
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Highlight Removal in Spectral Images
Master’s Thesis

The topic of the Thesis has been confirmed by the Department Council of the
Department of Information Technology on 22 March, 2006

Supervisor: Ph.D. Vladimir Bochko

Examiner:  Diana Kalenova

Author: Ivan Shishkarev

Korpikunnaankatu 5 B 14
53850, Lappeenranta, Finland

Phone: +358 407395297
E-mail: ivan.shishkarev@lut.fi

Lappeenranta, 18.05.2006

HYPERLINK 
mailto:ivan.shishkarev@lut.fi


ii

ABSTRACT
Lappeenranta University of Technology

Department of Information Technology
Author: Ivan Shishkarev

Thesis Title: Highlight Removal in Spectral Images
Thesis for the Degree of Master of Science in Information Technology, 2006

55 pages, 27 figures, 1 table
Examiner: Diana Kalenova

Supervisor: Vladimir Bochko, Ph.D
Keywords: color constancy, spectral images, highlight removal

In many applications it is very important to reduce influence of a light source to see a

real color of objects. Especially this technique is very useful for E-museums,

telemedicine, E-shops and E-money. In this study the highlight removal technique is

proposed and developed.

An overview for a general color image understanding is given in the thesis and based

on it the different highlight removal techniques were analyzed, and the new method

on highlight removal was proposed based on the Dichromatic Reflection Model

which characterizes a spectral data for highlight and body reflection. The proposed

method involves different methodologies for performing – such as principal

component analyzing and data classification techniques.

The attempt to invent the fast working algorithm performing well and having a small

computational time was made successfully. The experiments on highlight removal

were  made  according  to  the  proposed  method,  and  the  results  of  the  algorithm

working demonstrated desirable performance. Also the suggestion for the future

improvement of the algorithm is presented.
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Monissa sovelluksissa on hyvin tärkeää vähentää valolähteen vaikutusta kohteen

oikean värin havainnoimiseksi. Tämä on tarpeen mm. virtuaalisissa museoissa,

telelääketieteessä, verkkokaupassa ja verkkorahassa. Tässä tutkielmassa on kehitetty

tekniikkaa kirkkaiden heijastusten poistoon spektrikuvista.

Työ sisältää katsauksen yleisen värillisen kuvan ymmärtämiseen, mihin perustuen

analysoitiin erilaisia kirkkaiden heijastusten poisto–tekniikoita. Työssä kehitettiin

uusi kirkkaiden heijastusten poisto–menetelmä, joka perustuu dikromaattiseen

heijastus–malliin, joka kuvaa spektrisen datan objektin omaan väriin ja valaisevan

valon väriin perustuen. Ehdotettu kirkkaiden heijastusten poisto–menetelmä

hyödyntää erilaisia olemassaolevia menetelmiä, kuten pääkomponenttimenetelmää ja

tiedon luokittelu–menetelmää.

Yritys kehittää nopeasti toimiva algoritmi, joka myös suoriutuu tehtävästä hyvin, on

onnistunut. Kokeet toteutettiin ehdotetun menetelmän mukaisesti ja toimivalla

algoritmilla saatiin halutut lopputulokset. Edelleen työ sisältää ehdotuksia esitetyn

algoritmin parantamiseksi.
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1. Introduction

In many applications it is very important to reduce influence of a light source to see a

real color of objects. Especially this technique is very useful for E-museums,

telemedicine, E-shops and E-money. In this study the highlight removal technique is

proposed and developed.

The question of highlight removal has been in touching from different points of view.

In  general  it  is  a  part  of  color  constancy  problem  which  is  leading  to  skip  the

illumination influence on the surface of objects in the scene. It can also be understood

as computation of perceived surface color. In this thesis highlight removal will be

resolved by applying to spectral images which are presented as a high dimensional

data.

Highlights put to inconvenience not only for humans observing images, but more

matter – for computer vision algorithms. They are looking as a part of surface of

objects on the image scenes but actually they are caused by lighting that change in

position and appearance under different viewing conditions. Some problems could be

appeared due to it – result of a correspondence analysis in stereo images may be

falsified  significantly,  recognition  and  image  segmentation  errors.  Because  of  these

undesirable effects of highlights on image analysis, there have been several previous

works on its removal.

The one of the works on color images by Klinker, Kanade et all [9] provided with a

theory of the Dichromatic Reflection Model. This physical aspect of color images

was used by applying to highlight removal in different approach – Schluns, Koshan

[14], Tong and Funt [17] and others.

There are some methods which are just able to detect specular reflection but the

generation of a matte image is not possible, and as it should be highlight removal is

not possible too.

Ideally highlight removal should be performed globally on whole image – for every

object on the scene, and this task is separated into local highlight removal tasks by

clustering whole color image into certain regions and performing highlight removal

applying to every cluster. In the thesis we will work with physically segmented color

regions to demonstrate usability of proposed method.
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The most of the previous works were performed in a 3-D RGB-space. In the thesis the

spectral images will be objects for analysis, so the data dimension will be higher.

Bochko and Parkkinen worked with spectral images in their work on highlight

removal [4] and my thesis is logical continuation of their approach. The method

proposed by them is well productive and executable, but time demanding due to the

time consuming of the one inner part of the approach – the needed for time resources

KNN algorithm for mapping highlight pixels onto the body cluster was user there. In

the thesis performance of the method is going to be improved. In my study the

proposed highlight removal technique improves the results of the method [4] by

accelerating the algorithm work and using better mapping algorithm.

And  so  the  task  of  the  research  is  removal  a  highlight  area  from  an  image  by

producing a simulated color of an object instead of a highlight. For this task the

algorithm based on machine learning is proposed.

Several techniques will be used to rich result we intend. Therefore some background

will be given at the beginning of the work.
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2. Physics of Color

2.1 Light and Color

We live in the world of electromagnetic waves and every time we are in touch with

them. The one of the characteristics of the wave is the wavelength measured by units

of the length. The spectrum of waves is quite wide. It is presented with waves from

the shortest (minor quotes of meter) to the longest (entire meters) wavelengths as

shown in Fig. 1. Human senses can perceive a part of them, and more narrow band

can be seen and sensed by the human eye – it is so-called visible spectrum. The

human eye can detect waves with wavelengths from 360 nm (blue color) to 760 nm

(red color).

Figure 1. Spectrum of wavelengths

The definition of the word “color” itself provides some interesting challenges and

difficulties. There are several terms in the nature and science which are

understandable, but anyway they have to be described in strong definitions in order to

provide possibilities to work with them correctly. While most of us know what color

is, it is an interesting challenge to try to write a definition.

Let to take the next – color is the attribute of visual perception of any combination of

chromatic and achromatic content. This attribute can be described by chromatic color

name such as yellow, orange, brown, red, pink, green, blue etc. or by achromatic

color names such as white, gray, black etc., and qualified by bright, dim, light, dark or

by combination of such names. Terms mentioned before can be described in the next

way.  Achromatic  color  is  perceived  color  devoid  of  hue,  and  chromatic  color  is  a

perceived color which possesses a hue [7].

Color is the main characteristic by which colored rays of light are distinguished.

Every color can be varied depending on saturation or purity. Saturation indicates

visible brightness or intensity of a color. Brightness is a quality of a color. Generally

it depends on the quantity of light rays reflected from the surface of current color, that
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is equal to brightness of a color with respect to others colors with current

illumination.

In physical context brightness is amount of a light energy outgoing from light per

second. Absolute brightness depends on its capability for reflecting, brightness and

strength of illumination. But in case of human visual system we should refer that

human eyes have capability of adaptation, and usual we do not grasp absolute

brightness of a surface. And as example here – we can not imagine that some black

surface in daylight can be brighter than some light surface in a moon light, but

actually it is in physical context.

Albert Munsell created a presentation of 3-D body demonstrating well-ordered

arrangement of colors in three-dimensional space by color, brightness and saturation

– Fig.  2.  Colors  are  arranged  around a  core  which  consists  from achromatic  colors:

black, gradations of grey and white. Colors are clearing from bottom to top according

to  extent  of  their  light  reflection.  Brightness  of  colors  is  rising  in  proportion  to

moving of the core and less mixing with a grey color.

Figure 2. Color Diagram by Albert Munsell

2.2 Color perceptive system

Light falls on the object surface and most parts of a light are absorbed by a surface,

but  some  its  part  of  definite  spectrum  is  reflected  and  it  is  perceived  as  a  color  by

visual system. When we are talking about color we have in mind color perception by

some sensors – either by human eyes or by robot visual sensors. Let us take to
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consideration the construction of human eye to have presentation on the way of color

perception.

The  light  goes  through  a  pupil  and  reaches  a  retina  which  consists  of  two  types  of

photoreceptors: rods and cones. The important distinction between them is in visual

function.  Rods  serve  for  vision  at  low  luminance  level  (less  than  1 2/cd m ), while

cones serve for vision at higher luminance level. Thus the transition from rod to cone

vision is mechanism that allows our visual system to function over a wide range of

luminance levels.

Rods and cones also differ substantially in their spectral sensitivities. There are three

types of cone receptors with peak spectral responsiveness spaced throughout the

visual  spectrum as  shown on  Fig.  3,  and  only  one  type  of  rod  receptor  with  a  peak

spectral responsiveness at approximately 510 nm . Since there is only one type of rod,

the rod system is incapable of color vision. This can be observed by viewing a

normally colorful scene at very low luminance. The three types of cones clearly serve

for color vision and they are named as L, M, and S cones - long-wavelength, middle-

wavelength, short-wavelength, or other designation RGB (red, green and blue

sensitivities). These photoreceptors absorb light in their respective regions and send a

signal to the rest of the visual system.

Figure 3. Cones responsiveness [7]

And as it could be seen spectral responsiveness of the three cone types broadly

overlap.  It  is  one  of  the  differences  from  color  separation  responsiveness  that  are

usually built into physical imaging systems. Such sensitivities, typically incorporated
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in imaging systems for practical reasons, are the fundamental reason that accurate

color reproduction is often difficult, if not possible, to achieve [7].

2.3 Color representation

A color  model  is  an  abstract  mathematical  model  describing  the  way colors  can  be

represented  as  tuples  of  numbers,  typically  as  three  or  four  values  or  color

components. When this model is associated with a precise description of how these

components are interpreted (viewing conditions, etc.), the resulting set of colors is

called a color space.

There are several models of color representation. Based on the number of primaries

used for color description, two groups of them can be considered – tristimulus models

and model describing color through its spectral distribution.

2.3.1 Tristimulus color space

This space can be pictured as a region in a 3-D Euclidian space if one identifies the x,

y and z axes with the stimuli for the long-wavelength (L), medium-wavelength (M)

and short-wavelength (S) receptors – Fig.4.

Figure 4. Tristimulus color space [18]

The origin ( , , ) (0,0,0)S M L =  corresponds to black. White has no definite position in

this diagram, rather it is defined accordingly to the color temperature – it is

determined by comparing its hue with a theoretical, heated black-body-radiator. The

human color-space is a horseshoe-shaped cone as it is seen on the picture. The most

saturated colors are located at the outer rim of the region, with brighter colors farther
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removed from the origin. As far as the responses of the receptors in the eye are

concerned, there is no such thing as “brown” or “gray” light – these names refer to

orange and white with an intensity that is lower than the light from surrounding areas.

The human tristimulus space has the property that additive mixing of colors

corresponds to the adding of vectors in this space. That makes it easy to describe

possible colors that can be constructed from the red, green, and blue primaries in a

computer display, for example.

2.3.2 RGB model

There is a type of color models named additive model which involves light emitted

directly from a source or illuminant of some sort. By leading to the tristimulus model

described before, the concept of this system is that color matches can be specified in

terms of the amounts of three additive primaries required to visually matching a

stimulus. This is illustrated by the equation (1):

                                                 C ≡  R( R ) + G(G ) + B( B ).                                      (1)

The  way of  reading  this  equation  is  that  a  color  C is  matched  by  R units  of  the R

primary, G units of the G  primary, and B units of the B  primary.

The RGB model is this type of additive models in which three primaries “red”,

“green” and “blue” are combined in various ways to reproduce other colors. The RGB

model itself does not define what is meant by “red”, “green” and “blue”, and results

of mixing them are not exact unless the exact spectral make-up of the primaries is

defined. And so the spectral values for tristimulus values have to be defined, and the

Grassman’s law of additivity and proportionality to sum tristimulus values for each

spectral component has to be taken. The spectral tristimulus values are obtained by

matching a unit amount of power at each wavelength with an additive mixture of

three primaries. There is demonstration of the set of spectral tristimulus values for

monochromatic primaries at 435.6 nm ( B ), 546.1 nm ( G ) and 700.0 nm ( R ) in Fig.5
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Figure 5. Color-matching function [7]

It is noticeable that some of the spectral tristimulus values are negative. This implies

the addition of a negative amount of power into the match. This is because some

wavelengths are too saturated to be matched by the particular primaries – they are out

of gamut. Negative tristimulus values are obtained by adding the primary to the

monochromatic light to desaturate the light and bring it within the gamut of the

primaries.

By considering any given stimulus spectral power as an additive mixture of various

amounts of monochromatic stimuli, one can obtain the tristimulus values for a

stimulus by multiplying the color-matching functions by the amount of energy in the

stimulus at each wavelength (Grassman’s proportionality) and then integrating across

the spectrum (Grassman’s additivity). Thus Eq. 2 demonstrates generalization for

calculating the tristimulus values of a stimulus with spectral power distribution,

( )λΦ , and ( )r λ , ( )g λ , ( )b λ  are the color-matching functions:

R ( ) ( )r d
λ

φ λ λ λ= ∫

    G ( ) ( )g d
λ

φ λ λ λ= ∫                                                 (2)

B ( ) ( )b d
λ

φ λ λ λ= ∫
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The RGB model has reputation due to its simplicity, but there are and some

disadvantages due to negative part for some spectrum for R  primary. Therefore the

next XYZ model was introduced to overcome existing disadvantages [7].

2.3.3 XYZ model

It  is  possible  to  derive  a  linear  transform  ( 3 3×  matrix transformation) to convert

tristimulus  values  from  one  set  of  primaries  to  another.  This  transformation  also

applies to the color-matching function. The result of transformation for color-

matching function is shown on Fig.6:

Figure 6. Color matching function for XYZ model [7]

The transformation was intended to eliminate the negative values in color-matching

function. The negative values were removed by selecting primaries that could be used

to match all physically realizable color stimuli.

XYZ  tristimulus values for colored stimuli are calculated in the sane fashion as the

RGB  tristimulus values described previously. The general equations are given in Eq.

2, where ( )λΦ  is the spectral power distribution of the stimulus, ( )x λ , ( )y λ  and

( )z λ  are the color-matching functions, k  is a normalizing constant.
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( ) ( )X k x d
λ

φ λ λ λ= ∫

( ) ( )Y k y d
λ

φ λ λ λ= ∫                                                  (2)

( ) ( )Z k z d
λ

φ λ λ λ= ∫

The spectral power distribution of the stimulus is defined in different ways for

various types of stimuli. For self-luminous stimuli (e.g. light sources) ( )λΦ  is

typically spectral radiance or a relative spectral power distribution. For reflective

materials ( )λΦ  is defined as the product of the spectral reflectance factor of the

material, ( )R λ , and the relative spectral power distribution of the light source, ( )S λ

- that is ( ) ( )R Sλ λ . For transmitting materials ( )λΦ  is defined as the product of the

spectral transmittance of the material, ( )T λ , and the relative spectral power

distribution of the light source, ( )S λ  - that is ( ) ( )T Sλ λ .

The normalization constant, k , is defined differently for relative and absolute

colorimetry. In absolute colorimetry k  is 683 lumens/watt. For relative colorimetry

k  is defined by Eq. 3:

100
( ) ( )

k
S y d

λ

λ λ λ
=

∫
                                                 (3)

The directly linear transformation from RGB model  to XYZ is presented by the next

Eq.4:

0.49 0.31 0.20
0.18 0.81 0.01

0 0.01 0.99

X R
Y G
Z B

     
     =     
          

                                      (4)

Because of linear dependency of models, the XYZ color system has the same

disadvantages as RGB model has, for example device dependency – when colors

having the same amounts of primaries appear differently on different devices. The

problems of uniformity and device dependency were solved in CIELAB model [7].
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2.3.4 CIELAB color model

CIE L*a*b* (CIELAB) model is the most complete color model used conventionally

to describe all the colors visible to the human eye. It was developed for this specific

purpose. This space extends tristimulus colorimetry to 3-D space with dimensions

that  approximately  correlate  with  the  perceived  lightness,  chroma,  and  hue  of  a

stimulus. The main its aim is to provide uniform practices for the measurement of

color differences, something that can not be done reliably in tristimulus or

chromaticity spaces.

The three parameters in the model represent a lightness of the color (L*,  L*  =  0

yields black and L* = 100 indicates white), its position between magenta and green

(a*, negative values indicate green while positive values indicates magenta) and its

position between yellow and blue (b*, negative values indicate blue and positive

values indicates yellow). Color space described by this model is shown in Fig. 7:

Figure 7. Three-dimensional representation of the CIELAB model

The LAB color model was created to serve as device independent, absolute model to

be used as a reference. The components of this color space are defined by Eq. 5:

1/ 3* 116 ( / ) 16nL Y Y= ⋅ −

1/ 3 1/ 3* 500 ( / ) ( / )n na X X Y Y = ⋅ − 

1/3 1/3* 200 ( / ) ( / )n nb Y Y Z Z = ⋅ −                                        (5)

2 2* ( * * )abC a b= +

1tan ( * / *)abh b a−=
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Here X , Y  and Z are tristimulus values of the stimulus and nX , nY  and nZ  are the

tristimulus values of the reference white. As it is noticeable tristimulus values are

normalized to the white.

CIELAB  has  become  almost  universally  used  for  color  specifications,  but  it  is  still

has some disadvantages [7].

2.3.5 Multi-Spectral Images

We will work with multi-spectral images which are presented by spectral color

model. A multi-spectral image is a collection of several monochrome images of the

same scene, each of them is taken with a different sensor which is set to definite

frequency. The idea of spectral color model is to approximate color distribution. The

accuracy of color description depends on the amount of primitives – with increasing

the number of components the accuracy is raising but not in the linear way as shown

in Fig.8. Until primitives are non-correlated the function of dependency accuracy on

dimensionality is linear, otherwise non-linearity is proportional to correlation.

Figure 8. Graph dependency accuracy on dimensionality

For forming multi-spectral image sensors usually take several images from spectral

band in the visual and non-visual range. The mentioned above RGB color model is a

particular case of spectral image with three components.

The disadvantage of multi-spectral images is in high requirements to computational

time and significantly increasing of memory using.
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3. Color Image Understanding

3.1 Dichromatic Reflection Model

There  were  some  works  on  image  understanding  which  used  intrinsic  models  of

physical processes in the scene to analyze intensity or color variations in the image

[1], [2], [4], [14], [17]. The Dichromatic Reflection Model is one of these models

which  were  used  for  color  image  processing.  It  was  used  to  generate  image

segmentation, along with description of object and highlight colors and intrinsic

reflection images, showing how shading and highlight reflection vary in the image.

The color image analysis system alternates between generating hypothesis about the

scene from the image data and verifying whether the hypothesis fit the image. The

hypotheses relate object color, shading, highlights and camera limitations to the color

variations in local image areas. They are used to segment images and to separate them

into intrinsic images – the one of results of it is showing the scene without highlight.

In this way, the algorithm is driven by a physical model of light reflection to

incrementally  identify  local  and  global  properties  of  the  scene  and  to  use  them  in

interpreting and segmenting pixels in the images.

The Dichromatic Reflection Model describes the light, ( , , , )L i e gλ , which is reflected

from a point on a dielectric, nonuniform material as a mixture of the light

( , , , )sL i e gλ  reflected at the material surface and the light ( , , , )bL i e gλ  reflected from

the material body as shown on Fig. 9.

Figure 9. Light reflection from dielectric materials [9]

The parameters i , e  and g  describe the angles of the incident and emitted light and

the phase angle, λ  is the wavelength parameter. sL  is called the surface reflection
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component – it generally has approximately the same spectral power distribution as

the illumination and appears as a highlight or as gloss on the object. bL  is called the

body reflection component. It provides the characteristic object color and exhibits the

properties of object shading. Eq. 6 demonstrates the light describing:

( , , , ) ( , , , ) ( , , , )s bL i e g L i e g L i e gλ λ λ= +                                      (6)

The model separates the spectral reflection properties of sL  and bL  from their

geometric reflection properties, modeling them as product of spectral power

distribution, ( )sc λ  and ( )bc λ , and geometric scale factors, ( , , )sm i e g  and ( , , )bm i e g ,

which describe the intensity of the reflected light. And so the Dichromatic Reflection

Model equation is Eq.7:

( , , , ) ( , , ) ( ) ( , , ) ( )s s b bL i e g m i e g c m i e g cλ λ λ= ⋅ + ⋅                             (7)

The  model  describes  the  light  that  is  reflected  from an  object  point  as  a  mixture  of

two distinct spectral power distributions, ( )sc λ  and ( )bc λ , each of which is scaled

according to the geometric reflection properties of surface and body reflection.

3.2 Object Shape and Spectral Variation

The Dichromatic Reflection Model itself describes the spectral properties separately

for every single pixel on an object. Klinker, Shafer and Kanade presented a new

upgraded mode of DRM [9].

It was observed that the light reflected from all points on an object uses the same two

spectral vectors and these two factors are thus constant over an object. And that a

dense spectral cluster in the dichromatic plane is formed by the light mixtures – the

shape  of  this  cluster  is  closely  related  to  the  shape  of  an  object.  Fig.10  illustrates  a

cylinder under light:
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Figure 10. Surface and body reflection from a cylindrical object [9]

The curves show the loci of constant body reflection (perspective viewing and

illumination geometry and Lambertian body reflection were assumed).  And also the

loci of constant surface reflection are shown. Parameter ( , , )sm i e g  decreases sharply

around the object point with maximal surface reflection maxsm . In fact this area is

called highlight points. The remaining object points are matte points. Fig. 11 shows

corresponding spectral histogram in the dichromatic plane and demonstrates the

forming two linear clusters in the histogram.

Figure 11. Spectral cluster on the dichromatic plane

Light reflection at matte points is primarily determined by the body reflection

process. Additionally matte points may contain some surface reflection as the result

of light diffusion at a rough material surface, but this can be neglected.

The observed light at matte points depends mainly on ( )bc λ , scaled by ( , , )bm i e g

according to the geometrical relationship between the local surface normal of the

object and the viewing and illumination directions. The matte points form a matte line

in the dichromatic plane in the direction of the body reflection vector ( )bc λ .
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Highlight points exhibit both body reflection and surface reflection. Since ( , , )sm i e g

is  much more sensitive to a small  change in the photometric angles than ( , , )bm i e g ,

the body reflection component is generally approximated constant in a highlight area.

And so according to the Dichromatic Reflection Model Eq. 7 obtains a constant value

( )bH bm c λ⋅  and all spectral variation within highlights comes from varying amounts

of ( , , )sm i e g . So the new view of dependency of a light inside of highlight area is:

The highlight points form a highlight line in the dichromatic plane in the direction of

the surface reflection vector ( )sc λ . The line departs from the matte line at position

( )bH bm c λ . Because of the small variation of the body reflection component over the

highlight, the highlight cluster looks like slim, skewed wedge.

The combined spectral cluster of matte and highlight points looks like a skewed T.

The skewing angle of the T depends on the spectral difference between the body and

surface reflection vectors while the position of the highlight line depends on the

illumination geometry.

3.3 Illumination geometry and Spectral Histogram Shape

There is a close relationship between the illumination geometry and the amounts of

body  and  surface  reflection.  It  has  an  influence  on  the  shape  of  the  clusters  in  the

spectral histogram (in Fig.11). Fig.12 demonstrates dispositions of object, light source

and observer:

Figure 12. Dispositions of object, light source and observer [9]
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The amount of body reflection under highlight depends on the phase angle g

between illumination and viewing direction - if g  is small, that means close

disposition of a camera to the light source, the incidence direction of the light at the

highlight is close to the surface normal and amount of body reflection is very high.

The highlight line in the dichromatic plane then starts near the tip of the matte line,

and skewed T becomes a skewed L. With the increasing the phase angle g  the

highlight moves away from the area with maximal body reflection and the amount of

body reflection under the highlight decreases. The highlight line moves accordingly

away from the tip of the matte line. The next formulas show these assumptions in a

strong way.

Using the law of sines and the law of cosines, Hi  can be described as:

2 2

sin( / 2)arcsin
2 cos( / 2)

H
d gi

d r d r g
⋅

=
+ − ⋅ ⋅ ⋅

,                                 (9)

where Hi  itself is the illumination angle at the highlight, g  is a phase angle between

illumination and viewing direction, r  - the radius of our assumpted to be spherical

object, d  - the distance from the object center to the light source.

Assuming Lambertian body reflection, cos( )bH Hm i= , the underlying body reflection

component, bHm , at the highlight is given by:

2 2

2 2

sin ( / 2)cos( ) 1
2 cos( / 2)bH H

d gm i
d r d r g

= = −
+ − ⋅ ⋅

.                          (10)

According to these equations, bHm  approaches 1 when g  goes to 0o , confirming that

the spectral cluster looks like a skewed L when camera and source are close.

The next thing has to be taken into attention – globally maximal body reflection

maxbm  is not always visible from the camera. When it is occluded, the matte line in

the  spectral  histogram  does  not  extend  entirely  to max ( )b bm c λ  but only to the point

representing the brightness visible point - ( )bMaxVisible bm c λ . The next Fig.12 shows

positions for the camera and the light source with which the maximum body

reflection is still visible:
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Figure 12. Visible points from a camera [9]

Then the angle between the illumination vector and the surface normal at the local

maximum MaxVisiblei  is described analogously:

2 2

sinarcsin
2 cos

MaxVisible
di

d r dr
α

α
=

+ −
                                (11)

The amount of body reflection at that point bMaxVisiblem  is given similarly:

2 2

2 2

sincos( ) 1
2 cosbMaxVisible MaxVisible

dm i
d r dr

α
α

= = −
+ −

                      (12)

And  then  the  starting  point  of  the  highlight  line  on  the  matte  line  can  now  be

described relative to the length of the matte line. The ratio q  of body reflection at the

highlight in relation to the maximally visible amount of body reflection is:

bH

bMaxVisible

mq
m

=                                                 (13)

Fig. 12 shows variations of q  from g  and d :

Figure 12 [9].
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Each curve in the figure shows for a different fixed d  how q  depends on g . And in

all curves q  approaches 0.5 as g  approaches maxg . With increasing d  minimum of

q  function becomes less and q  function becomes a monotonically decreasing

function with the point of inflexion [9].

Later we will closely work with matte cluster and highlight cluster to reach the goal

we are intending, but next subsection demonstrates directly application of the

Dichromatic Reflection Model for highlight removal.

3.4 Highlight analysis and removal techniques

3.4.1 Using the Dichromatic Reflection Model for Color Image Understanding

Klinker, Shafer and Kanade used Dichromatic Reflection Model on relative work for

highlight removal [9]. Their algorithm involved segmentation of whole image for

small “windows” – small local areas of the image – with which the procedure of

merging or growing was performed. This combining was made based on belonging

these  single  “windows” to  concrete  type  of  cluster  on  dichromatic  plane  – either  to

matte region or to highlight cluster. This pixels merging was made step by step –

including the neighboring pixels or areas, sided with initial guessed regions, skewed

Ts of which are the same as in starting area.

Thus the algorithm looks in a bottom-up process for color clusters from local image

areas that exhibit the characteristic features of the body and surface reflection

process. When it finds a “promising” clusters in an image area, the algorithm

generates a hypothesis that describes the object color or highlight color in the image

area and determines the shading and highlight components of every pixel in the area.

The algorithm then applies the new hypothesis to the image, using a region growing

approach to determine the precise extent of the image area to which the hypothesis

applies. The resulting intrinsic images and the hypotheses together instantiate the

concepts of shading and highlights of the Dichromatic Reflection Model, describing

the specific reflection process that occur in this part of the scene.

This physical knowledge from all hypotheses is used to incrementally adapt the steps

of the image analysis. Their algorithm performs this generate-and-test analysis in

several stages, each of which is related to a particular aspect of the Dichromatic

Reflection Model. The steps of the algorithm are the next:
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1. Computation an initial, rough description of color variation in local image

areas.

2. Generation of the hypotheses on matte color clusters and exploiting them for

image segmentation.

3. Extension of the matte hypotheses into hypotheses on skewed Ts in

dichromatic  planes  and  resegmentation  of  the  image,  exploiting  these

hypotheses.

4. Analyzing of the effects of blooming and color clipping.

5. Exploiting  of  the  hypotheses  to  split  the  pixels  into  their  reflection

components.

This structure exploits a physical model of light reflection to incrementally identify

local and global properties of the scene – such as object and illumination colors [9].

Suggested Dichromatic Reflection Model and approach based on it for highlight

detecting showed quite applied results and became a basis for an order of other

approaches – for example for highlight analysis by Tong and Funt.

3.4.2 Highlight analysis according to Tong and Funt

Tong and Funt suggested the next technique - instead of computing vector sc  and bc

and the scaling factors sm  and bm  for every segmented region, they combine the

information about the regions and initially estimate the vector sc ,  and  due  to  the

Dichromatic Reflection Model the color of the interface reflection sc  is identical to

the  color  of  illumination  –  thus  identical  for  all  segmented  regions.  After  a  coarse

segmentation of the image the corresponding dichromatic planes are computed for all

single pixels – and then by intersection of all dichromatic planes the vector sc  is

obtained. It is a characteristic of a surface reflection – thus a characteristic of a

highlight area.

As a finding the intersection of the planes, they find the line which is most parallel to

all  the  planes  by  calculation  the  normal  to  each  plane  and  fitting  by  a  least-squares

method for getting the line closest to the perpendicular to all the plane normals.
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This idea of computing the vector sc  for the entire image only once is rather efficient,

but the single dichromatic planes have to be separated and the corresponding normals

have to be calculated when this technique is applied to a color image. And to remind

the field of application of this approach it should be mentioned that all these exploits

are applied to whole image – means to all objects on the scene at the time.

Also for time efficiency this costly analysis in the three-dimensional color space can

be mapped onto two-dimensional case by going from RGB-space to for example

YUV-space given by Eq. 14 and by working only with normalized u  and v

coordinates.

1/ 3 1/ 2 1/ 2 3

( , , ) ( , , ) 1/ 3 0 1/ 3

1/ 3 1/ 2 1/ 2 3

Y U V R G B

 −
 

=  
  − − 

                           (14)

And it is useful to take to attention that surfaces of ideal matte materials correspond

to exact one point in the uv -space. Therefore the dichromatic mate cluster

corresponds to one point too, but dichromatic highlight clusters form line segments in

the uv -space [17].

3.4.3 Highlight analysis using three color images

There was used a technique named “spectral differencing” by Lee and Bajcsy [21] for

highlight analysis. The idea here is to take a color image under different viewer

conditions but with a constant illumination direction, and then by spectral

differencing to define a group of highlight pixels. The objective of this technique is to

detect highlight but not to remove it. And it is assumed that the illumination color and

color of the objects are different.

The idea of the method is to detecting points for a viewer. For this so-called minimal

spectral differences images are calculated (MSD-images). Let Cα  and Cβ  be two

color images of an object scene taken under different viewer directions. And

( )MSD C Cα β←  denotes the MSD-image calculated from Cβ  to Cα . The color

value of a pixel in the MSD-image ( )MSD C Cα β←  is defined as the minimal

value of all spectral differences between a pixel in image Cα  and all pixels in image

Cβ . Every MSD-value which exceeds a predefined threshold belongs to a potential
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specular reflection pixel. The threshold itself depends on the noise introduces by the

imaging sensor. Actually pixels representing an object point which is invisible in

some of the images are also understandable classified as highlights if the MSD-value

is larger than the predefined threshold.

The similar technique is used by Schluns and Koschan in [14] – the three images are

captured from a fixed camera position with three different illumination directions.

Thus there were mentioned approaches to highlight detecting from physical point of

view – we will take it to attention during of working with our problem.
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4. Latent Variable Models

We will work with techniques decreasing the dimensionality of the initial data. This is

because originally we have a multi-component image, but the dichromatic plane is

two-dimensional. This chapter provides with a survey on such methods and here we

will choose the approach suitable for our case.

The models for analyzing principal components are usually used for visualization of

high-dimensional data transformed to low-dimensional case with intend for the

decreasing of the dimensionality and at the same time for minimization possible

losses  of  the  quality  of  the  data.  We  are  going  to  use  these  techniques  later  in  our

work for a little bit different goals but nevertheless saving the mean of these

approaches.

There are the next varieties of the methods for dimensionality decreasing – linear and

non-linear approaches [12]. The second are built on the standard PCA in applications

where the data demonstrates the nonlinear behavior. Non-linear PCA methods may be

categorized into the next groups:

• generative models

• Generative Topographic Mapping

• a mixture of probabilistic principal component analyzers

• Bayesian nonlinear factor analysis

The data we are going to be in touch with has the non-linear nature - therefore the

non-linear latent variable model should be used for our intention. Mixture of

probabilistic principal component analyzer was chosen as suitable for our goal.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is the most commonly used feature extraction

and visualization technique in practice [12]. It is fast and easy to compute, and

nevertheless it demonstrates quite usable results by retaining the most matter

information.

Suppose that we are going to map a dataset of vectors nx  where 1,...,n N=  in a space
dV R=  to vectors nz  in a space MU R= , which presents a subspace of V . We can
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choose an orthonormal basis 1,..., Mu u  for U  and extend it to an orthonormal basis

1,..., du u  for V . And so by using the basis a vector x  can be represented as:

1 1

M d

i i i i
i i M

x x u x u
= = +

= +∑ ∑                                               (15)

Now suppose that we project to the M -dimensional space spanned by the first M

vectors:

1 1

M d

i i i i
i i M

z x u bu
= = +

= +∑ ∑                                               (16)

where the ib  are constants. The coefficients ib  and vector iu  are chosen so that the

projected vectors nz  best approximate nx . The quality of the approximation is

measured by the reconstruction sum of squares error between the two vectors:

2

1 1 1 1

1 1 ( )( )
2 2

N N d d
n n n n T

i i j j i j
n n i M j M

E x z x b x b u u
= = = + = +

= − = − − =∑ ∑ ∑ ∑

since T
i j iju u δ= , where ijδ  is the Kroneker delta

2

1 1

1 ( )
2

N d
n
i i

n i M
x b

= = +

= −∑ ∑                                            (17)

Setting the derivative of E  with respect to ib  to zero, the next is got:

1

1 N
n

i i
n

b x
N =

= ∑                                                    (18)

which is the i -th coordinate of the mean vector x  with respect to the coordinate

system 1,..., du u . And so the error term can be written:

{ }{ }
1 1 1

1 1( ) ( )
2 2

d N d
T n T n T
i i i i

i M n i M
E u x x x x u u u

= + = = +

= − − = Σ∑ ∑ ∑               (19)

where Σ  is the covariance matrix of the data. And it can be shown that the stationary

points of E  with  respect  to  the  vectors iu  occur  at  the  eigenvectors  of Σ , so that

i i iu uλΣ = . So the final view for residual error function is:

1

1
2

d

i
i M

E λ
= +

= ∑                                                   (20)
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Hence the minimal error E  is achieved by choosing the d M−  smallest eigenvalues,

and the initial data is projected onto the space spanned by the eigenvectors

corresponding to the largest M  eigenvalues. These eigenvectors are called the first

M  principal components.

There is no general techniques for deciding how many principal components should

be used to present the data adequately with minimization of possible losses, although

some  estimation  on  it  was  proposed  by  Thomas  P.  Minka  in  [11]  –  this  estimation

guarantees picking the correct dimensionality but needs for complex computations.

But still a useful heuristic to get number of principal components is to choose a

fraction of the variance to be retained by computing:

1

1

M

i
i
d

i
i

λ

λ

=

=

∑

∑
                                                       (21)

And so for getting principal components from n-dimensional vector x  the following

should be performed. At first the data centralization has to be made:

x x µ← − ,                                                  (22)

where µ  is the mean of the dataset. It is illustrated in Fig.13:

Figure 13. Data centralization

Then the calculation of the covariance matrix C  of new shifted data:

( )TC E x x= ⋅ ,                                               (23)

where E  denotes a mathematical expectation operator. PCA involves a

decomposition of a covariance matrix as follows:

TC U U= Λ ,                                                  (24)
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where 1( ,..., )nU e e= , 1( ,..., )T
i i ine e e=  are the eigenvectors and 1( ,..., )ndiag λ λΛ = ,

where 1 2 ... nλ λ λ≥ ≥ ≥  are the eigenvalues of C  sorted in the decreasing order.

And so the first k  principal components are:

T
k ky U x= ,                                                   (25)

where Eq. 20 defines the residual error [12].

4.2 Probabilistic Principal Component Analysis

The motivation for the definition of PCA given before is in terms of minimizing the

squared reconstruction error defined in Eq.17 between the projected and original

vectors [12]. The disadvantage of this approach is that it does not define a generative

model: there is no density model ( | )p x z  - means there is no principled interpretation

of the error function E. A density model offers several advantages:

• The definition of a likelihood allows to compare this model with other density

models in a quantitative way.

• If  PPCA  is  used  to  model  class-conditional  densities,  then  posterior

probabilities of class membership may be calculated.

• A single PPCA model may be extended to a mixture of PPCA models.

• Bayesian inference methods may be applied if a suitable prior is chosen.

Classical PCA is made into a density model by using a latent variable approach,

derived from standard factor analysis, in which the data x  is generated by a linear

combination of a number of hidden variables z :

x Wz µ ε= + +                                                (26)

where z  has a zero mean, unit isotropic variance, Gaussian distribution (0, )N I , µ  is

a constant whose maximum likelihood estimator is the data mean, and ε  is an x -

independent noise process. The latent variable space has dimension q , which is

usually chosen to be less than the data dimension d  so that the model is a more

economical description of the data. The noise model is ε ~ (0, )N Ψ , with Ψ

diagonal. The mode for x  is then also normal ( , )N Lµ , with TL WW= + Ψ . Since

Ψ  is diagonal, the observed variables x  are conditionally independent given the
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values of the latent variables z . So all conditional dependence is captured in the

latent distribution over z , while ε  represents the independent noise. Unlike PCA

there is no analytic solution for W  and Ψ  - so an iterative algorithm must be used to

compute them.

The change needed to make this into a probabilistic model for PCA is very small. In

the PCA model there is a systematic component in the data plus an independent error

term for each variable with common variance. This is captured by assuming a noise

model with an isotropic variance 2IσΨ = . Then the probability model for PPCA can

be written as a combination of the conditional distribution:

2

2 / 2 2

1( | ) exp
(2 ) 2d

x Wz
p x z

µ
πσ σ

 − − = − 
  

                              (27)

and the latent variable distribution:

/ 2

1( ) exp
(2 ) 2

T

q

z zp z
π

 
= − 

 
                                        (28)

Then the distribution of the observed data, which is also Gaussian, is:

where 2TC WW Iσ= + . Thus this model represents the data as a “pancake” consisting

of a linear subspace surrounded by equal noise in all directions.

To fit this model to data, the log-likelihood as an error measure is used:

{ }1

1
log ( ) log(2 ) log | | ( )

2

N
T

n
n

NL p x d C C Sπ −

=

= = − + +∑ ,                (30)

where

1

1 ( )( )
N

T
n n

n
S x x

N
µ µ

=

= − −∑                                        (31)

is the sample covariance matrix of the observed data, provided that µ  is  set  to  its

maximum likelihood estimate, which is the sample mean. Estimates of W  and 2σ

can be obtained by an iterative maximization of L  using an EM algorithm. However,

it is also possible to find an analytic solution for the maximum likelihood estimate:
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2 1/ 2( )ML q qW U I Rσ= Λ − ,                                       (32)

where the q  column vectors in the d q×  matrix qU  are the principal q  eigenvectors

of S , with corresponding eigenvalues 1,..., qλ λ  in the q q×  diagonal matrix qΛ , and

R  is an arbitrary q q×  orthogonal matrix (rotation matrix). The latent space is a

projection of the original space onto the principal subspace of the data. The effect of

the matrix R  is simply to choose different orthogonal axes for the principal subspace.

If the maximum-likelihood solution for W  is used, then the maximum likelihood

estimator for 2σ  is given by:

2

1

1 d

ML i
j qd q

σ λ
= +

=
− ∑ ,                                            (33)

which can be interpreted as the variance lost in the projection to the latent space,

averaged over the dimensions left out.

We can also take a probabilistic view of projecting the observed data onto the latent

space by using the posterior distribution of the latent variables z  given the observed

data x :

where the q q×  matrix 2TM W W Iσ= + . It is usually more convenient to map x  to a

single point in latent space rather than a complete distribution. If consider the mean of

the posterior distribution 1 ( )TM W x µ− −  and when 2 0σ → , 1 1( )TM W W− −→

than  Eq.(34)  represents  an  orthogonal  projection  equivalent  to  standard  PCA.  In

practice, with 2 0σ > , the latent projection becomes skewed towards to origin.

Because of this, the reconstruction |ML n nW z x µ+  is not an orthogonal projection of

nx , and does not minimize the squared reconstruction error as in PCA Eq.17.

4.3 Mixture of PPCA

Because PCA defines only a linear projection of data, it is rather limited technique.

One way around this is to use a global non-linear method [12]. It is possible to model

a complex non-linear structure by a collection of local linear models. The attraction of



32

this is that each model is simpler to understand and usual easy to fit. The mixture of

PPCA model is appropriate when the data is approximately piece-wise linear.

To fit a collection of linear models two steps are required: first, a partition of the data

into regions; second, fitting models by estimating the principal components within

each region. The question of how to combine these two steps is not trivial – because

the partition depends on the data model and the principal components depend on the

data partition.

A major advantage of developing a probabilistic model for PCA is that we can

formalize the idea of a collection of models as a mixture of PPCA. The fact that the

PPCA is a Gaussian model makes it clear that it is possible to train such a model in a

maximum likelihood framework using an Expectation-Maximization algorithm (EM)

– which is an iterative likelihood technique. This gives us the principled way of

tracking the two steps, which correspond to E-step and the M-step respectively [12].

The log-likelihood of the dataset is given by:

1 1

ln ( | )
N M

i n
n j

L p x jπ
= =

= ∑ ∑ ,                                        (35)

where each ( | )np x j  is  a  PPCA  model  and jπ  is  the  mixing  coefficient.  Each

component is associated with a mean vector jµ , projection matrix jW  and noise

model 2
jσ .

The EM algorithm for this model has a very similar form to that for other Gaussian

mixture models. In the E-step, we compute the responsibility njR  of component j  for

generating data point nx :

( | )
( | )

( )
n j

nj n
n

p x j
R P j x

p x
π

= = ,                                   (36)

In the M-step we re-estimate the parameter of each component. The equation for the

means and mixing coefficients are identical for other Gaussian mixture models:

( 1) ( )

1

1 ( | )
N

m m
j n

n
P j x

N
π +

=

= ∑ ,                                    (37)
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( )
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µ + =

=

=
∑

∑
.                                    (38)

To re-estimate the covariance structure, we apply PPCA to jS , the covariance matrix

computed for data weighted by the responsibility of the j -th components:

( ) ( 1) ( 1)
( 1)

1

1 ( | )( )( )
N

m m m T
j n n j n jm

nj

S P j x x x
N

µ µ
π

+ +
+

=

= − −∑ .             (39)

To perform clusterization for our nonlinear data into piece-wise linear groups in order

to apply the PPCA separately for every cluster the next will be used. At first the K-

mean method is applied to find means for our clusters, and then computation of

likelihoods for samples is made based on results of K-mean clustering. And by taking

the maximum likelihood the membership of each sample with respect to definite

clusters is evaluated. The next chapter is presented in order to provide with a theory

on classification techniques.
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5. Data classification techniques

The one of the techniques for object classification will be utilized to solve our task.

The tested image region has a nonlinear global data structure. Therefore we are

interested in techniques which can incorporate the nonlinearity of the data. We will

need it for using the mixture PPCA applying to our nonlinear data to form the set of

linear clusters. Below there is a general description on pattern classification systems.

When we are working with some objects from some field, the convenient description

of the patterns has to be used to provide a comfortable processing of them. The

objects can be images or signals or any type of measurements and for every type there

should be clear definite presentation of the object. The numeric presentation is

generally used – when the individuals are described by specific features represented

in  numbers,  and  so  the  single  patterns  are  presented  as  a  vector  of  the  required

dimensionality. To provide with a processing of the patterns the set of operations

including comparison of the objects is determined. Of course there are some specific

features  of  the  objects  processing  depending  on  the  field  they  are,  but  in  general  it

does  not  matter  from  what  area  our  objects  are  –  we  need  just  their  complete  and

exactly presentation describing the individuals..

The question of the completeness of the data is individual and separate for discussion

– we do not need to consider it due to possession by the concrete data set, describing

the objects we are working with – the multi-spectral images.

5.1 Varieties of classification

The two types of approaches are involved for pattern classification – supervised and

unsupervised. In a case of supervised learning the training data is known and the goal

of classification is to find a mapping from a feature space into a class space with a

minimal cost. The training samples used here to design a classifier are labeled by

their category membership, and procedures that used labeled samples are said to be

supervised. In a case of unsupervised learning classes are not known for training data

and the objective is to cluster patterns into groups with minimal within group

differences and maximal between groups differences. Thus is initially there is a

collection of samples without possession by information about their categories.

The need in a supervised learning is clear – the set of various objects is distributed

between some set of specific classes (patterns), unsupervised learning serves for
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finding groups (clusters) of similar patterns. Interest in unsupervised versus

supervised learning for a classification goal is that collecting and labeling a large set

of sample patterns can be much costly. Also their cooperation is often used – training

with a large amount of unlabeled data, and after then use supervision to label the

groupings found. This could be applied for large data mining application, where the

contents of a large database are not known beforehand. And additionally

unsupervised methods can be used to find features that will be used then for

categorization.

The basic steps in building a system for clustering are:

• proximity measure selection

• clustering criteria selection

• clustering algorithm selection

And the result of clustering depends on all these parts. Sometimes it happens that

there is no such thing as the correct result. The difficulty of clustering is shown by the

next Eq.40 which expresses the Stirling number:

1

0

1( , ) ( 1)
!

m
m N

i

m
S N m i

im
−

=

 
= −  

 
∑ ,                                 (40)

where N  is whole number of vectors which are going to be classified into m  groups,

n
k

 
 
 

 is a binomial coefficient which expresses the number of ways of picking k

unordered outcomes from n  possibilities: !
( )! !

n n
k n k k

 
≡  − 

. And as it is noticeable

1( ,2) 2 1NS N −= −  - it shows the number of possible clustering of N  objects into two

groups.

Categories of clustering algorithms are:

• Sequential – all feature vectors are presented once or a few times, the result

here usually depends on the order of vectors.

• Hierarchical algorithm – agglomerative algorithms produce clusters by

merging existing clusters, divisive algorithms split existing clusters into parts.
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• Cost function optimization: typically iterative optimization schemes. Can be

based on hard clustering, probability theory, fuzzy set theory.

• Some other approaches: branch and bound algorithms, genetic clustering

algorithms, stochastic relaxation, competitive learning.

5.2 K-mean clustering

In mixture PPCA which was used in our work to take the principal components from

the data we used, the k-mean algorithm to find clusters of the initial data was used.

The efficiency for clustering algorithm is measured by cost function - the best

clustering approach minimizes it. Here the cost function is:

2

1 1

( , )
N m

ij i j
i j

J U u xθ θ
= =

= −∑∑ ,                                 (55)

where 1( ... )mθ θ θ=  is a matrix containing cluster centers, U  is a matrix of iju

containing value 1 if sample ix  belongs to cluster j  and 0  otherwise. And so the

cost function measures the sum of squared Euclidian distance from each sample to the

nearest cluster, and in the best case of clustering this sum should be minimized.

Simply speaking k-means clustering is an algorithm to classify or group objects into

K  number of groups. The grouping is done by minimizing the sum of squares of

distances between data and the corresponding cluster centroid.

The algorithm of it is presented below:
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Figure 14. K-mean algorithm

The exactly its description is given below.

1. Initialize jθ  ( 1...j m= ) randomly ( m K=  - number of clusters)

2. Repeat

3.        For 1i =  To N

4.               find nearest cluster j  for sample i : ( ) arg min i jj
b i x θ= −

5.        End For

6.        For 1j =  To m

7.               Update jθ  as the mean of samples where ( )b i j=

8.        End For

9. Until no changes in any of jθ  between two successive iterations

As a result we have K  centers (means) which define K  clusters. Then likelihood for

every sample is calculated, and by taking the maximum likelihood the membership of

the sample is defined. And so every sample is marked as belonging to a definite

cluster.

Like in other approaches there are some weaknesses of the K-mean algorithm:
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• when the numbers of data are not so many, initial grouping will determine the

clusters significantly

• we never know the real cluster, using the same data, if it is inputted in a

different order may produce different cluster if the number of data is a few

• sensitive to initial conditions – different initial conditions may produce

different results of cluster, the algorithm may be trapped in the local optimum

• weakness of arithmetic mean is not robust for outliers – very far data from the

centroid may pull the centroid away from the real one

• the result is circular cluster shape because based on distance

By applying to our data with which we worked to cluster them for our needs K-mean

algorithm is quite suitable due to well-recognized groups of samples and a lot amount

of well-identified patterns.

All these mentioned before methodologies were used to solve the problem of

highlight removal. The next section provides with a describing of the work.
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6. Experiment

There was made similar work on highlight removal in spectral images by Bochko and

Parkkinen – [4]. The techniques proposed by them demonstrated well results, but

their algorithm needed for a lot of time for executing. The idea of their algorithm was

to use the K-nearest-neighbor algorithm to find replacing for highlight pixels with

body-reflection pixels and this procedure was so much time consuming. The goal of

presented here algorithm is a highlight removal and additional demanding is to

decrease the time needed for this work performing.

6.1 Algorithm

The objects we are working with are the high quality spectral images of 81-

dimensionality. They are presented as 3-D matrix:

Figure 15. Representation of spectral image

The set of objects are presented on scenes of images with a natural highlight on their

surfaces caused by the light illuminating them. The feature of the algorithm is that it

works on the concrete manual marked area of the part of an object with a highlight,

and the surface of the object should possesses by the monotonous color for the chosen

area. It could be said that it is a weakness of it but nevertheless it works properly in

this case and in a future it could be demand on the general case for highlight removal

processing for the all objects on the scene at once.

According to the Dichromatic Reflection Model from Chapter 3 the data we are

working consists from the body reflection and the surface reflection regions. This

surface reflection field appears as highlight area which we are going to remove. And
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so  there  are  two groups  of  pixels  should  be  taken  in  attention  to  be  processed.  It  is

clear seen on the Fig.16:

Figure 16. Body and highlight pixels disposition

In general  the algorithm is the next -  discovering of the chosen area for finding two

clusters (highlight pixels and body reflection pixels) is performed and then replacing

the highlight pixels with necessary body pixels is made. Below there is more

precisely description.

For the initial data we applied a mask to get more bounded area for processing – in

order  to  choose  a  concrete  object  or  a  part  of  the  object  with  a  highlight  from  an

image. The mask is presented as a matrix of size equal to image size which consists

from 1 and 0 respectively for pixels from interesting area and other pixels which are

out of our exploration area. After getting data by mask we received vector

1 2( , ,..., )T
dx x x x=  where 81d = , and each ix  is a spectral component – vector of

corresponding dimensionality.

Then standard PCA described in Chapter 4 is applied to our 81-D data to decrease the

dimensionality to 2-D, and then we work on highlight removal exactly in 2-D space.

So following to the PCA technique, for the vector x  covariance matrix C  is

calculated as in Eq.23, then by involving a decomposition of the covariance matrix as

in Eq.24 the matrix U  is received which consists from eigenvectors of C  which are

arranged respectively to corresponding eigen values ordered in a decreasing way. And

so mapping of our 81-D vector x  onto 2-D case is presented as:

Ty U x= ⋅ ,                                                  (56)
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where due to our needs for 2-D case matrix U  is  presented  only  by  two  first

eigenvectors. This matrix U  will be used later for reconstructing data to the initial

dimensionality.

The next step is to use the mixture of PPCA described in Chapter 4 for our non-linear

2-D data which possess by piece-wise linearity. As was described in Chapter 4 PPCA

technique uses the latent variable model where our variable y  is presented by:

y Wz µ ε= + + ,                                              (57)

where W  is a transfer matrix, y  is a latent variable (principal component) whose

distribution is Gaussian with a zero mean, µ  is  a  mean  vector  and ε  is an y -

independent noise variable.

The mixture model of PPCA uses a linear combination of an M  number  of  PPCA

distributions ( | , , )P x Cπ µ  where C  is a covariance matrix 2TC WW Iσ= + .

The mixture distribution for 2M =  components corresponding to highlight and body

components is as follows:

2

1
( | , , ) ( | , )i i i

i
P x C N x Cπ µ π µ

=

= ∑ ,                               (58)

where iπ  is a mixing coefficient. The log-likelihood of the equation is maximized

using an expectation-maximization algorithm to fit the model to the data. The EM

algorithm computes the responsibility of each component to generate the data point

and revalues the mixing coefficient, the means and the covariance structure.

The K-mean algorithm described before in Chapter 5 was used for clusterization

needs  in  the  mixture  of  PPCA approach.  Due  to  a  big  amount  of  samples  and  their

clear separateness the clustering of the data by this algorithm was executed quite well.

The highlight and body pixels were well recognized from each other and there were

not some obstacles at a time of clustering. As result of clustering the two clusters are

received,  and  to  define  what  cluster  is  referred  to  either  body  or  highlight  the

powerful of each multitude is calculated. Then the cluster with a maximum amount of

samples is the body reflection cluster, and the second is the highlight.

And so  as  a  result  we  have  two clusters  of  data  in  2-D space  and  corresponding  to

them basises for 1-D spaces, where the basis for every 1-D subspace is eigenvector of
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corresponding covariance matrix which was got during the processing of the mixture

PPCA for 2-D data. Now the task is to map samples from highlight cluster onto the

body cluster – let us say, to find correspondences for highlight pixels among body

reflection pixels. The way of this mapping is made in the next way – the sample from

highlight cluster is mapped onto body cluster along its basis vector up to intersection

with a basis vector of a body cluster. And then at the time of restoration of 2-D

highlight samples up to 81-D space these intersection points, which are actually the

coordinates  of  the  highlight  pixels  in  basis  of  body  cluster,  are  used  instead  of  the

initial highlight points.

And  so  we  are  going  to  find  a  cross  point  between  a  line  for  which  the  directing

vector is the basis 2-D vector for the body cluster and the means of it belongs to this

line, and for the all lines for which the directing vector is the basis 2-D vector for the

highlight cluster and the samples of this cluster belong to the line in series.

The well-known view for a line is:

y ax b= +                                                      (59)

The  equation  for  the  line  for  which  two  points  ( 1 1,x y )  and  ( 2 2,x y ) belongs in 2-D

space is:

1 1

2 1 2 2

x x y y
x x y y

− −
=

− −
                                                (60)

For the two lines 1 1y a x b= +  and 2 2y a x b= +  the intersection point ( ,cross crossx y ) is

calculated in a simple way. Due to equality of y -coordinates:

1 1 2 2cross crossa x b a x b+ = + ,                                          (61)

then:

2 1

1 2
cross

b bx
a a

−
=

−
,                                                  (62)

and so:

2 1
1 1

1 2
cross

b by a b
a a

−
= ⋅ +

−
                                            (63)
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For the body cluster the first eigenvector of corresponding covariance matrix, which

comes as the basis vector for 1-D space, is ( , )b xb ybe e e= , the mean of the cluster is

( , )b xb ybµ µ µ=  - and so the points 1 ( , )xb ybA µ µ=  and 1 ( , )xb xb yb ybB e eµ µ= + +

define the line for which we are going to find the cross points with other lines. By

using Eq. 60 the general view for it could be written:

( )yb yb xb
yb

xb xb

e e
y x

e e
µ

µ= + −                                       (64)

The  directing  vector  for  other  lines  is  the  basis  2-D vector  for  the  highlight  cluster

which is ( , )h xh yhe e e= , and the samples from highlight cluster are the points

belonging to line in series - ( , )i xi yip p p= , 1...i N= , N  - number of samples in the

highlight cluster. And so the points 2 ( , )xi yiA p p=  and 2 ( , )xi xh yi yhB p e p e= + +

define the other lines. And again following by Eq. 60 the general view for these lines

is:

( )yh yh xi
yi

xh xh

e e p
y x p

e e
= + − ,                                     (65)

where 1...i N= , N  - number of samples in the highlight cluster (highlight pixels).

And so the cross points are defined following to Eq. 62-63:

,

yh xi yb xb
yi yb

xh xb
cross i

yb yh

xb xh

e p e
p

e ex e e
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,                                (66)
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µ
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− − +
= + −

−
,                   (67)

where 1...i N= , N  - number of highlight pixels.

And as it was mentioned, these points of intersection will be used instead of original

2-D samples from the highlight cluster for restoration data from current 2-D case up

to initial 81-D space.
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There is below step by step precisely algorithm description. It was implemented using

Matlab and a Netlab toolbox [13].

Algorithm. The highlight removal algorithm

Input: the observed 81-D vector x

Do:

1. Compress data by using PCA technique – go down from 81-D case onto 2-D

space, mapping 81-D data onto 2 principal components, which are the two

first eigenvectors of corresponding covariance matrix.

2. We are going to apply the mixture of PPCA to 2-D data to get the basis 2-D

vectors for 1-D space. For this fitting the mixture model to the data:
2

1
( | , , ) ( | , )i i i

i
P x C N x Cπ µ π µ

=

= ∑  has to be made.

3. The K-mean algorithm is used to find means of clusters - highlight and body

reflection clusters.

4. By supposing our data to be presented as Gaussian mixture model train it with

Expectation-Maximization algorithm calculating likelihoods of samples.

Defining membership of every sample by choosing the maximum likelihood.

5. Computation of eigendecomposition of bC  and hC  to get the first their

eigenvectors which are the basis vectors for body and highlight cluster.

6. Mapping  each  highlight  data  point  onto  the  basis  vector  for  body  cluster  as

lines intersection in 2-D space.

7. Data restoration back to 81-D case with substitution highlight points with a

points which were got as mapping highlight points onto the basis vector for

the body cluster.

Reproduce: the spectral image with a synthetic part instead of a highlight region in a

suitable color system.

6.2 Results of the experiment

The experiments were made on a spectral image with cherries and  a pen which

surfaces possess by a highlight. All images are acquired in the visible range of
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wavelengths from 380 nm to 780 nm and the spectral components are taken at 5 nm

apart. Thus as was mentioned the spectral dimension consists of 81 components.

In the first experiment we test the part of the image pen. The image itself is shown on

Fig.17:

Figure 17. The original image

The mask for the pen is:
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Figure 18. The mask for the pen object

After applying PCA and decreasing dimensionality down to 2-D space and clustering

the data two body (blue) and highlight (yellow) clusters are clearly seen in Fig.18:

Figure 19. Body and highlight clusters for the pen

The means of every cluster are shown by red asterixes.
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And then mapping of highlight points onto basis vector for the body cluster is

performed:

Figure 20. Mapping of the highlight points onto the body cluster

Intersection points are shown as magenta asterixes which will be used for restoration

data back to 81-D space instead of initial highlight points (yellow crosses). At a time

of restoration these highlight points will be replaced by the body reflection points.

And so as a result we receive the image where the highlight from the pen is removed:
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Figure 21. The image with removed highlight from the pen

We can also see histogram of r-g chromaticities for the pixel points under the mask

for the pen object before highlight removal (left image) and after algorithm

processing (right image):

Figure 22. Histogram of r-g chromaticities for the pen

The similar work was done for a cherry objects. Again the initial image is shown in

Fig.17. The mask for the object cherries is:
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Figure 23. The mask for the object cherries

After applying PCA and decreasing dimensionality down to 2-D space, and

clusterization data for body (blue crosses) and highlight (yellow crosses) clusters the

result is:

Figure 24. Body and highlight clusters for the cherries
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The means of the clusters are marked as red asterixes. And similarly mapping of

highlight points onto basis vector for the body cluster is performed:

Figure 25. Mapping of the highlight points onto the body cluster

And at a time of data restoration back to 81-D space these intersection points will be

used instead of initial highlight points. And so the result of algorithm working for a

cherry object is:
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Figure 26.  The image with removed highlight from the cherries

Again we can see histogram of r-g chromaticities for the pixel points under the mask

for the cherries object before highlight removal (left image) and after algorithm

processing (right image):

Figure 27. Histogram of r-g chromaticities for the cherries

It could be noticed some inaccurateness for the cherries image. Deal is that the initial

highlight for the object was not so monotonous – due to presence of a little

transparency layer onto fruit surface (fruit wax) – therefore it puts some disturbances.

But in general the algorithm shows quite well results and the short time of execution.

Below there is a table with a time of productivity for the algorithm. The experiment
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was made with using workstation with CPU Intel Pentium 3 500 MHz and 256 Mb

RAM.

Object Execution time, sec

Pen 2,57

Cherries 2,013

Table 1. Productivity of the algorithm
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7. Conclusion

In this thesis the algorithm on highlight removal in spectral images was proposed. It

is based on machine learning and ideally it was intended for the automated work in a

spectral space, but on this stage of work it still needs manual involving – for taking

the data under a mask. For the artificial chosen area the algorithm efficiency separates

data into body-reflection and highlight clusters and performs projection of highlight

points to generate necessary color pixels for highlight removal.

In general the algorithm works quite well – the visual quality of the results is

relatively good. Actually for the highlight removal there is no the standard measure

for quality of an algorithm processing.

In future this algorithm could be extended for the common case – for highlight

removal for the whole scene on an image – for the all objects on the scene at a time,

without hand-segmenting for the regions to which the algorithm should be applied.

For this goal, algorithms for pattern recognition should be improved in order to

provide with a possibility for separation objects on the scene of an image. Naturally

there are some obstacles for it because ideally the work should be performed for

objects with not a simple color structure of their surfaces – therefore the segmenting

algorithm should possesses by the possibility to pick out the regions of the object with

a monotonous color covering which is disturbed with a natural caused highlight.

In general the result obtained in the thesis can be applied for machine vision and also

additionally the performance could be improved in future work by taking in attention

generalization of the algorithm performance up to more general case mentioned

above.
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Appendix

Figure 1. The initial image

Figure 2. Mask for the yellow man object



Figure 3. Body and highlight clusters for the yellow man object

Figure 4. Mapping of the highlight points onto the body cluster



Figure 5. The object after highlight removal


