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AbstratJarmo IlonenSupervised loal image feature detetionLappeenranta, 2007116 p.Ata Universitatis Lappeenrantaensis 282Diss. Lappeenranta University of TehnologyISBN 978-952-214-466-9ISBN 978-952-214-467-6 (PDF)ISSN 1456-4491This thesis is about detetion of loal image features. The researh topi belongs to thewider area of objet detetion, whih is a mahine vision and pattern reognition problemwhere an objet must be deteted (loated) in an image. State-of-the-art objet dete-tion methods often divide the problem into separate interest point detetion and loalimage desription steps, but in this thesis a di�erent tehnique is used, leading to higherquality image features whih enable more preise loalization. Instead of using interestpoint detetion the landmark positions are marked manually. Therefore, the quality ofthe image features is not limited by the interest point detetion phase and the learningof image features is simpli�ed.The approah ombines both interest point detetion and loal desription into one phasefor detetion. Computational e�ieny of the desriptor is therefore important, leavingout many of the ommonly used desriptors as unsuitably heavy. Multiresolution Gaborfeatures has been the main desriptor in this thesis and improving their e�ieny is asigni�ant part. Atual image features are formed from desriptors by using a lassi�erwhih an then reognize similar looking pathes in new images. The main lassi�er isbased on Gaussian mixture models. Classi�ers are used in one-lass lassi�er on�gura-tion where there are only positive training samples without expliit bakground lass.The loal image feature detetion method has been tested with two freely available faedetetion databases and a proprietary liense plate database. The loalization perfor-mane was very good in these experiments. Other appliations applying the same under-lying tehniques are also presented, inluding objet ategorization and fault detetion.Keywords: Gabor �lters, multiresolution �ltering, objet detetion, omputer vision,mahine vision, pattern reognitionUDC 004.93'1



Symbols and abbreviations
I(x, y) Intensity image
D(x, y, σ) Di�erene of Gaussians
p Crossing point between adjaent Gabor �lters
k Saling fator for Gabor �lter frequenies
γ Gabor �lter sharpness along major axis
η Gabor �lter sharpness along minor axis
m Number of �lters in di�erent frequenies
n Number of �lters in di�erent orientations
fmin Tuning frequeny of the lowest frequeny Gabor �lter
fmax Tuning frequeny of the highest frequeny Gabor �lter
fhigh The highest frequeny inluded in Gabor �lter
asf Saling fator for image
θ Rotation of Gabor �lter
ψ(t; f0) 1D Gabor �lter in spatial domain
Ψ(u; f0) 1D Gabor �lter in frequeny domain
ψ(x, y; f0, θ) 2D Gabor �lter in spatial domain
Ψ(u, v; f0, θ) 2D Gabor �lter in frequeny domain
ξ(x, y) Image funtion
rξ(x, y; f, θ) Gabor responses for image ξ(x, y)
G Simple Gabor feature matrix
N(t;µ, σ) Gaussian (normal) distribution
N (x; µ,Σ) Multidimensional normal distribution
G(x;µ, σ) Cumulative Gaussian funtion
G−1(p;µ, σ) Cumulative inverse Gaussian funtion
xs, xf Envelope endpoints for spatial and frequeny domain Gabor �lters
R Con�dene region
τ Pdf value at border of on�dene region
κ Quantile value, on�dene c = 1 − κ
c Con�dene value
k(x, x′) Kernel funtion
σ The sharpness of RBF kernel
ν Parameter ontrolling number of outliers in SVM lassi�er
αi Support vetor weights
ρ Margin to the hyperplane



1D One dimensional2D Two dimensionalEM Expetation maximizationDFT Disrete Fourier transformFFT Fast Fourier transformGMM Gaussian mixture modelHDR High density regionIFFT Inverse Fast Fourier transformLBP Loal binary patternMSER Maximally stable extremal regionsPCA Prinipal omponent analysispdf Probability density funtionRBF Radial basis funtionROC Reeiver operating harateristiSIFT Sale-invariant feature transformSOM Self-organizing mapSVM Support vetor mahine
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Chapter IIntrodution

1.1 Objet detetion and loalizationObjet detetion is a omputer vision task where presene and loation of an objetis determined from an image. Objet detetion methods are useful in various problems,e.g. liense plate detetion and reognition [11℄, fae detetion [32℄ and detetion of aerialtargets [75℄. Often methods for spei� appliations exploit appliation spei� informa-tion to sueed, for instane, skin olor in fae detetion. Therefore, objet detetionhas been a disonneted �eld of study applying a variety of tehniques. However, latelyobjet detetion approahes have started to onverge; many new generi objet detetionmethods use loal image features to desribe loal appearane of an image and ombinethese loal features with a model apturing their geometri relations, together reatinga omplete objet desription.Even with this �parts and struture� approah of objet detetion there are still manydi�erent types of atual methods and some of their entral di�erenes are listed here.First is the importane of loalization. Some objet detetion methods onentrate ondeteting presene of the objet, is it there at all, and exat loalization is of seondaryimportane, while for some other methods aurate loalization is important. Seond iswhether the method tries to detet always the same objet or more generally a lass ofobjets. Related to this is whether the method expliitly onsiders detetion of multipleobjet lasses or only a single lass at a time. Third is the level of supervision, manuallabor, that is required for training the detetor.This thesis presents a supervised method for loalizing loal image features e�ientlyand aurately for one objet lass at a time. A supervised method is used insteadof a more fashionable semi-supervised approah to maximize the quality of loal imagefeatures, and onsequently detetion performane. Semi-supervised methods start withan interest point detetor to detet �interesting� or salient parts of an image, then reateloal desriptions for the deteted parts and �nally try to selet automatially loalfeatures whih are shared by all objets of the objet lass. With the supervised methodthe task is onsiderably more simple. Complex ombination of interest point detetion,11



12 1. Introdutiondesription and model reation is not needed beause we know the important points andtheir spatial relationships as they are manually marked. Now, during detetion with oursupervised method the loal desriptor has to perform the funtion of determining, forinstane, "does this point look like an eye", while a method whih separates interestpoint detetion and loal desription �rst deides "does this point look interesting" andthen "is this point similar to some of the image features we know".In our ase the interest points are reliable beause we know they really are related tothe objet lass, while the quality of image features determined by the semi-supervisedmethods is not guaranteed. It is possible that a semi-supervised method returns pointsommonly found in the bakground, for example, tra� signs are ommon in images withars, therefore a method an deide that the presene of a tra� sign is related to thepresene of the ar. Furthermore, as human knowledge is used when ommon points areseleted, the seletion is not limited by what is deemed interesting by an interest pointdetetion method.1.2 Contributions and publiationsA entral ontribution is the e�ieny improvements of Gabor �ltering. Compared toour older implementation the speed has improved by a fator of 50. This work hasbeen published as a omprehensive researh report, [35℄, and a shorter version has beenpublished in a onferene, [36℄. This thesis also inludes novel researh on properties ofomplex-valued Gabor feature spae.Another important ontribution is omputation of on�dene values for Gaussian mixturemodels (GMM), whih onverts the arbitrarily saled probability density funtion (pdf)values to a probability sore. One onferene artile has been published about this [39℄,and there is a journal artile about GMM's in general [68℄.In this thesis a supervised method for loal image feature detetion is proposed whihis based on multiresolution Gabor features and their ranking using Gaussian mixturemodels. One onferene artile related to the method proposed in this thesis has beenpublished, [43℄, and it inludes also fae detetion experiments. There is also a journalsubmission, aepted with minor hanges, about large parts of the omplete work [38℄.The proposed method has been applied to many important objet detetion tasks, suhas fae and liense plate detetion with exellent results.Based on the image feature detetion method an alternate appliation was developed forvisual ategorization of objets. The ategorization is based on multiresolution Gaborfeatures and their self-organization and has been published in [34℄. Another appliationof multiresolution Gabor features and GMM lassi�er was developed for fault detetionin eletrial motors and has been published as a journal artile, [37℄.In these publiations, the author has made a major ontribution to the development andwriting in [34, 35, 36, 37, 39℄, performed experiments, partiipated in the developmentand writing in [43, 38℄ and had a minor writing ontribution in [68℄.



1.3 Thesis outline 131.3 Thesis outlineChapter 2 reviews methods related to loal image features used in objet detetion.The hapter is divided to three parts: interest point detetion, loal image desription,and omplete objet detetion methods. The division is natural as many of the detetionmethods learly separate interest point detetion and loal image desription; in our ownmethod the loal image desriptor operates also as the interest point detetor.Multiresolution Gabor features are the topi of Chapter 3. The hapter �rst introduesGabor features in both one and two dimensions, and then desribes their e�ient imple-mentation and an implementation framework. Experimental results related to e�ienyimprovements are presented here.Chapter 4 presents information about lassi�ation and feature ranking of loal imagefeatures. One-lass lassi�ers and their requirements are �rst desribed and then thehapter desribes algorithms for reating loal image feature detetors and how theyan be used for detetion. Also inluded is information on properties of multiresolutionGabor feature spae, as it has been notied to be oasionally hallenging for lassi�ers.Chapter 5 presents experiments and appliations of multiresolution Gabor �lter re-sponses in various tasks. The main experiment has been objet detetion (fae andliense plate detetion). Other appliations are visual ategorization of objets based onloal image features and their spatial on�guration and an approah for fault detetionin eletrial motors, whih is based on 1D Gabor features and their lassi�ation.Finally, Chapter 6 disusses what was ahieved in this thesis, and the strengths andweaknesses of our proposed image feature detetion approah.
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Chapter IILoal image feature detetion

In pattern reognition features are numeri or symboli units of information onstrutedfrom measurements by sensors. In ase of images image features ontain information ofthe image ontent; the information an represent small parts of the image (loal imagefeatures), or the whole image (global image features). Global image features, suh asgray level histograms, represent information from the whole image, they do not revealinformation about loal strutures. Conversely, loal image features represent the loalimage pathes apturing information from the loal ontent of the image. However,when several loal image features are ombined, their spatial relationships an be useful,revealing larger strutures in the image. Loal image features are a very large topi; thiswork onentrates on loal image features suitable for objet detetion. In this �eld loalimage features are often represented by loal (image) desriptors. In this work distintionbetween loal image desriptors and loal image features is de�ned so that loal imagedesriptor is a numeri feature omputed from an image path and loal image feature isa more re�ned presentation whih an be used at the detetion phase to loalize desiredimage pathes. Before going to the topi of loal image desription, the workings of theobjet detetion systems are studied �rst.2.1 Objet detetion with parts-and-struture modelState-of-the-art objet detetion and reognition systems work by dividing the objetinto smaller parts, and then de�ning the appearane model and spatial relationship forthose parts � �parts and struture�. An example is presented in Fig. 2.1. �Parts� are thesmall image parts harateristi to the objet lass, and �struture� de�nes the spatialstruture between these parts.This kind of method was �rst introdued by Fishler and Elshlager in 1973 [21℄, but wasthen largely ignored for two deades until Lades et al. [50℄ released their paper in 1993.The method has beome popular for objet detetion and loalization lately beause ofmany bene�ts ompared to deteting the whole objet: desription of loal image partsan be simpler than desription of the whole objet, and the olusion, part of the objet15



16 2. Loal image feature detetion

Figure 2.1: An example of objet lass detetion with �parts and struture�model. Same parts � tires, motor and handlebars � of two motoryles are markedby green irles and their spatial relationships with blue lines.being hidden by another element in the image, an be naturally handled as well as defor-mations in the objet. Common stages of objet lass detetion systems utilizing �partsand struture� is presented in Fig. 2.2. Foreground images are the images ontaining ob-jets to be learned and bakground images are images of basially everything else. First,interest points are found in the foreground training images, desriptions are reated forthese points and then a model for the objet lass is learned. Sometimes bakgroundimages are utilized when the model is learned, while some methods work without expliitexamples from the bakground lass.
Figure 2.2: A oneptual diagram of learning stages for objet lass detetionwith the �parts and struture� model.One important di�erene between methods following the approah in Fig. 2.2 is thelevel of supervision. Supervised systems require more manual help in the interest pointdetetion phase. Manual help an range from segmentation of foreground objets tomanually marking interest points. More supervision leads to interest points of assuredquality, and the task of model learning beomes easier. Conversely, when the level ofsupervision is dereased the model learning beomes more omplex as the interest pointsan be found outside of the objets to be learned, and therefore pruning of outlier interestpoints is required.In the following some urrent objet detetion methods are partitioned by their level ofsupervision. The basi levels here are unsupervised, semi (weakly) supervised, supervised



2.1 Objet detetion with parts-and-struture model 17and strongly supervised methods, but the division between groups is not lear as thedi�erent methods require di�erent levels of supervision in respet to labeling, imagealignment and segmentation of training images.
• Unsupervised methods: learning objet lasses from a set of unlabeled images on-taining several di�erent objet lasses. This is yet to be reliably ahieved, however,many methods are alled unsupervised when they atually belong to the followinglass, semi-supervised.
• Semi-supervised methods: learning objet lasses from a set of labeled images.Many studies are onentrating on these kind of methods, some of them are brie�ydesribed here.Some methods use only a set of image features without a struture (onstellation)model, for example, a method using various interest point detetors and loal de-sriptors ombined with AdaBoost by Opelt et al. [67℄, a method utilizing Bayesianlearning of image features by Carbonetto et al. [10℄, and with shape based regiondetetors and desriptors by Jurie and Shmid [41℄.Many methods also use the struture model, for example, an objet detetionmethod using a voabulary for parts of the objet used along with informationof their spatial relationships by Agarwal and Roth [1℄ and various methods fromPerona's group, for example, lassial parts and struture model learned with EMalgorithm [89, 18℄. There is a similar method using a star model instead of fullonstellation model [19℄ and �One-shot learning of objet ategories� by Fei Fei etal. [17℄ whih is almost truly unsupervised in the sense that it tries to learn a newobjet lass even from a single image, though knowledge from previously learnedlasses and bakground is used. A method by Mikolajzyk et al. [60℄ detets mul-tiple objet lasses (simultaneously), and the training is done from roughly alignedimages using a hierarhially formed tree struture of loal features (PCA-SIFT).
• Supervised methods: learning from labeled and segmented images. Some examplesof these kind of methods are a method by Dorgo and Shmid [15℄ whih selets partsfor the objet detetion using Harris-Laplae and SIFT interest point detetion,SIFT desription and uses GMM and SVM lassi�ers without a spatial model, anda fae detetion method by Viola and Jones [88℄ whih learns a fae model fromsegmented training images using AdaBoost and integral images.
• Strongly supervised methods: labeled training images with manually seleted �in-terest points� or areas. Some examples are detetion of humans from a sub-windowby deteting head, legs and arms separately by using Haar wavelets and SVM byMohan et al. [64℄, and the work this thesis is related to, objet lasses learned frommanually marked interest points using the Gaussian mixture models and multires-olution Gabor �lters [43, 30℄.Objet detetion methods an be further divided into another two lasses. Some methodsonly detet whether the objet is present in the image or not, not giving the objet'spreise loation or even any kind of guess of its loation. Some methods detet also theobjet's loation and pose, however, in many publiations the loalization performane



18 2. Loal image feature detetionis not expliitly measured. Here, the term �objet detetion� is used for methods whihdetet an objet's presene in an image (is it there or not), and the term �loalization�meaning that in addition to deteting the objet's presene the method aurately loal-izes where in the image the objet resides. Most of the objet detetion methods an givean estimate for the objet's loation, but with unsupervised or semi-supervised methodsit is not generally possible to ensure that the features that are learned to distinguishobjets really belong to the objet itself instead of using some ontextual informationommonly found in the bakground, as noted in [67℄. An example of this ould be in thedetetion of ars, where an unsupervised method ould learn that the presene of tra�signs implies also presene of ars beause ars are often found in areas (roads or parkinglots) where there are also tra� signs. However, even if the method ould loalize theobjet in addition to deteting its presene, it is ommonplae to only measure whetherthe presene was orretly deteted, not how preisely the objet was loalized.To get an overview of the required level of supervision and suitability to loalization,these properties of the objet detetion methods ited in this setion are ollated inTable 2.1. The methods are sorted roughly in order of inreasing level of supervision.While some methods (e.g., [89℄) laim to use �unlabeled� data they still use separatepositive and negative training sets, and therefore are ounted as using labeled data. Manymethods ould be used for loalization, however, often the loalization performane is notexpliitly onsidered or measured, and these methods are marked with �not expliitly� for�loalization�. Methods whih give a rough loation estimate are marked with �boundingbox�. Table 2.1: A table of objet detetion methods listing their level of supervisionand apability of loalization. A ∗ in the segmented/normalized �eld means thatthe requirement is impliit in the training set, i.e., training images ontain objetsin roughly similar settings.Labeled Segmented/aligned Loalization[67℄ Yes No No[10℄ Yes No No[41℄ Yes Aligned Bounding box[1℄ Yes Aligned and normalized Bounding box[89℄ Yes Roughly aligned ∗ Not expliitly[18℄ Yes Roughly aligned ∗ Not expliitly[19℄ Yes Roughly aligned ∗ Not expliitly[17℄ Only 1 image Roughly aligned ∗ Not expliitly[60℄ Yes Roughly aligned Bounding box[15℄ Yes Segmented Not expliitly[88℄ Yes Segmented Yes[64℄ Yes Segmented Bounding box[43, 30℄ Yes Manually marked keypoints YesAnother distintion for methods is whether they are intended for objet or objet instanedetetion (objet mathing). In objet detetion the objet lass should be learned ingeneral fashion and the method must not be too seletive, otherwise it will be led astray



2.2 Interest point detetion 19by intra-lass variations (the di�erenes between objets belonging to the same lass),but still be able to apture inter-lass variations (to distinguish objets from di�erentlasses from one another). In objet instane detetion the same objet must be detetedin di�erent images. The method must learn details spei� to the objet so that it andistinguish that objet from all others in the image.Objet instane detetion methods are often used for mathing (for example mathing ofstereo images) and therefore the method should be highly robust to viewpoint hanges.One use is mathing di�ering views of the same objet or sene, and some examples of thisare the original use of SIFT (Sale Invariant Feature Transform) features by Lowe [55℄or maximally stable extremal regions (MSER) by Matas et al. [57℄. In general, strutureand motion problems do not neessarily require the use of loal image desriptors; orretorrespondenes between interest points obey a geometri onstraint, epipolar geometry,whih an be solved, for example, by the RANSAC algorithm (e.g. [4℄). Loal imagedesriptors beome useful when the di�erene between mathed views is large.The following setions review some of the most widely used interest point detetion andloal image desription methods. In the end of the hapter also some omplete objetdetetion methods are shortly desribed.2.2 Interest point detetionInterest points are known by many names, among them are distinguished regions [57℄,a�ne regions [63℄ and salient regions [55℄. While they are alled regions, most of themethods return a spei� interest point and not an interest region. Whether the pointis deemed interesting depends naturally on what is around it. To be useful the methodshave to be invariant, or at least robust, to sale, rotation, noise and illumination hangesand possibly for all a�ne hanges; the same points should be found when for exampleimage viewpoint hanges or when there are hanges in imaging onditions. For objetdetetion they should also be in general robust to intra-lass variations. For an exampleof di�erent types of image hanges see Fig. 2.3.Many methods also determine sale and rotation of the interest point, and that informa-tion an be used when loal image desription is reated for the interest point. In thefollowing some of the most known interest point detetors are desribed shortly.2.2.1 Harris orner detetorOne of the �rst interest point detetors was a ombined orner and edge detetor byHarris and Stephens [31℄, where the main motivation was motion analysis from an imagesequene reated with a moving amera. The detetor is based on loal auto-orrelationof the signal � the loal auto-orrelation measures hanges when a path is shifted slightly.A hange of intensity for image I(x, y) for a shift (u, v) is
E(u, v) = Σx,yw(x, y) [I(x+ u, y + v) − I(x, y)]2 (2.1)where w(x, y) is a windowing funtion, usually Gaussian. For small shifts an approxima-tion an be used,



20 2. Loal image feature detetion

Figure 2.3: An example of types of hanges the interest point detetor shouldtolerate. .
E(x, y) = [∆x∆y]M [∆x∆y]T , (2.2)where M is a symmetri 2 × 2 matrix omputed from image derivatives as (Iα is theimage derivative alulated in diretion α)

M = Σx,yw(x, y)

[

I2
x IxIy

IxIy I2
y

]

. (2.3)Eigenvalues λ1 and λ2 of the matrix M are then solved. If both λ1 and λ2 are small,image is �at in that point, if both are large there is a orner, and if one is large and theother small there is an edge. Corner response an then be alulated without expliiteigenvalue deomposition,
R = detM − k(trae M)2 , (2.4)where k is an empirial onstant, usually 0.04 . . . 0.06. Small |R| means a �at point,

R > 0 a orner point and R < 0 an edge point. The atual seleted orner points are theloal maxima of the R, so only one point per orner is atually seleted. Loal minimaan also be searhed whih will isolate edge-points, but this is not as useful as detetionof the orner points, beause orner points are muh more stable for small variations



2.2 Interest point detetion 21in the image. The Harris orner detetor is invariant to rotation, partially invariant tointensity hange (if ontrast beomes too low in a orner area, R beomes small and thepoint is lassi�ed as a �at area), but not invariant to sale.The groundwork for automati seletion of sale of the interest point was investigated byLindeberg [53℄, and based on that work the Harris detetor has been extended to saleinvariane by Mikolajzyk and Shmid [61℄ � the detetor is alled the Harris-Laplaedetetor. The sale invariane is ahieved by omputing a multi-sale representation forthe Harris detetor and then seleting points whih have a loal maximum of normalizedimage derivatives (the Laplaians).The Harris-Laplae works by �rst deteting the Harris orner points in multiple sales.A threshold of |R| is used to remove orner points whih are not distintive enough, asthey are not stable for hanges. For eah point found an iterative algorithm is used todetet sale and the loation of the interest point, as the exat loation may hange whendi�erent sales are searhed through. The sale of the interest point is deteted by �ndingthe maximum for the Laplaian-of-Gaussians response. In a simpli�ed version whih isfaster to ompute the iterative steps are removed and the interest point is rejeted if itis not a maximum of Laplaian-of-Gaussians.In addition to sale invariane, Mikolajzyk and Shmid [61℄ extended the Harris detetorto a�ne invariane and the detetor is alled the Harris-A�ne. The main addition toHarris-Laplae is the detetion of the shape of the interest point. The shape is determinedby a rotated ellipse: the rotation is determined from loal gradient orientation and theaxes of the ellipse are determined from the ratio of eigenvalues of the seond momentmatrix.2.2.2 SIFT detetorSIFT (Sale Invariant Feature Transform) by Lowe [55℄ inludes both interest pointdetetor and a loal image desriptor. Only the detetor is presented here, the desriptorwill be disussed in the following setion. SIFT works in four major stages:1. Sale-spae extrema detetion. Potential interest points are searhed in all salesand loations and potential interest points are identi�ed with a di�erene-of-Gaussianfuntion.2. Keypoint loalization. A model is used to determine loation and sale of theinterest point and interest points whih are not deemed stable are pruned out.3. Orientation assignment. Loal image gradients are used to assign one or moreorientations for eah keypoint.4. Keypoint desriptor. Desriptions for keypoints are reated.First, interest points are deteted by applying a ontinuous funtion of sale: a salespae. The sale spae funtion used here, L(x, y, σ), is a produt of the variable-saleGaussian, G(x, y, σ) and an input image, I(x, y),
L(x, y, σ) = G(x, y, σ) ∗ I(x, y) , (2.5)



22 2. Loal image feature detetionwhere ∗ is the onvolution operation and G(x, y, σ) is the Gaussian funtion,
G(x, y, σ) =

1

2πσ2
e−(x2+y2)/2σ2

. (2.6)Note that L(x, y, σ) an be thought of as an image smoothed by a Gaussian kernel. Lowehas proposed to use the extrema of the di�erene-of-Gaussian funtion as interest pointswhih an be deteted e�iently. Di�erene-of-Gaussians is de�ned as
D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) (2.7)a di�erene of two Gaussians on nearby sales separated by onstant fator k. This anbe e�iently omputed from two smoothed images,

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ) − L(x, y, σ) . (2.8)An example of omputation of di�erene-of-Gaussians an be seen in Fig. 2.4. The imageis smoothed with Gaussians whih are separated by a onstant fator k in sale spae �these images, L(x, y, σ), form the right image stak. Adjaent images are then subtratedfrom eah other to produe di�erene-of-Gaussians images, D(x, y, σ). Eah otave, adoubling of σ, an be handled separately and the omputation time an be saved bydownsaling the image for every otave. The interest points are loated by �nding loalextrema from the stak of di�erene-of-Gaussians images, i.e., a point is an interest pointif it is the smallest or largest of the 3× 3× 3 pixels surrounding it at the same sale leveland the levels above and below.
Figure 2.4: Initial image is onvolved with Gaussians with di�erent sales,
G(x, y, σ), produing smoothed images, L(x, y, σ). Di�erene-of-Gaussians,
D(x, y, σ), an then be omputed as di�erene of two adjaent images.Next, the exat loation of the interest point is measured by �tting a 3D quadratifuntion to loal image points. This alulation also reveals interest points whih arein areas with too low ontrast; these are removed. The di�erene-of-Gaussians has astrong response near edges, but edge points are not stable as loation along the edgeis unstable to small amounts of noise. Therefore, similarly to the Harris detetor, theprinipal urvature is omputed for eah point by alulating eigenvalues of the Hessianmatrix for eah interest point. The interest point is aepted only if the ratio betweeneigenvalues is small enough, and the atual alulation of eigenvalues an be avoided,



2.2 Interest point detetion 23again, similarly to the Harris detetor. Orientation of the keypoint is determined byomputing an orientation histogram for eah interest point and its neighborhood. Thehighest peak of the histogram is de�ned as the interest point's orientation, but also otherpeaks higher than 80% of the highest peak are aepted as separate interest points, i.e.,one interest point an be split into several di�erent interest points if there are manydominant diretions in the orientation histogram.2.2.3 Entropy based detetorKadir et al. have developed an interest point detetor whih is based on an informationtheoretial approah, the entropy of loal image regions [42℄. Unlike many other interestpoint detetors, their detetor is expliitly designed while having intra-lass variations inmind. The detetor works in three steps:1. Calulate entropy of the loal image areas (the entropy of a gray-level or olorhistogram) in several sales (irles with varying sizes). A �at image area has ahistogram with one strong peak and the entropy is low, and an image area withmore variations will have a histogram with several peaks or even a �at histogramwhih has the highest entropy.2. Selet sales whih have peaks of entropy.3. Use an inter-sale unpreditability measure to weight entropy values. Image areaswhere a spei� sale has strong peak get weighted higher than areas where a peakis weak ompared to nearby sales. For example, in a very noisy image area, entropyis high at all sales, but there is not one spei� sale whih has a strong peak.For instane a bright irle on a blak bakground will have its entropy maximum whenthe detetor's area ontains some blak area around the irle so that there are approxi-mately an equal number of white and blak pixels inside it. Entropy is small if the areais ompletely inside the irle, and will beome smaller when the area size is inreasedand blak pixels start to dominate.This entropy based salieny measure for interest points is naturally invariant to rotation,translation and small a�ne transforms: the histogram does not hange during thesehanges. However, it is only invariant to shifts in image intensity, not to ontrast hanges.Invariane to all a�ne hanges is possible when a irular image sanning window ishanged to a ellipse. This inreases omplexity onsiderably, beause in addition to sale(i.e., the radius of the irle) there is now also rotation and ratio between major andminor axes of the ellipse to searh. For that reason a loal searh strategy is used: �rsta irular window is used to searh for seed points (only position and sale), and thenthe rotation and shape of the ellipse is iteratively hanged to maximize salieny.2.2.4 Maximally stable extremal regionsMSER (Maximally Stable Extremal Regions) has been introdued by Matas et al. [57℄.MSER is based on thresholding and an extremal region is a onneted area in a thresh-olded image. All extremal regions are found by thresholding the image with all possible



24 2. Loal image feature detetionthresholds, [0 − 255] for normal gray-sale images, and �nding then all onneted areas.Maximally stable extremal regions are extremal regions whih do not hange, or hangeas little as possible, when the threshold is hanged. In pratie this means that MSERsare regions with relatively �at intensity surrounded by sharp intensity hange.Regions found by MSER are invariant to all adjaeny preserving transformations, whihinludes sale, rotation and a�ne transforms as long as the stable region is found in aplanar objet, invariant to shifts in image intensity but not invariant to large ontrasthanges.2.2.5 Performane evaluationPerformane of various interest point detetors (alled a�ne region detetors) was testedin [63℄. The performane was tested by heking how many of the same interest pointswere found in image sets where the viewpoint, sale, rotation or illumination varied, orimages were blurred or JPEG-ompressed. Aurate homography between images (howthe points in one image map to points in the other image) was measured beforehand, andthe auray of interest point detetors was measured by how many of the found pointswere mathed within ertain limit in both images. MSER (Maximally Stable ExternalRegions) [57℄ and Hessian-A�ne [61℄ were found to perform best overall. The resultsare not diretly appliable to objet detetion as the tests used images of exat samesenes under various hanges: there was no intra-lass variations harateristi to objetdetetion problems.2.3 Loal image desriptionIn the following some methods used as loal image desriptors are explained shortly.When loal image desriptors are used with interest point detetors whih detet saleand orientation, and potentially also a�ne shape of the interest point, the image pathan be normalized before reating the loal desription. Therefore, in suh ase the loaldesriptor itself does not have to be sale or rotation invariant. However, invariane, atleast to some degree, to imaging ondition hanges (lighting hanges or noise), and toother small perturbations is important. Invariane to small perturbations is even moreimportant when the desriptor is used in objet detetion where the desriptor shouldnot be too seletive to small variations, otherwise it annot represent reliably an objetlass.In addition to the desriptor not having to be sale or rotation invariant, the use ofinterest point detetion as a �rst step has also the added bene�t that the desriptor anbe omputationally omplex as there is only a limited number of desriptors to ompute.If an interest point detetor is not used, or rather the loal image feature ombines bothinterest point detetor and loal desriptor, the loal desriptor has to be used in anexhaustive searh and the omputational omplexity must be low.Multiresolution Gabor �lters are the main loal image desriptor used in this thesis, andthey are therefore presented in their own setion, Setion 3.1, in more detail.



2.3 Loal image desription 252.3.1 Loal desription by pixel valuesThe most straightforward idea for loal image desription is taking a part of the im-age around the interest point and using the gray-level pixel-values diretly as an imagedesriptor (see Fig. 2.5). If the interest point detetor detets sale and rotation ofthe interest point, the loal image area an be saled and rotated to aount for thesehanges. There are two major problems with this kind of desriptor: high dimensionalityof the desriptor (for example, 20 × 20 area will have a desriptor of length 400) andpoor invariane to small perturbations of the image. Both of these problems an be alle-viated by reduing the dimensionality, for example by using PCA (prinipal omponentanalysis). This kind of loal desriptor has been used for example by Fergus et al. [18℄.A path of the image based on the sale of the interest point was taken and saled tosize 11× 11. The image path was used as a vetor of the gray-level values of length 121and projeted onto 10-15 prinipal omponents. Prinipal omponents were alulatedbeforehand based on a large number of interest points.

Figure 2.5: Image desription by diret pixel values.2.3.2 SIFT desriptorSIFT (Sale Invariant Feature Transform) by Lowe [55℄ inludes a loal image desriptorbased on loal image gradients. The desriptor is reated for the sale level found by theinterest point detetor and the rotation of the interest point is also taken into aountso that the desriptor is sale and rotation invariant.Fig. 2.6 shows an example of desriptor reation. The desriptor is reated by �rst al-ulating image gradients (their magnitudes and orientations) around the loation of theinterest point. In the example Fig. 2.6(a), gradients for 8×8 points have been alulated.Gradient magnitudes are weighted by a Gaussian so that they beome gradually smallerwhen the distane to the enter point inreases. Weighting is performed to avoid largehanges in the desriptor when the window moves slightly. Then, for eah 4 × 4 subre-gion, weighted gradients are divided using interpolation to 8 primary diretions and thensummed (Fig. 2.6(b)), i.e., the gradients pointing roughly to the 8 primary diretions aresummed together. The atual desriptor is the vetor of diretional gradient sums from



26 2. Loal image feature detetionall subwindows (Fig. 2.6()). In the example the desriptor is of length 32 (8 primarydiretions for 4 sub-windows), but usually an area of 16 × 16 points is used with 4 × 4subregions, therefore reating a desriptor with a length of 128 (8 primary diretionswith 16 sub-windows). The desriptor is �nally normalized to unit length.
(a) Image gradients (b) Weighted sum of gradients 0 8 16 24 32() Complete desriptorFigure 2.6: An example of SIFT loal desriptor reation.High dimensionality of the desriptor is a problem for lassi�ers. Therefore a variant ofSIFT has been proposed: PCA-SIFT [46℄. In PCA-SIFT the diretional sums of gradientsfor subregions are not alulated, instead the whole path of loal image gradients is usedand the dimensionality is redued by using PCA. The eigenspae is prealulated usinga large number of image pathes. It was found out that using only the �rst 20 prinipalomponents gave good results; this means that the feature vetor is only of length 20,onsiderably shorter than the desriptor of original SIFT. Another form of ombinationof SIFT desriptor and PCA has also been used for example by Mikolajzyk et al. [60℄,where a normal 128 dimensional SIFT desriptor is redued to 40 dimensions.2.3.3 Loal binary patternsThe original LBP feature is alulated by omparing the value of a enter pixel to otherpixels in a 3× 3 area, and the resulting binary number is the result of the LBP operator(see the example in Fig. 2.7). A 256-bin histogram of LBP-values is formed when thefeature is omputed over a larger area. The histogram an be used e�iently as a texturedesriptor.The LBP operator has been extended in two ways [66℄. LBP operator an operate ondi�erent neighborhoods. LBPP,R refers to a LBP operator whih onsiders P neighborsat the distane of R, for example, LBP16,2 onsiders 16 neighbors at the distane of 2.LBPP,R produes 2P output values whih also means that the histogram will be of thelength 2P . The histogram beomes impratially large if P is inreased, however, it hasbeen notied that so alled uniform patterns ontain more information than the othersand the histogram length an be redued by bundling all non-uniform patterns into asingle bin. Uniform patterns inlude only a limited number of bitwise transitions � from0 to 1 or the opposite. For example, 00000000 has zero transitions and 00111100 has twotransitions. An uniform LBP-operator whih bundles the patterns with more than twotransitions to a single bin is marked as LBPu2

P,R.



2.3 Loal image desription 27
Figure 2.7: An example of LBP alulation. Pixels surrounding the enter pixelare thresholded based on the value of the enter pixel and a binary feature isformed.LBP is mainly a texture desriptor and one LBP histogram does not inlude any infor-mation on how the texture hanges spatially and therefore normal LBP features are notvery useful diretly as loal image desriptors. For that purpose, as proposed by Hadidet al. in [26℄, an image path is divided into smaller pathes for whih separate LBPhistograms are omputed. The histograms from adjaent image pathes are ombined toform an image feature whih an desribe omplex loal image areas. Image pathes arerepresented with a ombination of LBP4,1 and LBPu2

8,1 histograms [26℄. A 19× 19 imagepath is divided into 9 overlapping 9× 9 pathes. An example an be seen in Fig. 2.8. ALBPu2
8,1 histogram is omputed for the whole 19×19 image path and LBP4,1 histogramsfor smaller 9× 9 images. The total length of the ombined histograms is 203 � 59 for theLBPu2
8,1 histogram and 16 for eah of the 9 LBP4,1 � and it is used diretly as the loalimage feature.

Figure 2.8: Loal image path representation with LBP histograms.LBP features an be omputed e�iently. However, when used as image features in thisfashion the resulting feature vetors are long and the e�ieny of the lassi�er may reatea bottlenek for total e�ieny.2.3.4 Steerable pyramidThe steerable pyramid is a linear deomposition of image into sale and orientation sub-bands, and is jointly shiftable in the both orientation and sale [81℄. The basis funtionsfor the deomposition transform an be formed by translations, dilations and rotations ofa single �lter. The transform is onstruted as a reursive pyramid. The basis funtions



28 2. Loal image feature detetionare diretional derivative operators, and the number of orientations is de�ned by theorder of the derivative; Nth order derivative has N+1 orientations. Examples of orientedbandpass �lter kernels are shown in Fig. 2.9.
(a) (b)Figure 2.9: 3rd order (4 orientations) steerable �lters: (a) Spatial domain, (b)Frequeny domain.The pyramid is formed by onvolving the input signal with a set of oriented bandpasskernels and a low-pass kernel. To avoid aliasing the bandpass portion is not subsambled,but the low-pass portion is subsambled by a fator of two. The low-pass �ltered portionis then used for omputing the next level in the pyramid. In addition to the bandpass�ltered levels, also the high frequeny residual highpass sub-band and the low-pass sub-bands an be stored to be able to reonstrut the original signal. An example of animage deomposed into a 2-level pyramid with 3rd order steerable �lters is presented inFig. 2.10.

(a) (b) ()Figure 2.10: Example of image deomposition using steerable �lters: (a) Originalimage; (b) Pyramid level deomposition with the 3rd order steerable �lter (possess4 orientations), 2 pyramid levels and the lowpass sub-band; () Highpass residualsub-band.Steerable pyramid features have been used in objet detetion and reognition by Ballardand Wixson in [3℄. The desription of an objet is reated by using �lters with severaldi�erent orders (number of orientations) and sales. Here, a slightly di�erent approahis taken to be ompatible with the approah used with multiresolution Gabor features,and only �lters with a spei�ed number of orientations is used in several sales. Only thebandpass �ltered levels of the pyramid are used and the highpass and lowpass portionsof the image are disarded. The responses an be arranged to a similar matrix formas is used with the multiresolution Gabor features (Setion 3.1, (3.8)). Computational



2.4 Objet detetion methods 29performane of �lter response omputations is omparable to Gabor �lters, however,when �ltering in the spatial domain, smaller �lters an be used with steerable pyramid�lters than with Gabor �lters and there are only real values making steerable pyramidresponses faster to ompute.2.3.5 Performane evaluationThe performane of loal desriptors was tested in [62℄. The test builds on the previousperformane testing of interest point detetors [63℄. First, interest points (or regions) aresearhed in two images where the viewpoint, sale, rotation or illumination are varied,or images were blurred or JPEG-ompressed. Then, the desriptors are evaluated basedon how well they an �nd the orret (same) points among the interest points found intwo images. SIFT [55℄ and its modi�ation made by the authors of the artile, gradientloation and orientation histogram (GLOH), performed best, but again the performaneharateristis in this test annot be diretly applied to objet detetion.2.4 Objet detetion methodsIn the following few objet detetion methods are shortly desribed. Some of the methodsombine interest point detetors and loal desriptors to perform detetion of ompleteobjets, some use di�erent approahes.2.4.1 Feature-based a�ne-invariant detetion and loalization of faesThe methods presented in the following hapters of this thesis are onneted to a fae(objet) loalization method developed by Hamouz et. al, [27, 28, 29, 30℄. The disus-sion here is based mostly on [30℄. The paper distinguishes between fae detetion andloalization so that fae detetion methods estimate the position and pose of the faeroughly, for example by a bounding box, and fae loalization as preise loalization offaial features.The method uses a separate loal image feature detetion phase to detet and loalizefaial parts (10 faial parts: eyes, eye-orners, nostrils and sides of mouth) and thenanother phase to ombine them to omplete the fae loalization using a onstellationmodel. Loal image features used are multiresolution Gabor features as presented in [48℄,and the Gaussian mixture model is used for learning the di�erent faial feature lasses.During the detetion the 200 best andidates for eah faial feature is returned.After faial feature andidates have been deteted, a onstellation model is used to seletwhih of the found andidates forms a fae. The onstellation model works by seletingthree andidates of di�erent types of faial features (for example two eye-enters and anostril) and alulating with whih kind of a�ne transform the andidate points �t tothe fae model formed from the training set. If the required transformation has not beenseen in the training set, the three points are probably false positives and do not belongto a fae.After a likely fae, or generally an objet, hypotheses have been found with the onstel-lation model, an appearane model is used to verify if a real fae was found, or if the



30 2. Loal image feature detetionhypothesis was badly loalized or resides in the bakground. This step works in the imagelevel and does not use loal features: an image path is extrated and it is lassi�ed witha SVM (support vetor mahine) lassi�er whih gives a sore for the path being a fae.Classi�er is trained from training data where pathes are manually marked and a boot-strapping tehnique is used to generate negative examples. Two di�erent SVM lassi�ersand two di�erently sized image pathes are used. First oarse 20 × 20 pathes are usedto prune out learly inorret fae hypotheses and then the most likely hypotheses ofthose are further veri�ed using 45×60 pathes. Multiple steps are used beause with theoarse resolution small misalignments annot be notied. The loalization results werefound to be very good.The di�erenes to the method presented in this thesis are:
• An improved lassi�ation method, Gaussian mixture model with on�dene infor-mation.
• The performane of Gabor �ltering has been improved greatly, and is now up to50x faster.
• Cross-validation for seleting Gabor �lter parameters has led to distintly betterresults [43℄.2.4.2 Distintive image features from sale-invariant keypointsSIFT interest point detetor was introdued in Setion 2.2.2 and SIFT desriptor inSetion 2.3.2. Together, they an be used for objet reognition [55℄.Naturally, the detetor is used to �nd the interest points and their sales and orienta-tions, then the desriptor reates a desription for all of these points, alled keypoints.For training, the presented method uses a single image for the objet whih should bereognized, the image should inlude no other objets and have a lutter-free bakground.From the training image the keypoints are searhed and their desriptions stored in adatabase, inluding the spatial relations of the desriptors. The proedure an be re-peated for other images with other objets.During detetion, again, interest points are deteted and desriptors reated. For eah ofthe keypoints a losest math, smallest eulidean distane, in the database is searhed.Many of the found interest points arise from the luttered bakground or unknown ob-jets, so there may not always be a orret math. Therefore, a threshold is applied. Aglobal threshold does not perform well, but a threshold based on the di�erene betweenthe losest math and the seond losest math found in the database is used instead.The idea is that if the math is orret, the seond losest math will be muh moredistant, and if the math is inorret the seond losest math will likely have a similardistane.Even after disarding many of the false mathes based on thresholds a large part of theremaining interest points will still be inorret. Hough transform is used to determineif several of the features vote for the same objet pose. Eah keypoint has parametersfor 2D loation, sale and orientation, and the database ontains the same informationfor keypoints found in the training image. A Hough transform an be reated prediting



2.4 Objet detetion methods 31loation, orientation and sale from the mathed keypoints. In addition, eah luster ofthree or more features found by Hough transform is subjeted to a geometri veri�ationproedure to disard keypoints whih do not agree with the model aurately enough,or add keypoints whih agree but were not found with the Hough transform. Finally, aprobabilisti model is used to aept or rejet the objet hypothesis based on an atualnumber of mathed features.The method an reognize the trained objets in highly varying poses and when theyare heavily oluded. Several objets an be deteted at the same time. However, themethod is intended for deteting the same objet (single objet instane): intra-lassvariations are not onsidered at all.2.4.3 Objet lass reognition by unsupervised invariant learningThe artile by Fergus, Perona and Zisserman [18℄ presents an objet lass reognitionmethod where objet lasses are learned and reognized from unsegmented images of theobjet in luttered senes. The method is not ompletely unsupervised as the trainingset images are all assumed to ontain an instane of the objet lass, i.e., when traininga detetor for motoryles, all training set images must ontain a motoryle.The method applies the parts and struture model. The objet model onsists of partswhere for eah part appearane, relative sale and mutual position with other parts isknown. Some parts may also be oluded. The model is generative and probabilisti:parts are modeled with probability density funtions, more preisely Gaussians. Duringlearning, interest points and their sales are �rst searhed. From the appearane, saleand mutual position a model is learned so that it gives maximum-likelihood desription.Reognition is performed by deteting interest points and their sales in the query imageand evaluating found regions in the Bayesian manner applying model parameters foundduring training.First N interest points are found with loations X, sales S, and appearanes A. Thedeision is based on likelihood for objet presene modeled as
p(X ,S,A; θ) =

∑

hǫH

p(X,S,A,h; θ)

=
∑

hǫH

p(X; A,S,h; θ) p(X; S,h; θ) p(X; S,h; θ) p(S,h; θ) p(h; θ)where h is a hypothesis vetor of length P , whih enumerates whih of the deteted
N interest points belong to the objet. Some of them maybe zero, whih means thatthat partiular objet part is not present. All valid alloations of features to the partsare presented by H, whih is of O(NP ). From this omplexity it an be seen that thenumber of deteted interest points, N , must be relatively low, usually up to 30, and thenumber of objet parts, P , even lower, typially 3 − 7. The four p(·) lauses representprobabilities for appearane, shape, relative sale and other, the last one handling e�etsof olusion. The �rst three are modeled with Gaussians, and the last one with a Poissondistribution.



32 2. Loal image feature detetionInterest point detetion is performed with an entropy based detetor presented in Se-tion 2.2.3. The loal desription is performed based on the pixel values, as desribed inSetion 2.3.1: a path around the interest point is taken, where the size is based on thesale given by the interest point detetor. The path is then saled to size 11 × 11, andthe resulting vetor of length 121 is redued to 10 − 15 dimensions using PCA, and thisvetor is the desriptor for appearane, A. From the positions and sales of the interestpoints also X and S are known. When these are known for the images in the trainingset, parameters, θ, of the model are learned using expetation-maximization algorithm.The method performed very well on six diverse datasets, inluding objet lasses suh ashuman faes, motorbikes, airplanes and spotted ats.2.4.4 Rapid objet detetion using a boosted asade of simple featuresViola and Jones presented an e�ient objet detetion method in [88℄. The methoduses simple features based on integral images whih are extremely e�ient to ompute.These simple features are ombined by an AdaBoost lassi�er to reate an e�ient objetdetetor. The lassi�er is used in a asade, if �rst simple lassi�ers already determinethat there is no objet in the image path, using more omplex lassi�ers is omitted,whih further improves the e�ieny. The method is supervised, it is trained usingsegmented images of the training lass and bakground images. During detetion thedetetor goes through the image in a windowed fashion: the image is divided to pathesand the detetor is used in eah of them separately.The method uses simple retangular features, examples are shown in 2.11. The valueof a feature is omputed by taking the sum of pixel values in the white parts of the�lter, and subtrating it from the sum of pixel values in the gray parts. The size of theretangular features are varied. With the base size of 24 × 24 used for the detetor, theomplete set of retangular features is over one hundred thousand. Therefore, e�ientomputation of feature values is important and they an be omputed very e�ientlyusing an intermediate representation of the image, integral image.
Figure 2.11: Retangular features work so that the sum of pixel values in whiteparts of the retangle are subtrated from the sum of pixel values in gray parts.Features onsist of 2 (A and B), 3 (D) or 4 (D) retangles.The integral image ontains the sum of pixel values above and to the left of the urrentpixel in the original image. It is omputed as

Ii(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) , (2.9)



2.4 Objet detetion methods 33where Ii(x, y) is the integral image and I(x, y) is the original image. The integral imagean be omputed in one pass over the image:
s(x, y) = s(x, y − 1) + I(x, y) (2.10)
Ii(x, y) = Ii(x − 1, y) + s(x, y) ,where s(x, y) holds the umulative row sum and negative indexes equal to zero. Fig. 2.12demonstrates how value inside any retangle an be alulated using only few operations.Values of the atual features (examples in Fig. 2.11) an be omputed in a similar fashion.

Figure 2.12: Using integral image to alulate sum values inside grayed area anbe performed as 4− 2− 3 + 1, i.e., take the value at point 4, dedut the values atpoints 2 and 3 and then add value at point 1 beause previous step deduted itssum twie.Computation of a single feature is fast, omputation of all of them still takes a long timeand a small subset of the features should be seleted. AdaBoost [22℄ is a lassi�er whihan selet a small number of relevant features and ombine them into a powerful lassi�er:the omplete lassi�er ombines several weak lassi�ers, eah weak lassi�er here operateson one retangular feature. The AdaBoost lassi�er selets at eah training step onefeature whih best separates the positive and negative training samples. The weights ofthe training samples are adjusted so that the next weak lassi�er will onentrate on thesamples whih have been wrongly lassi�ed with previous weak lassi�ers. The trainingerror beomes smaller with eah added weak lassi�er.The detetion is performed in sub-windows and a vast majority of them are negative,i.e., the objet to be deteted is not there. Therefore, rejeting negative samples shouldbe done as fast as possible, whih is ahieved by using lassi�ers in a a asade. The�rst lassi�er is very simple, trying to ahieve a very small false negative rate, i.e., nopositive samples should be rejeted. However, the �rst lassi�er should rejet manyof the true negatives. Following lassi�ers are more omplex targeting onseutivelysmaller false positive rates, i.e., trying to rejet more and more of the true negativesamples. To be lassi�ed as positive, all lassi�ers must give a positive result and thelassi�ation proedure ends if any of the lassi�ers give a negative result. During trainingeah lassi�er will get as its input only the samples whih passed through the previous



34 2. Loal image feature detetionlassi�er, also the thresholds for false negatives and false positives are modi�ed for laterlassi�ers.The method was tested in fae detetion. The results were very good and, at the time,the detetor was onsiderably faster than any of the earlier approahes.2.5 SummaryThis hapter presented an overall model of parts-and-struture type objet detetionmethods. The methods pertaining to this model usually ombine an interest point dete-tor whih �rst �nds signi�ant points in images, whih should stay stable when imagingonditions or even objet instanes hange, and a loal image desriptor, whih is usedto desribe the loal appearane of the image. Some of the most well-known interestpoint detetion, loal image desription and omplete objet detetion methods werethen presented.



Chapter IIIMultiresolution Gabor features

Gabor �lters, originally introdued by Dennis Gabor in 1946 for 1D signals [23℄, havea well-known onnetion to reeptive �eld reeptor pro�les of mammalian visual sys-tems [13℄. They also are a realization of the general image proessing operator proposedby Granlund [25℄. Multiresolution struture of Gabor �lters is similar to wavelets, but itlaks the important orthogonality property [52℄: Gabor �lters do not form a basis. Theyform instead a frame, whih is a generalization of the basis without orthogonality andunique dual transform properties.Gabor �lters have been a popular feature extration method in last few deades, and dur-ing the 2000s the ativity has atually inreased aording to IEEE XploreTM database.The most important reason for the inrease is probably the wide suess in some applia-tion areas, suh as biometri authentiation. Methods based on Gabor features have beenvery suessful in iris reognition [14℄, large sale fae reognition ontests (e.g. 2 bestmethods in [59℄), and provided state-of-the-art auraies in �ngerprint mathing [40℄and fae loalization [30℄. It an be assumed that Gabor features will have an impor-tant role also in the future. However, in the relevant literature a major disadvantage ofGabor features, the omputational heaviness, is often overlooked. This Chapter explainsonstrution of Gabor �lters and e�ient omputation of multiresolution Gabor features.3.1 Construting Gabor featuresGabor �lters are linear �lters whose responses are de�ned by a sinusoidal wave multipliedby a Gaussian funtion. An example of a 2D Gabor �lter is presented in Fig. 3.1.Usually in image proessing Gabor �lter responses are used in a multiresolution struture:the features are based on responses of Gabor �lters on multiple sales and orientationsforming a multiresolution Gabor frame struture. While the Gabor �lter responses areomplex-valued, ommonly only response magnitudes are used, but it will be shown laterthat using the omplex values (or magnitude and phase presentation) improves resultsin many appliations. 35



36 3. Multiresolution Gabor features
(a) (b) ()Figure 3.1: Gabor �lter in 2D with parameters f0 = 0.2, θ = 0, γ = η = 1; (a)spatial domain, real omponent; (b) spatial domain, imaginary omponent; ()frequeny domain.3.1.1 1D Gabor �lterThe 1D Gabor �lter is presented �rst sine many of the e�ieny improvements an beobtained easily in 1D and then generalized to 2D Gabor �lters.A normalized Gabor �lter in the time domain an be de�ned as [44℄

ψ(t; f0) =
|f0|
γ
√
π
e
−

“

|f0|
γ

”2
t2
ej2πfot (3.1)where f0 denotes the �lter tuning frequeny and γ the �lter bandwidth. The �lterfuntion an be divided into two parts: a omplex sinusoidal wave on the tuning frequenyand a Gaussian envelope de�ning the e�etive time duration. The e�etive time durationis inversely proportional to the e�etive bandwidth via the unertainty relation.The orresponding equation in the Fourier domain is [44℄

Ψ(u; f0) = e
−

“

γπ
f0

”2
(u−f0)2 (3.2)where u denotes the frequeny.3.1.2 2D Gabor �lterSimilarly to the 1D ase, the 2D �lter an be divided into an elliptial Gaussian and aomplex plane wave. The �lter in the 2D spatial domain is [44℄
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ej2πf0x′

x′ = x cos θ + y sin θ (3.3)
y′ = −x sin θ + y cos θ



3.1 Construting Gabor features 37where the new variable θ denotes the rotation angle of both the Gaussian and plane wave.This is not the most general form of the 2D Gabor �lter, but a form whose propertiesare the most useful for image proessing, namely that the �lters in di�erent frequenieswith the same bandwidth parameters are saled versions of eah other. The bandwidthis ontrolled by two parameters, γ and η, orresponding to the two perpendiular axesof the Gaussian.The same �lter in the frequeny domain is [44℄
Ψ(u, v; f0, θ) = e

−π2
“

u′−f0
α2 + v′

β2

”

u′ = u cos θ + v sin θ (3.4)
v′ = −u sin θ + v cos θ.The �lter in (3.3) is entered to the origin and its response for an image funtion ξ(x, y)an be alulated at any loation (x, y) with the onvolution [44℄

rξ(x, y; f, θ) = ψ(x, y; f, θ) ∗ ξ(x, y)

=

∫∫ ∞

−∞
ψ(x− xτ , y − yτ ; f, θ)ξ(xτ , yτ )dxτdyτ .

(3.5)3.1.3 Multiresolution strutureA �lter bank onsisting of several �lters needs to be used beause relationships betweenresponses provide the basis for distinguishing objets. The seletion of disrete rota-tion angles θl has been demonstrated for example in [69℄, where it was shown that theorientations must be spaed uniformly.
θl =

l2π

n
l = {0, . . . , n− 1} , (3.6)where θl is the lth orientation and n is the total number of orientations to be used.The omputation an be redued by half sine responses on angles [π, 2π[ are omplexonjugates of responses on [0, π[ in the ase of a real valued input. The frequenies mustbe seleted exponentially [44, 50℄,

fl = k−lfmax l = {0, . . . ,m− 1}. (3.7)Common values for k inlude k = 2 for otave spaing and k =
√

2 for half-otavespaing.Using the features to over frequenies of interest f0, . . . , fm−1 and the orientations fordesired angular disrimination, one an onstrut a set of features at an image loation
(x0, y0). The �lter responses are arranged into matrix form as

G =







r(x0,y0;f0,θ0) r(x0,y0;f0,θ1) ··· r(x0,y0;f0,θn−1)
r(x0,y0;f1,θ0) r(x0,y0;f1,θ1) ··· r(x0,y0;f1,θn−1)... ... . . . ...

r(x0,y0;fm−1,θ0) r(x0,y0;fm−1,θ1) ··· r(x0,y0;fm−1,θn−1)






(3.8)where rows orrespond to responses on the same frequeny and olumns orrespond toresponses on the same orientation. The �rst row is the highest frequeny and the �rstolumn is typially the angle 0◦.



38 3. Multiresolution Gabor features3.1.4 Feature manipulation for invariant searhLinear row-wise and olumn-wise shifts of the response matrix orrespond to saling androtation in the input spae, and therefore, invariant searh an be performed by simpleshift operations: by searhing several spatial loations (spatial shift) and by shiftingresponse matries. With normalization of the response matrix, illumination invarianean also be ahieved [44, 48℄.Rotating an input signal ξ(x, y) anti-lokwise by π
n equals to the following shift in thefeature matrix

G =







r(x0,y0;f0,θn−1)
∗ r(x0,y0;f0,θ0) ⇒ r(x0,y0;f0,θn−2)

r(x0,y0;f1,θn−1)
∗ r(x0,y0;f1,θ0) ⇒ r(x0,y0;f1,θn−2)... ... . . . ...

r(x0,y0;fm−1,θn−1)
∗ r(x0,y0;fm−1,θ0) ⇒ r(x0,y0;fm−1,θn−2)






(3.9)where ∗ denotes omplex onjugate.Downsaling the same signal by a fator 1

k equals to the following shift in the featurematrix
G =







r(x0,y0;f1,θ0) r(x0,y0;f1,θ1) ··· r(x0,y0;f1,θn−1)
r(x0,y0;f2,θ0) r(x0,y0;f2,θ1) ··· r(x0,y0;f2,θn−1)

⇑ ⇑
. . . ⇑

r(x0,y0;fm,θ0) r(x0,y0;fm,θ1) ··· r(x0,y0;fm,θn−1)






(3.10)For this to work new low frequenies fm must be omputed and stored in advane whilethe highest frequeny responses on f0 vanish in the shift.3.1.5 Image reonstrutionThe original image path an be reonstruted from multiresolution Gabor featuresvia their bi-orthogonal transform funtions [71℄. An example of loal reonstrutionis demonstrated in Fig. 3.2. The reonstrution of a omplete objet an be performedby ombining features from several spatially distant points.

(a) (b)Figure 3.2: A multiresolution Gabor feature reonstrution example: (a) Origi-nal image of an eye; (b) Reonstruted image using responses from a single point(at the enter of an eye).



3.1 Construting Gabor features 393.1.6 Filter spaing - seletion of multiresolution feature parametersThe seletion of �lter bank values, �lter frequenies, bandwidths and number of orien-tations, is an appliation dependent problem. It is not, however, neessary to de�ne allparameters separately due to their interdependenies [35, 36℄. More detailed informationand the analytial solutions are presented in Appendix I.Filter frequeniesThe multi-resolution frequenies fi are drawn from f0 = fmax, f1 = fmax/k, f2 =
fmax/k

2, fm = fmax/k
m−1 and these equations de�ne the relationships between theother parameters in (3.1), (3.2), (3.3) and (3.4). Table 3.1 an be used to selet themulti-resolution feature parameters. Number of �lters is denoted by m, sale fator (2for wavelets) is denoted by k and p denotes the intersetion point of two onseutive�lters, whih for normalized Gabor �lters is between 0 and 1. Other parameters are �lterbandwidth γ and lowest and highest �lter tuning frequenies, fmin and fmax, respetively.The most useful approah is to selet the �lter bandwidth γ based on �lter spaing kand overlap p. Equation for this an be found in the �rst line of Table 3.1, p and k areknown and based on them γ is alulated as γ = 1

π

(

k+1
k−1

)√− ln p.Table 3.1: Parameter equations for �lter frequeny spaing.
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k m fmin fminkm−1Filter orientationsThe equations for frequeny spaing in Table 3.1 apply to both 1D and 2D �lters, butthe orientation spaing additionally depends on the number of orientations n and theminor axis bandwidth η. The analytial solutions an be derived and are olleted intoTable 3.2. Again the most useful equation is the seletion of �lter bandwidth η basedon the �lter overlap p and the number of �lter orientations n, whih gives equation
η =

√

− (ηπ2)2

4 ln p . The overlap p here is assumed to be the same for both frequeny andorientation spaing, but it an also be di�erent over the orientations. Note that theseequations are approximations. To get aurate �lter intersetion values for orientationspaing the whole elliptial envelope of the �lter should be onsidered, not only its minoraxis. However, the ost would be more omplex equations beause both η and γ wouldhave to be inluded and the di�erene to the approximation presented here is generallysmall.



40 3. Multiresolution Gabor featuresTable 3.2: Parameters equations for �lter orientation spaing.
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η nExample of filter spaingTwo �lter banks in the frequeny spae are presented in Fig. 3.3. Only the upper halfof the �lter bank is needed beause responses on the lower half are omplex onjugates.In Fig. 3.3(a) �lters are losely loated in the frequeny spae (k =
√

2) and therefore inthe frequeny diretion the �lters are relatively sharp (γ is large). The same value wasused for η and onsequently there are large gaps between �lters in di�erent orientations,and as a result some strutures in the image with spei� angles annot be deteted bythe �lter bank in Fig. 3.3(a). In Fig. 3.3(b) η has been solved based on equations inTable 3.2 and the gaps between �lters in di�erent orientations disappear.
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−0.5 (b) γ ≈ 2.35, η ≈ 1.03Figure 3.3: Examples of �lter banks in frequeny spae, both use m = 5, n = 4,
p = 0.2 and k =

√
2; (a) γ = η ≈ 2.35; (b) γ ≈ 2.35, η ≈ 1.03.3.2 E�ient omputationGabor �lters orrespond to linear �lters, so the most straightforward tehnique to �lteris via onvolution in the spatial domain. Standard onvolution with Gabor �lters anbe improved by utilizing the separability of Gabor �lters [8, 65℄ or their symmetry, anti-symmetry and wavelet harateristis to redue the number of needed multipliationsand additions [74℄. Certain approximation tehniques, suh as reursive Gabor approxi-mation [92℄ or an approximation by deomposition into Gaussians [6℄ lead to muh moree�ient omputation than normal spatial domain �ltering by onvolution, but limit the



3.2 E�ient omputation 41free seletion of �lter bank parameters. The approximations also do not guarantee thebene�ial feature spae properties [44℄. Therefore, without having to limit �lter bankparameter seletion to some speial ases, the textbook solution, performing �ltering inthe frequeny domain, often provides the most signi�ant general improvement.External knowledge on how the features are used is often negleted. The features aretypially used in a multiresolution struture utilizing several frequenies and orientations,and the stable numerial support for Gabor �lters is provided by a relatively smalle�etive area of the �lters. The multiresolution struture is similar to omputing Gaborfeatures on an image deomposed to a Gaussian pyramid, but using the Gaussian pyramidapproah the seletion of the �lter frequenies would be limited. Here no limitations areapplied as the unrestrited seletion of all �lter parameters is important for maximizingthe usability of Gabor features for all appliation areas in image and signal proessing.Sometimes Gabor �lter banks are optimized, for example, by �nding maximal separationbetween two input lasses [7℄, using a boosting tehniques [12℄, or using a stohastisearh method [86℄, whih enables using a fewer number of Gabor �lters leading to faster�ltering. However, these methods often lead to non-homogeneous parameter sampling,violating (3.6) and (3.7), whih in turn make invariant proessing di�ult beause signalrotation and saling annot be handled by simple matrix manipulations as in (3.9) and(3.10). It would be possible to start with a �lter bank respeting (3.6) and (3.7) andhaving a large number �lter orientations and sales and then optimizing it, i.e., removingsome of the �lters whih are not helpful for lassi�ation. However, the impat of thiswould be redued beause invariant searh would still require omputation of many of theremoved �lters. Therefore, these types of �lter bank optimizations are not onsideredhere. However, the presented e�ieny improvements still apply if suh methods areused.In this setion the most important harateristis of Gabor �lters and �ltering in bothdomains, spatial and frequeny, are disussed in the ontext of omputational omplexity.3.2.1 Related researhAt the ore of every Gabor feature is the �lter response in (3.5) omputed with theonvolution. 1D onvolution at one point requires O(M) operations for a �lter of length
M . For a signal of length N the total omplexity is O(MN). For 2D images and �ltersthe omplexity beomes O(M2N2). Due to these exhaustive omputing requirements,e�orts to derease the omplexity have been reported.If a �lter G an be expressed as a multipliation of two vetors, Gcol ∗Grow, it is sepa-rable. For separable �lters the onvolution an be omputed with two vetors, a olumnand a row vetor, reduing the omplexity from O(M2N2) to O(2MN2). Horizontaland vertial Gabor �lters are separable, the �rst vetor is a sinusoidal with a Gaussianenvelope and the seond a Gaussian envelope. The separability an be extended to overalso the angle 45◦ [65℄, but for arbitrary orientations the input image must be rotatedwhih inreases the omputational ost onsiderably.Gabor �lters also possess a signi�ant degree of symmetry and anti-symmetry whih anbe utilized to redue the number of multipliations needed for the onvolution [74℄. Forexample in Fig. 3.4 is a Gabor �lter where the value 0.0620 or its negation is repeated



42 3. Multiresolution Gabor featuresfour times around the enter of the �lter. Using generi onvolution the omputationonerning those four points would be 0.0620v1 + 0.0620v2 + (−0.0620)v3 + (−0.0620)v4whih inludes four multipliations and three additions. The same an be alulated as
0.0620 (v1 + v2 − v3 − v4), whih redues the number of multipliations to one. Similarre-ordering an be performed for many of the �lter loations. Utilizing these proper-ties for generi Gabor �ltering is not sensible beause of meager savings and ompleximplementation, but may be useful for an appliation using a �xed set of �lters.
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The onvolution an be performed in the Fourier domain, where it beomes the produtbetween the Fourier transform of the the �lter and the Fourier transform of the signal.The omputation in the Fourier domain requires forward and inverse Fourier transformsfor an input image. The standard disrete Fourier transform (DFT) is not used butthe fast Fourier transform (FFT) whih has the omplexity O(N logN) for 1D signals.Compared to normal onvolution in spatial domain with omplexity O(MN), the Fourierdomain �ltering is always faster unless the �lter size, M , is very small. The omplexityof 2D FFT is O(N2logN). The Fourier domain enhanements are most signi�ant dueto their generality and superior overall e�ieny. For �ltering in both domains savingsan be gained by using e�etive �lter envelopes whih will be presented next.



3.2 E�ient omputation 433.2.2 E�etive �lter envelopesThe support of a Gabor �lter is in�nite, but in the disrete domain the �lter size isalways limited. An e�etive �lter envelope orresponds to the smallest support areawhih ontains a prede�ned portion of the total �lter energy. Filter oe�ients outsidethe area an be disarded with a negligible e�et on the auray. The support area of aGabor �lter is de�ned by the Gaussian part of the funtion. The support of a Gaussianfuntion is elliptial [85℄, and therefore, the support area of a Gabor �lter is also elliptial.However, elliptial envelopes are not very useful from the omputational point of view,and the smallest retangular envelope enapsulating the elliptial envelope will be usedinstead. Using �lter envelopes, omputing time is redued signi�antly in spatial domain�ltering and a onsiderable amount of memory is saved in frequeny domain �ltering.1D envelopesThe envelope has the standard Gaussian form,
N(t;µ, σ) =

1

σ
√

2π
e−

(t−µ)2

2σ2 . (3.11)The integral of the Gaussian funtion orresponds to the umulative distributive funtionof the normal distribution,
G(x;µ, σ) =

1

σ
√

2π

∫ x

−∞
e−
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2σ2 dt . (3.12)The envelope an be solved from the inverse of the df: the point x where the df valueis p,
x = G−1(p;µ, σ) = {x : G(x|µ, σ) = p} . (3.13)Substitutions for µ and σ an be solved from the �lter equations in (3.1) and (3.2) yieldingthe substitutions µ = 0 and σ = γ√

2|f0|
in the time domain, and µ = f0 and σ = f0

γπ
√

2in the frequeny domain. The envelope resides symmetrially around the mean of thedistribution where the density is highest. Therefore, envelope end-points for the spatialdomain �lter with e ∈]0, 1[ energy are
xs = ±G−1

(
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) (3.14)and for the frequeny domain �lter
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)

. (3.15)Note that neither G nor G−1 an be solved analytially but e�etive approximationmethods exist and are inluded in many numerial omputing libraries.



44 3. Multiresolution Gabor features2D envelopesThe 2-D analog to the 1-D ase is an e�etive ellipse region, but for the omputationalreasons the ellipse must be replaed with a retangle overing the region. The separabilityof the Gabor �lters an be utilized, i.e., it is su�ient to solve two 1-D problems inluding
e1d perent of the �lter energy: total �lter energy is then e21d. The retangular envelopean be determined by �nding the ultimate dimensions of the e�etive area ellipse (seeFig. 3.5). The generi ellipse equation is a2

x2 + b2

y2 = 1. For a spatial domain �lter a isset to xs from (3.14) using the major axis bandwidth γ, and b is set to xs applying theminor axis bandwidth η. To solve the retangular envelope for a �lter in orientation θ, thepoints in the derivative of the ellipse equation with slopes c = tan θ and c = − tan(π
2 −θ)must be solved. These four points, (x1, y1), (−x1,−y1), (x2, y2), and (−x2,−y2), lie inthe border of the envelope. The points must be rotated in relation to the origin by θ toget the �nal envelope for the spatial domain �lter,
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. (3.16)Now, the smallest and largest x and y oordinates must be seleted from As. For θ = nπ
2(n = 0, 1, 2, ...) one of the slopes goes to in�nity and the four points are (a, 0), (−a, 0),

(0, b), and (0,−b).The envelope of a frequeny domain �lter is solved similarly, but the proess is started bysetting the values of a and b from (3.15). The frequeny domain envelope is not enteredat the origin, and therefore, f0 must be added to the oordinates prior to rotation.
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. (3.17)The atual envelope is again determined by the smallest and largest x and y oordinatesof Af .3.2.3 The highest neessary frequenyThe frequeny domain envelope has an important property: the higher bound de�nesalso the highest frequeny the �lter is attuned to, fhigh. The frequenies above fhigh arenot relevant for �ltering as the �lter response does not hange whether they are presentor not. Two examples an be seen in Fig. 3.6.The high frequenies are removed when the signal is downsaled: if fhigh is low enough,the image an be downsaled by a large fator leading to faster �ltering. An input imagean be downsaled before the �ltering by the saling fator
asf =

0.5

fhigh
, (3.18)where 0.5 is the Nyquist frequeny. After the downsaling, the �lter frequeny f mustbe adjusted, fnew = fold

0.5
fhigh

= asffold.
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Figure 3.5: Determining the 2D e�etive envelope in the spatial domain.Downsaling does not derease the auray of the Gabor responses diretly. The onlynegative e�et of downsaling is that the responses are omputed more sparsely, forexample, if an image is downsaled by a fator asf = 4 the responses an be omputedonly for every sixteenth pixel in the original image. Loss of this kind of resolution doesnot matter usually as the responses do not hange rapidly when the spatial loation ofthe �lter is hanged slightly. However, there are some exeptions, for example, even asmall deviation from the enter of a perfet irle will ause a large hange to responses.To solve fhigh the maximum distane from the origin to the furthest edge of the frequenydomain envelope must be found. The enter of the ellipse is loated at the point (f0, 0),where f0 is the frequeny of the �lter and its major axis a is direted along the u-axis andminor b along the v-axis (the frequeny axes). The values of a and b are set to xf from(3.15) by respetively applying major and minor axis bandwidths γ and η respetively.The distane from the origin is
d(x) =

√

(f0 + x)2 +

(

b

a

√

a2 − x2

)2

, |x| ≤ a . (3.19)The onept is illustrated in Fig. 3.7. The lower half of the ellipse an be ignored sineit is symmetrial to the upper half. Then, x an be solved from the previous equation,
x = − a2f0

a2 − b2
, b > a, |x| ≤ a . (3.20)The equation may result to a solution x > a in whih ase fhigh = f0 +a, otherwise fhighan be found by applying x to (3.19), fhigh = d(x).3.3 Optimal implementation frameworkThis setion desribes an optimal framework in whih the given properties and resultsare applied to enhane pratial omputation e�ieny. The optimality laim is basedon the analytially derived omplexities.
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Figure 3.7: Determining fhigh with the help of an ellipsoidal envelope of a 2DGabor �lter in the frequeny domain.3.3.1 Spatial domain �ltersA diagram of the �ltering in the spatial domain is presented in Fig. 3.8. The omplexitydepends diretly on the size of the Gabor �lter. The omplexity for alulating theresponse at a single loation is O(M2) and for an entire image O(M2N2).Prior to �ltering the input image an be downsaled by the fator asf in (3.18). Inpratie, only the integer fators, or even more preferably, the power of two fators, areuseful sine then the downsaling orresponds to an average of a group of pixels andinterpolation is not needed to avoid the aliasing e�ets. The omplexity of the averagingis O(N2) and every pixel partiipates one to produe N2/a2
sf pixels to the result image.When the image is downsaled, the frequeny of a �lter must be adjusted orrespondinglyby the fator asf leading to the �lter envelope beoming smaller by the fator 1

a2
sf

. The
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Figure 3.8: Diagram of spatial domain feature extration.omplexity of omputing a single response is now O(M2/a2
sf ) and for the entire image

O(
N2M2

a4
sf

) . (3.21)The total omplexity of omputing K �lter responses is either (without and with down-saling)
O(KM2) or O(N2 +K

M2

a2
sf

) (3.22)depending on whether it is worth to downsale or not. The smaller one of the twoomplexities an be seleted using the atual values of the parameters: in the �rst asethere are very few points to �lter (K is small) and downsaling would inrease theomplexity, and in the seond aseK is large enough for downsaling to beome bene�ial.There are two separate steps in the �ltering: the reation of a �lter and the �ltering itself.An algorithm for the reation of the spatial domain �lter is presented in Algorithm 1 andan algorithm for �ltering in the spatial domain in Algorithm 2.



48 3. Multiresolution Gabor featuresAlgorithm 1 Create a spatial Gabor �lter with parameters f , θ, γ and η.1: Solve fhigh using f , γ and η (Setion 3.2.3).2: Adjust f by asf , f ′ = asff , from (3.18).3: Solve �lter envelope E for a �lter with parameters (f ′, θ, γ, η) (Setion 3.2.2).4: Compute the �lter g for �lter area E with parameters (f ′, θ, γ, η).Algorithm 2 Filter an image s in the spatial domain with a �lter g (saling fator asf )at loations P = {(x, y)k}.1: Downsale the image s by fator asf , s→ s′.2: for All points p in P do3: Adjust the point's oordinate, p′ = p/asf .4: Compute response r(p) by onvolving the image s′ in the point p′ with the �lter g.5: end forThe symmetry and separability properties of Gabor �lters ould be applied here [8, 65,74℄, but are negleted sine their e�et ompared to the downsaling or frequeny domain�ltering would be small and they apply only to some spei� �lter on�gurations.3.3.2 Frequeny domain �ltersA diagram of the �ltering in the frequeny domain is presented in Fig. 3.9. The om-plexity is dominated by FFT and IFFT, whih is O(N2 logN). The size of the e�etiveenvelope is not as ruial in the frequeny domain as in the spatial domain sine theimage must be onverted to the frequeny domain and bak whether the �lter envelopeis used or not. However, most of the oe�ients will be lose to zero and an be omittedto minimize memory requirements and also the number of �oating point multipliationsdereases, but the e�et is small ompared to the omplexity of FFT.An input image an be downsaled in a similar manner as in the spatial domain. Anotheroption is to perform the downsaling in the frequeny domain, whih an be faster eventhough the spatial domain downsaling has lower omplexity than the FFT. In the mul-tiresolution struture the image needs to be onverted only one to the frequeny domain,but if the spatial domain downsaling is performed then the FFT has to be performed forall downsaled images. Downsaling in the frequeny domain an be performed by dis-arding frequenies higher than fhigh in the frequeny spae (see Fig. 3.6). The frequenydomain downsaling by the saling fator asf redues the IFFT omplexity to
O(

N2

a2
sf

log
N

asf
) . (3.23)It should be noted that responses must be multiplied by the fator 1/a2

sf to retain theorret response magnitude as ompared to the non-downsaled results.An algorithm for the �lter reation is presented in Algorithm 3 and for the �ltering inAlgorithm 4.
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Figure 3.9: Diagram of frequeny domain feature extration.Algorithm 3 Create a frequeny domain Gabor �lter with parameters f , θ, γ and η.1: Solve the �lter envelope E with parameters (f , θ, γ, η) (Setion 3.2.2).2: Compute the �lter g for �lter area E with parameters (f , θ, γ, η).3: Solve fhigh using f , γ and η (Setion 3.2.3).4: Solve saling fator asf , from (3.18).Algorithm 4 Filter an image s in the frequeny domain with a �lter g (saling fator
asf and �lter area E).1: Initialize r′ to the same size as s and set values to zero.2: Compute FFT of the image, s′ = F (s).3: Filter in �lter area, r′(E) = s′(E) ∗ g.4: Crop frequenies above 0.5

asf
out of r′.5: Transform responses bak to spatial domain with IFFT, r = F−1(r′).6: Sale response magnitudes, r = r 1

a2
sf

.3.3.3 Multiresolution �lteringMultiresolution Gabor feature extration is similar to the Laplaian pyramid [9℄. ALaplaian pyramid represents an image as a pyramid of quasi-bandpassed images (see



50 3. Multiresolution Gabor featuresFig. 3.10), where the bottom of the pyramid represents the highest frequeny ontent andis sampled densely, and the higher levels low frequeny information sampled inreasinglymore sparsely. Eah level of the pyramid redues the �lter's band limit by an otave,and the sample density an be redued by the same fator, i.e., to half a resolution. TheLaplaian pyramid was originally used for image ompression, but the multiresolutionGabor features, suh as simple Gabor feature spae [48℄, yield to a similar struture.Both the omputation time and memory are saved as the responses are omputed atlower resolution than the original image.

Figure 3.10: The struture of Laplaian pyramid.Implementing the multiresolution struture with Gabor �lters is straightforward. Algo-rithm 4 an be used as an example: the saling fator asf is seleted based on fhigh andthe resolution depends diretly on the frequeny. High frequeny responses are sampleddensely and lower frequenies inreasingly more sparsely. It should be noted that otavespaed �lter frequenies (k = 2) must be used if a similar struture to Fig. 3.10 is re-quired: four lower level responses orrespond to one response in the next level. If anothervalue for k is used then the pyramid struture will not have as lear orrespondenes be-tween responses at di�erent levels. In that ase, the pyramid levels an be downsaled tohalf size when the frequeny is suitable. A similar tehnique an be found for example inthe di�erene-of-Gaussians struture used in the SIFT interest point detetor [55℄. Forexample, with half-otave spaing (k =
√

2) there are always two pyramid levels withthe same resolution orresponding to two onseutive �lters, but for the third �lter thepyramid level an be saled to half size.Using the multiresolution struture an be problemati in the following proessing steps,for example, lassi�ation and objet reognition. If the responses in di�erent frequeniesmust be eventually used with the same resolution, sparse low frequeny responses mustbe upsaled bak to the required resolution. In pratie, it is preferable to ompute allresponses diretly at the same resolution and omit the upsaling proedure. The baseresolution is seleted based on the highest frequeny �lter, so proessing time an still



3.4 Results 51be saved if the highest frequeny allows.3.3.4 Seleting the optimal �ltering proedureThe deision whether the �ltering should be performed in the spatial or in the frequenydomain depends mainly on the number of points to be omputed. If the entire imagemust be �ltered, the frequeny domain �ltering pratially always outperforms the spatialdomain �ltering as is evident from the omplexities in (3.21) and (3.23) where the latter
log-lause is very likely to be smaller thanM2/a2

sf . When only K points are �ltered, thedeision of the �ltering domain is based on the omplexities in (3.22) and (3.23). Theoptimal deision tree is skethed in Fig. 3.11.
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Figure 3.11: Proedure path for optimal Gabor �ltering.3.4 ResultsSeletion of the optimal �ltering proedure was based on the analytially devised om-plexity equations, but inauraies in the responses indued by the proposed enhane-ments deserve a more pratial treatment addressed in this setion.3.4.1 Error indued by e�etive envelopesIf e�etive envelopes are used to redue the �lter size, the required proportion of the�lter energy must be seleted. The disarded �lter oe�ients indue error to the re-sponses. To study the behavior of the error, MSE (mean square error) was measured



52 3. Multiresolution Gabor featuresfor images ontaining Gaussian noise. MSEs as a funtion of the envelope energy areshown in Fig. 3.12. The e�etive envelope had a drasti impat on the omputing timein the spatial domain, but it also indued a proportional inauray to �lter responses(Fig. 3.12(a)). The size of the envelope had pratially no omputational e�et in thefrequeny domain as was expeted beause of FFT dominating the omputation time,and therefore, the �ltering should always be performed with a su�iently large envelopeas it provides better auray (Fig. 3.12(b)). Full size �lters may be used with smallimages, but otherwise the envelope energy limit between 0.99 − 0.999 seems to providesu�iently aurate results while saving a large amount of memory.
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(b)Figure 3.12: MSE between the responses of the full size �lter and the �lterwith an e�etive envelope (inluding relative time omplexity): (a) In the spatialdomain; (b) In the frequeny domain.3.4.2 Inauray due to the e�ieny improvementsThis experiment tests the e�ets of e�ieny improvements in a pratial and impor-tant appliation: what is the e�et to the speed and auray on the fae detetionexperiment using the XM2VTS image database [58℄. A detailed desription of the testis presented in Setion 5.2, and the fous here was only to evaluate how the proposede�ient omputation methods a�eted the results and the omputation time. Only thefrequeny domain �ltering was tested, sine the method always needs features from thewhole image and therefore the frequeny domain �ltering is always faster.In the frequeny domain hanging the �lter envelope energy, whih hanges also the sizeof the �lter, has only a small e�et on the omplexity (see Algorithm 4). Therefore, thespeed measurement results in Fig. 3.13(a) present no surprise as there were no speeddi�erene between the �lters of di�erent envelope energies. The detetion auray inFig. 3.13(b) however shows that the auray beame steadily better with higher energy.A large frequeny domain �lter (0.99 − 0.999) should be used, but not exessively largeas it leads to a waste of memory.
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54 3. Multiresolution Gabor features

2 4 8
0

0.5

1

1.5

2

2.5

Scaling factor

T
im

e 
(s

)

Filtering time
FFT complexity

(a) 2 4 8
95.5

96

96.5

97

97.5

98

Scaling factor

D
et

ec
tio

n 
ac

cu
ra

cy
 (

%
)

Without pruning
With pruning(b)Figure 3.14: Faial feature detetion auray and speed with image downsal-ing. (a) Filtering speed per image; (b) Detetion auray (note the sale ofy-axis).e�ient �ltering proedure an be seleted in a spei� setting. Finally, experimentalresults of indued inauraies aused by the proposed optimizations were presented. Itwas found that the proposed omputation improvements are able to signi�antly inreasethe feature extration speed with negligible e�et on the auray.



Chapter IVImage feature lassi�ation and ranking

Classi�ation and ranking of low-level features is needed for image feature detetion andreognition when they are searhed from observed images. During training phase, featurelasses are reated from training images by omputing loal image desriptors in markedpoints and then training a lassi�er for the loal image feature. In the detetion phaseloal image desriptors are reated for all points in the image, and the lassi�er determinesthe best andidates for eah lass, for example, loations most likely representing eye-enters. To avoid the problem of reating a bakground lass, representing anything elsethan the loal image features whih are being searhed, one-lass lassi�ers are used toonly learn the loal image feature lasses.Main loal image desriptor in this work is the multiresolution Gabor feature and Gaus-sian mixture models (GMM) are proposed as the lassi�er. However, alternative methodsan be used and their requirements will be disussed.This hapter starts with a bakground and desription of the used one-lass lassi�ationmethods. After that the loal image feature detetion method is presented. Additionallyproperties of the omplex-valued Gabor feature spae are studied beause they have beennotied to have surprising e�ets on the lassi�ation performane.4.1 Bakground and motivation for lassi�ationOne-lass lassi�ation, also alled novelty detetion, outlier detetion, or data desrip-tion [83℄, an be used to detet unharateristi observations. One-lass lassi�ationis neessary when samples an be obtained only from a single known lass, for exam-ple, normal operation mode in motor ondition monitoring where all failure modes arenot known. One-lass lassi�ation is also useful when the bakground lass ontainsenormous variations making its estimation unfeasible, for example, a bakground lassin objet detetion: the bakground lass should ontain everything exept the objet tobe deteted. One-lass lassi�ers are used for this reason in this study.55



56 4. Image feature lassi�ation and rankingAdditional requirement for the lassi�er in this appliation is that it must sort the featuresinto ranked order, it is not enough to simply deide whether a feature vetor belongs tothe lass or not. If a lassi�er is trained for deteting loal image features, for exampleeye-enters, in the detetion phase the eye-enter andidates must be returned in rankedorder where the �rst one resembles the eye-enter the most and the following ones less.4.2 Gaussian mixture modelsMany types of pdfs an be approximated with �nite mixture models. Finite mixturemodels ombine several single distribution forms to be able to approximate arbitrarilyomplex pdfs. The most ommon distribution funtion is the normal distribution (Gaus-sian distribution) beause it is a well-understood distribution with useful properties formany appliation areas [85℄.When the density of the data an be estimated, the easiest method for obtaining a one-lass lassi�er is to set a density value threshold to the estimated probability density[82℄. Gaussian mixture models (GMM) have been widely used in lassi�ation and gen-eral density estimation tasks, and they are also suitable for one-lass lassi�ation. Theexpetation-maximization (EM) is a general method for estimating the mixture modelparameters, and the EM algorithm is proved to onverge to the global maximum likeli-hood estimate if the overlap between the Gaussians in the model is su�iently small andthere is a su�ient amount of data [56℄.The multiresolution Gabor feature omputed in a single loation an be onverted fromthe matrix form in (3.8) to a feature vetor as
g = [r(x0, y0; f0, θ0) r(x0, y0; f0, θ1) . . . r(x0, y0; fm−1, θn−1)] . (4.1)4.2.1 Multivariate normal distributionThe multivariate normal distribution of a D dimensional random variable an be de�nedas
N (x; µ,Σ) =

1

(2π)D/2|Σ|1/2
exp

[

−1

2
(x − µ)T Σ−1(x − µ)

] (4.2)where µ is the mean vetor and Σ the ovariane matrix of the normally distributedrandom variable X. A multivariate Gaussian pdf is an elliptially ontoured distributionwhere the equiprobability surfae is a µ-entered hyperellipsoid [85℄.The Gaussian distribution in (4.2) an be used to desribe the pdf of a real valued randomvetor (x ∈ R
D). However, a similar form an be derived for omplex random vetors(x ∈ CD) as (e.g. [24℄)

NC(x; µ,Σ) =
1

πD|Σ| exp
[

−(x − µ)∗Σ−1(x − µ)
] (4.3)where ∗ denotes the adjoint matrix.For a multimodal random variable, where values are generated by several randomlyourring independent soures instead of a single soure, a �nite mixture model an be



4.2 Gaussian mixture models 57used to approximate the true pdf. If the Gaussian form is su�ient for single souresthen a Gaussian mixture model (GMM) an be used in the approximation. However,the underlying distributions do not need to be Gaussians as GMMs an approximate anyother distribution given a large enough number of omponents.The GMM probability density funtion an be de�ned as a weighted sum of Gaussians
p(x; θ) =

C
∑

c=1

αc N (x; µc,Σc) (4.4)where αc is the weight of cth omponent. The weight an be interpreted as a prioriprobability that a value of the random variable is generated by the cth soure, and thus,
0 ≤ αc ≤ 1 and ∑C

c=1 αc = 1. A Gaussian mixture model probability density funtion isompletely de�ned by a parameter list [16℄
θ = {α1,µ1,Σ1, . . . , αC ,µC ,ΣC} . (4.5)The main problem is how the parameters in (4.5) an be estimated from the training data.The most popular estimation method is the expetation maximization (EM) algorithm.The problem with the algorithm is that it requires the number of Gaussians, C, as aninput parameter. The number is often unknown and there is a strong motivation to applyadaptive unsupervised methods, suh as that of Figueiredo-Jain [20℄ or the greedy EMalgorithm [87℄. The standard EM algorithm has been shown to outperform the adaptivemethods if the orret number of mixture omponents is known, but in the absene ofsuh knowledge the adaptive estimation algorithms give aurate and reliable results [68℄.Of the two adaptive methods the Figueiredo-Jain was noted to provide more aurateresults and it has been extended to omplex values, and an therefore be diretly appliedto estimation of pdfs of omplex multiresolution Gabor feature vetors in (4.1).4.2.2 One-lass lassi�ation using on�dene with GMMIn our ase on�dene is used to estimate the reliability of a lassi�ation result wherea lass label is assigned to an unknown observation. If the on�dene is low it is moreprobable that a wrong deision has been made. Intuitively a value of lass onditionalpdf at an observation orresponds to deision on�dene for favor of the orrespondinglass: the higher the pdf value is, the more lass instanes appear similar to the observa-tion. However, using pdf values diretly an be di�ult sine they are arbitrarily saled.Con�dene values are always in the range [0, 1].The most straightforward use of on�dene is to �nd a pdf value threshold for a lass [82℄.The threshold an be used to deide whether an observation is su�iently similar to thelass in question. The threshold an be seleted based on the training data, for example,by seleting a pdf threshold for whih half of the training data yields higher pdf values(median). Another possibility is to selet the threshold using on�dene: �nding athreshold whih inludes a ertain proportion of the total probability mass. The pdftype is not limited to a single Gaussian distribution but to a mixture of models withan arbitrary number of omponents. The seletion method an be easily generalized forother types of pdfs.



58 4. Image feature lassi�ation and rankingTo be a proper probability measure the on�dene value should satisfy ∈ [0, 1]. For anysupport regionR of the de�nition spae Ω of the pdf, R ⊆ Ω, it holds that 0 ≤ p(x) <∞,
∀x ∈ Ω. The on�dene value is de�ned via value κ whih related to a non-uniqueon�dene region R suh that [68℄

∫

Ω\R
p(x)dx = κ . (4.6)The proposed on�dene value is easily interpretable via the on�dene region R whihovers a proportion 1 − κ of the probability mass of p(x) beause for all probabilitydistributions ∫

Ω
p(x)dx = 1. It is lear that κ = 1 for R = ∅ and κ = 0 for R = Ω. Theon�dene value has no meaning until the region R is de�ned as the minimal volumeregion. The minimal volume region is alled the highest density region (HDR) [33℄. Forsome distribution types the HDR an be non-unique (e.g., the uniform distribution).The proposed on�dene value, 1 − κ, orresponds to the smallest region whih inludesobservation x and has a probability mass κ, de�ned as HDR.A on�dene value orresponds to a proportion of a probability mass in the area Rj forthe lass ωj. In one-lass lassi�ation the on�dene region Rj an be used instead ofthe on�dene value: a sample vetor x is allowed to enter the lass ωj only if x ∈ Rj .If a sample is not within the on�dene region of any of the lasses it is lassi�ed toa bakground lass. The bakground lass is a speial lass and samples assigned tothe lass may need speial attention depending on the appliation. For example, in atwo-lass problem where data is available only from one lass the bakground lass mayrepresent another lass with an unknown distribution.To �nd the on�dene region a reverse approah an be used to �nd a pdf value τ whihis at the border of the on�dene region: τ must be equal everywhere in the border,otherwise the region annot be the minimal volume region [33, 39℄. τ an be omputedby rank-order statistis using the density quantile F (τ) (e.g., [33℄) and by generatingdata aording to the pdf. It is assumed that the gradient of the pdf is never zero in theneighborhood of any point where the pdf value is nonzero. An example of the on�deneregion an be seen in Fig. 4.1.4.2.3 Con�dene estimation algorithmsAn analytial solution to the GMM on�dene region annot be solved and thereforeestimation must be used. Estimation an be based on the GMM training data diretly,or it an be based on randomly generated data derived from the estimated pdf. Ifon�dene is determined based on the training data, volume of the on�dene regiondoes not neessarily have a diret relation to the on�dene value: if a threshold isseleted to inlude 50% of the training data, volume of the region may not be half of thetotal volume.A pdf value threshold for p(x) an be seleted with the help of training data. First, aumulative pdf value histogram H for the data x1..N is reated (Algorithm 5). Seond,the threshold an be found using the umulative histogramH and the required on�denevalue c = 1 − F (τ) using Algorithm 6.
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Figure 4.1: The highest density region (HDR) of a two-omponent GMM pdfand the orresponding threshold in one dimension. The on�dene region is nota simple onneted set.Algorithm 5 Create a umulative on�dene histogram H for pdf p(x) with sample vetors
x1..N (training data)1: for k = 1..N do2: Calulate pdf value for xk, Hk = p(xk)3: end for4: Sort H in asending order, H=sort(H)5: Return H.Algorithm 6 Selet a pdf threshold value τ for the on�dene value c using the umulativeon�dene histogram H1..N1: Selet histogram position, m=round(c ∗ N)2: Return τ = Hm.The on�dene value for a new sample x an be alulated using Algorithm 7.Algorithm 7 Return on�dene value c for a sample vetor x using the umulative on�denehistogram H1..N of the pdf p(x)1: Calulate pdf value for the sample vetor x, px = p(x)2: Selet position of the losest pdf value to px in H, m = argmini|Hi − px|3: Return c = m/N .In Algorithms 6 and 7 interpolation an be used instead of seleting the nearest value.In the ase of Gaussian mixture models, it may be bene�ial to use randomly generateddata. An algorithm for generating random data for any GMM is presented in Algorithm 8.The algorithm has been extended to multiple omponents from an algorithm presentedin [85℄.



60 4. Image feature lassi�ation and rankingAlgorithm 8 Generate N random samples, X, for a D-dimensional GMM of C omponentswith weights α1..C , mean vetors µ
1..C and ovariane matries Σ1..C1: k=12: for c = 1..C do3: T = hol(Σc) {Cholesky deomposition }{Number of generated samples depends on the weight of the omponent, αc }4: for 1..round(αcN) do5: Z = randn(1 × D) {Generate D independent normally distributed (µ = 0, σ = 1)random variables}6: Xk = ZT + µc7: k=k+18: end for9: end for4.2.4 Experiments using on�deneThe �rst experiment studies the required amount of data for distributions with inreas-ing number of dimensions. The seond experiment demonstrates the bene�ts of theon�dene information on an image feature loalization problem.Data generationThe auray of the on�dene and threshold omputation methods with Algorithms 5, 6,7 and 8 depends only on the amount of data, if the data and the estimated GMM representthe same underlying distribution. If that assumption holds, the only inauray in theon�dene values is aused by the limited amount of data. If the distributions deviateslightly from eah other, whih is typially aused by the GMM parameter estimation, theon�dene values may be biased. If there is a large disrepany between the distributionsthe on�dene values may beome ompletely useless, for example, all beome binarizedto either 0 or 1.Here the relationship between data dimensionality and the required number of randomsamples is studied. To avoid the issue of distribution mismath, a D-dimensional GMMpdf was generated semi-randomly and data was derived from the generated GMMs.Random data was generated with Algorithm 8 and then a pdf threshold was searhedwith Algorithms 5 and 6. For eah value of D the number of required samples wasevaluated repeatedly; eah evaluation onsisted of reating a semi-random ovarianematrix and �nding a number of samples at whih the standard deviation of the foundpdf threshold value for on�dene c = 0.5 was varying at most by 1% from the meanvalue. The result is shown in Fig. 4.2.The number of required samples inreased linearly with the data dimensionality. Despitethe fat that the size of the ovariane matrix inreases quadratially, and the numberof required samples ould be assumed also to grow quadratially, the linear dependenyis as expeted based on the data generating Algorithm 8: a D-dimensional sample isgenerated using D random numbers. In pratie this means that the data generation isfeasible even for high dimensional distributions beause the required number of samplesgrows only linearly.
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+/− std devFigure 4.2: Required number of generated samples for a pdf threshold estimate(c = 0.5).Image feature detetion with onfideneThe detetion algorithm presented in Setion 4.4 returns a �xed number of highest rankedimage features found in the image. One obvious problem is that in the ase when there isnothing to detet, a �xed number of points will still be returned. Image feature detetionis followed by spatial onstellation model searh, whih will then do useless work if thereare spurious loal image features. Also, when the objet to be deteted is present in theimage, returning a �xed number of features may not be optimal, but the number shouldbe deided adaptively.In this example the use of on�dene information is demonstrated in the fae detetionexperiment, whih is explained with more detail in Setion 5.2. This spei� example,results presented in Fig. 4.3, is onerned with searhing one spei� image feature, theleft nostril, from an image. Fig. 4.3(a) shows a pdf surfae from a GMM pdf trainedfor reognizing the left (in the image) nostril. Figs. 4.3(b) and 4.3() show only theon�dene regions orresponding to 0.01 and 0.50 on�dene values. The orret imagefeature loation and very little else was inluded in the 0.50 on�dene region, and eventhe 0.01 on�dene region disarded very large part of the image.4.3 One-lass SVM (support vetor mahine) lassi�erThe single-lass SVM (support vetor mahine) lassi�er used in this study was a one-lass lassi�er based on a µ-SVM lassi�er [79℄. The one-lass SVM algorithm startswith a set of points and estimates a region with a spei�ed fration of the points. Severaldi�erent regions are possible, whih region is seleted depends on the kernel and usedregularization. Internally the algorithm funtions by mapping the data to a featurespae using a kernel and �nding a hyperplane separating the data from the origin witha maximum margin. Fig. 4.4 shows an example. A new data point is lassi�ed based onwhih side of the hyperplane it falls on the feature spae.
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(a) (b) ()Figure 4.3: Example of using density quantile for de�ning on�dene regions: (a)pdf value surfae for the left (in the image) nostril lass; (b) on�dene threshold

0.01 (F (τ ) = 0.99); () on�dene threshold 0.50 (F (τ ) = 0.50).The algorithm starts with a set of unlabeled training data
X = x1, . . . , xm ⊂ X , (4.7)where m is the number of observations and X is some set, usually R

N . As usual withSVM algorithms, data point x is mapped to a dot-produt spae, X → X, with Φ(x)and the feature spae is de�ned so that a simple kernel an be used to evaluate thedot-produt (denoted by 〈·〉),
k(x, x′) = 〈Φ(x),Φ(x′)〉, (4.8)suh as the Gaussian, whih is often alled RBF (radial basis funtion) kernel,
k(x, x′) = e−‖x−x′‖2/σ. (4.9)The algorithm returns value +1 for a small region apturing most of the training dataand −1 elsewhere. To separate data from the origin, the following quadrati program issolved:

minimize
w∈X,ξ∈R

m,ρ∈R

1

2
‖w‖2 +

1

νm

∑

i

ξi − ρ , (4.10)
subject to 〈w,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 . (4.11)Here, ν ∈]0, 1], is a parameter whih ontrols the number of outliers and support vetors,

ξi are the slak variables, and ρ is the the margin to hyperplane. Slak variables ξi areused to penalize outliers in the objetive funtion. The deision funtion is
f(x) = sgn (〈w,Φ(x)〉 − ρ) , (4.12)
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Figure 4.4: A hyperplane separating data from the origin with some outliers.whih is de�ned so that sgn(z) equals 1 for z ≥ 0, −1 otherwise. Using multipliers
αi, βi ≥ 0 for the weights of support vetors and outliers respetively a Lagrangian isintrodued,
L(w, ξ, ρ, α, β) =

1

2
‖w‖2 +

1

νm

∑

i

ξi − ρ−
∑

i

αi(〈w,Φ(x)〉− ρ+ ξi)−
∑

i

βiξi . (4.13)Setting the derivatives with respet to the primal variables w, ξ and ρ equal to zero,yields to
w =

∑

i

αiΦ(xi) , (4.14)
αi =

1

νm
− βi ≤

1

νm
,
∑

i

αi = 1 . (4.15)The deision funtion (4.12) an now be transformed using (4.13) and (4.8) into
f(x) = sgn

(

∑

i

αik(xi, x) − ρ

)

. (4.16)The dual problem an be obtained by substituting (4.14) and (4.15) into Lagrangian L,(4.13), and by using the kernel, (4.8),
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minimize
α∈R

m

1

2

∑

ij

αiαjk(xi, xj) , (4.17)
subject to 0 ≤ αi ≤

1

νm
,

∑

i

αi = 1 .It an be shown that at the optimum the two inequality onstraints in (4.11) beomeequalities if αi and βi are not equal to zero. Exploiting any suh αi > 0 ρ an bealulated,
ρ = 〈x,Φxi〉 =

∑

j

αjk(xi, xj) . (4.18)Interpretation of the parameter ν follows. When the parameter approahes zero, theproblem beomes a hard margin problem, sine the penalization of errors is then in�nite.The problem is still feasible but the margin may beome negative. Overall, the parameter
ν haraterizes the fration of outliers and support vetors. Outliers are the points whihare on the wrong side of the hyperplane. As a rule of thumb, ν is the lower bound forthe fration of support vetors and upper bound for the fration of outliers.Some examples of the e�ets of parameters ν and the RBF kernel size σ are presentedin Fig. 4.5. The SVM lassi�er has been reated for a simple 2D problem, where thereare two distint sets of points. One problem ase an be seen in Fig. 4.5(a), where thekernel size is too small and the lassi�er is overly omplex. On the other hand, a toolarge kernel size may reate a too simple solution, as an be seen Fig. 4.5(). When theparameter ν is small, see Fig. 4.5(d), only a few outliers are allowed and the distributionmay again beome too omplex. Large ν on the other hand leads to a large number ofoutliers, see Fig. 4.5(e).By default this SVM lassi�er only outputs a binary lassi�ation deision based onwhih side of the hyperplane the point falls. This is not suitable for use in the imagefeature detetion desribed in this thesis; image feature andidates must be available inranked order, the most likely andidates having the largest values. While the theory isnot as well formulated as in the ase of GMM pdfs, this is still possible. The lassi�ationdeision in (4.16) �rst omputes the distane to the hyperplane, whih is positive whenthe point belongs to the lass, and then uses the sgn(·) funtion to binarize it to either
1 or −1. If the sgn(·) funtion is omitted, deision is a real valued number, the higher itis the further away on the inlusion side the point is from the hyperplane, and therefore,in the most �dense� part of the distribution. This method is used to rank image featureswith a one-lass SVM lassi�er in this thesis.4.4 Supervised image feature detetion methodThis setion presents the supervised image feature detetion method, �rst the train-ing phase and then the detetion phase. Requirements for loal image desriptors andlassi�ers are also disussed.
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(a) ν = 0.5, σ = 0.2
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(b) ν = 0.5, σ = 0.8
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() ν = 0.5, σ = 0.2
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(d) ν = 0.1, σ = 1.0
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(e) ν = 0.5, σ = 1.0
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(f) ν = 0.9, σ = 1.0Figure 4.5: Examples of the SVM lassi�er and e�ets of ν and RBF kernel-size, σ, parameters. Thik line presents the deision boundary for lass inlusion;(a)-() Di�erent kernel size σ, onstant ν; (d)-(e) onstant kernel size σ, varying
ν.4.4.1 Training the detetorThe loal image feature detetor training method is presented in algorithmi form inAlgorithm 9 and visualized in Fig. 4.6 (detetor for left eye-enters). The eye-entersmust be annotated in the training images, and loal image desriptors for those areas areomputed. After the desriptors have been omputed for all annotated positions in thetraining images, a lassi�er is trained. In our ase, the lassi�er is a one-lass lassi�erwithout a bakground lass.Algorithm 9 Training a loal image feature detetor1: for all Training images do2: Align and normalize image to represent an objet in a prede�ned standard pose3: Compute multiresolution Gabor features at given landmark loations4: Normalize the features5: Store the features to the sample matrix P and their orresponding lass labels (lassnumbers) to the target vetor T
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Figure 4.6: A oneptual diagram of loal image feature reation for an loalimage feature detetor (left eye-enter).6: end for7: Train a one-lass lassi�er using samples in P separately for eah lassIn the Algorithm 9 the training images must �rst be aligned to a standard pose: the poserepresenting objets in the same sale and orientation. After the images have been trans-formed to the standard pose, multiresolution Gabor features in (3.8) are omputed atannotated landmark image feature loations. Feature matries an be energy-normalizedif a omplete illumination invariane is required. Eah feature matrix is reformatted intoa vetor form in (4.1) and stored in the sample matrix P along with the orrespondingimage feature labels, T . Finally, pdfs (probability density funtions) over the omplexfeature vetors are estimated for eah image feature lass separately. The standard las-si�er has been a GMM lassi�er, but generi requirements for the lassi�er are presentedlater.



4.4 Supervised image feature detetion method 674.4.2 DetetionDetetion is performed as presented in Algorithm 10. The detetion proedure is visu-alized in Fig. 4.7. Loal image desriptors are omputed and lassi�ed separately for allpoints in the image. Beause a one-lass lassi�er is used and there is no bakgroundlass, the lassi�er only outputs a likelihood or probability value for a desriptor to be-long to the spei� feature lass. Complete likelihood desription (likelihood image) anbe omputed from the whole image and the highest values an be seleted as the mostprominent image feature andidates (see Fig. 4.7). The only requirement for the lassi�eris that the value is higher the more the desribed point resembles the trained lass.

Figure 4.7: A oneptual diagram of image feature detetion (left eye-enter).Algorithm 10 Detet K best image features of eah image feature lass from image
I1: Normalize image if needed2: Compute multiresolution Gabor features G(x, y; fm, θn) for the whole image I(x, y)



68 4. Image feature lassi�ation and ranking3: for all Sale shifts do4: for all Rotation shifts do5: Shift Gabor features6: Normalize Gabor features7: Apply the lassi�er to ompute likelihood values for all lasses and for all (x, y)8: end for9: end for10: Sort the the likelihood of image features values for eah lass11: Return the K best andidates of eah image feature lassIf the observed images vary heavily in their photometri quality (e.g., large brightnessand ontrast di�erenes), they an be �rst normalized. From the normalized imagemultiresolution Gabor features are extrated at every spatial loation and likelihoodvalues for all image feature lasses are omputed for all invariane shifts. If Gabor featureswere energy normalized in the training phase the same normalization must be appliedhere. To save memory, only some prede�ned portion of the highest likelihood values anbe stored instead of storing all likelihood values. After the shifts have been inspetedthe best image feature andidates are returned and sorted based on the likelihood values.With this approah one loation may represent more than one image feature, but eahfeature an be assigned to one pose only.4.4.3 Requirements for the loal image desriptorThe two algorithms (Algorithm 9 and Algorithm 10) assume that multiresolution Gaborfeatures are used as loal image desriptors. However, in general the seletion of thedesriptor is free: any method an be used, but the method has to be fairly fast duringthe detetion phase sine loal desriptors must be omputed for all points in the image,or at least for a reasonably large portion of all points if sparse sampling is used. Sparsesampling means that a part of the points are omitted either systemially (e.g., handleevery seond or fourth pixel) or by adaptively sampling more densely in areas wherelikelihood values have been large. For the same reason also the lassi�er has to be e�ientin proessing a large number of feature vetors. Fortunately with most lassi�ers onlythe training phase is omputationally heavy.4.4.4 Requirements for the lassi�erThere are few hallenges in lassi�ation of multiresolution Gabor features for imagefeature loalization. Firstly, the features are omplex-valued whih many lassi�ers donot expliitly onsider. Seondly, the loalization proess is simpli�ed if the bakgroundlass an be avoided leading to use of one-lass lassi�ers, whih are not as ompletelystudied as more typial two-lass lassi�ers. Thirdly, the feature-spae of multiresolutionGabor image features an be surprisingly omplex for ertain types of even simple signals,whih an ause problems for some lassi�ers. The properties of the feature spae arestudied in Setion 4.5. Fourthly, as already mentioned, the lassi�er should be fast, asexhaustive searh over the whole image or at least a large portion of it is performed.Based on the above mentioned requirements Gaussian mixture model (GMM) lassi�erwas used in this study. Gaussian mixture models an be extended to omplex values,



4.5 Properties of omplex-valued Gabor feature spae 69GMM is suitable for single-lass lassi�ation and are reasonably fast. The remainingunsolved property is the omplex behavior of the feature spae and GMM's di�ulty inestimating it properly from limited training data. The seletion of an optimal lassi�-ation strategy is still an open issue, but fortunately GMM performs well in pratie.Additionally, for the GMM lassi�er on�dene an be de�ned from a solid probabilistibakground.A variant of the support vetor mahine (SVM) was tested as an alternative. For theSVM lassi�er the main problem is speed: usually quite large number of support vetorsis required to ahieve su�ient detetion auray and this leads to slow lassi�ation.The lassi�er an be tuned to use fewer number of support vetors, but the downsideis that detetion auray su�ers, and the main bene�t as ompared to GMM is lost,namely, that the SVM lassi�er annot anymore learn the omplex feature spaes better.Gaussian mixture models and multiresolution Gabor features have two interesting, al-though not unique, properties whih are demonstrated in Fig. 4.8. First of all, estimationof GMM is similar to lustering and the found mixture omponents an be illustratedby searhing the losest mathes in the training set. This and the fat that images anbe reonstruted from multiresolution Gabor features provides a nie property that boththe lassi�er and the image features an be examined visually.

Figure 4.8: Properties of GMM and multiresolution Gabor-features enable visu-alization of lassi�er and image feature extration performane.4.5 Properties of omplex-valued Gabor feature spaeIf an assumption about statistial properties of multiresolution Gabor features is made,it is usually assumed to be Gaussian [73℄, [90℄ or a mixture of Gaussians [80℄. It ishowever easy to show that even for a simple pattern the Gaussian distribution may besurprisingly far from the atual distribution and an lead to non-optimal results. Here,



70 4. Image feature lassi�ation and rankingresults from various situations where the responses of a single Gabor �lter have non-Gaussian properties are presented with some experimental results with multiresolutionstrutures where the distributions beome even more omplex.In this setion properties of Gabor features are studied experimentally with a 1D signalwithout loss of generality in 2D. The experiments demonstrate situations where theGaussian assumption severely fails.4.5.1 Sensitivity to small misalignmentsIn Fig. 4.9 is a signal with two spikes at distane of 2d, where d = 50, and a Gabor �lterwith frequeny f = 1/d. The spikes are loated one wavelength o� the enter of theGabor �lter and the �lter has a strong response when loated exatly between the twospikes. However, when the �lter is moved slightly away from the enter, there will belarge hange in the omplex responses. To properly interpret the behavior in Fig. 4.9 itmust be imagined in 2D Re-Im spae whih will be onsidered later.
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4.5 Properties of omplex-valued Gabor feature spae 71e�et an be either seen as a bene�ial or a harmful property. On the positive side, thesignal an be loated exatly beause the responses hange rapidly as the �lter loationdeviates from the enter (Fig. 4.9). On the negative side, for example, objet detetionmay beome di�ult if Gabor responses hange rapidly around a target objet. Stabilityan be inreased by using the �lter magnitudes instead of omplex responses, but thissigni�antly redues the representative power of the �lter, and the problem should berather avoided by a proper lassi�ation method or a similarity measure.4.5.2 E�et of hanges in the signalSmall perturbations in the loation an ause surprisingly large hanges in the �lter re-sponses and misalignments frequently ours in pratie. Combined with other potentialhanges in signals, multiresolution Gabor feature values may form a very omplex stru-ture. The response spae from the previous example (Fig. 4.9) is presented in Fig. 4.10(a),where the position of the Gabor �lter is hanged ±5 units from the enter. There is onlya small hange in the x-axis (real values), but a large variation in the y-axis (imaginaryvalues).If the distane between the spikes hanges the spikes are not exatly at the distane ofthe Gabor �lter wavelength. The imaginary response stays at zero beause the signalstays symmetri. An example of the response spae is presented in Fig. 4.10(b) where
d = 30..50. When the spikes are moved loser to eah other, the response will beomezero at a distane 2 3

4d as the spikes are loated at points where the real part of the Gabor�lter rosses zero. If spikes are moved even loser the response beomes negative.
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(b)Figure 4.10: Response spae of Gabor features with various alterations to thesignal in Fig. 4.9: (a) Loation of the Gabor �lter hanged by ±5 units; (b)Distane between spikes hanged, d = 30...50.When both types of alterations are ombined, the loation of the Gabor �lter varies by
±5 and d = 30..50, the response spae beomes inreasingly omplex as an be seen in



72 4. Image feature lassi�ation and rankingFig. 4.11(a). However, addition of a large amount of Gaussian noise to the signal doesnot ause a dramati hange (Fig. 4.11(b)). Furthermore, if the signal's ontrast hanges,i.e., how large its amplitude is ompared to the bakground, the responses will be linearlysaled towards or away from the origin (not presented here).
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(b)Figure 4.11: Response spae of Gabor features with various alterations to thesignal in Fig. 4.9: (a) Loation of the Gabor �lter hanged by ±5 units anddistane between spikes hanged, d = 30...50; (b) Gaussian noise added to thesignal.Previous examples used only one Gabor �lter, but with multiresolution Gabor featuresmany �lters at many frequenies and orientations are used. With two Gabor �lters theresponse spae beomes 4-dimensional (two omplex valued responses) whih is not easilydemonstrated. A simpli�ed demonstration of multiresolution responses is presented inFig. 4.12(a) where in the x-axis are the response magnitudes of the previous example(omplex responses in Fig. 4.10(b)), and in the y-axis magnitudes of �lter responses fora �lter at f = 1/35. The resulting response spae is far from Gaussian, and the featurespae does not get any less omplex when the �lter position is hanged by ±5 units andnoise is added as shown in Fig. 4.12(b).4.5.3 ExperimentsExperiments with generated and real data were onduted in order to demonstrate dif-�ulties for standard lassi�ers assuming Gaussianity to lassify multiresolution Gaborfeatures as ompared to more ompliated lassi�ers. However, simple lassi�ers areneeded beause multiresolution Gabor features are often involved in low level proessing,where e�ieny is important.Two di�erent one-lass lassi�ers have been used in these experiments, a lassi�er basedon Gaussian mixture models (GMM), presented in Setion 4.2, and a one-lass supportvetor mahine lassi�er, presented in Setion 4.3.
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(b)Figure 4.12: Response spae of magnitudes of two Gabor �lters: (a) On x-axisresponse magnitudes for a Gabor �lter with f = 1/50 and on y-axis f = 1/35for a signal with distane between spikes d = 30..50; (b) Loation of Gabor �lterhanging by ±5 and Gaussian noise.Artifiial pollen imagesArti�ial pollen images resemble real pollen images (Fig. 4.14(a)) whih have been usedin a detetion and identi�ation task [77℄. Multiresolution Gabor features were appliedfor the same task, but surprising problems in lassi�ation of the features were observed.A simpli�ed test with arti�ially reated images was onduted to eliminate the e�et ofvarious imperfetions in images of real pollens. The variables for arti�ial pollen reationare their radius, the edge width and ontrast, and added Gaussian noise (Fig. 4.13(a)).Multiresolution Gabor features were omputed at enters of pollens for 500 training im-ages, eah with 5-9 arti�ial pollens. The images, originally 1024×1024, have been down-saled by fator of 8, beause the �lters only use low frequenies and omputing responsesfor a low resolution image is muh faster. However, the downsaling introdues misalign-ment. An example of feature spae for Gabor �lters at frequeny f = 1/50, θ = 0◦ ispresented in Fig. 4.13(b). Variation in the diretion of real axis was aused by varia-tions in the radius. The variations along the imaginary axis (anti-symmetry) are verysmall beause the enter loations are known preisely and the objets are symmet-ri, but downsaling to 1/8th of the original size auses an impreision to the enterposition. When a Gabor �lter is not preisely in the enter, the pollen is pereivedas anti-symmetri, whih leads to responses not being purely real. The eight di�erentmisalignment positions aused by downsaling an be seen in the response spae (seeFig. 4.13(b)) as eight distint �stripes�. If downsaling is not used, leading to a dras-ti inrease in �ltering time, the stripes disappear beause the enter positions are nowexatly orret (see Fig. 4.13()).Real pollen imagesThe next experiment involved real pollen images � an example an be seen in Fig. 4.14(a).The radiuses of real pollens varied from 35 to 80 pixels. The real pollens are far from
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()Figure 4.13: Arti�ial pollen experiment. (a) An arti�ial pollen image (pollensof radius 35 − 50, varying edge widths and ontrasts, and Gaussian noise). (b)Gabor responses from the enters of arti�ial pollens at frequeny f = 1/50 and
θ = 0◦ with downsaling to 1/8th size; () Without downsaling.perfet irles and there were also three di�erent types of pollens present in the images.Furthermore, the enters annot be marked exatly, and thus, it is no surprise that Gabor�lter responses do not form as symmetri pattern as with the arti�ial pollen experiment(Fig. 4.13(b)), but a smoother loud (Fig. 4.14(b)). Still, most of the responses areloated lose to imaginary value 0 and vary in the diretion of the real axis, where thevariations are explained by varying radiuses. Phenomenon an be more easily seen whenonly angles of the omplex responses are observed, see Fig. 4.14(). Note that only asingle feature is present in the �gure; the whole feature spae is more omplex and lessGaussian beause of the e�ets explained previously.
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, θ = 0◦; () Histogram of omplex angles.Pollen detetion results for real pollen images in Fig. 4.15(a) (GMM) and in Fig. 4.15(b)(SVM) as ROC (Reeiver Operating Charateristi) urves. There were 606 pollens in



4.6 Summary 75the training set and 352 pollens in the testing set. Figures show results for di�erentdistanes of loation auray: in the best ase the pollens would be found exatlywithout generating false positives. A distane of 30 is an aeptable auray as theminimum radius was 35. Results with the GMM lassi�er were bad as a huge number offalse positives was found before a signi�ant number (90%) of real pollens. At the pointwhere 100 false positives were found, only 30% of the real pollens (approx. 100) werefound. With SVM the result is learly better at the same point, 65% (approx. 230).
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d=100(b)Figure 4.15: Detetion of real pollens. (a) ROC urve for the GMM lassi�er;(b) ROC urve for the SVM lassi�er.4.6 SummaryThis hapter presented an image feature loalization method based on multiresolutionGabor features and Gaussian mixture models. The method an use other loal imagedesriptors or lassi�ers, and generi algorithms were presented where the individualparts an be hanged at will, given they ful�ll the requirements presented also in thishapter. The hapter ontinued with motivations for using one-lass lassi�ers and usageof on�dene with a Gaussian mixture model lassi�er. An alternative lassi�er, ν-SVMwas presented as related to the problem, non-Gaussianity of Gabor features. In someases the omplexity of the feature spae auses problems for GMM estimation giventhe limited training data (to learn very omplex features spaes the estimation requiresimpratially large amount of training data) and the alternative SVM lassi�er proved tobe able to learn omplex feature spaes (from pollen images) more e�etively. However,in the next hapter the experimental results shows that multiresolution Gabor featuresand GMM is still a powerful ombination for aurately deteting image features.
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Chapter VExperiments and appliations

In this hapter image feature detetion and loalization is demonstrated using the pro-posed ombination of multiresolution Gabor feature and Gaussian mixture models using3 di�erent datasets in two hallenging problems. Furthermore, to on�rm validity of om-bination of Gabor features and GMM, the tests are repeated by replaing the desriptorand the lassi�er with other well-known methods whih show no signi�ant improve-ments. The method is further demonstrated in a ategorization experiment where theresults appear very natural. Finally, a similar approah is applied to a distintly di�erentsubjet as a side study, a fault detetion problem with 1D signal.5.1 Auray measureFor detetion of omplete objets for example bounding boxes or ellipses are used, e.g.,[62℄. A �box� is drawn around the deteted objet and a union is taken between thedeteted box and manually marked the groundtruth box. The auray measure is thenalulated as the area of the union divided by the area of the groundtruth box. Thistype of measure is problemati beause it does not onsider pose variations at all andthe results vary greatly depending on how tightly or loosely the bounding boxes aredrawn around the objet. Overall, for measuring auray of deteting separate imagefeatures the bounding box model is not very suitable. The used auray measure, basedon ranked order of image feature andidates and normalized error distane, is desribednext.Before generating the result graph the image feature andidates are ranked in order, i.e.,the most likely image andidate is �rst. The auray of loal image feature detetionis presented as a umulative graph where the x-axis is the number of deteted imagefeatures and the y-axis is the proportion of how often the orret image has been foundamong them. Loalization auray is rarely pixel-perfet, so an image feature is deemedas orretly deteted if it is within some pre-determined radius around the orret imagefeature position. For fae detetion tests the auray is measured by normalizing thedistane between the eyes to deye = 1.0 and various auraies are measured based on77



78 5. Experiments and appliationsthe normalized distane (Fig. 5.1(a)). This type of measure is onsidered as the mostappropriate for evaluating loalization methods in [76℄.An example of the auray measure graph is shown in Fig. 5.1(b). From the graph it anbe seen, for example, that only every tenth of the highest ranked feature andidates wasin the orret position within a distane of 0.05 (of deye). However, when the alloweddistane was inreased to 0.20 six of the �rst ten andidates were orret. Using theten highest ranked image feature andidates the results improve so that the orret onewas among them half of the time for a distane of 0.05 and over eight times out of tenfor a distane of 0.20. A perfet result would be one where the �rst (highest ranked)image feature is always orret and the resulting graph would have a straight line at100%. This is seldom the ase and the graph stays below 100%. In general, if there is alarge di�erene between graphs of di�erent distanes, like there is in the example graph(Fig. 5.1(b)), it means that the detetion method annot determine the orret loationvery exatly but is quite good at deteting it approximately. Another ommonly seenvariant is that the graphs of di�erent distanes are tightly bunhed. In that ase, thedetetion method an detet the orret loation very aurately when it �nds it at all.
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d = 0.20(b)Figure 5.1: Measuring loalization performane. (a) Demonstration of the usedauray distane measure, deye; (b) An example result graph.For deteting single image features this kind of auray measure is very natural.5.2 Fae detetion5.2.1 XM2VTS fae databaseThe XM2VTS faial image database is a publily available database for benhmarkingfae detetion and reognition methods [58℄. The frontal part of the database ontains600 training images and 560 test images of size 720 × 576 (width × height) pixels. Theimages are of exellent quality and the lightning onditions are stable, and therefore, faedetetion methods should perform very well with this database. To train the proposedimage feature detetors a set of salient fae regions were seleted.



5.2 Fae detetion 79The seleted image features should be disriminative: they an be reliably found in theimages, and they an be used to distinguish the objet ategory from other ategoriesand bakgrounds. Ten spei� faial regions (see Fig. 5.2 for example images from thedatabase with annotated image features) have been shown to have favorable properties toat as image features [30℄. To apture visual information of loal image pathes aroundthe marked loations loal image desriptors are used.
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9 10(d)Figure 5.2: Training images with 10 manually marked and annotated imagefeatures.Three di�erent image desriptors were used: multiresolution Gabor features (Setion 3.1),loal binary patterns (Setion 2.3.3) and the steerable pyramid (Setion 2.3.4). In ad-dition the SIFT desriptor with and without PCA was tested, but the results were veryweak and therefore not inluded. It was assumed that the high seletivity of SIFT fea-tures is not suitable to a task where generalization is needed and additionally their highdimensionality auses problems for the GMM lassi�er. Testing was limited to thesedesriptors beause other presented desriptors are omputationally too heavy for theexhaustive searh; the number of points for whih the desriptors are needed would haveto be limited somehow, for example, by using interest point detetors. The main loaldesriptor has been multiresolution Gabor features, and their use is desribed here �rst.



80 5. Experiments and appliationsGabor feature parameter seletionThe parameters of multiresolution Gabor features must be seleted, either manuallyusing some heuristis or by optimization, e.g., rossvalidation. Both approahes wereapplied in the experiments, so alled �old parameters� have been seleted manually, andare inluded as a omparison to results in a previously published artile [43℄, and �tunedparameters� have been seleted by rossvalidation. Heuristi seletion is also explainedto larify properties of multiresolution Gabor features.In the XM2VTS database all faes are in standard pose, everyone is looking at thediretion of amera from the same distane. Naturally, there are still some variations inthe distane between the eyes (Fig. 5.3(a)) and the angle between the eyes (Fig. 5.3(b)).The variations are small enough that invariant searhes are not neessary and the �lterbank parameters should be seleted to over the variations. For angular variations, whihare limited approximately to ±10◦, up to eight �lter orientations an be used, n ≤ 8,angular disrimination being then 22.5◦.Filter frequeny spaing, k, should be seleted so that a single �lter inludes informationfrom all sales present. The sale of objets here is presented approximately by the eyedistane, the largest eye distanes are around 120 pixels and the lowest around 90 pixels.Filters should inlude therefore sale variations in the order of k ≥ 120
90 ≈ 1.33. A slightlylarger value an be used to assure that one �lter overs suitable sales, and a naturalhoie is k =

√
2, i.e., half-otave saling of frequenies. For the �lter frequenies inthe �lter bank, de�ned by the seletion of frequeny of the highest �lter, fhigh, and thenumber of �lter frequenies, m, no lear guidelines an be given. However, number of�lter frequenies m ≥ 3 should provide enough disriminative frequeny information.
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5.2 Fae detetion 81idation proedure and were n = 4, m = 6, k =
√

3, fhigh = 1/40. In both ases�lter sharpness parameters γ and η have been seleted using equations presented in Se-tion 3.1.6. The tuned parameters di�er from the old parameters in two ways: overall,the number of �lters have been doubled from 3 ∗ 4 = 12 to 4 ∗ 6 = 24, and beauseof the lower fhigh, larger �lter spaing k and larger number of frequenies, muh lowerfrequenies are inluded in the �lter bank.Training the GMM lassifierThe lassi�er was trained with the Figueiredo-Jain method as presented in the Se-tion 4.4. The multiresolution Gabor �lter responses were omputed for all 10 imagefeature loations in all images in the training set. The responses were then arranged asfeature vetors whih an be used with any one-lass lassi�er (provided that they workwith omplex numbers). A lassi�er based on GMM has been used in these tests. Duringthe evaluation Gabor �lter responses were omputed in all loations of the image andlassi�ed to eah of the lasses, and for eah of the 10 lasses, a number of the highestranked feature loations were seleted as potential image features.Results for original imagesAfter lassi�ation image features are proessed in ranked order and an image featurewas onsidered to be orretly lassi�ed if it was within a pre-set distane limit from theorret loation. The distanes are normalized to a distane between the eyes, deye = 1.0(Fig.5.1(a)). The results for the XM2VTS database are presented in Fig. 5.4(a) for theold parameters and in Fig. 5.4(b) for the tuned parameters. With the old parametersusing the tightest distane limit, 0.05, approximately 32% of the ases the highest rankedfeature was the orret one. By inreasing the distane limit to 0.10, whih is still verygood, the orret one was ranked highest in approx. 63% of the ases. By using the 10highest ranked features from eah lass, the orret features were among them in 71% ofthe ases for the distane limit of 0.05 and 86% of the ases for the distane limit 0.10.Inreasing the distane limit further to 0.20 leads to a small improvement. Similarly forthe tuned parameters, the highest ranked feature was orret in 41% of the ases for adistane limit of 0.05, and 86% for the limit 0.10. With the 10 highest ranked featuresthe results were 93% and 98% for distane limits 0.05 and 0.10 respetively.It should be noted that the results with the tuned parameters are approahing the naturalvariation of the manual marking by di�erent humans, meaning that the results annotbe signi�antly improved in this test.The auray di�erene between the old and tuned parameters is demonstrated in Fig. 5.5.With old parameters the highest ranked features were spread all over the image to manyfalse loations, while usually a few of them were found in the orret plaes. With thetuned parameters the highest ranked features were found ompatly around the orretloations. The tuned parameters inluded lower frequenies and reognized the imagefeature loations based on a larger neighborhood, and therefore, did not lead to imagefeature andidates in false loations as easily.
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d = 0.20(b)Figure 5.4: Auray of image feature extration from XM2VTS test images:(a) Old parameters; (b) Tuned parameters.Complex vs. magnitude responsesThe multiresolution Gabor features desribed in Setion 3 use naturally omplex valuedfeature responses. Still, a majority of studies using Gabor features utilize only magni-tude information instead of the omplex representation. Using magnitude informationis omputationally easier and the results may be satisfatory even with only magnitudeinformation. Previous experiments were performed by using only response magnitudesinstead of omplex numbers and the results are shown in Fig. 5.6, whih are learly notas good as the results with omplex values (Fig. 5.4). The results demonstrate that re-moving the phase information, whih is impliitly inluded in the omplex values, leadsto lear degradation of loalization results.The advantage of using omplex numbers, whih inlude impliitly both magnitudeand phase information, instead of magnitude-only representation an be learly seenin Fig. 5.7. The �gure shows responses of a single �lter for the left and right eye orners.In the omplex plot the two lasses are learly separable, but ompletely overlap in themagnitude-only plot.Results for artifiially rotated and saled imagesA problem of the XM2VTS data set is that the images do not over di�erent sales orrotations as the faes are almost always near the standard pose. Invariane properties ofthe image feature loalization annot therefore be veri�ed using the database. To be ableto test the invariane properties, the evaluation images of the database were randomlyrotated between ±45 degrees and up-saled fator between 1 and √

2.The image features were �rst searhed for without using sale or rotation invarianemanipulations. The results for old parameters are in Fig. 5.8(a) and for tuned parametersin Fig. 5.8(b). In the seond phase, the detetion was performed using one sale-shift and
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Figure 5.7: Satter plots of Gabor �lter responses for left and right eye orners.two orientation shifts (±1 step). For the old parameters this means that the sale-shiftwas √
2 and orientation shifts ±45◦, and for the tuned parameters the sale-shift was√

3 and the orientation shifts ±30◦. The results are presented in Fig. 5.8() for the oldparameters and in Fig. 5.8(d) for the new parameters. Sale and rotation shifts gavelearly better results, and the di�erene is most notieable using the tuned parametersas evident between Fig. 5.8(b) and Fig. 5.8(d).5.2.2 Bana fae databaseIn this experiment a signi�antly more hallenging BANCA fae database was used [2℄.Only the English setion of the database was used whih inludes 6240 test images ofvarying quality and bakground (see examples in Fig. 5.9). The training set onsistedof XM2VTS and worldmodel images from English, Spanish, Italian and Frenh BANCAsetions, leading to 1600 as total number of training images.A di�erent data set required hanging the parameters from the previous test with XM2VTSto get the best performane, the new �tuned� parameters were n = 3, m = 6, k =
√

3,
fhigh = 1/25. The di�erenes to the settings used with XM2VTS are that higher fre-quenies are used (fhigh has been inreased from 1/40) and one fewer frequeny is used.There are higher variation in the sales in the BANCA database and the �lter bankmust be tuned to the smallest sales, hene the higher frequenies. The number of �lterfrequenies must be dereased to prevent �lter bank �seeing� too wide an area, inludinga luttered bakground. The results are presented in Fig. 5.10, one sale-shift has beenused and no rotation shifts. It is lear from the results that the BANCA database isonsiderably mode di�ult than XM2VTS. At a distane 0.10 only 51% of the highestranked features were orret (86% for XM2VTS), and with the 10 highest ranked features68% (95% with XM2VTS). The spatial searh may still sueed if at least three orretfeatures are found.
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(a) 1013_f_g1_s01_1013_en_4.ppm (b) 1013_f_g1_s12_1013_en_5.ppmFigure 5.9: Example images from BANCA database.5.2.3 Comparison to other loal image featuresHere the loalization performane is tested with three di�erent loal image features are.All three image feature types were treated equally. Feature vetors were omputed for allimage points, and lass onditional Gaussian mixture model probability densities wereused to �nd the 100 best andidates. The probability densities were estimated using thetraining set.The LBP features were omputed as de�ned in Setion 2.3.3. The image features wereolleted from 19 × 19 pathes around the feature loations in the training set. Theimages were �rst downsaled by a fator of 1.5; the downsaling fator was determinedmanually to give the best loalization results. The formed feature (ontaining severalonatenated LBP histograms) is a real-valued vetor of length 203. The images in thetest set were again downsaled by a fator of 1.5 and the detetion was performed as anexhaustive searh in all 19× 19 image areas. An example of training image with markedimage pathes is presented in Fig. 5.11.For the steerable pyramid, Se. 2.3.4, 4 levels and 6 orientations (5th order �lter) wereused (24 real values). The images were downsaled to half the size during both trainingand detetion. Several settings were tested to �nd the parameters giving the best results.Results of image feature loalization of the 10 di�erent fae features using the di�erentlow-level features are shown in Fig. 5.12. The results for multiresolution Gabor featuresare repeated here beause the testing method had to be hanged slightly to treat all thefeatures equally, namely with multiresolution Gabor features in the previous results, inFig. 5.4, images were downsaled as aggressively as possible to maximize the detetionspeed. Now, downsaling was done at most to half a resolution to be omparable to theother image features, hanging the results slightly. With all the image features, only theloal maxima of the pdf were seleted and values around them in a radius of 4 pixelswere taken out. This improves the results beause instead of several detetions in theneighboring pixels there is now only one. With aggressive downsaling this is not needed.
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d = 0.20Figure 5.10: Auray of image feature extration from the English setion ofBANCA database (only tuned parameters).

Figure 5.11: Example of 19×19 image pathes used with LBP based loalizationmethod.



88 5. Experiments and appliationsThe results for LBP and the steerable pyramid features are similar to eah other, steer-able pyramid being slightly ahead and nearly equal to multiresolution Gabor featureswith the old parameters. The multiresolution Gabor features with tuned parametersprovided learly the best results. Better results with both LBP features ould likely beahieved by tuning how the detetion method is utilized or by hanging the lassi�er asthe Gaussian lassi�er may not be the best hoie for the high dimensional LBP features.Unfortunately, tuning the steerable pyramid method is limited by otave spaed salinglevels. The LBP based method an be hanged more freely as there are an unlimitednumber of ombinations of di�erent window sizes, how the window is broken into smallerpartitions, and whih LBP operators are used. However, tuning these settings is unintu-itive � the e�et to the lassi�ation result is di�ult to estimate beforehand � and thefeatures are already very long.
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d = 0.20(d) LBP (tuned) with GaussianFigure 5.12: Image feature loalization results for 10 di�erent fae features forthe XM2VTS database with di�erent loal image features.The omputation times between these desriptors itself are similar. Like Gabor features,steerable pyramid features were omputed in the frequeny domain making their om-plexity essentially equal. However, steerable pyramid features an be omputed slightlymore e�iently in the spatial domain beause the �lters are small. LBP histograms are



5.2 Fae detetion 89fast to ompute, but with these high dimensional features the lassi�er beomes muhslower, making the LBP features slowest by a large margin of the tested desriptors.5.2.4 Comparison to SVM lassi�erThe results with the original images of XM2VTS with the GMM lassi�er were alsoompared to results with the SVM lassi�er presented in Setion 4.3. The results forSVM lassi�er are presented in Fig. 5.13. With the SVM lassi�er the omplex numberswere onverted to separate real and imaginary parts beause the lassi�er implementationdid not support omplex values. An RBF kernel was used. Compared to results withGMM lassi�er (Fig. 5.4) the results are fairly lose: with old parameters, the SVMlassi�er outperformed the GMM lassi�er for less aurate measurement distanes 0.10and 0.20, but was slightly worse for the most aurate distane 0.05. For the tunedparameters the results were pratially the same for both lassi�ers.
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d = 0.20(b)Figure 5.13: Auray of image feature loalization from XM2VTS images withSVM lassi�er: (a) Old parameters; (b) tuned parameters.The SVM lassi�er has few problems ompared to the GMM lassi�er. First of all,it has more parameters than GMM lassi�er, whih has only one parameter, seletingthe number of mixture model omponents, or not even that with adaptive estimationalgorithms like Figueiredo-Jain method.The SVM lassi�er however needs at least the kernel type to be seleted. The RBF kernelsare often used and the size of the kernel must be seleted based on the data: too widekernels annot learn true lass boundaries, and too small easily over�t to the trainingdata. With the normalized multiresolution Gabor features RBF kernel size γ = 0.3 wasfound to be a suitable value.Another important parameter is the parameter ontrolling the number of outliers andsupport vetors. With the used SVM lassi�er this parameter is ν ∈ [0, 1], where νdenotes the lower bound for fration of support vetors and upper bound for fration ofoutliers. In these experiments ν = 0.1 was used.



90 5. Experiments and appliationsThe most severe problem is the speed: the SVM lassi�er was onsiderably slower thanGMM lassi�er. The speed depends on the number of support vetors. For the resultspresented here there were over 200 support vetors for eah of the 10 lasses and thedetetion phase was approximately 50 times slower with the SVM lassi�er than withthe GMM lassi�er with similar detetion auray. Some of the di�erene is likely to beexplained by more optimal GMM lassi�er implementation, but the SVM lassi�er withRBF kernels remains omputationally too heavy when there are many support vetors.5.3 Liense plate detetionDesriptionThe image feature loalization was tested further with a ommerial liense plate database.The testing methods were similar to the main tests with XM2VTS and BANCA faedatabases presented in the previous setion.Data and methodsA ommerial database was used due to a lak of liense plate databases being availableto the general publi. The training set onsisted of 157 images from randomly seleteddate and the landmark points were manually annotated for all of them. The annotatedpoints were the four orners of liense plates (Fig. 5.14). Multiresolution Gabor featureswere extrated from annotated loations in the training images and the GMM lassi�erwas trained for eah of them. In the testing Gabor features were omputed for all pointsand the lassi�er used to selet the highest ranked andidate points. Similarly to the faedetetion experiment the loalization auray was normalized, this time by the averagedistane from a orner to the opposite orner of the liense plate. The auray measureis illustrated in Fig. 5.14() as small irles in the upper left orner of the liense plate.
(a) (b) ()Figure 5.14: (a)-(b) Example images from liense plate database with imagefeature positions, liense plate orners, are marked with green irles; () Demon-stration of auray measure for liense plate loalization measure (green irlesin the upper left orner orresponding to distanes 0.05, 0.1 and 0.2, and the largeirle demonstrates distane 1.0).



5.3 Liense plate detetion 91The evaluation set onsisted of 247 images from di�erent randomly seleted date. Theresults with multiresolution Gabor features are presented in Fig. 5.15(a). The tuned�lter bank parameters were m = 2, n = 4, k =
√

3, fhigh = 1/24. The orner pointsprovided very easily reognizable image features and with the tuned parameters, whihinluded only two frequenies and four orientations, the results were very good, 93% ofthe �rst ranked image features were orret at the distane 0.05. Examples of detetedliense plate features are shown in Fig. 5.16.The tests were repeated with steerable pyramid and loal binary pattern features andthe results are shown in Fig. 5.16(b)-(). Toth features were used similarly to the faedetetion experiment, but the settings giving best results were searhed for this testseparately. Gaussian mixture model lassi�er was used in all ases.The steerable pyramid (Setion 2.3.4) used 3 levels and 6 orientations (5th order �lter)yielding to 18 real values. The images were downsaled to 1
2.6 th size during both trainingand detetion. The LBP features were omputed as in Setion 2.3.3: the image featureswere olleted from 19 × 19 pathes around the feature loations in the training set. Nodownsaling was needed this time. The formed feature (ontaining several onatenatedLBP histograms) is a real-valued vetor of length 203. The detetion was performed asexhaustive searh over all 19 × 19 image areas.
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d = 0.20()Figure 5.15: Auray of image feature (liense plate orner) loalization: (a)Multiresolution Gabor features; (b) Steerable pyramid; () LBP. With multires-olution Gabor features for d = 0.05, the auray reahes 93% with only one(highest rank) image feature extrated.ConlusionsAs a onlusion for this test, multiresolution Gabor features were able to provide verygood results. The presentation power of the steerable pyramid appeared to be be on-siderably lower, it needed more �lter frequenies and still the detetion performane waspoor. Inreasing the number of �lter frequenies, and therefore also the lowest frequen-ies, were not helpful in this test beause the interesting objet, liense plate, is quitesmall and its neighborhood is not very helpful in deteting it. Loal binary patternfeatures gave better results than the steerable pyramid, but were still behind multires-olution Gabor feature results. The results with LBP features ould likely be improvedfurther by hanging the struture of the features, i.e., using other area size than 19× 19
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1 1(b)Figure 5.16: Examples of extrated features with multiresolution Gabor imagefeatures (left upper orner: blue, right upper orner: green, left lower orner: red,right lower orner: yan, 5 best features for eah lass numbered from 1 to 5): (a)night sene; (b) day sene.and using di�erent pattern of LBP histograms extrated from the area. However, tuningthose settings is unintuitive and lassifying long feature vetors would still be ine�ient.5.4 Visual objet ategorization using self-organizationDesriptionVisual objet ategorization was studied in [34℄. The objet ategorization was performedusing the same data used in fae detetion in Setion 5.2.The ategorization was based on multiresolution Gabor features omputed at annotatedloations and the spatial relationships between annotated loations. Multiresolution Ga-bor features an aurately apture loal image information and in addition, originalinformation an be reonstruted (see Setion 3.1.5). A omplete objet an be rep-resented by ombining several loal destiptors and their spatial loations. A spatialonstellation model together with multiresolution Gabor features provides a basis for an-alyzing the visual appearane and its variation over any real objets. The self-organizingmap provides a tool for unsupervised ategorization of objets. The main goal was tostudy the proposed model in the ontext of automati ategorization and visualization,and investigation of model apability to explain visual similarities of natural objets,human faes.Related researhSine the introdution of the basi self-organizing map (SOM) method by Kohonen [47℄its harateristis have been under ative researh. Self-organization has been o�ered asa solution for explaining the organization of information proessing in the brains. Thesame hypothesis ould apply to visual information and its proessing in the human visual



5.4 Visual objet ategorization using self-organization 93system. However, one of the main problems has been a lak of robust representation ofvisual appearane whih ould allow meaningful organization.Due to the Gabor �lter's orrespondene to the human visual system and the SOM'sability to self-organize information hypothetially similarly to human brain, it is nota surprise that ombining Gabor �lters and SOM have been proposed before. Gabor�lters in a multiresolution stak have been utilized to represent visual information andused with the SOM in several studies [93, 72℄, but they have treated spatial informationvery oarsely. A large amount of reeptive �eld responses overing a whole image hasbeen laimed to overome the problem of poor spatial loalization of eah response. Theproblem however is severe, a small spatial hange may appear as a large hange in featurevalues (e.g., a misaligned fae). Moreover, a degree of allowed spatial hanges and loaldistortions annot be restrited without a spatial onstellation model.Objet ategorization with the self-organization over visual appearane is the basis ofthe well-known PiSOM method [49℄, but the PiSOM also su�ers from the same basiproblem. The PiSOM utilizes global feature histograms making the method unable toaount for spatial hanges.Suitability of Gabor based reeptive �eld responses in ategorization by self-organizationhave been demonstrated by Lampinen et al. [51℄. They however disarded the phaseinformation of (omplex) Gabor �lters whih is important for loal appearane, and theirstudy onsidered the ategorization only for loal objet parts, not omplete objets.MethodsThe representation of loal appearane is based on multiresolution Gabor features, Chap-ter 3, whih are utilized similarly to the objet detetion and loalization method pre-sented in Chapter 4. Multiresolution Gabor features have an useful property, they anbe used to reonstrut the original image.Suessful ategorization requires information of both the loal appearane variation andthe global spatial variation of loal parts. To form a proper input for the SOM the loalappearane desriptions and their spatial onstellation must be ombined to a fusedfeature struture. A feature vetor an be onstruted by onatenating responses ofloal parts (the feature matrix in (3.8)) into a vetor. The spatial information an befused by simply adding the oordinates of the orresponding parts into the same vetor.Spatial normalization is needed, i.e. a �xed origin must be de�ned, in order to preventdistortions due to the variation in loation, sale and orientation (see Fig. 5.17). However,the sale variation an be natural in ertain ases (e.g., large vs. small faes).The basi SOM method is based on the Eulidean distane, and therefore, saling ofall variables should be similar, or otherwise variables with large values dominate theself-organization proess. The problem an be solved by normalization. The Gaborresponses and oordinates by themselves do not require normalization, but when theyare onatenated into one feature vetor their relative weights must be adjusted. Theweighting depends on total ombined magnitude of the loal reeptive �eld responses andthe saling of oordinates.



94 5. Experiments and appliationsResultsThe objet ategorization method was tested using frontal fae images from the XM2VTSdatabase (see Setion 5.2 for further details). The method should ategorize faes so thatsimilar faes are near eah other. This an be visualized in two ways: use of the rawneural weight information and the reonstrution property of Gabor features or �nd thelosest mathing faes.Multiresolution Gabor features were omputed using 5 di�erent frequenies down fromthe highest frequeny fmax = 1
10 with a saling fator k =

√
3, and 6 orientations forminga 6× 5 feature matrix, (3.8). The matries from 10 image points were onatenated to asingle feature vetor of 300 dimensions. In addition, loations of the 10 image features,a onstellation model, were added to the vetor resulting in a total of 320 dimensionsrepresenting visual appearane of eah fae. The loation oordinates were normalizedsine faes an be in any loation and pose. A straightforward method was used bynormalizing the oordinates to a form where the middle point between eyes is loated inthe origin, (0, 0), and the rest of the oordinates are saled and rotated in order to setthe eye enters to the oordinates (−0.5, 0) and (0.5, 0). An example of the normalizedspatial on�guration an be seen in Fig. 5.17.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500Figure 5.17: Example of the spatial model on�guration normalized by thedistane and angle between eye enters. Frontal fae with 10 salient image features(left and right outer eye orners, left and right inner eye orners, left and righteye enters, left and right nostrils, and left and right mouth orners).The SOMmethod was applied to feature vetors of all 600 training images. A retangularSOM of size 17 × 13 was used. The uni�ed distane matrix of the SOM is visualized inFig. 5.18. Large values (light olors) in the distane matrix represent large hangesbetween neighboring ells of the map. Respetively, the dark olors denote relativelysimilar values in the orresponding area of the map.Due to the reonstrution property of the appearane model it was possible to visualizeraw faes formed by the SOM. In Fig. 5.19(a) reonstruted faes from the SOM areshown; note that only every fourth ell is presented. In Fig. 5.19(b) are shown the losestmathing faes from the XM2VTS database. The onnetion between the distane matrixin Fig. 5.18 and the both reonstruted and losest mathing faes an be learly seen:the distane matrix is dark (i.e., the hanges are small) for the most part exept for
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13Figure 5.18: Uni�ed distane matrix of 17×13 SOM. Bright shades denote largehanges in map values.the top right orner where the bearded men seem to belong. Overall, there is a leartrend that feminine faes are in the bottom left orner and there is a gradual hange tomasuline faes in the top right orner.Next, the SOM was used to ategorize individuals to similar visual appearane lasses.The loal image features and spatial onstellations were alulated for all images in theXM2VTS test set and the best mathing SOM units were searhed. In Fig. 5.20 areshown faes belonging to the same best mathing unit, i.e, faes having a similar visualappearane. Note that the examples may inlude the same person several times sine theXM2VTS inludes several images of eah person. The formed ategories an be easilyinterpreted: the ategory in Fig. 5.20(a) inludes older men with eye-glasses and/orbeards, and the ategory in Fig. 5.20() inludes only women. However, the genderis not the disriminative fator in all ases as an be seen in Fig. 5.20(b), where theategory inludes both women and lean-shaven men with the ommon fator that nonehave eye-glasses.ConlusionsThis experiment addressed the problem of �nding ategorial similarity between visualappearane of real objets. The similarity enables automati ategorization of visual ob-servations: formation of objet groups via their natural self-organization. MultiresolutionGabor features were used to extrat and represent loal appearanes, and the the loalappearanes were onneted by a spatial onstellation model. A fused representation wasformed whih ombines both appearane at a loal level and global spatial variation toa single feature struture. The representational power of the proposed struture was in-vestigated by performing a self-organization with the self-organizing map method. Fromthe experimental results on fae images it an be seen that the struture enapsulatesthe visual appearane leading to a natural self-organization of visually similar objets.
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(a)

(b)Figure 5.19: (a) Reonstruted raw visual appearanes from ells of the 17× 13SOM (only every fourth fae is shown); (b) The losest mathing faes from thedatabase.
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(a)

(b)

()Figure 5.20: Examples of unsupervisedly found visual appearane ategories(fae lasses). (a) Older men with eye-glasses or beards; (b) Women and lean-shaven men without eye-glasses; () Women.



98 5. Experiments and appliations5.5 Fault detetion in eletrial motorsDesriptionAutomati fault detetion was studied in [37℄. This study was not diretly related tothe more general topi of image features, but multiresolution Gabor features were usedwith 1D signals for fault detetion in eletri motors. Two-lasses of signals, normal anddamaged, were used during training and new signals were to be lassi�ed in these lasses.Measurements were very noisy and damage was visible only at some frequenies. To easethe work of the lassi�er, the Gabor �lters with maximal separation between normal anddamaged lasses were �rst searhed.Automati ondition monitoring and diagnosis are important in industrial installationswhere a high degree of automation is desired. Automati monitoring an be used todetet and reognize system faults, suh as motor failures, where an early warning ouldprevent esalation of the problem. This is the ase for example in motor bearing damagedetetion [78, 91℄.A diagnosis method was proposed to �nd disriminative regions, bands, from frequenyontent of the two lasses of signals (normal/damaged) and to lassify new measurementsto these lasses. The proposed method is useful in ases where there are measurements,but the physial harateristis of failures are not known. A su�ient amount of mea-surements from the both normal and damaged lasses are needed in order to �nd themost disriminative features, but the ase where there are measurements mainly from thenormal lass is of speial importane. In pratie, measurements from failure onditionsannot be omprehensive beause measuring signals from various failure modes is tooexpensive to realize.MethodsTwo sets of signals, xk(t) and yk(t), represent examples from two lasses, C1 and C2,respetively. The sub-index k denotes a measurement number, k = 0, 1, . . . , N1 − 1for C1 and k = 0, 1, . . . , N2 − 1 for C2. It is assumed that the signals are measuredduring a stationary system mode, i.e., system parameters suh as rolling speed and loadare onstant. Now, the disriminative information should be present at some frequenyband and it is su�ient to apply a band-pass �lter ψ(t). In a stationary system modethe time information an be ignored and a global feature, suh as a power spetrum anbe utilized. The seletion of the best features is redued to �nding the optimal values forthe entral frequeny f and bandwidth γ of a band-pass �lter. The normalized Gabor�lter (3.1) was used as the band-pass �lter.If there are several frequeny bands where the ontents of the lasses C1 and C2 aredissimilar, then the band where the separation of the lasses is most evident should beseleted. The �rst-order statistis approah is not su�ient sine it simply selets thefrequeny band where the distane between the expetations is largest, but neglets thevariane information, and a signi�ant overlap of the lass probabilities may exist [54, 45℄.It was assumed that the features are extrated from signals measured during a onstantoperation mode where variane in the measurements is supposed to be aused by a



5.5 Fault detetion in eletrial motors 99large number of unknown independent soures. The form of the probability distributionsis therefore assumed to be Gaussian and the lasses an be uniquely de�ned by theirexpetations, µx and µy, and varianes, σ2
x and σ2

y . For Gaussians Fisher's disriminantratio (FDR) an be used to measure the distane between the distributions [70℄
FDR(px(n), py(n)) =

(µx − µy)2

σ2
x + σ2

y

. (5.1)Using the divergene measure in (5.1) the disriminative energy funtion an be de�nedas
E =

1

2

(

(µx − µy)2

σ2
x + σ2

y

)2

. (5.2)Using the disriminative energy funtion (5.2) the frequeny f and bandwidth γ of theband-pass �lter in (3.1) an be optimized. Single or several frequenies an be seleted.For the two lasses GMMs (Setion 4.2) are estimated and then Bayesian lassi�ationis used [84℄. However, the quality or number of failure measurements is not usuallysu�ient or does not over all failure states. In that ase the lassi�ation should bebased only on the probability distribution of normal ondition measurements. Therefore,one-lass lassi�ation with only the GMM of the normal lass was used.ResultsIndution motor bearing damagesIndution motors have been a widely studied subjet of ondition monitoring [91, 5℄. Animportant sub-ategory of indution motor failures are bearing damages, whih an bedeteted from vibration, aousti noise, temperature, or stator urrent signals. Bearingdamages are attrative for evaluating the proposed method sine harateristi frequen-ies of damage appearane an be analytially solved and ompared to automatiallyfound frequenies.Bearing damage detetion based on the stator urrentThe stator urrent data onsisted of stator urrent signals measured from motors in anormal ondition (C1) and motors with bearing damage (C2). The measurements on-tain two ases: no load onneted to motors and with a full load. In these experimentsthe lassi�ation was performed using the Bayesian lassi�er, whih requires examplesfrom both lasses, and using one-lass lassi�ation with the on�dene based limit (Se-tion 4.2.2), when failure measurements are not needed. The pdf limit was alulatedfrom the normal lass training data so that the whole training set was aepted, and thepdf values lower than that were lassi�ed as a failure.For motors with no load disriminative energyE and lassi�ation results are presented inFig. 5.21. The disriminative energy had its maximum near the �rst harmoni (202 Hz) ofthe harateristi frequeny (101 Hz). Also both lassi�ation shemes had the maximalauray at the same frequeny band.
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Figure 5.21: Disriminative energy and lassi�ation auraies for motors withno load.For motors with a full load, results are shown in Fig. 5.22. This was a more di�ultsituation sine the full load aused various disturbanes, but still, the harateristifrequeny (101 Hz) and some of its harmonis ontained disriminative information.Classi�ations sueeded at the same frequenies, but due to disturbanes the auraydereased.
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Figure 5.22: Disriminative energy and lassi�ation auraies for motors withfull load.Using both the Bayesian lassi�er and the one-lass lassi�er the same lassi�ationauray was ahieved at the most disriminative frequenies.The test was repeated for the full load dataset using six of the most disriminativefrequenies and Gaussian mixture models to estimate lass pdfs. The results for both theBayesian lassi�er and one-lass lassi�er are presented in Fig. 5.23 as an ROC (reeiveroperating harateristi) urve for di�erent on�dene levels. Only normal onditionmeasurements were used to form a pdf and on�dene was used to deide between normaland failure onditions. From the urve it an be seen that by dereasing the on�denemore normal ondition measurements were orretly identi�ed (true positives), but alsoan inreasing number of failure onditions were onsidered as normal (false positives).



5.5 Fault detetion in eletrial motors 101The optimal trade-o� depends on the appliation. On the other hand, there was only aminor di�erene omparing the results where also the failure ondition pdf was used inBayesian lassi�ation (a priories were estimated from the training set, whih does notorrespond to real situations).
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102 5. Experiments and appliationsTable 5.1: Classi�ation results using alulated harateristi frequenies andthe three most disriminative frequenies of E.No load Full loadFreq. Corret Freq. CorretChar. freq. 97.5% 66.8%1st peak 206.3 Hz 97.5% 100.1 Hz 69.3%2nd peak 23.6 Hz 87.9% 206.3 Hz 77.9%3rd peak 383.6 Hz 91.4% 403.9 Hz 68.6%Combined 100.0% 72.1%is not su�ient was onsidered and one-lass lassi�ation was used. The lassi�ationsueeded using the disriminative disriminative frequenies with both Bayesian lassi-�ation with two lasses and with one-lass lassi�ation using only the normal lass.5.6 SummaryThis hapter presented the experiments. First was the main experiment, fae detetion,with two di�erent datasets. The experiment was about loalization of landmark positionsin the fae, eye-enters and orners, nostrils and sides of the mouth. The experimentwas repeated with two di�erent �lter bank settings of multiresolution Gabor features,loal binary patterns and steerable pyramid �lters. As a lassi�er, the Gaussian mixturemodel based one-lass lassi�er and the ν-SVM one-lass lassi�er were used. Resultswere good and the ombination of the multiresolution Gabor features and GMM lassi�ergave the best results in nearly all tests. Another similar experiment was loalization ofthe orners of liense plates and the results were very good for the proposed method.Two di�erent but related appliations were also presented. The �rst was about visualategorization of objets using self-organization and the seond about fault detetion ineletial motors.



Chapter VIDisussion

The objetive of this thesis was to study and develop loal image features usable in anobjet detetion and loalization method. Many of the urrently popular methods aresemi-supervised, they require only labeled training images to learn objet lass. However,semi-supervised methods annot guarantee good loalization performane, and thereforea supervised approah was the main interest in this thesis. The urrent methods areoften based on separate interest point detetion and loal image desription steps, andthey both an be onsidered separately. Complete objet detetion methods ombininginterest point detetion and loal image desription were introdued and brie�y experi-mented.The method presented in this thesis is based on an approah whih ombines the interestpoint detetion and loal desription into one step, omplete image feature detetion.We proposed the ombination of multiresolution Gabor features and a one-lass lassi�erbased on Gaussian mixture models (GMM). The method an be trained with manuallyannotated landmark positions. The loal image feature detetion method was testedin two main appliations: fae detetion and liense plate detetion. Fae detetionprovided exellent results with XM2VTS image database, and good results with a muhmore hallenging BANCA database. For liense plate detetion a ommerial databasewas used, and the results were almost perfet.One of the main problems has been the low omputational e�ieny of the multiresolutionGabor features, and therefore a major objetive and ontribution was to study e�ientimplementation of multiresolution Gabor �ltering. Improving the e�ieny also providedbetter results, sine tuning the parameters beame feasible in the experiments.Other possible loal desription methods were also tested as an alternative for multires-olution Gabor features. The limiting fator for many desriptors remains omputationalheaviness: with this image feature loalization method exhaustive searh is used and thedesriptor should be quik to ompute and to lassify. Usually the desriptors are usedafter interest point detetors, in whih ase the omputational omplexity is of less im-portane. Two alternatives were tested, steerable pyramid and loal binary pattern based103



104 6. Disussionfeatures. The �exibility of multiresolution Gabor features provided better loalizationresults in both fae and liense plate detetion tests.An alternative to a GMM lassi�er was tested. The limitation here is that a one-lasslassi�er is used to be able to omit the bakground lass, the lass representing everythingelse but the searhed image features, and one-lass lassi�ers are not as ompletely studied�eld as normal two-lass lassi�ers. A support vetor mahine (SVM) based one-lasslassi�er was used as an alternative, as one of the main problems of the GMM lassi�eran be its ability to represent oasionally very omplex distributions of multiresolutionGabor features, given limited training data. The SVM lassi�er was able to surpass theresults of the GMM lassi�er in some of the tests, but with the prie of being slower andthe di�erene in lassi�ation performane was not dramati.The data used for supervised objet detetion and loalization experiments was also usedfor objet ategorization. Loal image desription and the spatial relationships betweenmarked landmark positions was used to ategorize fae images to visually similar lustersusing the self-organizing map. The ategorization method was able to reate naturalategorization of similar faes.Gabor features and one-lass lassi�ation were also applied to a ompletely di�erentappliation area, fault detetion in eletri motors. In this appliation a failure in aneletri motor must be notied based on measurements of stator urrent. There are var-ious failure modes and they all annot be reliably measured and inluded in the trainingdata, and therefore one-lass lassi�ation is useful. Tests were performed with datagathered from motors in normal ondition and with a bearing failure. The lassi�ationresults were good and in aordane with the theoretial results.Overall, the proposed image feature detetion and loalization method performed verywell. However, this thesis did not inlude one important part of a omplete objet de-tetion method, the spatial model ombining deteted loal image features, only theperformane of loal image feature detetion was studied. The requirement of manuallymarked landmark positions in the training data is also a severe onstraint for a generiobjet detetion method. This requirement is not easily removed without giving up themain bene�t, ability to exatly loate objets by using high quality loal image featureslearned from manually marked landmark positions. Still, by ombining our proposed im-age feature method with a spatial onstellation model the loalization auray hallengesthat of the urrent state-of-the-art methods.
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Appendix
I Analytial solutions for �lter spaing formulasThe parameter equations for �lter frequeny spaing and �lter orientation spaing werepresented in Table 3.1 and Table 3.2. How these equations were solved is presented here.Analytial solutions to �lter spaing formulas are for a multiresolution Gabor �lter bankusing parameters shown in Table 1. Note that while p is used for �lter overlap in both�lter frequeny and �lter orientation formulas, the value does not have to be the same.Table 1: Parameters of a multiresolution Gabor �lter bank.Parameter Desription

p Crossing point between adjaent �lters
k Saling fator for �lter frequenies
γ Filter sharpness along the major axis
m Number of �lters at di�erent frequenies
fmin Tuning frequeny of the lowest frequeny �lter
fmax Tuning frequeny of the highest frequeny �lter
η Filter sharpness along the minor axis
n Number of �lters in di�erent orientationsFilter frequeniesUsing equation for 1D Gabor �lter in frequeny domain, (3.2), a point ua an be solvedwhere the value of the equation is p. Conseutive �lters ross in a plae where both oftheir values are equal to p (see Fig. 1).

Ψ(u) = e
−

“

γπ
f0

”2
(ua−f0)2

= p

⇒ ua = f0

(

1 ± 1

γπ

√

− ln p

)

, (1)whih orresponds to two adjaent �lters at frequenies f0 and f0/k. Therefore,113
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. (2)On the other hand k and p, �lter frequeny saling fator and rossing point betweenadjaent �lters, are spei�ed, γ an be solved from (2):
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1

π
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k − 1
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√

− ln p. (3)Also p an be solved from (2) when γ and k are known as
p = e−(γπ k−1

k+1 )
2

. (4)Additionally, we might want to solve k when f0 = fmax, fm−1 = fmin and m are given:
fmin =

1

km−1
fmax

⇒ k = e−
ln fmin−ln fmax

m−1 . (5)Also an indiative value for m an be solved from (5) based on fmax, fmin and k,
m = − ln fmin − ln fmax

ln k
+ 1. (6)The exat value returned by the equation is not usable diretly beause m is an integer.



I Analytial solutions for �lter spaing formulas 115Filter orientationsThe minor axis sharpness of a 2D Gabor �lter, η, an be alulated based on the numberof orientations and required overlap. In Fig. 2 a diagram of two Gabor �lters in thefrequeny spae is shown. Note that these �lter overlap equations are approximations.To get an aurate overlap value, 2D equation of Gabor �lters should be used as thewhole elliptial �lter envelope a�ets the overlap. However, the overlap equations wouldbe then more omplex as both �lter bandwidth values, η and γ, are needed. Therefore,as the di�erene between results of aurate and approximate equations is not large ingeneral, these approximate equations onsidering only minor axis bandwidth η are used.

Figure 2: Two Gabor �lters with di�erent orientations in the frequeny spae.Solving η is based on (3.2) with a rossing point p between two �lters in adjaent orien-tations:
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(7)Now, ub an be solved from ub = tan
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f0 , where n is the number of �lter orientations.However, this reates needlessly wide �lters when the number of �lter orientations issmall, n < 4. Another possibility is to use an approximation for ub by dividing theirumferene of a irle by a number of �lters, ub = πf0

2n . Therefore, η an be solved toeither
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. (8)When the number of orientations, n, is large, η alulated by both of the equationsapproahes the same value, but with a small n, the �rst solution for ub leads to needlessly



116 APPENDIXwide �lters, so the latter equation is preferred. With an approximate for ub p an besolved from (7) as
p2 = e

−
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. (9)Additionally an indiative value for n an be solved based on p and η,
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