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ABSTRACT
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51 pages, 33 figures, 2 tables and 4 appendices
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Dr Tuomo Kauranne
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Support Vector Machine(SVM), Relevance vector Machine.

The main objective of this study was to do a statistical analysis of ecological type from
optical satellite data, using Tipping’s sparse Bayesian algorithm. This thesis uses "the
Relevence Vector Machine" algorithm in ecological classification between forestland and
wetland. Further this bi-classification technique was used to do classification of many
other different species of trees and produces hierarchical classification of entire sub-
classes given as a target class.

Also, we carried out an attempt to use airborne image of same forest area. Combining it
with image analysis, using different image processing operation, we tried to extract good
features and later used them to perform classification of forestland and wetland.
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NOTATIONS

General

≡ equivalent to (or defined to be)

∝ proportional to

log(x) logarithm base 10 of x

ex exponential of x-that is, e raise to the power of x

∂ f(x)/∂ x partial derivative of f with respect to x
∫ b

a
f(x) the integral of f with respect to x

θ Unknown parameters

F(x;θ) function of x, with implied dependence upon θ

Mathematical Operations

x mean or average value of x
∑n

i=1 ai the sum from i=1 to n that is, a1 + a2 + . . . + an

∏n
i=1 ai the product from i=1 to n that is, a1 × a2 × . . .× an

Vectors and Matrices

I Identity matrix, a square matrix having 1’s on the diagonal and 0 every-
where else.

diag(a1, a2, . . . , ad) matrix whose diagonal elements are a1, a2, . . . , ad and off-diagonal
elements are 0.

xt transpose of vector x

‖x‖ Euclidean norm of vector x
∑

covariance matrix

A−1 the inverse of matrix A

A′ pseudoinverse of matrix A

viii



|A| determinant of A

λ eigenvalue

e eigenvector

x∈D x is an element of set D

x/∈ D xis not a element of set D

Distributions

w state of nature

P(.) probability mass

p(.) probability density

P(a,b) the joint probability-that is, the probability of having both a and b

p(a,b) the joint probability density-that is, the probability density of having both
a and b

p(x|θ) the conditional probability of a desity of x given θ

w weight vector

λ(., .) loss function

∇θ =
(

∂
∂θ1

∂
∂θ2

. . . ∂
∂θd

)
gradiant operator in θ coordinates

θ̂ maximum-likelihood estimate of θ

"has the distribution"-for example, p(x) N(µ, σ2) means that the density
of x is normal, with mean µ and variance σ2

N(µ, σ2) normal or Gaussian distribution with mean µ and variance σ2

N(µ,
∑

) multidimentional normal or Gaussian distribution with mean µ and vari-
ance σ2

Γ(.) Gamma function

n! n factorial-that is, n×(n-1)×(n-2)×. . .×1

δ(x) Dirac delta function, which had value 0 for x 6=0, and integrates to unity
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1 INTRODUCTION

1.1 Background

The present Master thesis is part of a study of the Lake Abitibi Model Forest (LAMF)
in Canada, established in 1992. It is one of the ten original Canadian Model Forest sites
established by the Canadian Forest Service. Its aim is to generate more ideas for forest
management with help of local, national and international partners.

The LAMF is located in the clay belt section of the boreal forest. It covers 1.2 million
hectares of boreal forest. The soil is predominantly clay and silt-clay with glacial features
of out washes, eskers and moraines. The forest is dominated by the black spruce, balsam
fir, white birch, trembling aspen, cedar, tamarack and Jack pine type of tree species. In ad-
dition there are water bodies and streams. The LAMF is a habitat of protected species of
wildlife including Golden Eagle, Bald Eagle, Eastern cougar, Woodland caribou, Short-
eared owl, Great Gray owl, Black Term and Monarch butterfly. The study area has been
influenced by fire and several human activities such as timber harvesting, mining and agri-
cultural activities. These activities change the landscape and consequently affect forest
inhabitants.

1.2 Objective and Structure of Thesis

In this Master Thesis, I am applying a sparse Bayesian classifier developed by Tipping to
analyzing many different types of satellite images as to their capability to separate forest
land from wetlands in boreal forests.

Tipping’s sparse Bayesian algorithm has been successfully applied to forest measure-
ment tasks from airborne laser scanned data, In the current thesis the target is to study
algorithms for ecological classification using cheap but coarse grained satellite images.
Tipping’s Bayesian method appears well suited to the present task, but it will need to be
provided with very different feature extraction from those used in airborne imagery.

Our department of Lappeenranta University of Technology has obtained images from five
different satellites, including optical, hyper spectral and synthetic aperture microwave
radar (SAR) satellite instruments. All images are captured from the same area near Lake
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Abitibi in northern Ontario, where also a field classification of over 80 sample plots has
been carried out to provide ground truth.

I am trying to develop appropriate feature extraction procedures for several different satel-
lite instrument types, modify Tipping’s method accordingly and produce classification re-
sults that will tell which satellite instruments and algorithms are able to provide reliable
separation between forestlands and wetlands, and possibly even between the classes in a
more refined ecological classification.
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2 BAYESIAN NETWORKS

The motivation behind the development of Bayesian networks has its roots in the regular
study of Bayesian probabilistic theory, which is a branch of mathematical probability
and allows us to model uncertainty about the aim and outcome of interest by combining
experimental knowledge and observational evidences. The following chapter will gives
us a structure to develop any Bayesian network for any kind of problem. In order to get an
entire over view, from basic to advanced application, by considering an example of type
of data or observation and different classification technique which we are dealing with in
a project.

2.1 Structure of a Bayesian belief network

The Bayesian network or The Bayesian belief network is graphically shown in Figure 2.1,
Bayesian belief networks are models in which each variable is represented by a NODE
and the NODE is related to other nodes by using an EDGE, denoted by an arrow.

Figure 2.1: Bayesian belief network’s very simplest example is two nodes and an edge.

2.1.1 Nodes

A variable which is to be modelled is called a node. Graphically it is shown by a labelled
box. The example in Figure 2.1 shows two nodes representing two variables of ecological
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data and classification.

2.1.2 Edges

A relationship between two nodes is defined by an edge. It is represented graphically by
an arrow between nodes, whereas the direction of the arrow shows the direction of effect.
Drawing an edge from node X to node Y indicates that node X has a direct influence on
node Y. For example, in Figure 1, the edge shows that the type of Ecological Observation
data directly influences the classification.

How nodes influence one another is defined by conditional probability, when two nodes
are joined by an edge, the causal node is called the parent of the other node.

In this example, Ecological observation is a parent of Classification, and Classification is
the child of Ecological observation. Child nodes are conditionally dependent upon their
parent nodes. Graphical representation is shown in Figure 2.2

Figure 2.2: An edge indicates effect and conditional dependence.

2.1.3 States

The values taken on by a variable (represented by a node) are referred to as states. For
example, two important states of the Dataset variable are linearly separable case and non-
linearly separable case. In the linearly seperable case, there exist a hyperplane that sep-
arates the points that belong to two different classes. In the unknown separable case,
separation must be carried out with a manifold that is not linear. We know that later, a
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type of classes, dataset gives results for classification between Wetland and Dryland. The
Wetland and Dryland are the states of the Classification nodes, as shown in Figure 2.3.

Figure 2.3: States are values that can be taken on by a node.

2.2 Conditional probability tables

Every node is associated with a conditional probability table(CPT) with it. Conditional
probabilities represent likelihoods based on prior information or past experience.

A conditional probability table is graphically represented in table form as shown in Figure
2.4 and 2.5. The left most column represents Parent node, directly below that are the
names of all posibilities. In this case, the node only has one parent, so there is only one
column on that side of the table, but there may be more. On the right hand side of the
table, we list columns of CHILD node.[1] Directly below this the state names for the child
node are shown. The rest of the table holds the probabilities.

The CPT1 shown in Figure 2.4 gives detailed information about classification techniques
such as "Given Data set classified is wetland or forestland, what is high probability that
the Classification will be either of them?" That question corresponds to the last row in
the table, and the answer is Ecological dataset with linearly separable cases gives better
results for e.g. 0.98 or 98%, whereas on the other hand a nonlinearly separable case gives
results of 70%. Information about the probabilities for each state is given in Figure 2.5
which is CPT for a parent node, like in this case Ecological data containing 0.56% of
wetland and 0.44% of dryland.

1In case of Nodes with no parents, then the CPTs are simpler and consist only of the probabilities for
each state of the node under consideration.
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Figure 2.4: Conditional probability tables for a child node

Figure 2.5: Conditional probabiity tables for a child node
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2.3 Beliefs and evidence

Beliefs are the probability that a variable will be in a certain state based on the evidence
in a current situation. Whereas A-priori beliefs are a special case of beliefs that are based
only on prior information, A-priori beliefs are determined only by the information stored
in the belief network’s CPTs.[1]

Evidence gives knowledge about present situation. For example, in the simple Bayesian
belief network shown in Figure 2.6, we have evidence that there is currently a Data set of
linearly separable case. The effect of this evidence on current beliefs is reflected in the
Beliefs column of the Data Set node: we are 100% sure that we have a correctly classified
dataset.

The belief network also shows how the evidence changes the current beliefs about the
states. The states are "Classify" and "D/C(does not classify)". The current beliefs shown
in column of classification node shows likelihood of "Classify" is 98%, only when we had
evidence that there was linearly separable Data set.

Figure 2.6: Belief network showing the effect of Data set on classification.

• Hard evidence
The evidence is that a node is 100% in one state, and 0% in all other states. (Hard
evidence was posted to the belief network shown in Figure 6.)

• Soft evidence
The evidence is not hard evidence, in other words, evidence that a node is less
than 100% in one state, and/or greater than 0% in other states. Soft evidence is

7



often used for information about which there is some uncertainty, such as from
conflicting reports or an unreliable source.

By posting evidence to a Bayesian belief network, one can do analyze of current beliefs
to predict a result or to diagnose a cause.

8



3 BAYESIAN PARAMETER ESTIMATION

3.1 Bayesian method

Bayesian methods take the parameters as random variables with known prior distribu-
tion. Observation of samples converts this to a posterior density, thereby revising opinion
about the true values of the parameter. In the Bayesian case we see a typical effect of
observing additional samples, which is to sharpen the a posteriori density function. This
phenomenon is known as Bayesian learning.

Since we have knowledge of the state of nature or class label for each sample, this learning
becomes supervised learning. Sample x are assumed to be obtained by selecting a state
of nature, wi with probability P (wi) and then independently selecting x according to the
probability law p(X|wi).

3.2 Bayesian Estimation

Bayesian estimation or Bayesian learning approaches are used in pattern classification
problems. In Bayesian learning the parameter θ is a random variable and training data
allow us to convert a distribution on this variable into a posterior probability density.

3.2.1 The Class-Conditional densities

The computation of Posterior probabilities P (wi|X) is the core part of Bayesian Classi-
fication. With the help of the Bayes formula, we can compute these probabilities from
the prior probabilities P (wi) and the class-conditional densities p(X|wi). But a question
arises, how can we proceed when these quantities are unknown? The general answer to
this question is that we can compute P (wi|X) using all of the information at our disposal.
Part of this information might be prior knowledge, such as knowledge of the functional
forms for unknown densities and ranges for the values of unknown parameters. Part of
this information might reside in a set of training samples. If we let D denote the set of
samples, then we can emphasize the role of the samples by saying that our goal is to com-
pute the posterior probabilities P (wi|x,D). From these probabilities we can obtain the
Bayes Classifier. [2][3]
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Given the samples D, Bayes formula then becomes.

P (wi|x, D) =
p(x|wi, D)P (wi|D)∑c
j=1 p(x|wi, D)P (wi|D)

(3.1)

The above equation suggests that we can use the information provided by the training
samples to determine both the class-conditional densities and the prior probabilities.3.1

3.2.2 The Parameter Distribution

Knowing that the desired probability density p(x) is unknown, we will assume that the
probability density has a known parametric form. The only thing assumed unknown is
the value of a parameter vector θ. We express the fact that p(x) is unknown but it has
a known parametric form by saying that the function p(x|θ) is completely known. Any
information we might have prior to observing the samples is assumed to be contained in a
known prior density p(θ). Observation of the samples converts this to a posterior density
p(θ|D), which, we hope is sharply peaked about the true value of θ.

Up till now we have converted our problem of learning a probability density function to
one of estimating a parameter vector. Now our basic goal is to compute P(x|D), which is
as close as we can come to obtain the unknown p(x). We do this by integrating the joint
density p(x, θ|D) over θ. That is,

p(x|D) =

∫
p(x, θ|D)dθ, (3.2)

Above integration is extends over the entire parameter space. Now we can always write
p(x, θ|D) as the product p(x|θ, D)p(θ|D). Because the selection of x and that of the
training samples in D is done independently, the first factor is merely p(x|θ). That is, the
distribution of x is known completely once we know the value of the parameter vector.
Thus 3.2 can be rewritten as

p(x|D) =

∫
p(x|θ)p(θ|D)dθ, (3.3)

The most important equation above links the desired class-conditional density p(x|D) to
the posterior density p(θ|D) for the unknown parameter vector. If p(θ|D) peaks very
sharply about some value of θ, we obtained p(x|D)(x|θ̂)i.e. the results we would ob-
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tain by substituting the estimation for the true parameter vector, this results rests on the
assumption that p(x|θ) is smooth, and that the tails of the integral are not important.

3.3 Bayesian Parameter estimation: GAUSSIAN CASE

Here in this section we use Bayesian estimation techniques to calculate the a posteriori
density p(θ|D) and the desired probability density p(x|D), for the case where

p(x|µ) ≈ N(µ, Σ)

3.3.1 The Univariate Case: p(µ|D)

Consider the case where µ is the only unknown parameter. For simplicity we treat first
the univariate case, this is,

p(x|µ) ≈ N(µ, σ2), (3.4)

When the only unknown quantity is the mean µ, we assume that whatever prior knowledge
we might have about µ can be expressed by known prior density p(µ). Later we shall make
the further assumption that

p(µ) ≈ N(µ0, σ
2
0), (3.5)

When both µ0 and σ2
0 are known. Roughly speaking, µ0 represents our best prior guess

for µ and σ2
0 measures our uncertainty about this guess. The assumption that the prior dis-

tribution for µ is normal will simplify the subsequent mathematics. However the crucial
assumption is not so much that the prior distribution for µ is normal, but that it is know.

After selecting the prior density for µ, we can proceed as follows, suppose that a value is
drawn for µ from a population governed by the probability law p(µ). Once this value is
drawn, it becomes the true value of µ and completely determines the density for x. Sup-
pose now that n samples x1, x2, .., xn are independently drawn from the resulting popula-
tion. Letting D = x1, x2, .., xn, we use Bayes formula to obtain,
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p(µ|D) =
p(D|µ)p(µ)∫
p(D|µ)p(µ)

= α

k=1∏
n

p(xk|µ)p(µ), (3.6)

Where α is a normalization factor that depends on D but is independent of µ, this equation
shows how the observation of a set of training samples affects our ideas about the true
value of µ, it relates the prior density p(µ) to an a posteriori density p(µ|D). Because
p(xk|µ) ≈ N(µ|σ2) and p(µ) ≈ N(µ0, σ

2
0), we have

p(µ|D) = α

n∏

k=1

p(xk|µ)︷ ︸︸ ︷
1√
2πσ

exp

[
−1

2

(
xk − µ

σ

)2
]

p(µ)︷ ︸︸ ︷
1√

2πσ0

exp

[
−1

2

(
µ− µ0

σ0

)2
]

= α
′
exp


−1

2

(
n∑

k=1

(
µ− xk

σ

)2

+
µ− µ0

σ0

)2



= α
′′
exp

[
−1

2

[(
n

σ2
+

1

σ2
0

)
µ2 − 2

(
1

σ2

n∑

k=1

xk +
µ0

σ2
0

)
µ

]]
, (3.7)

Where factors that do not depend on µ have been absorbed into the constants α, α
′ and

α
′′ . Thus, p(µ|D) is an exponential function of a quadratic function of µ, i.e. again a

normal density. Because this is true for any number of training samples, p(µ|D) remains
normal as the number n of samples is increased, and p(µ|D) is said to be a reproducing

density and p(µ) is said to be a conjugate prior. If we write p(µ|D) ≈ N(µn, σ
2
n) , then

µn and σ2
n can be found by equating coefficients in 3.7 with corresponding coefficients in

the generic Gaussian of the form

p(µ|D) =
1√

2πσn

exp

[
−1

2

(
µ− µn

σn

)2
]

(3.8)
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Identifying coefficient in this way yields

1

σ2
n

=
n

σ2
+

1

σ2
0

(3.9)

and

µn

σ2
n

=
n

σ2
µ̂n

µ0

σ2
0

, (3.10)

where µ̂n is the sample mean

µ̂n =
1

n

n∑

k=1

xk, (3.11)

We solve explicitly for µn and σ2
n and obtain

µn =

(
nσ2

0

nσ2
0 + σ2

)
µ̂n +

σ2

nσ2
0 + σ2

µ0 (3.12)

and

σ2
n =

σ2
0σ

nσ2
0 + σ2

. (3.13)

This equation shows how prior information is combined with the empirical information in
the samples to obtain the a posteriori density p(µ|D).[2] Roughly speaking, µn represents
our best guess for µ after observing n samples and σ2

n measures our uncertainty about
this guess. Because σ2

n decreases monotonically proportional to σ2/n as n approaches
infinity—each additional observation decreases our uncertainty about the true value of
µ. As n increases, p(µ|D) becomes more and more sharply peaked, approaching a Dirac
delta function as n approaches infinity. This behavior is commonly known as Bayesian

Learning.
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3.3.2 The Univariate Case: p(x|D)

After obtaining p(µ|D) the a priori density for the mean, we would like to calculate "the
class conditional" density for p(x|D) from 3.3,3.4 and 3.8.

p(x|D) = (x|µ)p(µ|D)dµ

=

∫
1√
2πσ

exp

[
−1

2

(
x− µ

σ

)2
]

1√
2πσn

exp

[
−1

2

(
µ− µn

σn

)2
]

dµ

=
1

2πσσn

exp

[
−1

2

(x− µ)2

σ2 + σ2
n

]
f(σ, σn), (3.14)

where

f(σ, σn) =

[
−1

2

σ2 + σ2
n

σ2σ2
n

(
µ− σ2

nx + σ2µn

σ2 + σ2
n

)2
]

dµ.

The above equation is a function of x, p(x|D) is proportional to exp[−(1/2)(x−µn)2/(σ2+

σ2
n)], and hencep(x|D) is normally distributed with mean µn and variance σ2 + σ2

n.

p(x|D) ≈ N(µn, σ
2 + σ2

n).

3.3.3 The multivariate Case

In the multivariate case, if σ is known but not µ we obtain a straight generalization of the
univariate case. So in this case we will assume that,

p(x|µ) ≈ N(µ, σ)andp(µ) ≈ N(µ0, σ0), (3.15)
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Where σ, σ0, and µ are assumed to be known. When the set D consist of observations of
n independent samples x1, . . . , xn, we can use Bayes formula to obtain p(µ|D)

p(µ|D) = α

n∏

k=1

p(xk|µ)p(µ) (3.16)

= α
′
exp

[
−1

2

(
µt(nΣ−1 + Σ−1

0 )µ− 2µt

(
Σ−1

n∑

k=1

xk + Σ−1
0 µ0

))]
,

Which has the form

p(µ|D) = α
′′
exp

[
−1

2
(µ− µn)tΣ−1

n (µ− µn)

]
(3.17)

Hence p(µ|D) ≈ N(µn, Σn), and we have obtained a reproducing density. Equating
coefficents, we obtain the analogs of 3.12 and 3.13

Σ−1
n = nΣ−1 + Σ−1

0 (3.18)

and

Σ−1
n µn = nΣ−1µ̂n + Σ−1

0 µ0 (3.19)

where µ̂n is the simple mean,

µ̂n =
1

n

n∑

k=1

xk (3.20)

µn and Σn can be solved by using knowledge of matrix identity.

(A−1 + B−1)−1 = A(A + B)−1 = B(A + B)−1A (3.21)

The above expression is valid for any pair of nonsingular,[2] (d× d) matrices A and B.
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After a little manipulation, we obtain the final results:

µn = Σ0

(
Σ0 +

1

n
Σ

)−1

µ̂n +
1

n
Σ

(
Σ0 +

1

n
Σ

)−1

µ0

Σn = Σ0

(
Σ0 +

1

n
Σ

)−1
1

n
Σ

From µn and Σn, we can observe that the Mean µn in this case is also the linear combina-
tion of µ̂n and µ0, same as in the univariate case.
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4 THE SUPPORT VECTOR MACHINE

In the previous chapter we assumed that we know probability densities, and described
the way, we will use training samples to estimate the values of the parameters of those
distributions. In this chapter, we shall instead assume that we know the proper forms for
the discriminant functions, and use the samples to estimate the values of parameters of the
classifier. We shall examine various procedures for determining discriminant functions,
some of which are statistical and some of which are not.

4.1 Linear Discriminant Functions and decision surfaces

A discriminant function that is a linear combination of the components of x can be written
as

g(x) = wtx + w0

Where w is the weights vectors and w0 are threshold weights[4].

In the simplest case there are only two categories.

The Two Category Case

For a discriminant function of the above form a two category classifier implements the
following decision rule: Decide

w1 ifg(x) > 0

w2 ifg(x) < 0

Thus, x is assigned to w1 if the inner product w
′
x exceeds the threshold −w0 and to w2

otherwise. If g(x) =0, x can usually be assigned to either class, but in this chapter we
shall leave the assignment undefined. The figure below shows a typical implementation
of a clear example of the general structure of a pattern recognition system. The equation
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g(x) = 0 defines the decision surface that separates points assigned to w1 from points
assigned to w2. When g(x) is linear, this decision surface is a hyperplane. If x1 and x2

are both on the decision surface, then

wtx1 + w0 = wtx2 + w0

or
wt(x1 − x2) = 0

and this shows that w is normal to any vector lying in the hyperplane, In general the
hyperplane H divides the feature space into two half-spaces; decision region R1 for w1

and region R2 for w2. Because g(x) > 0 if x is in R1, it follows that the normal vector w

points into R1. It is sometimes said that any x in R1 is on the positive side of H, and any
x in R2 is on the negative side.

The discriminant function g(x) gives an algebraic measure of the distance from x to the
hyperplane. Perhaps the easiest way to see this is to express x as,

x = xp + r
w

‖w‖ ,

Where xp is the normal projection of x onto H, and r is the desired algebraic distance.
positive if x is on the positive side and negative if x is on the negative side. Then, because
g(xp) = 0,

g(x) = wtx + w0 = r ‖w‖

or
r =

g(x)

‖w‖
To summarize, a linear discriminant function divides the feature space by hyperplanes as
a decision surface, the orientation of the surface is determined by the normal vector w,
and the location of the surface is determined by the bias w0. The discriminant function
g(x) is proportional to the signed distance from x to the hyperplane with g(x) > 0 when
x is on the positive side and g(x) < 0 when x is on the negative side.
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Figure 4.1: The linear decision boundary H, where g(x)=wtx + w0, separates the feature
space into two half-spaces R1 where g(x)>0) and R2 where g(x)<0.

4.2 Support Vector Machine

The Support Vector Machine is motivated by many trained linear machines with margins,
but relies on pre-processing of the data to represent patterns in a high dimensional space,
typically much higher than the original feature space. With an appropriate nonlinear
mapping ϕ(.) to a sufficiently high dimension, data from two categories can always be
separated by a hyperplane[5]and [6].

Here we assume each pattern xk has been transformed to yk = ϕ(xk). We shall return to
the choice of ϕ(.). For each of the n patterns, k = 1, 2, . . . , n, we let zk = ±1, according
to whether pattern k is in w1 or w2. A linear discriminant in an augmented y space is

g(y) = aty. (4.1)

where both the weight vector and the transformed pattern vector are augmented by a=w0

and y0=1, respectively.

zkg(yk) ≥ 1, k = 1, . . . , n (4.2)

The margin is any positive distance from the decision hyperplane. The goal in training a
Support Vector Machine is to find the separating hyperplane with the largest margin; we
expect that the larger the margin, the better generalization of the classifier. As illustrated in
Figure 4.1, the distance from any hyperplane to a (transformed) pattern y is g(y)/ ‖a‖,and
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assuming that a positive margin b exists implies

zkg(yk)

‖a‖ , k = 1, . . . , n; (4.3)

The goal is to find the weight vector a that maximizes b. Of course the solution vector
can be scaled arbitrarily and still preserve the hyperplane, and thus to ensure uniqueness
we impose the constraint b ‖a‖ = 1; that is we demand the solution to 4.1 and 4.2 also
minimize ‖a‖2.

The support vectors are the transformed training patterns for which 4.2 represents an
equality-that is the support vectors are equally close to the hyperplane. The support vec-
tors are the training samples that define the optimal separating hyperplane and are the
most difficult patterns to classify. Informally speaking they are the patterns most infor-
mative for the classification task.

4.2.1 SVM algorithm for the linearly separable case

• Let X = xn, yn be a set of feature vectors
where n = 1 : N , xn is the input vector and yn is the target vector,
such that xn ∈ w1(w2) then yn = 1(−1)

• Thus, a linear discriminant function is defined by the weight vector w and the
threshold w0.

• The goal of the Support Vector Machine is to find the hyperplane with the largest
margin to both classes.

• The separating hyperplane must fulfill

y(wT x + w0)− 1 > 0, (4.4)

for every k.

• The distance is defined by 2/ ‖w‖

• Thus our goal is to determine w and w0 in such a way that the marginal is maxi-
mal, in other words, ‖w‖2is minimal and the conditions in above equation 4.4 are
fulfilled.
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• We solve the optimization problem by using Lagrange multipliers see Appendix B.
By defining the Lagrange multiplier λk for each of the constraints, we can establish
the Lagrange equation as follows.

L =
1

2
‖w‖2 −

N∑

k=1

λk(yk(w
T x + w0)− 1), eq4.5 (4.5)

Now we can find the minimum by taking gradient of L to be equal to zero. On the
other hand it can be also shown to maximize the dual problem to solve λ.

Q(λ) =
N∑

k=1

λk − 1

2

N∑

k=1

N∑
j=1

λkλjykyjx
T
k xj, eq4.6 (4.6)

such that

N∑

k=1

λkyk = 0, λk ≥ 0∀keq4.7 (4.7)

• The solution can be found e.g. by using quadratic programming. After a solution λ

to the dual problem has been found, optimal w and w0 can be calculated from

w =
N∑

k=1

λkykxk, eq4.8 (4.8)

w0 = 1− xT
k w, xk ∈ w1, λk > 0

• The only samples whose Lagrange multiplier λk > 0, affect the discriminant, are
called the support vectors.

• Decision rule: Choose w1(w2) if wT x + w0 > 0(> 0)

4.2.2 SVM algorithm for the nonlinearly separable case

• A nonlinear generalization can be done by replacing x by Φ(x).
Where Φ : Rl → Rm is a nonlinear mapping.2

2usually m»l
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• We can find a kernel function K(., .), such that K(xi, xj) = Φ(xT
i Φ(xj)), and we

do not have to use Φ directly.

• For example, the Gaussian kernel function is defined below.

K(xi, xj) = e−‖xi−xj‖2/2σ2

or the Polynomial kernel

K(xi, xj) = (xT
i xj + 1)p

where p is the degree of the polynomial kernel.

• Thus, if the values of the kernel function can be calculated efficiently, the nonlinear
SVM will train roughly as fast as the linear SVM.

• For example: XOR problems(i.e Nonlinearly separable examples) can be solved
using nonlinear SVM method.

4.3 Limitations

Disadvantages of SVM

• Although SVM is relatively sparse, the number of Support Vectors grows linearly
with the size of the training set.

• Prediction is not probabilistic, i.e. The SVM classification is based on a hard binary
decision.

• It is necessary to find error margin parameters, whereas in regression it is an epsilon
term.

• The Kernel function must be a continuous, symmetric kernel of a positive integral
operator.

These limitations are removed by"The Relevance vector machine (RVM)". RVM is a
Bayesian treatment of SVM.

22



5 THE RELEVANCE VECTOR MACHINE

The present chapter introduces a general Bayesian framework to achieve a sparse solution
to regression and classification tasks utilising models linear in the parameters. Tipping’s
approach, known as the "Relevance vector machine (RVM)", is a model of identical func-
tional form to the "Support Vector Machine (SVM)". The Relevance vector machine was
introduced by Tipping [7]. By exploiting a probabilistic Bayesian learning framework we
can derive an accurate prediction model which utilises dramatically fewer basic function
[7].

5.1 Sparse Bayesian Learning

Some drawbacks mentioned at the end of previous chapter forces us to think about other
probabilistic models. The sparse Bayesian regression model and inference procedure is
described in the following two sections.

5.1.1 Model Specification

Given input data set and target set,
{xn, tn} ,

we follow the standard probabilistic formulation and assume that the targets are samples
from the model with additive noise:

tn = y(xn; w) + εn

Where εn are independent samples from some noise process which is further assumed to
be zero mean Gaussian distribution with variance σ2.

Thus p(tn|x) = N(tn|y(xn), σ2), where the notation specifies a Gaussian distribution
over tn with mean y(xn) and variance σ2. The function y(x) is defined as

y(x; w) =
N∑

k=1

wiK(x, xi) + w0;
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for SVM, to identify basis functions with kernel K(x, xi) as parameterised by the training
vectors: φi = K(x, xi) . Making the assumption that yn are independent, the likelihood
of the complete data set can be written as

p(t|w, σ2) = (2πσ2)−N/2exp− 1

2σ2
‖t− Φw‖2, (5.1)

where t = t1, t2, . . . , tN
T , w = (w0, . . . , wN)T ;

Φ is the N × (N + 1) ’design’ matrix.
Φ = [Φ(x1), Φ(x2), . . . , Φ(xn)]T ,
Φ(xn) = [1, K(xn, x1), K(xn, x2), . . . , K(xn, xN)]T .

After defining maximum likelihood, we would like to estimate weight w and variance σ2

from the above equation 5.1. This might lead us to severe over-fitting. In order to avoid
this we will impose some additional constraints on the parameter, for example, through
addition of a ’complexity’ penalty term to the likelihood or error function.

We encode a preference for less complex functions by making the popular choice of a
zero-mean Gaussian prior distribution over w.

p(w|α) =
N∏

i=0

N(wi|0, α−1
i ), (5.2)

with α a vector of N + 1 hyperperameters.

p(α) =
N∏

i=0

Gamma(αi|a, b),

p(β) = Gamma(β|c, d),

with β = σ−2 and where

Gamma(α|a, b) = Γ(a)−1baαa−1e−bα, (5.3)

with Γ(a) =
∫∞

0
ta−1e−tdt, the ’gamma function’.In order to make priors non-informative

we can fix their parameters to small values: e.g.a=b=c=d=10−4.
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5.1.2 Inference

In the above section we have defined the prior. We can now proceed with Bayesian infer-
ence by computing the posterior over all unknowns from Bayes’s rule[8].

p(w,α, σ2|t) =
p(t|w, α, σ2)p(w, α, σ2)

p(t)
, (5.4)

Now for given set of new point x∗ we can make predictions for the corresponding target
t∗, in terms of the predictive distribution:

p(t∗|t) =

∫
p(t∗|w,α, σ2)p(w, α, σ2|t)dw dα dσ2. (5.5)

But we cannot compute the posterior p(w, α, σ2|y) in 5.4 above directly, hence we cannot
calculate the normalising integral on the right hand side,

p(t) =

∫
p(t|w, α, σ2)p(w, α, σ2)dw dα dσ2.

However, we can decompose the posterior as:

p(w,α, σ2|t) = p(w|t, α, σ2)p(α, σ2|t) (5.6)

since we can compute the posterior distribution analytically over the weights since its
normalising integral, p(t|α, σ2) =

∫
p(t|w, σ2)p(w|α)dw is nothing but a convolution of

Gaussians.
The posterior distribution over the weights is thus given by:

p(w|t, α, σ2) =
p(t|w, σ2)p(w|α)

p(t|w, σ2)
(5.7)

= (2π)−(N+1)/2|Σ|−1/2exp

{
−1

2
(w − µ)T Σ−1(w − µ)

}
, (5.8)

Here the posterior covariance and mean are given below respectively.

Σ = (σ−2ΦT Φ + A)−1, (5.9)

µ = σ2ΣΦT t, (5.10)
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with A=diagσ0, σ1, . . . , σN

Approximating the second term in right-hand side of 5.6, the hyperparameter posterior
p(α, σ2|t), by a delta-function at its mode, i.e. at its most probable values αMP , σ2

MP . By
doing so the basis that point estimate is representative of the posterior in the sense that
functions generated utilising the posterior mode values are near-identical to those obtained
by sampling from the full posterior distribution. It is important to realise that this does
not necessitate that the entire mass of the posterior be accurately approximated by the
delta-function. For predictive purpose, rather than requiring p(α, σ2|t) ≈ δ(αMP , σ2

MP ).

∫
p(t∗|α, σ2)δ(αMP , σ2

MP )dαdσ2 ≈
∫

p(t∗|α, σ2)p(α, σ2|t)dαdσ2, (5.11)

Our desire is to get good optimization.

Relevance Vector ’Learning’ thus becomes the search for the hyperparameter posterior
mode, i.e. the maximisation of p(α, σ2|t) ∝ p(t|α, σ2)p(α)p(σ2) with respect to α and
β. In case of uniform hyperpriors we need to get only maximum of p(t|α, σ2), which is
computable and given by:

p(t|α, σ2) =

∫
p(t|w, σ2)p(w|α)dw

= (2π)−N/2
∣∣σ2I + ΦA−1ΦT

∣∣−1/2
exp

{
−1

2
tT (σ2I + ΦA−1ΦT )−1t

}
, (5.12)

In Bayesian Models this quantity is known as the marginal likelihood, and its maximi-
sation is known as the type-II maximum likelihood method. The marginal likelihood is
also referred as the "evidence for the hyperparameters" and its maximisation is known as
"evidence procedure".

5.1.3 Optimizing the hyperparameters

Estimation of values α and σ2 is carried out using an iterative re-estimation approach.
Details about hyperparameter estimation, including alternative expectation-maximisation-
based re-estimates, are given in Appendix C. For α, differentiation of 5.12, equating to
zero and rearranging, following the approach of MacKay gives:
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αnew
i =

γi

µ2
i

, (5.13)

where µi is the i-th posterior mean weight from 5.10 and we have defined the quantities
γi by:

γi ≡ 1− αiNij

With Nij the i-th diagonal element of the posterior weight covariance from 5.9 computed
with current α and σ2 values. Each γi ∈ [0, 1] can be interpreted as a measure of how
’well-determined’ its corresponding parameter weight wi is by the data. For αi large
wehere wi is highly constrained by the prior, Nii ≈ α−1

i and it follows that γi ≈ 0.
Conversely, when αi is small and wi fits the data, γi ≈ 1.

For the noise variance σ2, differentiation leads to the re-estimate:

(σ2)new =
‖t− Φµ‖2

N − Σiγi

, (5.14)

Where ′N ′ in the denominator refers to the number of data examples and not to the number
of basis functions. Thus the learning algorithm proceeds by repeated application of the
above two 5.13 and 5.14, concurrent with updated posterior statistics Σ and µ from 5.9
and 5.10, until we have obtained some suitable convergence. Whereas in practical case
during re-estimating we generally find that many of the αi tend to infinity. From 5.8 this
implies p(wi|t, α, σ2) becomes highly peaked at zero. i.e we are a posteriori ’certain’ that
those wi are zero. The corresponding basis functions can thus be ’pruned’ and sparsity is
realised.

5.1.4 Making predictions

Predictions based on the posterior distribution over the weights were made at convergence
of the hyperparameter estimation procedure. Conditionally on the maximising values
αMP and σ2

MP . For the new datum x∗ using 5.8 we can compute the predictive distribution
from 5.5
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p(t∗|t, αMP , σ2
MP ) =

∫
p(t∗|w, σ2

MP )p(w|t, αMP , σ2
MP )dw (5.15)

As both terms in the integrand are Gaussian, this computed and gives

p(t∗|t, αMP , σ2
MP ) = N(t∗|y∗, σ2)

with

y∗ = µT φ(x∗), (5.16)

σ2
∗ = σ2

MP + φ(x∗)T Σφ(x∗), (5.17)

So intuitively the predictive mean is y(x∗, µ), or in other words the basis function weighted
by the posterior weights, many of which will typically be zero. The predictive variance
comprises the sum of two variance components: the estimated noise on the data and other
due to the uncertainty in the prediction of the weights. In the practice, then, we may thus
choose to set our parameter w to fixed values µ for the purpose of point prediciton and
retain Σ if required for computation of error bars.

5.2 Sparse Bayesian Classification

As for regression in the previous section, Relevance vector classification follows an es-
sentially identical framework. We simply adapt the target conditional distribution and the
link functional to account for the change in the target quantities. As a consequence, we
must introduce an additional approximation step in the algorithm.

In any two-class classification, it is important to predict the posterior probability of mem-
bership of one of the classes given the input x. By following statistical convention
and generalise the linear model by applying the logistic sigmoid link function σ(y) =

1/(1 − e−y) to y(x) and adopting the Bernoulli distribution for P (t|x), we can write the
likelihood function as follows
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p(t|w) =
N∏

n=1

σ {y(xn; w)}tn [1− σ {y(xn; w)}]1−tn (5.18)

Note:- We cannot integrate out the weights analytically, unlike the regression case and
so are denied closed-form expression for either the weights posterior p(w|t; α) or the
marginal likelihood P (t|α). We thus choose the utilise the following approximation pro-
cedure as used by MacKay (1992b), which is based on Laplace’s Method.

1. At present for fixed values of α, the ’most probable’ weights we got are wMP , giving
the location of the mode of the posterior distribution. Since p(w|t, α)αP (t|w)p(w|α)

is equivalent to finding the maximum over w, of

log {P (t|w)p(w|α)} =
N∑

n=1

[tnlogyn + (1− tn)log(1− yn)]− 1

2
wT Aw (5.19)

with yn = σ {y(wn; w)}. This is a standard procedure, since 5.19 is a penalised
logistic log-likelihood function, and necessitates iterative maximisation. Second-
order Newton methods may be effectively applied, since the Hessian of 5.19, re-
quired next in step-2, is exactly computed. We adopted the efficient ’iteratively-
reweighted least-squares’ algorithm to find wMP .

2. Laplace’s Method is simply a quadratic approximation to the log-posterior around
its mode. The quantity 5.19 is differential twice to give:

∇w∇wlogp(w|t, α)|wMP
= −(ΦT BΦ + A) (5.20)

Where B=diagβ1, β2, · · · , βn is a diagonal matrix with βn = σ {y(xn)} [1−σ {y(xn)}].
This is then negated and inverted to give the covariance Σ for a Gaussian approxi-
mation to the posterior over weights centred at wMP .

3. Using the statistic Σ and wMP of the Gaussian approximation, the hyperparameters
α are updated using 5.13 in identiacl fashion to the regression case.

At the mode of p(w|t, α), using 5.20 and the fact that ∇wlogp(w|t, α)|WMP
= 0, we can

write

Σ = (ΦT BΦ + A)−1, (5.21)
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wMP = ΣΦT Bt (5.22)

The above 5.21 and 5.22 are equivalent to the solution to a ’generalised least square’
problem when compared to 5.9 and 5.10

Stepwise presentation of the RVM algorithm

• Standardized variables X≈N(0,1)

• target vector are the classes tn,tn∈{0, 1}

• Classification model of Tipping [7]:y(xn; w) = w′xn applied to the logistic sigmoid
link function (Appendix A): σ(y) = 1/(1 + e−y)

• Likelihood is Bernoulli distribution:

P (t|w) =
N∏

n=1

σ((y(xn; w))tn(1− σ(y(xn; w)))1−tn

• Find the maximum over w of p(w|t, α) ≈ P (t|w)p(w|α):

logP (t|w)p(w|α) =
N∑

n=1

[tn log yn + (1− tn) log(1− yn)]− 1

2
wT Aw

where yn = σ(y(xn; w)) is the predicted class of the plot n.

• Likelihood p(w|α) = N(w|0, 1/α) makes the model sparse, forcing part of the
weights wm to zero (αm →∞⇒ wm → 0).
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6 FEATURE EXTRACTION

Image processing is a kind of information processing in which the input is an image, but
output need not necessarily be an image but it can be in any needed form[9]. A feature
extraction technique describes the best way of getting information out of an image for
desired analysis.

The following are the fundamental steps in a Machine Vision system and these steps
combined to make a system. It starts from image capture and proceeds till classification.
Classification itself comprises, recognition of forestland and wetland from given radarsat
and an airborne image.

Figure 6.1: An image processing system
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• Image acquisition is the first process of an image processing system. It starts from
an image that is already in digital form. For e.g. an airborne image, it is an image
captured from a lower altitude than to the satellited based Radarsat image.

• Pre-processing is generally applied after the image acquisition stage and involves
functions, such as scaling and enhancement. It may involve changing the size of a
digital image. Image enhancement is among the simplest and most appealing areas
of digital image processing. Basically the idea behind enhancement techniques is
to bring out detail that is obscured or simply to highlight certain features of interest
in an image.

• Representation and description, The first decision that must be made is whether the
data should be represented as a boundary or as a complete region. Boundary repre-
sentation is appropriate when the focus is on external shape characteristics, such as
a corner or an edge. Regional representation is appropriate when the focus is on in-
ternal properties, such as texture or area. But choosing a representation is only part
of the solution for transforming raw data into a form suitable for subsequent com-
puter processing. A method must also be specified for describing the data so that
features of interest are highlighted. Description is also known as feature selection

and it deals with extracting attributes that result in some quantitative information of
interest or are basic for differentiating one class of objects from another.

• Classification is the last stage in entire process, it assigns a label to a target on an
image based on the descriptors of that target.

There are many different image processing operations which we can use to do transforma-
tion, enhancement, restoration, encoding, segmentation, representation and description on
an image. These can be combined with algorithms to detect and isolate various desired
portions or shapes (features) of a digitized image.

6.1 Feature extraction from an airborne image

An airborne image is an image captured from a low altitude compared to the altitudes of
satellites. The aircraft used are helicopters, planes or unmanned aircarft, but not satellites.
The image is being processed using basic image processing operation in order to remove
noise. Feature selection and extraction is the next step after pre-processing. It plays an
important role in both pattern recognition and image processing; it is a special form of

32



Figure 6.2: The figure shows labeled sample plots taken from an airbone optical image

dimensionality reduction. It involves the amount of resources required to describe a large
set of data accurately in a simple form, but it has a lot of complexity involved in it, like
the number of variables needed. On the other hand the analysis of a large number of
variables requires a large amount of memory and computation power. We may also face a
classification algorithm which overfits the training samples and generalizes poorly to new
samples. To answer and solve these problem is the main task of feature extraction, while
still describing the data with sufficient accuracy[12],[13],[10]and[11]. The classification
results can be improved for example by using the following techniques:

• Principal component analysis

• Kernel PCA

• Isomap

In our case we focus on one of the simplest features of an image which is the histogram.
We use histogram values as features in both classification techniques that we shall test.
We begin by applying appropriate image processing operations on an image. After read-
ing an image we will proceed to conversion of an RGB image to greyscale, then after
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doing smoothing by taking convolution, we use different masks like average, prewitt or
Gaussian. Using these filters for noise reduction smoothens the image.
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Figure 6.3: The figure shows the histogram of each sample plot 1 and 2

The figure 6.3 represents the greyscale histogram of the sample plots 1 and 2. In a similar
manner the histograms from other sample plots are presented in Appendix D.

6.2 Feature extraction from Radarsat image

Microwave based Radarsat images are the type of imagery that can be obtained from
satellite. The data provides height and intensity measurements only, represented in the
form of a large matrix. Each column represents measurements from the corresponding
sample plot. A detailed description of the sample plots is given in chapter 7.

Feature extraction for Radarsat data was done by using methods from statistical analysis.
We have 87 plots. Each of them containts Radar measurements of 2 individual bands
divided by the measurements for each of the points by the sum of all measurements of the
same point. We quantized the measurements to seven histogram bins and the percentile
parts within these limits are the features defined in an algorithm. The percentile points
in this case are the percentages of the ordered standard measurements, compared to the
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total sum of the standardized measurements. The percentile points used in this case are
20%, 50% and 80%. The average mean and variance, along with percentual data, is also
a feature.
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7 ECOLOGICAL CLASSIFICATION OF FOREST LAND
BASED ON SATELLITE AND AIRBORNE IMAGES

7.1 About Radarsat measurements

The advanced Earth observation satellite called "RADARSAT", was developed by the
Canadian Space Agency, building on history of achievements in remote sensing and space
technologies. The satellite was launched in November, 1995 and is designed for a five-
year lifetime. RADARSAT is equipped with a C-band, horizontally polarized Synthetic
Aperture Radar (SAR) system. The satellite’s orbit is repeated every 24 days and provides
complete global coverage with the flexibility to support specific requirements. Canada
and the world now have access to the first radar satellite system capable of large scale
production and timely delivery of data, it meets the need of commercial, government
and scientific programs and provides a new source of reliable and cost-efficient data for
environmental and resource professionals worldwide. The users are getting RADARSAT
data products in well structured form with a choice of resolutions and formats.

Figure 7.1: Radarsat SAR Operating Modes

In our case, we use the Radarsat-data for forest characteristic figure estimation. Radarsat
data suffers from a lack of a model that fits the measurements to the target vector of forest
parameters. The Radarsat-data must be processed in a statistical manner to produce plot
specific3 data. However, the connection between Radarsat-data based height histogram

3Description about the plot specific is given in the next section on variables.
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and e.g stem number is not clear. So, many variables are extracted from the Radarsat-
data, and in conventional modeling, the best variables to describe the needed target vector
values are estimated with cross-validation. In sparse Bayesian regression the selection of
best variables is performed using a numerical algorithm.

7.2 Variables based on Radarsat image

The Variables defined in this section are of satellite image Radarsat. In total there are
maximum i = 1, . . . , N = 18, 700 measurements and k = 1, . . . , K = 87 plots in the
given data. In each plot, a set of first and last pulse radarsat-measurements concerning the
heights and intensity at a certain point are given. The height and intensity histograms are
the only information we are using at present.

The variables are defined from some given information:

Very Shallow Soils over Bedroack (mainly dry, locally moist)

• x1,...,3 ∈ Sample type 1 Coniferous (total conifer ≥ 70%)

• x4,...,5 ∈ Sample type 2 Mixed or hardwood (total hardwood ≥ 30%)

Course-textures Minearal Soils: Glaciofluvial and Lacustrine Material

• x6,...,11 ∈ Sample type 3 Coniferous (total conifer ≥ 65%)

• x12,...,15 ∈ Sample type 4 Mixed or hardwood (total hardwood ≥ 25% and < 65%)

• x16,...,19 ∈ Sample type 5 Hardwood (total hardwood > 75%)

• x20,...,21 ∈ Sample type 6 Coniferous (total conifer ≥ 65%)

• x22,...,24 ∈ Sample type 7 Mixed or hardwood (total hardwood ≥ 25% and < 65%)

• x25 ∈ Sample type 8 Hardwood (total hardwood > 75%)

Fine-textured Minearal Soils: Lacustrine plains and Morainal Materials

• x26,...,28 ∈ Sample type 16 Mixed or hardwood (total hardwood≥ 25% and < 65%)
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• x29,...,30 ∈ Sample type 17 Hardwood (total hardwood > 75%)

• x31,...,34 ∈ Sample type 18 Coniferous (total conifer ≥ 65%)

• x35,...,36 ∈ Sample type 19 Mixed or hardwood (total hardwood≥ 25% and < 65%)

• x37,...,39 ∈ Sample type 20 Hardwood (total hardwood > 75%)

Productive forested areas

• x40,...,43 ∈ Sample type 21 "Bogs" - black spruce dominated.

• x44,...,48 ∈ Sample type 22 "Fens" - mix of black spruce, larch, alder

• x49 ∈ Sample type 23 "Rich fens" - white cedar and larch are indicator, Ce+L cover
≥ 30%

Non-Productive forested areas

• x50,...,53 ∈ Sample type 24 Treed blogs

• x54,...,56 ∈ Sample type 25 Treed fens

Open wetlands

• x57,...,62 ∈ Sample type 26 Open bog

• x63,...,68 ∈ Sample type 27 Open poor fens

• x69,...,71 ∈ Sample type 28 Open rich fen

• x72,...,74 ∈ Sample type 29 Shore fen

• x75,...,77 ∈ Sample type 30 Thicket Swamp

• x78,...,82 ∈ Sample type 31 Meadow march

• x83,...,84 ∈ Sample type 32 Marches

Others

• x85,...,87 ∈ Sample type 33 Recently cutover area
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7.3 Classification approaches

Using the Relevance Vector Machine(RVM) and the Support Vector Machine(SVM) re-
spectively, the following results were derived. Figure 7.2 represents classification results
using the RVM method and figure 7.3 represents classification results using the SVM
method.

The RVM algorithm is a binary classification method, therefore forest areas were labeled
as class 1 and wetland areas were labeled as class 0. The classifier was trained using the
leave-one-out method. In this iterative method, each plot was considered as a verification
plot and the rest were considered as a teaching set. The classification rule was set in such
a way that plot n is said to be classified as class 1 (forest) only if yn ≥ 0.5, otherwise it
belongs to class 0 (wetland).

The classification error is defined as follows:

87
n=1(tn 6= round(yn))/(87× 100) (7.1)

The figure 7.2 presents the classification result of radarsat data1, by using the RVM
method. In the plot, as shown in figure 7.2 green color represents the correct class of the
data and blue dot represents the estimated values of the corresponding test data. Based on
the classification condition, the classes were assigned the test data. The error percentage
defines the classification error. It is the percentage of misclassified data, calculated by
using equation (7.1).

A Support Vector Machine (SVM) performs classification by constructing a 2-dimensional
hyperplane that optimally separates the data into two categories. These two categories are
forestland and wetland. In the algorithm, it was labeled as class 1 to represent the forest
area and class 2 for the wetland. But in the plot shown in figure 7.3 these categories were
distinguished by using two colors i.e. blue and red. The features belonging to class 1
were marked blue and rest belong to class 2 were marked by red.

The SVM analysis finds the line or hyperplane that is oriented so that the margin be-
tween the support vectors is maximized. The figure 7.3 shows the classification results
of radarsat data1 with an error percentage of 20.93%. The error percentage gives the
percentage of misclassified features. It was also calulated using equation (7.1)
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Figure 7.2: The figure is obtained by using the RVM algorithm on Radarsat data case 1
showing error percentage of 13.79%
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7.4 Variables based on airborne images

The Variables defined in this section are based on an airborne image. Each plot from an
airborne image gives grayscale intensity value pixel by pixel. In total there are maximum
k = 1, . . . , K = 76 plots, because of some missing plots including recently cutover
stands. These plots were defined using following 76 variables. Each variable describes
the forest type, which were same as described in section 7.2, but this image have different
amount of plots for each forest type on compare to radarsat image.

Very Shallow Soils over Bedroack (mainly dry, locally moist)

• x1,...,3 ∈ Sample type 1 Coniferous (total conifer ≥ 70%)

• x4,...,5 ∈ Sample type 2 Mixed or hardwood (total hardwood ≥ 30%)

Course-textures Minearal Soils: Glaciofluvial and Lacustrine Material

• x6,...,10 ∈ Sample type 3 Coniferous (total conifer ≥ 65%)

• x11,...,12 ∈ Sample type 4 Mixed or hardwood (total hardwood ≥ 25% and < 65%)

• x13,...,16 ∈ Sample type 5 Hardwood (total hardwood > 75%)

• x17,...,18 ∈ Sample type 6 Coniferous (total conifer ≥ 65%)

• x19,...,21 ∈ Sample type 7 Mixed or hardwood (total hardwood ≥ 25% and < 65%)

• x22 ∈ Sample type 8 Hardwood (total hardwood > 75%)

Fine-textured Minearal Soils: Lacustrine plains and Morainal Materials

• x24,...,25 ∈ Sample type 16 Mixed or hardwood (total hardwood≥ 25% and < 65%)

• x26,...,28 ∈ Sample type 17 Hardwood (total hardwood > 75%)

• x29,...,32 ∈ Sample type 18 Coniferous (total conifer ≥ 65%)

• x33 ∈ Sample type 19 Mixed or hardwood (total hardwood ≥ 25% and < 65%)

• x34,...,36 ∈ Sample type 20 Hardwood (total hardwood > 75%)
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Productive forested areas

• x37,...,40 ∈ Sample type 21 "Bogs" - black spruce dominated.

• x41,...,44 ∈ Sample type 22 "Fens" - mix of black spruce, larch, alder

• x45 ∈ Sample type 23 "Rich fens" - white cedar and larch are indicator, Ce+L cover
≥ 30%

Non-Productive forested areas

• x46,...,48 ∈ Sample type 24 Treed blogs

• x49,...,51 ∈ Sample type 25 Treed fens

Open wetlands

• x52,...,57 ∈ Sample type 26 Open bog

• x58,...,62 ∈ Sample type 27 Open poor fens

• x63,...,65 ∈ Sample type 28 Open rich fen

• x66,...,68 ∈ Sample type 29 Shore fen

• x69,...,70 ∈ Sample type 30 Thicket Swamp

• x71,...,74 ∈ Sample type 31 Meadow march

• x75,...,76 ∈ Sample type 32 Marches

7.5 Classification approaches

Using same classification methods of the Relevance Vector Machine(RVM) and the Sup-
port Vector Machine(SVM), for an airborne image. The following two classification re-
sults were drawn as shown in figure 7.4 and 7.5.
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Figure 7.4: The result above gives an application of the RVM algorithm using an airborne
image, with an error percentage of 9.21%
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Figure 7.5: The result above gives an application of the SVM algorithm using an airborne
image, with an error percentage of 12.50%
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8 RESULTS AND DISCUSSION

8.1 Experimental results

Classification between forestland and wetland has been shown in figure 8.1 and 8.2 using
Radarsat measurements. Since these measurements were taken on 23-02-2005 and 30-
01-05 date, therefore two set of Radarsat measurements were denoted as data1 and data2
respectively.

The forest types were initially grouped into five different types which were coniferous,
hardwood, tree soil, open soil and cutover as follows. Respectively these forest types
were labeled as 1,2,3,4 and 5. The features were extracted from the data by using his-
togram variables and perceptual points method. After feature extraction these features
were passed on for classification and following classification results were drawn by using
the RVM method, as shown in figure 8.1 and 8.2.
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Figure 8.1: For data1 the error percentage is 18.39%
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Figure 8.2: For data2 the error percentage is 17.24%

8.2 Classification of forestland and wetland using radarsat data

The forest type distribution presented below gives information about the variable distri-
bution according to the type of forest they belong. Only difference to be noticed here is
that the variable from productive forested areas types 21, 22 and 23 now belongs to for-
est type Hardwood. Feature were extracted using perceptual point and histogram values
from the data. Similarly, the productive forested area was labeled ’0’ stating forestland in
the binary classification algorithm which works in similar way as described in previous
section.

CON = [1 2 3 4 6 7 15 16 18 19];
HWOOD = [5 8 17 20 21 22 23]
TREESOIL = [24:25]
OPENSOIL = [26:33]
CUTOVER = [33]

Thus the small change of variables labeling in radarsat data1 and radarsat data2, gives
new results with less error percentage compare to experimental done in previous section.
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Figure 8.3: For data1 (i.e. of date 23-02-2005), the error percentage is 13.79%
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Figure 8.4: For data2 (i.e. of date 30-01-2005), the error percentage is 11.49%
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8.3 Classification of forestland species using radarsat data

The Following two experimental results as shown in figure 8.5 and 8.6 gives classifica-
tion between two types of trees from forestland i.e. Coniferous and Hardwood type forest
trees. The variables used in this part of experiments were of forest types only. Since
knowledge about only forest type from entire area was obtained from previous experi-
ment. Thus data set containing forest type was obtained. The next step is to classify two
different species of tree types. For classification, the same feature extraction technique
and binary classifier was used.

Figure 8.5 and 8.6 gives the classification results for data1 and data2 respectively by using
RVM. The error percentage provides accuracy rate of an algorithm, in case of data1 error
percentage is 46.74%. Similarly for data2 error percentage is 38.78%.
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Figure 8.5: For data1 (i.e. of date 23-02-2005), the error percentage is 46.94%
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Figure 8.6: For data2 (i.e. of date 30-01-2005), the error percentage is 38.78%

8.4 Classification of wetland species using radarsat data

In this section the following figures represents the classification of two different types of
soil from wetland area i.e. nonproductive area and opensoil. The variables describing the
wetland species was used to form data structure. It was used for feature extraction method
and later the extracted features were used by the RVM to classify nonproductive area and
opensoil. The figure 8.7 provides classification results. The error defines the accuracy of
an algorithm. For data1 as shown in figure 8.7 error percentage is 17.14% and figure 8.8
represents same classification result for data2 with an error of 14.29%
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Figure 8.7: For data1 (i.e. of date 23-02-2005), the error percentage is 17.14%
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Figure 8.8: For data2 (i.e. of date 30-01-2005), the error percentage is 14.29%
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8.5 Conclusions

After performing the entire experiment from modeling till estimation results, some con-
clusions can be drawn about the relation between the raw data, feature extraction and
classification techniques. These three aspects are much dependent on each other. If the
raw data is good extracted features will be more informative and hence can be classified
easily. This is not always the case in real world problems and experiments, where high
nonlinearities might be observed. In such cases this complexity needs to be addressed
either by using feature extraction methods or by using an accurate and efficient classifica-
tion algorithm.

The RVM algorithm has been shown to perform well on the current classification task,
even if the feature space is high dimensional, the data interdependencies are complex and
there are strong nonlinearities. The table below briefly represents the relative classifi-
cation error of the RVM and the SVM method observed in the current experiments and
application of the SVM method using radarsat data2 is presented in Appendix D.

Radarsat image
RVM SVM

Data1 13.79% 20.93%
Data2 11.49% 30.23%

Table 1: Comparing the RVM and the SVM algorithm using radarsat image

From table 1 it can be observed that in the case of Radarsat measurements the RVM
method work more efficiently than the SVM.

We have also performed the corresponding classification using airborne optical images
for comparison. In this case it is necessary to perform some image processing operations
on the image before feature extraction. In image processing, initially we went through
the basic operations, in order to get a better image with more informative features. Then
after such features were extracted using histogram values, the processed images display
the corresponding intensity pixel by pixel. After collecting histograms of sample plots,
we quantized the range of frequencies as features. They were extracted and passed on for
classification analysis.

Airborne image
RVM SVM
9.21% 11.53%

Table 2: Comparing the RVM and the SVM algorithm using data from an airborne image
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Table 2 represents the efficiency of both algorithms i.e. the RVM algorithm and the SVM
algorithm, in terms of relative error with error percentage 9.21% and 11.53% respectively.
As from 1, from 2 it can be observed that even in the case of airborne images, the RVM
algorithm provides better results than the SVM method.

Thus after applying both algorithms on two different kinds of data sets extracted from
a radarsat image and an airborne image, it can be concluded that the RVM algorithm
overcomes all the limitations stated previously in section 4.4 and gives better classification
results when compare to the SVM.

On the other side, we can also conclude from a comparison between tables 1 and 2 that
airborne images provides better classification than radarsat images. This is to be expected,
because airborne images have a much higher resolution than Radarsat images.

However, the similar performance rations between the RVM and the SVM methods indi-
cates that spectral histograms of both imaging modalities do capture relevant information
of similar kind for the task of ecological classification. This is a remarkable observation
because optical and microwave wavelengths are separated by some six orders of magni-
tude.
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APPENDIX A

Appendix A. Basics of probability and Statistics

Normal Distributions

Center limit theorem is one of the most important results of probability theory which
stats that, under various conditions, the distribution for the sum of d independent random
variable approaches a particular limiting form known as the normal distribution. As such,
the normal or Gaussian probability density function is very important, both for theoretical
and practical reasons. In one dimension, it is defined by,

P (x) =
1√
2πσ

e−1/2((x−µ)2/σ2) (a.1)

The normal density is described as a "bell-shaped curve"; it is completely determined
by the numerical values for two parameters, the mean µ and the variance σ2. This is
often emphasized by written p(x) N(µ, σ2), which is read as "x is distributed normally
with mean µ and variance σ2". The distribution is symmetrical about the mean, the peak
occurring at x = µ and the width of the "bell" is proportional to the standard deviation σ.
The parameters of a normal density in equation above satisfy the following equation:

Sigmoid function

A sigmoid function is a mathematical function that produces a sigmoid curve

P (t) =
1

1 + e−t
(a.2)
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Appendix B. Linear Algebra

Matrix Inversion

The inverse of a d× d matrix M, denoted M−1, is the d× d matrix such that,

MM−1 = 1, (b.1)

We call the scalar Cij = (−1)i+j|Mi|j| the i, j cofactor or, equivalently, the cofactor of
the i, j entry of M. Mi|j is the (d− 1)× (d− 1) matrix formed by deleting the ith row and
jth column of M. The adjoint of M, written Adj[M], is the matrix, whose i, j entry is the
j, i cofactor of M. Given these definitions, we can write the inverse of a matrix as,

M−1 =
Adj[M ]

|M | , (b.2)

If M is not the square then in such case we typically use instead the pseudoinverse M’. If
MT M is nonsingular then the pseudoinverse is defined as,

M ′ = [MT M ]−1M t (b.3)

The pseudoinverse ensure M’M=I and is very useful in solving least square problems.

Eigenvectors and Eigenvalues

The inverse of a product of two square matrices obeys [MN ]−1 = N−1M−1, as can be
verified by multiplying on the right or the left by MN. Given a d-by-d matrix M, a very
important class of linear equations is of the term,

Mx = λx

for scalar λ, which can be rewritten

(M − λI)x = 0
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Where I the identity matrix and 0 is the zero vector, the solution vector x = ei and corre-
sponding scalar λ = λi are called the eigenvector and associated eigen value, respectively.

Lagrange Optimization

In search of the an extremum position x0 of a scalar-valued function f(x), subject to the
constraint. If a constraints can be expressed in the form g(x) = 0, then we can find the
extremum of f(x) as shown below. Firstly we will form a Lagrange function.

L(x, λ) = f(x) + λg(x)︸ ︷︷ ︸
=0

, (b.4)

Where λ is a scalar called the Lagrange undetermined multiplier. We convert this con-
strained optimization problem into an unconstrained problem by taking the derivative,

∂L(x, λ)

∂x
=

∂f(x)

∂x
+ λ

∂g(x)

∂x
= 0, (b.5)

And using standard methods from calculus to solve the resulting equation for λ and the
extremizing values of x. The solution gives the x position of the extremum, and it is
simple matter of substitution to find the extreme values of f(.) under the constraints.

55 2/2



APPENDIX C

Appendix C. Further Details about Relevance Vector Learn-
ing

Maximization of the product of the marginal likelihood and the priors over α and σ2

(or β = σ−2 for convenience) got involved in Relevance vector learning. Equivalently,
and more straightforwardly, we maximize the log of this quality. In additional we are
maximizing with respect to logα and logβ - this is convenient since in practice we assume
uniform hyper priors over a logarithmic scale, and the derivatives of the prior terms vanish
in this space. So, retaining for now general Gamma priors over α and β we maximize:

log p(t| log α, log β) +
N∑

i=0

log p(log αi) + p(log β) (c.1)

Which, ignoring terms independent of α and β and noting that p(log α) = αp(α), gives
the objective function:

L = −1

2
[log |β−1I+ΦA−1ΦT |+tT (β−1I+ΦA−1ΦT )−1t]+

N∑
i=0

(a log αi−bαi)+c log β−dβ

(c.2)

Note that the later terms disappear with a, b, c, d set to zero.

Now our task is to consider most robust and efficient way of computing the objective
L, considering outline the derivation of the hyperparameter updates and the numerical
difficulties involved within algorithm.

A Computing the Log Objective Function

The given matrix β−1I + ΦA−1ΦT which appears in the first two terms in L, is of size
N×N. However computation of both of the terms of interest may be written as a function
of the posterior weight covariance Σ = (A+βΦT Φ)−1. This matrix is M×M, where M is
the number of basic functions in the model. While initially M = N + 1 in practice many
basis functions will be ’deleted’ during optimization (see shortly B.1) and M will decrease
considerably giving significant computational advantages as optimization progresses.
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We compute the first term by exploiting the determinant identity

|A||β−1I + ΦA−1ΦT | = |β−1I||A + βΦT Φ|,

giving

log |β−1I + ΦA−1ΦT | = − log |Σ| −N log β − log |A|, (c.3)

Using the Woodbury inversion identity

(β−1I + ΦA−1ΦT )−1 = βI − βΦ(A + βΦT Φ)−1ΦT β,

the second, data-dependent, term may be expressed as

tT (β−1I + ΦA−1ΦT )−1t = βtT t− βtT ΦΣΦT βt

= βtt(t− Φµ) (c.4)

With µ = βΣΦT t, the posterior weights mean. Note that () may be also be re-expressed
as:

βtt(t− Φµ) = β ‖t− Φµ‖2 + βtT Φµ− βµT ΦT Φµ,

= β ‖t− Φµ‖2 + µT Σ−1µ− βµT ΦT Φµ

= β||t− Φµ||2 + µT Aµ (c.5)

Which corresponds to the penalized log likelihood evaluated using the posterior mean
weights. The terms in (c.3) are sometimes referred to as the "Ockham factors".
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Computation of Σ, its determinant and µ is achieved robustly through Cholesky decom-
position of A + βΦT Φ an O(M3) procedure.

Derivatives and Updates

The Hyperparameters

The deriative of (c.2) with respect to logα are:

∂L

∂ log αi

=
1

2
[1− αi(µ

2
i + Nii)] + a− bαi (c.6)

Equating above equation equals to zero and solving for αi gives a re-estimation rule:

αNew
i =

1 + 2α

µ2
i + Nii + 2b

(c.7)

This is same as an expectation-maximisation (EM) update and so is guaranteed to locally
maximise L. However, setting eq (c.6) to zero, and following MacKay(1992a) in defining
quantities γi ≡ 1− αiNii, leads to the following update:

αnew
i =

γi + 2a

µ2
i + 2b

(c.8)

which was observed to leaad to much faster convergence although it does not benifit from
the guarantee of local maximisation of L.

The noise variance

Derivatives with respect to logβ are:

∂L

log β
=

1

2

[
N

β
− ‖t− Φµ‖2 − tr(

∑
ΦT Φ)

]
+ c− dβ, (c.9)
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and since tr(
∑

ΦT Φ) can be written as β−1
∑

i γi setting the derivative to zero and rear-
ranging and re-expressing in terms of σ2 gives:

(σ2)new =
‖t− Φµ‖2 + 2d

N −∑
i γi + 2c

(c.10)
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Appendix D. Histograms of sample plots

The below seven figures gives the representation of the greyscaled histogram of the sample
plots, as explained in section 6.1.
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The figure shows the histogram of sample plot 3,4 and 5
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histogram of sample plot 6
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The figure shows the histogram of sample plot 6,7 and 8
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histogram of sample plot 15
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histogram of sample plot 17

The figure shows the histogram of sample plot 15,16 and 17
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The figure shows the histogram of sample plot 18,19 and 20
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histogram of sample plot 21
histogram of sample plot 22
histogram of sample plot 23

The figure shows the histogram of sample plot 21,22 and 23
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The figure shows the histogram of sample plot 24 and 25
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histogram of sample plot 26
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The figure shows the histogram of sample plot 26,27,28,29,30,31 and 32

The figure below represent the SVM result for radarsat data2 and it was used in table 1 of
section 8.5.
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The figure shows application of the SVM method using radarsat data2
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