibility, operability, and cost savings. As a result,
enormous amounts of data generated by devices are being
sent to the cloud servers for processing and analysis [2].
In the industrial environment, such an increase in data
from devices create many problems. First, a large amount
of data is transferred to the cloud for analysis, but most
of it may be irrelevant to the operations. Thus, this data
transmission ends up creating high traffic to a central
repository and increases costs due to extra unnecessary
storage. Second, important data that need to be sent with
small latency’s of between seconds and millisecond can
be very important for crucial industrial operations may
experience costly delays. Third, sending data to cloud and
retrieving that data can be very costly [3].

Edge computing is used to overcome the aforemen-
tioned problems in cloud computing [4]. The benefits
of edge computing are that it moves data analysis and
services away from centralized servers and a lot of data
analysis is performed at the source of data collection [3].
Edge computing analyze data on the spot and filters the
important data in real time; this improves the speed of
data analysis and the decision-making process [5]. Edge
computing is proving huge benefits to (IoT)-enabled busi-
ness, but nevertheless, cloud computing remains important
because having a centralized location for the data storage
and analysis still has many benefits. In particular, non-
time-sensitive data can be sent to the cloud, for example,
for deep analysis post-hoc using machine learning (ML)
methods to improve industrial operations and strategies
[6]. Table I shows some differences between cloud and
edge computing [6], [7].

The comprehensive sensing and processing abilities
of IoT support many technologies in SG. Further, the
rapid increase in IoT-enabled devices can cause explosive
growth in data generation, resulting in the so-called “big
data” regime, where the system generates data that is so
large, fast, or complex that non-traditional methods are
required for processing it. The generation of big data in
SGs makes the existing data-processing capacities inef-
fective as edge computing does not have all the resources
sufficient for the complex and intelligent big-data analytics
tasks [8]. Hence, it is important to include more modern



TABLE I
DIFFERENCE BETWEEN CLOUD COMPUTING AND EDGE COMPUTING.

Point of Difference Cloud Computing Edge Computing

Operations Happens on the cloud platforms
such as AWS, Azure, Google

Happens on the device itself
or at the gateways

Benefits
Can store massive amount of data on scalable

hosting on the cloud which can accessable
anytime on the Internet

Network can be scalable independently
with each new device that is added to the
system, possibly working as a federation

Suitable use case
Suitable for the operations with more tolerance

in terms of latency and requires high
levels of computing power

This is suitable for low latency applications and that
allows for distributed data storage, leading to a

scalable and cost effective hosting providers

big-data analytics to improve the data-processing capacity
of IoT data [9]. Big-data analytics can be defined as the
process by which the variety of IoT data are analyzed to
find the trends, hidden patterns, unseen correlations and
new information. This huge amount of data analysis and
information gathering will provide benefits to companies
for current and future effective decisions and will also
provide benefits to the individual users [10].

In this paper, we present a theoretical framework using
a combination of IoT, edge computing, big data, and
analytics for the efficient collection of data from the
huge number of devices connected to SG as well as the
processing, storage, and visualization of the collected data.
We elaborate on some benefits of edge computing and and
big data, such as latency, bandwidth, disaster recovery, and
price in the entire SG system, starting from data collection
to data visualization. The rest of this paper is organized
as follows. In Section II, we describe related studies on
big-data analytics in smart grids and explain the concepts
of IoT, edge computing, and big data. In Section III, we
explain how these technologies—IoT, edge computing,
big data, and big-data analytics—work together. Finally,
Section IV concludes the paper.

II. RELATED RESEARCH

In this section, we use systematic literature review struc-
ture, similar to [11], to answer the question “what type of
technologies can be used to handle the massive amount of
data from SG and obtain meaningful information from it,
so that it can be used for better business decisions?” The
main objectives are to identify technologies that can work
together to effectively extract information from big data
to fulfil the requirements of SG business and operations.

A. Smart Grid

The SG technology concept has emerged to improve
the flexibility and efficiency of the traditional grid and
provide new opportunities for new generation methods
such as wind, solar, and other RES based generation.
The SG is essentially an electrical network that consists
of infrastructure, software, and hardware, which enables
it for two-way communication between all parts of the
system and participants and efficiently generate power and
enable distribution in the supply chain. As a self-sufficient
distributed system that can provide energy from different
sources including renewable and storage, SG also enables
the suppliers and consumers access to the control and
management capabilities [12].

SG allows two-way communication between the gener-
ation and consumption side with the help of devices such
as smart meters, smart appliances, battery energy storage
systems, power electronics converters, and other energy
efficient resources. SG uses computer technologies for
the improvements in automation, communications such as
information exchange between consumers, transformers,
and generation plants, and connectivity between many
components of the power network, e.g., power gathered
from different generation plants [13].

The SG works differently than the traditional grid; the
network structure of the smart grid is complex having two-
way communication and two-way interactions between
the devices and the participant in the supply chain. The
operations involves many steps from power generation to
consumption, as explained below [14].

Generation: Power is generated from distributed
sources that can include traditional power plants and
renewable sources such as solar and wind. Electric storage
can be used for generation-side management, including
consumption-integrated storage such as electric vehicles.

Transmission: The generated power is transmitted us-
ing a network of transmission lines substations, and
distribution systems. In the SG, transmission comprises
three interactive components—smart control centers, smart
power transmission networks, and smart substations. The
smart transmission networks are conceptually built on
the existing electric transmission infrastructure and the
current advanced technologies—sensing, computing, com-
munication and signal processing—provide services such
as power utilization, power quality, network security, and
reliability.

Distribution: The generated power is transmitted using
a network of transmission lines that connects via sub-
stations to distribution systems that cover smaller areas
and deliver power directly to the consumer. Because of
the presence of both centralized and distributed power
generators in modern SGs, the distribution networks have
two-way electricity transmission, or, in other words, bidi-
rectional power flow.

Consumption: The power consumption in modern SGs
is often controllable and manageable by the end user
using smart meters, sensors in appliances, plugs, and smart
sockets. The user can control and manage their electricity
consumption by using mobile phone applications or web-
site applications to monitor and control the power usage.

Control and management: SGs have the capability



Fig. 1. Structure of Smart Grid (modified from [14]).

of control and management, and consumers, utility com-
panies, and others in the energy industry can have a
strong control on the energy usage and management. Data
about the consumption and loads is generated from the
connected homes, smart cities etc., and the information
generated from that data is used by the companies and
customers for their current and future decisions (using
data analytics and visualization tools). For example, the
energy companies can use the information for predictive
maintenance; utility companies can use the information for
demand and response programs; and residential users can
use the information to reduce the energy consumption at
the peak loads and reduce energy bills.

Storage: Electric storage is an important SG technology
that enables generation-side management—households can
store either extra produced energy or cheaper priced elec-
tricity, and later use it in the case of outage or when
electricity is more expensive. Independent residential grids
that are totally dependent on the renewable energy and
generate a surplus of energy can store the surplus energy
for future use.

B. Internet of Things

The term “Internet of Things”, or “IoT”, was introduced
by the British technology entrepreneur Kevin Ashton in
1999 as the title of a presentation at Procter and Gamble.
IoT and can be defined as small and complex systems
that allow businesses, governments, and citizens to adopt
and interconnect physical objects and virtual objects based
on existing and evolving interoperable information and
communication technologies [15]. IoT is a new technology
paradigm that has emerged as a global network of ma-
chines and devices capable of interacting with each other
and with the platform for collecting, analyzing, storing and
visualizing data generated from the devices and machines
using sensors, actuators, communications, and analytical
tools. IoT is now playing a main role in SG by collecting
data from all the main phases of SG, including generation,
transmission, distribution, and consumption [16], [17].

C. Edge computing

Edge computing refers to the enabling technologies that
allow computations to be performed at the edge of the net-
work; from the cloud viewpoint, edge data is downstream
data, and from the IoT services viewpoint, it is upstream
data. In such a scenario, edge can be defined as any
computing and networking resource that is between the
data source and cloud. Smart phone is a simple example
of an edge device, because it lies between the human user
and the cloud. The aim of edge computing is to ensure
that computations are performed at the proximity of data
sources [2], [18].

The nodes at the network edge are performing many
tasks such as data processing, caching, device manage-
ment, and privacy protection to reduce the traffic from
the devices to the cloud. In order to perform all these
tasks in the network, the edge should be well designed
to effectively meet the security, reliability and privacy
protection requirements.

D. Big Data

In simple terms, big data can be defined as the collec-
tion of unstructured, structured, and semi-structured data
generated by the social media, devices, sensors, software
applications, and digital devices that are continuously
generating data [19]. The data collected is so large
that the normal conventional data processing software
and techniques are not able to process it. Big data is
characterized by the three main determinants, called as
3Vs of big data—volume, velocity, and variety. Volume is
the huge amount of data generated that make the datasets
too large for the normal database technology. This type of
data is measured in larger units of data, such as terabytes,
petabytes, and exabytes. Velocity is the speed with which
the data is generated, processed, and moved around in
real time. Variety is the type of data (nature of data), i.e.,
whether the data is structured or unstructured [20].

The main idea of IoT is to connect heterogeneous
objects to the internet and collect data from these devices,
analyze the collected data, and make future decisions.
Recently, due to dramatic improvements in the technology
and business digitization, the number of devices connected



Fig. 2. IoT and Edge computing in Smart grids using Big data Analytic.

to IoT has increased tremendously; as a result, the amount
of data has also increased tremendously so that there is a
need to apply big data and big-data analytics to IoT. Big
data and big-data analytics have high potential to extract
meaningful information from the huge amount of data and
improve the decision processes. The main requirements
(functional and non-functional) of big data and analytics
in IoT are explained below.

Connectivity: Connectivity in IoT is mostly ubiquitous
with the heterogeneous objects in the network. Many
objects are connected to internet via sensors in a smart
environment. IoT services are mostly based on machine-
to-machine (M2M) communication protocols that are re-
quired to handle a large number of streams, and it takes
benefits directly from the cloud distributed storage and
computing infrastructure [21]. The first and most important
requirement of IoT is to provide reliable connectivity for
big data and analytics. Reliable connectivity will provide
big data and analytics the opportunity to efficiently com-
bine and integrate the massive amounts of machine gen-
erated sensor data. Using the advanced wireless networks
such as Wi-Fi and 4G/5G, many objects around us are
able to connect to the computing and high performance
infrastructure and facilitate the IoT services [22].

Storage: The amount of storage required for huge
amounts of heterogeneous data in a low-cost hardware
on a real-time basis has increased tremendously. The
requirements of big-data storage in IoT are to handle
massive amount of unstructured data and provide low
latency for analytics. A challenge is that many sources of
IoT data exist, for example, sensors’ data, social media,
etc., and they are modeled in various ways using different
communication protocols and interfaces. Big-data technol-
ogy provides some IoT-efficient data storage capabilities,
but more robust solutions are required.

Quality of services: The ability to provide guarantee of
a specific level of performance to the data flow is called
Quality of service (QoS). The QoS provided by the IoT is
that the IoT network should be reliable and should provide
the guarantee of an efficient transfer of data from the

sources that generates the big data. The QoS in the IoT
network is very important to big data and analytics [23].

Real time analytics: IoT is growing rapidly and taking
key steps to improve streaming analytics and provide
timely decision processes. Real-time information about
the IoT-connected objects are communicated and need to
be analyzed in real time. Big data uses an operational
database for the streaming data, and for most of the
streaming data from web-enabled objects, big-data ana-
lytics performs real-time queries to extract information
quickly, make decisions, and interact with the devices and
people in real time [24].

Benchmark: Due to the fast digitization of businesses,
many organizations have started to shift their business
online using IoT. Many organizations are now facing
challenges in storing and analyzing the huge amount of
data connected through the IoT devices. Finding solutions
to those challenges requires some deep understanding of
the problems. Benchmark plays an important role in this
situation by allowing the organizations to compare the
quality of the big data and analytics solutions [25].

III. THE ROLE OF IOT, EDGE COMPUTING,AND BIG
DATA IN SMART GRIDS

To spur growth in businesses, effective business deci-
sions are very important, and they are often made possible
by getting information from collected data. IoT is a major
source of data; by some estimates, there are currently
more than ten billion devices connected to IoT networks1,
generating around trillions GB of data. These devices
gather, analyze, share, and transmit data in real time. To
handle such massive amounts of data, IoT needs edge
computing and big data, making them the key to improve
decision making [26].

In our this work, we have designed an architecture for
getting the smart grid data using IoT and edge nodes as
shown in Figure 2. The life-cycle of SG data starting from
data generation to data analytics. The data is generated

1https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/. Last access March 1, 2021.



from numerous smart meters, sensors, and digital devices
with a specific time scale. The generated data may be from
generation plants (wind farms, solar panels, conventional
power plants, etc.), transmission and distribution networks
(phasor measurement units, etc.), or customers (residential
homes, electric vehicles, commercial buildings, factories,
etc.). Data, such as weather, humidity, temperature, and
pressure data, can also be collected from the environment.
Some usable data, e.g., information about external events,
can be collected from social media. Data generated from
many sources increase the grid reliability. The generated
data are transmitted to the IoT network using IoT devices
such as sensors and actuators through the network tech-
nologies 3G/4G/5G, ZigBee, wi-fi, bluetooth, and wired
communication.

The important data that needs to be processed quickly
(requiring low latency) is processed by the edge nodes.
The edge nodes are close to the data collection points,
and therefore, require very low latency [3]. However, there
are some cases in which the benefits may not be achieved,
since the latency not only depends on the distance between
the data collection point and edge processing server, but
also on the edge server’s processing power, tasks’ compu-
tational complexity, and edge traffic [4]. Figure 3 shows
the latency versus central processing unit (CPU) cycles
that are required by a single device per bit in wireless
communication by either the cloud or edge computing.
To achieve the latency requirements efficiently, the edge
network should be designed by keeping in mind factors
such as task complexity, processing power of the servers,
and the network topology used. Regarding the bandwidth,
edge computing reduces the data traffic by distributing
the data among different edge servers for computational
workload, and thus, lower amount of data is required to
be shifted to the cloud.

The cooperation between cloud and edge computing
provides high bandwidth as the bits are transmitted to the
cloud server when the sum of the tasks exceeds the com-
bined computational capacity of the edge servers. Another
benefit of using edge computing in SG is the reduction
in failure—if there is an electricity outage problem in a
particular area of the grid, the edge computing services of
the other areas will operate normally, without any problem.
On the other hand, if the grid relies solely on cloud
computing, and there is a power supply failure due to
any natural disaster in the cloud infrastructure, then the
whole network will fail [27]. As shown in the Figure 4,
cloud computing shows the best performance when the
signal to noise ratio (SNR) is low, but the edge computing
performs the best even at high-SNR regime as the number
of edge servers increases, outperforming the cloud-assisted
counterpart.

The data from IoT devices that is not handled by the
edge nodes are directly send to the cloud storage. The huge
amount of data generated by these devices is stored in a
low-cost storage at the cloud. In the second phase of data
acquisition, the generated big data based on the volume,
velocity, and variety is stored in a shared distributed fault

0 100 200 300 400 500 600 700 800 900 1000

Required CPU cycles per bit

0

0.05

0.1

0.15

0.2

0.25

0.3

S
y
s
te

m
 l
a

te
n

c
y
 [

s
]

Edge offloading

Cloud offloading

Fig. 3. System latency versus required CPU cycles per bit in wireless
systems assisted by edge and cloud computing (b = 1 Mbit, BEdge =
10 MHz BCloud = 10 MHz, γEdge = γCloud = 10 dB, fEdge = 6 GHz,
τCloud = 100 ms) adapted from [4]

-10 -5 0 5 10 15 20 25 30 35 40

Signal to noise ratio

10-6

10-5

10-4

10-3

10-2

10-1

100

O
u

ta
g

e
 p

ro
b

a
b

ili
ty

Offloading at Cloud

Offloading at Edge when n =1

Offloading at Edge when n =2

Offloading at Edge when n =4

Offloading at Edge when n =8

Offloading at Edge when n =16

Offloading at Edge when n =24

Fig. 4. Outage probability curves for wireless systems assisted by cloud
and edge computing considering different numbers (n) of edge servers
(BBH = 2 MHz, BEdge = 50 kHz, Rtarget = 5 Mbit/s) adapted from [4]

tolerant database. The collected data is then transferred
into the master node(s) in the Hadoop cluster. As the
data is collected from multiple heterogeneous devices,
it may have different data formats and information, and
therefore, data preprocessing will be required. In the data
preprocessing, inaccurate and incomplete data are handled.
Flume is used to perform the data acquisition process.
The main function of Flume is to collect, aggregate, and
transfer the large amount of data to Hadoop master node.
The data received by Flume is stored in a single or multiple
channel. The data is then sent to the external HDFS repos-
itory, where the data is written in a desired format using
plug-in serializers. The serializers change and restructure
the Flume data into the desired format. The data is pre-
processed and a unified view of the data is achieved. The
data is stored in the HDFS multiple clusters for processing.
The HDFS clusters consists of DataNodes. The actual data
and file system meta data are stored in those DataNodes.
The data analysis is performed by the YARN on the data



stored in HDFS; these two run on the same set of nodes
that allows tasks to be processed on the nodes in which
the SG data is present. Hive and Impala are the tools to
perform SQL queries on data residing on HDFS. HIVE
is used for data querying, to select, analyze and make
calculations on the data of interest. The last phase is the
data analytics; the tools used in Hadoop for data analytics
is Scalable Advanced Massive Online Analysis (SAMOA),
a distributed streaming ML framework consisting of pro-
gramming abstraction for distributed streaming algorithms
for data mining and ML tasks. Data visualization (graphs,
reports, etc.) is done using Tableau, a common tool for
interactive data visualization and sharing of information
and dashboards.

IV. CONCLUSIONS

The modern SG incorporates numerous heterogeneous
devices. Due to this increase in the volume of struc-
tured, semi structured, and unstructured data, information
retrieval from such a huge amount of data is a hard
task. The collection, transmission, storage, processing,
transformation, and analysis of large amount of data at
a high rate are important for the efficient and effective
function of modern SGs. The main aim of this research is
to highlight the importance of IoT, edge computing, and
big data for dealing with the high volume of SG data. In
this paper, we have first presented the importance and re-
quirements for big-data analytics in the SG. Subsequently,
we have explained the applications of edge computing
to the big data generated by the IoT devices in the SG.
Edge computing is beneficial for SG in terms of latency,
bandwidth, robustness to failure, and cost. In the future,
we will apply big-data analytics to huge volumes of SG
data and demonstrate the key requirements quantitatively.
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