Digital copy produced with permission of the author.

Julkaisu digitoitu tekijan luvalla.

Lappeenrannan teknillinen korkeakoulu
Lappeenranta University of Technology

Pentti Huttunen

DATA-PARALLEL COMPUTATION IN
PARALLEL AND DISTRIBUTED ENVIRONMENTS

Acta Universitatis
Lappeenrantaensis 135

ISBN 978-952-214-894-0 (PDF)

Lappeenrannan teknillinen korkeakoulu
Lappeenrania University of Technology

Pentti Huttunen

DATA-PARALLEL COMPUTATION IN
PARALLEL AND DISTRIBUTED ENVIRONMENTS

Acta Universitatis
Lappeenrantaensis

135

Thesis for the degree of Doctor of
Science (Technology) to be presented
with due permission for the public
examination and criticism in the
Auditorium of the Student Union
House at Lappeenranta University of
Te echnologl, Lappeenranta, Finland
on the 4" of December, 2002, at
noon.

Supervisor

Reviewers

Opponents

Professor Jari Porras

Lappeenranta University of Technology
Laboratory of Telecommunication
Lappeenranta, Finland

Professor Thomas Ludwig

University of Heidelberg

Faculty of Mathematics and Computer Science
Heidelberg, Germany

Kimmo Koski
Nokia Research Center
Helsinki, Finland

Associate Professor Anne Elster

Norwegian University of Science and Technology
Department of Computer and Information Science
Trondheim, Norway

Kimmo Koski

Nokia Research Center
Helsinki, Finland

ISBN 951-764-700-X
ISSN 1456-4491

Lappeenrannan teknillinen korkeakoulu
Digipaino 2002

il

Preface

The work for this thesis was done between 1997 and 2002 in the laboratory of
telecommunication at the Lappeenranta University of Technology. Financially, this work was
supported by the Finnish Cultural Foundation, South Carelian Cultural Foundation, the
Research Foundation of the Lappeenranta University of Technology (Lahja and Lauri
Hotinen’s Fund), the Nokia foundation, and the Lappeenranta University of Technology.

I would like to thank my supervisor, professor Jari Porras, for all his support and help over
the past 5 years. Without his enthusiasm and resources I would not have been able to
complete my studies and the research required for this thesis. I would also like to express my
gratitude to professor Porras for numerous opportunities to attend conferences and to visit the
university in Lappeenranta. Also, I would like to thank the two reviewers, Kimmo Koski and
Thomas Ludwig, for their valuable comments and suggestions for improving this thesis.

In addition, I would like to acknowledge the help of Jouni Ikonen with respect to my studies,
publications, and comments. A special thank you to Jani Peusaari for supporting the
workstation cluster in which I conducted most of the experiments for this thesis. Last, but
definitely not least, I would like to thank my wife, Annika, for proofreading this thesis and
for being supportive through the many evenings and weekends that I spent working on my
thesis.

%nﬁ? A leelleenern

November 2002
Vancouver, Canada

i

Abstract

Pentti Huttunen

DATA-PARALLELL. COMPUTATION 1IN PARALLEL AND DISTRIBUTED
ENVIRONMENTS

Lappeenranta, 2002

84 p.

Acta Universitatis Lappeenrantaensis 135
Diss. Lappeenranta University of Technology

ISBN 951-764-700-X
ISSN 1456-4491

The past few decades have seen a considerable increase in the number of parallel and
distributed systems. With the development of more complex applications, the need for more
powerful systems has emerged and various parallel and distributed environments have been
designed and implemented. Each of the environments, including hardware and software, has
unique strengths and weaknesses. There is no single parallel environment that can be
identified as the best environment for all applications with respect to hardware and software
properties.

The main goal of this thesis is to provide a novel way of performing data-parallel
computation in parallel and distributed environments by utilizing the best characteristics of
difference aspects of parallel computing. For the purpose of this thesis, three aspects of
parallel computing were identified and studied.

First, three parallel environments (shared memory, distributed memory, and a network of
workstations) are evaluated to quantify their suitability for different parallel applications. Due
to the parallel and distributed nature of the environments, networks connecting the processors
in these environments were investigated with respect to their performance characteristics.

Second, scheduling algorithms are studied in order to make them more efficient and effective.
A concept of application-specific information scheduling is introduced. The application-
specific information is data about the workload extracted from an application, which is
provided to a scheduling algorithm. Three scheduling algorithms are enhanced to utilize the
application-specific information to further refine their scheduling properties. A more accurate
description of the workload is especially important in cases where the workunits are
heterogeneous and the parallel environment is heterogeneous and/or non-dedicated. The

results obtained show that the additional information regarding the workload has a positive
impact on the performance of applications.

Third, a programming paradigm for networks of symmetric multiprocessor (SMP)
workstations is introduced. The MPIT programming paradigm incorporates the Message
Passing Interface (MPI) with threads to provide a methodology to write parallel applications
that efficiently utilize the available resources and minimize the overhead. The MPIT allows
for communication and computation to overlap by deploying a dedicated thread for
communication. Furthermore, the programming paradigm implements an application-specific
scheduling algorithm. The scheduling algorithm is executed by the communication thread.
Thus, the scheduling does not affect the execution of the parallel application. Performance
results achieved from the MPIT show that considerable improvements over conventional MPI
applications are achieved.

Keywords: Parallel environments, data-parallelism, scheduling algorithms, MPI, threads,

parallel programming paradigms, MPIT.

UDC 004.272 : 004.75

Vi

List of Publications

1. Huttunen P., Porras J., and Ikonen J.: Analysis of Parallel Environments for Mobile
Network Simulation. In Proceedings of European Simulation Symposium (ESS),
Hamburg, Germany, September 28-30, 2000, pp. 164-168.

2. Huttunen P., lkonen J., and Porras J.: The Impact of Communication in Distributed
Simulation. In Proceedings of European Simulation Symposium (ESS), Marseille, France,
October 18-20, 2001, pp. 111-115.

3. Huttunen P., Porras J., and Ikonen J.: A Study of Threads and MPI libraries for
Implementing Parallel Simulation. In Proceedings of European Simulation Symposium
(ESS), Hamburg, Germany, September 28-30, 2000, pp. 96-102.

4. Huttunen P, Ikonen J., and Porras J.: Enhancing Load Balancing in a Data-Parallel GSM
Network Simulator through Application-Specific Information. In Proceedings of
Conference on Applied Parallel Computing (PARA), Helsinki, Finland, June 15-18, 2002,
pp. 542-554.

5. Huttunen P., lkonen J., and Porras J.: MPIT - Communication/Computation Paradigm for
Networks of SMP workstations. In Proceedings of Conference on Applied Parallel
Computing (PARA), Helsinki, Finland, June 15-18, 2002, pp. 160-171.

6. Porras J., Huttunen P., Ikonen J.: Accelerating Ray Tracing Based Cellular Radio
Coverage Calculation by Parallel Computing Techniques. Annual Review of
Communications, Vol. 53, 2000.

7. Huttunen P., Ikonen J., and Porras J.: Parallelization of a WCDMA System Simulator for
a Shared Memory Multiprocessor Machine. In Proceedings of European Simulation
Symposium (ESS), Erlangen-Nuremberg, Germany, October 26-28, 1999, pp. 556-560.

vii

List of Abbreviations

Abbreviation Meaning

BSP Bulk Synchronous Programming

GSM Global Standard for Mobile communication
MPI Message Passing Interface

MPIT MPI-Threads

NOW Network Of Workstations

PE Processing Element

PVM Parallel Virtual Machine

SMP Symmetric MultiProcessor

viil

List of Terms

Term

Completion time

Data-parallelism

Latency

Load balancing

Partitioning

Scheduling

Throughput

Workload

Workunit

Meaning

[nitialization time of a communication operation. Completion time is
measured from the moment a communication (send/receive) function is
called until the function returns.

Method of parallel computation. All processors execute the same code
with either the same or different parameters.

One-way end-to-end communication time. Latency indicates the total
communication time to transfer a message from one processor to
another.

Dynamic scheduling. Distribution of workunits occurs during the
computation, either when a new workunit is generated, or when a
processor requests a workunit.

Division of a workload into workunits. Workunits may be equal or
different in size, ie. have different computational requirements.
Furthermore, the workunits may have dependencies between each
other requiring processor to interact with each other while processing
the workunits.

Distribution of workunits among processors.

Bandwidth utilization of a network. Throughput varies based on the
protocol and the sizes of the messages used.

Data that needs to be processed to complete the computation.

Piece of workload created in the partitioning phase.

iX

Table of Contents

PREFACE 111
ABSTRACT A
LIST OF PUBLICATIONS vii
LIST OF ABBREVIATIONS VIl
LIST OF TERMS IX
TABLE OF CONTENTS XI
CHAPTER 1. INTRODUCTION 1
11 BaCKEIOUNAottt en e e s e 2
1.2 ODBJECHIVES ..ottt ettt e s s s e s 2
1.3. ScOPE 0F the THESISveuerieiieeceee ettt ettt ee e e eee s s 3
CHAPTER 2. PARALLEL ENVIRONMENTS 7
2.1. Introduction to Paralle] ENVIFOMMENEScceovviiimorieioeeeeeeeeeee e eess s 7
2.1.1. Shared Memory EnVITONMENt........co.cccoouiioiimiiieeiee oot eeeeees e 7
2.1.2, Distributed Memory ENVIronment..............cccovuiviiieeoneeeeoeeesreeeeeeeseeeesreeereseseeesnos 8
2.1.3. Networks 0f WOrKStationscocoooveiiiniteiiiiiiees oo eee e ieeeses e 9
2.2, Communication in Parallel ENVIFONMENTScvovveereeeeeieeeeeeeeeeeeeeeee e eesee s 10

2. 2.1 INEOAUCHION ...ttt ee e e s s eesee e ne s e s s 10
2.2.2. Shared Memory ENVITONMENLc..covovoviirieiveiiicieeee et ees e ee e 12
2.2.3. Distributed Memory Environment...............coccvvcueriiviieceeueeeeeeeeeeeeeeeeeeee e 13
COomPIEtion TiMEcooviiiiieieriiinee ettt es et s e s e 14
LLENCY ..ottt ettt et b st ettt s e e e 15
TRIOUZRPUL. ...ttt s et s e 17
2.2.4. Network of WOTKSIAtONSc.coivriririeeiecinsireteteie ittt eeee e e 18
2.3. Programming in Paralle]l Environments..................c.ooovooecoomerveeeeereeeeeeeseeseeeeseeo 18
2.3.1. Programming in the Shared Memory Environmentsc..o...ooooovovevovveve 19
2.3.2. Programming in Distributed Memory Environmentsccccococovoovevoioveinn.. 20
2.3.3. Programming in Networks of Workstationscooovvveevorovoooooeoooo 21
2.4, DISCUSSIONouiiiiieciiie ettt ettt en e e e e s e e e s s s e 22
CHAPTER 3. UTILIZING THE PARALLEL ENVIRONMENTS 23
3.1 INIOAUCHION. ..ottt e e ee oo 23
3.2 SChEUINEZ. ...ttt e 25

Xi

3.2. 1. Related WOrK oot s 25

3.2.2. Requirements for Optimal Scheduling...........ccoiiiiiiii 28
3.3. Application-Specific Scheduling ..o, 30
3.3, 1. TEOAUCHION ...ttt ettt bt nac e r e e se st et saneene s sre 30
3.3.2. ALZOTITAITE L ooeiniiiiiicicc ettt 31
3330 ALZOTIERIM 2 .o 32
3.3.4. ALGOTTHRIN 3 .ciiiiiiiicce et 33
3.3.5. Implementation ISSUESccoiiiimiiriiniiie e 35
Shared Memory ENVITOMMENLc.cccovveiiviiiioiiiiinenireinc et 35
Distributed Memory Environment and Networks of Workstations...............ccccoceoevcnenn 36
3.4 DISCUSSION .o ivveiuviatteetieetiererereessesssesse et reeeenesotneeaneeasesasesasaeseeneeaaesbnssassmnseessneauessieeatnans 36
CHAPTER 4. MPIT 37
4.1, INELOAUCHION .. c.veevviivieeeieeee et ceeeeee e et ae et e e e eaease et e smseseeseeesmnesscameesaeseaesaseannennaenenas 37
4.2, Related WOTK ...coviveieieeieceei ettt e e oo e 38
4.3, Architecture of MPIT ... e 40
4.4. Communication Threadccooiriiiiiiin e et 42
4.5, WOTKET TRICAASvoiviivieiiicieeie ettt et sanenaneas 44
4.6. Programming Interfacecccocviiiiiiiii 44
4.6.1. Setup and Termination of MPIT ... 45
4.6.2. Point-to-Point COMMUIICAIONocerveiirraiiieiee e eeerteniteereeee st sree s s svae e eane 46
4.6.3. Thread Synchronization and Maintenance............ccccocoocecinineninicneninciiccieecne 47
4.7. Scheduling in MPIT ...cooiiiiie et et s s 48
4.8. Performance RESUILSccoooviiiiiircicicn sttt e sa e e 50
4.9, DISCUSSION ..veevvieviiireieresesieiteetesssasaesseaseaneeasseeeeeeseeaseansenseeshessmeesatesnesassaeaseresneennaennens 51
CHAPTER 5. CASE STUDIES OF MOBILE NETWORK SIMULATORS.................. 53
5.1. GSM Network SIMULALOTcvieeririirceee et 53
S 1L SIMULBEION ...vvvetieeeeeetie ettt st nat et sr e e e ene e sae e ne e e 55
5.1.2. ParalleliZAtIONccveeiririieie ettt e b e et sae e e 56
Shared Memory ENVIFONMENTc.cccooviiriiriiiiicnireienii et s s s ens 57
Distributed Memory Environment and Networks of Workstations............ccccocecccnveennne. 57

B 1.3 RESUILS ..veieei ittt ettt et ettt et n e nesan e e 58
Scheduling AIZOTItRINScccueiiiiieiiicieee e e as 59
5.2. The WCDMA System SImUlator.......o.coviieiieriiiirieeieti et s ree e e enees 62
5.2 1. SIMUIALION ...ttt ettt et sae b st reaare e ensenbeabessavaen 62
Terminal CalCULAtIONc.eiciiiieieieiieee ettt et e cs e e ene s 62
Interference CalCulation.ccoouiiriieiiiire ettt et e et an e 63
5.2.2. ParalleliZAtIONcooecvririeiieetr e ettt et 64
Shared Memory EnVIrONMENL.......c..c.oviiciiiiiiniciicni et eae s sa e s 64

5. 2.3 RESUIES ..cv ettt ettt et e e ae e e R e ne ettt et e esn e e 65
5.3, DESCUSSION ..ottt ete ettt ettt ettt e et bt e st e e eas bt encesaesesmrsaaess st smaearaarerees 65
CHAPTER 6. CONCLUSIONS 67
CHAPTER 7. SUMMARY OF THE PUBLICATIONS 69
7.1 PUDLICALION 1 oociiiiiiiicic ettt sttt e e 69
7.2, PUDLICAION 2 ...ttt ettt et s et eem et aebe ek abe e e e areereeneanenees 69

xil

T3 PUBLICAUON 3 .ottt e e e ea e ee e et e e et 70

T4 PUBLICAUON 4 ..ottt s e et e et e s e e e e oo e 70
TS PUBIICAUION 5 ..ottt e e e e e ee s e e e et e en e es oo 70
To0. PUBLICAUION 6 ..ot et e ee e e 71
T T PUBLICALION 7 c.oviitieeeeeee et eer e e ettt ee s en e 71
T8 EITALA ..ottt ettt ettt er s ee e e s et e e et et e e e es e 71
BIBLIOGRAPHY 73
PUBLICATIONS 85

Xiil

Chapter 1. Introduction

The last two decades have seen a considerable increase in the demand of computing power. A
number of application areas, such as weather prediction, nuclear reaction modeling, and gene
mapping, are imposing computational requirements that cannot be fulfilled by single
processor systems. Even if uniprocessor systems were capable of executing the applications,
their execution times would be excessive. The demand for more computing power is likely to
continue over the coming years due to the fact that computers are being used in virtually
every field. Three characteristics can be identified that are required from a high performance
system to facilitate the execution of complex applications:

L. Processing power. Applying more than one processor enables an application to be
run simultaneously on a number of processors thereby reducing its execution time.

2. Memory capacity. The system has to contain enough memory and disk space to
accommodate the data required to store all application data,

3. Communication network. In a multiprocessor system, processors are connected to
each other, and possibly to a global memory, via an interconnecting network that
facilitates data transmissions (message passing and access to remote disks).

Currently, a computer system needs to be equipped with multiple processors in order for it to
run complex applications in reasonable time frames. With multiple processors, the previously
mentioned requirements can be fulfilled: several processors provide adequate processing
capability and the combined memories of the processors are capable of facilitating the
application data. In theory, the addition of processors to a system to speed up the execution of
an application is quite simple. However, a multiprocessor system introduces a number of
issues that need to be addressed in order to efficiently utilize all available processors.
Furthermore, since the processors need to exchange data, communication is introduced. The
communication plays a significant role in a multiprocessor system, since it can rarely be
avoided. The time spent on communication slows down the execution since processors need
to partake in the sending and receiving of data.

Parallel execution introduces a number of new software dilemmas that do not exist in
sequential applications. The processed data needs to be divided into (preferably independent)
parts, and the parts need to be distributed among the processors. The former is accomplished
by utilizing a partitioning algorithm, whereas the distribution is handled by a scheduling
algorithm. The scheduling algorithm requires communication among processors, as it has to
send them the distribution information. The significance of both algorithms cannot be
overestimated, since achieving an equal work balance among the processors is important in
order to optimize the execution time. In addition, during the execution of the application and
at its completion the processors may need to exchange data and collect the sub-results to a

single processor that produces the final results. The two operations introduce further
communication.

The above-mentioned problems with parallel applications have varying degrees of difficulty
in various parallel environments. It is quite common that a good scheduling algorithm for a
specific environment is not the optimal algorithm in another environment. Mainly, the
environments determine how the processors are connected to each other and how the data
exchange is carried out. For the purpose of this thesis three parallel environments are
distinguished: shared memory, distributed memory and a combination of shared and
distributed memories (a network of workstations, NOW).

1.1. Background

The research of parallel computing has been conducted at the Lappeenranta University of
Technology since the beginning of the 1990’s [Por95][Por98a][[Por98b]. The emphasis of
this research has been on parallel simulation techniques [Por98c] and communication models
[IkoO1]. The author’s projects have been focused on researching parallelization techniques,
parallel programming paradigms, and scheduling in different parallel and distributed
environments.

The need for this research emerged when two simulators developed by Nokia Research
Center exhibited excessive execution times in a single processor workstation thereby making
the required interactive usage of the simulators impossible for their users. The first simulator,
known as a GSM network simulator, is a tool enabling network providers to find optimal
locations for their base stations in urban environments [Sip96]. The second simulator, a
WCDMA system simulator, was designed to be a platform for 3G network studies at Nokia
[Kur00].

The author was assigned to the parallelization projects of both simulators in the years 1997
and 1998. The parallel versions of the simulators were implemented based on the SPMD
(Single Program Multiple Data) model [Cre02]. Nokia did not impose any hardware
requirements for the projects. Therefore, implementations of the GSM network simulator
were produced for the three environments (shared memory, distributed memory, network of
workstations). For the WCDMA system simulator the only parallel implementation was for
the shared memory environment due to the short availability of the system simulator code. In
addition to the implementations, further research efforts were carried out to determine
optimal scheduling algorithms for the GSM network simulator in all three environments. A
concept of application-specific scheduling was developed, which considers information
extracted from the application as part of the scheduling procedure. The work in networks of
workstations indicated that optimal results could not be achieved with programming
paradigm currently available; this prompted the requirement to implement a new
programming paradigm for the NOW environment. Therefore, the MPIT paradigm was
designed and implemented.

1.2. Objectives

The objective for this thesis was to study methods for increasing the performance of parallel
applications by utilizing the best characteristics of three parallel environments as well as the
information extracted from applications.

(3]

First, the parallel environments were studied and compared to quantify their impacts on
parallel computation and programming paradigms. The study showed that no single
environment supersedes all other environments for all kinds of parallel applications. The
environment has a significant impact on the execution and the performance of an application.
Therefore, it was concluded that the selection of an environment is an important issue to
consider prior to implementing a parallel application. It was also determined that each
environment requires a unique implementation due to differences in characteristics. Second,
scheduling algorithms were designed and implemented to take advantage of application-
specific information extracted from the applications. In order to improve the capability of a
scheduling algorithm it is necessary to retrieve information from the application about the
workunits. Third, a programming paradigm for networks of SMP workstations was designed
and implemented. The need for such a paradigm became obvious through the study of
environments and scheduling algorithms. The programming paradigm, called the MPIT,
combines the MPI and the POSIX threads in order to provide an optimal programming
environment for a rather complex hardware environment.

The goal of this thesis was further refined by the research projects to reflect the results
achieved. Thus, the contribution of this thesis is:

To study parallelization methods, scheduling, and communication in data-parallel
GSM network and WCDMA system simulators in shared and distributed memory
environments, and networks of workstations, and to develop efficient, effective, and,
universal scheduling algorithms for all environments, and a programming paradigm
Jor SMP NOWs (the MPIT library).

1.3. Scope of the Thesis

This thesis discusses the properties of efficient parallel computing in shared and distributed
memory environments, and networks of workstations. First, properties imposed by parallel
environments are considered. Second, efficient scheduling algorithms are introduced that
utilize application-specific information in order to optimize the work balance among the
processors. Third, the MPIT programming paradigm is discussed, focusing on writing
efficient code in networks of symmetric multiprocessor workstations (SMP NOWs).

Two mobile network simulators were used as case studies for evaluating the properties and
suitability of sequential simulators for parallelization. Parameters affecting the parallelization
and the performance of the parallelized simulators were studied. The scheduling algorithms
were implemented in both the simulators allowing comparisons to be made between the
simulators and environments in which they were run.

Figure 1-1 illustrates the different aspects of parallel computation, At the environment level,
there are three different parallel environments, distinguished by their memory architectures.
The three environments were compared by measuring their communication performance;
measurements for completion time, latency and throughput were carried out. The
performance results and their impact on parallel computation are evaluated and discussed in
[Publication 1][Publication 2].

. Applcation o

R . AR SR |- Application level -
l ‘ Application-specific infformatiory - ..] . ST

| Scheduiing/Locd balancing |+

MR MPT | | Treods | | Toolsfibrary level
Corﬁrﬂ:ﬁon latency - Bandwidth Communication level
| Distiouted Cluster | | Snared | = | Envionment level

Figure 1-1. The graphical illustration of the pfoblem situation.

At the application level, there is an application that is supposed to be run in parallel. From the
software point of view, performance of a parallelized application depends on the structure of
the application. The structure defines how the parallelization can be performed, assuming that
a sequential version of the application exists. If the structure is not suitable for parallelization,
the performance of the application remains low. Furthermore, the application should be able
to provide information about the data that is processed in parallel. This information is
required by a scheduling algorithm that distributes the data among processors. This thesis
introduces a concept called application-specific scheduling, which aims to optimize work
distribution in parallel environments. Case studies of two mobile network simulators are
presented in [Publication 6]{Publication 7]. The case studies introduce the simulators and
their parallel implementations. [Publication 4] concentrates on scheduling with application-
specific information.

At the tools/library level, there are programming paradigms for different parallel
environments. The MPI is a message passing interface that allows processes within and
among workstations to communicate with each other [MPI95][MPI97][Gro99]. The MPI is
used in distributed memory and cluster environments. On the other hand, threads are entities
that run user code within a process [But97][Nor96]. Threads are suitable for shared memory
environment where the thread communication is performed via a global memory.
[Publication 3] examines the suitability of the MPI and the POSIX threads for parallel
computing in different environments. A network of workstations is a combination of shared
and distributed memory environment especially if there are SMP workstations in the network.
The MPI is a suitable programming paradigm for the first generation of clusters (networks of
uniprocessor workstations). For the second generation clusters (networks of SMP
workstations) a more appropriate programming paradigm is required. Therefore, a

programming paradigm called the MPIT was designed and implemented as part of the
research for this thesis. The MPIT uses the MPI to communication among the workstations
and the POSIX threads to run the code on multiple processors in a workstation. [Publication
5] introduces the MPIT library. The MPIT library resembles a combination of the MPI and
the OpenMP [Had02]. However, it allows the programmer more control over what code the
thread execute and when. Furthermore, the MPIT is not- a compile-time parallelization
technique unlike the OpenMP.

The following assumptions should be observed by the reader of this thesis:

I. A number of multiprocessor computer systems were used in the design,
implementation and testing phases. The deployed systems included Cray T3E, DEC
AlphaServer, Terttu-cluster [Kos00], and Linux cluster at the Lappeenranta
University of Technology. Therefore, results achieved vary and are not always
comparable. In all possible cases speedups are measured and reported to allow for
comparisons.

o

The scheduling algorithms presented in this thesis assume that an existing sequential
application or a new application can be run in a data-parallel fashion. The algorithms
have methods designed to distribute workunits among processors that all execute the
same code. Furthermore, an optimal algorithm depends on the information that
indicates the computational requirements of the workunits. Thus, the algorithms need
a quantitative indicator of the computation required to efficiently distribute workunits.

Chapter 2. Parallel Environments

There are a number of ways to subdivide parallel environments into categories
[KumO1][Hwa98]. Perhaps, the most common categorization is based on memory
architectures, which divides parallel environments into three categories: shared memory
environment, distributed memory environment, and a combination thereof. For the purpose of
this thesis the combination of the shared and distributed memory environments is considered
to be a network of uni/multiprocessor workstations. All three environments were studied to
determine their unique characteristics and features. The information retrieved from this
investigation was utilized in designing and implementing application-specific scheduling
algorithms and the MPIT.

2.1. Introduction to Parallel Environments

This subsection briefly introduces the three previously mentioned parallel environments. The
unique characteristics of each parallel environment are explored to determine their benefits
and drawbacks.

2.1.1. Shared Memory Environment

A shared memory environment is one step up from a standard single processor PC or
workstation. The architectural difference of a shared memory environment compared to a
workstation is in the number of processors available within the system. The shared memory
environment is comprised of at least two processors. The processors are connected to each
other with a network. The network further connects the processors to a global memory (terms
global and shared memory are used interchangeably). Thus, the network is called a memory
access network to distinguish it from other networks discussed later when the distributed
memory environment and the networks of workstations are introduced. Figure 2-1 depicts a
generic shared memory environment with the previously mentioned components. The main
purpose of the memory access network is to provide processors with fast access to the
memory. The actual speed of the network is hardware and topology dependent. A number of
network topologies have been designed and implemented. Perhaps, the most common
topology found in systems with a relatively small number of processors is a bus. Due to
contention problems with the bus topology, large systems utilize different topologies such as
meshes and hypercubes [KumoO1].

A shared memory environment allows for equal access to the memory by all the Processors.
The memory is used for purposes other than merely storing data. The global memory
provides a means for the processors to communicate with each other. In practice, the
communication is similar to a memory write or read operation. The sender processor stores
the data to a predefined memory location from which the target processor reads it. The use of
the global memory introduces the need for synchronization. The synchronization is required
to avoid a situation where more than one processor is writing to the same memory location

simultaneously. In addition, synchronization primitives can be utilized to control the
execution of processors, such as to implement a barrier.

' Figure 2-1. The shared mem(rr)ry‘environment.

Due to their architectural design, shared memory environments offer a relatively simple
programming environment. Basically, the programmer’s only concern is to handle
synchronization in such a way as to avoid concurrent access to the same address in the
memory. However, the problem with shared memory environments is the contention
introduced by the processors to the memory access network. The processors need the network
to retrieve and store data as well as instructions. The network is capable of serving a single
request at a time, which introduces delays to memory access times and impacts the execution
_times of applications run on the processors. The contention problem is the most apparent in a
single bus network (see Figure 2-1), where all processors are connected to the global memory
via this bus. In order to overcome the contention problem it is possible to utilize different
network topologies, and divide the global memory into smaller memories and distribute the
smaller memories among a set of processors.

2.1.2. Distributed Memory Environment

The distributed memory environment solves the problem caused by the network in a shared
memory environment. A distributed memory environment is depicted in Figure 2-2. The
environment consists of a number of processing elements (PEs). Each PE has at least one
processor, memories (RAM, cache), and a network interface. Optional hardware for a PE are
additional (special) processors, cache memories, network interfaces, and 1/0 interfaces. The
PEs are connected to each other with a high-speed network. The network is utilized by the
PEs to send and receive messages. A number of network topologies have been proposed
[Kum01]. Perhaps, the most common topologies are various types of meshes and hypercubes.

Since each PE has all the necessary hardware components to process data, the programming
in a distributed memory environment involves the implementation of a message passing
scheme. The purpose of the message passing scheme is to facilitate the exchange of data
among the PEs. A memory synchronization issue similar to the one found in shared memory
environments does not exist in distributed memory environment. This further simplifies
programming in distributed memory environments.

Figuré 2-2. The distributed memory environment.k

2.1.3. Networks of Workstations

A network of workstations is a collection of independent workstations connected to each
other with a network [Sto01]. Technically, a network of single processor workstations is a
distributed memory environment. However, in distributed memory environments the
processing elements are normally dedicated to parallel computing and the network
architecture and protocol are optimized for message passing. In a NOW environment the
workstations are not necessarily dedicated, whereas the “owner” of the workstation has
preference over the workstation’s resources. Furthermore, the workstations can be, and
usually are, heterogeneous with respect to hardware (processor speeds, amounts of memory)
and software (operating systems, binary formats), whereas in a distributed memory
environment the processors are usually identical. In addition, the network connecting the
workstations in a NOW does not use the proprietary protocols similar to the ones used in
distributed memory environments [Kat97]. In NOWs, protocols such as GM (Myrinet),
Ethernet, Active Messages and other lightweight messaging protocols are commonly
deployed [Chi99][Nie01][Par99].

Figure 2-3. The network of (SMP) workstations.

The NOW computing offers a cost-efficient way of achieving the computing powers of
supercomputers. In most cases, the cost of building a NOW is a fraction of the cost of
purchasing a proprietary supercomputer with an equal number of processors. The recently

published Top 500 list of the fastest computers in the world has over 60 NOW systems
[Top02]. Many of these systems are ahead of proprietary supercomputers such as IBM SP2s
and Cray T3Es. An additional goal of NOW computing is to provide a powerful, low cost,
common-of-the-shelf (COTS) system by utilizing available resources of workstations in
office environments [Den01][Qin97][Sav99][{Uth02]. The utilization of workstations in an
office environment is a feasible option, since studies have shown that workstations are
without work for the most of the time [Ach97]. Furthermore, due to the performances of
present-day processors a casual usage of a workstation does not impose a significant load on
the workstation. Therefore, the workstations are available to participate in the parallel
computation even if they are occupied by their respective users.

The most recent development in parallel architectures is a combination of the shared and
distributed memory environments. The architecture brings together a number of
multiprocessor workstations, forming a network of symmetric multiprocessors workstations
[Tan99]. The communication between processors within the same workstation utilizes the
global memory, and the communication between the workstations deploys the
interconnecting network. Furthermore, the maximum number of processors in such a system
is not limited by the memory contention problem, as is the case in shared memory
environments. This is a result of the workstations having their own memories and being
connected with an interconnecting network.

2.2. Communication in Parallel Environments

All three environments previously described introduce communication. In a shared memory
environment the processors utilize the global memory to pass messages to each other. In a
distributed memory environment, the processors send messages to each other via an
interconnecting network. In an SMP NOW communication occurs in two different steps:
within and among workstations. This subsection discusses communication and its impact on
applications in these environments.

2.2.1. Introduction

Applications written for the three environments require communication among the
participating processors. Depending on the application, the communication occurs at certain
points of computation: data is distributed at the beginning of computation, exchanged during
the computation, and gathered at the end of the computation. Since the communication is
considered overhead, it can have a significant impact on the performance of a parallel
application.

In order to quantify the impact of communication on the performance of an application, a
number of communication characteristics for each environment were identified and
measured. The following characteristics were considered:

- Completion time

Latency

Throughput

Protocol

Synchronization

10

Completion time indicates the time from the moment a communication call is issued until the
control is returned to the calling function. This includes all necessary operations taken by an
operating system and/or message passing library in preparation for a message transfer. The
completion time can vary drastically depending on the sending and receiving procedures. In
cases where a synchronous communication operation is performed, the control does not
return to the calling function until the operation has been completed. With an asynchronous
communication operation, the control returns immediately after the data has been passed to
the entity responsible for the message transfer. The completion times were measured for the
TCP and MPT calls (synchronous and asynchronous). In the TCP, the completion time was
considered to be the time spent on calling the write function. In the MPI, the completion
times were measured for synchronous and asynchronous calls. The synchronous call did not
return until a message was successfully sent or the message was copied to a system buffer,
whereas the asynchronous call returned control to the caller immediately.

Latency defines the total communication time from the moment a source processor issues a
send operation to the moment when the target processor retrieves the message. The latency
indicates the actual communication time observed by the receiver processor. The latency is a
very common performance measurement used to compare interconnecting networks. For a
parallel application, latency is an important issue. Time spent on communication is time away
from the actual computation, if no communication-computation overlap is achieved. The
latency was measured with a number of different interconnection networks, such as three
Ethernet networks and a Myrinet network, to quantify the impact of communication on
parallel applications.

Throughput defines the bandwidth utilization. The bandwidth is constant for each type of a
network (for example, 1000 Mbit/s for a Gigabit Ethernet network). However, throughput
determines how well a message transmission can utilize the bandwidth provided by the
network. In general, large messages are preferred over small messages, since larger messages
can take advantage of the full bandwidth. Furthermore, the impact of the overhead introduced
by the message processing at sending and receiving processors is minimal, i.e. the message
setup time is a fraction of the total communication time (latency). Even though the use of
large messages leads to better throughput, they are more volatile to retransmissions and
congestion. Therefore, from the performance point of view, small messages are preferable
instead of one large message due to the fact that the communication time matters more than
the bandwidth utilization. This is especially true, if the number of messages is relatively
small. However, in certain cases it can be beneficial to postpone the send operation and wait
until more data is sent prior to sending a single, large message to the network. The throughput
measurements were conducted in conjunction with the latency measurements for the four
networks.

Protocol defines how the data (messages) are actually transported over a network. The main
responsibility of a protocol is to determine how the messages are routed through the network.
The topology defines the possible routes for message transmissions handled by the protocol.
The protocol must be able to determine the shortest (fastest) route between the
communicating processors. In a partially connected network, the protocol has to route the
messages through intermediate processors. These intermediate processors may (store-and-
forward routing) or may not (cut-through routing) have to participate in the communication
{KumOl1]. Also, the protocol has to be able to find alternative routes for messages, if the
shortest route is congested or down. A secondary meaning of the term protocol is to define an

end-to-end transportation mechanism for the communication. The TCP and the UDP are
examples of end-to-end protocols. The TCP provides a reliable transportation service,
whereas the UDP is an unreliable transportation service. Both protocols have benefits and
drawbacks; the TCP creates overhead by providing a reliable connection, and the UDP can
lose data due to the unreliable connection. Thus, there are a number of advanced protocols
implemented for message passing that try avoid problems in the TCP and the UDP
[Nag99][Ste97][Wea99]. The impact of the protocol was not quantified as such, since a
limited number of protocols were available. There were only Ethernet and Myrinet protocols
at hand, and none of the Ethernet networks ran with the same speed as the Myrinet network.

Synchronization deals with the way the source and destination processors participate in the
communication. When message passing libraries are used, the processors have to take part in
the communication at some point; loose synchronization is allowed, if the sender can send a
message without a matching receive operation. However, eventually the receiving processor
has to receive the message. If a synchronized model is deployed, the execution of both the
processors is halted while the message is sent and received; the communication reduces the
level of parallelism, since during the data transfer the processors cannot process data.
Message passing libraries designed primarily for proprietary supercomputers utilize a
different approach to synchronization. These libraries (such as SHMEM) allow a sender to
handle message passing without interfering with the execution of the destination processor
[Sco96]. The sender processor is also able to process data during the communication; the
overlap is possible due to asynchronous communication models [Par99]. On the other hand,
synchronization can be understood to be a mechanism to control the execution of processors.
Message passing libraries, such as the MPI, offer methods to stop the execution of a
processor until a certain number of processors have reached the same point in their execution
(barrier synchronization). In order to perform such an operation communication is required.
The actual communication pattern is dependent on the message passing library.

2.2.2. Shared Memeory Environment

As previously noted, the communication in a shared memory environment is normally
handled through a memory access network. This communication occurs without the user’s
involvement. Due to the nature of the environment a different approach for investigating the
characteristics of the shared memory environment was taken. Studies were made to quantify
the overhead introduced by the communication. In practice, the time spent on accessing the
global memory was measured. The memory access to a specific memory address has to occur
in a synchronous fashion to guarantee the integrity of the stored data. A synchronization
method is required to avoid a situation where two or more processors are accessing the same
memory location at a time. A similar analogy applies to distributed memory environments
where the synchronization takes place as an indirect result of message passing.

In order to study the significance of a synchronization method, tests were conducted on a 4-
processor Pentium III Linux workstation. All the processors were connected to each other via
a bus. The test application measured the time it took for a processor (thread) to obtain a
mutual exclusion (mutex) lock, write data to a memory, and release the lock. The results are
shown in Figure 2-4. The figure illustrates the results with and without the synchronization
method. It should be noted that if it is possible for more than one thread to access the same
memory location at a time, a synchronization method is required. Therefore, the results
without synchronization are meant to be merely a reference to depict the overhead generated
by the mutual exclusion lock.

12

12 sy
B With synchronization: g
Without synchronization

10

[=-]

Communication time (usec)
=

Number of threads

Figure 2-4. The thread communication times (averaged over all threads) with and
without a synchronization method (mutual exclusion locks).

The results indicate the average write times of threads to a shared memory location. With one
thread it takes approximately 1.14 microseconds to perform the synchronization steps and
write the data, whereas without the synchronization the time is reduced to 0.72 microseconds.
The communication time increases as more threads are used. With four threads the average
communication time of 9.97 microseconds was observed. This constitutes a 9-fold increase
over the test with one thread. Reasons for such a large increase in the overhead are the
synchronization, thread scheduling, and cache misses. On the other hand, the communication
time without the synchronization mechanism remains relatively constant when the number of
threads is increased. This clearly illustrates overhead generated by the synchronization.
Therefore, it is essential that the need for synchronization is minimized and thoroughly
optimized.

2.2.3. Distributed Memory Environment

Communication is a significant factor in a distributed memory application, since the
application must determine how and when the communication is performed. For distributed
memory environments results for the completion time, latency, and throughput can be
measured, since actual messages are passed from one processor to another.

The results were obtained for the TCP and MPI packets. The implementation of the MPI
(mpich) used the TCP/IP as the message transportation protocol. Four networks were used in
the tests: three Ethernet networks (10/100/1000 Mbit/s) and a Myrinet network (2 Gbit/s)
[Kim01]. Ethernet is a well-established network protocol that has been widely used and
studied. Myrinet is a proprietary network infrastructure that requires special network interface
cards and optical interconnections. Myrinet has its own implementations of the TCP/IP stack
and message passing libraries. The company that manufactures Myrinet products (Myricom)
provides a reference implementation of the TCP/IP and an optimized implementation of the
MPI. The TCP/IP stack and the MPI utilize the underlying network protocol called GM,

13

which is the native protocol for a Myrinet network [Myr00][NieO1]. It is possible to use the
GM protocol directly to minimize the overheads introduced by high-level protocols and
message passing libraries such as the TCP and the MP1L.

Completion Time

The completion time was quantified by measuring the time a processor had to wait after
issuing a send operation until the control was returned to it. Thus, the completion time
indicates how long it takes for the issuing processor to complete the operation. In the TCP, a
communication request included a data transfer over a socket. For the purpose of measuring
the completion time it was assumed that each packet was sent on an existing socket
connection; the establishment and tear down of a socket were not considered as part of the
completion time. In the MPI, the completion time was measured by quantifying the time
spent on calling an appropriate MPI function call. Depending on the MPI function called, the
completion time varied significantly. On one hand, there is a synchronous send operation that
does not return the control to the calling function until the message has been sent or copied to
a system buffer. If the message is not sent or buffered immediately, the completion time can
be long. On the other hand, the MPI provides an asynchronous send operation that does not
wait for the message to be sent or buffered; it returns immediately after the message has been
given to the MPI for transmission. Since the asynchronous operation returns the control
immediately to the calling function, it does not introduce overhead regardiess of the state of
the receiving processor. Table 2-1 depicts the completion times for the TCP and the MPL
Two results are given for the asynchronous MPI call: the first one is from a situation where
the matching receive operation has been posted (also the case with the synchronous MPI
call), whereas the second one shows the completion time when no matching receive operation
has been posted.

The resuits show that the completion time for writing to a TCP socket is substantially less
than is the case in the MPIL This can be explained by the additional work done by the MPI
prior to sending data to a receiving processor; the MPI has to determine the receiving
processor and create an envelope for the data. The envelope contains information required by
the receiving processor to retrieve the message. The results indicate that the asynchronous
MPI call is approximately 20% faster than the corresponding MPI synchronous call. It should
be realized that the improvement would be significantly greater, if no receiving operation had
been posted when the synchronous MPI send operation was executed.

Table 2-1. The completion times (in psecs) for the TCP and the MPL

TCP MPI synch. | MPI asynch. MPI asynch.,
no receive operation
1.9 73.2 71.1 59.3

The MPI implementation, mpich, used in the tests utilizes the TCP/IP as the transmission
protocol. Therefore, the TCP completion time is hidden in the MPI implementation. Finally,
it is important to realize that these completion times indicate the time spent at the application
level to start a communication process. Latencies discussed next show the time spent on the
end-to-end communication itself.

14

Latency

Latencies were measured in all four networks. Figures 2-5 and 2-6 illustrate the results
achieved for the TCP and the MPI, respectively. Both the figures show relatively typical
performance results. With small packet sizes the overhead of the TCP and the MPI
implementations cause the performance to be relatively constant. Differences in the latencies
with small message sizes are explained by the overhead introduced by the protocol software
(the TCP/IP stack and the MPI implementation) and the network. Once the message size
grows, the characteristics of the network become more obvious.

As Figure 2-6 illustrates the latencies for the MPI are slightly higher than the latencies for the
TCP. This is a result of the fact that the MPI operates on top of the TCP/IP stack. Prior to
utilizing the TCP/IP stack to transmit a packet, the MPI packages the data into an envelope.
The results indicate that until a message reaches a certain size (unique to each network), the
communication time is practically constant. The bandwidth of the network determines the
point where the message size begins to affect the communication time; a faster network can
transmit larger messages with a constant time. If these constant communication times
measured for the TCP and the MPI are compared, the overhead introduced by the MPI can be
quantified.

Table 2-2 shows the average overhead generated by the MPI compared to the TCP. A closer
look at the overhead introduced by the MPI reveals that depending on the network the
overhead is incurred in different phases of communication. In the Ethernet networks the
largest overhead was measured when the message size was small. Thus, the preparation of the
message for transmission had a significant contribution to the overhead. In the Myrinet
network, the highest overhead was measured with very large messages. This can be partly
explained by the MPI library deployed. The optimized MPI implementation for the native
communication mechanism (GM) of the Myrinet network could not be utilized due to
technical difficulties. Therefore, the results shown are for an MPI implementation that was
built on top of the TCP/IP stack and the GM.

There are some very interesting aspects in Figure 2-5 that depict the latencies for the TCP in
the four networks. It seems that the Gigabit Ethernet network has larger latencies with small
message sizes than the 100 Mbit/s Ethernet. This can be the result of a number of factors:
internal buffering, delayed acknowledgement, or a non-optimal driver.

Table 2-2. Overhead of the MPI in percentage-wise compared to the TCP.

Network Overhead
Ethernet (10 Mbit/s)
Ethernet (100 Mbit/s) 39%
Ethernet (1 Gbit/s) 49 %
Myrinet (2 Gbit/s) 110 %

15

10000

1000

—e—Ethemet (10 Mbit/s)- .
—4— Ethemet (100 Mbit/s)
—a—Ethemet (1000 Mbit/s}
~s— Myrinel (2 Gbit/s) 0

100

e

A

01 4
IM
4
A

0.01

10000

10 100 1000 10000 100000 1000000 10000000 100000000 1000000000

Message size (bytes)

Figure 2-5. The latencies measured for the TCP.

1000

—e—Ethernet {10 Mbit/s)
-~-+—Ethemet (100 Mbit/s)
-~ Ethernet {1000 Mbit/s)
—4— Myrinet (2 Gbit/s)

100

e

msec
-
=)

Py

M-

1 10 100 1000 10000 100000 1000000 10000000 100000000

Message slza (bytas)

Figure 2-6. The latencies measured for the MPI.

16

Throughput

Figures 2-7 and 2-8 show throughputs measured for the TCP and the MP], respectively. The
results depict a situation that could already be seen from the latency figures; the TCP is
capable of utilizing the available throughput substantially better than the MPI due to
overhead introduced by the MPI. Furthermore, the figures illustrate that the network
utilization does not necessarily reach its peak performance with the largest message size. The
peak throughput message size depends on a number of factors such as protocol, buffer sizes,
and network congestion. Only the 100 Mbit/s Ethernet network seems to achieve peak
performance with the largest message size that was used in the tests. For all other networks
the peak performance is achieved with smaller than maximum message sizes. In addition,
once the peak performance has been reached the throughput starts to asymptotically reach a
sustainable transfer rate. Peak throughputs with the corresponding message sizes for the TCP
and the MPI are shown in Table 2-3.

Table 2-3. Peak throughputs in Mbit/s with the message sizes for the TCP and the MPI.

Network TCP MPI Difference
Ethernet (10 Mbit/s) 8.5 (4kB) 8.1 (8kB) 5%
Ethernet (100 Mbit/s) 89.7 (13 MB) 79.9 (8 MB) 11 %
Ethernet (1 Gbit/s) 647.4 (65 kB) 360.0 (65 kB) 44 %
Myrinet (2 Gbit/s) 840.4 (98 kB) 405.7 (16 kB) 52 %

1000
—e—Ethernet (10 Mbit/s)
-~ Ethernet (100 Mbit/s)

~m—Ethernet (1 Gbit/s)
—a— Myrinet (2 Gbit/s)

100 r— e

Mbit/s

0.1

0.01

1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000
Packet size (bytes)

Figure 2-7. The throughputs measured for the TCP.

17

1000

—o—Ethernat (10 Mblt/s) -

—e—Ethernet (100 Mblt/s)

—#—Ethernet (1 Gbli/s)

—de— Myrinst (2 Gbli's)
100

Mbit/s

01

3/

1 10 100 1000 10000 100000 1000000 10000000 100000000
Packet size (bytes)

0.01

Figure 2-8. The throughputs measured for the MPL.

2.2.4. Network of Workstations

Communication is an equally important factor to consider in NOWSs as it is in distributed
memory environments. If a NOW consists of uniprocessor workstations, the communication
scheme is similar to the one found in distributed memory environments. However, if the
NOW includes workstations equipped with more than one processor, it has an impact on the
communication. In an SMP NOW part of the communication takes place among the
processors within the workstations [Hsi00]. This communication utilizes the shared memory
as described previously. However, the communication among the workstations in a NOW
still has to travel via an interconnecting network. The communication results for a shared
memory environment shown in Figure 2-3 demonstrated the communication among threads
in an SMP workstation. The results shown for the interconnecting networks in Figures 2-3
and 2-4 were actually measured in an SMP NOW. These figures give insight into how an
SMP NOW works and what are its communication performance boundaries. Ultimately, it is
left up to the programmer to decide how to implement a communication scheme within and
amongst workstations.

2.3. Programming in Parallel Environments

This subsection explores programming paradigms for the three parallel environments. The
most common programming paradigms are introduced for each environment and the
paradigms used with the case studies in Chapter 5 are discussed in detail.

In general, each environment has its respective programming paradigms. However, there are
programming paradigms for shared memory environments that use message passing. For
example, implementations of the MPI exist that support communication via a global memory.
On the other hand, with virtual/distributed shared memory programming paradigms it is

18

possible to write parallel applications for distributed memory environments as if there were a
single global memory [Dre98a][Dre98b]. These cross-environment programming paradigms
are not discussed further. The focus of this subsection is on the native programming
paradigms for each environment.

2.3.1. Programming in the Shared Memory Environments

The obvious programming paradigm for shared memory environments is to create a set of
processes that utilize a shared memory region to send and receive messages to and from each
other. However, the use of processes is expensive with respect to context switching and the
need to cross process boundaries for memory access. To alleviate these problems the concept
of threads was introduced. Threads allow for the generation of multiple instances inside a
process that run code simultaneously assuming an adequate number of processors is available
[Roh96][K1e96]. There are two widely adopted thread packages: POSIX threads (pthreads)
[But97] and Solaris threads [Lew96][Nor96]. The former is a standard supported by the
majority of operating system vendors. The latter package is available for all SUN operating
systems. Due to its operating system specific nature, the Solaris threads package is
implemented on a lower level (coupled closely with the operating system) providing
improved performance. However, since the Solaris thread package is not suitable for any
other operating systems, the pthread package has become the thread standard for shared
memory systems.

A parallel application runs inside a single process allowing all the threads, even if run on
different processors, to share a memory allocated for the process. Data exchange takes place
through the shared memory. Since the memory access is fast, the communication does not
introduce a great deal of overhead. The main contributor to the overhead in a shared memory
environment is the synchronization of the threads. The synchronization is required, since
otherwise two or more threads are able to access the same memory location simultaneously.
The synchronization is not implemented on a hardware level but instead it is left up to the
application. The problem with the synchronization is that if multiple threads are accessing
the same memory location simultaneously, only one thread is allowed to actually access the
memory at a time. Thus, the other threads have to halt their execution and wait until they can
access the memory.

During the design phase of a parallel application a suitable memory access model must be
considered in order to minimize the synchronization overhead. With a proper design of the
application, the synchronization overhead can be reduced considerably. If simultaneous
memory accesses to same memory locations can be avoided, the need for synchronization is
minimized, or even eliminated. Thread packages offer various methods for the
synchronization [But97]:

- Mutual exclusion locks
- Condition variables

- Semaphores

Mutual exclusion (mutex) locks allow for the creation of a protected area that is executed by
one thread at a time. A mutex lock must be acquired by a thread prior to entering the
protected area. If the lock is held by another thread, the thread trying to acquire the lock is
blocked. Once the lock is released by a thread exiting the protected area, the blocked thread

19

can acquire the lock and proceed with its execution. If more than one thread is waiting for the
lock to be released, one of the threads is selected and allowed to proceed.

Condition variables allow a thread holding a mutex lock to sleep until it receives a signal.
When a thread blocks its execution, it releases the mutex lock. The execution of the thread
does not continue until it receives a signal from another thread. The signal is sent by utilizing
a specific condition variable signal function call.

Semaphores are counters in the sense that they keep track of available resources. A
semaphore is initialized by setting a value to it. When a thread requests a new resource it
attempts to decrease the value of the semaphore. If there are resources available, and the
value of the semaphore is greater than 0, the thread decreases the semaphore and proceeds
with its execution. On the other hand, if no resources are available the thread is blocked until
a resource becomes available. Resources become available when threads no longer require
them and issue post operations that release the resources and increase the value of the
semaphore.

It should be noted that the descriptions above merely discuss the basic functionality and
usage of each thread synchronization method. The actual functionality and any possible
additional features of each method are implementation dependent on thread libraries.
Furthermore, there are programming paradigms, such as the OpenMP, that hide the explicit
need for synchronization due to the nature of the paradigms. In the case of the OpenMP, the
parallelization is performed by the compiler with the help of information provided by the
programmer [Ayg99][Had02).

2.3.2. Programming in Distributed Memory Environments

The programming paradigm for distributed memory environments is called message passing.
The name stems from the fact that processes send and receive messages to and from each
other. For distributed memory environments two kinds of programming paradigms can be
found. First, most distributed memory system vendors have implemented their own message
passing libraries that are optimized for their systems [And97][L.ue99]{Myr00]. Second, there
are portable programming paradigms that try to standardize the programming model for
distributed memory environments. The most widely used portable programming model is the
Message Passing Interface (MPI) [MP195][MPI97]. The MPI provides a rich set of point-to-
point and collective communication functions. It should be noted that the MPI as such is
merely a standard. The most popular implementation of the standard is mpich by Argonne
National Laboratory at the University of Chicago [Gro96]. The other implementations are
LAM [Bur94], OOMPI [Squ96], and MPI++ ([Kaf95]. The last two provide C++
interfaces/bindings for the MPI, whereas mpich and LAM have interfaces for C and
FORTRAN. Most of the free MPI implementations are built on top of the TCP/IP stack. Due
to the fact that the basic MPI implementations utilize point-to-point communication schemes
to perform collective communication operations some modifications to improve the
performance of communication have been discussed in literature
[Bru97a]{Lau97][Sis99][Skj94]. Another well-known message passing library is the Parallel
Virtual Machine (PVM) [Gei96][Sun90] [Sil99][SprC1].

The popularity of the MPI and the PVM can be attributed to the easy of their use and their
portability. However, there are a number of other communication libraries capable of offering
the same kinds of services as the MPI and the PVM. The SHMEM (Shared memory) library

is a communication library that abstracts the communication as memory references
[And97][Lue99]. The SHMEM operations allow the programmer to access the memories of
other processors without interrupting the processors work. Thus, the communication does not
require involvement from the processor while the memory is being read or written. This kind
of scheme is generally called one-sided communication.

Active Messages is another one-sided communication paradigm [Par99]. It has a send
operation, but no receive operation. The sender processor transmits the data and a handler to
a receiving processor. In the receiving processor, the message is retrieved from the network
by a dedicated process that creates a new thread to process the data. The action taken to
process the data is defined by the handler. The code executed by the thread to process the
data has to be implemented by the programmer. The benefit of Active Messages is its
capability of not interrupting the work of the receiving processor when messages arrive and
are processed. In addition, the design of Active Messages thrives to minimize the number of
memory copies required to pass the data to the thread for execution. Since the thread is
created by the process handling the reception of the messages, a minimum number of copy
operations take place prior to the processing of the data. This leads to the expedient
processing of messages received by a workstation.

2.3.3. Programming in Networks of Workstations

In order to run parallel applications in a NOW, a message passing library is often the only
software required. The same software that is used in the distributed memory environments is
suitable for the NOWs. However, due to the fact that most NOWs are heterogeneous with
respect to operating systems and/or hardware, common message passing libraries (especially
the MPI and the PVM) have become the libraries of choice.

The common message passing libraries are suitable as such for the first generation of NOWs.
A first generation NOW is a system where each workstation has a single processor. On the
other hand, a second generation NOW is comprised of workstations that have more than one
processor. Granted, popular message passing libraries such as the MPI and the PVM are still
suitable programming paradigms. However, to fully utilize the available resources in a
second generation NOW, a programming paradigm that combines message passing and
threads is required [Hen0O]. The combination of message passing and threads introduces
complexity to the programming paradigm. Therefore, one of the goals of this thesis is to
present an MPI-like programming paradigm for writing parallel application on second
generation NOWs. The paradigm developed is discussed in Chapter 4.

The significance of scheduling is emphasized in second generation NOW environments, since
the work balance has to be achieved globally among workstations, and locally among
processors. The global scheduling requires communication over the interconnecting network,
whereas local scheduling introduces communication through the memory access network.
The optimal balance between the usage of the interconnecting network and the memory
access network is essential, since the communication over the interconnecting network is
considerably slower compared to the memory access network. Another factor that
complicates scheduling in a non-dedicated NOW is loads in the workstations generated by
their respective owners. Depending on the usage of the workstations, the loads may fluctuate
drastically. A similar problem occurs, if an SMP NOW consists of heterogeneous
workstations; in that case, a scheduling algorithm has to take into consideration the
computing capabilities of the workstations while scheduling workunits. Scheduling issues are

21

discussed in detail in Chapter 3 where the design and implementation of data-parallel
applications are explored.

2.4. Discussion

Each of the three environments has its advantages and drawbacks; no single environment is
superior to the other two. The environments differ not only from the memory architecture
point of view, but the programming paradigms used to write applications for the
environments differ as well. The memory architecture also has an impact on the design of an
application such as how to efficiently handle communication and scheduling. The
communication is an integral part of parallel computing especially in the distributed memory
environments and NOWSs. The studies conducted indicated that the communication had a
significant impact on the execution of a parallel application. In general, it can be safely stated
that the number of communication operations and the amount of data transferred should be
minimized to lessen the impact of communication. Therefore, solutions to optimize the
communication should be explored on a software level as well as hardware {not discussed in
this thesis) level. Optimization on the software level includes implementing efficient parallel
applications with proper programming paradigms, and utilizing appropriate scheduling
algorithms. Chapter 3 discusses how to write data-parallel applications in the three
environments. Furthermore, the chapter introduces three scheduling algorithms with the
application-specific enhancements, which take advantage of information concerning the
application being parallelized and the parallel environment. The programming paradigms are
discussed further in Chapter 4 where a programming model for SMP NOWs is presented.

Chapter 3. Utilizing the Parallel Environments

This chapter describes how to take advantage of the three previously described environments
while designing and implementing parallel applications and scheduling algorithms.

3.1. Introduction

In order to design and implement efficient parallel applications two main concepts must be
understood within the scope of this thesis:

- Computation

- Communication

The first concept, computation, is the actual work done by processors. While there are
numerous parallel programming and computation methods [Ski98][Wal98], two
programming methods can be identified with respect to how workload is distributed among
processors [Gan96j[R3d01]. In the functional (task) parallel method, the computation is
performed so that each processor is assigned a specific task [Liu99][Nor93]. The processor
performs the same operations to all the data it receives. In the data-paralle]l method all
processors execute the same code with different data [Kin88][Wu98]. For optimal
performance, each processor must have an adequate amount of work to process. In a
dedicated homogeneous system, this indicates that each processor has an equal amount of
work, whereas in a heterogeneous system the amount of work should reflect the capabilities
of the processors. It is the responsibility of a scheduling algorithm to optimize work balance
among the processors. In addition to scheduling there are operations that need to be
performed by a parallel application that do not exist in a sequential application. These kinds
of operations are initialization of a parallel environment, synchronization, and
communication. Naturally, the performance improvement achieved through nparallel
computing must be greater than the negative impact of the overhead incurred.

The second concept, communication, was discussed in Chapter 2. The results achieved
showed that with faster networks the impact of a single communication operation could be
minimized. However, a parallel application often needs to perform more than one
communication operation. Furthermore, focusing only on latency does not give the whole
picture. A parallel application introduces additional factors on the software level that affect
the overall communication time. There are a number of instances where communication is
required by a parallel application:

- Scheduling
- Data exchange during computation

- Synchronization

- Initialization and result gathering

The purpose of scheduling is to assign work to processors. The assignment usually includes
the transfer of workunits to processors. Depending on the scheduling algorithm the number
and size of messages may vary drastically. It should be noted that scheduling can take place
either at the beginning or throughout the execution of the application. The impact of
communication caused by scheduling can vary greatly depending on when it occurs.

Data exchange during the computation takes place when processors need data from each
other; it is quite common for data to be exchanged during a computation phase. However, in
order to perform a communication operation a processor has to stop executing the actual code
and start the operation. Therefore, each communication operation contributes to the overhead
in more than one way. First, the sending processor has to stop its work and perform the
comumunication operation. Second, the receiving processor has to stop its work and receive
the message. So clearly, the communication during a computation phase should be
minimized. This can be achieved by reducing the data dependencies between the data held on
difference processors. Another method of minimizing the communication’s impact on the
overall execution time of an application is to optimize the communication with prior
knowledge of the communication patterns of the application [IsI97].

Synchronization is required to control the execution of processors. In shared memory
environments, synchronization is used to protect areas of code from concurrent access or to
control the execution of threads (barrier synchronization). In distributed memory
environments synchronization is utilized to coordinate the execution of processors in
different workstations. The same synchronization scheme applies to networks of
workstations, whereas with networks of multiprocessor workstations, both the
aforementioned synchronization schemes are applicable. All synchronization schemes
introduce overhead in the form of lost computation; processors either have to wait for access
to a protected code or until all of them have entered a barrier.

Initialization and result gathering are performed at the beginning and end of computation,
respectively. During the initialization phase, processors can send and receive data regarding
the environment, such as the number of processors and rank of each processor. The result
gathering is usually performed to allow a single processor to collect results from other
processors and to produce final results. Almost all message passing libraries include
functions to gather data to one or more processors. In addition, since the data gathering is
performed after the actual computation phase, its impact on the overall performance of the
application is not as significant as it would be if it occurred during the parallel computation
phase.

Scheduling was mentioned in both cases when computation and communication were
discussed. In fact, scheduling (work distribution) is one of the key elements of efficient
parallel computing. Its goal is to distribute a workload equally and effectively among
available processors. In theory, scheduling is a relatively simple operation. Unfortunately,
due to a number of impacting factors scheduling has proven to be a very complex (NP-hard)
and time-consuming operation. The remainder of this chapter discusses the design,
implementation and performance issues of scheduling in general and describes the scheduling
algorithms developed.

24

3.2. Scheduling

In order to utilize more than one processor an application requires a scheduling algorithm to
distribute the workload among processors effectively and efficiently. The ultimate goal of a
scheduling algorithm is to maximize the performance of the processors by optimizing their
utilization whilst minimizing overhead. Thus, an optimal situation would be one where all
processors had an equal amount of work with respect to their processing capabilities and the
amount of communication was non-existent or very small. The first requirement indicates
that the numbers of workunits or the amount of work on processors does not have to be equal,
and should not be equal, if the processors are not identical. A heterogeneous system
introduces additional complexity to a scheduling algorithm due to the different computing
capacities of the processors/workstations. The differences in the computing capacities do not
necessarily imply that the processors are dissimilar; it is possible that some processors have
more load than others, thus limiting their computing capacity. Communication is mainly
caused by dependencies in the workload. Therefore, a scheduling algorithm should be able to
identify and locate workunits with dependencies that are in close proximity (optimally on the
same processor). In practice, the scheduling algorithm has to make a compromise between
the loads on the processors and the amount of communication.

The actual distribution of workunits requires communication, since the workunits have to be
sent to processors. A scheduling algorithm has to decide on a method for distributing the
workunits; it can either send all the workunits to all processors, send only the workunits
meant for a particular processor, or send indexes to the workunits to all processors. The last
option requires that the processors acquire the workunits prior to the execution of the
scheduling algorithm. For example, the NFS can be utilized to allow all processors to access
the same set of files that contain the workunits [Publication 6].

As seen, scheduling is not, by any means, a simple task. There is no single algorithm that is
able to produce optimal results for all applications in all environments. Each application and
environment imposes different requirements for optimal performance and, therefore, for a
scheduling algorithm. For example, in an environment where communication is a significant
contributor to overhead, a scheduling algorithm that optimizes the communication should be
developed. On the other hand, in an environment where the processors are heterogeneous, a
scheduling algorithm that optimizes the work distribution among the processors based on the
computing capabilities of the processors is favourable.

3.2.1. Related Work

Scheduling algorithms can be divided into two groups based on their operation models: static
and dynamic [Bru97b]{Pla94]. A static algorithm allocates workload to processors prior to
the actual computation phase and no further scheduling takes place [Ros91]}[Tan00]. In other
words, a static scheduling algorithm is an algorithm that does not receive more workunits to
distribute during the computation phase. Although static algorithms compromise the optimal
utilization of processors, they introduce minimal overhead. However, sirice static scheduling
algorithms do not get executed during the computation phase, they are unable to notice and
correct imbalances on processors caused by poor initial scheduling decisions or changes in
load conditions.

Dynamic scheduling (load balancing) algorithms distribute the workload among processors
before and during the computation phase by considering the computational requirements of

25

workunits and/or the current loads on processors [Ben00a][Bre99}[Lei99][Ren01]. So by
definition a dynamic load balancing algorithm is an algorithm that can cope with workunits
that are created during the computation. For the purpose of this thesis, two operation models
for dynamic scheduling algorithms are identified. The first model includes scheduling
algorithms that distribute workunits as they enter the system. The algorithms do not have
information about all the workunits and their computational requirements. The scheduling
decisions are based on processors’ loads at the moment when the workunit enters the system.
Methods of measuring the system load and its effect on scheduling have been studied in
literature [Das97][Kul00][Li98}{Mey97]. The second operation model consists of dynamic
scheduling algorithms that implement a client-server approach. The distribution of workunits
occurs according to requests sent by client processors to the server (master) processor. The
server processor replies to each request by sending one or more workunits to the client. The
second model is preferred, because although it introduces additional overhead in the form of
communication, it does not need constant load updates. The distribution of workunits occurs
based on the availability and computational capacity of the processors; a processor without
work makes a request for a new workunit, whereas a processor handling a workunit or
occupied by another process (from another user) does not request more work until it becomes
idle. The better utilization of processors and improved work balance comes with a price.
Dynamic scheduling algorithms cause more overhead due to the increased communication,
synchronization, and possible bottlenecks caused by the server processor. However, dynamic
scheduling algorithms can substantially increase the performance of a parallel application, if
implemented wisely. The more optimal utilization of processors leads to more equal work
balances among the processors and decreased execution times. Dynamic scheduling
algorithms have been introduced in literature for shared memory environments
[Gan00][Soh97], and distributed memory environments and NOWs [Ben00a]{Cav01][Cor99]
[Sch95][Soh96][Tha01][Zak97]{Zha00].

Algorithms for distributed memory systems normally assume that the impact of an
interconnecting network is minimal or non-existent. The focus of these algorithms is to
optimize the utilization of available processors. In general, scheduling algorithms for
networks of workstations consider the cost of communication due to its possibly significant
effect on performance [Pra97]. Scheduling decisions are made by optimizing communication
and resource utilization, and by minimizing overhead generated by the scheduling algorithm.

Dynamic scheduling algorithms need information about the application and the system in
which they are run. The application defines the characteristics of the workunits to be
distributed, whereas the system load indicates suitable target processors for work distribution.
Studies have been conducted that address the utilization of application characteristics in the
scope of scheduling processes (e.g. [DaS01}[Mac00}[Sub02}[Tan00]) or in particular
applications (e.g. [Bar99][Cat01]}{Cha02}[Jon00][MicO1]fRis02]). These studies explore the
benefits gained from extracting specific information about applications; using that
information the scheduling algorithms are optimized. The scheduling algorithms developed in
this thesis focus on considering the generic characteristics of workunits in order to develop
universal scheduling algorithms. The algorithms do not take system load into consideration.
However, one of the algorithms indirectly incorporates the system load into its scheduling
decisions.

There is a special group of dynamic scheduling algorithms that consider the work distribution
only among their nearest neighbours [Els00][Gho99]. These algorithms allow the processors

to send and receive workunits to and from their topologically neighbouring processors. This
approach minimizes the communication cost for two reasons: (1) The number of links a
workunit needs to traverse to reach the destination processor is always 1. (2) No more than
two workunits are transmitted over any given (full duplex) link at a time. However, it is
important to realize that for the nearest neighbouring scheduling algorithm to deliver good
performance, the communicating processors have to be topologically next to each other and
use a dedicated communication channel. For example, two workstations, even if there are
physically adjacent to each other, cannot take advantage of the nearest neighbour approach, if
they are connected via Ethernet or any kind of bus network. The disadvantage of such
algorithms is their inability to react to drastic changes in the loads of processors, especially if
the system has a large number of processors.

A second special group of dynamic scheduling algorithms is comprised of algorithms that
distribute workunits randomly among processors [Ad195][Ber99][Gho94][Mit97]. These
algorithms are based on statistical models and are able to provide estimations of maximum
loads on processors. The suitability of most random load balancing algorithms is limited to
cases where the workunits are equal in size. Furthermore, the algorithms assume that the
processors are homogeneous and have identical loads.

Some very unique and theoretical approaches to dynamic load balancing can be found in
literature. [Hui99] presents a mathematic model with a hydrodynamic approach. Processors
are considered cylinders, the diameters and heights of which define their computing
capabilities and loads. On the other hand, scheduling algorithms for loop-level parallelism are
discussed in [Lim99][Muk99]. These models operate on a lower level than other previously
described scheduling algorithms by distributing parts of loops to processors.

In addition to numerous studies of scheduling algorithms, tools for performing dynamic
scheduling have been developed which aim to lower the threshold to enable efficient parallel
computing [Dev00}[Ger91][Hen98]. In [Wil96][Wil98] an automated load balancing model
is presented. The model tries to estimate the computational requirements of workunits and
assigns the workunits with the most work to processors that have the lightest loads. This
approach is very close to the one presented in this thesis. However, the difference is in how
the workunits are actually distributed. The algorithm in [Wil96] assumes that loads on
processors are known by the load balancing algorithm, whereas the algorithm developed by
the author does not require any knowledge of the loads on processors.

Static or dynamic scheduling is either conducted in a distributed or a centralized fashion. A
distributed algorithm is executed by all participating processors. In general, the algorithm
produces a workload for the executing processor. However, it is possible that the algorithm
has to inadvertently generate workloads for each processor in producing a workload for the
executing processor. The benefit of decentralizing the scheduling operation is to allow for the
better utilization of resources; no processor is without work even during the scheduling
phase. In addition, scheduling is faster if each processor does its part rather than a single
processor performing all scheduling operations. On the other hand, the drawback of the
distributed scheduling model is the communication overhead. In order for the processors to
perform scheduling they need information about the workloads and loads on other processors.
Thus, one processor can distribute the workload information (one-to-all broadcast) among the
processors, whereas each processor has to send information about its load to all other
processors (all-to-all broadcast). Furthermore, if more workunits are generated during the

27

computation phase, the distributed algorithm introduces more communication; the processor
handling the new workunit has to determine which processor it will send the workunit to by
first polling information about the loads on the workstations and then sending the workunit to
the assigned processor for execution.

A centralized algorithm is executed on a master processor that computes workloads for all
processors. The master processor can participate in the parallel computation phase, if so
required. The centralized scheduling algorithm can be either static or dynamic. In the case of
a static scheduling algorithm, the dedicated processor performs a one time distribution of the
workunits among the processors based on information obtained from the workunits and/or its
knowledge of the load situation. With a dynamic algorithm the situation is identical to the
dynamic scheduling in distributed algorithms. The workunits are distributed in two ways:
according to the workload information and/or the current load situation on processors, or by
requests from processors.

If the master processor does not participate in the computation, it can monitor the load
situation on processors while they process data. If a dynamic scheduling algorithm is
deployed, the master processor can improve the work balance by migrating workunit(s) from
an overloaded processor to a processor with less work [Boy02}{Cru01][Hey98][Wil98]. The
benefit of the workunit migration is the increased utilization of processors, which in turn
results in better speedups, although all actions performed by the master processor require
communication. Therefore, the implementation of the scheduling algorithm has to be
carefully designed so that the impact of communication does not negatively affect the overall
performance of the application. The scheduling algorithms designed and implemented as part
of this thesis do not consider load migration.

3.2.2. Requirements for Optimal Scheduling

Four issues can be identified and should be considered while designing and implementing a
scheduling algorithm:

- Application

System architecture

Interconnecting network

Other characteristics

Application defines the workload, and the workunits. It also provides a means to estimate or
measure the computational requirements of the workunits for more accurate work
distribution. The workload also indicates any possible dependencies between the workunits
and their degree of dependency. In some cases, parallelization of an existing sequential
application can prove to be very difficult due to the complicated structure of the application,
which causes numerous dependencies. This is usually the case when a sequential application
has been designed and implemented without any consideration to parallelization.

An application can provide additional information for a scheduling algorithm [Gri94]. This
information can be very helpful, if the workload is generated dynamically and/or workunits
provide information about their computational requirements. It is essential that a scheduling
algorithm is capable of adapting to changes in the workload and utilizing information
available about workunits. Furthermore, if more workunits are generated during the execution

28

of an application, a scheduling algorithm has to be able to distribute these workunits like any
other workunits. The possibility of extracting information about the workunits brings up an
interesting area of research. If a scheduling algorithm is provided with more accurate
information about the workunits than, say, just the total number of workunits, could the
scheduling algorithm run better and produce better results. The following subsections discuss
scheduling with application-specific information extracted during the runtime of an
application.

System architecture defines the parallel environment including processors and memories.
First and foremost, the processor layout has a significant impact on the design and
implementation of a scheduling algorithm as well as on its functionality. The layout specifies
how processors and memories are coupled. Next, possible heterogeneous features in the
system affect the scheduling algorithm [BenOOb]. It is not impossible for a distributed
memory system to have processors with different processing capabilities. On the other hand,
this is a highly likely situation in a network of workstations that has been built from
workstations in an office environment for example. Heterogeneity introduces further
complexity to a scheduling algorithm. The algorithm has to take the capabilities of the
processors into account to compensate for the work distribution. In order to perform
optimally the algorithm has to know the relative powers of processors during the actual
scheduling phase. This requires that the algorithm have knowledge of the characteristics of all
processors participating in the computation. However, obtaining the necessary information
and processing it, is not always possible. Thus, work distribution is considered to be
substantially more difficult in heterogeneous environments than in homogeneous
environments. However, one of the scheduling algorithms developed in this thesis proposes a
solution for scheduling in heterogeneous environments.

Interconnecting network affects the design and implementation of a scheduling algorithm
indirectly. Since a network (in conjunction with other hardware such as a network interface
card) defines the time spent on communication, a scheduling algorithm has to adapt to the
speed of the network [Cru01][Fer01][Kai99]. There are different characteristics of a network
that impact communication; with large data sets the network speed (throughput) can become
a limiting factor, whereas with small data sets the completion time and latencies can
dominate communication times. Very small data sets can be common, since work distribution
and synchronization messages are usually quite small. In general, if the number of messages
sent by a scheduling algorithm is minimized the impact of the network on the design and
implementation of a scheduling algorithm is miniscule.

Other characteristics are something that cannot be predicted beforehand, but the scheduling
algorithm should be able to react to them. Perhaps, the most significant characteristic from a
scheduling algorithm perspective is load fluctuations on processors participating in the
computation. It is possible that other users are simultaneously using some of the processors.
In a time-share operating system a time slice is allocated for each application. Assuming the
task priorities are identical, the task that is part of a parallel application has to share the
processor with other tasks. The execution of this task is slowed down by a factor of » — /,
where 7 is the number of running (active) tasks on the processor. If such a situation occurs
on even one processor, it increases the total execution time of the parallel application
considerably. Therefore, a scheduling algorithm either has to know loads on processors prior
to distributing the workload or has to adapt to load changes dynamically. Both approaches
require that the scheduling algorithm have up-to-date information about the load situation on

29

the processors. The latter approach assumes that the scheduling algorithm is capable of
migrating workunits from a heavily loaded processor to ones that are less loaded. The job of
the scheduling algorithm becomes slightly easier, if the processors participating in the
parallel computation are dedicated for one user at a time.

At best, a scheduling algorithm is capable of incorporating each of the four characteristics.
However, in most cases such a generic algorithm would be very complex and introduce an
excessive amount of overhead. Since the ultimate goal of a scheduling algorithm is to
generate optimal load balance without introducing any overhead, it is prudent to investigate a
mechanism to further improve scheduling mechanisms. Thus, application-specific scheduling
is introduced which tries to take into account some of the characteristics discussed earlier in
order to optimize the performance of a parallel application.

3.3. Application-Specific Scheduling

An application-specific scheduling algorithm i1s a term given to an algorithm that
incorporates information extracted from or provided by an application during its execution to
optimize scheduling decisions.

3.3.1. Introduction

A scheduling algorithm requires accurate information about workunits to achieve the most
optimal work distribution. In conjunction with the workunits, the scheduling algorithm needs
information about the computational requirements of the workunits. This information is
specific to an application and its workload. Hence, the name for the scheduling method. With
the additional information, the capabilities of a scheduling algorithm are increased
substantially. The scheduling algorithm can make decisions based not only on the number of
workunits but also on the computational requirements of the workunits. The scheduling
algorithms developed in this thesis consider only the application-specific information when
distributing the workunits. Operations such as querying information about loads on
processors to further refine the scheduling decisions are not taken into consideration {Dai00].

Generic application-specific scheduling has not been studied extensively in literature. The
research effort that comes closest to what is proposed in this thesis can be found in [Ber96].
In fact, the authors use the term application-level scheduling while introducing a framework
for scheduling agents. These agents operate between an application and a parallel
environment to determine an optimal set of processors on which to execute the application.
The agents are provided with information about the application as well as the parallel
environment. The user gives the application information to the agent, whereas an external
application provides the environment information. The ultimate purpose of the work done by
[Ber96] is to create a number of scheduling agents that are suitable for particular applications.
This approach to application-specific scheduling is a more structured and high-level approach
than the one presented in this thesis.

Three generic scheduling algorithms have been enhanced to make use of the application-
specific information [Publication 4]. The algorithms are generic in the sense that they do not
dictate what the application-specific information is and how it is extracted. It is enough for
the algorithms to be able to compare and order the workunits based on their computational
requirements. Furthermore, one of the algorithms offers a solution to the load situation

30

problem discussed briefly in the previous subsection; the algorithm (Algorithm 3) eliminates
the need for constant load updates.

The following assumptions are made with respect to the design and implementation of the
three scheduling algorithms:
- The workload has been partitioned into workunits of various sizes

- The size of a workunit determines its computation requirements.

The workunits are randomly stored in a data structure that allows each workunit to
be uniquely addressed.

- The sizes of the workunits are uniformly distributed.

Note that no performance results are given in conjunction with the descriptions of the
algorithms. The results of the algorithms are presented with the case studies in Chapter 5 and
[Publication 4].

3.3.2. Algorithm 1

The first algorithm (Algorithm 1) is depicted in Figure 3-1. The generic version of the
algorithm distributes workunits among processors by allocating an equal number of
workunits for each processor. In order to perform such an operation the scheduling algorithm
only needs to know the total number of workunits. This information is not considered
application-specific information, since by distinguishing the workunits, the number of the
workunits can be derived. All processors execute the algorithm concurrently. Each processor
determines the number of workunits and which workunits it is supposed to process.

1. Calculate an average number of
workunits per processor (i7).

2. Assign the average number of
workunits to processors, so that the
first processor receives the first &
workunits, and so on.

3. Assign the last r processors an
additional workunit, if the average
number of workunits calculated in
Step 1 had a remainder 7 (r > 0).

Figure 3-1. The generic scheduling algorithm 1.

The application-specitic version of Algorithm | incorporates information about the workunits
into the scheduling procedure. The algorithm is provided with information about the
computational requirements of the workunits. The algorithm, shown in Figure 3-2, first
computes the average number of work per processor. Then, each processor is assigned the
average amount of work to process, regardless of how many workunits are assigned. In fact,
the distribution is optimized so that the amount of work assigned to each processor (except
the last one, which gets all remaining workunits) can either be more or less than the average.
An additional workunit may be assigned to a processor even if it brings the amount of
assigned work over the average, as long as the then increased amount of work assigned is
closer to the average amount than before. Since the algorithm can assign more than the

31

average amount of work to processors, the possibility that the last processor has substantially
more work than all other processors is minimized. The scheduling procedure requires slightly
more time due to the extra computation introduced by the algorithm; the algorithm has to
calculate the total amount of work and the average amount of work. Furthermore, the design
of the algorithm dictates that each processor executing the algorithm must produce workload
distributions for all processors that have a lower rank than the executing processor. However,
the application-specific algorithm is capable of distributing the workload more equally than
the generic algorithm.

1. Compute the total amount of work by
adding the sizes of workunits together.

2. Calculate the average amount of work
per processor (#).

3. Assign the workunits to processors
(except the last one) so that each
processor is assigned with the average
amount of work.

4. Assign all the remaining workunits to
the last processor.

Figure 3-2. The application-specific algorithm 1.

3.3.3. Algorithm 2

The second algorithm (Algorithm 2), depicted in Figure 3-3, distributes workunits among
processors based on a statistical assumption. It is assumed that workunits of various sizes are
distributed equally in the data structure that contains all the workunits. Therefore, the generic
version of Algorithm 2 selects workunits to process according to the following procedure.
First, each processor selects the first corner to be the jth corner, where j is the rank of the
processor. Second, the processors select workunits by adding p to j, where p is the number of
processors, until j is greater than the number of workunits. The algorithm minimizes the
possibility (based on statistical assumption) that one processor receives all the large
workunits. The problem with the generic version of Algorithm 2 is that it does not take into
consideration the real computational requirements of the workunits.

1. Assign the first workunits to each
processor from the workunit data
structure starting at an index specified
by its rank.

2. Assign the remaining workunits to
processors starting from the initial
workunit at an interval of p workunits,
where p is the number of processors.

Figure 3-3. The generic scheduling algorithm 2.

The application-specific scheduling algorithm behaves in a manner similar to the generic
algorithm in terms of how the workunits are selected by the processors. However, the actual
computational requirements of the workunits are determined with the help of the application-
specific information. In addition, the workunits are sorted in descending order according to

32

the amount of work they require. When the scheduling algorithm is executed by all
processors, they select the most computational intensive workunits first. This has two
benefits: first, the amount of work on processors is optimized with a small amount of
overhead (sorting), second, the time processors have to wait for the last processor to finish its
work should be minimized. Since all the processors start by processing large workunits, the
last workunits to be processed are very small, and quick to process. Figure 3-4 shows
application-specific scheduling algorithm 2.

1. Sort the workunits in descending order
by their sizes.

2. Assign the first workunits to each
processor from the workunit data
structure at the index specified by its
rank.

3. Assign the remaining workunits to
processors starting from the initial
workunit at an interval of p workunits,
where p is the number of processors.

Figure 3-4. The application-specific scheduling algorithm 2.

3.3.4. Algorithm 3

The third algorithm (Algorithm 3, WorkPool algorithm) is based on the concept of a workpool
or processor farm [F1e99][Wag97]; a single processor acts as a server (words server and
master are used interchangeably) distributing workunits one at a time to client processors as
per their requests. The server processor does not, necessarily, participate in the parallel
computation. The responsibilities of the server processor are to receive work requests from
client processors, and to reply to them.

The generic algorithm dynamically assigns workunits to client processors in no particular
order. Thus, the algorithm does not consider the computational requirements of workunits;
the workunits are distributed in the order in which they are stored. Figure 3-5 shows the
generic scheduling algorithm 3 for the master processor. The algorithm for the client
processor is depicted in Figure 3-6.

1. Wait for a request from a client
Processor.

2. If unprocessed workunits exist, send
one workunit as a reply to the client
processor, and jump to Step 1.

3. If no unprocessed workunit exist, send
the end-of-computation message as a
reply to the client processor.

4. If the end-of-computation message
sent to all client processors, exit.

Figure 3-5. The generic scheduling algorithm 3 (server processor).

33

Results (see Chapter 5 and [Publication 4]} show that the generic version of algorithm 3 is
very efficient and is able to produce good load balance results in certain cases. However, the
algorithm is not able to produce the most optimal results unless the workunits require an
equal amount of processing time.

—

Send a request to the server processor.

2. Process the workunit received from the
server processor, if not an end-of-
computation message.

3. Jump to Step 1, if data was not an end-

of-computation message.

Figure 3-6. The generic scheduling algerithm 3 (client processer).

Since the workunits are not normally identical, a more sophisticated version of the algorithm
was developed. The application-specific version of the algorithm takes into account the actual
computation requirements of the workunits. In addition, the workunits are distributed among
the processors so that the more complex workunits are processed first. Figure 3-7 illustrates
the application-specific algorithm for the server processor. The algorithm is divided into two
parts. The first part consists of Step 1. The server processor performs the step before serving
any requests from client processors. In Step |, the workunits are sorted in descending order
based on their computational requirements. The second part of the algorithm includes Steps
2-5. This portion of the algorithm is performed during the parallel computation phase. In Step
2, the server waits for requests from client processors. A request indicates to the server that a
client processor is out of work. The server assigns the requesting processor a workunit to
process in Step 3, unless all workunits have been processed. If there are no workunits to
assign, the server sends a special message back to the client processor in Step 5. The special
message indicates to the client processor that it should terminate its execution. The server
processor terminates the execution of the algorithm once all the workunits have been
assigned and all the client processors have been sent the special message indicating that no
more workunits are to be processed. The algorithm for the client processors does not differ
from the one presented for the generic scheduling algorithm in Figure 3-6.

1 Sort workunits based on their
computational requirements.

2 Wait for a request from a client
processor

3 If unprocessed workunits exist, send
the largest workunit as a reply to the
client processor, and jump to Step 2.

4 If no unprocessed workunit exist, send
the end-of-computation message as a
reply to the client processor.

5 If the end-of-computation message
sent to all client processors, exit.

Figure 3-7. The generic scheduling algorithm 3 (server processor).

34

The algorithm is capable of distributing workunits among processors in an optimal way
without complex and time-consuming work distribution computations. Scheduling occurs by
the client processors, which request more work after completing their current work.
Furthermore, since workunits are sorted in descending order, the ones requiring the most
work are processed first. This, in turn, reduces the time processors have to wait at the end of
the computation phase, since the processors should finish their last workunits more closely
together.

The algorithm is designed to work with a data-parallel application where workunits are
known prior to the computation phase. For the generic algorithm 3, information about the
number of workunits is adequate. However, the application-specific algorithm requires
additional information about the workunits. The algorithm either has to determine the
computation requirements of the workunits or this information has to be provided by the
programmer. For example, in the case of the GSM network simulator (See Chapter 5)
computational requirements of the workunits can be determined at runtime by examining the
workunits.

The only increase in the complexity of the application-specific scheduling algorithm 3 over
the generic algorithm is the sorting operation. A number of fast sorting algorithms exist, thus
the impact of this operation is minimal. Furthermore, even if the application-specific
scheduling algorithm takes a little longer to execute, the improved work balance achieved
compensates for the overhead introduced.

3.3.5. Implementation Issues

All three scheduling algorithms were implemented to quantify their performance and impact
on work balance. The results achieved are shown and discussed in Chapter 5. The results
indicate that the WorkPool scheduling algorithm performed considerably better than the other
two algorithms. Note that no hardware related optimizations were considered, since the
algorithms were designed to run in any parallel environment. Due to the superior
performance of the WorkPool scheduling algorithm, implementation issues of the other two
scheduling algorithms are not considered.

The implementation of the applications-specific WorkPool algorithm has two variants: one
for shared memory environments, and another for distributed memory environments and
networks of workstations. The following subsections discuss the special features of the two
implementations.

Shared Memory Environment

The implementation of the WorkPool scheduling algorithm in a shared memory environment
does not require explicit communication. Threads do not need to request a new workunit per
se, they can simply fetch a new workunit by utilizing the shared memory. A synchronization
method needs to be put into place to provide threads with unique workunits. The
synchronization method guarantees exclusive access for a thread to obtain and increase an
index to the next unprocessed workunit. The protected area of code consists only of
assignment and addition operations. Thus, the synchronization does not impose a great deal
of overhead. Naturally, the synchronization primitives (mutex lock and unlock) generate
overhead but their impact on the total execution time is minimal.

35

Distributed Memory Environment and Networks of Workstations

In the implementation for distributed memory environments and networks of workstations,
one processor is dedicated to act as a server processor. The responsibility of the server
processor is to assign workunits to other processors. The client processors send requests to
the server processor, which, in turn, processes the requests and sends back replies. The
requests and replies are communicated via an interconnecting network. This communication
introduces overhead, which has an impact on the performance of a parallel application.

For a data-parallel application the programmer has two options for implementing the
scheduling algorithm. The algorithm can either send a complete workunit to the requesting
processor or merely an index to the workunit in the memory of the requesting processor. The
former method is very straightforward but also more expensive. The latter method consumes
less time but requires that the client processors have information about all workunits.

3.4. Discussion

It is a well-known fact that a scheduling algorithm plays a major role in achieving good
speedups. Unfortunately, there is no single algorithm that is suitable for all parallel
environments and applications; a number of scheduling schemes and algorithms have been
developed and presented. In this chapter a concept of application-specific scheduling for
data-parallel applications was introduced and studied with three scheduling algorithms. It was
shown that providing additional information to a scheduling algorithm increases its capability
to further improve the work balance among processors. It was concluded that an application-
specific scheduling algorithm (based on the concept of a work pool) is able to produce very
good scheduling results. The results are shown in detail in Chapter 5 and [Publication 4].

36

Chapter 4. MPIT

This chapter introduces the MPIT (MPI-Threads) programming paradigm that was
implemented as part of the research work for this thesis. The MPIT is an efficient and user-
friendly paradigm for writing data-parallel applications in networks of SMP workstations
(SMP NOWs). The paradigm utilizes the best characteristics of shared and distributed
memory environments, while hiding communication operations from the programmer. Also,
the MPIT paradigm is capable of performing the automatic scheduling of workunits.

4.1. Introduction

The MPIT provides a new programming paradigm for SMP NOWSs. The paradigm can be
considered an extension of the MPI message passing library. The architecture of the MPIT is
comprised of two parts. The first part is the MPI message passing library; the MPI is used to
transfer data among workstations. The second part is the POSIX thread library; the thread
library is responsible for performing the actual computation as well as the synchronization of
the processors in a workstation. The MPIT programming paradigm has been implemented
with C programming language and provides an MPI-like interface for the programmer.

The benefits of MPIT include:

1. Low resource utilization and overhead. The use of threads rather than processes is
more efficient in an SMP workstation and introduces less overhead. For example,
in a case where a context switch is required, it is more expensive to swap out a
process than a thread. Furthermore, the MPIT allows for dynamic thread creation
and termination. This provides the programmer with a tool to control the resource
utilization of an application in a workstation.

2. Fast communication among processors in a workstation. Since only one process is
created in a workstation and threads are used to utilize all processors, the
communication occurs within the process. The communication within the process
is substantially faster than communication among processes.

3. Low communication overhead through communication-computation overlap. The
architecture of the MPIT allows for a fast communication start-up (completion
time) that minimizes the impact of communication. This feature is achieved with a
dedicated communication thread located in each workstation.

4. Support for heterogeneous networks of workstations. Each workstation can be
configured to have any number of threads initially. Furthermore, the number of
threads can be increased or decreased based on the load in a workstation or on the
programmer’s requirements for computing power.

5. Automatic scheduling functionality. The MPIT library has an implementation of
the WorkPool scheduling algorithm. The scheduling functionality is hidden from
the programmer and performed automatically by the communication thread. This

37

allows for fast scheduling that does not impact the execution of the actual
application.

Since the MPIT is implemented on top of the MPI environment, it can support any
programming model facilitated by the MPL. However, the MPIT is geared towards data-
parallel computing. The user is allowed to define one function that is executed by all the
worker threads after their creation. This function is where the user can control the execution
of the worker threads. The user is not required to make all the worker threads run the same
code segment, In fact, it is possible that each worker thread is assigned with a specific task
turning the application into functional parallel software. The MPIT does not restrict the use of
functional parallelism, although the scheduling mechanism is intended for the data-parallel
programming paradigm; the automatic scheduling performed by the communication thread
(see Subsection 4.7.) assumes that the data being distributed are separate workunits to be
processed by individual threads in a data-parallel manner. Sometimes, an application
combining the two programming models is the most suitable implementation.

The availability of threads instead of processes in a workstation slightly changes the
programming model [Fah95]. The programmer has to consider issues such as synchronization
and communication among threads in a workstation. For synchronization, the POSIX thread
library offers a number of methods [Nor96}: mutual exclusion locks, condition variable, and
semaphores. Since it is up to the programmer to implement the function executed by the
threads in a workstation, he/she has to take care of the synchronization at the application
level. For implementing communication the programmer has two options. The first option
includes the direct utilization of the shared memory to facilitate the sending and receiving of
messages between threads. This can occur through a memory read or write operation. A
synchronization method is, possibly, required to guarantee that the variables used in the
communication are not accessed simultaneously by more than one thread. The other solution
for communication among threads is to use the MPIT send and receive operations. The
communication thread is able to handle messages sent among threads in a workstation. This
method provides automatic synchronization but is a slightly slower implementation.

The MPIT provides a thread-safe interface for the communication operations even if the
underlying MPI implementation is not thread-safe. Thread-safety, with respect to the MPI,
has been achieved by concentrating all MPI communication operations on one
(communication) thread. Thus, thread-safety is guaranteed, if the worker threads utilize the
communication routines provided by the MPIT library. If the worker threads make any calls
to the standard MPI communication routines, the underlying implementation of the MPI
library determines whether the operations are thread-safe.

4.2. Related Work

A number of articles have been published about using threads with MPI. A multi-threaded
MPI implementation is discussed in [Pro0l]. The authors discuss how to make an MPI
implementation, mpich, thread-safe and multithreaded. The focus of the paper is on how to
change the implementation of the MPI to support multi-threading rather than how to provide
the programmer with a multi-threaded programming paradigm on top of MPL

In [Chi98] the authors present a multithread communication library that is built on top of the
MPI. The study considers a thread execution model where a master thread creates threads that

38

perform the computation. These threads may call only collective communication routines
provided by the library. However, if data is to be received or sent, the threads initiate a
communication call and enter a barrier. The communication routine is completed when all
threads have initiated the communication call and the call has been completed. After the
completion of the communication operation the threads are allowed to continue their
execution. This kind of multithread communication library differs from the one presented in
this thesis in various ways. The MPIT does not require that the threads in a workstation be
executed according to a loosely synchronous model. However, the MPIT does not, currently,
support collective communication routines. The work presented in [Chi98] does not consider
scheduling, whereas the MPIT includes an application-specific scheduling algorithm.

The research presented in [TanOl] is a threaded MPI implementation for clusters of
workstations called the TMPI (Threaded MPI). The TMPI implementation utilizes threads
instead of processes in a workstation to take advantage of multiple processors. The
communication among workstations is handled by a dedicated TMPI daemon thread in each
workstation. The TMPI implementation offers a subset of the MPI commands found in the
mpich implementation {Gro96). The major differences between the TMPI and the MPIT are
the structure of the TMPI and scheduling. The TMPI architecture consists of a number of
layers similar to the architecture of the mpich implementation. However, the TMPI
implements its own point-to-point and collective communication routines. The TMPI is not
implemented on top of the MPI message passing library, whereas the MPIT paradigm is built
on top of the MPI. The other difference between the TMPI and the MPIT is that the MPIT
has a built-in scheduling mechanism that does not exist in the TMPI.

[Hai94] presents a system called Chant that resembles the MPIT environment. The Chant
system provides point-to-point communication mechanisms for individual threads. It requires
that communicating threads know that a communication operation is about to occur; the
communication occurs in a synchronous fashion. In fact, the major difference in the Chant
system compared to the MPIT paradigm is the way the communication is handled. The Chant
system requires synchronous communication between two threads, whereas the MPIT
paradigm allows for asynchronous as well as synchronous communication among
workstations and threads.

In [Tan99] a programming paradigm, called COMPaS, for a cluster of SMP (Pentium Pro)
workstations is presented. The paradigm utilizes a message passing mechanism called
NICAM that was implemented by the authors. The NICAM is an active message —like system
that supports remote memory operations with the use of message handlers [Par99]. The
thread execution in a workstation is performed in a bulk synchronous fashion whereby a
computation phase is followed by a communication phase [McC94]. Only a single thread
(called the parent thread) is allowed to communicate with other workstations. The COMPaS
system is a limited version of the MPIT environment in the sense that it does not support the
free communication of threads and requires a bulk synchronous programming model.
Furthermore, the NICAM message passing paradigm is not as portable as the MPI.

A programming paradigm called SIMPLE for clusters of SMP workstations is discussed in
[Bad97]. The paradigm is a full programming environment for data-parallel applications. It
provides a set of tools to write an application that is then distributed among workstations and
threads in them. The necessary communication is implemented by the tools and handled by
the system at runtime. Although the paradigm supports the MPI, the authors have developed

39

their own message passing library citing that the overhead introduced by the MPI is too
excessive. The SIMPLE paradigm allows for threads to communication with each other and
to be synchronized in a similar way than in the MPIT. However, the SIMPLE paradigm does
not support heterogeneous networks of SMP workstations or facilitate scheduling as the
MPIT does.

A runtime system called Nexus is presented in [Fos96]. The purpose of the system is to
integrate threads and communication. This is achieved by the use of threads, global pointers,
and remote service requests. Threads operate on global pointers by issuing remote service
requests. The global pointer specifies the data to be processed and the target context that
should process the data. With the use of a remote service request the data is communicated to
the target context and processed. A separate thread on the target context is generated to
perform the computation. All this takes place without interrupting the work of the target
context. The context does not have to call a receive operation to retrieve the data and to
process it. The Nexus system automatically handles all necessary operations on the target
context. Although the system provides an interesting method (closely related to RPC without
synchronization}, it does not address issues such as scheduling.

In [Hen98] a programming paradigm implemented on top of the MPI message passing library
is presented. This programming paradigm extends the BSP model to support communication.
In addition, the paradigm defines a term called virtual processes. The virtual processes are
the entities that run the code. The authors give examples about possible implementations of
virtual processes. Threads are mentioned as one of the implementation options. The
programming paradigm presented provides a limited functionality to the programmer. The
computation is divided into four parts that include initialization, local computation, local
result gathering, and global result gathering. Similar to the MPIT, it does allow threads to
communicate with each other. However, the MPIT does not require that an application follow
the BSP model.

Finally, the OpenMP programming model has been proposed as a solution to write parallel
applications for shared memory environments [Biic02][Had02][Nik0O]. Studies have also
been conducted to incorporate the OpenMP with the MPI to provide a programming
paradigm for distributed memory environments and networks of SMP workstations
[Cap00][Hen00][Hu99]. The OpenMP programming paradigm provides a compile-time
parallelization mechanism that allows for the programmer to gradually (one part at a time)
turn a sequential application into a parallel application. The paradigm follows the fork-join
model for thread creation and termination; threads are created for each time a parallel section
in the code is encountered. What has made the OpenMP such a popular tool for writing
application is the fact that the thread creation, maintenance, synchronization, communication,
and termination are all hidden from the programmer. The MPIT programming paradigm
presented in this thesis operates on a lower level than OpenMP, which gives more control to
the programmer, but still hides certain functionalities from the programmer.

4.3. Architecture of MPIT

The MPIT is build on top of the MPI message passing library. The MPI provides the message
transfer functionality for communication among workstations. Currently, the MPIT
implementation offers an interface for the MPI point-to-point communication operations.
However, due to the characteristics of the MPIT programming paradigm certain types of

40

collective communication routines are supported (such as a message can be sent to all threads
in a workstation) as well as normal MPI collective communication routines can be used.

The implementation of thread functionality in a workstation is the heart of the MPIT
programming paradigm. The internal components of the MPIT are depicted in Figure 4-1.
The MPIT operates within a single process in each workstation. Worker threads are created
inside the process according to a configuration parameter. The worker threads process data
stored in the global (shared) memory. The global memory can also be used for
communication among the threads. If the threads need to communicate with threads in other
workstations, they have to use the services provided by a communication thread. A separate
communication thread is created for each workstation. The communication thread is
responsible for handling all incoming and outgoing messages.

Figure 4-1 also shows the message flow. When an MPI message is received from a network
(Step 1), the communication thread stores it to the Data-In queue (Step 2) for immediate
retrieval by a worker thread (Step 3). If a worker thread needs to send data, the data is stored
to the Data-Out queue (Step 4). The communication thread calls an MPI send operation to
initiate the message transfer (Step 5). The message is sent to the network by the MPI (step 6).
With the help of the communication thread the MPIT programming paradigm achieves low
communication-to-computation ratio increasing the performance of a parallel application.

The main functionality of the MPIT is hidden in the communication thread. The worker
threads have an interface to the communication thread allowing them to send and receive
messages to and from other workstations or threads (the interfaces are discussed later in this
chapter). The MPIT send function allows for the worker thread to define a workstation and a
thread in that workstation as a target of the communication operation. The worker thread can
also use a special thread number to cause the message to be processed by any thread or all
threads in the target workstation. The send operation creates a new entry in the Data-Out
queue (Step 4). This is the main operation performed in the function called by the worker
thread. Therefore, a communication request generates very little overhead and minimizes the
communication-to-computation ratio (performance results are given later in this chapter).
Also, a signal is sent to the communication thread as part of the function called by the worker
thread. The signal indicates to the communication thread that new data has been entered to
the Data-Out queue. The data is then sent by the communication thread to the receiving
workstation. Another responsibility of the communication thread is to monitor the MPI input
buffer for possible messages from other workstations. If a new message is discovered in the
MPI message input buffer, the communication thread issue an MPI function call to retrieve
the message. The retrieved message is stored in the Data-In queue. The Data-In queue holds
all messages in order they were received. Once a worker thread issues a recejve operation
(Step 3), the Data-In queue is searched for a message that matches the message parameters
(such as type and source). If no message is found, the worker thread either continues its
execution or waits until a matching message is received. In the latter case, the worker thread
relinquishes the processor on which it was running. This maximizes the utilization of
processors. In the case where a message is found in the Data-In queue, the receive operation
is very fast. It does not require access to the MPI buffer or memory copies; the data is
returned from the Data-In queue that is located in the memory allocated for the process.

41

| 15 | |

ii ! MPI send buffer | Data-Out queue -
} ‘/ o : /f ‘ ‘ / : . /

! Lo 4 Y S

| Commiunication \, \
thread ‘ Worker\fhreads \
‘ .) 5

7 /
v ! /
/ / /
/ /
/' /' ,-

RERY 1

Data-In queue

Figure 4-1. The internal components of the MPIT and the message flow. (1) An MPI
message is received from a network. (2) The communication thread retrieves message
and stores it to the Data-In queue. (3) Worker threads receive data from the Data-In
queue. (4) Messages sent by the worker threads are stored in the Data-Out queue. (5)
The communication thread initiates MPI send operations for the messages in the Data-
Out queue. (6) An MPI message is sent out from the process.

The creation of worker threads in the MPIT is hidden from the user. Each thread is assigned a
unique number within a workstation. This thread identification can be used by the
programmer to identify threads and synchronize their execution. Furthermore, the
programmer is capable of creating more threads as well as terminating existing threads during
the execution of the application. This feature allows for the programmer to dynamically
control the level of parallelism in a workstation.

4.4. Communication Thread

The communication thread is created during the initialization of the MPIT environment. The
thread executes code that is included in the MPIT implementation. This code handles all
communication operations within and between workstations. Thus, the MPIT programming
paradigm facilitates threads sending messages to other threads in the same workstation and in
other workstations. A message addressed to a thread in the same workstation never enters the
network (not even the loopback interface). The message is processed by the communication
thread in the sense that the message is moved from the Data-Out queue to the Data-In queue.

42

The implementation of the communication thread is relatively complicated, since it has to be
able to perform operations initiated by the worker threads, incoming messages, and incoming
scheduling requests (see subsection 4.7). Therefore, it is possible that the communication
thread requires a dedicated processor. In such a case, the number of processors available in a
workstation for the actual computation is decreased. In a dual processor workstation the
dedication of one processor for the communication thread is not a feasible option. As a
solution the MPIT paradigm implements a tightly coupled synchronization method that
allows the communication thread to be active only when necessary. The synchronization
scheme has been implemented with mechanisms provided by the pthread library. All
(synchronization) signalling between threads and the MPI in the MPIT is handled with the
condition variable primitive. Thus, it is important to note that the term signal refers to an
internal signal within the pthread library that is used by the condition variable primitives. In
general, the MPIT library does not impose any restrictions on how normal signals are handled
on the worker threads. It is left up to the user to block the deliveries of unwanted signals. On
the other hand, the communication thread only processes signals that cannot be blocked.

The synchronization mechanism in the communication thread is as follows:

- When a worker thread issues a send operation, the data to be sent is copied to the
Data-Out queue. The function that performs the copy operation signals the
communication thread that new data has been entered into the Data-Out queue. The
signal wakes up the communication thread, which then performs the necessary
communication operations.

- When a message arrives from another workstation it is first processed by the MPI.
The MPIT can be tightly coupled with the MPI implementation. What this means is
that after receiving a message from the network, the MPI signals the communication
thread in the MPIT to process the message. Once the communication thread receives
the signal, it issues an MPI receive command to retrieve the message and stores it to
the Data-In queue. The tight coupling requires minor meodifications to the MPI
implementation. If such modifications cannot be made, the communication thread can
be loosely coupled with the MPIL The loose coupling implements a polling
mechanism where the communication thread checks for new messages at certain
intervals.

- After the communication thread has retrieved a message and placed it to the Data-In
queue, it signals all worker threads that are waiting to receive data. This is required
since it is possible that a worker thread has issued a receive operation and the data has
not yet been received by the communication thread. In this case, the execution of the
calling worker thread is halted assuming that a blocking receive operation was used.
Therefore, when the communication thread has retrieved and stored the received
message, all threads waiting for messages are signalled. The signalled threads then try
to match the new message with their requests. If no match is found, the threads go
back to sleep to wait for another message from the network.

The execution of the communication thread has to be sequenced with the execution of the
worker threads unless a separate processor has been dedicated for the communication thread
or the number of worker threads is less than the total number of processors available in the
system. Since applications have different requirements and preferences for communication
and computation, the MPIT paradigm offers a mechanism for controlling the execution of
communication and worker threads. This mechanism has been designed, but not yet

43

implemented. However, a short introduction of the MPIT thread priority mechanism follows.
In the MPIT, the user is capable of assigning different priorities to the communication and
workers threads. In fact, each worker thread can even have different priority. It should be
noted that the priority scheme is based on the POSIX thread priorities. If the underlying
thread implementation does not support thread priorities this option is not functional in the
MPIT. With the proper priority scheme the user can give preference to one particular worker
thread, or all of them, over the communication thread. In the latter case, the communication
thread is only executed when no worker threads are executed. Thus, the worker threads are
allowed to maximize their share of the processors at the expense of the communication
thread. This kind of priority scheme leads to delays in the processing of messages sent by the
worker threads and received from other workstations. However, if such a scheme is desired,
assigning the worker threads with higher priorities than the worker thread boosts the parallel
computation phase of an application. On the other hand, if the communication is a significant
factor in the parallel computation, a higher priority can be assigned to the communication
thread than to the worker threads. This scenario guarantees that the communication thread is
executing whenever messages are to be processed and it will not be context switched before it
decides to give up the processor. Another solution to improve the performance of the
communication thread is, of course, to use a dedicated processor.

The main purpose of having a separate communication thread is to minimize the
responsibility of the worker threads for communicating; by deploying the communication
thread, the worker threads can focus on the actual computation. Thus, the communication
thread provides the means for simultaneous communication and computation.

4.5. Worker Threads

The worker threads perform the actual computation. They are created during the initialization
of the MPIT environment. The user needs to specify the number of threads created for each
workstation and the function (with one argument) that the threads execute. The MPIT does
not impose any restrictions or limitation on what the worker threads can do; the worker
threads are not restricted from calling any library calls. The programmer has to consider the
issues involving thread-safety among the worker threads, since the MPIT is not capable of
providing thread-safety for threads within a workstation (as noted earlier, the MPIT does
provide thread-safe MPIT communication routines). Furthermore, it is up to the programmer
to handle communication within the threads in a workstation and to perform any required
synchronization. The programmer can use the MPIT send and receive operations to handle
communication among threads (see Subsection 4.6.2). The MPIT also provides a set of
functions to perform thread synchronization. At the end of the computation, the programmer
must make sure that the execution of the worker threads is properly terminated. The MPIT
environment cannot be terminated until all worker threads have completed their work or have
been cancelled.

4.6. Programming Interface

The programming interface is divided into three parts. The first part consists of a set of
function calls to set up and terminate the MPIT environment. The second part includes
functions to perform point-to-point communication among workstations. The third part is
comprised of function calls for thread synchronization and maintenance.

44

4.6.1. Setup and Termination of MPIT

The MPIT environment must be initialized in a manner similar to the MPL. It is important to
notice that the MPI environment needs to be initialized prior to the initialization of the MPIT
environment. The initialization of the MPI environment was not included in the MPIT
initialization process, since that allows for an application to be executed as a single threaded
MPI application (a conventional MPI application) before the MPIT environment is initialized.
Furthermore, for testing purposes in a stand-alone (SMP) workstation, this approach makes it
possible to initialize the MPIT environment without initializing the MPI environment.

The MPIT initialization function is shown in Table 4-1. The first argument of the function is
the name of a file that contains information about the workstations in the network. The file
specifies the names of the workstations, the number of threads to be created in each
workstation, and the relative powers of the workstations. The relative power information can
be used by scheduling algorithms to optimize the distribution of workunits with respect to the
computing capabilities of the workstations.

The initialization of the MPIT environment creates the communication thread and the worker
threads. The creation of the communication thread includes setting up of the Data-In and
Data-Out queues, and initializing the signalling mechanisms. Once the communication thread
is successfully created and initialized, the worker threads are created. These threads start to
execute the function defined in the MPIT Init function call (with the argument defined also in
the MPIT Init call). Once the MPJT [nit function call returns, the communication thread is
ready to receive and send messages, and the worker threads execute their code. The main
thread that called the MPIT nit function has two options. (1) It can call the MPIT
termination function and relinquish the processor until all the worker threads have
terminated. (2) It can participate in the computation as any another worker thread.

The initialization of the MPIT environment takes approximately 1.1 milliseconds in a
Pentium I1T 750MHz workstation running the Linux operating system. The corresponding
times for TCP (connection establishment) and MPI are 1.0 and 3.0 milliseconds, respectively.
Thus, the initialization of the MPIT environment is very close to the initialization time of a
TCP socket connection.

Table 4-1. MPIT initialization and termination function calls.

MPIT function call ~_Description
MPIT Tnit(machinelInfoFile, Initialize the MPIT environment.
threadFunc,
threadFuncArgs)
MPIT Terminate () Terminate the MPIT environment.

The MPIT termination call is also shown in Table 4-1. This function should only be called by
the main thread. The function first waits until the communication thread and all the worker
threads are terminated. Then, the termination function releases the memory allocated for the
communication thread, and the Data-In and Data-Out queues. The function does not
terminate the MPI environment. Therefore, the execution of the application can continue after
the termination of the MPIT environment as a normal MPI application. Furthermore, it is
possible to reinitialize MPIT without restarting the application.

45

4.6.2. Point-to-Point Communication

The MPIT programming paradigm offers a set of point-to-point communication operations to
carry out data transfers from one workstation/thread to another. The paradigm does not
impose any restrictions on when a thread can send or receive data; thus, all threads are
allowed to send and receive data as required. Due to the implementation of the MPIT, data
transfers are handled by the communication thread. Therefore, the communication routines
available for sending messages only add the messages to the Data-Out queue allowing the
thread to continue its execution immediately.

In order to identify the sender and receiver of a message, the following naming scheme was
implemented. Each workstation has a unique process identification (rank) that is assigned
when the MPI environment is initialized. This identification is used by the worker threads to
send out messages to other workstations. Each worker thread has an identification number
that uniquely distinguishes it from other threads in a workstation. The identifier is assigned to
the worker thread when it is created. The identifier O is reserved for the main thread, so the
worker threads created have identifiers starting from 1. This kind of naming scheme requires
that in order to uniquely identify a thread in the MPIT, workstation and thread identifiers
must be known.

Table 4-2. MPIT point-to-point communication calls.

MPIT function call Description

MPIT Send(Send a message to another
data, numElmnts, type, dstProc, | workstation.
dstThrd, tag, comm

)

MPIT Recv (Receive a message from another
data, numElmnts, type, srcProc, | workstation (blocking).
srcThrd, tag, comm, mpiSts

)

MPIT Irecv(Receive a message from another
data, numElmnts, type, srcProc, | workstation (non-blocking).
srcThrd, tag, comm, mpiSts

)

MPIT RecvAny (Receive any message from any
data, numElmnts, type, srcProc, | workstation (blocking).
srcThrd, tag, comm, mpiSts

)

MPIT IrecvAny (Receive any message from any
data, numElmnts, type, srcProc, | workstation (non-blocking).
srcThrd, tag, comm, mpiSts

)

Table 4-2 shows the point-to-point communication calls currently available in the MPIT. As
seen in the table, the function arguments are very similar to the MPI communication
operation arguments. The main difference is the additional argument srcThrd/dstThrd that
defines the source/target thread. It should be noted that there is only one version of the send
operation. Since the communication is handled by the communication thread, a blocking send
operation is not supported (although the naming convention implies that it is a blocking
operation). Furthermore, a worker thread can send a message to a workstation without

46

specifying a particular thread that must receive the message. This allows for flexibility, since
any thread capable of handling the message can do so. It is also possible to specify a thread
identifier that causes all threads in the receiving workstation to process the message. Both of
the normal receiving operations work similarly to the MPI functions. In addition, the MPIT
paradigm offers two new function calls to receive data. The receive any function calls allow a
thread to receive any type of data from any workstation; the size of the data is not
predetermined and neither is the tag. These functions set values for all arguments, except the
communicator, to reflect the data received.

4.6.3. Thread Synchronization and Maintenance

The MPIT paradigm handles synchronization within the MPIT function calls; all the function
calls to the MPIT library are thread-safe. The MPIT keeps track of the worker threads and
communication thread. The threads are automatically created during the initialization of the
MPIT environment and joined at the termination of the MPIT environment.

However, during the parallel computation phase the programmer is responsible for providing
synchronization methods to control the execution of the threads. Table 4-3 shows the thread
synchronization calls provided by the MPIT paradigm. The MPIT ThrdBar function
implements a thread barrier within a workstation. The MPIT ThrdSusp and MPIT ThrdRes
function calls are used to suspend and resume the execution of a thread. The suspend function
call blocks the execution of the calling thread until another thread uses the resume function
call to allow the suspended thread to continue its execution. All these function calls do not
limit the programmer from implementing other synchronization methods provided by the
POSIX thread library [But97].

In addition to the synchronization operations the programmer is provided with a set of
function calls to dynamically control the number of threads in a workstation. These function
calls are shown in Table 4-4. The MPIT ThrdAdd function creates a new thread that starts
executing the code specified in the function arguments. The MPIT ThrdTerm function call
terminates a thread with the help of the cancellation mechanism provided by the pthread
library. These functions become useful in environments where threads are generated for a
particular task and are terminated once the task is completed, or when the programmer wants
to control the resource utilization in a workstation. The programmer should not call the
MPIT Init function to create new threads. In order to maintain a coherent state of the MPIT
in a workstation the programmer should also refrain from creating new threads with the
pthread_create function. This function does not properly register the new thread with the
MPIT environment causing problems when the environment is terminated. The same reasons
apply for having the thread termination function call.

Table 4-3. The thread synchronization function calls in the MPIT paradigm.

MPIT function call Description
MPIT ThrdBar () Thread barrier.
MPIT ThrdSusp () Suspend the execution of the calling thread.
MPIT ThrdRes (thrdId) | Resume the execution of the specific thread.

47

Table 4-4. The thread maintenance function calls in the MPIT paradigm.

MPIT function call Description
MPIT ThrdAdd (Add a new thread.
threadFunc,
threadFuncArgs
)
MPIT ThrdTerm (threadId) Terminate a thread.

4.7. Scheduling in MPIT

The MPIT includes an implementation of the application-specific WorkPool algorithm. In
order to use the internal scheduling mechanism one workstation has to be defined as the
master workstation, The responsibility of the master workstation is to respond to requests for
work from threads in workstations (including the master itself) participating in the
computation. These requests are sent by the threads that are out of work. The scheduling
scheme allows for a single thread to issue a request for more than one workunit at a time.
Thus, the thread is able to retrieve workunits for other threads in the same workstation.

Master workstation

P Local
‘ e workunits
Worker threads <> Comtrsunlcc:iatlon ‘
read | | Global
| -workunits
A
.
1
PN Communication 4 Local -
Worker threads < thread . | workunits

Client workstations
Figure 4-2. The scheduling mechanism in the MPIT.

Figure 4-2 illustrates the scheduling mechanism in the MPIT. The master workstation has
knowledge of all (global) workunits. These workunits are scheduled among workstations (and
the threads within them) based on requests received by the master workstation. If a thread is
requesting more than one workunit and the master can fulfill the request, one of the workunits
is given to the calling thread and the others are stored locally (in the local workunits buffer)
in the workstation. When the next thread requests a workunit in the same workstation, the
workunit is retrieved from the local workunits buffer rather than sending a request to the
master workstation. If no workunits exist in the local workunit buffer, a request is generated

48

and forwarded to the master workstation. With the help of the local workunit buffer the
number of requests that have to be sent over the network to the master processor is reduced.
However, in order to take advantage of this scheme the threads much request more than one
workunit at a time.

The scheduling is implemented as part of the communication thread. The scheduling
messages (requests) are separated from the conventional data messages by the
communication threads. These messages are sent to the scheduler (internal component of the
communication thread) for processing. The part of the communication thread that performs
the scheduling is denoted as the local scheduler. In the case of the master workstation it is
called the master scheduler. As Figure 4-4 illustrates the schedulers handle the generation of
requests, the transmission of requests, the request processing in the master workstation, and
storing of workunits to local workunit buffers. Since the scheduler is implemented in the
communication thread, the communication required to retrieve more work overlaps with the
computation. The centralized processing of requests by the scheduler in a workstation allows
for more control over the requests. For example, in a workstation the local scheduler prevents
two or more requests from being active at a time; if the first request retrieves an adequate
number of workunits, the second request is redundant. It is important to realize that the
master workstation has a local workunit buffer as well. In fact, threads in the master
workstation can send requests for work, and the scheduling mechanism works the same way
as for any other workstation. The only difference is that no messages have to be sent over a
network to request and retrieve the workunits.

The scheduling functions are shown in Table 4-5. To initialize the scheduling, all
workstations have to call the MPIT_SchdMaster function to define the master workstation for
scheduling. This function call is required in order to initialize the local scheduling client and
to let it know to which workstation to send the scheduling requests. The MPIT Schdlnit
function is only called in the master workstation; it initializes the master scheduler by proving
information about the workunits, their computational requirements (weights), and their
number. The information provided is immediately processed; the workunits are sorted in
descending order according to their computation requirements starting with the most time-
consuming workunit. The MPIT SchdActv and MPIT _SchdTerm functions turn the automatic
scheduling on and off in the master workstation. These functions allow for the programmer to
control when the scheduling occurs. For example, scheduling should be disabled while
workunits are being added or removed. The last two functions, MPIT SchdGet and
MPIT Schdlget, are used by the threads to request more work. As mentioned earlier, a thread
can request more than one workunit at a time. However, only one workunit is returned each
time the MPIT SchdGet function is called. Subsequent calls to the MPIT SchdGet return a
workunit from the local workunit buffer until its empty. A request to the master workstation
is generated and sent, if the local workunit buffer becomes empty. The master workstation
sends a special, end-of-data message to the requesting workstation, if all workunits have been
distributed. This message is then returned for each subsequent call to the MPIT SchdGet
function by the local scheduler to indicate to the calling threads that there are no more
workunits available. The MPIT Schdlget function operates similar to the MPIT SchdGet
function except it does not block the execution of the calling thread. It should be noted that
the blocking occurs only when a request is sent to the master workstation. Therefore, the
MPIT Schdlget function can be used to pre-fetch workunits assuming that the local workunit
buffer is empty. However, if workunits exist in the local workunit buffer, they can be
retrieved with either of the two functions. The local scheduler takes care of all necessary

49

synchronization required to prevent more than one request for work from being active at a
time, as well as the synchronization required to make a decision from where to retrieve a
workunit.

Table 4-5. The function calls for scheduling provided by the MPIT.

MPIT function call Description
MPIT SchdMaster (procId) | Specify the master for the scheduling.
MPIT SchdInit (Initialize scheduling (workunits) with MPIT.
workunits,
weights,
numWorkunits
)
MPIT SchdActv() Enable scheduling.
MPIT SchdTerm() Disable scheduling.
MPIT_ SchdGet (Retrieve the specified number of workunits.
workunit,
numWorkunits
)
MPIT_SchdIget (Retrieve the specified number of workunits
workunit, (non-blocking)
numWorkunits
)

The automatic scheduling performed by the communication thread has several benefits. First,
worker threads are not affected by the scheduling; they can continue their execution
uninterrupted on both sides (master and client). Thus, the MPIT allows computation and
scheduling to overlap in addition to computation-communication overlap. Second, the
implementation of the scheduling algorithm is in the communication thread; the user does not
have to consider implementing a scheduling algorithm. The communication thread
automatically performs the scheduling when it has been activated. Third, the function calls to
request a workunit from the master workstation actually facilitate the retrieval of multiple
workunits per request. What this means is that a thread, rather than requesting work just for
itself, can request work for all threads in the workstation. This allows for predictive
scheduling whilst minimizing the number of scheduling requests. This reduces the number of
communication operations as well as the work done by the communication threads. Finally,
the non-blocking get function provides a mechanism to pre-fetch workunits while current
workunits are still being processed. With this mechanism the threads finishing their work can
immediately retrieve a new workunit from the local workunit buffer rather than sending a
request to the master workstation and waiting for a reply.

4.8. Performance Results

The MPIT paradigm has a number of theoretical benefits, which have already been discussed
in this chapter. More practical MPIT results are given in this subsection to show the real
performance of the MPIT paradigm as well as to validate the theoretical benefits. For testing
purposes, an application was written that performs calculations in a data-parallel fashion. In
the MPIT environment the workload is distributed equally among the workstations. The
workunits assigned to a workstation are processed by the threads (one workunit at a time) in
the workstations. The corresponding MPI implementation distributes the workload among

50

processes in all workstations. The number of processes in a workstation is determined by the
number of available processors. Each process handles the workunits assigned to it without
any interactions between other processes in the same or any other workstation. Thus, the
application does not utilize the scheduling mechanism provided as part of the MPIT library.

45

40

35

30

25

20

Performance Improvement {%)

Number of workstations (threads)

Figure 4-3. The performance of an MPIT-based simulation.

The results from the two versions of the simulator are shown in Figure 4-3 and [Publication
5]. The figure shows the results from a test run in a single 4-processor Linux workstation and
a dual processor Linux workstation. The results for 1 to 4 threads were obtained when the
application was run in the quad processor workstation. The result with 5 threads was
achieved by utilizing the 4-processor workstation and one processor from a dual Linux
workstation. At best the MPIT is over 35 % better than the MPI. This is can be attributed to
the use of the shared memory which allows all threads to work on all workunits. The
fluctuation in the results is explained by the uneven initial distribution of work among the
threads. In addition, the results for the test where one thread is deployed shows the overhead
introduced by the MPIT. The overhead is approximately 1.3 %.

4.9. Discussion

There are MPI implementations that support communication via a shared memory, if the
communicating processes are located in the same workstation. However, the implementations
still create more than one process in a workstation, whereas in the MPIT one process includes
all the entities (threads) that execute the code. The threads share the memory allocation for
the process. Thus, communication is faster through this memory than inter-process
communication through a pipe, for instance. The utilization of the shared memory comes
with issues that the programmer should be aware of, such as memory protection, and the
synchronization of threads. These issues are left for the programmer to consider and

51

implement as necessary. In addition, the MPIT does not provide a thread-safe implementation
of the underlying MPI communication library. Thus, the worker threads should refrain from
calling any MPI routines, and utilize only the MPIT communication routines provided.

The MPIT library allows the receiving side of a message transmission to retrieve any number
and type of data. What this means is that the receiver thread does not have to know how
many data elements it should receive when it makes a call to the receive function. The MPIT
library returns the data to the receiver and sets function arguments based on the message
received. Furthermore, the number of broadcast messages in the MPIT is reduced, since only
one message per workstation is required. This is because in the MPIT a message can be sent
to a workstation that is eventually received by all threads in the workstation.

The automatic load balancing is a feature not found in any other proposed systems that are
even vaguely similar to the MPIT. The application-specific WorkPool load balancing
algorithm distributes workunits among workstations and threads without load migration. The
scheduling is handled by the communication threads that reside in each workstation without
interfering in the execution of the worker threads. The worker threads initiate a scheduling
operation with a request for more work. The communication thread on the requesting
workstation formulates a special message that is sent to the master workstation for
processing. The master workstation sends a response to the workstation that contains the
requested workunits or a special message indicating that all workunits have been processed.
The MPIT library also offers a mechanism to pre-fetch workunits and to retrieve more than
one workunit at a time. Although the scheduling mechanism is hidden from the programmer,
it is the programmer’s responsibility to determine the scheduling parameters for each
workstation/thread; this involves considering whether to use the standard mechanism or pre-
fetch workunits and how many workunits to request at a time.

Due to the fact that the MPIT programming paradigm is implemented with the MPI and the
POSIX threads, the portability of the paradigm is optimized. Since the MPI and the POSIX
threads have achieved substantial support from software vendors, the portability of the MPIT
programming paradigm should be very good. Furthermore, the MPIT does not introduce any
operating system or hardware specific requirements. In theory, the MPIT library works with
any MPI implementation assuming proper MPI interface functions are exposed to the MPIT.
It should be noted that in order to implement the tightly coupled communication mechanism
between the MPI and the communication thread, the MPI implementation must be modified.
Therefore, if the tightly coupled interface is required, the MPI implementation distributed
with the MPIT implementation should be deployed. With the loose coupling, any MPI
implementation can be used as long as it fulfills the MPIT interface requirements.

The MPIT performs all necessary operations to guarantee thread-safety for the
communication operations provided as part of the MPIT. Thus, even a non-thread-safe
version of MPI can be deployed with the MPIT. However, the MPIT does not enforce the
thread-safe execution of the worker threads. The programmer 1s required to either use thread-
safe library calls or implement synchronization to provide thread-safety among the worker
threads.

A
3%)

Chapter 5. Case Studies of Mobile Network Simulators

Mobile network simulation has been a popular area of research due to the substantial increase
in mobile phone users; the past decade has seen an unprecedented number of new
subscribers. With the help of simulation, mobile equipment manufactures and network
providers are able to test their base stations, mobile phones, and networks before investing
large sums of money into this infrastructure [Hei96].

This chapter introduces two sequential mobile network simulators that were used as the case
studies for this thesis. The simulators were implemented with C and C++ programming
languages. Neither of the simulators was originally designed to run in parallel in any kind of
multiprocessor system. The sequential simulators were implemented at Nokia Research
Center in Helsinki, Finland.

The parallel implementations of the simulators utilize the knowledge gained from the parallel
environments, and the algorithms studied and developed in this thesis. Slightly different
implementations were developed for each environment [Hut98][Hut00]. In addition, all three
application-specific scheduling algorithms were tested in each environment with one of the
simulators. Prior to presenting the results, the two simulators and their parallel
implementations are discussed.

5.1. GSM Network Simulator

The GSM network simulator is used to calculate a coverage area of a base station. The
purpose of the simulator is to act as a tool for mobile network providers; it helps them in
finding optimal locations for base stations in urban environments. The simulator calculates
field strengths generated by a base station over a map given as an input parameter. Based on
the location of the base station, the field strengths are estimated in accordance with radio
propagation laws [Feu94])[Rap96]. The field strength describes the reception and transmission
quality of a mobile station in different locations of the map. It is important to find an optimal
location for a base station in order to provide a signal of good quality to all users and to
maximize frequency reuse. This leads to a minimal number of dropped calls and a longer
battery life for mobile phones. Figure 5-1 depicts a sample map of Helsinki used in the
simulations. The coverage calculated is indicated by the shaded areas. Although, the results
are given for receiving points that are inside buildings, indoor ray propagation was not
implemented. Therefore, the results shown for indoor receiving points are not accurate. It
should also be noted that the only obstacles considered in the simulator were buildings.

53

858 © 386 3862 3864
] ' S

i B P ‘{m) : i S i 1 e A 5

Figure 5-1. The calculation area and results generated by the GSM network simulator.
The small circle in the middle of the figure illustrates the location of the base station.

Prior to the simulation, a map is divided into receiving points that hold the field strength
information at the end of the simulation. Figure 5-2 shows an example of the receiving point
generation. The receiving points are always square shaped and their size is determined by the
accuracy requirements of the results. Since a single receiving point represents the average
field strength over the area it covers, the size of the receiving point has a substantial impact
on the accuracy of the coverage calculated. Furthermore, the size of a receiving point affects
the total execution time of the simulation. The execution time is inversely exponential to the
size of the receiving points; if the size of the receiving points is decreased by 50%, the
execution time increases 200%.

Figure 5-2. The generation of receiving points .

54

5.1.1. Simulation

Although the map shown in Figure 5-2 is two dimensional, the simulation is carried out in all
three dimensions. The simulation is comprised of two phases. First, the ray propagation over
the roofs of the buildings is computed. Second, the simulation of ray propagation on a
horizontal level in the street canyons is performed. Figures 5-3 and 5-4 illustrate the two
simulation phases.

The first phase, vertical ray propagation, includes measuring a distance between a receiving
point and a base station, observing the obstacles between the two points, and calculating the
field strength for the receiving point based on the laws of physics [Rap96][Sip96]. This
procedure is repeated for each receiving point. Due to its low computational requirements the
first phase of the simulation accounts for only 10% of the total execution time. Nevertheless,
its contribution is large enough to justify a parallel implementation. The second phase,
horizontal ray propagation, of the simulator utilizes ray tracing. However, the ray tracing
method deployed in the simulator is not the standard method. In standard ray tracing, rays are
launched either from a base or mobile station and are traced until they reach their destinations
or their powers drop below a set threshold. The simulation of such a model is generally very
time-consuming. Thus, the model was improved by introducing the concept of line-of-sight
(LOS) polygons, which reduce the number of rays traced substantially. Instead of tracing a
single ray, the simulator creates a LOS polygon for each corner of obstacles (buildings).
Figure 5-5 illustrates a LOS polygon. The area covered by a LOS polygon is the area in
which a ray diffracts from the corner where the polygon was created. A diffraction occurs
when a ray arrives at a corner of a building and disperses in all possible directions, creating a
large number of new rays. Therefore, the receiving points inside the LOS polygon are where
the newly created rays eventually arrive, and the field strengths of which are updated. In
order to update the field strength values of the receiving points inside a LOS polygon, the
strength of the diffracted signal has to be known. Prior to processing the LOS polygons, the
initial signal strengths of the rays at each corner are computed. For this procedure a
traditional ray tracing method is used.

The coverage calculated by the simulator compared to real measurements has shown that the
simulator is capable of producing very accurate estimations concerning the coverage of a
base station. Therefore, the simulator does not consider ray propagation through reflections,
which further reduces the complexity of the simulator.

Figure 5-4. The horizontal ray
Figure 5-3. The vertical ray propagation example.
propagation example.

55

b &&%

Figure 5-5. An example of a line-of-sight (LOS) polygon. The LOS polygon is the darker
shaded area. The corner to which the LOS polygon was generated is depicted with a
large black dot in the middle of the figure.

The first performance tests for the sequential implementation were performed immediately
after the validations tests were completed. Table 5-1 shows the simulation times with
different receiving point sizes in a Pentium 750 MHz Linux workstation. An adequate
accuracy for the results was achieved with 4 x 4 meter receiving points. However, for
commercial use the receiving point size cannot be larger than 2.5 x 2.5 meters. As the results
show the execution times increase significantly when the size of the receiving points is
decreased. The execution times for the most accurate simulations were far too excessive to be
considered suitable for interactive usage. As a result, the sequential simulator code was
reviewed and further optimized in order to boost performance. Unfortunately, the
optimization process did not manage to produce the desired level of performance increase.
Therefore, parallel processing was considered as a solution to decrease the execution times
without compromising the accuracy of the results. The subsequent sections discuss the
parallelization process in general, and then focus on the implementations of the simulator to a
shared memory environment, a distributed memory environment, and a network of
workstations.

Table 5-1. The execution times of the sequential GSM network simulator.

Grid size (m) Execution time (sec)
10x 10 27.97
4x4 168.80
25x2.5 433.72

5.1.2. Parallelization

Regardless of the fact that the simulator was not designed for parallel execution, the structure
of the simulator was well-suited for data-parallel computation. Each individual LOS polygon
could be executed in parallel, since no dependencies between the polygons existed. However,
it was possible that two or more LOS polygons overlapped causing more than one processor
to modify the same receiving points simultaneously. This feature called for a synchronization
method to guarantee the correctness of the results in shared memory environments. In the
following subsections the implementation and impact of the synchronization method are
discussed.

56

The first implementation of the GSM network simulator included all three scheduling
algorithms. However, it was concluded based on the results (see Subsection 5.1.3) that the
application-specific WorkPool algorithm (Algorithm 3) was superior to the other two
algorithms in each parallel environment. Due to the fact that Algorithm 3 showed the best
performance, only the implementation of Algorithm 3 is explored.

The first phase of the simulation, vertical ray propagation, contributes approximately 10% to
the total execution. As a result of its minor impact, the implementation of the application-
specific WorkPool algorithm was not justified. A more simple scheduling algorithm was
suitable, since the workunits which are the receiving points, all contained an equal amount of
work. Therefore, a static load balancing algorithm was developed. The algorithm distributes
the workunits equally among the processors. On the other hand, the application-specific
WorkPool algorithm was implemented in the second phase of simulation, horizontal ray
propagation. The workload consisted of the LOS polygons, the sizes of which varied
drastically. The environment-specific implementations are discussed in the next two
subsections.

Shared Memory Environment

In the shared memory environment, the sequential GSM network simulator was amended to
create and maintain threads. The threads were used to process a number of LOS polygons
simultaneously on multiple processors. A synchronization method (mutual exclusion lock)
was implemented to protect the receiving points from being updated by more than one thread
at a time. A mutual exclusion lock was associated with each receiving point to minimize the
impact of the synchronization procedure on the execution of other threads.

The implementation of the scheduling algorithm required a global variable that held an index
to the next unprocessed LOS polygon. Once a thread was ready to process a workunit, it
obtained the current value of the index and increased the value by one. However, since it was
possible for more than one thread to access the global variable (index) at a time, a
synchronization method was put into place. Prior to fetching the index and increasing its
value, a thread was required to acquire a mutex lock. After updating the value of the global
variable the thread released the mutex lock and proceeded with processing the new workunit
pointed to by the index. In order to utilize the advantage of the application-specific algorithm,
the returned index always pointed to the most computationally complex workunit. For this to
happen the workunits were sorted in descending order by the amount of computation they
required. Therefore, the total overhead introduced by scheduling in shared memory
environments was incurred by acquiring and releasing the mutex lock and determining the
processing order of the workunits.

Distributed Memory Environment and Networks of Workstations

Due to the differences in memory architectures, the implementation of the data-parallel
version of the simulator for distributed memory environments and NOWs was somewhat
different. For example, there was no need for a synchronization method to protect the
receiving points, since each processor worked with its own copy of the receiving points. The
receiving points were gathered to one processor that produced the final results at the end of
the computation. The gathering required communication over the interconnecting network,
which contributed to the overhead in the distributed memory environments and NOWs.

57

However, this communication did not impact the actual parallel computation phase, since the
only communication required during the computation phase was the transmission of
scheduling messages.

For the scheduling, one processor was assigned to act as a master. Its responsibility was to
maintain and distribute the workunits among the other processors. Since the application-
specific WorkPool algorithm was implemented in the distributed memory environments and
NOWSs, the master processor was responsible for the following operations in the course of the
simulation:

- Sorting of workunits according to their computational requirements.

Reception of workunit requests from processors.

Fetching and updating the index pointing to computationally the most complex
unprocessed workunit.

- Sending of replies to the requesting processors.

The master processor either sent an index to the workunit the processor was supposed to
process next or to the actual workunit. The algorithm was implemented so that it supported
both methods. The request-reply procedure required communication between the master
processor and the requesting worker processor. As was the case with sending the final results
to the master processor, the communication was the most substantial part of the overhead
generated by the scheduling algorithm. Another reason for the overhead was the queue of
requests on the master processor. If more than one worker processor was requesting work, the
requests were handled sequentially causing delays in the worker processors. Therefore, the
communication was not the only delay experienced by the worker processors when waiting
tor a reply from the master processor. A pre-fetching mechanism could have been
implemented to anticipate the need for more work and minimize the impact of the delay. For
example, an implementation of the simulator in the MPIT environment could have taken
advantage of the pre-fetching functionality in the scheduling mechanism provided.

5.1.3. Results

In this subsection, the results from the three environments are shown. The performance
results are indicated as speedups, since the environments are not comparable from a hardware
point of view; the execution times varied significantly from one environment to another.

Figure 5-6 illustrates the speedups achieved with the GSM network simulator in the three
environments. Note that the speedups are shown for the complete application, and not simply
for the parallel computation phase. Differences in the number of processors in the
environments are explained by the availability of processors. The shared memory
environment {Compaq AlphaServer8400) had only 8 processors, whereas in the distributed
memory environment (Cray T3E) and NOW (PC cluster) 32 processors were available. In
fact, the NOW was comprised of 16 dual processor workstations.

The results show that the shared memory environment is not capable of performing as well as
the distributed memory environment and the NOW. The shared memory environment suffers
from the thread synchronization required to guarantee sequential access to receiving points.
However, the best performance was achieved when the number of threads exceeded the
number of available processors. This indicates that the threads perform time-consuming

58

operations that cause the operating system to relinquish the processor in favour of another
thread. The distributed memory environment and the NOW performed quite similarly. The
distributed memory environment (Cray T3E) was a dedicated system, which explains the
stability of the results. On the other hand, the NOW suffered from occasional load
fluctuations generated by other users. Overall, the results were heavily impacted by the serial
part of the simulator. The significance of the sequential code became more obvious when
more processors were deployed. This, in addition to the overhead introduced by the parallel
computation, caused the results be sub-linear. However, it should be noted that the speedups
for the parallel computation phases exhibited near linear speedups even with a large number
of processors.

Speedup
14.00

--A— Compag AlphaServer8000

{——CrayT3E .

~#—PC Cluster
12.00 3 - /_v
10.00 v
" /
6.00 ///‘/'h/‘-ﬂ
4.00 /
2.00

0.00

0 5 10 1§ 20 25 30 35
ber of pro Ithread:

Figure 5-6. Speedups achieved in the three memory environments with the data-parallel
version of the GSM network simulator.

Scheduling Algorithms

All three scheduling algorithms were implemented and tested with the GSM network
simulator. Here, the results are shown with respect to the amount of work processed by each
processor when the simulator is run in a 4-processor Linux workstation. It should be noted
that the amount of work, which is used to illustrate the distributed workunits, is directly
proportional to the processing time of that work.

Detailed results for Algorithm 1 are shown in Table 5-2. The table indicates work balance
results when both versions of Algorithm 1 are deployed. It is obvious that the application-
specific algorithm is capable of producing a more optimal load balance. Both the standard
deviation and the co-efficient of variation imply that the application-specific algorithm is
over an order of magnitude better than the generic algorithm.

59

Table 5-2. A comparison of the generic scheduling algorithm 1 and the application-
specific scheduling algorithm 1. The figures specify the amount of work (receiving

points) processed by each processor

Processor Id | Generic Algorithm 1 | Application-Specific
Algorithm 1

1 12577828 12608981

2 9871975 12442063

3 15838489 12341262

4 10356967 12164392

Std. dev. 2719794 186131

Cov 0.224 0.015

Table 5-3. A comparison of the generic scheduling algorithm 2 and the application-
specific scheduling algorithm 2. The figures specify the amount of work (receiving

__points) processed by each processor
Processor Id | Generic Algorithm 2 | Application-specific
Algorithm 2
1 13907317 12304512
2 11857173 12206740
3 11092422 12117705
4 11788347 12016302
Std. dev. 1214175 123152
COVv 0.100 0.010

The results for Algorithm 2 are shown in Table 5-3. Again, the application-specific algorithm
produces a substantially better work balance among the processors. The application-specific
algorithm is exactly an order of magnitude better with respect to the standard deviation and
the co-efficient of variance.

Table 5-4 illustrates the results achieved with Algorithm 3 (WorkPool). Both versions of
Algorithm 3 are capable of producing very good work balance results. The application-
specific algorithm is slightly better in terms of the work balance. Furthermore, a comparison
of the standard deviation and the co-efficient of variation indicates that Algorithm 3 produces
substantially more equal work distribution than the two other algorithms.

Table 5-4. A comparison of generic scheduling algorithm 3 and the application-specific
scheduling algorithm 3. The figures specify the amount of work (receiving points)

processed by each processor.

Processor Id | Generic Algorithm 3 | Application-specific
Algorithm 3

1 12091455 12143245

2 12180042 12163003

3 12183016 12209745

4 12190746 12129266

Std. dev. 46792 35128

COV 0.0038 0.0029

60

0.25

- - T
| Maximum communication time

‘}EAverage communication time .

0.2

e
o

Comumunication time (msec)
e

0.05

1 2 3 4 5
Number of worker processors

Figure 5-7. The average and maximum communication times of scheduling requests
with the application-specific scheduling algorithm 3.

Very interesting results were seen with the application-specific WorkPool algorithm when the
execution times of two versions of Algorithm 3 were compared. Although, the application-
specific scheduling algorithm computed the most balanced distribution of workunits among
the processors, the execution time of the GSM network simulator with the algorithm was
longer than with the generic WorkPool algorithm. Further study showed that the application-
specific WorkPool algorithm has a bottleneck on the master processor. Since the workunits
are sorted and, therefore, processors have almost equal amounts of work to do, the master
processor becomes congested due to a number of simultaneous requests. Figure 5-7 illustrates
the average and maximum request times for the application-specific WorkPool algorithm.
The average request time grows over 50% when the number of worker processors is
increased from 1 to 5. The growth is even more drastic, if the maximum communication
times are compared; the execution is over 105% longer with 5 worker processors than with 1
worker processor. To alleviate the problem with concurrent requests on the master processor
either the order of workunits should be permuted or a pre-fetching mechanism should be
implemented. However, the permutation of workunits is technically achieved by not ordering
the workunits in the first place. A more sophisticated permutation method that would
consider the computational requirements of the workunits was not implemented, since it
would have introduced overhead. On the other hand, a pre-fetching method could have
yielded improvements in the performance. However, the implementation of pre-fetching in
the GSM network simulator would have been a relatively tedious task due to the structure of
the simulator. The implementation would also have had to consider a random element in the
timing of the pre-fetch to avoid a situation similar to the one observed in the current
implementation. Since the generic version of the algorithm provided good speedups, and the
main goal of the study was to research the scheduling schemes, the pre-fetch method was not

61

considered as an option to improve the performance (See Conclusions for the description of
future work).

5.2. The WCDMA System Simulator

The WCDMA (Wide-band Code Division Multiple Access) system simulator was also
developed at Nokia Research Center to study third generation (3G) mobile networks and
standards, and to act as a platform for 3G algorithm studies [0ja98]. The simulator emulates
a number of mobile phones in a network. The two main components of the simulator are
power control operations and interference computations.

Initial tests indicated that the execution times of even relatively simple and short (in terms of
simulated time) simulations were excessive, which limited the usability of the simulator. In
order to obtain an adequate amount of stable results, especially for algorithm design, detailed
and long simulation runs are required. Proper simulation runs led to execution times that were
measured in days rather than hours. Therefore, as part of the research effort for this thesis, the
execution of the sequential WCDMA system simulator was parallelized. Before the paraliel
implementation is discussed, the simulation model of the WCDMA simulator is explored.

5.2.1. Simulation

The simulation process of the WCDMA system is much more complex than a GSM system.
For example, power control operations are performed every 0.625 milliseconds in the
WCDMA, whereas the interval is 480 milliseconds in the GSM. This translates into a more
time-consuming simulation process for the WCDMA system simulator. Furthermore, the
WCDMA requires a number of additional operations to be performed due to interference
calculation [Hut99].

The structure of the simulator is shown in Figure 5-8. The two most time-consuming parts are
the terminal calculation and the interference calculation. Tests indicated that approximately
75% of the total execution time is spent in these two operations.

(1) While not end of simulation
(2) Base station calculation.
(3) Terminal calculation.
(4) Radio network controller calculation.
(5) Connection calculation.
(6) Interference calculation.
(7) Traffic generation.

Figure 5-8. The structure of the WCDMA system simulation.

Terminal Calculation

The terminal calculation involves the processing of all active terminals (mobile phones) in
the network. The pseudo-code for the terminal calculation is shown in Figure 5-9. Step 1 is
required to guarantee that only active terminals are processed. In Step 2, the radio algorithms
are executed for a terminal, if it has at least one non-idle connection. The terminal is moved
in Step 3. Step 4 guarantees that the frame error rate (FER) calculations and power control

62

are performed at certain intervals for all active terminals with active connections. In Steps 5
and 6, the FERs are calculated and the power control operations are executed for the uplink
direction. The power control for the downlink direction is carried out in Steps 7 and 8. The
necessary measurements to determine the need for handovers are obtained in Step 9, and the
handovers are performed in Step 10.

(1) If Terminal Active
(2) Ifterminal's connection not silent
Run radio algorithms.
(3) Move terminal.
(4) Ifend of frame and
connection active and
connection not silent
(5) Calculate FER values.
(6) Do power control.
(7) Set power control commands.
(8) Do power control.
(9) Ifbeginning of frame
Do measurements for handovers.
(10) If handover needed
Do handover.

Figure 5-9. The structure of the terminal calculation.

Interference Calculation

The interference calculation is one of the key elements of the WCDMA system. In order to
optimize the power consumption of mobile phones and to maximize the number of mobile
phones in a cell, the interference has to be calculated accurately and proper actions taken
based on these calculations. The interference calculation has to process all base stations and
terminals in the system. Figure 5-10 shows the steps of the interference calculation. Steps 1
and 2 involve the initialization of the interference values. The loop in Step 3 goes through all
base stations in the system. Step 4, in turn, goes through all the mobiles attached to a specific
base station. The uplink and downlink interferences for each mobile are calculated in Steps 5
and 6. The total interferences are computed in Steps 7 and 8.

(1) Set all base stations’ interferences to zero.
(2) Set all terminals’ interferecences to zero.
(3) Process each base station.
(4) Process each terminal .

(5) Calculate uplink interference.

(6) Calculate downlink interference.
(7) Calculate total interference to all base stations.
(8) Calculate total interference to all terminals.

Figure 5-10. The structure of the interference calculation.

63

5.2.2. Parallelization

A data-parallel approach was taken to run the WCDMA simulator in parallel. Due to the fact
that the original implementation of the simulator was created without any consideration to
parallel execution and the structure of the simulator could not be changed, the data-parallel
approach proved to be the most suitable one. The initial implementation was written in C++
(deploying the object-oriented paradigm) and optimized for reuse and sequential execution.
The C++ programming paradigm, with the restriction that the structure of the simulator could
not be changed, made the parallelization very cumbersome. A decision was made not to
transfer objects from one processor to another via a network that would require the
marshaling and unmarshaling of the objects. In light of this decision the shared memory
environment was the only suitable environment for parallelization.

The two previously discussed parts of the simulator were parallelized. In the terminal
calculation, the workload consisted of mobile stations that were handled one at a time by a
processor. There were no dependencies between mobile stations, thus no synchronization was
required. In the interference calculation, a high level approach was taken; instead of
distributing mobile stations among the processors, base stations were allocated to processors.
A distribution based on mobile stations would have generated an excessive amount of
communication and overhead.

For both parallelized parts, the WorkPool algorithm was deployed to distribute the workload.
The implementations of the WorkPool algorithm had a definite advantage over the other two
algorithms; the workunits (mobiles stations and base stations) did not present identical
computational requirements for the processors. Thus, in order to dynamically assign
workunits to processors, and maximize work balance, the WorkPool algorithm was the
preferred choice.

The parallel WCDMA system simulator was implemented only for a shared memory
environment due to the limited availability of other parallel environments and the timeframe
in which the source code of the WCDMA simulator was available.

Shared Memory Environment

The two most time-consuming parts were parallelized with the help of threads. One set of
threads was created at the beginning of the computation and they were used in both
parallelized parts. For the terminal calculation, a highly application-specific scheduling
algorithm was implemented; the algorithm was developed to consider the fact that data
structures containing the information about the mobile stations were scattered over a large
array. The algorithm was a combination of the application-specific algorithms | and 3. First,
the algorithm distributed workunits (mobile stations) among processors based on a simple
division operation. This operation considered the average number of workunits and the
number of processors available. In cases where this division operation had a remainder, the
remaining workunits were dynamically assigned one at a time (as in Algorithm 3) to
processors that had finished their original work. A combination of two algorithms was
required to achieve optimal results. The first algorithm generated less overhead but was still
able to produce good work balance due to the fact that the workunits required almost an equal
amount of work. Implementing the WorkPool algorithm by itself would not have been
prudent. The algorithm would have introduced more overhead and, perhaps, generated a
bottleneck due to a large number of simultaneous requests for work.

In the interference calculation, the workunits consisted of the base stations in the system.
Each base station contained a random number of mobile stations. Therefore, the
computational requirements to process workunits were not equal. This led to an
implementation of the WorkPool algorithm. A synchronization method (mutual exclusion
lock) was implemented to correctly serve the requests, i.e. update the index to the next
unprocessed workunit and return the index. Due to the shared memory available,
communication and the request-reply paradigm were handled through the memory.

5.2.3. Results

The speedups achieved are shown in Figure 5-11. Since the resuits are shown only for the
shared memory environment, the figure also depicts the speedups achieved for the two
parallelized parts rather than just the total execution time. The interference calculation, being
the most computationally demanding, achieved the highest speedups; with 4 processors a
speedup of 3 was obtained. The terminal calculation performed slightly worse mainly
because of the small amount of work processed. The speedup of the whole simulator was
substantially less than that of the two parallelized parts. The main reason for average results
was the existence of a relatively large sequential part that dominated the execution times of
the whole simulator.

3.50

~-Terminal calculatlon

—— Interferance calculation’

—h—Total executlon time

050 1 ~ - - - - - oo S e e

0.00

Number of threads

Figure 5-11. The speedups achieved in a shared memory environment with the data-
parallel version of the WCDMA system simulator.

5.3. Discussion

The GSM network and WCDMA system simulators were presented in this chapter as the case
studies for the scheduling algorithms developed. Both the simulators were parallelized in a
data-parallel fashion. All three scheduling algorithms discussed in Chapter 3 were
implemented for the GSM network simulator to study their behaviour and performance in a
real life application.

65

The results obtained from both simulators showed that the application-specific WorkPool
algorithm produced the best results. However, the application-specific WorkPool algorithm
exhibited interesting results in the GSM network simulator. Although, the algorithm
generated the most optimal work balance, the execution times of the GSM network simulator
were not the most optimal. Further investigation showed that a bottleneck was introduced by
the master processor, which caused delays on the worker processors.

Even though the WorkPool algorithm proved to be the most suitable algorithm for the two
case studies it does not diminish the potentials of the other two algorithms. The superior
performance of the WorkPool algorithm can be explained by looking at the characteristics of
the workunits in both simulators; the workunits were vastly different in their computational
requirements. The two other algorithms besides the WorkPool algorithm are more optimal in
cases where the workunits are close to equal in size. This proved to be true in a case where a
scheduling algorithm was designed for the terminal calculation in the WCDMA system
simulator. In addition, the two scheduling algorithms do not suffer from the bottieneck
caused by a master processor, since neither one has a master processor.

66

Chapter 6. Conclusions

Parallel computing has attracted attention during the past few decades as a vehicle for solving
complex problems more efficiently. However, parallel systems introduce a number of new
issues that do not exist in sequential computing, such as communication, synchronization,
and scheduling. Some, if not all, of these issues have to be addressed each time a sequential
application is converted to run in parallel, or a new parallel application is implemented.

The goal of this thesis was to investigate these issues and to propose solutions to obtain good
performance from multiprocessor systems. Three aspects of parallel computing were studied:

- Parallel environments
- Scheduling
- Programming in SMP NOWs

Three parallel environments were identified based on memory architecture. In fact, the first
two environments considered were very distinct: shared memory and distributed memory
environments. The third environment was a combination of shared memory and distributed
memory environments (network of workstations). First, all three environments were studied
to evaluate the advantages and drawbacks of their communication networks. It was concluded
that an interconnecting network plays a role in achieving good performance results in any
kind of parallel environment. Furthermore, various observations were made with respect to
communication libraries and their optimal working environments. The Myrinet network
results were significantly below expectations due to the deployment of partially optimized
message passing libraries. Unfortunately, the fully optimized libraries were not available due
to technical difficulties. Overall, each of the environments exhibited characteristics that are
beneficial for certain parallel applications. However, all the environments had deficiencies as
well. It was concluded that no single environment was suitable for all kinds of applications
merely due to hardware characteristics. Second, the environments were further examined to
study their support for software. There is software, such as thread libraries, that are suitable
for a shared memory environment. On the other hand, message passing libraries, like the MPI
and the PVM, are available for distributed memory environments. Although the MPI supports
communication through a global memory in a shared memory environment, it was observed
that the performance of such an MPI library was not acceptable. A number of communication
tests for different software libraries were carried out to determine the significance of the
software and the interconnecting network on the performance of a parallel application.

The focus was then shifted from the environments to scheduling. Scheduling is responsible
for assigning workunits to processors in a way that the work balance among processors is
optimized and the amount of overhead generated is minimized. In order for a scheduling
algorithm to provide the best possible work balance it required detailed information about the
workunits being distributed. Therefore, a concept of application-specific information was
introduced. The application-specific information contained estimates or accurate data

67

regarding the computational requirements of workunits that was then provided to a
scheduling algorithm. With the information, a scheduling algorithm was capable of assigning
workunits to processors more efficiently and effectively. Three generic scheduling algorithms
were enhanced to utilize the application-specific information to investigate the benefits
gained from the information. The results achieved showed significant improvements in the
work balance and the performance of the applications when an application-specific
scheduling algorithm was used instead of a corresponding generic algorithm. In particular,
the WorkPool algorithm proved to be a very powerful mechanism in scheduling workunits
among processors in any parallel environment. However, it did not come without its own
deficiencies; it is possible that the master processor, that is responsible for handling workunit
requests, develops a bottleneck that causes noticeable degradation in the performance.

Third, a new programming paradigm for SMP NOWs was designed and implemented. The
programming paradigm called the MPIT combines the best characteristics of the MPI and
threads. The MPI is used only in communication between the workstations, whereas threads
are deployed to run code on processors within workstations. The MPIT programming
paradigm facilitates heterogeneous SMP NOWs by allowing the number of threads created
for each workstation to be configurable, as well as providing mechanisms to control the
creation and termination of threads during the execution time. In addition, the MPIT has a
built-in mechanism to perform scheduling for data-parallel applications according to the
WorkPool algorithm developed. The scheduling occurs in the dedicated communication
thread and, therefore, does not impact the performance of worker threads. The results showed
that the use of the MPIT improves the performance of a conventional MPI application
significantly in SMP NOWs.

In summary, the main contributions of the thesis were:

- The study of shared and distributed memory environments, networks of
workstations, and the interconnecting networks used in these parallel environments.

- The design and implementation of application-specific scheduling algorithms.

- The design and implementation of the MPIT programming paradigm for networks
of SMP workstations.

It can be concluded that efficient parallel computing requires that each environment is studied
carefully, scheduling is handled properly with respect to the environment, and the appropriate
programming paradigm is deployed. Each environment, scheduling algorithm and
programming paradigm has its advantages and drawbacks. Moreover, there is no single
combination of scheduling algorithm and programming paradigm that would produce optimal
results in all parallel environments.

The future will show how parallel environments evolve. For now, SMP NOWs are seen as
one of the most cost-efficient ways of parallel computing. Therefore, more work will be done
on the MPIT to further increase its functionality and performance. In addition, scheduling in
heterogeneous SMP NOWs requires more research in order to fully utilize the available
resources in such environments.

68

Chapter 7. Summary of the Publications

This thesis includes 7 publications. The publications discuss three parallel environments,
scheduling in data-parallel applications, and a programming paradigm for networks of SMP
workstations. The first three publications study the environments and their suitability for
parallel computation. The fourth publication introduces and discusses application-specific
scheduling in data-parallel applications. The fifth publication explores the MPIT
programming paradigm developed for SMP NOWs. The last two publications present the two
simulators that utilize the application-specific scheduling algorithms developed for this
thesis.

7.1. Publication 1

Huttunen P., Porras J., and lkonen J.: Analysis of Parallel Environments for Mobile Network
Simulation. In Proceedings of Furopean Simulation Symposium, Hamburg, Germany,
September 28-30, 2000, pp. 164-168.

This article evaluates the three parallel environments (shared memory, distributed memory,
and network of workstations). Different message passing libraries, such as the SHMEM and
the MPI, were tested in the environments. The GSM network simulator was used as the case
study to compare the implementations. For a shared memory environment, the simulator was
parallelized by utilizing the POSIX threads. In a distributed memory environment, the
SHMEM message passing library was deployed to handle the communication among the
processors. In a NOW environment, the MPI provided the communication medium for the
processors to exchange messages.

7.2. Publication 2

Huttunen P., Ikonen J., and Porras J.: The Impact of Communication in Distributed
Simulation. /n Proceedings of European Simulation Symposium, Marseille, France, October
18-20, 2001, pp. 111-115.

This article focuses on interconnection networks in the distributed and NOW environments.
The contribution of the paper is threefold. First, the paper discusses various reasons for
communication in distributed applications (simulators). These reasons include
communication, synchronization, and scheduling. Second, the most common message
passing libraries are introduced and compared. The libraries discussed are the MPI, the PVM,
and the TCP sockets. Third, results from the communication tests are shown and analyzed.
The initial results for completion time, latency, throughput, and the impact of communication
are given for the TCP and the MPI in a 100 Mbps Ethernet network. These, as well as new
results, are presented in this thesis (Chapter 2).

69

7.3. Publication 3

Huttunen P., Porras J., and Ikonen J.: A Study of Threads and MPI libraries for Implementing
Parallel Simulation. In Proceedings of European Simulation Symposium, Hamburg,
Germany, September 28-30, 2000, pp. 96-102.

This publication studies the utilization of threads and the MPI for parallel computation. The
programming paradigms are introduced by illustrating the most common communication
function calls and examples. Furthermore, synchronization and scheduling in both
programming paradigms are investigated. Common knowledge is that threads are useful in
shared memory environments, whereas the MPI is used in distributed and NOW
environments. However, some implementations of the MPI message passing library, such as
mpich, can be optimized to communicate through the shared memory, if the two
communicating processors are located in the same workstation. This article includes a study
conducted to research the performance of the shared memory support for the MPI. The results
shown consist of a comparison of the communication times with threads, and shared memory
MPI and conventional MPI implementations.

7.4. Publication 4

Huttunen P, lkonen J., and Porras J.: Enhancing Load Balancing in a Data-Parallel GSM
Network Simulator through Application-Specific Information. In Proceedings of Conference
on Applied Parallel Computing, Helsinki, Finland, June 15-18, 2002, pp. 542-554.

This paper introduces a new way of scheduling workunits with application-specific
information. The application-specific information is additional data concerning workunits to
be distributed among processors. The application-specific information is extracted by a
scheduling algorithm or it is provided to the algorithm by an application. Ideally, the
information provides the scheduling algorithm with adequate knowledge of the workunits
(for example, computational requirements) to distribute them more effectively and efficiently.
The article presents three generic scheduling algorithms that were enhanced to take advantage
of the application-specific information. The results with the GSM network simulator show
that the application-specific versions of all three algorithms are capable of producing better
work balances and improving the performance of the application.

7.5. Publication 5

Huttunen P., Ikonen J., and Porras J.: MPIT — Communication/Computation Paradigm for
Networks of SMP workstations. /n Proceedings of Conference on Applied Parallel
Computing, Helsinki, Finland, June 15-18, 2002, pp. 160-171.

This research paper presents a new programming paradigm for SMP NOWs. The paradigm,
called the MPIT, combines the MPI and threads into a programming model that utilizes the
best characteristics of shared and distributed environments. It creates one process with a
number of threads, rather than creating numerous processes in a workstation. The threads
execute the code and communicate with each other through the memory allocated for the
process. The communication among the workstations is handled by a separate communication
thread with the help of the MPI. This frees the worker threads to process their data without
having to stop to perform communication, which, in turn, decreases the communication-to-
computation ratio. Furthermore, the MPIT programming paradigm includes a mechanism for

70

performing scheduling. The initial results indicate that combining the two programming
paradigms and utilizing a dedicated communication thread can improve the performance of a
conventional MPI application substantially in an SMP NOW.

7.6. Publication 6

Porras J., Huttunen P., Tkonen J.: Accelerating Ray Tracing Based Cellular Radio Coverage
Calculation by Parallel Computing Techniques. 4nnual Review of Communications, Vol. 53,
2000.

This paper introduces the GSM network simulator. The internal implementation of the
simulator is explored to the extent that the workload generated by the simulator can be
understood. The parallelization process is described for shared and distributed memory
environments. Furthermore, detailed results from the parallel environments are given with
performance analysis.

7.7. Publication 7

Huttunen P., Ikonen J., and Porras J.: Parallelization of a WCDMA System Simulator for a
Shared Memory Multiprocessor Machine. In Proceedings of European Simulation
Symposium, Erlangen-Nuremberg, Germany, October 26-28, 1999, pp. 556-560.

This publication discusses the WCDMA system simulator. A detail description of the
simulator is given to show the need for parallelization and how the parallelization can be
done. The parallel implementation of the system simulator with the WorkPool scheduling
algorithm in a shared memory enviromment is presented. The results achieved show that
performance improves over the sequential WCDMA system simulator. However, the study
also points out deficiencies in the sequential implementation that prevents more optimal
parallelization. The WCDMA system simulator is a good example of an application that was
not originally designed with parallel execution in mind. Therefore, the structure of the
simulator and the requirement that the structure not change did not allow for the best possible
parallel implementation.

7.8. Errata

In Publication 4, the source of the reference 7 should say “In Proceedings of Computer
Conference” rather than “In Proceedings of XXX".

71

Bibliography

[Ach97]

[AdI95]

[And97]

[Ayg99]

[Bad97]

[Bar99]

[Ben00a]

[Ben0Ob]

[Ber96]

[Ber99]

[Boy02]

Acharya A., Edjlali G., and Saltz J.: The Utility of Exploiting Idle Workstations of
Parallel Computation. In Proceedings of SIGMETRICS, 1997, pp. 225-234.

Adler M., Chakrabarti S., Mitzenmacher M., and Rasmussen L.: Parallel
Randomized Load Balancing. /n Proceedings of Symposium on Theory of
Computing, 1995, pp. 238-247.

Anderson E.C., Brooks J.P., Gassi C.M., and Scott S.L.: Performance Analysis of
the T3E Multiprocessor. In Proceedings of Conference on Supercomputing, 1997.

Ayguadé E., Martorell X, Labarta J., Gonzales M., and Navarro N.: Exploiting
Multiple Levels of Parallelism in OpenMP: A Case Study. In Proceedings of
Conference on Parallel Processing, 1999, pp. 172-180.

Bader D.A., and Jaja J.: SIMPLE: A Methodology for Programming High
Performance Algorithms on Clusters of Symmetric Multiprocessors {SMPs).
Journal of Parallel and Distributed Computing, Vol. 58, No. 1, 1997, pp. 92-108.

Barbosa D.M., Kitajima J.P., and Weira W.: Parallelizing MPEG Video Encoding
Using Multiprocessors. In Proceedings of Computer Graphics and Image
Processing, 1999, pp. 215-222.

Bennett B.H., Davis E., and Kunau T.: Beowulf Parallel Processing for Dynamic
Load-balancing. /n Proceedings of Aerospace Conference, 2000, pp. 389-395.

Bender M.A., Rabin M.O.: Scheduling Cilk Multithreaded Parallel Programs on
Processors of Different Speeds. /n Proceedings of Svmposium on Parallel
algorithms and architectures, 2000, pp. 13-21.

Berman F., Wolski R., Figueira S., Schpf J., and Shao G.: Application-Level
Scheduling on Distributed Heterogeneous Networks. [n Proceedings of
Supercomputing Conference, 1996, pp. 1-28.

Berenbrink P., Friedetzky T., and Steger A.: Randomized and Adversarial Load
Balancing. In Proceedings of Symposium on Parallel Algorithms and
Architectures, 1999, pp. 175-184.

Boyd T., and Dasgupta P.: Process migration: A Generalized Approach Using a

Virtualizing Operating System. [n Proceedings of Conference on Distributed
Computing Svstems, 2002, pp. 348-355.

73

[Bre99]

[Bru97a]

[Brud7b]

[Bur94]

[But97]

[Biic02]

[Cap00]

[CatOl]

[Cav0l]

[Cha02]

[Chi98]

[Chi99]

[Cor99]

Brest J., Zumer V., and Ojstersek M.: Dynamic Scheduling on a PC Cluster. /n
Proceedings of Symposium on Applied Computing, 1999, pp. 496-500.

Bruck J., Dolev D., Ho C-T., Rosu M-C., and Strong R.: Efficient Message Passing
Interface (MPI) for Parallel Computing on Clusters of Workstations. Journal of
Parallel and Distributed Computing, Vol. 40, 1997, pp. 19-34.

Brunstrom A., and Simha R.: Dynamic versus Static Load Balancing in a Pipeline
Computation. Journal of Modelling and Simulation, Vol. 17, No. 4, 1997, pp. 317-
327.

Burns G.D., Daoud R.B., and Vaigl J.R.: LAM: An Open Cluster Environment for
MPL. In Proceedings of Supercomputing Svmposium, 1994, pp. 379-386.

Butenhof D.R.: Programming with POSIX Threads. Addison-Wesley, 1997.

Biicker H.M., Lang B., Rasch A., Bischof C.H., and an Mey D.: Explicit Loop
Scheduling in OpenMP for Parallel Automatic Differentiation. /n Proceedings of

Symposium on High Performance Computing Systems and Applications, 2002, pp.
112-117.

Cappelo F., and Etiemble D.: MPI versus MPI+OpenMP on the IBM SP for the
NAS Benchmark. In Proceedings of Conference on Supercomputing, 2000, Article
No. 12.

Catarinucci L., Palazzari P., and Tarricone L.: Parallel Simulation of Radio-Base
Antennas on Massively Parallel Systems. In Proceedings of Svmposium on
Parallel and Distributed Processing, 2001.

Cavalheiro G.G.H.: A General Scheduling Framework for Parallel Execution
Environments. [n Proceedings of Svmposium on Cluster Computing and Grid,
2001, pp. 680-687.

Chaver D., Prieto M., Pinuel L., and Tirado F.: Parallel Wavelet Transform for
Large Scale Image Processing. /n Proceeding of Symposium on Parallel and
Distributed Processing, 2002, pp. 29-34.

Chiang C-L., Wu J-J,, Lin N-W.: Toward Supporting Data Parallel Programming
on Clusters of Symmetric Multiprocessors. In Proceedings of Conference on

FParallel Distributed Systems, 1998, pp. 607-614.

Chiola G., and Ciaccio G.: Lightweight Messaging Systems. High Performance
Cluster Computing, Vol. 1, Prentice Hall, 1999, pp. 246-269.

Corradi A., Leonardi L., and Zambonelli F.: Diffusive Load-Balancing Policies for
Dynamic Applications. Concurrency, Vol. 7, No. 1, 1997, pp. 22-31.

74

[Cre02]

[Cru01]

[Dai00]

[Das97]

[DaS01]

[Den01]

[Dev00]

[Dre98a]

[Dre98b]

[E1s00]

[Fah95]

[Fer01]

[Feu94]

Cremonesi P.C., and Gennaro C.: Integrated Performance Models for SPMD
Applications and MIME Architectures. Transactions on Parallel and Distributed
Sytems, Vol. 13, No. 7, 2002, pp. 745-757.

Cruz J., and Kihong P.: Towards Communication-Sensitive Load Balancing. In
Proceedings of Conference on Distributed Computing Systems, 2001, pp. 731-734.

Dail H., Obertelli G., Berman F., Wolski R., and Grimshaw A.: Application-Aware
Scheduling of a Magnetohydrodynamics Application in the Legion Metasystem. /n
Proceedings of Heterogeneous Computing Workshop, 2000, pp. 216-228.

Dasgupta P., Majumder A K., and Bhattacharya P.: V_THR: An Adaptive Load
Balancing Algorithm. Journal of Parallel and Distributed Computing, Vol. 42,
1997, pp. 101-108.

Da Silva F.A.B., and Scherson [.D.: Simulation-based Average Case Analysis for
Parallel Job Scheduling. In Proceedings of Simulation Symposium, 2001, pp. 15-
24.

Deng Y., and Korobka A.: The Performance of a Supercomputer Built with
Commodity Components. Parallel Computing, Vol. 27, 2001, pp. 91-108.

Devine K., Hendrickson B., Boman E., St.John M., and Vaughan C.: Design of
Dynamic Load-Balancing Tools for Parallel Applications. {n Proceedings of the
2000 international conference on Supercomputing, 2000, pp. 110-118.

Dreier B., Zahn M., and Ungerer T.: Parallel and Distributed Programming with
Pthreads and Rthreads. [n Proceedings of Workshop on High-Level Parallel
Programming Models and Supportive Environments, 1998, pp. 34-41.

Dreier B., Zahn M., and Ungerer T.: The Rthreads Distributed Shared Memory
System. In Proceedings of Conference on Massively Parallel Computer Systems,
1998.

Elsasser R., Monien B., and Preis R.: Diffusive Load Balancing Schemes on
Heterogeneous Networks. [n Proceedings of Parallel Algorithms and
Architectures, 2000, pp. 30-38.

Fahringer T., Haines M., and Mehrotta P.: On the Utility of Threads for Data
Parallel Programming. In Proceedings of Conference on Supercomputing, 1995,
pp- 51-59.

Ferreira R., Agrawal G., and Saltz J.: Compiler and Runtime Analysis for Efficient
Communication in Data Intensive Applications. /n Proceedings of Parallel

Architectures and Compilation Techniques, 2001, pp. 231-242.

Feuerstein M.J., Blackard K.L., Rappaport T.S., Seidel S.Y., and Xia H.H.: Path
Loss, Delay Spread, and Outage Models as Functions of Antenna Height for

75

(Fle99]

[Fos96]

[Gan96]

[Gan00]

[Gei96]

[Ger91]

[Gho94]

[Gho99]

[Gri94]

[Gro96]

[Gro99]

[Had02]

Microcellular System Design. Transactions on Vehicular Technology, Vol. 43, No.
3, 1994, pp. 487-498.

Fleury M, Downton A.C., and Clark A.F.: Scheduling Schemes for Data Farming.
In Proceedings of Computers and Digital Technigues, Vol. 146, No. 5, 1999, pp.
227-234.

Foster 1., Kesselman C., and Tuecke S.: The Nexus Approach to Integrating
Multithreading and Communication. Journal of Parallel and Distributed
Computing, Vol. 37, 1996, pp. 70-82.

Ganesan R., Govindarajan K., and Wu M-Y.: Comparing SIMD and MIMD
Programming Models. Journal of Parallel and Distributed Computing, Vol. 35,
1996, pp. 91-96.

Gan B.P., Low Y.H,, Jain S., Tumer S.J., Cai W., Hsu W.J, and Huang S.Y.: Load
Balancing for Conservative Simulation on Shared Memory Multiprocessor

Systems. In Proceedings of Workshop on Parallel and Distributed Simulation,
2000, pp. 139-146.

Geist A., Beguelin A., and Dongarra J.: PVM: Parallel Virtual Machine. MIT
Press, 1996.

Gerndt M.: Work Distribution in Parallel Programs for Distributed Memory
Multiprocessors. In Proceedings of Conference on Supercomputing, 1991, 96-104.

Ghosh B., and Muthukrishnan S.: Dynamic Load Balancing in Parallel and
Distributed Networks by Random Matchings. In Proceedings of Symposium on
Parallel Algorithms and Architectures, 1994, 226-235.

Ghosh B., Leighton F.T., Maggs B.M, Muthukrishnan S., Plaxton C.G., Rajaraman
R., Richa A.W., Tarjan R.E., and Zuckerman D.: Tight Analyses of Two Local
Load Balancing Algorithms. Journal on Computing, Vol. 29, No. 1, 1999, pp. 29-
64.

Grimshaw A.S., Weissman J.B., West E.A., and Loyot E.C.: Metasystems: An
Approach Combining Parallel Processing and Heterogeneous Distributed
Computing Systems. Journal of Parallel and Distributed Computing, Vol. 21,
1994, pp. 257-270.

Gropp W., Lusk E., and Skjellum A.: High-performance, Portable Implementation
of the MPI Message Passing Interface Standard. Parallel Computing, Vol. 22, No.
6, 1996, pp. 789-828.

Gropp W., Lusk E., and Skjellum A.: Using MPI — Portable Parallel Programming
with Message Passing Interface. MIT Press, 1999.

Hadjidoukas P.E., Polychronopoulos E.D., and Papatheodorou T.S.: Integrating
MPI and Nanothreads Programming Model. In Proceedings of Euromicro

76

[Hai94]

[Hei96]

[Hen98]

[Hen00]

[Hey98]

[Hog99]

[Hsi00]

[Hu99]

[Hui99]

[Hut98]

[Hut99]

[Hut00]

Workshop on Parallel, Distributed and Network-based Processing, 2002, pp. 309-
3le6.

Haines M., Cronk D., and Mehrotra P.: On the Design of Chant: A Talking
Threads Package. In Proceedings of Conference on Supercomputing, 1994, pp.
350-359.

Heiska K., and Kangas A.: Microcell Propagation Model for Network Planning. In
Proceedings of Svmposium on Personal, Indoor, and Mobile Radio
Communications, 1996, pp. 148-152.

Henrichs J.: Optimizing and Load Balancing Metacomputing Applications. In
Proceedings of Conference on Supercomputing, 1998, pp. 165-171.

Henty D.S.: Performance of Hybrid Message-Passing and Shared-Memory
Parallelism for Discrete Element Modeling. /n Proceedings of Conference on
Supercomputing, 2000, Article No. 4.

Heymann E., Tinetti F., Luque E.: Preserving Message Integrity in Dynamic
Process Migration. In Proceedings of Workshop on Parallel and Distributed
Processing, 1998, pp. 373 -381.

Hoganson K.E.: Workload Execution Strategies and Parallel Speedup on Clustered
Computers. Transactions on Computers, Vol. 48, No. 11, 1999, pp. 1173-1182.

Hsieh J., Leng T., Mashayekhi V., and Rooholamini R.: Architectural and
Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of
Small-Scale SMP Servers. In Proceedings of Conference on Supercomputing,
2000, Article No. 18.

Hu Y.C., Lu H., Cox A.L., Zwaenepoel W.: OpenMP for Networks of SMPs. In
Proceedings of Symposium on Parallel and Distributed Computing, 1999, pp. 302-
310.

Hui C-C., and Chanson S.T.: Hydrodynamic Load Balancing. Transactions on
Parallel and Distributed Systems, Vol. 10, No. 11, 1999, pp. 1118-1136.

Huttunen P., Porras J., Ikonen J., and Sipild K.: Parallelization of Propagation
Model Simulation. In Proceedings of European Simulation Symposium, 1998, pp.
321-325.

Huttunen P.: Improving the Performance of a WCDMA System Simulator through
Parallel Computing Techniques. Master’s Thesis, Lappeenranta University of
Technology, Finland, 1999.

Huttunen P., Ikonen J., and Porras J.: Parallel Simulation of a GSM Network on a

Cluster of Workstations. In Proceedings of European Simulation Multiconference,
2000, pp. 563-567.

77

[Hwa98]

[TkoO1]

[1s197]

[Jon00]

[Kaf95]

[Kai99]

[Kat97]

[Kim01]

[Kin88]

[K1e96]

[K0s00]

[Kul00]

[KumOl1]

[Kur00]

[Lau97]

Hwang K., and Xu X.: Scalable Parallel Computing: Technology, Architecture,
Programming. WCB/McGraw-Hill, 1998.

Ikonen J.: Improving Distributed Simulation in a Workstation Environment.
Doctorate Thesis, Lappeenranta University of Technology, Finland, 2001.

Islam N.: Customized Message Passing. Jowrnal of Parallel and Distributed
Computing, Vol. 41, 1997, pp. 205-224.

Jones K.G., and Das S.R.: Parallel Execution of a Sequential Network Simulator.
In Proceedings of Simulation Conference, 2000, pp. 418-424,

Kafura D., and Huang L.. MPI++ A C++ Language Binding for MPIL. In
Proceedings of MPI Developers Conference, 1995.

Kai M., and Shimada M.: Task Scheduling Algorithms Based on Heuristic Search
Taking Account of Communication Overhead. In Proceedings of Conference on
Communications, Computers and Signal Processing, 1999, pp. 145-150.

Katevenis M.G.H., Markatos E.P., Kalokerinos G., and Dollas A.: Telegraphos: A
Substrate for High-Performance Computing on Workstation Clusters. Journal of
Parallel Computing, Vol. 43, 1997, pp. 94-108.

Kim S.C., and Lee S.: Measurement and Prediction of Communication Delay in
Myrinet Networks. Journal of Parallel and Distributed Computing, Vol. 61, 2001,
pp- 1692-1704.

King C-T., Chou W-H., and Ni L.M.: Pipelined Data Parallel Algorithms —
Concept and Modeling. In Proceedings of Conference on Supercomputing, 1988,
pp- 385-395.

Kleiman S., Shah D., and Smaalders B. Programming with Threads. SunPress,
1996.

Koski K., and Fagerholm J.: Report of the Pilot Project for PC Clusters. Center for
Scientific Computation, Finland, 2000, http://www.csc.fi/reports/pc-cluster/.

Kulkarni P., and Sengupta I.. A New Approach for Load Balancing Using
Differential Load Measurement. In Proceedings of Conference on Information
Technology: Coding and Computing, 2000, pp. 355-359.

Kumar V.: Introduction to Parallel Computing. Addison-Wesley, 2001.
Kurjenniemi J., Himildinen S., and Ristaniemi T.: System Simulator for UTRA
TDD. In Proceedings of CDMA International Conference & Exhibition, 2000, pp.
370-374.

Lauria M., and Chien A.. MPI-FM: High Performance MPI on Workstation
Clusters. Journal of Parallel and Distributed Computing, Vol. 40, 1997, pp. 4-18.

78

[Lei99]

[Lew96]

[Li98]

[Lim99]

[Liu99]

[Lue99]

[Mac00]

[McC94]

[Mey97]

[Mic01]

[Mit97]

[MPI95]

[MPI97]

Leinberger W., Karypis G., Kumar V.: Job Scheduling in the Presence of Multiple
Resource Requirements. /n Proceedings of Conference on Supercomputing, 1999,
Article No. 47.

Lewis B., and Berg D.J. Threads Primer: A Guide to Multithreaded Programming,
SunPress, 1996.

Li K.: Deterministic and Randomized Algorithms for Distributed On-line Task
Assignment and Load Balancing without Load Status Information. In Proceedings
of Svmposium on Applied Computing, 1998, pp. 613-622.

Lim AW., Cheong G.I, and Lam M.S.: An Affine Partitioning Algorithm to
Maximize Parallelism and Minimize Communication. In Proceedings of
Conference on Supercomputing, 1999, pp. 228-237.

Liu Y.-L., Cheng H.-Y., and King C.-T.: High Performance Computing on
Networks of Workstations through the Exploitation of Functional Parallelism.
Journal of System Architectures: The EUROMICRO Journal, 1999, pp. 1307-1321.

Luecke G.R., Raffin B, and Coyle J.J..: Comparing the Communication
Performance and Scalability of a SGI Origin 2000, a Cluster of Origin 2000's and a
Cray T3E-1200 Using SHMEM and MPI Routines. Journal of Performance
Evaluation and Modeling for Computer Systems, 1999,

Mache J., Lo V., and Garg S.: Job Scheduling that Minimizes Network Contention
Due to Both Communication and I/O. In Proceedings of Svmposium on Parallel
and Distributed Processing, 2000, pp. 457-463.

McColl W.F.: BSP Programming. In Proceedings of DIMACS Workshop on
Specification of Parallel Algorithms, 1994, pp. 25-35.

Meyer T.E., Davis J.A., and Davidson J.L.: Analysis of Load Average and Its
Relationship to Program Run Time on Networks of Workstations. Journal of
Parallel and Distributed Computing, Vol. 44, 1997, pp. 141-146.

Michailidis P.D., and Margaritis K.G.: Parallel Text Searching Application on a
Heterogeneous Cluster of Workstations. /n Proceedings of Workshop on Parallel
Processing, 2001, pp. 169 -175

Mitzenmacher M.: On the Analysis of Randomized Load Balancing Scheme. /n
Proceedings of Symposium on Parallel Algorithms and Architectures, 1997, pp.
292-301.

MPI Forum: MPI-1.1 Standard. 1995, http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html.

MPI Forum: MPI-2 Standard. 1997, http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html.

79

[Muk99]

(Myr00]

(Nag99]

[Nie01]

[Nik00]

[Nor93]

[Nor96]

[0ja98]

(Par99]

[Pla94]

(Por95]

[Por98a]

[Por98b]

Mukherjee N., and Gurd, J.R.: A Comparative Analysis of Four Parallelisation
Schemes. In Proceedings of Conference on Supercomputing, 1999, pp. 278-285.

Myricom Inc.: The GM Message Passing Library. 2000,
http://www.myri.com/scs/GM/doc/gm.pdf.

Nagendra B., and Rzymianowicz L.: High Speed Networks. High Performance
Cluster Computing, Vol. 1, Prentice Hall, 1999, pp. 201-245.

Nieplocha J., Ju J., and Apra E.: One-Sided Communication on the Myrinet-Based
SMP Clusters using the GM Message-Passing Library. In Proceedings of Parallel
and Distributed Processing Symposium, 2001, pp. 1707-1716.

Nikolopoulos D.S., Papatheodorou T.S., Polychronopoulos C.D., Labarta J., and
Ayguade E.: Is Data Distribution Necessary in OpenMP? In Proceedings of
Conference on Supercomputing, 2000, Article No. 47.

Norman M.G., and Thanisch P.. Models of Machines and Computation for
mapping in Multicomputers. Computing Surveys, Vol. 25, No. 3, 1993, pp. 263-
302.

Norton S., and Dipasquale M.D. Thread Time: The Multithreaded Programming
Guide. Prentice Hall, 1996.

QOjanperd T., and Prasad R.: Wideband CDMA for Third Generation Mobile
Communications. Artech House, 1998.

Parab N., and Raghvedran M.: Active Messages. High Performance Cluster
Computing, Vol. 1, Prentice Hall, 1999, pp. 270-300.

Plata O., and Rivera F.F.. Combining Static and Dynamic Scheduling on
Distributed-Memory Multiprocessors. [In Proceedings of Conference on
Supercomputing, 1994, pp 186-195.

Porras J., Harju J., and Ikonen J.: Parallel Simulation of Mobile Communication
Networks Using a Distributed Workstation Environment. /n Proceedings of
Eurosim Conference, 1995, pp. 571-576.

Porras J., Ikonen J., and Harju J.: Applying a Modified Chandy-Misra Algorithm
to the Distributed Simulation of a Cellular Network. /n Proceedings of Conference
on Parallel and Distributed Simulation, 1998, pp. 188-195.

Porras J., lIkonen J., and Harju J.: Computing the Critical Time for a Cellular

Network Simulation on a Cluster of Workstations. /n Proceedings of European
Simulation Multiconference, 1998, pp. 16-19.

80

[Por98c]

[Pra97]

[Pro01]

[Qin97]

[Rap96]

[Ren01]

[Ris02]

[Roh96]

[Ros91]

[Rad01]

[Sav99]

[Sch95]

[Sco96]

Porras J.: Developing a Distributed Simulation Environment on a Cluster of
Workstations. Doctorate Thesis, Lappeenranta University of Technology, Finland,
1998.

Prakash S.R., and Srikant Y .N.: Communication Cost Estimation and Global Data
Partitioning for Distributed Memory Machines. In Proceedings of High
Performance Computing, 1997,

Protopopov B.V,, and Skjellum A.: A Multi-Threaded Message Passing Interface
(MPI) Architecture: Performance and Program Issues. Journal of Parallel and
Distributed Computing, Vol. 61, 2001, pp. 449-466.

Qin X., and Baer J-L.: A Performance Evaluation of Cluster Architectures. In
Proceedings of SIGMETRICS, 1997, pp. 237-247.

Rappaport T.S., Muhamed R., and Kapoor V.: Propagation Models. The Mobile
Communication Handbook, CRC Press, 1996, pp. 355-369.

Rencuzogullari U., and Dwarkadas S.: Dynamic Adaptation to Available
Resources for Parallel Computing in an Autonomous Network of Workstations. In
Proceedings of Symposium on Principles and Practice of Parallel Programming,
2001, pp. 72-81.

Rischmuller V., Kurz S., and Rucker W.M.: Parallelization of Coupled Differential
and Integral Methods Using Domain Decomposition. Transactions on Magnetics,
Vol. 38, No. 2, 2002, pp. 981-984.

Roh L., Najjar W.A., Shankar B., and B6hm A.P.: Generation, Optimization, and
Evaluation of Multithreaded Code. Journal of Paralle! and Distributed Computing,
Vol. 32, 1996, pp. 188-204.

Ross K.W., and Yao D.D.: Optimal Load Balancing and Scheduling in a
Distributed Computer System. Journal of ACM, Vol. 38, No. 3, 1991, pp. 676-690.

Réadulescu A., and van Gemund A.J.C.: A Low-Cost Approach Towards Mixed
Task and Data Parallel Scheduling. In Proceedings of Conference on Parallel
Processing, 2001, pp. 69-76.

Savarese D.F., and Sterling T.: Beowulf. High Performance Cluster Computing,
Vol. 1, Prentice Hall, 1999, pp. 625-645.

Schlagenhaft R., Ruhwandl M., Sporrer C., and Bauer H.. Dynamic Load
Balancing of a Multi-Cluster Simulator on a Network of Workstations. In
Proceedings of Workshop on Parallel and Distributed Simulation, 1995, pp. 175-
180.

Scott S.L.: Synchronization and Communication in the T3E Multiprocessor. In

Proceedings of Conference on Architectural Support for Programming Languages
and Operating Svstems, 1996, pp. 26-36.

81

[Si199]

[Sip96]

[Sis99]

[Ski9o8]

[Skj94]

[Soh96]

[Soh97]

(Spr01]

[Squ96]

[Ste97]

[Sto01]

[Sub02]

[Sun90]

Silicon Graphics Inc.: Message Passing Toolkit: PVM Programmer’s Manual.
1999, http://www.fz-juelich.de/zam/docs/CrayDoc/manuals/007-3686-002/007-
3686-002-manual.pdf.

Sipild K., and Heiska K.: Can Ray Tracing Be Used as a Fading Generator in
Simulating Micro Cellular Mobile Radio Systems? In Proceedings of Conference
on Wireless Communication, 1996.

Sistare S., vande Vaart R., Loh E.: Optimization of MPI Collectives on Clusters of
Large-Scale SMP’s. In Proceedings of Conference on Supercomputing, 1999,
Article No. 23.

Skillicorn D.B., and Talia D.: Models and Languages for Parallel Computation.
Computing Surveys, Vol. 30, No. 2, 1998, pp.123-169.

Skjellum A., Doss N.E., Viswanathan K., Chowdappa A., Bangalore P.V.
Extending the Message Passing Interface. In Proceedings of Scalable Parallel
Libraries Conference 11, 1994.

Sohn A., Biswas R., and Simon H.D.: A Dynamic Load Balancing Framework for
Unstructured Adaptive Computations on Distributed-Memory Multiprocessors. /n
Proceedings of Symposium on Parallel Algorithms and Architectures, 1996, pp.
189-192.

Sohn A., Sato M., Yoo N., and Gaudiot J-L.: Data and Workload Distribution in a
Multithreaded Architecture. Journal of Parallel and Distributed Computing, Vol.
40, 1997, pp. 256-264.

Springer P.L.: PVM Support for Clusters. In Proceedings of Conference on Cluster
Computing, 2001, pp. 183-186.

Squyres J.M., McCandless B.C., and Lumsdaine A.: Object Oriented MPI. CSE
Technical Report TR96-10, University of Notre Dame, 1996,

Steenkiste P.: A High-Speed Network Interface for Distributed-Memory Systems:
Architecture and Applications. Transactions on Computer Systems, Vol. 15, No. 1,
1997, pp. 75-109.

Stone J., and Ercal F.: Workstation Clusters for Parallel Computing. Potentials,
Vol. 20, No. 2, 2001, pp. 31-33.

Subramani V., Kettimuthu R., Srinivasan S., and Sadayappan P.: Distributed Job
Scheduling on Computational Grids using Multiple Simultaneous Requests. In
Proceedings of Symposium on High Performance Distributed Computing, 2002,
pp. 359-366.

Sunderam V.S.: PVM: A Framework for Parallel Distributed Computing.
Concurrency: Theory and Practice, Vol. 2, No. 4, 1990, pp. 315-339.

82

[Tan99]

[Tan00]

[Tan01]

[Tha0l1]

[Top02]

[Uth02]

[Wag97]

[Wal98]

[Wea99]

[Wil96]

[Wil98]

[Wu98]

[Zak97]

Tanaka Y., Matsuda M., Kubota K., Sato M.: COMPaS: A Pentium Pro PC-Based
SMP Cluster. High Performance Cluster Computing, Vol 1, Prentice Hall, 1999,
pp. 661-681.

Tang X., and Chanson S.T.: Optimizing Static Job Scheduling in a Network of
Heterogeneous Computers. In Proceedings of Conference on Parallel Processing,
2000, 373-382.

Tang H., and Yang T.: Optimizing Threaded MPI Execution on SMP Clusters. /n
Proceedings of Conference on Supercomputing, 2001, pp. 381-392.

Thanalapati T., Dandamudi S.: An Efficient Adaptive Scheduling Scheme for
Distributed Memory Multiprocessors. Transactions on Parallel and Distributed
Systems, Vol. 12, No. 7, 2001, pp. 758-768.

University of Mannheim, and University of Tennessee: TOP500 List, 2002 (June),
http://www .top500.0rg/lists/2002/06/.

Uthayopas P., Angskun T., Maneesilp J.: On the Building of the Next Generation
Integrated Environment for Beowulf Clusters. In Proceedings of Symposium on
Parallel Architectures, Algorithms, and Networks, 2002, pp. 159-164.

Wagner A.S., Sreekantaswamy H.V ., and Chanson S.T: Performance Models for
the Processor Farm Paradigm. Transactions on Parallel and Distributed Svstems,
Vol. & No. 5, 1997, pp. 475-489.

Wallcraft AJ.: A Comparison of Several Scalable Programming Models. /n
Proceedings of Workshop on Software Engineering and Code Design in Parallel
Meteorological and Oceanographic Applicaations, 1998, pp. 183-198.

Weaver A.C.: Xpress Transport Protocol. High Performance Cluster Computing,
Vol. 1, Prentice Hall, 1999, pp. 301-316.

Wilson L.F., and Nicol D.M.: Experiments in Automated Load Balancing. In
Proceedings of Workshop on Parallel and Distributed Simulation, 1996, pp. 4-11.

Wilson L.F., and Shen W.: Experiments in Load Migration and Dynamic Load
Balancing in SPEEDES. In Proceedings of Winter Simulation Conference, 1998,
pp- 483-490.

Wu J-J., and Liu P.: Distributed Data Structure Design for Scientific
Computations. In Proceedings of Conference on Supercomputing, 1998, pp. 227-
234.

ZakiM.J., Li W., and Parthasarathy S.: Customized Dynamic Load Balancing for a

Network of Workstations. Journal of Parallel and Distributed Computing, Vol. 43,
1997, pp. 156-162.

83

[Zha00] Zhang Y., Sivasubramaniam A., Moreira J., and Franke H.: A Simulation-based
Study of Scheduling Mechanisms for a Dynamic Cluster Environment. In
Proceedings of Conference on Supercomputing, 2000, pp. 100-109.

84

Publications

Publication 1

Huttunen P., Porras J., and lkonen J.: Analysis of Parallel Environments for
Mobile Network Simulation. In Proceedings of European Simulation
Symposium, Hamburg, Germany, September 28-30, 2000, pp. 164-168.

Analysis of Parallel Environments for Mobile Network Simulation

Pentti Huttunen, Jari Porras, and Jouni Ikonen
Lappeenranta University of Technology
P.O. Box 20, FIN-53851 Lappeenranta, Finland
{ Pentti. Huttunen, Jari.Porras, Jouni.Ikonen } @lut.fi

KEYWORDS
Parallel simulation, shared memory environment,
distributed memory environment, cluster of workstations.

ABSTRACT

This paper compares three parallel environments: shared
memory, distributed memory, and cluster of workstations.
A GSM network simulator is implemented with the most
optimal work balancing algorithm into each of the three
environments. Benefits and drawbacks of each
environment are explained regarding the network
simulation. The achieved speedups from the simulation are
presented. Finally, the conclusions are drawn with respect
to scalability and cost efficiency of the environments.

INTRODUCTION

During the last few decades the need for increased
computing power has risen drastically. A large number of
computer vendors have introduced new systems based on a
variety of different architectural models. Each architectural
platform offers an optimal environment for specific types
of computing tasks. At the present time parallel
cnvironments can be divided into three distinctive systems:

- Shared memory machines

- Distributed memory machines

- Cluster of workstations
Due to the divergence of the systems, it is cssential to
select the correct environment in which to run the parallel
program. In theory. a program can be run in any of the
threc environments. However, usually there is an optimal
environment for ecach program, where overhead 1is
minimized, and performance is maximized. The shared
memory e¢nvironment enables the use of the memory as a
communication medium for processors to transfer data.
Thus, the communication overhead is minimal. In the
distributed and cluster environments, communication has
to be implemented explicitly with message-passing
interface. However, the distributed nature of the
environments cnables the use of a considerably larger
number of processors than in the shared memory
environment. Since all communication in the shared
memory environment is handled through the memory via
thc memory bus, if the number of processors rises over 10,
congestion in the memory bus decreases performance
constderably (Wilkinson and Allen 1999). Therefore, when
the parallel application does not require constant
communication between processors, distributed and cluster
environments provide suitable platforms for large parallel
applications. The selection of the environment depends on
several factors. In general, the structure of the program
dictates the optimal environment. The structure of the
program reveals the need for communication,
synchromization, and requirements for a work balancing
algorithm.

The paper is structured as follows: Firstly, a bref
introduction of the GSM network simulator is given.
Secondly, all environments are described with their special
features, advantages and drawbacks. In addition, the
parallelization operations done for each environment are
described. Thirdly. test environments, parameters, and the

achieved results are presented. Finally, the conclusions are
drawn, and the implementation issues specific for each
environment are discussed and compared.
THE GSM NETWORK SIMULATOR

The simulator was onginally designed and implementcd at
Nokia Research Center in Finland. The first
implementation did not include any parallel code. During
the test runs, it became apparent that the interactive use of
the simulator required a substantial increase in computing
power, Fortunately, the structure of the simulators was
suitable for parallel execution.

The GSM network simulator is used to calculate a
coverage gencrated by a base station. The coverage
denotes an area in which a mobile phone can be used. i.c.
the mobile station receives signals from the base station,
which are strong enough for transmission of speech or
data. The main purpose of the simulator is to offer a low-
cost design tool for network providers. Covcrage
calculation is based on a ray tracing of signals from the
base station. The method of ray tracing is similar to ray
tracing used in 3D graphics. However, the implementation
of the ray tracing differs significantly.

The area of the calculated coverage is called a map. A grid
is created over the map dividing it into receiving points
that are squares. The size of the map is usually 1-3 km’,
and the size of each receiving point square is from | m’ to
16 n’. The size of the receiving point has a major effect on
the complexity of calculation. The basic implementation of
ray tracing requires tracing of all signals from the base
station, until the powers of the signals go below a set
threshold. The powers of signals are reduced based on the
distance and the obstacles on the route of the signals (Hata
1980; Sipils and Heiska 1996). The field strength of cach
receiving point is updated when a signal arrived to the
receiving point. From the laws of physics the signal can
(Rappaport et al. 1996):

- propagate in free space

- reflect from an obstacle

- diffract from an edge of an obstacle
The signal suffers propagation loss due to the distance it
traverses. The loss is proportional to the square of the
propagated distance. Reflection takes place when the ray
hits an obstacle. i.e. a building, The ray reflects from the
surface, while parts of it goes through the obstacle. The
simulator only recognizes the reflected signal, which
suffers a loss of power due to the reflection. Diffraction
happens when a ray arrives to a comer of an obstacle.
Multiple new rays are created, since the ray disperses to all
directions. Thus, the complexity of the calculation is
increased whenever diffraction occurs. The signal
propagation can be a problem. since numerous rays are
launched from the base station requiring a lot of work.
Nevertheless, to achieve accurate results, the number of
launched rays has to be high. The complexity of the
simulation increased exponentially when more signals are
traced.

Since the number of rays to be traced during simulation is
very high, the basic ray tracing method was improved in
order to gain better performance. Therefore, a ray tracing

model utilizing line-of-sight information was developed.
Rays are still traced, but the impact of ray tracing is
considerably less in the modified model. The ray tracing
takes place only at the beginning of the simulation, when
rays sent from the base station are traced to all comers of
the obstacles. Next, a line-of-sight (LOS) —polygon is
generated to each corner. The LOS polygon indicates the
area seen from the corners, denoting the area to which the
rays diffract (Heiska and Kangas 1996). Finally, the actual
coverage calculation includes “filling” of the LOS
polygons by using the powers of signals at the comer as
base power. The use of a more sophisticated ray tracing
method had two benefits: the complexity of the simulator
is reduced, and the method is more suitable for parallel
processing due to the existence of LOS polygons.

Diffraction calculation is referred to as horizontal
calculation. The name indicates that the rays are only
traced on a certain horizontal level, i.e. height of the base
station. Reflection calculation s part of horizontal
calculation. Tests have indicated that the exclusive use of
horizontal calculation does not provide adequate results.
Therefore, vertical calculation is required to increase
accuracy of the results. Vertical calculation consists of
over-the-roof signal propagation. For each receiving point,
a straight distance from the base station is calculated, and
possible obstacles between the receiving point and the base
station are observed. Based on the gathered information,
the field strength to the receiving point is calculated.

PARALLELIZATION PROCESS

During the paralielization process, both vertical and
horizontal calculations were modified to run in parallel. In
the sequential simulator, vertical calculation consumed
about 20% of the total execution time of the simulator. On
the other hand, the execution of the diffraction calculation
took up 75% of the total execution time. The remaining
5% was spent in initialization of the simulator and the
parallel environment.

For both calculations, a work balancing algorithm was
developed. The algorithms handled the equal distribution
of work, which was necessary for the optimal utilization of
processors, and the equal execution times of the individual
processors. The work balancing algorithm implemented
for each environment is discussed in further detail when
the environments are presented.

There are several methods to convert a sequential program
into a parallel program (Skillicorn and Talia 1998). On a
general level, two main methods can be distinguished:
threads and message passing. Threads provide a method to
implement several instances of code running entities inside
a single process. Each thread has its own memory for
control structures, but ali threads share resources allocated
for the process. This makes the thread programming an
attractive approach for shared memory machines. The
parallelization of the GSM network simulator for the
shared memory ecnvironment was implemented with
POSIX threads (Butenhof 1997). The use of message
passing in a shared memory environment is possible, but
not advisable due to generated overhead and the existence
of threads. In a distributed memory machine, message
passing is required to enable communication between
processors. Message passing was also used to convert the
sequential simulator to the cluster of workstations.

A great number of messaging passing libraries are readily
available (Dongarra 1995). Currently the most recognized
message passing hbrary is MPI (Message Passing
Interface), which offers an interface for C and Fortran
programmers to handle point-to-point and collective
message passing (MP! Forum 1994). Nearly all computer

vendors manufacturing workstations or multiprocessor
machines have their own implementation of MPI. These
specific versions of the MPI standard have been optimized
for the particular systems in order to enable the utilization
of system resources to their fullest.

Despite the chosen environment. the parallelization
method always introduces overhead to computation,
Overhead is the extra work required by the paraliel
application to comununication, synchronize execution,
protect critical areas, or create, maintain. and terminate
parallel environments. For each environment, the amount
and type of overhead varies. In a shared memory
environment creating threads and protecting critical areas
are the main contributors to overhead, whereas in a
distributed memory. communication between the
processors is by far the greatest source of overhead. The
problems induced by overhead are discussed later when
the environments are presented.

THE PARALLEL ENVIRONMENTS

Three distinctive environments were compared based on
their speed, scalability, and cost-efficiency. In this
subsection all three environments are presented. The
special features, benefits. and drawbacks of each
environment are detailed.

Shared memory environment

The shared memory environment comprised of a SMP
{shared muitiprocessor) machine with 8 processors. The
processors were 435MHz Digital Alpha chips sharing a
memory of 4 Gbytes. POSIX threads were used
implementing the parallel version of the simulator for the
environment. Although, MPl could have been used,
threads generated less overhead. In the simulator, the
threads were created at the beginning of computation and
were not terminated until the program exited. This was
essential, since an excessive amount of time is needed to
create a thread. While using threads, it is required to
provide a locking mechanism for shared variables, which
can be accessed by all threads simultaneously. Concurrent
access cannot be allowed in order to guarantee the correct
execution of the program. Therefore, the POSIX thread
library provides a number of locking mechanisms to
protect shared variables. The mechanism used in the
simulator is called a mutex (mutual exclusion) lock. The
lock protects a critical section allowing only one thread to
access the area at a time. However, the use of locks should
be considered carefully since they pose the posstbility of
performance bottlenecks. Since a single thread executes
the critical area at a time, the level of parallelism 1s
diminished.

A dynamic work balancing algorithm was implemented
due to the characteristics of the environment. In general, it
can be said that dynamic work balancing requires
communication between processors (Zaki et al. 1997).
Therefore, the use of a dynamic algorithm is especially
advisable in a shared memory environment, where the
effect of communication is minimal. The work balancing
algorithm created a pool consisting of work units to be
processed. In vertical calculation, a unit represented a
receiving point, and in horizontal calculation, a LOS
polygon. Threads fetched a unit at a time from the pool.
The use of the work pool in distributing work between
processors automatically utilizes the processors to their
fullest potential. In addition, in horizontal calculation, the
1.OS polygons were fetched from the pool in descending
order, based on the amount of work in each polygon. The
additional feature minimized, to some degree, the time at
the end of parallel computation when threads were

synchronizing their execution; all threads had to complete
their execution before the final results were produced.

Distributed memory environment

There are several similarities between a distributed
memory machine and a cluster of workstations. The main
reason of different approaches for the environments was
the communication medium and the layouts of processors.
In the distributed memory machine, the network
connecting the processors (within a single machine) to
each other is a high-speed network. On the other hand, in a
cluster of workstations the interconnecting network is
slower and the network is constructed of a number of
computers,

The distributed memory machine used to run the GSM
network simulator was Cray T3E. The T3E had 224 DEC
Alpha chips with 128 Mbytes of memory each. The
interconnecting network had a transfer bandwidth of 480
Mbytes/second. The processors formed a 3D torus, so that
each processor had four neighbors (Cray Research 1996).

As mentioned earlier, in the distributed memory
environment, the communication poses a great deal of
overhead due to communication. To minimize the effect of
communication, the implementation of the GSM network
simulator was done so that communication took place
before and after the parallel computation. The time spent
in communication still contributed to overhead, but not as
significantly as it might have done. MPI provided methods
for collective communication, where with a single
command more than two processors were involved in
communication. The collective commands may be easy to
use but they do not necessarily induce the best possible
performance. In a distributed memory environment, as
well as, in a cluster of workstations, the NFS (network file
system) was used instead of the MPI routines to distribute
the data between the processors. Each processor simply
read the data from a file over NFS.

Despite the cost of communication in a distributed
memory environment, a dynamic work balancing
algorithm was developed. The concept of the algorithm
was similar to the one implemented for the shared memory
environment. The only exception was that each processor
had a copy of all work units, whereas in a shared memory
environment threads, used a single copy of the units stored
in the memory of the process. A work pool was created
and a master processor was dedicated to handle fetching of
the work units from the pool. The master processor kept
track of the units that had not been processed. Based on a
request sent by a processor the master processor replied
with an unit to process. Granted, the master-worker work
balancing schema generated overhead in the form of
communication during the parallel processing. Normally,
the communication would not have been acceptable.
However, SGLCray Rescarch Inc. has developed an
optimized message passing library for their systems to
simulate a shared memory environment. The library is
called SHMEM (Shared Memory), and it provides routines
for the use of the distributed memory machine as a shared
memory machine. With these routines processors can
access other memories of other processors without any
interference to the accessed processors. The SHMEM
routines also automatically provide synchronization for the
accessed data that prevents the data from being corrupted.
In the simulator, a SHMEM routine was used to fetch the
index to the next unit to process. As in the shared memory
cnvironment, applying a dynamic work balancing
algonthm gave better performance through improved work
balance, and processor utilization.

Cluster of workstations

Workstation clusters are becoming very popular among
organization that are not willing to spend million of dollars
to acquire a supercomputer. The term “cluster of
workstations” however, can be misleading; a cluster can be
formed from standard PCs (cluster of PCs, COP), or from
a group of multiprocessor machines {cluster of SMPs)
(Hwang and Xu 1997). The goal of cluster computing is to
provide supercomputing capabilitics by connecting a
number of independent computers together. The Internet
provides the ultimate environment for clusters. However, a
more traditional cluster is formed from computers found in
an office or at a university. The user interface of a cluster
is relatively similar to a distributed memory machine. The
main differences to a distributed memory machine are the
nterconnecting network, the heterogeneous environment,
and the non-dedication of the system. The network
connecting the workstations together is usually based on a
TCP/IP protocol suite. and the network’s bandwidth is not
as high as in distributed memory machines. There are
commercial solutions, such as Myrinet, for high-speed
communication in clusters, which still are rather expensive
to be used in an office environment (Hwang and Xu 1997).
On the other hand, since a cluster ts a group of computers,
the computers are usually not identical. The heterogeneous
environment poses dilemmas conceming work balancing
due to the varied computing capacities of the workstations
(Dongarra 1995; Zaki et al. 1997). The dedication of a
system implies whether the system is dedicated entirely for
parallel computing or not. A non-dedicated cluster allows
the interactive usage of workstations during the parallel
execution. Non-dedication leads to work balancing
problems, since the use of a heavily loaded computer for
parallel computing is not reasonable. A lot of research has
been conducted conceming work balancing in
heterogeneous environments (Hui and Chanson 1997;
Schlahenhaft et al, 1995),

The cluster where the test runs of the GSM network
simulator were conducted consisted of 16 dual Pentium
workstations running the Linux operating system (CSC
1999). The workstations were interconnected with a Fast-
Ethemet switch (100 Mbits/s). MPICH (MPI Chameleon)
was the implementation of the MPI message passing
interface in the cluster. MPICH is, perhaps, the most
commonly used implementation of the MPI due to its good
performance-portability ratio (Gropp et al. 1996). Since
the implementation of the MPICH did not support the use
of a shared memory as a communication medium between
the processors within a workstation, all communication
took place via sockets.

The implementation of the GSM network simulator for the
distributed memory machine was used as a basis for the
implementation in the cluster of workstations. NFS was
also utilized to relay the data to all processors in a cluster.
However, due to the high cost of communication in a
cluster of workstations, the work balancing algorithm in
honizontal calculation was modified. A static work
balancing was implemented to minimize communication.
On the other hand, a static work balancing algorithm is
rarely capable of creating equal work balance; the trade-off
between optimal work balance and communication had to
be made. Firstly, the work balancing algorithm sorted LOS
polygons based on the work required by each polygon.
From the sorted pool of polygons, processors fetched a
polygon to process, starting with the polygons requiring
the most work. Since the algorithm was static, each
processor processed a fixed number of polygons, based on
the processor id number.

Figure 6 illustrates how the distribution of polygons to the
processors is done. The number of processors is four (id =

0..3). Since each processor has a fixed number of
polygons to process, the optimal work balancing is next to
impossible to attain. To sort the polygons and to use
interval fetching of polygons the most optimal static work
balancing algorithm can be implemented.

Poiygons- [1 [2[31a[5[6]7]8]al10f11}]
Processor{ 01 1 [2[3Jo}j1F21374]011]

Figure 1, Distribution of the-polygons to the processors.

SIMULATION EXPERIMENTS AND RESULTS

The same simulation was performed on the three
environments. The tests were run from one processor to
the maximum number of processors in a system., except in
Cray T3E where the maximum number of processors was
32. The execution times varied considcrably from one
environment to another. For instance, the same simulator
run with only one processor produced the following
execution times:

- Shared memory environment, 255.75 seconds

- Distributed memory environment, 736.58 scconds

- Cluster of workstations, 1 188.65 seconds

The differences can be explained with the variation of
processor speeds, and memory hierarchies. Therefore,
speedups were calculated based on the sequential
exccution time of the GSM network simulator. This made
it possible to compare the achieved results. The
comparison based on speedups had a single drawback; the
speedup does not take the deviation of the execution times
of different cnvironments into consideration. Thus, the
usage of speedups to compare environments is not
necessarily the best method with respect to the execution
time. The evaluation of speedups deals with the scalability
capabilities of systems, as well as, the issues relating cost-
efficiency.

As a test case, coverage generated by a single base station
in an urban environment was calculated. The map over
which the coverage was calculated consisted of the city of
Helsinki. The calculation area was 1640 x 1470 meters
(2.4 km?), and the size of a receiving point was 4 x 4
meters. The achieved speedups are shown in Figure 2.
Since threads were used in the implementation for the
shared memory environment, the speedups are shown

Spasdup
14

against the number of threads instead of processors. It is
possible for the number of threds to exceed the number of
processors, as seen in Figure 2. In some cases, the creation
of extra threads can provide increased performance
(Butenhof 1997). However, in this case, no performance
gain was achieved.

The results indicated that the best speedup was achieved
with the PC cluster {13.3). However, the performance of
Cray T3E did not differ significantly. The results from
Cray T3E are considerably more stable than the cluster
environment. This is the result of the communication
network of the PC cluster. The cluster was a collection of
workstations in a TCP/IP network, which was part of an
office-wide nctwork. Each workstation also ran other
programs during the paratlel execution of the simulator.
The dedicated use of Cray T3E, and the high-speed
interconnection network provided a more stable platform
for paratlel execution.

The shared memory machine had only 8 processors, which
limited the achieved results. Even if the comparison had
been done within the range of | to 8 processors, the shared
memory machine performed the worst. This can be
considered as an unlikely event, since normally the amount
of overhead created in the shared memory environment is
minimal. However, in this case there was no need for
communication during the calculation, which eliminated
the advantage of the shared memory. On the other hand,
since threads shared the memory, synchronization methods
were implemented generating overhead. Synchronization
with overhead created by manipulation (creation,
scheduling, destruction) of threads, caused the shared
memory environment to perform more poorly than the two
distributed environments. However, the shared memory
environment was the only environment where the system
was not even partly dedicated to running the GSM network
simulator.

The implementation for Cray T3E wused specific
communication routines optimized for the Cray MPP
environments. Without the use of the SHMEM library
calls the performance of Cray T3E would have been
worse. For the cluster environment, only the basic MPI
library routines were utilized. Therefore, to conclude, the
cluster of workstation can be said to pcrform the best out
of the three environments presented in this paper. The cost
of creating and maintaining a cluster makes it an especially

{—&—Compag AlghaServarb000
{—4—Cray T3E
{—I—Pc Clustar

o 5 10 15 20 25 30 ‘a5

Kumbaer of processsraithrasdsy

Figure 2, Speedup of the simulation

lucrative choice for a parallel environment. Similar
speedups were achieved with a multimillion dollar Cray
T3E supercomputer, and with a cluster of workstations
worth about $50,000. Since the cluster does not need to be
dedicated to parallel computing, the workstations forming
the cluster can be machines in an office or at a university.
The cluster enables flexible configuration, and the efficient
utilization of resources; the machines can be used to run
sequential and parallel applications simultancously. The
size of the cluster can be easily adjusted by increasing the
number of computers participating in the calculation,
whereas in an MPP system new processors have to be
bought with other related hardware (e.g. motherboards,
and memory).

It should be noted, that Figure indicated the total speedups
of the execution times. The two parallelized parts
produced significantly better speedups. For example, in
Cray T3E, the maximum speedup for vertical calculation
was 12.6. However, the amount of work required for
vertical calculation restricted the achievable speedup. The
execution time of vertical calculation was reduced from
20.2 seconds to 1.6 seconds. Horizontal calculation had
much more work to distribute between processors.
Therefore, the achieved results were noticeably better than
those from vertical calculation. The maximum speedup of
22.8 was obtained with the use of 32 processors; the
parallel execution time dropped from 689.3 seconds to
30.24 seconds. Similar behavior was detected in the PC
cluster.

The study of the performance of a cluster environment in
this paper has shown that the execution times can be
reduced significantly. However, the problem that remains
in a cluster environment is the effect of communication to
the actual calculation. This dilemma did not concern the
GSM network simulator, due to the structure of the
simulator. Nevertheless, the results showed that
minimizing the need for communication makes the cluster
of workstations an environment worth considering when
the need for parallel computing arises.

CONCLUSIONS

The purpose of this paper was to present three different
parallel environments with their special features, and
compare performances of the environments. A GSM
network simulator was parallelized for each environment
by using the optimal programming methods offered by the
systems. For a shared memory environment threads were
utilized to run the simulator on multiple processors. In a
distributed memory environment, MPI and SHMEM
library calls were utilized. The SHMEM library calls were
special routines created for Cray's MPP environments. In
the cluster environment, the implementation was done by
using only the MPI library calls.

Work balancing algorithms were developed for cach
environment to take advantage of their characteristics. The
mnain goal in a shared memory environment was to
minimize the use of synchronization primitives, whereas in
a distributed memory environment and a cluster of
workstations, efforts were made to minimize
communication. In general, the significance of a work
balancing algorithm cannot be overlooked in parallel
computing. An incorrect work balancing algorithm can
crucially inhibit performance of the parallel application.

The test runs of the sinwlator were run with similar
parameters in all environments. The achieved results
showed that the shared memory environment was inferior
to the distributed and cluster environments. There was not
a significant difference in performances of the distributed
and cluster environments. The comparisons were made

based on the achieved speedups. The comparisons gave an
indication of how well the environments performed when
more processors were added.

To conchide, the comparison presented in this paper
showed that the cluster of workstations is definitely an
option worth considering for parallel computation
purposes. First of all, the cost of creating a cluster is low.
In addition, the workstations that form the cluster can be in
every day use by staff and students at a university. The
parallel jobs can be run concurrently with the jobs created
by interactive uscrs. Whereas a distributed memory
machine usually has a set of similar processors (speed and
memory), a cluster of workstation can consist of machines
with different parameters: number of processors, processor
speed, amount of memory, architecture, and operating
system.

References

Butenhof, D.R. 1997. Prograniming with POSIX Threads.
Addison-Wesley, ISBN 0-201-63392-2.

Center for Scientific Computing (CSC). 1999,
http://www csc.fi/metacomputer/pckluster

Cray Research. 1996. Cray T3E Applications
Programming (TR-T3EAPPL (D)).

Dongarra, J.J. 1995, “Heterogeneous Network-Based
Concurrent Computing Systems.” In High Performance
Computing: Technology, Methods and Applications.
Elsevier Science B.V., ISBN 0-444-82163-5, pp. 5-16.

Gropp, W.; E. Lusk; et. al. 1996. “A High-Performance,
Portable Implementation of the MPI Message Passing
Interface Standard.” Technical Report ANL/MCS-P567-
0296, Argonne National Laboratory. (July).

Hata, M. 1980. “Empirical Formula for Propagation Loss
in Land Mobile Radio Services.” IEEE Transactions on
Vehicular Technology, vol. VT-29, no. 3.

Heiska, K. and A. Kangas. 1996. “Microcell Propagation
Mode! for Network Planning.” In Proceedings of IEEE
PIMRC 96. (Taipei, Taiwan).

Hui, C-C. and S.T. Chanson. 1997. “Theoretical Analysis
of the Heterogeneous Dynamic Load-Balancing Problem
Using a Hydrodynamic Approach.” Jowurnal of Parallel
and Distributed Computing, vol, 43.

Hwang, K. and Z. Xu. 1997, Scalable Parallel Computing.
McGraw-Hill, ISBN 0-0703-1798-4.

Message Passing Interface Forum (MPI Forum). 1994.
“MPI: A Message Passing Interface Standard.”
International Journal of Supercomputer Applications, §

(3/4).

Rappaport, T.S.; R. Muhamed; et. al. 1996, “Propagation
Models.” In The Mobile Communication Handbook,
Chapter 22. CRC Press, Inc. ISBN 0-8493-8573-3.

Schlagenhaft, R.; M. Ruhwandl; et. al. 1995, “Dynamic
Load Balancing of a Multi-Cluster Simulator on a Network
of Workstations.” In Proceedings of Parallel and
Distributed Simulation (Lake Placid, USA).

Sipild K. and K. Heiska. 1996. “Can ray tracing be used as
a fading generator in simulating micro cellular mobile
radio system?” In Proceedings of the 8" International
Conference on Wireless Communications (Calgary,
Canada).

Skillicom, D.B. and D. Talia. 1998. “Models and
Languages for Parallel Computation.” ACM Computing
Surveys, vol. 30, no. 2.

Wilkinson, B. and M. Allen. 1999. Parallel Programniing:
Techniques and Applications Using Networked

Workstations and Parallel Computers. Prentice-Hall,
ISBN 0-13671710-1.

Zaki, MJ.; W. Li; et al. 1997, “Customizing Dynamic
Load Balancing for a Network of Workstations.” Jowmnal
of Parallel and Distributed Computing, vol. 43.

Publication 2

Huttunen P., Ikonen J., and Porras J.: The Impact of Communication in
Distributed Simulation. In Proceedings of European Simulation Symposium,
Marseille, France, October 18-20, 2001, pp. 111-115.

THE IMPACT OF COMMUNICATION IN DISTRIBUTED
SIMULATION

Pentti Huttunen
Jouni Ikonen
Jari Porras
Lappeenranta University of Technology
Department of Telecommunication
P.O. Box 20, FIN-53851 Lappeenranta
Finland
{Pentti.Huttunen, Jouni.Ikonen, Jari.Porras} @]lut.fi

ABSTRACT

The ever-increasing computation requirements of present day simulators have
prompted a need for distributed simulation. There are two main improvements in the
distributed simulation over the sequential simulation: the execution times of the
simulation runs are significantly reduced, and bigger simulation problems can be
solved. Unfortunately, the distribute simulation does not come without drawbacks. As
the name implies, the simulation is divided into independent parts and distributed over
a number of processors. The distribution involves communication among processors.
From the parallel computing point of view the communication is additional work that
does not exist in the sequential simulation. Thus, the communication is considered
overhead. The communication overhead can have a significant impact on the total
execution time of the distributed simulation. The research presented in this paper
studies the effect of communication in regard to the performance of the distributed
simulation.

1. INTRODUCTION

Due to the complexity of present day simulators, the usage of distributed methods to
run simulators has increased drastically. The distributed simulation has been proven to
boost the performance, and to allow the execution of bigger and more complex
simulations. There are a number of dilemmas faced by the simulation expert while
implementing a distributed simulator or converting a sequential simulator to be run in
parallel. The two potential problem areas are load balancing and communication.
Load balancing deals with dividing the simulation into independent parts and
assigning the parts to the processors for execution. A large research community is
studying load balancing. Unfortunately, there is still not a single way of handling load
balancing for all simulation problems in all distributed systems. Thus, load balancing
will remain an intensive area of research for a number of years. The second problem
is the communication. Once the load balancing algorithm has calculated the work
distribution, the information has to be communicated to all the processors.
Furthermore, the processors may need to transfer data among themselves during the
computation phase. Whereas load balancing usually takes place prior to the actual
parallel computation, the processors can resort to communication at any point of the
execution. Therefore, the communication has a profound effect on the execution of
the simulator. The purpose of the study presented in this paper is to quantify the

contribution of communication and describe methods to reduce the negative impact of
communication to distributed simulators.

The structure of the paper is as follows. The second chapter discusses distributed
simulation. It details issues unique to parallel simulation such as load balancing,
synchronization and communication. The third chapter is devoted to communication.
The effect of communication is discussed in conjunction with solutions to overcome
the dilemmas cause by the communication. The fourth chapter presents the
performance results of a TCP/IP network and the Message Passing Interface (MPI)
library. The first part of the tests measures the performance of the 100 Mbps Ethernet
network with the most common protocol TCP/IP. The second part of the
measurements describes the performance of a message passing interface (MPI) that
has been implemented on top of the TCP/IP protocol. Finally, the last chapter
concludes the paper.

2. DISTRIBUTED SIMULATION

Simulation is considered distributed if parts of it are executed concurrently on a
number of processors. The actual implementation of the distributed simulator is
greatly dependent on the phenomenon to be simulated and on the simulation expert.
There are a vast number of tools to assist the simulation expert in implementing the
sequential simulator. Unfortunately, the same is not true for the distributed simulator.
Most of the distributed simulators are nowadays implemented with traditional
programming languages such as C, C++, and Fortran. The simulation expert is
responsible of coding the simulation along with all the components required by the
distributed execution. The main components are load balancing, synchronization, and
communication.

Regardless of the significant effect of load balancing in distributed simulation, load
balancing is not discussed in detail. The load balancing is a very complex and
important task to be conducted prior or during the parallel simulation. The interested
reader is referred to (Wilson and Nicol 1996; Wilson and Shen 1998) for more
information about load balancing in distributed simulation. More generic information
about load balancing is found in (Ezzat 1986; Hamdi and Lee 1995; Ros and Yao
1991).

Synchronization deals with situations where the execution of the processors has to be
coordinated. For example, a processor that calculates the final results based on the
sub-results of all other processors has to wait until the processors have produced the
sub-results prior to computing the final results. In an optimally balanced simulator,
the synchronization overhead is minimal. If all processors arrive at a synchronization
point at the same time, the execution of all the processor continues immediately.
Unfortunately, the amount of work on the processors is not usually equal, which
contributes to the synchronization overhead; a processor is not allowed to continue its
execution until all the processors have entered the synchronization point.
Furthermore, synchronization requires communication. The processors have to
communicate with each other to indicate when they enter the synchronization point
and when they can continue their execution. The effect of the communication caused
by the synchronization is usually ignored. However, a synchronization routine can

create a great deal of small messages that are relatively expensive to transmit. The fest
case and results chapter discusses more about the cost of transmitting small messages.

Finally, the last component is the communication generated by the load balancing
algorithm and the execution of the simulation. With a proper implementation of the
load balancing algorithm the amount of communication can be minimized. This is
especially beneficial in distributed systems where the communication network is slow.
In practice, there are two ways to minimize the communication. First, the same load
balancing algorithm is executed on all the processors allowing each processor to know
the global load balance. Second, the load balancing algorithm is executed on a single
processor, which is the common way with a high-speed interconnecting network.
However, in the second scenario the workload is not distributed over the network by
broadcasting the data from one processor to all the others. The distribution is done
through a third-party application or device. For example, the processor that calculated
the load balance sends only the indexes for the workload, and all the processors read
the workload from a hard drive. This requires that the processors have access to the
workload data. Network File System (NFS) can provide the access. Although, the
processors resort to the same interconnecting network to access the shared hard drive,
the access times are reduced. The usage of NFS is more optimized than usage of a
message passing library to communicate between processors on an application level.
The following chapter discussed in further detail about the communication in
distributed simulation.

3. COMMUNICATION

There 1is, practically, always a need for communication in distributed simulation.
Obviously, the communication should not dominate the execution of the simulation
whereas it should be a minor contributor to the total execution time. However, unless
the communication is designed and optimized properly its effect can be substantial
diminishing the gain achieved by executing the simulation in parallel.

If the simulator is implemented with Fortran or C, there are a handful of message
passing libraries that are widely used. Perhaps, the most common message passing
library is called Message Passing Interface (MPI) (MPI 1995; MPI 1997). It offers the
simulation expert a relatively comprehensive set of function calls to handle point-to-
point and collective communication. The main purpose of MPI is to make the
communication easy to implement but still be efficient from the performance point of
view. MPI’s main competitor is the Parallel Virtual Machine (PVM) library
(Sunderam 1990). PVM is also a collection of function calls for Fortran and C.
However, PVM is more versatile with respect to the interface and the usage. In
practice, PVM has compromised the performance with a greater number of features,
whereas MPI provides optimal performance with a limited set of communication
functions. Naturally, the simulation expert has the option of implementing the
simulator merely deploying the functionalities provided by the programming
languages such as sockets and pipes (Stevens 1990). However, the previously
mentioned message passing libraries utilize sockets but hide the internal
implementation from the user. In general, the simulation expert should not try to
implement his own communication library since such libraries already exist and have
been extensively optimized and tested. Although, the experiment results shown in the

4.2. Bandwidth

Bandwidth defines the throughput of the transmission. It can vary considerably
depending on a number of characteristics of the network, such as the hardware, the
network usage, and the protocol. The bandwidth measurements were conducted in an
“empty” cluster; no other user processes were present, and the only network messages
were generated by the necessary daemons running in the systems.

Figure 1 shows the measured communication times for message sizes from 1 byte to
100 Mbytes. The communication times for small messages (1 to 1000 bytes) are
below 0.1 milliseconds for TCP. However, for larger than 1000-byte messages, the
communication time increases exponentially. The performance of MPI is nearly
identical with TCP. The major difference from the performance of TCP can been seen
with smaller messages (size less than 4 Kbytes. Unfortunately, the smaller messages
are more commonly used than larger messages. For example, synchronization
messages and load balancing information are sent with messages that sizes are far less
than 4 Kbytes. MPI suffers from a high overhead with small message sizes due to the
encapsulation. Regardless of the performance difference in small messages, the
deployment of the MPI library instead of the user’s own implementation of a message
passing library is justified.

Communication time
(in miitiseconds)

10000

1000

100

8- TCP
-~ MP|

0.1 4

0.01

1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000
Message size (in bytes)

Figure 1. Measured communication times with TCP and MPL.

Bandwldth (in Mbps)

100

/ -~
1 J |~-MP1

0.1 7

0.01

1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000
Message siza (in bytes)

Figure 2. Measured bandwidths for TCP and MP1L.

Figure 2 depicts the measured bandwidth of the network as a function of a message
size. Obviously the smallest messages are no capable of utilizing the available
bandwidth of the network due to the short transmission time. As the message size
increases so does the bandwidth usage. In TCP the bandwidth begins to saturate when
the message size reaches 100 Kbytes. The TCP protocol is capable of utilizing 90 %
of the theoretical maximal transfer rate of 100 Mbps. Thus, the maximal transfer rate
achieved was §9.76 Mbps (11.22 Mbytes/s). The behavior of MPI is not equally good.
For small message the bandwidth utilization follows TCP with a certain reduction
though. However, with messages over 132 Kbytes, the bandwidth utilization
degrades. There is a slump in the curve until the message size of 3 Mbytes is reached.
The measurements were run multiple times to rule out any possibilities to
measurement errors. Furthermore, a very interesting point is to notice that the curve
actually saturates after all. The reason why MPI behaves such as seen here could not
be explained. Overall, MPI performance from the bandwidth point of view is still
adequate. With very large messages the bandwidth saturates at 79.49 Mbps (9.94
Mbytes/s) that is approximately 88.6 % of the maximum bandwidth measured with
TCP. This reduction i1s a result of the overhead incurred by MPI due to the
encapsulation.

In order to estimate the impact of the communication on the execution of a distributed
simulator, an execution time of a division operation was measured. In general, the
division operation, especially one that cannot be computed with bit shifis, is
considered the most expensive operation among the arithmetical operations. The
measurements showed that a single processor on a workstation is capable of executing
114 311 floating point division operations in a second. Thus, during a transmission of,
say, a 32-Kbyte message a single processor could perform 500 divisions operations.

The number does not sound that significant, although the actual simulation could have
made progress substantially, if the processor had been available. Figure X depicts the
number of divisions operations that could have been processed during the
communication in TCP and MPI.

The latency plays a significant role in the communication times of small messages.
Figures 3 shows that the TCP and MPI curves have similar shapes. However, MPI
experience a considerable larger overhead with messages smaller than 1 Kbyte
experience similar communication times. This is due to the fact that the latency counts
over 79 % of the total communication time in MPI, whereas in TCP the corresponding
percentage is 23. When the message size increases the contribution of the latency
becomes insignificant. However, smaller messages are widely used in simulators for
synchronization and load balancing. In order to optimize the performance of a
simulator the number of messages should be minimized meanwhile maximizing the
size of the messages. This can be achieved by compounding a number of small
messages into a single large message.

Number of opsrations

1000000

100000

10000

1000 MR
\——TCP

100

1 10 100 1000 10000 100000 1000000 10000000 100000000
Messaga size (in bytas)

Figure 3. Number of floating point division operations during the communication.

If the achieved results are applied to a distributed GSM network simulator (Huttunen
2000), the following observations are made: It would take 8.137 milliseconds to
transmit an average size message (65000 bytes). During that period of time 930
floating point operations could have been computed. This number shows the
significant overhead created by the communication. Furthermore, the number of
operations (930) are that are performed is only for a single message. In practice,
during the course of the simulation, a multitude of messages (smaller and
considerably larger) are sent and received by the processors.

It is possible for the communication and the computation to overlap to a certain
extent. With a proper MPI functions the overlap can be explicitly implemented.
However, to maximize the overlap the processing element has to have two processors;
one for the actual computation, and one for the communication. The communication
processor is dedicated to transmit and receive messages. The processors can be similar
with respect to their architecture and performance. Since the sole purpose of the
communication processor is to provide access to the network, it is more likely to be
optimized for handling data transmission. On the other hand, if not always is it
feasible to process data while a communication operation takes place. For example, if
the processor needs the data being transmitted in order to proceed with the execution
of the simulation, the overlap is not possible.

5. CONCLUSIONS

Message passing times of a parallel simulation utilizing TCP and MPI for
communication were measured on a cluster of workstations with a 100 Mbps Ethernet
network. The cluster environment was homogeneous; each workstation had two
Pentium III 800 MHz processors and 2 Gbytes of memory. The purpose of the study
was to quantify the effect of communication to a parallel simulation that needs to
transfer data among processors before, during, and after the parallel computation
phase.

The measurements indicated that the latencies in TCP and MPI are major overhead in
small messages. Especially, the MPI latency is significant. However, the latency
becomes insignificant as the message size grows. The communication time was
observed to grow linearly in TCP in accordance with the message size. MPI incurs
additional overhead due to the encapsulation of the message, and, therefore, fails short
of the performance of TCP. The bandwidth measurements reflect the same problem
with small messages as was seen in the latency measurements; TCP outperforms MPI
due to the additional overhead of MPI. The difference in the maximum bandwidth is
approximately 15 %, which is acceptable in a 100 Mbps network. The peak bandwidth
of MPI was measured at 79.9 Mbps. Furthermore, programming with the MPI library
is considerably easier than implementing the communication with TCP (sockets).
Therefore, a compromise between the performance and ease-of-use has to be made.

The study clearly illustrated that the communication has a major impact on the overall
performance of a parallel simulator. Thus, during the design phase of the parallel
simulator it is essential to consider the number and the size of the messages sent in the
course of the execution of the simulator. By carefully determining the optimal
message size, the impact of latency is minimized while throughput is maximized.
However, it is important to realize that the optimal message size varies from network
to network as well as from protocol to protocol.

REFERENCES

Ezzat, A.K. 1986. “Load Balancing in NEST: A Network of Workstations.” in
proceedings of ACM/IEEE-CS Fall Joint Computer Conference: 1138-1149.

Gropp W.; E. Lusk; N. Doss; and A. Skjellum. 1996. “A high-performance, portable
implementation of the (MPI) message passing interface standard.” Parallel
Computing, Vol. 22, No. 6 (Sept), 789-828.

Hamdi, M.; C-K Lee. 1995. “Dynamic Load Balancing of Data Parallel Applications
on a Distributed Network™. In Proceedings of ACM International conference on
Supercomputing. 170-179.

Huttunen, P.; J. Porras; J. Ikonen and K. Sipila. 1998. "Parallelization of Propagation
Model Simulation”. In Proceedings of European Simulation Symposium
(Nottingham, England). SCS Europe.

MPI Forum. 1995. “MPI-1.1 Standard.”

MPI Forum. 1997. “MPI-2 Standard.”

AMES Laboratory. 1995. Network Protocol Independent Performance Evaluator
(NetPIPE), lowa State University, http://www.scl.ameslab.gov/Projects/Netpipe/.

Pacheco, P.S. 1997. Parallel Programming with MPI. Morgan Kaufmann, San
Francisco, CA.

Ross, K.W.; D.D. Yao. 1991. “Optimal Load Balancing and Scheduling in a
Distributed Computer System”™ Journal of the Association for Computing
Machinery, Vol. 38, No. 3, 676-690.

Stevens, W.R. 1990. UNIX Network Programming. Prentice-Hall, Canada.

Sunderam, V.S. 1990. “PVM: A Framework for Parallel Distributed Computing.”
Concurrency: Practice and Experience, Vol. 2, No. 4, 315-339.

Wilson, L.F.; D.M. Nicol. 1996. “Experiments in Automated Load Balancing”. In
Proceedings of 10th Workshop of Parallel and Distributed Simulation. 4-11.

Wilson, L.F.; W. Shen. 1998. “Experiments in Load Migration and Dynamic Load
Balancing in SPEEDES”. In Proceedings of Winter Simulation Conference. 483-
490.

Publication 3

Huttunen P., Porras J., and Ikonen J.: A Study of Threads and MPI libraries for
Implementing Parallel Simulation. In Proceedings of European Simulation
Symposium, Hamburg, Germany, September 28-30, 2000, pp. 96-102.

A Study of Threads and MPI libraries for Implementing Parallel
Simulation

Pentti Huttunen, Jari Porras, and Jouni lkonen
Lappeenranta University of Technology
P.O. Box 20, FIN-53851 Lappeenranta, Finland
{ Pentti.Huttunen, Jari.Porras, Jouni.lkonen }@lut.fi

KEYWORDS
MPI, threads. parallel simulation

ABSTRACT

This paper covers the two most popular mcthods for
implementing parallel code: Threads and Message
Passing Interface (MP1). Both methods are discussed in
detail to provide information about the implementation
issues of the methods. An indepth look is taken into the
parallelization libraries that are widely used among
programmers. The paper also describes, how to write
parallel code by using thesc methods. In addition, two
characteristics of parallel computing, synchronization
and load balancing, are explored. Finally, a
performance study of both methods is presented.

INTRODUCTION

The paper introduces two widely utilized libraries that
can be used to parallelize existing applications, as well
as, implement new parallel code. With the knowledge
acquired from this paper, simulation experts and
software developers responsible for implementing
simulators should be able to determine whether their
simulation system is suitable for parallel execution. In
addition, the paper describes how to use both libraries.

The need for parallel simulation. as well as parallel
computing in general, has increased drastically during
the last two decades; more complex models and
programs have been implemented. To meet the need
for increased computation capabilities, the use of
multiple processors has been proposed as a possible
solution. In theory, the utilization of multiple
processors seems straightforward. However, before an
application can take advantage of multiple processors,
the structure of the application and the code have to be
modified. Depending on the current structure of the
application, the issues concerning structure may not be
as important as the modification of the code.

On the other hand, the utilization of multiple
processors can be understood in more than one way.
The simplest method to utilize a multiprocessor
computer is to run a copy of the application on all
processors. In this case, there is no need for the
reconstruction or modification of the code, However,
the approach does not decrease the execution time of
an application, which is one of the main goals of
parallel computing. Therefore, running several copies
of an application does not constitute parallel
computing, and is not discussed any further in this

paper.

To decrease the execution time of an application, the
application has to be divided into parts that are
exccuted on different processors. The parts of the
application must meet certain requirements. First of all,
the parts need to be independent, meaning that there
are no dependencies between parts. In real life, this
requirement cannot be fulfilled completely. Therefore,
parallel computing usually needs a synchronization
mcthod that controls the interactions between
dependent parts. Synchronization is a key elcment of
parallel computing, which has both positive and
negative effects on the parallel execution of an
application. Since the effect of synchronization is
significant, issues concerning synchronization are
considered later in this paper. The other requirement
states that the sizes of the independent parts should be
equal. As with the first requirement, it is practically
impossible to create parts that are exactly equal in size.
However, if the processors in the computer are not
identical, the sizes of the parts should be adjusted to
compensate for the differences in processors: a bigger
part should be created for the fastest processor. The
creation of parts to match the processing capabilities of
processors is called load balancing. Load balancing is
another crucial ¢lement in parallel computing, and it is
discussed in detail later.

Having defined the requirements for parallel
computing, the software engineer's first decision
concerns the selection of the parallel environment. In
essence, there are two parallel environments, based on
the memory architecture, into which most of the
present day multiprocessor machines fall. A shared
memory machine has a single memory, which is
accessible by all processors via a high-speed bus. Since
cach processor has access to the whole memory, the
data cxchange (communication) between processors
can be carried out with the use of the memory. A
distributed memory machine is an environment where
each processor has its own memory. The processors are
not connected to each other with a bus, but rather with
a high-speed network. If processors need to
communicate, they use the network to send and to
receive data. However, the topology of the
interconnection network depends on the machine.

Due to the diversitics between the two environments.
the programming models are also different. For
implementation into a shared memory environment,
threads are used to run the parts of the application on
different processors. The implementation for the
distributed memory machine, on the other hand.
requires the use of message passing interface.
Currently there are several message passing interfaces
available commercially. However, there are also
numerous interfaces that can be downloaded from the

Internet without charge. The Message Passing Interface
(MPI) is one of the most popular and easy to use
implementations of the message passing interfaces.
The advantage of the MPI over threads is that the MPI
can be used in shared memory machines as well.

The next chapters describe the two programming
models, give insight into how to use the models, and
compare their characteristics, especially in regards to
performance.

THREADS

The basic entity in an operating system is called a
process. Threads are instances of code that are created
and run inside the process. Figure | illustrates the
relationship between processes and threads. Each
process, regardless of how many processors are in the
computer, has one thread. This thrcad is created by the
operating system when the process is started. However,
the software developer can crcate more threads. The
threads share all the resources allocated for the
process; but, each thread has its own data structure that
contains information about the particular threads, such
as thread id, program countcr, and local variables. Each
thread is assigned a part of code that it executes.
Several threads can execute the same code with similar
or different parameters.

Process

§ Thread

1 /—- Scheduler

./

Figure 1. The structure of a process.

A thread is the entity that actually executes the code.
The thread needs to be scheduled to a processor before
it can be executed. In a process there is a scheduler that
dynamically schedules threads to processors. Since
each process can have several threads, the scheduler is
of great importance. The responsibility of the scheduler
is to allocate time for threads on processors according
to the priorities of the threads, but it is also possible to
bind a certain thread to a processor, meaning that the
processor is dedicated for the use of a single thread.
The bound thread then has a direct access to a
processor without interference from the scheduler. A
thread running a high priority real-time application
should be bound to a processor to guarantee the best
possible performance; Figure 2 illustrates this schema.
As Figure 2 indicates, the scheduled and bound threads
do not have direct access to processors. Each thread is
actually scheduled or bound to a kernel thread that is
executed on a processor. The opcrating system that
supports threads creates and maintains the kernels
threads.

It should be noted that the amount of threads inside a
process is not limited to the number of available
processors. It is possible to create multiple threads
within a process in a uniprocessor machine. Before
multiprocessor computers became commonly available
and affordable, threads were used to provide
concurrency in a machine with one processor. Most of
the UNIX operating systems do multitasking by
utilizing threads, which enables multiple applications
to be run concurrently, although, not simultaneously. If
a thread makes a system call that halts the execution of
the application until the system call returns, another
thread can be run in the meantime. Thus, if a thread is
blocked by a system call or some comparable action,
the thread is retrieved from the processor, and another
thread can start execution. With this implementation,
the performance of a uniprocessor computer increases
significantly.

Process

N/
%
R

Kernel threads

i
%

Figure 2. Mapping of threads to kernel threads and
processors.

Processors

For parallel computing purposes, the number of threads
should be near the amount of processors in a particular
computer. Under normal circumstances, the best
performance is achieved with a fewer number of
threads than processors, because of other applications
running on the computer, and the overhead created by
threads. Nevertheless, the rule of thumb is to create no
more threads than there are processors.

Thread Programming Model

At the present time, there are two thread libraries that
are readily available. The first and more widely used
thread programming model is called POSIX threads
(pthreads). Pthreads are part of a group of standards
defined in the Portable Operating System Interface
(POSIX) by IEEE. All computer and operating system
vendors have included support for POSIX threads in
their systems. The other thread programming model is
called Solaris threads. The Solaris threads work only
under Solaris or Sun operating systems. Since the use
of the Solaris threads is limited to Sun Microsystems
operating systems, the thread package is more
optimized and efficient than POSIX threads. However,
duc to the popularity and portability of the POSIX

threads programming model, this paper concentrates
solely on POSIX threads.

The utilization of threads in making an application run
in parallel requires at minimum one command, which
then creates the threads. At the creation, each thread is
assigned an identification number, parameters, a
function to execute, and an input parameter for the
function. The identification number (thread id) is a
unique number assigned to each thread, and used
mainly during the run-time to distinguish threads from
each other. The identification number is stored in the
variable specified in pthread create() command, and is
read only after that. The parameters define the
characteristics, such as scheduling policy, of the
created thread. In most cases, the default parameters
(NULL) can be used. Since threads exist inside a
process they must be assigned a portion of the
application to execute. Usually, the threads execute the
same function with different input parameters. It is the
responsibility of a load balancing algorithm to divide
the workload between the threads during their
execution. The input parameters define the parameters
for the function that the thread exccutes. Figure 3
shows an example of how to create a thread.

#include <pthread.h>

void *function(void parameter);
pthread_t thread id;

int parameter;

pthread_create(&thread id, NULL,' function,
parameter);

Figure 3. Example of creating a thread.

As shown in Figure 3, all POSIX thread related
commands are stored in a header file called pthread.h.
It should also be noted that the function the thread
executes needs to have a return type of a pointer to
void. The input parameter for the function has to be a
type of void as well. The thread creation command
allows only one input parameter to be passed to the
function. Therefore, if more than one parameter is
required, a structure has to be made that contains all
the input parameters. Then, the structure can be passed
as onc parameter to the function.

Table 1 lists the most useful commands in the POSIX
thread programming model. These commands provide
information about the threads, and assist in controlling
the execution of threads. A more comprehensive list of
commands and information about threads can be found
in (Butenhof 1997; Lewis and Berg 1998).

Table 1, POSIX thread commands,

pthread_create() Creates a thread,

pthread_attr_init() Initializes attribute structure
to be used to pass attributes
to created threads.
pthread_attr_set<attr> | Sets a certain attribute in
the structure.
pthread_attr_get<attr> | Gets a certain attribute in
the structure.

pthread attr_destroy() | Destroys attribute structure.

pthread_self() Returns the identification
number of the calling
thread.

pthread_exit() Terminates the execution of
the calling thread.

pthread_join() Waits until a particular

thread exits and returns the
exit value of the thread

As threads are operated in a shared memory
environment, the communication between processors is
straightforward; the shared memory can be used as a
communication medium. However, the same method
cannot be applied to a distributed memory
environment. Therefore, a special library is required to
provide communication routines in order for
processors to exchange data. The message passing
library MPI is explored in the next chapter.

MPI

The Message Passing Interface (MPI) is a library that
provides functions to handle communication between
processors in a distributed memory environment.
However, the use of MPI is not restricted to the
distributed memory environment. Most shared memory
implementations of the MPI library simply use the
shared memory as a communication medium instead of
the high-speed network in the distributed memory
environment. Nevertheless, the communicated data is
packed and handled in a similar way as in the
distributed memory environment. Therefore, the
Justification for the use of MPI in a shared memory can
be questioned due to the overhead created by the
implementation.

In a distributed memory machine, a process is created
for each processor taking part in the calculation. The
creation of processes is not done within the code by
using MPL. In most cases, the processes are created
with a separate program that starts the processes on all
the processors specified by the user. All the processes
have the same code, which has to be modified so that
cach processor knows exactly what part of the code to
execute, This is usually done based on the process
identification number. Since MPI is only a message
passing interface, i.e. a communication library, the
responsibility of a software developer is to initialize
the communication environment, to implement the data
exchanges, to synchronize the execution, and to
terminate the communication environment.

The MPI Programming Model

Although MPI is not responsible for creating the
processes, before MPI can be used, a message passing
environment needs to be initialized. The message
passing environment contains all processes that were
created previously. The initialization of the message
passing environment is done with MPI Init()
command. At the end of the computation the
environment has to be terminated with MPI_Finalize()
command. Figure 4 illustrates the use of the
initialization and termination commands.

intarge; ’
char *argv[];"

MPI_Init(&arge, &argy);

) MPl_Términate(); o

Figure 4. Syntax of required MPI commands

As a message passing interface, the MPI offers a large
number of commands for point-to-point and broadcast
types of communications. The MPI is a very high-level
interface, and, therefore, does not require the developer
to consider the topology of the interconnection
network, packet ordering, or any aspects regarding the
transmission and reception of the data. Synchronization
is provided by the MPI library with a simple barrier
synchronization model. Table 2 lists the basic
communication and synchronization routines offered
by the MPI library.

With the commands presented in Table 2, all necessary
communication patterns can be performed. The barrier
synchronization controls the execution of processes.
The synchronization will be discussed in detail in the
next chapter. Similar to the thread programming
modcl, the MPIl provides calls to acquire the
identification numbers of the processes and the
numbers of the processes taking part in the
computation. More about the implementation of MPI
and MP] commands can be found in (Message Passing
Interface Forum 1994; Pachero 1997; Snir and
Dongarra 1998).

SYNCHRONIZATION

Synchronization is needed to guarantee the correct
order of execution and memory coherence. The
dilemma of synchronization does not exist in a
sequential application, since a single copy of the
application is run one command at a time. Parallel
execution introduces the possibility of executing
several copies of the application, and making multiple
memory references simultaneously. Concurrent
memory references can have a significant effect on the
correctness of the output; on the other hand,
simultaneous memory references can be allowed as
long as the address is different.

Table 2. Basic communication and synchronization
functions in the MPI library

MPI_Send() Sends data to a specific
Process.
MPI_Recv() Receives data from a

specific process.

MPI1_Bcast() Sends data to all processes.

MPI1_Reduce() Received data from all

processes and process data.

MPI1_Scatter() Distributes data between

processes.

MPI1_Gather() Centralized data to a single
process.

MPI_Barrier() Synchronized the execution
of processes.

MPI_Comm_rank() Gets the identification
number of calling process.

MPI_Comm_size() Gets the number of

processes in the message

passing environment.

Based on the description of synchronization, two
synchronization models can be identified: the
synchronization of execution, and the synchronization
of memory references. The distinction between the
synchronization models is required since the
implementation methods of the models are different.
For the synchronization of execution usually a single
command is required to halt the execution of a process
or thread until a certain condition becomes true. The
simplest and most popular implementation of the
synchronization of execution is barrier (MPl Barrier
for example). The barrier command in the MPI is
implemented so that the execution of a process stops
until all the other processes have reached the barrier
command. Then the execution of all processes
continues simultaneously. To protect a memory
address from concurrent access, only one process or
thread is allowed to refer to the memory at a time. This
is implemented by creating a protected area in the
code. A process or thread needs to acquire a lock
before entering the protected area, and since only one
process or thread can hold the lock and enter the
protected area the lock is called a mutual exclusion
lock.

In simulators, it is essential that the events are
processed in the correct order, and that certain events
are fully processed before new events can be handled.
The correct order of execution can be guaranteed with
mutual exclusion locks. The locks will ensure that no
two processes or threads handle the same simulation
object or refer to same memory location
simultaneously. On the other hand, the handling of new
events can be deferred with the use of a barrier, which
guarantees that all processes have finished their jobs
before new events are processed.

One should realize that since synchronization is not
required in a sequential application, synchronization is
considered overhcad. Overhead is the extra
computation introduced due to the simultaneous
execution of an application. The simulation expert
should consider the use of synchronization models
carcfully and choose the one that generates a minimal

amount of overhead. It has been shown that incorrect
synchronization models and their implementations
have a significant effect on the performance of the
application.

For example. the GSM network simulator uses both
kinds of synchronization models. After the vertical
calculation is completed, processors stop at a barrier
until all processors have completed their work. Then,
the simulation continues with horizontal calculation.
Horizontal calculation updates the values of global
variables that store the results of the simulation. Since
it is possible that multiple processors access the same
global vanable, and add a new value to it, a
synchronization of memory references has to be carried
out. The part of the code that updates the values of the
global vanables is defined as a protected area, which is
protected with a mutual exclusion lock. Therefore, only
one processor can access the area and update the values
of the global variables at a time.

LOAD BALANCING

Since the application is executed on multiple
processors, the application nceds to be divided into
parts, which are then distributed to the processors. The
purpose of load balancing is to divide the workload
into optimal proportions with respect to the sizes and
the capabilitics of the processors. There are a great
number of factors that affect the implementation of a
load balancing algorithm. Firstly, the algorithm
requires information about the workload; the workload
may be static or dynamic. Secondly, based on the
characteristics of the workload, a basic division of
work can be done. However, the effects of the
environment must also be considered; how are the
processors connected together? Do all processors have
the same clock rate and an cqual amount of memory?
The topology of the interconnection network dictates
the communication pattern and delay, whereas the
differences in processor type and memory affect the
amount of work given to a certain processor. In
addition, the load balancing algorithm requires
information about the current load of each processor.
Therefore, the load balancing clearly depends on
multiple factors. In most cases, it is not possible to
gather all the information mentioned above;
nevertheless, close to optimal load balancing algorithm
can be implemented taking into consideration the
information that is known to have a significant effect in
a specified environment,

The importance of load balancing should not be
underestimated under any circumstances. It is crucial
that a correct load balancing algorithm is implemented,
and that the algorithm reflects the special aspects of the
environment where the application is rum.

For example, in a GSM network simulator the
workload consisted of line-of-sight polygons. The
differences in the polygon sizes were of several orders
of magnitude. Since the cxecution times of the
polygons were proportional to their sizes, the
distnibution of execution times was large. Therefore,
the load balancing algorithm had to distribute the work
in such a way that the amount of work per processor

was cqual, instcad of the number of the polygons.
Since a heuristic and time-consuming algorithm would
have been required to optimize the amount of work per
processor, a work pool was created with all the
polygons in it. Each processor removed the biggest
polygon from the pool and processed the polygon. This
was repeated until the pool was empty. Since the
implementation of the GSM network simulator was
done in a shared memory environment, the issues
related to communication were ignored. However, the
load balancing algorithm required a synchronization
model to guarantce that the same polygon was not
removed by two or more processors; so, the access to
the pool was protected by a mutual exclusive lock.

PERFORMANCE ISSUES

Since the programming models differ from each other
and are optimal for different kinds of environments, the
comparison of performance is difficult. Due to the fact
that threads cannot be used in a distributed memory
cnvironment, a shared memory environment was
chosen as a test platform. The communication with
MPI used the shared memory as a communication
medium as opposed to the high-speed network used in
distributed memory environments. Therefore, message
passing times in the MPI implementation did not show
the total time spent in message passing in distributed
memory cnvironments. To compensate for this fact, a
comparison between MP] implementations for shared
and distributed memory environments was also
conducted.

The test programs measured the time spent in
communication between two processors. Even though
synchronization is the other contributor to overhead in
parallel computing, the effect of synchronization is not
as significant as communication. To test the
performance of the MPI library, the master process
created a large amount of random numbers. These
random numbers were then sent to the slave process,
which sent the numbers back to the master. The
communication time was measured as a round-trip time
from master to slave and back. The round-trip time
gives a better indication of the total time spent on
communication. 1f only the one-way time is measured,
the communication time may reflect the time spent in
preparation of communication. The size of a packet,
that is the number of random numbers, was varied
from | to 15 million. To acquirec reliable results
statistically, a great number of repetitions were
performed with each packet size.

Since threads are used in a shared memory
cnvironment, explicit message passing is not required.
However, it is not always possible for two or more
threcads to share a variable, since both of the threads
may want to modify the variable at the same time. The
solution for preventing concurrent access is to use
synchronization, although, synchronization can be
ignored if two copies of the variable exist. The
approach of two separate variables was taken in the test
program for threads. As explicit sending is not needed,
the first thread indicated to the receiving thread by
using a signal that a copy of the variable can be made.
After the receiving thread has made the copy. it sends a

" 45

35

25

=4 Threads
~—f~—~MPt Shered

st MP| Distributed
- - & - -MPI Dist. Startup

Communication time in secs

0.5

10 15 20 25

Message size (number of random numbers -

30 35 40

signal to indicate that a copy has been made. Finally,
the first thread makes another copy of the variable.
This test scheme simulates the message passing
implemented in the MPI test program. The packet sizes
and repetitions were varied similar to the MPI test.

Figure 5 shows the execution times of all the test
programs. The distributed memory environment did
not have more than 128 megabytes of memory per
processor, which limited the number of random
numbers that could be used as workload. The number
of random numbers was varied from | million to 15
million, whereas in the shared memory environment
the maximum number of random numbers was 35
million. The comparison between threads and MPI
shared shows that threads consume considerably less
time in communication. The reason for this
phenomenon is that signals require far less
computation that the MPI send and receive routines.
The MPI routines work similarily depending on the
environment. The sent data is packed before sending
and unpacked after receiving regardless of being
shared memory environment. As for the distributed
memory environment, the communication time was
shorter than the corresponding time in the shared
memory environment for the first three test cases.
However, the comparison between the two MPI
implementations is not quite acceptable. The MPI
implementations were run on machines that had
different kinds of processors and interconnection
networks. In general, the shared memory
implementation should be faster than the
implementation for a distributed memory environment,
due to the differences in the communication media.
The dotted line in Figure 3 shows the time required to
send the first packet of random numbers in a
distributed environment. As can be seen, the time spent

Figure 5. Execution times of the test programs.

in sending the first packet in the distributed memory
cnvironment is greater than the average time in the
shared memory environment. However, the average
communication time in the distributed memory
environment is less than the average in the shared
memory environment, since the communication time
decreases considerably after the first packet. Prior to
sending the first packet the MP] has to initialize the
communication in the distributed memory
environment; the initialization consists of determining
the location of the receiving processor, and
determining the route to the receiving processor. The
subsequent packets do not require initialization since
the packets were sent to the same processor. Therefore,
the communication times of the subsequent packets
were considerably shorter than the first packet. This led
to an average time that was shorter than the
corresponding MPI test the shared memory
environment.

in

Even though the communication time with threads is
relatively short compared to any of the other test cases,
the use of threads is limited to a certain number of
processors, Since threads share the memory and the
communication and synchronization are both handled
via the memory, the memory bus will eventually
become congested. Therefore, the maximum number of
processors in a shared memory environment is usually
limited to 20. If more than 20 processors are required,
a distributed memory environment is a better choice.
The biggest distributed memory environment consists
of thousands of processors connected to each other
with a high-speed network. The full potential of the
MPI and comumunication between processors can be
seen when the number of processors is considerably
high.

CONCLUSIONS

In this paper, two commonly used programming
models for multiprocessor environments were
presented. The goal of the paper was to introduce
simulation experts to the programming models and
their characteristics. The thrcad programming model
for sharcd memory environments was discussed. The
usage of threads is relatively easy; only onc command
is required to take advantage of thrcads. However,
since threads can be cfficiently applied to a shared
memory environment, the Message Passing Interface
{MPl) was presented as an alternative programming
model for distributed memory environments. The MPI
provides commands for processes to communicate with
cach other. Implementation with the MPI is easy
requiring a handful of commands. The mandatory
commands deal with initialization and termination of
the communication environment. Following the
discussions on programming models, two important
issues of parallel computing were covered:
synchronization and load balancing. Synchronization is
required to guarantee the correct execution of the code
and to prevent simultaneous memory references to
same memory locations. The responsibility of a load
balancing algorithm is to provide an equal division of
work between processes. The algorithm has to consider
numerous factors that have an etfect on load balancing,
and eventually, the performance of the parallel
application. During the presentations of
synchironization and load balancing. examples were
given in general and from the GSM network simulator.
The parallel versions of the simulator were
implemented with the threads and the MPI to shared
and distributed environments. Finally, a study of the
message passing between processors was conducted in
the shared and distributed memory environments. The
study showed that the implementation with threads is
faster than any implementation with the MPI. On the
other hand, the thread implementation was done in a
shared memory environment. which provided a more
suitable environment for message passing in a form of
the shared memory. However. it should be noted that
the distributed memory environment is not a much
slower.

To conclude, the utilization of multiple processors is a
relatively simple operation if the software developer is
awarc of a few important issues related to parallel
computing. Both the programming models presented in
this paper are high-level models. Therefore, the use of
the modcls 1s easy and straightforward. However, the
issues concerning the memory cnvironment.
synchronization and load balance should be addressed
carefully.

REFERENCES

Butenhof, D.R. 1997. Programming with POSIX
Threads. Addison-Wesley. ISBN 0-201-63392-2.

Lewis, B.; D. Berg. 1996. 4 Guide to Multithreaded
Programming. Threads Primer. SunSoft Press. 1SBN
0-13-443698-9.

Message Passing Interface Forum. 1994, “MPI: A
Message Passing Interface Standard.” International
Jonrnal of Supercomputer Applications 8 (3/4).

Pachero, P.S. 1997. Parallel Programming with MPI.
Morgan Kaufmann. ISBN 1558603395.

Snir, M.; J. Dongarra; ct al. 1998. MPI: The Complete
Reference: MPI-{ Core. MIT Press. ISBN
0262691841,

BIOGRAPHY

Pentti Huttunen received his Master of Science
degree from Lappeenranta University of Technology in
1999. Currently his is pursuing a Ph.D in parallel and
distributed computing while working as a research
engineer at Lappeenranta University of Technology.
His special interests comprises of thread programming,
work balancing algorithms, and cluster computing.

Jouni lkonen reccived Master of Science degrec
from Michigan Technological University in 1994,
Master of Science degree in 1995 and Licentiate of
Technology in 1999 from Lappecnranta University of
Technology. He is currently working as research
engincer at Lappeenranta University of Technology.
His interests include distributed simulation, wireless
nectworks and data communications.

Jan Porras received Master of Science degree from
Michigan Technological University in 1993, Master of
Science in 1993, Licentiate in Technology degree in
1996 and Doctor of Technology degree from
Lappeenranta University of Technology in 1998,
Currently he is working as a professor at the
Lappcenranta University of Technology. His main
rescarch interests arc the use of clustered workstations
for distributed computing, parallel algorithms and
cellular networks.

Publication 4

Huttunen P, Ikonen J., and Porras J.: Enhancing Load Balancing in a Data-
Parallel GSM Network Simulator through Application-Specific Information. In
Proceedings of Conference on Applied Parallel Computing, Helsinki, Finland,
June 15-18, 2002, pp. 542-554.

Enhancing Load Balancing in a Data-Parallel GSM
Network Simulation through Application-Specific
Information

Pentti Huttunen, Jouni Ikonen, and Jari Porras

Lappeenranta University of Technology, P.O.Box 20, FIN-53851 Lappeenranta, Finland
{Pentti.Huttunen, Jouni.Ikonen, Jari.Porras}@lut.fi

Abstract. Load balancing plays an important role in achieving good
performance in any parallel application. In order to produce a proper load
distribution and to minimize overhead, a load balancing algorithm needs to take
into account characteristics of the application. Three load balancing algorithms
that have been enhanced to optimize the performance of a data-parallel
simulator are presented. The enhanced load balancing algorithms are provided
with additional information about the workunits, such as an estimate of
computational requirements. Results show that the additional information has a
significant impact on the load balancing algorithms. The algorithms are capable
of producing a more optimal load balance, which leads to the improved
performance of an application. A closer study of the overhead created by the
processing of the information by the load balancing algorithms indicates that
the improvement in the performance significantly outweighs the negative
impact of the overhead in most cases.

1 INTRODUCTION

A proper load balancing algorithm is a requirement for good performance results in
any parallel application. Since load balancing as a term can be understood in a
number of ways, we have made the following interpretations: The term /load
balancing is considered to be a task where workunits are distributed among available
processors. It is assumed that the partitioning of the workload into workunits has been
performed prior to applying the algorithms described in this paper. The task of the
load balancing algorithms is to either statically or dynamically allocate the workunits
among the processors. The distinction between a static and dynamic load balancing
algorithm is in timing of the load balancing decisions. A static algorithm performs the
distribution prior to a computation phase, whereas a dynamic algorithm distributes the
workunits during the computation phase based on the current system situation.

The basic concept of load balancing in parallel and distributed systems is well known.
A number of articles have been published that discuss different aspects of load
balancing [1]{2](3](4]. Numerous load balancing algorithms have been proposed that
are intended either for solving a specific problem in a specific system or for the
theoretical analysis of load balancing in a variety of systems [5][6]. In the latter

category there are some very interesting proposals that are applicable to data-parallel
applications. The majority of the algorithms assume that the computational
requirements of a workunit being distributed do not have a significant contribution to
load balancing decisions. The algorithms give more emphasis to current loads of the
processors participating in the computation. Thus, the load balancing decision is often
made by looking at the current load situation, and selecting either the least loaded or
the most powerful processor [7]{8].

Another approach for load balancing is to consider the computational requirements of
workunits. This approach allows the workunits to be distributed among the processors
in multiple ways depending on the system. For example, the workunits can be
distributed so that each processor receives an equal amount of work to process or the
amounts of work for processors are proportionally distributed among the processors
according to their capabilities. As such, a load balancing algorithm distributing the
workunits among the processors based on the computational requirements of the
workunits does not consider the current loads of the processors. However, this
problem can be solved by implementing a global client-server type load balancing
algorithm. The third algorithm discussed in this paper shows the implementation of
such an algorithm.

In this paper three generic load balancing algorithms are enhanced by providing them
with additional information about the application and, especially, the workunits. The
information is extracted at run-time from the workunits to allow the algorithm to
adapt to changes in workloads. In the rest of the paper, the method of load balancing,
utilizing the additional information, is referred to as application-specific load
balancing. Naturally, the purpose of the application-specific information is to refine
the load balancing decisions by allowing the algorithm a better view of the workload.
Furthermore, the load balancing algorithms introduced are the most suitable for data-
parallel applications, where all processors execute the same code.

A GSM network simulator was used as a case study for the algorithms. The simulator
is used by mobile network providers to design their networks for urban microcell
environments. The providers are able to determine optimal locations for their base
stations based upon the results given by the simulator. Thus, the simulator computes a
coverage area of a base station over a map consisting of buildings and streets.

The structure of the paper is as follows: Section 2 talks about data-parallel computing
by introducing the concept and its benefits. Section 3 discusses the GSM network
simulator used as a case study for the three load balancing algorithms. The three load
balancing algorithms with their application-specific versions are introduced and the
results achieved are shown in Section 4. Section 5 discusses the results and
implementation issues of the application-specific load balancing algorithms. Finally,
the conclusions are drawn in Section 6.

2 DATA-PARALLEL COMPUTING

Data-parallel computing can be defined in multiple ways [4]. The lowest level defines
a data-parallel application to be one in which the instructions and data are distributed
by a control unit. This control unit dictates what is processed on any given processor
at any given time. The execution usually takes place in a synchronized fashion.
Another, and more relaxed, definition of a data-parallel application is an application
where each process executes the same code with different data. In this case the
synchronized execution of processors is not mandated, so the processors can freely
process data assigned to them. In order for the processors to process data without
synchronization there must not be any dependencies between the data. If data
dependencies exist, the processors require synchronization of their execution or/and
communication with each other. The latter definition of a data-parallel application is
applicable to the simulator discussed in this paper.

The environment in which the data-parallel application is run has an impact on the
design and implementation of the application and load balancing algorithm. In a
shared memory environment the processors share the memory allocated for the
application (process). Therefore, the synchronization and communication is carried
out through the shared memory. In general, the utilization of the shared memory in
synchronization and communication is very fast. The congestion in the network that
connects the processors to the shared memory can cause a problwm, which can be
avoided by limiting the number of processors in the system. In a distributed memory
environment the situation is quite different. Even without any data dependencies there
is a need for communication. This communication occurs when the data is distributed
among the processors as well as when the results are gathered from the processors for
the processing of the final results. In addition to the previously mentioned mandatory
communication, the synchronization also requires communication. As previously
examined, the communication is a significant contributor in the distributed memory
environments to the overall performance of a data-parallel application. The advantage
of the distributed memory environments lies in the ability of the systems to facilitate a
substantially bigger number of processors than shared memory systems.

Even though sometimes the input data has no dependencies, the output (result) data
creates dependencies between processors. It is possible that the results computed from
the data are stored into a shared memory. Multiple pieces of data may cause the same
element of results to be updated. In the worst case, two or more processors update the
result element simultaneously. Concurrent access cannot be allowed in order to
guarantee the correctness of the results. Therefore, a synchronization method has to
be put into place to guard the results from concurrent access.

Data dependencies are not the exclusive cause of communication. A load balancing
algorithm responsible for distributing the data among the processors resorts to a
communication medium to transfer the necessary data to processors. The algorithm
has to send pieces of data to each processor according to the load balancing algorithm.
Therefore, the cost of the communication has to be considered a factor in designing
and implementing a proper load balancing algorithm.

A load balancing algorithm can have multiple tasks. It might be up to the load
balancing algorithm to divide the workload into suitable workunits, and only after this
is complete to perform the distribution based on the actual algorithm. We identify the
division of the workload to be partitioning. Obviously, if the data can be divided so
that no dependencies exist, the performance of the application can be greatly
increased due to the lack of communication and synchronization. However, details
about partitioning are out of the scope of this paper. The algorithms presented in this
paper assume that the workunits have been determined prior to the execution of the
load balancing algorithm. Next, the workunits are distributed among the processors,
1.e. the actual load balancing is performed. There are a number of load balancing
methods to allocate the workunit. Three load balancing algorithms for data-parallel
applications are discussed in this paper. A possible problem caused by the application
is the sizes of the workunits identified by a partitioning algorithm. It is quite likely
that in complex data-parallel applications the workunits are not equal in size.
Furthermore, if the workunit size is directly proportional to the computational
requirement of the workunit, the load balancing algorithm has to be able to
compensate its actions based on the workunit sizes. On the other hand, in a
heterogeneous computing environment the processing capabilities of the processors
are different. Both of these situations complicate the work of a load balancing
algorithm. For optimal performance, the load balancing algorithm has to consider the
workunits in greater detail than by merely performing the distribution based on the
number of workunits. We have enhanced three basic load balancing algorithms to
take into account application-specific information to further refine the load balancing
operations., The application-specitic information has a dramatic impact on the
performance results of the algorithms, as will be been seen in the following sections.
However, prior to describing the load balancing algorithms with their application-
specific counterparts, the data-parallel application, the GSM network simulator, used
in the experiments is introduced.

3 THE GSM NETWORK SIMULATOR

The GSM network simulator is used in network planning to find optimal locations for
base stations in microcells [9]. The simulator considers signal propagation in a 3-
dimensional space by utilizing ray tracing methods. The simulation computes the
coverage of a base station over a map of buildings and streets. The map is divided into
receiving points that hold the coverage information. A field strength value of a
receiving point is updated whenever a signal arrives to that particular receiving point.
The simulation model (ray tracing) is enhanced by introducing a concept of line-of-
sight (LOS) polygons[9][10]. A LOS polygon is generated at each comer of a
building indicating the diffraction area of a ray. When a ray arrives at a corner, it
diffracts over the area defined by the LOS polygon. Therefore, the actual simulation
phase comprises of the processing of the LOS polygons. For each receiving point that
falls inside a LOS polygon the following operations are performed. The strength of
the signal at the receiving point is calculated as a function of the initial signal strength

at the corner and the distance from the corner. The new signal strength value is
updated to the structure that holds the field strength information of all receiving
points.

3.1 Parallelizing the GSM Netweork Simulator

The LOS polygons form the workload that is distributed among the processors. Since
the size of a LOS polygon depends on the layout of the buildings, the polygons are of
different size. Fortunately, it has been determined through testing that the size of a
LOS polygon is directly proportional to the computational requirements of the
polygon. Therefore, the workunit size and computational requirement are
interchangeable when referring to the workunits (LOS polygons).

In a shared memory environment where the processors (threads) share a global
memory, the signal strength information for all receiving points are kept in memory
locations accessible by all processors. The LOS polygons are independent workunits,
but it is possible that two or more processors update the same receiving point
simultaneously. This is due to the fact that the LOS polygons can overlap each other.
In order to guarantee that no more than one processor updates any given receiving
point at a time, a synchronization method needs to be implemented. The
synchronization method prevents more than one thread from accessing the same
receiving point simultaneously. Other processors are forced to wait for their turn, if
concurrent access is attempted. The necessary synchronization introduces additional
computation (overhead), but its contribution to the overall execution time of the data-
parallel simulator is minimal.

In a distributed memory environment the situation is somewhat different. There is no
need for synchronization, since each processor has a copy of all the receiving points.
The receiving points are updated locally, and gathered at the end of the simulation to
a processor that produces the final results. On the other hand, in a distributed memory
environment the load balancing requires communication in addition to the gathering
of the final results. The load balancing algorithm communicates with processors in
order to distribute the LOS polygons. The communication is the largest contributor to
overhead in the distributed memory environment.

4 LOAD BALANCING ALGORITHMS

Three generic load balancing algorithms are introduced that distribute the LOS
polygons among the processors. These algorithms have limited knowledge of the
workunits and are only provided with the number of workunits (LOS polygons). Next,
the algorithms are enhanced with the application-specific information. In the case of
the GSM network simulation, the application-specific information is the
computational requirements of the LOS polygons. In general, if the algorithms are
provided with information about the computational requirements of workunits,
algorithms can be utilized more efficiently. Performance results are given for both

versions of the algorithms in order to quantify the improvements achieved with the
application-specific load balancing algorithms.

4.1 Load Balancing Algorithm 1

The first algorithm distributes the workunits so that the number of workunits is equal
among the processors. If the number of workunits is not divisible by the number of
processors, the last » processors have one more workunit to process. The algorithm is
not computationally very complex. Furthermore, the algorithm is capable of
producing a good load balance, if the workunits are all equal in size and the
processors are homogeneous. If the workunits are not the same size, the algorithm
cannot produce an optimal load balance without receiving additional information
about the workunits.

The application-specific version of the load balancing algorithm | utilizes information
about the sizes of the workunits, i.e. the computational requirements. The algorithm
requires an array where the sizes of the workunits are stored. The array is sorted in
descending order based on size. The workunits are assigned to processors so that each
processor receives an equal amount of work, not necessarily an equal number of
workunits. It should be noted, that it is highly unlikely that all the processors will
have exactly the same amount of work to do resulting from the differences in
workunit sizes. However, the algorithm optimizes the distribution so that each
processor receives an amount of work as close to the average as possible.

Even though the algorithm allocates the last processor the remaining workunits
regardless of the amount of work they involve, the algorithm produces equal work
distributions. This is a result of the optimization that takes place when the previous
processors are assigned the workunits. The algorithm allocates workunits so that the
amount of work each processor receives is either less or more than the average,
whichever is the closest. The optimization improves the load balance and reduces the
possibility that the last processor will receive considerably more work than the other
processors. The application-specific load balancing algorithm introduces overhead:
computing the total amount of work and sorting the workunits. However, more
optimal load balancing and the increased utilization of the processors compensate for
the overhead.

Fig. | shows a comparison of the execution times of the GSM network simulator run
with the two versions of load balancing algorithm | on a network of workstations
consisting of 7 Pentium Il workstations running the Linux operating system. The
figure illustrates the superiority of the application-specific algorithm over the generic
algorithm. The application-specific algorithm is able to produce more equal load
balances among the processors due to the fact that it has knowledge about the
computational requirements of the workunits. When the number of processors is
increased, the benefits of the application-specific load balancing algorithms become
especially evident.

[@Generic aigorithm 1 !

H Application-spedific sigorithm 1

Execution Uma (secs)

Number of pracessors

Fig. 1. Execution times of the simulator with generic and application-specific algorithms 1

Even though the application-specific load balancing algorithm performs substantially
better than the corresponding generic algorithm, there is still room for improvement.
Possible reasons for load imbalance among the processors still existing are: (1) the
workunits have vastly different computational requirements. This leads to situations
where certain processors have to process a large number of “small” workunits,
whereas other processes are left with a relatively small number of “large” workunits.
It is more time-consuming to process a large number of “small” workunits than a
small number of “large” workunits, due to the overhead created by the retrieval and
initialization of the workunit. (2) The workunits cannot be distributed equally so that
each processor has exactly the same amount of work to do. This unavoidably leads to
a situation where the execution times of individual processors vary.

4.2 Load Balancing Algorithm 2

The second algorithm is based on the assumption that the workunits are uniformly and
independently distributed over the array where they are stored. The algorithm picks a
workunit at a fixed interval starting from the beginning of the array. The first
workunit for a processor is determined by its rank. For example, the first processor
(having a rank of 0) picks the first one, and so on. After that each processor jumps
over p workunits to reach the next workunit to process, where p is the number of
processors participating in the computation. The preceding step is repeated until each
processor reaches the end of the workunit array. Due to its simple implementation, the
algorithm does introduce very little overhead.

The application-specific load balancing algorithm accounts for the differences in the
sizes of the workunits by sorting the workunits prior to the distribution. The sorting
operation guarantees that the largest workunits are processed first by all the
processors. This, in turn, improves the processor utilization at the end of the

computation. The processors are more likely to finish at the same time, since the last
workunits are relatively small.

B Ganaric afgoritian 2 ,
1@ Application-spaciiic sigorithm 2 |

Exscution time (socs)

Nembar of processors

Fig. 2. Execution times of the simulator with generic and application-specific load
balancing algorithms 2

Fig. 2 illustrates the execution times achieved with the two versions of the load
balancing algorithm 2. Again, the application-specific algorithm performs better. In
addition to having more information about the workload, the application-specific
algorithm is more efficient, since the assumption that the workunits are uniformly and
independently distributed is not quite true in the case of the GSM network simulator.
The workunits are not distributed uniformly, whereas they seem to be clustered in
certain parts of the array. Regardless of the incorrect assumption, the algorithm
performs better than the generic load balancing algorithm 1; the worst-case scenario
of the generic algorithm 2 is approximately 20% better than the best-case scenario of
the generic algorithm 1. The increased performance is derived from the better (more
equal) utilization of available processors. The application-specific load balancing
algorithm 2 produces approximately 35% better workload distribution than the
application-specific algorithm 1.

4.3 Load Balancing Algorithm 3

The third load balancing algorithm creates a pool of workunits, and dynamically
allocates the workunits to processors as per their requests. A single processor is
dedicated to act as a server that receives the requests and sends the workunits as
replies. The algorithm sends a single workunit at a time to any requesting processor.
The performance of the algorithm can be improved further by sending an index of the
workunit, instead of the workunit itself. This approach requires that all processors
have all the workunits in their local memories, and that the workunits can be uniquely
addressed by an index. In general, the purpose of the algorithm is to optimize the
utilization of the processors by allocating only one workunit at a time to each
individual processor when it asks for more work. The generic algorithm instructs the

processors to process workunits in the order in which they are stored in the workunit
array. The application-specific version of Algorithm 3 sorts the workunits based on
their sizes and distributes the workunits in descending order to the processors as per
their requests.

A comparison of the generic and application-specific algorithms is depicted in Fig. 3.
The results are a very interesting in respect to the application-specific algorithm.
Based on the execution times of the simulator the generic algorithm is faster when the
number of processors is larger than 5. However, workload distribution is considerably
better in the application-specific algorithm when the number of processors is larger
than 5 (figure not shown due to the limited availability of space). The reason for this
somewhat puzzling situation is the fact that the communication between the server
processor and the client processors creates a bottleneck. In part, this is true for the
generic algorithm as well. However, the impact of the communication bottleneck is
emphasized in the application-specific algorithm, since there are a number of
concurrent requests sent to the server processor. The use of the application-specific
algorithm introduces simultaneous requests due to the order in which the workunits
are processed. As mentioned, the server processor assigns the workunits in
descending order based on their computational capabilities. Therefore, at any given
time most of the client processors are processing workunits that are very close to each
other in terms of size. This leads to a situation where a number of processors have
issued requests to the server processor simultaneously. The sending of the requests
does not have to take place exactly at the same time because it takes some time for the
server processor to handle the request and send back the reply. Since the server
processor is capable of processing a single request at a time, the other possible
requests are queued and they have to wait their turn in order to be processed.

Ei Ganaric aigorittm 3
B Appiication-spscific aigorthm 3

Numbar of procassors.

Fig. 3. Execution times of the simulator with generic and application-specific load balancing
algorithms 3

Due to the above-mentioned reasons, the generic algorithm provided the best
performance results out of the two load balancing algorithms. Overall, algorithm 3
generic version) was the best performing algorithm of all the three different

algorithms studied. The algorithm 3 performed approximately 22% and 21% better
than the best cases of application-specific algorithms 1 and 2, respectively. It still
should be emphasized that application-specific algorithm 3 was able to produce a
better load balance, but suffered from the communication bottleneck and the
centralized scheduling mechanism.

4.4 Comparison of the algorithms

Each of the algorithms and their corresponding application-specific implementations
make assumptions about the workload. The first algorithm assumes that the workunits
are similar in their computational requirements. The algorithm | is, indeed, a good
solution for load balancing of workunits that take an equal amount of time to process.
The algorithm is able to produce a good load balance with minimum amount of
overhead. In the GSM network simulator, the problem with the algorithm 1 proved to
be the fact that the computational requirements of the workunits were vastly different.
Not even the application-specific algorithm 1 was able to compensate for the
differences efficiently. The algorithm 2 expects that the workunits are equally
distributed with respect to their computational requirements over the array in which
the workunits are stored. This approach tries to optimize the load balance based on
statistical assumptions that the workunits are uniformly and independently distributed.
In an ideal situation, the algorithm 2 can produce an equal load balance among the
processors while incurring very little overhead. In the case of the GSM network
simulator, it was noticed that the workunits were not independently distributed. This
was due to the fact that the workunits (LOS polygons) were generated based on a
map. The map created dependencies between the workunits causing clusters of
computationally expensive workunits to form. The algorithm 3 is a general-purpose
algorithm that is suitable of all kinds of workloads. However, the generic nature of the
algorithm comes with a price. The client-server infrastructure is more complicated to
implement, and introduces more overhead than the other two algorithms. On the other
hand, the algorithm proved to be the best from the performance and load balance
point of views.

The performance results of the generic algorithms are shown in Fig. 4. The figure
illustrates total execution times of the simulator, whereas the previous figures have
merely shown execution times of the parallel computation phase of the simulation.
The performance results of the whole simulation are impacted by a sequential
component of the simulator; the significance of the sequential component becomes
more obvious when the parallel computing phase gets shorter. Algorithm 3 has the
best performance of the three algorithms. At best, algorithm 3 provided performance
improvements of 81% and 19% compared to algorithm 1 and algorithm 2,
respectively. The corresponding performance improvements for the parallel
computation phase were 87% and 20%. The slight decrease in performance in the
total execution time is caused by the sequential component of the simulator.

@ Algeriihm. 1
B Algorithm 2
Saigoritin 3

IS
g

w
=3
s

Executlon time {secs)

"
=3
s

100

Rumber of processors

Fig. 4. Execution times of the GSM network simulator with generic load balancing algorithms.
It should be noted that no result is given for algorithm 3 in case 7 processors are used. The
algorithm 3 requires a master processor that does not process workunits. Therefore, the
maximum number of processors available for parallel processing is 6

B Algorith |
|mAigeritbm 2 |
D Aigoriihm 3

500

s
g

g

Exacution tima {sacs)

"
=3
s

100

Number of processors

Fig. 5. Execution times of the GSM network simulator with application-specific load balancing
algorithms

Fig. 5 depicts a comparison of the three application-specific algorithms in the GSM
network simulator. The figure shows that the algorithm 3 performs the best. However,
the sequential component of the simulator has also an impact on the overall
performance of the simulator. The performance of the load balancing algorithm 3 is
12% and 3% better than application-specific algorithms 1 and 2, respectively. The
corresponding performance improvements for the parallel computing phase were 13%
and 3%.

5 DISCUSSION

In general, the application-specific load balancing algorithms performed better than
the generic algorithms from a load balance point of view. In all the algorithms some
overhead was introduced by the additional computation required to process the
application-specific information, by the communication, and in the case of the
Algorithm 3, by the contention in the server processor. However, the computation did
not affect the overall performance of the application negatively, since the gain from a
better load balance was significant. The communication had an impact on the overall
performance of the third application-specific algorithm due to the communication
pattern of the processors. The algorithm is a good example of how the communication
can form a bottleneck even though the algorithm itself is capable of producing
optimal results. A solution to the dilemma would be to create multiple server
processors. However, this would require modifications to the algorithm to distribute
the server’s functionality, and to enable the client processors to determine to which
server processor they should send requests. In addition, the server processors are not
used for computation. If the number of available processors is limited, assigning
processors to server processors would waste computing power. For example, the
author’s network of workstations consists of 7 workstations. Assigning two
processors as servers would reduce the number of processors available for the actual
computing to five. Thus, close to 30% of the computing resource would not be
performing the actual computation.

6 CONCLUSIONS

Three load balancing algorithms were studied. The generic versions of the algorithms
were compared to the application-specific versions in a data-parallel GSM network
simulator on a cluster of workstations. The application-specific versions of the
algorithms utilized additional information about the workload to further optimize the
load balance. In order to take advantage of the application-specific information the
algorithms had to do more processing than the generic algorithms: the algorithms had
to compute the sizes of the workunits, the average number of work per processor, and
sort the workunits in descending order based on their computational requirements.
Despite the number of additional operations performed by the application-specific
algorithms, the results indicate that the algorithms are able to produce substantially
more optimal load balances.

The application-specific algorithms reduced the distribution of the execution times
significantly compared to the generic algorithms. In all three algorithms, the
application-specific algorithm produces better load balances than the corresponding
generic algorithms. However, the third application-specific algorithm performed
worse than the corresponding generic algorithm. The problem was caused by the
simultaneous communication to and from the server processor. As such this is not a
problem with load balancing, since the most optimal results were achieved with the
third application-specific algorithm. However, communication was a mandatory part

of the third load balancing algorithm, and could be ignored when overall performance
results were compared. After all, one of the goals of parallel computing is to decrease
the execution time, which does not necessarily require an optimal load balance among
the processors.

In conclusion, the study proved that in order to optimize the load balance and the
utilization of the processors, parallel applications require additional information about
the workload. Unfortunately, it is not always possible to retrieve such information.
However, in cases where the information is available it should be used to improve the
capabilities of the load balancing algorithms to produce more optimal workload
distributions.

References

1. Diekmann, R., Preis, R.: Load Balancing Strategies for Distributed Memory Machines.
Parallel and Distributed Processing for Computational Mechanics: Systems and Tools
(1999) 124-157.

2. Deng, X, Liu, H.-N,, Long, J.: Competitive Analysis of Network Load Balancing. Journal
of Parallel and Distributed Computing 40 (1997) 162-172.

3. Hui, C.-C., Chanson, S.T.: Theoretical Analysis of the Heterogeneous Dynamic Load-
Balancing Problem Using a Hydrodynamic Approach. Journal of Parallel and Distributed
Computing 43 (1997) 139-146.

4. Norman, M.G., Thanisch, P.: Models of Machines and Computation for Mapping in
Multicomputers. ACM Computing Surveys 25 (1993) 263-302.

5. de Doncker, E, Gupta, A, Guo, M.: Adaptive Multivariate Integration using MPI.
Proceedings of International Conference on Supercomptuing (1997).

6. Zaki, M.J., Li, W., Parthasarathy, S.: Customized Dynamic Load Balancing for a Network
of Workstations. Journal of Parallel of Distributed Computing 43 (1997) 156-162.

7. Ferrari, D., Zhou, S.: A Load Index for Dynamic Load Balancing, Proceedings of XXX,
(1986) 684-690.

8. Meyer, T.E., Davis, J.A., Davidson, J.L.: Analysis of Load Average and its Relationship to
Program Run Time on Networks of Workstations. Journal of Parallel and Distributed
Computing 44 (1997) 141-146.

9. Heiska, K., Kangas, A.: Microcell Propagation Model for Network Planning. Proceedings of
IEEE Symposium on Personal, Indoor, and Mobile Radio Communication (1996) 148-152.
10.Sipila, K., Heiska, K.: Can ray tracing be used as a fading generator in simulating micro
cellular mobile radio systems? Proceedings of Conference on Wireless Communication

(1996).

Publication 5

Huttunen P., Ikonen J., and Porras J.: MPIT - Communication/Computation
Paradigm for Networks of SMP workstations. In Proceedings of Conference on
Applied Parallel Computing, Helsinki, Finland, June 15-18, 2002, pp. 160-171.

MPIT - Communication/Computation Paradigm for
Networks of SMP workstations

Pentti Huttunen', Jouni lkonen', and Jari Porras’

'Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta, Finland
{Pentti.Huttunen, Jouni.Ikonen, Jari.Porras}@lut.fi

Abstract. A need for a more efficient programming paradigm has been
prompted by the introduction of networks of symmetric multiprocessor (SMP)
workstations. A new programming paradigm for networks of SMP workstations
is presented in this paper. The paradigm called MPIT integrates Message
Passing Interface (MP1) and POSIX threads. The MPIT paradigm utilizes MPI
for communication among the workstations, and uses threads to process the
data within a workstation. The communication among the workstations is
handled by a dedicated communication thread that runs on each workstation.
The communication among the threads is handled through the shared memory.
A number of theoretical and practical benefits of the MPIT paradigm are
identified, such as communication/computation overlap, increased resource
utilization and performance.

1 Introduction

Networks of SMP workstations (referred to as a network of workstations in the
remainder of the paper) have received much attention during the past few years. Their
benefits over proprietary supercomputers have driven up the number of systems
deployed for a number of reasons. First of all, the cost of a network of SMP
workstations is far less than that of a proprietary supercomputer with an equal number
of processors. Although the performances of high-end supercomputers are better than
a network of workstations, the difference is not substantial. The recently released list
of Top 500 supercomputers has 48 cluster systems [1]. The best network of
workstations is in the 30th spot on the list outperforming several proprietary systems,
such as Cray T3E and IBM SP Power3 systems. Second, a network of workstations is
more versatile and inexpensive to expand by adding new workstations compared to
adding new processor boards on supercomputers. Third, a network of workstation
does not have to be homogeneous system, where all workstations are identical,
whereas homogeneity is usually a requirement in proprietary supercomputers. The
heterogeneity allows the cluster to have a set of dedicated nodes for special purposes,
such as VO, floating point arithmetic, and graphics. However, the heterogeneous
system does bring up new problems, especially with scheduling and load balancing.

The programming paradigm for networks of workstations is message passing. There
are numerous message passing libraries of which MPI [2][3] and PVM [4] are,

perhaps, the most popular. Both of these message passing libraries operate in a similar
way with respect to multiprocessor workstations; the libraries create multiple
processes on a workstation, and the communication either goes through the network
(the loopback interface), as if the processes reside in two different workstations, or
through the shared memory regions [5]. The use of processes compared to threads is
more straightforward, but also computationally more expensive; it is more time-
consuming to do a context switch between two processes than between two threads.
Furthermore, threads share the memory allocated for the process in which they are
created. If threads need to communicate, the communication utilizes the shared
memory. In practice, the most simple implementation of a communication method in
a shared memory is to use global variables. The global variables are accessible by all
threads, which requires a synchronization method to be implemented for controlling
the access to the global variables.

The purpose of this paper is to introduce a programming paradigm called MPIT (MPI-
Threads) that combines MPI and POSIX threads. One of the main goals of MPIT is to
provide a simple, and yet powerful, programming tool for networks of SMP
workstations. MPIT provides an interface similar to MPI with the exception that the
prefix of the function names is MPIT instead of MPIL. The implementation of MPIT
creates two types of threads. The first type is a worker thread. The worker thread
executes the actual code, and issues send and receive commands to exchange data
among the workstations. The second type is a communication thread. Each
workstation (process) has a single communication thread that handles all
communication operations among the workstations. The communication thread
receives messages from the network (i.e. from another workstations), and sends and
receives commands from the worker threads. The goal is to allow the worker threads
to continue their execution immediately after issuing a communication request to the
communication thread. The use of worker threads and a communication thread makes
it possible for computation and communication to overlap. Furthermore, the worker
threads communicate with each other through the memory allocated for the process in
which they are running. All thread creation and maintenance operations are embedded
and automatically performed by MPIT.

This paper is organized as follows. First, related work done in the field of parallel
computing in networks of SMP workstations, and programming tools for such
environments are discussed. Second, MPIT is introduced with detailed descriptions of
its architecture, capabilities, and usage. Third, theoretical and practical results of
MPIT are explored. Finally, the last section concludes the paper.

2 Related work

Networks of workstations as a platform for parallel computation have been studied for
a number of years, and there are reports about studies that closely resemble the one
presented in this paper. However, none of the works mentioned in this section about
previous studies offer quite the same functionality as MPIT does. Main differences in

MPIT are its utilization of MPI as the transport mechanism among workstations, and
its capability to perform load balancing automatically while continuing to provide a
very simple interface for the programmer.

A multi-threaded MPI implementation is discussed in [6]. The article outlines the
work required to make an implementation of MPI, mpich, thread-safe and
multithreaded thereby improving its performance. The focus of the paper is on how to
change the implementation of MPI to support multi-threading rather than how to
provide the user with a multi-threaded programming paradigm on top of MPI.

Very interesting research about the integration of MPI and threads can be found in
[7]. The authors present a system called Chant that allows for point-to-point
communication between threads in different workstations and the use of remote
services requests. Chant allows individual threads to communicate with each other,
assuming that the sending and receiving threads are aware of the fact that a
communication operation is about to occur. This approach differs from MPIT in the
way in which the communication is performed. In MPIT, the communication is
handled by a communication thread that removes the need for synchronous
communication.

In {8} the authors present a programming paradigm for a cluster of SMP workstations,
which consists of Pentium Pro processors. The programming paradigm uses active
messages for communication [9], and a specially designed shared memory
implementation to handle intra-node communication. The utilization of Active
Messages makes the implementation attractive from the performance point-of-view.
However, the intra-node communication model is quite complex to learn and
understand. In addition, the programming paradigm does not offer any load balancing
functionalities.

In {10} a programming model called SIMPLE for clusters of SMP workstations is
discussed. The model is intended for parallel computing requiring low communication
latencies. The high communication performance is achieved through a
communication library developed during the course of the research. The methodology
allows for data-parallel programming utilizing threads within a workstation, and the
developed communication library to interact with other workstations. However, the
model does not facilitate heterogeneous computing environments or load balancing,
and does not have as simple interface as MPIT.

3 MPIT

The goal of MPIT is to provide a programming paradigm that allows the overlap of
communication and computation without major programmer intervention. MPIT
combines the MPI message passing interface and POSIX threads to facilitate the
communication-computation overlap. Furthermore, MPIT eliminates the need for
explicit communication among processors within a workstation due to the use of

threads instead of processes. The interface to MPIT is very similar to the one used in
the MPI library. MPIT has most of the point-to-point communication routines
currently found in MPI. Even the parameters in the function calls are practically
identical. On the other hand, MPIT introduces a set of new commands to control the
execution of threads within a workstation. The following subsections discuss the
architecture of MPIT, and describe its usage in detail.

3.1 Architecture

The architecture of the MPIT environment in a workstation is shown in Fig. 1. The
figure illustrates the architecture inside a process created during the initialization of
the MPI environment. The worker threads are threads created by MPIT to perform the
actual computation. The communication thread is a special thread also created by
MPIT to handle communication among the workstations. The MPI receive and send
buffers are internal buffers utilized by the MPI message passing library. These buffers
are shown in the picture to illustrate where the communication thread receives and
sends data. The Data-In and Data-Out queue are used by the threads to send and
receive messages. These buffers are maintained by MPIT.

| MPT send buffer I Data-Out queue |

T/

Commumcatlon thread

/
L~

| MPI receive buffer | Data-In queue l
y .

~. —

Worker threads

|
/
/
1 1

Fig. 1. The architecture of MPIT. This illustrates the components of which the MPIT paradigm
is composed. It should be noted that the MPI send and receive buffers are not part of MPIT; the
buffers belong to the MPI implementation

When a thread sends data, it calls the appropriate MPIT send function. The MPIT call
creates a message and queues it to the Data-Out queue. Once the message has been
queued the control is returned to the calling function. From the worker thread’s point-
of-view the communication has been completed, although the message has not
necessarily been sent yet. If a worker thread wants to receive data, it issues a proper
MPIT receive function call. The function call causes the data in the Data-In queue to

be searched. If no matching data is found, the execution of a thread is either halted or
an error message is returned. It should be noted that the worker threads do not have
direct access to the network. The communication always goes through the data
queues.

The purpose of the communication thread is twofold; it is responsible for handling
data transfers in and out of the workstation, and performing workload scheduling. The
communication thread constantly monitors whether the user has issued MPIT send
commands or if there is data to be received from the network. If there is data in the
Data-Out queue, the communication thread removes the data from the queue and
initiates a send procedure. The communication thread sending the data does not have
to know that there is a matching receive operation waiting for the data. The thread
sends the data assuming that the communication thread in the receiving process either
receives it immediately or at a later time. When the communication thread notices that
there is data pending in the MPI receive buffer, the thread initiates a receive command
to retrieve the data. The communication thread is able to receive any kind of data
from any workstation, even from itself. Even though the architecture facilitates
communication within a process through the buffers, it is more prudent to use the
shared memory for thread communication within a workstation.

Since MPI communication commands require detailed information about the sent and
received data, such as number of data elements, data type, sender, and tag, the
communication takes place in two phases. When the communication thread removes
data from the Data-Out queue, two messages are generated and sent to the network.
The first message contains information about the actual message: the type of the
actual message as well as the size of the message. With the help of the additional
message the other end of the communication is able to receive the message properly.
The information message is immediately followed by the actual (second) message.
The receiving side’s communication thread monitors the information messages. Once
the thread has received one of the information messages, it initiates a receive
operation to retrieve the actual data. When the message has been received, the thread
enqueues the message to the Data-In queue. If there are worker threads waiting for
new data to arrive, the threads are notified about the new data.

Another benefit of MPIT in addition to the communication-computation overlap is its
ability to handle the dynamic scheduling (load balancing) of workunits in data-
parallel applications. The automatic load balancing is based on a client-server model
and implemented with a handful of function calls. The programmer determines a
master workstation that acts as a server for the other workstations. Threads on all the
workstations, other than the master, send requests to the master when they are out of
work. The request by a thread for more work is handled similar to any other send
operation on the sender’s side. However, the data is sent to the master workstation,
which was defined during the initialization of the MPIT environment. The
communication on the master workstation generates a reply to the work request, and
sends it back to the requesting thread. Since the communication thread performs the
load balancing operations, no worker threads on the master workstation are affected.
The load balancing can be performed in two different ways; the master workstation

can either send a workunit to the requesting thread or an index to a workunit. The
latter case assumes that the requesting thread has knowledge of all the workunits. In
order for the master workstation to perform load balancing actions, information about
the workunits and, possibly, their weights must be given to the MPIT environment.
This is done before or after the MPI environment is initialized with a set of MPIT-
specific load balancing function calls.

3.2 Setting up the MPIT environment

In order to perform any MPIT operations, the environment must be initialized. It
should be noted that the MPI environment must be initialized prior to initialization of
MPIT. The following steps are performed during the MPIT initialization:

~ A file containing workstation information is read. The file has information about
the workstation participating in the computation. For each workstation three
attributes must be specified: the name of the workstation, the number of threads to
be created, and the relative power of the workstation. The relative power of the
workstation is an optional attribute. Its main purpose is to provide information to
MPIT about the performance of the workstation. In cases where the cluster is
heterogeneous, and MPIT is instructed to perform load balancing, the relative
power attribute comes into play. MPIT is capable of distributing the workload
among the workstations based on their relative powers.

- Data queues are initialized. The data queues hold the data that is to be transferred
and the data that has been received from other workstations.

— Worker threads are created. Each thread begins to execute the function defined by
the user in the parameters of the MPIT initialization function. The possible
parameters for the thread function are also given in the function parameters.

~ The communication thread is created. The thread begins immediately to monitor
the data queues for possible requests from the worker threads and for arriving
messages from the network.

Once the initialization is completed, the worker threads and communication threads
are running. The main program (the one that initialized the MPIT environment) can
participate in the computation or it can call try to finalize the MPIT environment. In
the latter case, the execution of the main thread is halted until all worker threads and
the communication thread have terminated. By calling the finalization function, the
main thread is pre-empted in favor of the communication thread. Therefore, it is
beneficial that the main thread calls the finalization function and waits for all other
threads to terminate. For optimal performance, the number of worker threads created
should be one less than the number of processors in the workstation. The last
processor is shared by the MPI main program and the communication thread.

3.3 Thread programming

During the configuration of the MPIT environment the user is able to specify the
function executed by all threads immediately after their creation. MPIT also provides
routines to control the execution of all threads within a workstation. There are two
barriers that can be used to synchronize the execution of the threads. The first barrier
is for the synchronization of all threads including the main thread, whereas the second
barrier is for the synchronization of the worker threads. Furthermore, there are two
routines that can be used to control the execution of a particular thread. It is possible
to suspend the execution of a particular thread, and later resume its execution.

Without the above-mentioned enhancements, the thread programming model is
identical to POSIX threads; all pthread routines work normally [11]. It should be
noted that if threads share global memory locations, it is up to the user to implement
synchronization methods to protect the memory locations at least from concurrent
write operations. This requirement will be removed in the next version of MPIT
where a method of controlling the shared data is provided.

3.4 Data transfer

MPIT’s set of send and receive commands is similar to those of the MPI library. One
of the goals of MPIT was to provide an identical interface with MPI and to hide all
the complexity from the user. For example, the two most common commands,
MPI_Send and MPI_Recv, have exactly the same syntax.

Perhaps, the most noticeable difference between MPIT and MPI is the way
MPIT_Send function call operates. In the MPIT, the MPIT Send function always
returns immediately allowing the communication and computation to overlap. The
only action the MPIT_Send function takes is to queue the data to the Data-Out queue.
It is the responsibility of the communication thread to actually send the data to the
source process. Due to this somewhat changed functionality of the MPIT Send
function, the MPIT implementation does not currently support any other kind of send
functions.

Depending on the type of the receive call the following situations may occur during
the reception of a message from a network: (1) If a non-blocking receive operation is
performed (MPIT _Irecv), the Data-In queue is searched for a message that matches
the parameters given in the function call. These parameters are the data type, source
processor rank, and tag. If no match is found, the function returns with an error code.
(2) If a blocking receive operation is performed (MPIT Recv), the same search
operation is carried out. However, if no matching message is found, the function does
not return, but waits until a message with the matching parameters is entered into the
queue. The queue is searched each time a new message is queued to see whether a
match is found. Meanwhile, the halted thread is pre-empted to allow other threads to
run, if any exist. (3) In MPIT it is possible to issue a receive command without
specifying any parameters (MPIT_RecvAny). In this case, a message is returned to

the calling processor, if there is any kind of message in the Data-In queue for the
processor. In addition to the returning of the data, all the function parameters are
updated by the receive operation. Thus, the receiving process is informed about the
type of data, the size of the data, source processor rank, and tag. This function call is
very useful in the sense that the processors do not have to have prior information
about the messages they are receiving.

3.5 Termination of the environment

The main thread should call the MPIT Finalize() function to terminate the MPIT
environment. The worker or communication threads can also call this function, but
since they do not any effect on the environment, only the main thread can terminate
the environment. The following operations take place in the function:

— The worker threads are joined. The execution of the main thread is halted, if no
threads can be joined.

— The communication thread is joined. The MPIT Finalize function guarantees that
the communication thread is joined only after all worker threads have terminated
and all their requests have been served.

— All memory allocated for the MPIT environment is released.

Once the MPIT environment is terminated the execution of the application can
continue as a normal MPI application. However, it can reinitialize the MPIT
environment after the termination of the environment either with the same or different
parameters.

4 Results

There are a number of theoretical and practical benefits of MPIT. First, with a specific
communication thread, worker threads are able to continue their work without any
interruptions due to communication delays; the worker threads do not have to wait
until a send operation is complete. Furthermore, the receive operations from the
network are performed by the communication thread. The worker threads need only to
issue a receive command that returns data to them from the Data-In queue. This
reduces the time the worker threads have to spend on communication in general. In
addition, MPIT allows receive operations that can receive any number of any kind of
data from any process with any tag. This gives the user more flexibility with the
communication, since there 1s no need to know the data size, type, and the source of
the data prior to calling the receive function.

Second, MPIT optimizes the utilization of the resources indicated by the user in a
workstation. The user does not have to employ all the available processors, and the
user 15 even capable of terminating a number of threads during the parallel
computation phase. The latter case is beneficial in a situation where the load of a

machine has increased, and all the threads are not receiving an equal amount of
processor time,

Third, MPIT supports heterogeneous environments. The user can specify any number
of threads for any workstation. By controlling the number of workstations the user is
able to fully utilize the resources of all workstations participating in the computation.
In addition, if automatic load balancing is enabled, the relative power indicators
indicate the computing power of a workstation in proportion to the most or least
powerful workstation. With the relative power information the automatic load
balancing can perform optimal load balancing operations as requested by the threads.

Fourth, MPIT hides the complexity of thread management and communication. The
programming paradigm does not change significantly; if the user is familiar with MPI
programming, practically no new commands need to be learnt.

The performance of MPIT was tested with a special application written for the
purpose of measuring the performance of MPIT. In the context of the test application,
the term process refers to a workstation and each process can have a number of
threads in it. The application consists of a master processor and a number of slave
processors. The master process sends workloads to slave processes. There are two
kinds of workunits in a workload received by a slave process: local workunits are
processed by the slave process, whereas remote workunits are sent to processes that
are responsible for processing them. The determination is based on the content of the
workunit. The slave process goes through the workload and processes workunits
assigned to it, and sends workunits not intended for it to other processes. The
workload is processed sequentially and processing of a local workunit takes place
immediately when one is found. In turn, remote workunits are sent to other processes
when they are encountered in the workload. Thus, they are not sent out as a single
message (containing all remote workunits) prior to the processing of the local
workunits. This implementation simulates a situation where there are dependencies
among the workunits and processes. In case a process has multiple threads in it, the
threads process the workload so that each thread gets an equal number of workunits
(regardless of whether the workunits are local or remote).

Initial tests have indicated that MPIT is capable of utilizing the resources in the
network of workstations better than MPI. Table 1 shows the initial results of a
comparison of MPIT and MPI. The results from 1 to 3 processors were achieved
running the application in a 4-processor workstation utilizing three threads. The
results from the test where one processor is used gives an indication of how long it
takes to set up the MPIT environment. Setting up the MPIT environment takes
approximately one second on a Pentium III 750MHz workstation running the Linux
operating system. Once the number of processors is increased the more efficient
utilization of resources in MPIT becomes evident. In the case where 4 processors are
used (a total of 2 workstations: one with 3 processors and one with one processor), the
performance improvement of MPIT over MPI is 41%. The improvement decreases as
the amount of work per processor decreases, which can be seen in the test where 5
processors are used.

Table 1. Initial results from a comparison of MPIT and MPI

Number MPIT MPI Improvement

of

Processors
1 45.10 44.04 -2%
2 30.03 33.04 +10%
3 22.03 30.03 +36%
4 17.02 24.00 +41%
5 15.10 19.01 +26%

The power of MPIT can be seen with the test application. The test application benefits
from MPIT’s capabilities to use threads instead of processes on a workstation, and to
minimize the need for communication by allocating a single process per workstation,

5 Conclusions

A new programming paradigm for efficient parallel computing on a cluster of SMP
workstations was presented. MPIT (MPI and Threads) utilizes the MPI message
passing library in communication among the workstations and threads to execute the
code on the processors of a workstation. MPIT hides the thread creation and
maintenance from the user. The interface of MPIT is very similar to the interface of
the MPI library in that almost all of the same commands are available in MPIT and
MPL.

MPIT utilizes threads instead of processes to take advantage of the resources of a
workstation. The number of threads created in each workstation is controlled by the
user. More threads can be created or the existing threads can be terminated during
parallel computation. The use of worker threads in conjunction with a separate
communication allows the worker threads to focus solely on processing their work,
whereas the communication threads handle all communication operations. The
communication thread sends data to other workstations and receives data from the
workstations. The worker threads simply pass the data to be transmitted to the
communication thread, and are then able to continue their execution. Furthermore, the
reception of data by a worker thread includes a local function call to retrieve the data
from a queue of the communication thread.

In addition to the features mentioned above, MPIT can perform load balancing of a
data parallel application automatically. The load balancing operations are triggered by
the user with a handful of function calls. MPIT hides the implementation including
the communication from the user. The load balancing utilizes a client-server model,
where a workstation is dedicated to act as a master for load balancing.

MPIT has a number of advantages. First of all, with the creation of the
communication thread, worker threads do not have to perform any communication
operations, except queue the data to the communication thread. Therefore, by
overlapping computation and communication the performance of the parallel
application is increased. Second, threads are able to utilize the system resources more
efficiently than an equal number of processes. The context switch takes less time, and
the threads automatically share a global memory allocated for the process in which
they are created. The number of threads can be dynamically controlled by the user
based on load situation in the workstation. Third, the MPIT implementation is hidden
from the user. The user needs only to initialize the environment, and provide the code
executed by the threads. The communication and thread management is handled by
MPIT without user interaction.

A need for libraries such as MPIT has risen during the past years due to the increased
number of multiprocessor-based workstation clusters. New and efficient programming
paradigms are required to fully utilize available resources and minimize the overhead
introduced by parallel execution. MPIT offers a programming paradigm that fulfills
these requirements and can be adapted by any user with relative ease,

References

1. TOP500 Supercomputer Sites, University of Mannheim and University of Tennessee,
http://www.top500.org.

2%

. MPI Forum: MPI-1.1 Standard. http://www.mpi-forum.org (1995).
3. MPI Forum: MPI-2 Standard. http://www.mpi-forum.org (1997).

4. Sunderam V.S.: PVM: A Framework for Parallel Distributed Computing. Concurrency:
Theory and Practice 2 (1990) 315-339. ;

5. Tang, H., Shen, K., Yang, T.: Compile/Run-time Support for Threaded MPI Execution on
Multiprogrammed Shared Memory Machines. Proceedings of ACM Programming
Principles of Parallel Processing (1999) 107-118.

6. Protopopov, B.V., Skjellum, A. A multi-threaded Message Passing Interface (MPI)
architecture: performance and program issues. Journal of Parallel and Distributed
Computing 61 (2001) 449-466.

7. Haines, M., Cronk, D., Mehrotra, P.: On the Design of Chant: A Talking Threads Package.
Proceedings of the Conference on Supercomputing (1994) 350-359.

8. Tanaka, Y., Matsuda, M., Kubota, K., Sato, M.: COMPaS: A Pentium Pro PC-Based SMP
Cluster. High Performance Cluster Computing, Volume 1. Ist edition. Prentice Hall (1999)
661-681.

9. Parab, N., and Raghvedran, M.: Active Messages. High Performance Cluster Computing,
Volume 1. Ist edition. Prentice Hall (1999) 270-300.

10.Bader, D.A., Jaja, J.: SIMPLE: A Methodology for Programming High Performance
Algorithms on Clusters of Symmetric Multiprocessors (SMPs). Journal of Parallel and
Distributed Computing 58 (1999) 92-108.

11.Butenhof, D.R. Programming with POSIX Threads. Addison-Wesley, 1997, ISBN 0-201-
64492-2.

Publication 6

Porras J., Huttunen P., Ikonen J.: Accelerating Ray Tracing Based Cellular
Radio Coverage Calculation by Parallel Computing Techniques. Annual
Review of Communications, Vol. 53, 2000.

Accelerating ray tracing based cellular radio
coverage calculation by parallel computing
techniques

Jari Porras, Pentti Huttunen and Jouni Ikonen
Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta,
Finland
{Jari.Porras, Pentti.Huttunen, Jouni.Ikonen} @lut.fi

INTRODUCTION

Calculation of the radio wave propagation and the field strength is one of the most
critical tasks in any computer based cellular network planning system or simulator,
Because of the increasing demand for the capacity in cities the cells are getting
smaller and smaller and there is a need for an accurate prediction of coverage in a
complex urban geometrical setting. Especially rapid growth of the GSM phone
population has resulted a large number of microcell simulators [Hei96, Pap98,
Raj96a, Sip96]. Several techniques and models have been used to simulate radio
wave propagation in all kind of environments, i.e. indoor [Ina94, Laf90, 1L4h93,
Raj9%6a, Sei921and outdoor [Bag95, Gre94, Hei96, Hut98, Pap98, Tut96]. Some of
the models are empirical, or statistical based on the field strength measurements and
experience, see e.g. [Par92], and some of them are deterministic using accurate maps
of the service area as an input.

Recently ray tracing [Fri95, Hut98, Ina%94, Sal94; Sip96, Tut96] method has become
very popular technique to be used in the propagation model simulation. In [Lia97]
there is a good overview of the ray tracing technique. Ray tracing based simulations
are used for finding the best possible locations for transmitters before actually
installing them. Ray tracing enables accurate results but it also demands a huge
amount of calculations. Due to the high amount of calculations the use of ray tracing
requires a powerful computer or a lot of time. As several simulations need to be run
before optimal locations can be found the execution time of the simulation must be
kept reasonable. Improved algorithms have been developed [Hei96, Tut96] but the
simulation time remains too long for the iterative process of radio network planning,

Parallel computing offers a solution for the time consuming coverage calculations.
Calculation times can be significantly reduced by partitioning the problem into
independent parts and by executing the parts in parallel. Coverage calculation is a
suitable application for parallel execution as the independent parts can be easily
found. However, the size of the different parts may vary which may result in uneven
execution times. In order to achieve the best possible speedup some kind of a work
balancing algorithm need to be implemented.

PROPAGATION MODELING

The idea of the propagation modeling is to simulate radio wave propagation in urban
and rural environments. Propagation models can be used for route and coverage
calculations. Route calculation is used for the computation of field strengths on a

mobile receiver’s path. The field strength information received from the route
calculation indicates how the received signal changes when the mobile is moving on
the simulation area. In coverage calculation the field strengths are calculated for a
certain area. This area is divided into receiving points which will have the field
strength information calculated at the end of the simulation. Through the coverage
calculation the true coverage of the transmitter can be determined.

In the coverage calculation the field strength needs to be calculated for every
receiving point. For simulation purposes it is sufficient to create a receiving grid over
the simulation area. Each square of the receiving grid represents one receiving point.
Density of the grid may vary according to the desired accuracy. A 4*4 meter square is
usually considered accurate enough. Figurel presents an example of the receiving grid
on the given area.

Figure 1. Receiving points represented by a grid in the simulation area.

Signal loses its power as it propagates from the transmitter to the receiving point
[Feu94, Hat80, Laf90, Lah93, Oku68, Pap98&, Seif2]. Different elements affect to the
received signal power. The propagation modeling is divided into three components:

¢ Distance
e Reflections
e Diffraction

Signal loses its power according to the distance it propagates before it reaches the
receiving point. In an empty area the signal suffers only from the free space loss. Free
space loss depends on the distance between the transmitter and the receiving point as
well as the frequency used. Obstacles between the transmitter and the receiving point
will further degrade the signal. Obstacles also cause the signal to reflect and diffract.
If the signal intersects an obstacle a new, reflected signal is created. Reflected signal
reflects from the obstacle whereas the originally transmitted signal goes through the
obstacle. Power loss of the signal depends on the material of the obstacle. Diffraction
happens when the signal arrives to a corner of an obstacle. In the corner the arrived
signal disperses to all directions. This will create a great deal of new signals, which
increases the amount of calculation needed in the propagation modeling.

Different propagation models can be categorized into two groups according to the use
of dimensions. In 2D modeling only horizontal plane is considered. These models

may be sufficient enough if the studied area is adequately flat. However, in the real
environment, e.g. cities, the terrain and its changes have an effect to the signal
propagation. In these cases vertical plane should also be considered. This 3D
modeling complicates the calculation of signal propagation and thus increases the
demand for computing power.

i 3

Tx
Figure 2. Point-to-point propagation Figure 3. Diffraction over the
model. obstacles in 3D model.

Two basic methods have been proposed for the propagation modeling: point-to-point
and ray tracing. Point-to-point propagation considers only the straight line from the
transmitter to the receiver. This type of modeling is illustrated in Figure2. In 2D
point-to-point propagation modeling the received signal strength is affected only by
the distance and the signal attenuation due to the obstacles on the signal path. In 3D
model the diffraction over the obstacles can be considered. This is illustrated in
Figure3. Point-to-point method is simple to implement and it does not require huge
amount of calculations. Because reflections and (horizontal) diffraction are ignored
the accuracy of this method is poor. Only rough estimates can be achieved by using
this method.

Ray based propagation modeling

In many recently implemented propagation model simulators the propagation is based
on a ray tracing method. In a ray based model the transmitter sends signal rays to all
directions unlike in the point-to-point method, where only a single ray is inspected.
Each ray is traced until the power of it drops below a given threshold value. This
method is more accurate than point-to-point method since reflections and diffractions
are included (see Figure4). As reflections and diffractions generate multiple new rays
the number of rays increase exponentially. Therefore, ray based models are more
complex than point-to-point models and they require more calculations. The angle
between the launched rays must be small enough to achieve good results. As the angle
is decreased the amount of calculation is increased. The extent calculation and the
problem of tracking arrived rays to receiving point make the use of ray based models
quite complex. The amount of calculation increases enormously if there are several
receiving points, i.e. a receiving grid.

Figure 4. Ray tracing based propagation model.
Ray tracing in our coverage calculation

Due to the problems in the basic ray tracing method a more sophisticated and accurate
method should be used. A more powerful ray tracing method is based on the use of
transmitting points’ line-of-sight (LOS) polygons [Hei96]. A transmitting point’s
LOS polygon represents the area seen from the transmitting point. This area illustrates
those receiving points where the arriving ray would have diffracted. The field strength
values of the receiving points in this area are updated according to the power value of
rays arriving to the transmitting point. LOS polygons are created for the transmitter as
well as to all diffracting corners. Figure5 presents a .OS polygon of a diffracting
corner C. Due to the use of LOS polygons single rays need not to be traced.

; Y
Wl s
G W

/
, , S
N (O T i

Figure 5. Line-of-sight polygon of corner C.
PARALLEL APPROACH TO OUR RAY BASED PROPAGATION MODEL

In coverage calculation most of the time is consumed in updating the field strength
values of the receiving points. Both vertical and horizontal plane calculations are
suitable for the parallelization. In the vertical plane calculation where the diffraction
over the obstacles, e.g. buildings, is considered, the division between processors is
trivial, since each receiving point will take approximately the same time to process.

Therefore, a static and equal division of receiving points to the processing elements is
usually sufficient enough.

In horizontal plane calculation the field strength values are updated by filling the LOS
polygons. Since the polygons are independent objects they can be processed in
parallel. However, the sizes of LOS polygons are not equal as the area seen from
comers is different. The computation time of a single LOS polygon depends on the
number of its receiving points and the number of times the polygon is filled. A LOS
polygon is filled as many times as there are rays arriving to the corner. This makes the
work balancing more challenging. Therefore, the static division method used in
vertical plane calculation is not sufficient in the horizontal plane calculation. Several
alternatives for the work balancing were studied.

* In Corner Division algorithm the number of diffracting corners is divided equally
for the processing elements. Last processing element has fewer comers than the
others. As the work required for different comers, i.e. points within a LOS
polygon, may differ considerably this method is not the best work-balancing
algorithm. If the work is sufficiently equal among the LOS polygons then this
method may be considered.

¢ In Work Division algorithm the work is allocated for processing elements (PE)
according to the pre-computed average of the work in LOS polygons. Corners are
added for the PE as long as the work allocated for the PE exceeds the average. As
no sorting is done for the comners this simple method of dividing the work is quite
fast even with high number of comers. This method works well if the LOS
polygons are sufficiently equal in sizes but may fail if the work of polygons
differs considerably.

* The WorkPool algorithm makes the division of comers among processors
according to the real amount of work required by the corner. In order to realize the
real amount of work the total number of receiving points per LOS polygon is first
calculated and then multiplied by the number of rays arriving to the base corner of
the LOS polygon. The real work of a LOS polygon is stored with the number of
corner into a table. This table is then sorted in descending order according to the
real amount of work. LOS polygons are processed starting from the largest, i.e.
from the top of the table. The table acts like a pool from where processors fetch a
new LOS polygon to process until all polygons are filled. A free processor will
always process the largest free polygon. The WorkPool algorithm proved to be a
suitable solution for the coverage calculation.

3D ray based propagation model consist of several elements that can be parallelized
quite efficiently. The following paragraphs present those elements that were
considered in our study:

Over-the-roofs diffraction

In the over-the-roofs diffraction the received power is calculated to each outdoor
receiving point by calculating the distance loss and the diffraction loss over the
buildings between the transmitter and the receiver. Since each receiving point takes
about the same time to calculate the division between processors may use simple

methods: The number of receiving points may be divided by the number of PEs. Each
PE will then process the given amount of receiving points.
Multiple reflections

Parallel implementation of reflections is based on division of the walls seen by the
transmitter into PEs. PEs will recursively calculate the reflections. Because the
reflection polygons (see e.g. [Hei96]) are often overlapping, some kind of a method
restricting simultaneous updates need to be implemented. The simple division of walls
seen from transmitter to PEs does not provide optimal results because the calculation
load is not divided evenly among the PEs. However, the execution time of reflections
is only a small part of the total execution time.

Multiple diffractions

Calculation of multiple diffractions is a prerequisite for a micro cellular ray tracing
program to work accurately in the shadow areas (or otherwise complex combinations
of reflection, diffraction and scattering are needed). Since multiple diffractions are the
worst computational bottleneck of the ray tracing based propagation models, the load
sharing among processors need to be designed carefully to get the best parallel speed-
ups. In the calculation of multiple diffractions most of the time is spent in filling the
LOS-polygons for each corner. The basic idea in the parallel solution is to divide
LOS-polygons among the PEs. As in the reflection calculation the LOS polygons are
often overlapping, the simultaneous update of receive values need to be restricted.
Since the areas of LOS polygons are not equal some kind of a work balancing
algorithm is needed. The WorkPool algorithm seemed to work well with the
diffrections.

Indoor coverage

Indoor coverage model is based on the "doughnut way of thinking". This means
roughly that after the field strengths around buildings has been calculated by the
outdoor model a separate indoor model determines the field strengths inside the
buildings by using the results around the buildings as input. For details, see [Raj96b].
In this project only the COST231 penetration model was implemented. Each wall of a
building contributes to a receiving point inside the building according to field strength
outside the building, the distance from the wall and attenuation parameters. The
model was implemented by creating "an orthogonal LOS polygon" for each wall of a
building under processing. This polygon includes those receiving points inside the
building, which can be connected orthogonally to the contributing wall by a straight
line, which does not intersect other walls of the building.

In the parallel solution the buildings are simply divided into PEs. After a PE has
processed a building it picks up the next building not yet processed from a pool of
buildings. Thus, the buildings have here the same role as the LOS-polygons in the
case of multiple diffractions. However, the buildings are not sorted here according to
estimated work amount like the LOS polygons are in the calculation of multiple
diffractions. This means that the load is not balanced optimally.

EXECUTION ENVIRONMENTS

Simulation experiments were performed by using shared and distributed memory
environments. Both types of parallel environment were used to find out the properties
of the application. Shared memory environment is quite easy to program as processors
can access the same memory and threads can be used efficiently, However the number
of available processors is usually limited to quite a small number. In distributed
memory environment message passing must be used. This is generally slower than the
use of shared memory, but more processors are usually available.

Simulation experiments in shared memory environment were run by using a 4
processor Sun workstation and a Digital AlphaServer8400 with 10 Alpha processors.
The implementations were based on the use of threads. Simulation experiments in
distributed memory environment were run by using Cray T3E, which had 224
application processors. The distributed implementation was based on the use of MPI
(Message Passing Interface) and SHMEM (Shared Memory) libraries.

TEST CASES AND RESULTS

Five test cases are used for the evaluation of the parallel coverage calculation. Test
cases are from two kind of cities, European (maps 1-3) and Asian (maps 4 and 5). In
all cases the simulation area represents an area covered by a microcell network. Maps
1-3 present a typical European city with a lot of small buildings and empty space, i.e.
parks and streets. The streets are wide, long and straight. The amount of free space is
relatively high compared to the whole area. Maps 4 and 5 are from an Asian city.
They have large buildings with only little free space. The streets are narrower and
shorter than in maps 1-3. Test cases and their parameters are presented in Table 3

Table 3. Test cases used in the experiments.

Test case Size of the calculation Number of receiving points Number of
area (m) to update corners
Mapl 1640x 1470 84140 1436
Map2 _ 1500 x 1380 71258 1251
Map3 1250 x 1730 96278 999
Map4 1270 x 840 46656 511
Map5 1270 x 840 46656 511

In each simulation experiment the coverage is calculated only for a single transmitter.
Spacing of the receiving grid in all test cases is 4 meters, i.e. each receiving point
represents a square of 4*4 meters. Number of receiving points to update -column tells
the amount of outdoor receiving points, which will have the field strength information
at the end of the simulation. Actual number of updates is bigger because each
receiving point is likely to be updated several times. Number of corners -column
indicates the actual number of diffracting corners in the simulation area. Each map
has been chosen so that it represents different characteristics of cities. Some examples
of these maps can be seen in appendix 1.

The following subsections present the simulation results of different maps in the
specified environments. The experiments in the 4 processor Sun workstation are
analyzed quite thoroughly whereas other environments are not considered so deeply.

4 processor Sun workstation

Figure6 shows the total execution times in seconds for the maps 1 - 5. It can be
notices that execution times decrease nicely as the number of processors is increased.
The effect of characteristics of different maps can be observed. The number of
receiving points outside the building seems to have a clear effect to the execution
time. Results from maps 4 and 5 show that the placement of the base station has only
a small effect to the execution time.

Time {sec)
2500

e Mapl
- Mep2
—%-Map3
——Map4
——Map5

2000

1500 \

1000 =

1 2 3 4
Number of processors

Figure 6. Total execution times as a function of number of processors.

Speedup
35

w0 =

| ~~tr-Mapt
| =6~ Map2

} Map3
|~ Mapd
| Maps

0.0

1 2 3 4
Number of processors

Figure 7. Speedups compared to the single processor execution.

Figure7 shows the speedups for the same test cases. It can be seen that full linear
reduction of execution time was not achieved. This was mostly due to the sequential
parts of the code from which disk I/O is the most significant reason. It can be seen
from Figure7 that scenarios with a great number of receiving points and buildings in
the computation area will gain slightly more of the parallel processing.

Table 4 shows the execution times of each distinctive task of the ray based coverage
calculation. Execution times are presented for one to four processors. Thus the effect
of parallelization in different tasks can be observed. Last column of the table indicates
the percentage of processors allocated for the simulation; 400% would mean that all 4
processors have been involved with the calculation during the whole time. It can be
noticed that multidiffraction is the dominant part of the propagation modeling. It can
also be noticed the parallelization works pretty well in multidiffraction task.

Table 4. Run times for individual tasks in seconds

Testcase Nunber of Total Sequential | Over diffraction | Reflections Muiti indoor % of processors
processors | execution time part diffractions | propagation max. 400%
Map1 1 2000,71 40,35 41,63 33,28 1880,44 5,01 99
Map1 2 1041,67 39,02 23,13 11,89 964,87 2,76 196
Map1 3 733,93 39,06 18,96 12,06 661,84 2,01 284
Map1 4 586,65 40,78 16,47 12,12 515,44 1,84 363
Map2 1 1049,46 32,93 36,67 3,80 971,53 4,53 99
Map2 2 545,07 32,51 19,98 1,86 488,34 2,38 192
Map2 3 384,81 34,17 16,13 1,96 330,24 2,31 275
Map2 4 305,60 33,55 13,04 1,96 255,44 1,61 351
Map3 1 1716,76 34,12 52,94 31,19 1595,55 2,96 99
Map3 2 878,86 33,68 30,84 10,85 801,92 1,57 195
Map3 3 618,48 34,32 25,94 9,67 547,33 1,22 282
Map3 4 491,81 34,13 21,21 9,76 425 58 1,13 361
Map4 1 379,20 15,21 28,17 15,13 319,20 1,49 99
Map4 2 201,52 14,96 18,28 717 160,21 0,90 187
Map4 3 146,90 15,67 14,05 7,38 109,20 0,60 260
Map4 4 116,44 14,92 11,21 7,18 82,54 0,59 329
Map5 1 501,59 15,26 22,37 11,16 451,30 1,50 99
Map5 2 262,15 15,03 13,46 5,63 227,23 0,80 191
Map5 3 186,93 14,99 11,01 5,41 154,91 0,61 272
Map5 4 151,11 15,02 10,33 5,65 119,52 0,59 342

Table 5. Speedups for the individual tasks.

Testcase | Number of Total Over diffraction | Reflections Multi Indoor
processors | execution time diffractions | propagation
Map1 1 1,00 1,00 1,00 1,00 1,00
Map1 2 1,92 1,80 2,80 1,95 1,82
Map1 3 2,73 2,20 2,76 2,84 2,49
Map1 4 3,41 2,53 2,75 3,65 2,72
Map2 1 1,00 1,00 1,00 1,00 1,00
Map2 2 1,93 1,84 2,04 1,99 1,90
Map2 3 2,73 2,27 1,94 2,94 1,96
Map2 4 3,43 2,81 1,94 3,80 2,81
Map3 1 1,00 1,00 1,00 1,00 1,00
Map3 2 1,95 1,72 2,87 1,99 1,89
Map3 3 2,78 2,04 3,23 2,92 2,43
Map3 4 3,49 2,50 3,20 3,75 2,62
Map4 1 1,00 1,00 1,00 1,00 1,00
Map4 2 1,88 1,54 2,11 1,99 1,66
Map4 3 2,58 2,00 2,05 2,92 2,48
Map4 4 3,26 2,51 2,11 3,87 2,53
Map5 1 1,00 1,00 1,00 1,00 1,00
Map5 2 1,91 1,66 1,98 1,99 1,88
Map5 3 2,68 2,03 2,06 2,91 2,46
Map5 4 3,32 2,17 1,98 3,78 2,54

Speedups of individual tasks are presented in Table 5. It can be observed that the best
parallel gain is achieved with multiple diffractions in which the load balancing is
performed most carefully and which is the most time consuming part of the
calculation. With 4 processors the maximum speedup achieved is 3.87. In some cases
multiple reflections achieve speedup over 3. Other parts show only moderate
speedups. One reason for this is that in the other parts there is a smaller amount of
work, which means higher relative overhead of thread handling. Also the lack of
efficient load balancing in the other parts affects to the achieved resulis.

AlphaServer8400

Figure8 presents the speedups achieved in 10 processor AlphaServer8400 as a
function of the number of threads. Parallel execution time is compared to the
simulation time with only one thread. Simulations were performed with 1-10
processors. The number of threads was varied between 1 and 14 in order to find out
the effect of additional threads. It can be observed that the simulation achieves best
results with 10 threads and thus no additional threads are necessary. Optimal speedup
cannot be achieved as the simulator contains sequential parts. With 10 threads the
speedups vary from 5,14 to 6,12. The difference between speedups can be explained
with characteristics of each map. The best speedups are achieved with maps that
contain a lot of receiving points. Due to the sequential part the achievable speedups
are moderate.

Nurmnber of threads

Figure 8. Speedups as a function of the number of threads in AplhaServer
environment.

Cray T3E

Figure9 presents the speedups achieved in distributed environment as a function of the
number of processors. Parallel simulation times are compared to the simulation time
of a single processor. Although 224 processors were available in the environment only
32 was used at most. Again test cases perform quite similarly with small number of
processors. With 32 processors the difference between different test cases is
significant. It can be noticed that good speedups (8,7 - 14,1 with 32 processors) can be
achieved but with large number of processors the sequential part and the
communication will eventually start dominating the execution time.

Number of processors

Figure 9. Speedups as a function of processors in Cray T3E environment.
CONCLUSIONS

The main target in the research presented in this paper is to reduce the execution times
of a ray tracing based coverage calculation by using parallel processing techniques. It
can be seen from the test results that the run times are decreased significantly in a
shared memory system though fully linear speedups are not achieved. The best
speedup achieved with 4-processor environment is 3.4 and with the 10-processor
environment little over 6 which can be considered as good results. Linear speedups
can not be easily achieved since there will always be a sequential part. Another factor,
which limits the speedups, is the overhead generated by the parallel execution.

Implementation of the parallel versions presented in this paper was done in a shared
memory environment by using threads and in distributed environment by using
message-passing primitives. With threads the division of work among the processors
is simple to carry out. When the thread calls were added to the existing sequential
code only some small changes were required. Only few thread calls were needed to
make the model run in parallel. Synchronization between the threads was the most
time consuming part of the coding work, as mutex lock was needed. However they

cannot be avoided if correct results are required. It is very easy to produce miserable
bugs with threads if it is not made sure that different threads do not write to the same
memory addresses simultaneously or use the same memory addresses in a wrong way,
not apparent in the sequential version. The use of message passing in distributed
environment was much harder than the use of threads. Structure of the parallel
execution was changes for efficient distributed execution of the propagation model in
distributed environment. Due to the relative small size of the problem and cost of
programming work and calculation, a massively parallel solution seemed not to be an
applicable alternative,

ACKNOWLEDGEMENT

Authors would like to thank Kari Sipild from Nokia Telecommunication for the
sequential simulator and co-operation through the parallelization process. Authors
would also like to thank Center for Scientific Computing Finland for the possibility to
use the high performance parallel computers.

REFERENCES

‘Bag93] Bagrodia R., Gerla M., Leinrock L., Short J. and Tsai T.: A Hierarchical Simulation
Environment for Mobile Wireless Networks, Proceedings of the 1995 Winter Simulation
Conference, 1995.

{But97] Butenhof D.: Programming with POSIX Threads, Addison Wesley, 1997,

[CraY6a] Cray Research: Message Passing Toolkit: MPI programmer’s manual, Cray Research
Inc., 1996.

[Cra96b] Cray Research: CRAY T3E Applications Programming, Cray Research Inc., 1996,
[Cra97] Cray Research: Cray T3E Optimization, Cray Research Inc., 1997,

[Feu94] Feuerstein, M. et. al.: Path loss, Delay spread, and Outage Models as Functions of
Antenna Height for Microcellular System Design, JEEE Transactions on vehicular
technology, Vol 43, NO. 3, August 1994

[Fri9s1] Fritsch T.. Tutschku K., Leibnitz K.: Field strength prediction by ray-tracing for adaptive
base station positioning in mobile communication networks, University of Wurzburg,
Research report No. 122, Aug. 1995.

[Gre94] Greenberg A., Lubachevsky B., Nicol D. and Wright P.: Efficient Massively Parallel
Simulation of Dynamic Channel Assignment Schemes for Wireless Cellular
Communications, Proceedings of the PADS 94, 1994,

{Hat80] Hata M.: :Empirical Formula for propagation loss in land mobile radio services, IFEE
Transactions on vehicular technology, Vol. VT-29, no. 3, 1980.

"Hei%6] Heiska K. and Kangas. A.: Microcell Propagation Model for Network Planning,
Proceedings of the IEEE PIMRC 96, 1996.

‘Hut98] Huttunen P., Porras J.. lkonen J. and Sipild K.: Using Cray T3E for the Parallel
Simulation of Cellular Radio Coverage Calculation, Proceedings of the Eurosim’98,
1998.

"Ina9%4] Inanoglu H. and Topuz, E.: A ray based indoor propagation model for DECT
applications, European Simulation Symposium 1994,

[Kle96] Kleiman S.. Shah D. and Smaalders B.: Programming with Threads, Prentice Hall, 1996.

[Laf90]

"Lew96]
‘Lia97]

"Lah93]

TOku68)

“Pap98)

{Par92)
‘Raj96a)

‘Raj96b]

‘Sal94)

[Sei92]

-Sip96]

[Tut96]

Lafortune J. and Lecours M.: Measurement and Modeling of Propagation Losses in a
Building at 900 MHz, IEEE Transactions on Vehicular Technology, Vol. 39, No. 2,
1990.

Lewis B. and Berg D.: 4 Guide 1o Multithreaded Programming, Prentice Hall, 1996.

Liang G. and Bertoni H. L.: Review of ray modeling techniques for site specific
propagation prediction, Wireless Communications, TDMA versus CDMA, ed. S.G.
Glisic, Kluwer London, 1997.

Lahteenmaki J.: Determination of Dominant Signal Paths for Indoor Radio Channels at
1.7 GHz, Proceedings of Personal Indoor Mobile Radio Conference, Yokohama, 1993,

Okumura Y., Ohmort E., Kawano T. and Fukuda K.: Field Strength and Its Variability in
VHF anf UHF Land-Mobile Radio Service, Review of The Electrical Communication
Laboratory. Vol. 16, No. 9-10, 1968.

Papadakis N., Kanatas A. and Constantinou P.: Microcellular Propagation Measurements
and Simulation at 1.8 GHz in Urban Radio Environment, /EEE Transactions on
Vehicular Technology, Vol. 47, No. 3, 1998.

Parsons J.D: The Mobile Propagation Channel, Wiley & Sons, Inc. New York, 1992.

Rajala J., Sipild K. and Heiska K.: Predicting In-Building Coverage for Microcells and
Small Macrocells, Nokia Research Report, 1996.

Rajala J. and Sipila K.: uCell Model 3D extension for NPS/X, Nokia Research Report,
1996.

Salmi M.: Parallel ray tracing in propagation modeling of indoor mobile radio
communication, Research Report 51, Department of Information Technology,
Lappeenranta University of Technology, Lappeenranta, Finland, 1994.

Seidel S. and Rappaport T.: 914 MHz Path Loss Prediction Models for Indoor Wireless
Communications in Multifloored Buildings, IEEE Transactions on Antennas and
Propagation, Vol. 40, No. 2, 1992,

Sipild K. and Heiska K.: Can ray tracing be used as a fading generator in simulating
micro cellular mobile radio system?, The 8th International Conference on Wircless
Communications , 1996.

Tutschku, K., Leibnitz, K.: Fast Ray-Tracing for Field Strength Prediction in Cellular
Mobile Network Planning, University of Wurzburg, Research report No. 134, 1996,

Appendix 1

K

Map2. Ilustrates narrow street canyons. Signal propagatés only to streets near the base
station.

Publication 7

Huttunen P., Ikonen J., and Porras J.: Parallelization of a WCDMA System
Simulator for a Shared Memory Multiprocessor Machine. In Proceedings of

European Simulation Symposium, Erlangen-Nuremberg, Germany, October 26-
28, 1999, pp. 556-560.

PARALLELIZATION OF A WCDMA SYSTEM SIMULATOR FOR A SHARED
MEMORY MULTIPROCESSOR MACHINE

Pentti Huttunen, Jouni Ikonen, and Jari Porras
Lappeenranta University of Technology, P.O.Box 20, FIN-53851 Lappeenranta, Finland
{Pentti. Huttunen, Jari.Porras, Jouni.Ikonen} Glut.fi

KEYWORDS

3 pgeneration mobilc networks, WCDMA, shared memory
multiprocessors, work balancing

ABSTRACT

In this paper a parallelization process of a Wide-band Code
Division Multiple Access (WCDMA) system simulator is
presented. The WCDMA technique is considered as 3%
generation mobile standard for the air interface. The simulation
process demands a great deal of calculation to be completed.
The simulation times of the sequential simulator have been far
too excessive for interactive use. Therefore, in this paper a
parallel approach is presented to speedup the execution times.
The achieved results indicate that with the correct use of work
balancing algorithms promising results can be achieved. With
the use of 4 processors the speedup of 3.1 was achieved.
However, the total execution time was reduced to half due to the
large sequential part still existing in the simulator.

INTRODUCTION

As a 3" generation mobile standard, the WCDMA technique
offers higher transfer rates than the presently used GSM. Due to
the characteristics of the WCDMA technique, the simulation of
WCDMA based networks is very different from the simulation
of GSM systems. Major differences in power control algorithms,
make the simulation process of the WCDMA system simulator
considerably more complicated. In this paper a WCDMA
system simulator is presented. The simulator is used as a
platform for WCDMA studies as well as for algorithm design.
This paper focuses on the parallelization process of the
simulator. The two most time-consuming parts of the simulator
were reprogrammed to take advantage of an SMP machine with
6 processors. In the following chapters, the WCDMA technique
is considered more closely. Then the sequential WCDMA
system simulator is explained. Finally, the parallelization of the
system simulator is discussed in greater detail with the achieved
results.

WCDMA TECHNIQUE

Wide-band Code Division Muliple Access is one of the 3™
generation mobile techniques /I). The International
Telecommunication Union (ITU) has not yet made a decision
about the global standard for 3 generation mobile networks
{IMS-2000) /6/. The standardization organizaiion of Europe,
European Telecommunication Standardization Institute (ETSI),
and Japan, Association of Radio Businesses (ARIB), are in
favor of WCDMA whercas Telecommunication Industry
Association (TIA), the corresponding organization in the USA,
has made its own proposal based on CDMA-1 720/. WCDMA
and CDMA-1 techmques are very different. The simulator
presented in this paper uses WCDMA as the air interface. In the
next subsections, three main characteristics of the WCDMA
technique are explored. A more comprehensive introduction
about WCDMA can be found from /16, 17, 19, 23,

Basics of WCDMA

Unlike the 2™ generation mobile techniques, WCDMA is based
on neither FDMA mnor TDMA /I, 3, 17/. Both of these
techniques divide the available frequency or 1ime slots into
parts, which are assigned to users; if the data being sent is bursty
or irregular, the cfficiency of FDMA and TDMA is poor. In
WCDMA the frequency is not divided into parts 10 be used by
different users. Thercfore, the transmitted signals are
continuous, whereas in TDMA, the transmission is based on the
ime division of slots /8/. The whole spectrum, allocated for
WCDMA, is a1 the disposal of all users on account of spread
spectrum modulation /22/. The idea of spread spectrum
modulation is to spread the transmitted signal over a wide
frequency band, which is much wider than the minimum
bandwidth required to transmit data.

Spreading of the slgnal

Spreading is based on a spreading code, which is a random
sequence of bits. Each transmitter has a distinct spreading code,
which it uses to spread the transmitted information and despread
the received information. The spreading code of the transmitter
has to be unique, otherwise, the transmitied information of
multiple transmitters are mixed. The use of a spreading code to
spread the signal over the spectrum causes the transmitted signal
appears as noise. The transmission can also be detected as a
slight increase in the interference level. However, only the
receiver of the transmission, which knows the spreading code of
the transmitter, is able to despread the signal and recover the
actual data.

The allocation of spreading code is done dynamically when a
call is established. First, a mobile station uses random access
channels to indicate to the base station that it wants to establish
a call. The spreading codes for the use of random access are pre-
defined and, therefore, known by the mobile stations. After
receiving the call establishment request from the mobile station,
the Radio Network Controller (RNC) generates a random bit
sequence, which is then assigned to the mobile station’s
spreading code for the call being established. When the
spreading code is communicailed to the mobile station, it starts
10 use the code to spread and despread the signal.

Power control

Since all mobile stations are able to use the whole spectrum to
transmit the signal, power needs to be controlled .22/. The
purpose of power control is to make sure that all base stations
and mobile stations are able to transmit and receive signals
without causing an excessive amount of interference to the
network. The goal is to maintain equality in the powers of all
mobile starions as much as possible. The power control
algorithms are executed 1600 times a second, that is, every
0.625 ms.

The power control is an essential feature in the WCDMA
technique, since it requires that received powers of all mobile
stations be equal. The increase in the transmission power of a
mobile station has a two-fold effect. The quality of the
connection is improved. On the other hand, the increase in

power introduces more interference to other mobile stations,
which then have to increase their transmission powers to
overcome the increase in interference.

Each mobile station generates more interference to the network
causing the other mobile stations to adjust their transmission
powers. Therefore, the network has to be designed so that the
maximum interference level does not exceed the maximum
transmission power of the mobile stations. Consequently, the
networks are usually designed so that their maximum acceptable
load is about 50 % of the full capacity, since interference
increases exponentially when the load grows.

Soft handover

In WCDMA a mobile station can be connected to multiple base
stations at the same time, unlike in GSM, where each mobile
stations is connected to one base station at a time. The use of
multiple base stations in WCDMA is supported by the fact that
the mobile station receives signals from the base stations, which
cnables the use of lower power levels and achieves better
performance. When the mobile station is closing in on the
border of a cell, the ability to be connected to the base station
scrving the current cell and to the base station serving the cell
where the mobile station is about to move, is a major advantage.
1f the mobile station does not move across the border of the cell,
it can stay connected to both base stations and, therefore, get
better service. However, the mobile station prepares for a
handover if the signal strength of the neighbor cell exceeds a
certain threshold that it is still under the current base station’s
signal strength. When the need for handover occurs, the mobile
station either drops the connection to the base station or
cstablishes a new connection to a new base station. In the case
where the connection is dropped, the mobile station has already
connected to the base station serving the current cell, so, the
handover is much smoother and requires less transmission
power.

The above mentioned soft handover does not exist in 2™
generation mobile networks. For example, in the GSM
technique, the handover is known as hard handover. In hard
handover, the decision of whether handover is needed is based
on cownparison of the signal strengths of the current cell and the
neighboring one. When the signal strength of the neighbor cell
exceeds the signal strength of the current cell with a threshold,
the handover is performed. Therefore, the mobile station is
connected to only one base station at a time; this causes the
handover to demand more power. In addition, there is an
interruption in the transmission while the handover takes place.
In general, hard handover is not as efficient as the soft handover.

WCDMA SIMULATOR AND THE PARALLELIZATION
PROCESS

The simulator is used as a test environment for WCDMA studies
and algorithm design. Figurel depicts the simulation flow. A
simulation loop (step 1) where all the necessary functions are
performed is defined by the length of a power control step. In
WCDMA the time between two power control steps is 0.625 ms
whereas in GSM it is 480 ms /22/. Therefore, simulating one
secoud in real time in a WCDMA system simulator requires the
execution of the simulation loop 1600 times, when the
corresponding amount in the GSM is 2. Overall, the simulation
process of the WCDMA system simulator is much more
complex than the corresponding GSM simulator.

In step 2, each base station is processed. Base station algorithms
for connections are performed and radio receiver algorithms are
called for the base station itself. The radio receiver algorithms
consist of: maximal ratio combining, multi-user detection, and
antenna diversity. In terminal calculation (step 3) all active
terminals are processed. The function handles power control,
handover, and mobility routines. 1n step 4 the base station (radio
network) controllers execute the necessary algorithms for each

connection, in order to check for the need for handovers. If a
handover is needed, it is performed by this function. Connection
calculation (step 5) performs actions for all connections; if there
are connections in terminals that are not active, they are deleted.
In interference calculation {step 6) all interferences caused by
base stations and terminals are calculated. Traffic generation
(step 7) creates new terminals and connections according to the
probability given as a parameter by the user.

(1) While not end of simulation

(2) Base station calculation

(3) Terminal calculation

(4) Base station controller calculation
(5) Connection calculation

(6) Interference calculation

(7) Traffic generation

Figure 1. The simulation flow.

Test runs showed that the most time-consuming parts of the
simulator are terminal calculation (step 3) and interference
calculation (step 6) /9/. These two parts consumed over 75% of
the total cxecution time: terminal calculation and interference
calculation consumed 20% and 55% respectively. Therefore, in
the parallelization process the nain focus was on these two
parts. In the following chapter, terminal calculation and
interference calculation are explained with greater detail, and
the parallel approaches taken in both of the cases are shown.

The parallel implementation was done with POSIX threads.
Since the thread library is based on the POSIX standard, the
portability of the software is good /5/. On the other hand, the
other and more powerful thread library, Solaris threads, can be
used in Sun Microsystem’s workstations and servers only /15/.
The use of threads is based on a thread-process concept /9/. The
threads operate inside a single process sharing all the resources
allocated to the process. This enables a more efficient handling
of context switching and interprocess communication /13/. Since
all threads are inside a process, the execution of threads does not
require context switches since they are usually done between
processes. Threads are divided into processors according to the
scheduling policy of the operating system.

Since all threads share the resources allocated for the process, a
synchronization method has to be implemented to prevent the
concurrent accessing of these resources /18/. For example, the
same memory location cannot be accessed by two or more
threads at the same time. Otherwise, the content of the memory
location becomes undeterminable. Even though threads generate
overhead in the form of synchronization, they provide an
effective way to implement parallelism into an application. The
other possibility is the use of the PVM or the MPI libraries in a
distributed memory machine /4, 14/. In a distributed memory
machine, message passing generates a great deal of overhead.
However, due to the architecture of the processor network,
distributed memory machines can have significantly more
processors than shared memory machines /7/. This fact makes
the distributed memory machine a suitable platform for
calculation intensive problems, since they require large number
of processors in order to compute within a reasonable time
frame.

In the simulator presented in this paper, threads were used with
a shared memory machine to implement the parallel version of
the simulator. A shared memory machine was chosen over the
distributed memory machine because a lot of data needed to be
transferred before, during and after the parallel calculation. In a
distributed memory machine, this would have generated a great
deal of overhead causing the parallel version to perform poorly
121/,

(@)) IfTermirral Active)
(AR} Terhrinal’s Connection not silent
Run Radio Algorithms
(3) Move Terminal
(4) If at the end of the frame and
the connection’s status active and
the connection not silent
Calculate FER values
Do power control
(5) Set power control commands
(6) Do power control
(7) If at the beginning of the frame
Do measurements for handovers
(8) If handover needed

Do handover

Figure 2. The terminal calculation algorithm.
Terminal calculation

The purpose of terminal calculation is to execute all the
neccssary functions for each terminal in the network. Figure 2
represents the actions taken in terminal calculation. First, only
the active terminals are processed (step 1). A terminal needs to
have a physical connection in downlink or uplink to be
considered active. If the connection is not silent (step 2), i.c.
data is being transmitted over the links, radio algorithm for the
connection is performed. In step 3, the terminal is moved
according to predefined move procedure depending on the
network structure (micro or macrocell). If all the conditions in
step 4 are true, Frame Error Ratio calculations and power
control routines are performed. In step 5 power control
commands for the downlink are set. The commands are set
based on the comparison to Signal-to-Interference Ratio (SIR)
and the threshold. The power control commands are set in step 5
and executed in step 6. The need for handover is determined in
step 7 where all the necessary measurements arc carried out. If
the handover is required it is executed in step 8.

For terminal calculation a special work balancing algorithm was
implemented based on the structure of the code. The parallel
terminal calculation algorithm is shown in Figure3. In step I,
each thread waits until it receives a signal from the main
program as a notification to start its execution. After that, in step
2, each thread calculates the amount of terminals it will process
in phase one. The number of terminals processed in phase one is
based on a simple division M/, where M is the mean load of
terminal and » the number of threads. The mean load of terminal
indicates the average amount of active terminals in the network,
i.e. the mean number of terminals that need to be processed. If
there is a remainder r, r threads will bave an extra terminal to
process. Terminals are stored in a static array. At the beginning
of the simulation, all the ¢terminals are stored in r first positions
of the array. However, when the simnulation goes on the
locations of the terminals can be outside the first ¢ positions.
Nevertheless, the simulator attempts to use all available location
inside the ¢ positions. Based on this fact as well as knowledge

concerning the average number of terminals in the array, the
division is made. Each thread is assigned part of the reduced
array (array of locations | to mean load). Since all the terminals
are not inside this range, the thread that first completes its work
will process the remaining part of the array, mean load+1 to end
of the array. 1t has been noted that the thread processing the
outside part of the array usually finishes its work before the
other threads. This can be explained by the simple fact that
outside the mean load there are not many terminals to process,
and processing a single terminal is a much more time-
consuming cvent than going through an empty array of
terminals. The actual processing takes place in step 3. For each
terminal, the sequential terminal calculation algorithm is
performed. When a thread has completed all its work it will
suspend itself and waits for the signal from the main program in
step 5. The last thread completing its work will send a signal to
the main program indicating that all threads have finished their
work before suspending its execution in step 4.

(I)Mtwmlmennmpcgmmsmdsxgaltostanexemmm

(4} Make tbe le]S]Oﬂ of tennnals bet\wm thtmds

(3)Pa1DoM1rlethmdhastemmalsto;xm$sor
- mtendofthe\v}mletmﬂmlmay -

Sequem]al texmnal calculanm algmthm

(4)Semia81gmltothennmpogtamtoomnmmrsexeama1

(S)Stspmdﬂnwds

Figure 3. The parallcl termmal calculatron algorrthm

Interference calculation

The structure of interference calculation is represented in
Figure4. The interference calculation algorithm is used to
calculate all the interfereces caused by either mobile or base
station. As it has been noted previously, the power control, of
which interference calculation is a part, is an essential part of
WCDMA network. Execution of this algorithm takes about 55%
of the total execution time. The algorithm consists of the
following parts: In steps | and 2, all interference variables are
set to zero. The outer loop in step 3 goes through all base
stations. For each base station all mobile stations are processed
in step 4. In step 5, uplink interference caused by the base
station to the mobile station is calculated, whereas in step 6,
downlink interference caused by a single mobile station to a
base station is determined. Finally, in step 7 and 8, uplink and
downlink interferences are added together for each base station
and terminal.

(1) Set interferences of all base stations to zero.
@) Set interferences of all mobile stations to zero
3) Process edch base station
'(4) Process each terminal
(5)‘ Calculate uplink interference
(6) Calculate downlink interference
(7) Calculate total interference for all base ystations

(8) Calculate total interference for all terminals

Figure 4. The interference calculation algorithm.

For the parallel approach to interference calculation a modified
WorkPool algorithm was applied /10, 11, 12/. In the WorkPool
algorithm the work is divided according to the actual work and
not with the simple equation: work / number of processors.
Figure5 illustrates the paraltel algorithm for interference
calculation. In the algorithm in step 1 all threads wait until a
signal is sent by the main program. Then the actual parallel
calculation takes place. In this case the workload is divided
according to the base stations. Each thread processes one base
station at a time; all base stations are in a pool where threads can
access one at a time to process. Threads keep fetching new base
stations until the pool is empty. With the use of a pool, where all
the base stations are located, better performance is achieved.
Until the pool is empty, the workload is divided between threads
as equally as possible. However, the use of a WorkPool
algorithm introduces a slight amount of overhead to the actual
calculation. Since threads fetch a new base station from the
pool, a method has to be implemented to prevent the processing
of the same base station by two or more threads. To fulfill this
requirement a synchronization method is needed. For
interference calculation the method used was a mutual exclusion
lock {mutex lock). With the mutex lock a part of the code can be
protected so that only one thread can execute the protected
portion of the code at a time. While a thread is executing the
protected part of the code, other threads wanting to enter the
same area will be blocked until the mutex lock is released. In
step 3, a signal is sent to the main program, which then
continues its execution. Finally, the last thread, which sent the
signal, also suspends its execution, just like all the other threads
which had already reach step 4 carlier.

(1) Wait until the main program sends a signal to start execution
(2) ParDo urtil all base stations havebeenprocessed
Do loop wtil all mobile stations have been processed
" Calculate uplink interference :
Calculate downlink interference
(3) Send asignal to the main program to contimie its execttion
| (4) Suspend threads ‘

Figure 5. The parallel interference calculation algorithm.

RESULTS

The test runs were performed on an SMP machine with 6
processors. The processors were Sun Microsystem’s 333 MHz
Ultra Spare chips. All the processors shared a memory of 2
gigabytes. The workstation was not dedicated to the parallel
simulation of a WCDMA simulator. Therefore, the results
obtained have some overhead in them because of the other
users’ programs, which were run simultaneously with the
parallel simulator.

As a test environment, a network of 9 base stations was created.
For each base station two sectors were constructed. Therefore,
the total number of base station entities to simulate totaled 18.
The maximum number of terminals in the network was set to
650. However, the average number of active terminals in the
network at a time was about 100. The simulation time was 30
seconds in real time. A simulation of only half a minute is not
enough to provide accurate results for research purposes but it
was enough to give insight into the performance of parallel
processing. In general, it can be said that if the simulator
performs well with a short simulation time it will perform at
least as good or even better with a longer simulation time. This
is because the sequential part does not have such a significant
effcct on long simnulation times as it does on short simulation
times. The WCDMA simulator will produce accurate results
with the simulation time of 120 seconds and up.

Table | shows all the execution times of terminal calculation,
interference calculation and the total execution time of the
whole simulator, with different numbers of processors. Figure 6
represents the calculated speedups based on the execution times
of Table 1. The speedups are calculated against the scquential
execution time achieved with a simulator which did not include
any parallel code.

Table 1. The execution times (in seconds) of the simulator.

of Terminal Interference Total
Threads calculation calculation Execution
time
Seq 1030 2450 4780
2 600 1280 3100
3 460 920 2630
4 410 820 2460
5 470 780 2490
6 470 740 2440

~+~Tenninal calculnron
—#-Interigtence calculdtion

—aTotal axoatwon brre

[T°Y e e e e e T T

s 2 25 3 35 4 as s 55 6

Figure 6. Achieved speedups.
Terminal calculation

The best speedup of 2.5 was achieved with 4 threads. The
corresponding execution times were 410 seconds for the parallel
implementation and 1030 seconds for the sequential simulator.
By using more than 4 processors the speedup started to decline,
the reason being the two mutex locks in the parallel terminal
calculation algorithm. Even though the work balancing did not
require any synchronization, the actual parallel terminal
calculation algorithm did. Two parts of the code were protected
with the locks to prevent the concurrent memory access to a
shared memory block. The other cause of the parallel terminal
calculation algorithm’s poor performance was the fact that the
execution of the algorithm does not take long even without any
parallel options. Therefore, since the amount of work is
relatively small, the parallelization does not have such a strong
effect as in interference calculation.

Interference calculation

The speedups achieved in interference calculation were better
than in terminal calculation. As can be seen from Figure 6, the
speedup increases when processors are applied all the way to 6.
The amount of work and the structure of the interference
calculation algorithms are the reasons for this. There is enough
work for all six processors, whereas in terminal calculation, the
use of six processors was not productive. On the other hand, the
algorithm for interference calculation was more optimal for
parallelization than the terminal calculation algorithm.

The best speedup of 2.4 was achieved with 6 processors.
However, the efficiency of the parallel execution is not high.
With the use of six processors, the speedup of 4 or more would
be considered good. In this case the simulator was implemented
first without any consideration to the parallel execution.
Thercfore, in many instances, better performance figures would
have been achieved if the structure of the code had been more

optimal for parallelization. Since the parallel implementation
was done by modifying the existing sequential code,
compromises had to be made at the cost of speed. Especially, in
the case of interference calculation algorithm, where a number
of mutex locks had to be implemented to guarantee the correct
execution of the code and the memory coherence.

Total execution time

In the sequential simulator, the two parts which were
parallelized consumed about 75% of the total execution time.
With the use of multiple processors their share of the total
execution time were dropped below 50%. Therefore, the
problem that remains in the parallelized simulator is the
sequential part. Time spent in executing the sequential part is
over 50% of the total execution time. The two parallelized parts
are the only ones that can be made to run in parallel. The
remaining sequential part consists of routines and functions that
either cannot be parallelized or the parallel implementation
would cause significant overhead and increase the exccution
time rather that decrease it. In conclusion, the sequential part has
to be modified so that a parallel approach can be taken and the
execution time can be decreased, otherwise the speedups
achieved cannot be improved. With the use of four or more
processors the speedup remains at the same level. This is the
level where the sequential part starts to dominate the execution
time. Howcver, the best speedup of 2.0 is achieved with the
maximum number of processors (6).

Amdah!’s law can be used to estimate the maximum speedup of
a parallel application based on the exccution times of the
sequential and parallel parts of the application /2, 5/. Applying
Amdahl’s law to the parallel simulator presented in this paper
gives the following results:

Srax = 47805 / (1230 + 3550/ 6y = 2.6

Amdahl’s law indicates that the maximum speedup that can be
achieved with the simulator is 2.6. The maximum speedup
which was achieved was 2.0. The difference of 0.6 can be
cexplained by the mutex locks and other overhead generated by
the parallel execution. Therefore, the speedup of 2 with 6
processors is not as poor as it seems initially.

CONCLUSIONS

In this paper a parallelization process for a WCDMA system
simulator was presented. The need for a parallel implementation
of the simulator was great due to the excessive execution times
of the sequential version. POSIX threads wcre selected as a
method to physically implement parallelism into the simulator.
The use of POSIX threads is practical due to their portability to
nearly all UNIX platforms and operating systems. The shared
memory environment was the optimal foundation for the use of
threads because of their nature of operation.

The fwo most time-consuming parts of the WCDMA system
simulator were parallelized: terminal calculation and
interference calculation. The terminal calculation algorithm
performs operations to all active terminals (mobile stations): it
moves terminals, makes handovers, sets and exccutes power
conirol commands. The interference calculation algorithm, on
the other hand, calculates mterferences caused by the base
stations and terminals. For terminal calculation, a static work
balancing algorithm was developed to handle the equal division
of workload. The workload is divided between threads
according to the mean load of terminals. In addition, the work
balancing algorithm used knowledge about the structure of the
array where terminals are stored to increase performance.
Contrary to terminal calculation, interference calculation has a
dynamic work balancing algorithm; base stations are
dynarmically divided between threads one at a time. Due to the
amount of work in each base station, a dynamic work balancing

algorithm proved to perform better than a static work balancing
algorithm, similar to the one in terminal calculation.

The results were very promising. However, the major
disadvantage in the simulator was the structure into which it was
coded. Due to this fact, the parallelization of the whole
simulator was unattainable since the structure of the code was
optimized for sequential execution. Nevertheless, the rcsults
showed that execution times can be decreased with the use of
parallel processing in an existing sequential simulator. The
speedup of 2.0 for the whole simulator was achieved with 6
threads. Better speedups would have been achieved if the
sequential part had not been so large; over 50 % of the total
exccution time was spent in executing the sequential proportion
of the code. The best speedups of terminal calculation and
interference calculation were 2.5 and 3.3 respectively. In
conclusion, it can be said that with the correct use of work
balancing algorithms and a parallel computer, the execution
times of the WCDMA system simulator can be decreased
considerably.

REFERENCES

L Adachi, F., Sawahashi, M., et. al.. Widcband DS-
CDMA for Next-Gencration Mobile
Communications Systems. IEEE Communications
Magazine, September, 1998. pp. 56-69.

/2! Akl S.G. Parallel Computation: Models And
Methods. USA, Prestice Hall PTR, 1997. ISBN 0-13-
147034-5.

13/ Berendt, A.. McClure. B.. Third Generation.

Telecommunications, September, 1998, pp. 28-34.

4 Bruck, J., Dolev, D., ect. al.: Efficient Message
Passing Interface (MPI) for Parallel Computing on
Clusters of Workstations. Journal of Parallel and
Drstributed Computing, 1997, Vol. 40, pp. 19-34.

S/ Butenhof, D.R. Programming with POSIX Threads.
USA, Addison-Wesley, 1997. ISBN 0-201-63392.2,

6/ Dahlman, E., Gudmundson, B., ctal: UMTS/AMT-
2000 Based on Wideband CDMA. [EEE
Communications Magazine, September, 1998. pp.
70-80.

7 El-Rewini, H., Lewis, T.G. Distributed and Parallel
Computing. USA, Manning Publications, 1997,
ISBN 0-13-795592-8.

8/ Hendessi, F., Sheikh, A.UH., et al: A TDMA-
CDMA Cellular System. Proceedings of Vehicular
Technology Conference (VTC'97), 1997. Vol. 1. pp.

373-376.

9/ Huttunen, P: Improving the Performance of a
WCDMA System Simulator Through Parallel
Computing Techniques. Master’s Thests,
Lappeenranta Umiversity of Technology, Finland,
March, 1999,

0 Huttunen, P., tkonen, J, et. al.: Using Cray T3E for

parallcl calculation of cellular radio coverage.
Proceedings of European Simulation Congress
(Eurosim’98), 1998. Vol. 1, pp. 27-32.

e Huttunen, P., Ikonen, J.. et. al: Parallelization of

propagation model simulation. Proceedings of
European Simulation Symposium (ESS°98), 1998,
pp. 321-325.

12/

37

e

15/

6/

Huttunen, P., Porras, J., et. al.: Simulation of mobile
networks in multiprocessor environments. CSC
News, February. 1999. pp. 12-13.

Kleiman, S.. Shah. D., et. al. Programming with
Threads. USA, Prentice Hall, 1996. ISBN 0-13-
172389-8.

Lauria, M.. Chien, A.: MPI-FM: High Performance
MPI on Workstation Clusters. Journal of Parallel and
Distributed Computing, 1997. Vol. 40, pp 4-18.

Lewis, B.. Berg D.J. Threads Primer. USA: SunSoft
Press, 1996. ISBN 0-13-443698-9.

Milstein, L.B., Simon M.K.. Spread Spectrum
Communications. The Mobile Communication
Handbook. USA, CRC Press, 1996. pp. 152-165.
ISBN 0-8394-8573-3.

Miva, K., et al.. CDMA/TDD Cellular Systems for
the 3rd Generation Mobile Communication.
Proceedings of Vehicular Technology Conference
(VTC97). 1997. Vol. 2. pp. 820-824.

/18/

19/

/207

el

[

Norton, S.J., Dipasquale, M.D. Thread Time. USA,
Prestice Hall, 1997. ISBN 0-13-190067-6.

Ojanperd, T., Prasad, R. (editors). Wideband CDMA
for Third Generation Mobile Communications. USA,
Artech House, 1998, ISBN 0-89006-735-X.

Ross, A.-H.M.. Gilhousen K.S.: CDMA Technology
and the 1S-95 North American Standard. The Mobile
Communication Handbook. USA, CRC Press, 1996,
pp. 430-448. ISBN 0-8394.8573-3.

Sohn, A., Sato, M., et. al: Data and Workload
Distribution in a Multithreaded Architecture. Journal
of parallel and distributed computing, 1997. Vol. 40,
pp. 256-264.

Viterbi, AJ. CDMA: principles of spread spectrum
communication. USA, Addison-Wesley. 1995, ISBN
0-201-63374-4.

Westman, T., Holma H.: CDMA System for UMTS
High Bit Rate Services. Proceedings of Vehicular
Technology Conference (VTC97), 1997. Vol. 2, pp.
825-829.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

ACTA UNIVERSITATIS LAPPEENRANTAENSIS
ESKELINEN, HARRI. Tuning the design procedures for laser processed microwave mechanics.
1999. 172 s. Diss.

ROUVINEN, ASKO. Use of neural networks in robot positioning of large fiexible redundant
manipulators. 1999. 71s. Diss.

MAKKONEN, PASI. Artificially intelligent and adaptive methods for prediction and analysis of
superheater fireside corrosion in fluidized bed boilers. 1999. 187 s. Diss.

KORTELAINEN, JARI. A topological approach to fuzzy sets. 1999. U.s. Diss.

SUNDQVIST, SATU. Reaction kinetics and viscosity modelling in the fusion syntheses of Ca-
and Ca/Mg-resinates. 1999. U.s. Diss.

SALO, JUSSI. Design and analysis of a transversal-flux switched-reluctance-linear-machine
pole-pair. 1999. 156 s. Diss.

NERG, JANNE. Numerical modelling and design of static induction heating coils. 2000. 86 s.
Diss.

VARTIAINEN, MIKA. Welding time models for cost calculations in the early stages of the design
process. 2000. 89 s., liitt. Diss.

JERNSTROM, EEVA. Assessing the technical competitiveness of printing papers. 2000.
159 s, liitt. Diss.

VESTERINEN, PETRI. On effort estimation in software projects. 2000. U.s. Diss.

LUUKKO, JULIUS. Direct torque control of permanent magnet synchronous machines —
analysis and implementation. 2000. 172 s. Diss.

JOKINEN, ARTO. Lobbying as a part of business management. 2000. 244 s. Diss.

JAASKELAINEN, EDUARD. The role of surfactant properties of extractants in
hydrometallurgical liquid-liquid extraction processes. 2000. U.s. Diss.

Proceedings of 3" Finnish-French Colloquium on Nuclear Power Plant Safety. 2000. 118 s.

TANSKANEN, PASI. The evolutionary structural optimization (ESO) method: theoretical aspects
and the modified evolutionary structural optimization (MESQO) method. 2000. 67 s, liitt. Diss.

JERNSTROM, PETTERI. The effects of real-time control of welding parameters on weld quality
in plasma arc keyhole welding. 2000. 69 s., liitt. Diss.

KAARNA, ARTO. Multispectral image compression using the wavelet transform. 2000. U.s.
Diss.

KOTONEN, ULLA. Rahavirta-analyysit, erityisesti kassavirtalaskelma, kunnan talouden
ohjauksen apuvdlineend. 2000. 209 s, liitt. Vaitosk.

VARIS, JUHA. A novel procedure for establishing clinching parameters for high strength steel
sheet. 2000. 84 s., liitt. Diss.

PATARI, EERO. Essays on portfolio performance measurement. 2000. 201 s. Diss.

SANDSTROM, JAANA. Cost information in engineering design - potentials and limitations of
activity-based costing. 2001. 143 s, liitt. Diss.

TOIVANEN, JOUKO. Balanced Scorecardin implementointi ja kdytén nykytila Suomessa. 2001.
216 s. Vaitosk.

108.

110.

111,

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

129.

131.

PESONEN, MAUNO. Applying AHP and A'WOT to strategic planning and decision making:
case studies in forestry and forest industry. 2001. U.s. Diss.

Proceedings of Fifth International Seminar on Horizontal Steam Generators. Ed. by
Juhani Vihavainen. 2001. 255s.

LAINE, PERTTI. Kohti vesiensuojelun aikaa: veden laadun muutokset eteldiselid Saimaalla.
2001. 264 s. Vaitdsk.

SILVENTOINEN, PERTTI. Electromagnetic compatibility and EMC-measurements in
DC-voltage link converters. 2001. 115 s. Diss.

TERVONEN, ANTERO. Laadun kehittdminen suomalaisissa yrityksissa. 2001.
206 s. Viitosk.

SALMINEN, ANTTI. The effects of filler wire feed on the efficiency, parameters and tolerances
of laser welding. 2001. 82 s., liitt. Diss.

HORTTANAINEN, MIKA. Propagation of the ignition front against airflow in packed beds of
wood particles. 2001. U.s. Diss.

IKONEN, JOUNI. improving distributed simulation in a workstation environment. 2001.
U.s. Diss.

WU, HUAPENG. Analysis, design and control of a hydraulically driven parallel robot
manipulator. 2001. U.s. Diss.

REUNANEN, ARTTU. Experimental and numerical analysis of different volutes in a centrifugal
compressor. 2001. 150 s. Diss.

TAAVITSAINEN, VELI-MATTI. Strategies for combining soft and hard modelling in some
physicochemical problems. 2001. U.s. Diss.

SAVOLAINEN, RAIJA. The use of branched ketene dimers in solving the deposit probiems
related to the internal sizing of uncoated fine paper. 2001. U.s. Diss.

SARAVIRTA, ALl Project success through effective decisions: case studies on project goal
setting, success evaluation and managerial decision making. 2001. 286 s. Diss.

BLOMQVIST, KIRSIMARJA. Partnering in the dynamic environment: the role of trust in
asymmetric technology partnership formation. 2002. 296 s., liitt. Diss.

KARVONEN, VESA. Development of fiber recovery process. 2002. U.s. Diss.

KAYHKO, JARI. The influence of process conditions on the deresination efficiency in
mechanical pulp washing. 2002. 87 s., liitt. Diss.

SAVOLAINEN, PEKKA. Modeling of non-isothermal vapor membrane separation with
thermodynamic models and generalized mass transfer equations. 2002. 179 s. Diss.

KARKKAINEN, HANNU. Customer need assessment: Challenges and tools for product
innovation in business-to-business organizations. 2002. U.s. Diss.

HAMALAINEN, MARKKU. Spray coating technique as a surface treatment for woodcontaining
paper grades. 2002. 121 s. Diss.

KUOSA, MAUNU. Numerical and experimental modelling of gas flow and heat transfer
in the air gap of an electric machine. 2002. 97 s. Diss.

SUNDQVIST, SANNA. Market orientation in the international context: Antecedents,
consequences and applicability. 2002. U.s. Diss.

	Pentti Huttunen_etusivu.pdf
	Pentti Huttunen_ilman etusivua.PDF
	Pentti Huttunen.PDF
	Skann001.PDF
	Skann002.PDF

