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Abstra
tJarmo IlonenSupervised lo
al image feature dete
tionLappeenranta, 2007116 p.A
ta Universitatis Lappeenrantaensis 282Diss. Lappeenranta University of Te
hnologyISBN 978-952-214-466-9ISBN 978-952-214-467-6 (PDF)ISSN 1456-4491This thesis is about dete
tion of lo
al image features. The resear
h topi
 belongs to thewider area of obje
t dete
tion, whi
h is a ma
hine vision and pattern re
ognition problemwhere an obje
t must be dete
ted (lo
ated) in an image. State-of-the-art obje
t dete
-tion methods often divide the problem into separate interest point dete
tion and lo
alimage des
ription steps, but in this thesis a di�erent te
hnique is used, leading to higherquality image features whi
h enable more pre
ise lo
alization. Instead of using interestpoint dete
tion the landmark positions are marked manually. Therefore, the quality ofthe image features is not limited by the interest point dete
tion phase and the learningof image features is simpli�ed.The approa
h 
ombines both interest point dete
tion and lo
al des
ription into one phasefor dete
tion. Computational e�
ien
y of the des
riptor is therefore important, leavingout many of the 
ommonly used des
riptors as unsuitably heavy. Multiresolution Gaborfeatures has been the main des
riptor in this thesis and improving their e�
ien
y is asigni�
ant part. A
tual image features are formed from des
riptors by using a 
lassi�erwhi
h 
an then re
ognize similar looking pat
hes in new images. The main 
lassi�er isbased on Gaussian mixture models. Classi�ers are used in one-
lass 
lassi�er 
on�gura-tion where there are only positive training samples without expli
it ba
kground 
lass.The lo
al image feature dete
tion method has been tested with two freely available fa
edete
tion databases and a proprietary li
ense plate database. The lo
alization perfor-man
e was very good in these experiments. Other appli
ations applying the same under-lying te
hniques are also presented, in
luding obje
t 
ategorization and fault dete
tion.Keywords: Gabor �lters, multiresolution �ltering, obje
t dete
tion, 
omputer vision,ma
hine vision, pattern re
ognitionUDC 004.93'1



Symbols and abbreviations
I(x, y) Intensity image
D(x, y, σ) Di�eren
e of Gaussians
p Crossing point between adja
ent Gabor �lters
k S
aling fa
tor for Gabor �lter frequen
ies
γ Gabor �lter sharpness along major axis
η Gabor �lter sharpness along minor axis
m Number of �lters in di�erent frequen
ies
n Number of �lters in di�erent orientations
fmin Tuning frequen
y of the lowest frequen
y Gabor �lter
fmax Tuning frequen
y of the highest frequen
y Gabor �lter
fhigh The highest frequen
y in
luded in Gabor �lter
asf S
aling fa
tor for image
θ Rotation of Gabor �lter
ψ(t; f0) 1D Gabor �lter in spatial domain
Ψ(u; f0) 1D Gabor �lter in frequen
y domain
ψ(x, y; f0, θ) 2D Gabor �lter in spatial domain
Ψ(u, v; f0, θ) 2D Gabor �lter in frequen
y domain
ξ(x, y) Image fun
tion
rξ(x, y; f, θ) Gabor responses for image ξ(x, y)
G Simple Gabor feature matrix
N(t;µ, σ) Gaussian (normal) distribution
N (x; µ,Σ) Multidimensional normal distribution
G(x;µ, σ) Cumulative Gaussian fun
tion
G−1(p;µ, σ) Cumulative inverse Gaussian fun
tion
xs, xf Envelope endpoints for spatial and frequen
y domain Gabor �lters
R Con�den
e region
τ Pdf value at border of 
on�den
e region
κ Quantile value, 
on�den
e c = 1 − κ
c Con�den
e value
k(x, x′) Kernel fun
tion
σ The sharpness of RBF kernel
ν Parameter 
ontrolling number of outliers in SVM 
lassi�er
αi Support ve
tor weights
ρ Margin to the hyperplane



1D One dimensional2D Two dimensionalEM Expe
tation maximizationDFT Dis
rete Fourier transformFFT Fast Fourier transformGMM Gaussian mixture modelHDR High density regionIFFT Inverse Fast Fourier transformLBP Lo
al binary patternMSER Maximally stable extremal regionsPCA Prin
ipal 
omponent analysispdf Probability density fun
tionRBF Radial basis fun
tionROC Re
eiver operating 
hara
teristi
SIFT S
ale-invariant feature transformSOM Self-organizing mapSVM Support ve
tor ma
hine
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Chapter IIntrodu
tion

1.1 Obje
t dete
tion and lo
alizationObje
t dete
tion is a 
omputer vision task where presen
e and lo
ation of an obje
tis determined from an image. Obje
t dete
tion methods are useful in various problems,e.g. li
ense plate dete
tion and re
ognition [11℄, fa
e dete
tion [32℄ and dete
tion of aerialtargets [75℄. Often methods for spe
i�
 appli
ations exploit appli
ation spe
i�
 informa-tion to su

eed, for instan
e, skin 
olor in fa
e dete
tion. Therefore, obje
t dete
tionhas been a dis
onne
ted �eld of study applying a variety of te
hniques. However, latelyobje
t dete
tion approa
hes have started to 
onverge; many new generi
 obje
t dete
tionmethods use lo
al image features to des
ribe lo
al appearan
e of an image and 
ombinethese lo
al features with a model 
apturing their geometri
 relations, together 
reatinga 
omplete obje
t des
ription.Even with this �parts and stru
ture� approa
h of obje
t dete
tion there are still manydi�erent types of a
tual methods and some of their 
entral di�eren
es are listed here.First is the importan
e of lo
alization. Some obje
t dete
tion methods 
on
entrate ondete
ting presen
e of the obje
t, is it there at all, and exa
t lo
alization is of se
ondaryimportan
e, while for some other methods a

urate lo
alization is important. Se
ond iswhether the method tries to dete
t always the same obje
t or more generally a 
lass ofobje
ts. Related to this is whether the method expli
itly 
onsiders dete
tion of multipleobje
t 
lasses or only a single 
lass at a time. Third is the level of supervision, manuallabor, that is required for training the dete
tor.This thesis presents a supervised method for lo
alizing lo
al image features e�
ientlyand a

urately for one obje
t 
lass at a time. A supervised method is used insteadof a more fashionable semi-supervised approa
h to maximize the quality of lo
al imagefeatures, and 
onsequently dete
tion performan
e. Semi-supervised methods start withan interest point dete
tor to dete
t �interesting� or salient parts of an image, then 
reatelo
al des
riptions for the dete
ted parts and �nally try to sele
t automati
ally lo
alfeatures whi
h are shared by all obje
ts of the obje
t 
lass. With the supervised methodthe task is 
onsiderably more simple. Complex 
ombination of interest point dete
tion,11



12 1. Introdu
tiondes
ription and model 
reation is not needed be
ause we know the important points andtheir spatial relationships as they are manually marked. Now, during dete
tion with oursupervised method the lo
al des
riptor has to perform the fun
tion of determining, forinstan
e, "does this point look like an eye", while a method whi
h separates interestpoint dete
tion and lo
al des
ription �rst de
ides "does this point look interesting" andthen "is this point similar to some of the image features we know".In our 
ase the interest points are reliable be
ause we know they really are related tothe obje
t 
lass, while the quality of image features determined by the semi-supervisedmethods is not guaranteed. It is possible that a semi-supervised method returns points
ommonly found in the ba
kground, for example, tra�
 signs are 
ommon in images with
ars, therefore a method 
an de
ide that the presen
e of a tra�
 sign is related to thepresen
e of the 
ar. Furthermore, as human knowledge is used when 
ommon points aresele
ted, the sele
tion is not limited by what is deemed interesting by an interest pointdete
tion method.1.2 Contributions and publi
ationsA 
entral 
ontribution is the e�
ien
y improvements of Gabor �ltering. Compared toour older implementation the speed has improved by a fa
tor of 50. This work hasbeen published as a 
omprehensive resear
h report, [35℄, and a shorter version has beenpublished in a 
onferen
e, [36℄. This thesis also in
ludes novel resear
h on properties of
omplex-valued Gabor feature spa
e.Another important 
ontribution is 
omputation of 
on�den
e values for Gaussian mixturemodels (GMM), whi
h 
onverts the arbitrarily s
aled probability density fun
tion (pdf)values to a probability s
ore. One 
onferen
e arti
le has been published about this [39℄,and there is a journal arti
le about GMM's in general [68℄.In this thesis a supervised method for lo
al image feature dete
tion is proposed whi
his based on multiresolution Gabor features and their ranking using Gaussian mixturemodels. One 
onferen
e arti
le related to the method proposed in this thesis has beenpublished, [43℄, and it in
ludes also fa
e dete
tion experiments. There is also a journalsubmission, a

epted with minor 
hanges, about large parts of the 
omplete work [38℄.The proposed method has been applied to many important obje
t dete
tion tasks, su
has fa
e and li
ense plate dete
tion with ex
ellent results.Based on the image feature dete
tion method an alternate appli
ation was developed forvisual 
ategorization of obje
ts. The 
ategorization is based on multiresolution Gaborfeatures and their self-organization and has been published in [34℄. Another appli
ationof multiresolution Gabor features and GMM 
lassi�er was developed for fault dete
tionin ele
tri
al motors and has been published as a journal arti
le, [37℄.In these publi
ations, the author has made a major 
ontribution to the development andwriting in [34, 35, 36, 37, 39℄, performed experiments, parti
ipated in the developmentand writing in [43, 38℄ and had a minor writing 
ontribution in [68℄.



1.3 Thesis outline 131.3 Thesis outlineChapter 2 reviews methods related to lo
al image features used in obje
t dete
tion.The 
hapter is divided to three parts: interest point dete
tion, lo
al image des
ription,and 
omplete obje
t dete
tion methods. The division is natural as many of the dete
tionmethods 
learly separate interest point dete
tion and lo
al image des
ription; in our ownmethod the lo
al image des
riptor operates also as the interest point dete
tor.Multiresolution Gabor features are the topi
 of Chapter 3. The 
hapter �rst introdu
esGabor features in both one and two dimensions, and then des
ribes their e�
ient imple-mentation and an implementation framework. Experimental results related to e�
ien
yimprovements are presented here.Chapter 4 presents information about 
lassi�
ation and feature ranking of lo
al imagefeatures. One-
lass 
lassi�ers and their requirements are �rst des
ribed and then the
hapter des
ribes algorithms for 
reating lo
al image feature dete
tors and how they
an be used for dete
tion. Also in
luded is information on properties of multiresolutionGabor feature spa
e, as it has been noti
ed to be o

asionally 
hallenging for 
lassi�ers.Chapter 5 presents experiments and appli
ations of multiresolution Gabor �lter re-sponses in various tasks. The main experiment has been obje
t dete
tion (fa
e andli
ense plate dete
tion). Other appli
ations are visual 
ategorization of obje
ts based onlo
al image features and their spatial 
on�guration and an approa
h for fault dete
tionin ele
tri
al motors, whi
h is based on 1D Gabor features and their 
lassi�
ation.Finally, Chapter 6 dis
usses what was a
hieved in this thesis, and the strengths andweaknesses of our proposed image feature dete
tion approa
h.
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Chapter IILo
al image feature dete
tion

In pattern re
ognition features are numeri
 or symboli
 units of information 
onstru
tedfrom measurements by sensors. In 
ase of images image features 
ontain information ofthe image 
ontent; the information 
an represent small parts of the image (lo
al imagefeatures), or the whole image (global image features). Global image features, su
h asgray level histograms, represent information from the whole image, they do not revealinformation about lo
al stru
tures. Conversely, lo
al image features represent the lo
alimage pat
hes 
apturing information from the lo
al 
ontent of the image. However,when several lo
al image features are 
ombined, their spatial relationships 
an be useful,revealing larger stru
tures in the image. Lo
al image features are a very large topi
; thiswork 
on
entrates on lo
al image features suitable for obje
t dete
tion. In this �eld lo
alimage features are often represented by lo
al (image) des
riptors. In this work distin
tionbetween lo
al image des
riptors and lo
al image features is de�ned so that lo
al imagedes
riptor is a numeri
 feature 
omputed from an image pat
h and lo
al image feature isa more re�ned presentation whi
h 
an be used at the dete
tion phase to lo
alize desiredimage pat
hes. Before going to the topi
 of lo
al image des
ription, the workings of theobje
t dete
tion systems are studied �rst.2.1 Obje
t dete
tion with parts-and-stru
ture modelState-of-the-art obje
t dete
tion and re
ognition systems work by dividing the obje
tinto smaller parts, and then de�ning the appearan
e model and spatial relationship forthose parts � �parts and stru
ture�. An example is presented in Fig. 2.1. �Parts� are thesmall image parts 
hara
teristi
 to the obje
t 
lass, and �stru
ture� de�nes the spatialstru
ture between these parts.This kind of method was �rst introdu
ed by Fis
hler and Els
hlager in 1973 [21℄, but wasthen largely ignored for two de
ades until Lades et al. [50℄ released their paper in 1993.The method has be
ome popular for obje
t dete
tion and lo
alization lately be
ause ofmany bene�ts 
ompared to dete
ting the whole obje
t: des
ription of lo
al image parts
an be simpler than des
ription of the whole obje
t, and the o

lusion, part of the obje
t15
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Figure 2.1: An example of obje
t 
lass dete
tion with �parts and stru
ture�model. Same parts � tires, motor and handlebars � of two motor
y
les are markedby green 
ir
les and their spatial relationships with blue lines.being hidden by another element in the image, 
an be naturally handled as well as defor-mations in the obje
t. Common stages of obje
t 
lass dete
tion systems utilizing �partsand stru
ture� is presented in Fig. 2.2. Foreground images are the images 
ontaining ob-je
ts to be learned and ba
kground images are images of basi
ally everything else. First,interest points are found in the foreground training images, des
riptions are 
reated forthese points and then a model for the obje
t 
lass is learned. Sometimes ba
kgroundimages are utilized when the model is learned, while some methods work without expli
itexamples from the ba
kground 
lass.
Figure 2.2: A 
on
eptual diagram of learning stages for obje
t 
lass dete
tionwith the �parts and stru
ture� model.One important di�eren
e between methods following the approa
h in Fig. 2.2 is thelevel of supervision. Supervised systems require more manual help in the interest pointdete
tion phase. Manual help 
an range from segmentation of foreground obje
ts tomanually marking interest points. More supervision leads to interest points of assuredquality, and the task of model learning be
omes easier. Conversely, when the level ofsupervision is de
reased the model learning be
omes more 
omplex as the interest points
an be found outside of the obje
ts to be learned, and therefore pruning of outlier interestpoints is required.In the following some 
urrent obje
t dete
tion methods are partitioned by their level ofsupervision. The basi
 levels here are unsupervised, semi (weakly) supervised, supervised
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t dete
tion with parts-and-stru
ture model 17and strongly supervised methods, but the division between groups is not 
lear as thedi�erent methods require di�erent levels of supervision in respe
t to labeling, imagealignment and segmentation of training images.
• Unsupervised methods: learning obje
t 
lasses from a set of unlabeled images 
on-taining several di�erent obje
t 
lasses. This is yet to be reliably a
hieved, however,many methods are 
alled unsupervised when they a
tually belong to the following
lass, semi-supervised.
• Semi-supervised methods: learning obje
t 
lasses from a set of labeled images.Many studies are 
on
entrating on these kind of methods, some of them are brie�ydes
ribed here.Some methods use only a set of image features without a stru
ture (
onstellation)model, for example, a method using various interest point dete
tors and lo
al de-s
riptors 
ombined with AdaBoost by Opelt et al. [67℄, a method utilizing Bayesianlearning of image features by Carbonetto et al. [10℄, and with shape based regiondete
tors and des
riptors by Jurie and S
hmid [41℄.Many methods also use the stru
ture model, for example, an obje
t dete
tionmethod using a vo
abulary for parts of the obje
t used along with informationof their spatial relationships by Agarwal and Roth [1℄ and various methods fromPerona's group, for example, 
lassi
al parts and stru
ture model learned with EMalgorithm [89, 18℄. There is a similar method using a star model instead of full
onstellation model [19℄ and �One-shot learning of obje
t 
ategories� by Fei Fei etal. [17℄ whi
h is almost truly unsupervised in the sense that it tries to learn a newobje
t 
lass even from a single image, though knowledge from previously learned
lasses and ba
kground is used. A method by Mikolajz
yk et al. [60℄ dete
ts mul-tiple obje
t 
lasses (simultaneously), and the training is done from roughly alignedimages using a hierar
hi
ally formed tree stru
ture of lo
al features (PCA-SIFT).
• Supervised methods: learning from labeled and segmented images. Some examplesof these kind of methods are a method by Dorgo and S
hmid [15℄ whi
h sele
ts partsfor the obje
t dete
tion using Harris-Lapla
e and SIFT interest point dete
tion,SIFT des
ription and uses GMM and SVM 
lassi�ers without a spatial model, anda fa
e dete
tion method by Viola and Jones [88℄ whi
h learns a fa
e model fromsegmented training images using AdaBoost and integral images.
• Strongly supervised methods: labeled training images with manually sele
ted �in-terest points� or areas. Some examples are dete
tion of humans from a sub-windowby dete
ting head, legs and arms separately by using Haar wavelets and SVM byMohan et al. [64℄, and the work this thesis is related to, obje
t 
lasses learned frommanually marked interest points using the Gaussian mixture models and multires-olution Gabor �lters [43, 30℄.Obje
t dete
tion methods 
an be further divided into another two 
lasses. Some methodsonly dete
t whether the obje
t is present in the image or not, not giving the obje
t'spre
ise lo
ation or even any kind of guess of its lo
ation. Some methods dete
t also theobje
t's lo
ation and pose, however, in many publi
ations the lo
alization performan
e



18 2. Lo
al image feature dete
tionis not expli
itly measured. Here, the term �obje
t dete
tion� is used for methods whi
hdete
t an obje
t's presen
e in an image (is it there or not), and the term �lo
alization�meaning that in addition to dete
ting the obje
t's presen
e the method a

urately lo
al-izes where in the image the obje
t resides. Most of the obje
t dete
tion methods 
an givean estimate for the obje
t's lo
ation, but with unsupervised or semi-supervised methodsit is not generally possible to ensure that the features that are learned to distinguishobje
ts really belong to the obje
t itself instead of using some 
ontextual information
ommonly found in the ba
kground, as noted in [67℄. An example of this 
ould be in thedete
tion of 
ars, where an unsupervised method 
ould learn that the presen
e of tra�
signs implies also presen
e of 
ars be
ause 
ars are often found in areas (roads or parkinglots) where there are also tra�
 signs. However, even if the method 
ould lo
alize theobje
t in addition to dete
ting its presen
e, it is 
ommonpla
e to only measure whetherthe presen
e was 
orre
tly dete
ted, not how pre
isely the obje
t was lo
alized.To get an overview of the required level of supervision and suitability to lo
alization,these properties of the obje
t dete
tion methods 
ited in this se
tion are 
ollated inTable 2.1. The methods are sorted roughly in order of in
reasing level of supervision.While some methods (e.g., [89℄) 
laim to use �unlabeled� data they still use separatepositive and negative training sets, and therefore are 
ounted as using labeled data. Manymethods 
ould be used for lo
alization, however, often the lo
alization performan
e is notexpli
itly 
onsidered or measured, and these methods are marked with �not expli
itly� for�lo
alization�. Methods whi
h give a rough lo
ation estimate are marked with �boundingbox�. Table 2.1: A table of obje
t dete
tion methods listing their level of supervisionand 
apability of lo
alization. A ∗ in the segmented/normalized �eld means thatthe requirement is impli
it in the training set, i.e., training images 
ontain obje
tsin roughly similar settings.Labeled Segmented/aligned Lo
alization[67℄ Yes No No[10℄ Yes No No[41℄ Yes Aligned Bounding box[1℄ Yes Aligned and normalized Bounding box[89℄ Yes Roughly aligned ∗ Not expli
itly[18℄ Yes Roughly aligned ∗ Not expli
itly[19℄ Yes Roughly aligned ∗ Not expli
itly[17℄ Only 1 image Roughly aligned ∗ Not expli
itly[60℄ Yes Roughly aligned Bounding box[15℄ Yes Segmented Not expli
itly[88℄ Yes Segmented Yes[64℄ Yes Segmented Bounding box[43, 30℄ Yes Manually marked keypoints YesAnother distin
tion for methods is whether they are intended for obje
t or obje
t instan
edete
tion (obje
t mat
hing). In obje
t dete
tion the obje
t 
lass should be learned ingeneral fashion and the method must not be too sele
tive, otherwise it will be led astray
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tion 19by intra-
lass variations (the di�eren
es between obje
ts belonging to the same 
lass),but still be able to 
apture inter-
lass variations (to distinguish obje
ts from di�erent
lasses from one another). In obje
t instan
e dete
tion the same obje
t must be dete
tedin di�erent images. The method must learn details spe
i�
 to the obje
t so that it 
andistinguish that obje
t from all others in the image.Obje
t instan
e dete
tion methods are often used for mat
hing (for example mat
hing ofstereo images) and therefore the method should be highly robust to viewpoint 
hanges.One use is mat
hing di�ering views of the same obje
t or s
ene, and some examples of thisare the original use of SIFT (S
ale Invariant Feature Transform) features by Lowe [55℄or maximally stable extremal regions (MSER) by Matas et al. [57℄. In general, stru
tureand motion problems do not ne
essarily require the use of lo
al image des
riptors; 
orre
t
orresponden
es between interest points obey a geometri
 
onstraint, epipolar geometry,whi
h 
an be solved, for example, by the RANSAC algorithm (e.g. [4℄). Lo
al imagedes
riptors be
ome useful when the di�eren
e between mat
hed views is large.The following se
tions review some of the most widely used interest point dete
tion andlo
al image des
ription methods. In the end of the 
hapter also some 
omplete obje
tdete
tion methods are shortly des
ribed.2.2 Interest point dete
tionInterest points are known by many names, among them are distinguished regions [57℄,a�ne regions [63℄ and salient regions [55℄. While they are 
alled regions, most of themethods return a spe
i�
 interest point and not an interest region. Whether the pointis deemed interesting depends naturally on what is around it. To be useful the methodshave to be invariant, or at least robust, to s
ale, rotation, noise and illumination 
hangesand possibly for all a�ne 
hanges; the same points should be found when for exampleimage viewpoint 
hanges or when there are 
hanges in imaging 
onditions. For obje
tdete
tion they should also be in general robust to intra-
lass variations. For an exampleof di�erent types of image 
hanges see Fig. 2.3.Many methods also determine s
ale and rotation of the interest point, and that informa-tion 
an be used when lo
al image des
ription is 
reated for the interest point. In thefollowing some of the most known interest point dete
tors are des
ribed shortly.2.2.1 Harris 
orner dete
torOne of the �rst interest point dete
tors was a 
ombined 
orner and edge dete
tor byHarris and Stephens [31℄, where the main motivation was motion analysis from an imagesequen
e 
reated with a moving 
amera. The dete
tor is based on lo
al auto-
orrelationof the signal � the lo
al auto-
orrelation measures 
hanges when a pat
h is shifted slightly.A 
hange of intensity for image I(x, y) for a shift (u, v) is
E(u, v) = Σx,yw(x, y) [I(x+ u, y + v) − I(x, y)]2 (2.1)where w(x, y) is a windowing fun
tion, usually Gaussian. For small shifts an approxima-tion 
an be used,
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Figure 2.3: An example of types of 
hanges the interest point dete
tor shouldtolerate. .
E(x, y) = [∆x∆y]M [∆x∆y]T , (2.2)where M is a symmetri
 2 × 2 matrix 
omputed from image derivatives as (Iα is theimage derivative 
al
ulated in dire
tion α)

M = Σx,yw(x, y)

[

I2
x IxIy

IxIy I2
y

]

. (2.3)Eigenvalues λ1 and λ2 of the matrix M are then solved. If both λ1 and λ2 are small,image is �at in that point, if both are large there is a 
orner, and if one is large and theother small there is an edge. Corner response 
an then be 
al
ulated without expli
iteigenvalue de
omposition,
R = detM − k(tra
e M)2 , (2.4)where k is an empiri
al 
onstant, usually 0.04 . . . 0.06. Small |R| means a �at point,

R > 0 a 
orner point and R < 0 an edge point. The a
tual sele
ted 
orner points are thelo
al maxima of the R, so only one point per 
orner is a
tually sele
ted. Lo
al minima
an also be sear
hed whi
h will isolate edge-points, but this is not as useful as dete
tionof the 
orner points, be
ause 
orner points are mu
h more stable for small variations



2.2 Interest point dete
tion 21in the image. The Harris 
orner dete
tor is invariant to rotation, partially invariant tointensity 
hange (if 
ontrast be
omes too low in a 
orner area, R be
omes small and thepoint is 
lassi�ed as a �at area), but not invariant to s
ale.The groundwork for automati
 sele
tion of s
ale of the interest point was investigated byLindeberg [53℄, and based on that work the Harris dete
tor has been extended to s
aleinvarian
e by Mikolaj
zyk and S
hmid [61℄ � the dete
tor is 
alled the Harris-Lapla
edete
tor. The s
ale invarian
e is a
hieved by 
omputing a multi-s
ale representation forthe Harris dete
tor and then sele
ting points whi
h have a lo
al maximum of normalizedimage derivatives (the Lapla
ians).The Harris-Lapla
e works by �rst dete
ting the Harris 
orner points in multiple s
ales.A threshold of |R| is used to remove 
orner points whi
h are not distin
tive enough, asthey are not stable for 
hanges. For ea
h point found an iterative algorithm is used todete
t s
ale and the lo
ation of the interest point, as the exa
t lo
ation may 
hange whendi�erent s
ales are sear
hed through. The s
ale of the interest point is dete
ted by �ndingthe maximum for the Lapla
ian-of-Gaussians response. In a simpli�ed version whi
h isfaster to 
ompute the iterative steps are removed and the interest point is reje
ted if itis not a maximum of Lapla
ian-of-Gaussians.In addition to s
ale invarian
e, Mikolaj
zyk and S
hmid [61℄ extended the Harris dete
torto a�ne invarian
e and the dete
tor is 
alled the Harris-A�ne. The main addition toHarris-Lapla
e is the dete
tion of the shape of the interest point. The shape is determinedby a rotated ellipse: the rotation is determined from lo
al gradient orientation and theaxes of the ellipse are determined from the ratio of eigenvalues of the se
ond momentmatrix.2.2.2 SIFT dete
torSIFT (S
ale Invariant Feature Transform) by Lowe [55℄ in
ludes both interest pointdete
tor and a lo
al image des
riptor. Only the dete
tor is presented here, the des
riptorwill be dis
ussed in the following se
tion. SIFT works in four major stages:1. S
ale-spa
e extrema dete
tion. Potential interest points are sear
hed in all s
alesand lo
ations and potential interest points are identi�ed with a di�eren
e-of-Gaussianfun
tion.2. Keypoint lo
alization. A model is used to determine lo
ation and s
ale of theinterest point and interest points whi
h are not deemed stable are pruned out.3. Orientation assignment. Lo
al image gradients are used to assign one or moreorientations for ea
h keypoint.4. Keypoint des
riptor. Des
riptions for keypoints are 
reated.First, interest points are dete
ted by applying a 
ontinuous fun
tion of s
ale: a s
alespa
e. The s
ale spa
e fun
tion used here, L(x, y, σ), is a produ
t of the variable-s
aleGaussian, G(x, y, σ) and an input image, I(x, y),
L(x, y, σ) = G(x, y, σ) ∗ I(x, y) , (2.5)
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al image feature dete
tionwhere ∗ is the 
onvolution operation and G(x, y, σ) is the Gaussian fun
tion,
G(x, y, σ) =

1

2πσ2
e−(x2+y2)/2σ2

. (2.6)Note that L(x, y, σ) 
an be thought of as an image smoothed by a Gaussian kernel. Lowehas proposed to use the extrema of the di�eren
e-of-Gaussian fun
tion as interest pointswhi
h 
an be dete
ted e�
iently. Di�eren
e-of-Gaussians is de�ned as
D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) (2.7)a di�eren
e of two Gaussians on nearby s
ales separated by 
onstant fa
tor k. This 
anbe e�
iently 
omputed from two smoothed images,

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ) − L(x, y, σ) . (2.8)An example of 
omputation of di�eren
e-of-Gaussians 
an be seen in Fig. 2.4. The imageis smoothed with Gaussians whi
h are separated by a 
onstant fa
tor k in s
ale spa
e �these images, L(x, y, σ), form the right image sta
k. Adja
ent images are then subtra
tedfrom ea
h other to produ
e di�eren
e-of-Gaussians images, D(x, y, σ). Ea
h o
tave, adoubling of σ, 
an be handled separately and the 
omputation time 
an be saved bydowns
aling the image for every o
tave. The interest points are lo
ated by �nding lo
alextrema from the sta
k of di�eren
e-of-Gaussians images, i.e., a point is an interest pointif it is the smallest or largest of the 3× 3× 3 pixels surrounding it at the same s
ale leveland the levels above and below.
Figure 2.4: Initial image is 
onvolved with Gaussians with di�erent s
ales,
G(x, y, σ), produ
ing smoothed images, L(x, y, σ). Di�eren
e-of-Gaussians,
D(x, y, σ), 
an then be 
omputed as di�eren
e of two adja
ent images.Next, the exa
t lo
ation of the interest point is measured by �tting a 3D quadrati
fun
tion to lo
al image points. This 
al
ulation also reveals interest points whi
h arein areas with too low 
ontrast; these are removed. The di�eren
e-of-Gaussians has astrong response near edges, but edge points are not stable as lo
ation along the edgeis unstable to small amounts of noise. Therefore, similarly to the Harris dete
tor, theprin
ipal 
urvature is 
omputed for ea
h point by 
al
ulating eigenvalues of the Hessianmatrix for ea
h interest point. The interest point is a

epted only if the ratio betweeneigenvalues is small enough, and the a
tual 
al
ulation of eigenvalues 
an be avoided,
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tion 23again, similarly to the Harris dete
tor. Orientation of the keypoint is determined by
omputing an orientation histogram for ea
h interest point and its neighborhood. Thehighest peak of the histogram is de�ned as the interest point's orientation, but also otherpeaks higher than 80% of the highest peak are a

epted as separate interest points, i.e.,one interest point 
an be split into several di�erent interest points if there are manydominant dire
tions in the orientation histogram.2.2.3 Entropy based dete
torKadir et al. have developed an interest point dete
tor whi
h is based on an informationtheoreti
al approa
h, the entropy of lo
al image regions [42℄. Unlike many other interestpoint dete
tors, their dete
tor is expli
itly designed while having intra-
lass variations inmind. The dete
tor works in three steps:1. Cal
ulate entropy of the lo
al image areas (the entropy of a gray-level or 
olorhistogram) in several s
ales (
ir
les with varying sizes). A �at image area has ahistogram with one strong peak and the entropy is low, and an image area withmore variations will have a histogram with several peaks or even a �at histogramwhi
h has the highest entropy.2. Sele
t s
ales whi
h have peaks of entropy.3. Use an inter-s
ale unpredi
tability measure to weight entropy values. Image areaswhere a spe
i�
 s
ale has strong peak get weighted higher than areas where a peakis weak 
ompared to nearby s
ales. For example, in a very noisy image area, entropyis high at all s
ales, but there is not one spe
i�
 s
ale whi
h has a strong peak.For instan
e a bright 
ir
le on a bla
k ba
kground will have its entropy maximum whenthe dete
tor's area 
ontains some bla
k area around the 
ir
le so that there are approxi-mately an equal number of white and bla
k pixels inside it. Entropy is small if the areais 
ompletely inside the 
ir
le, and will be
ome smaller when the area size is in
reasedand bla
k pixels start to dominate.This entropy based salien
y measure for interest points is naturally invariant to rotation,translation and small a�ne transforms: the histogram does not 
hange during these
hanges. However, it is only invariant to shifts in image intensity, not to 
ontrast 
hanges.Invarian
e to all a�ne 
hanges is possible when a 
ir
ular image s
anning window is
hanged to a ellipse. This in
reases 
omplexity 
onsiderably, be
ause in addition to s
ale(i.e., the radius of the 
ir
le) there is now also rotation and ratio between major andminor axes of the ellipse to sear
h. For that reason a lo
al sear
h strategy is used: �rsta 
ir
ular window is used to sear
h for seed points (only position and s
ale), and thenthe rotation and shape of the ellipse is iteratively 
hanged to maximize salien
y.2.2.4 Maximally stable extremal regionsMSER (Maximally Stable Extremal Regions) has been introdu
ed by Matas et al. [57℄.MSER is based on thresholding and an extremal region is a 
onne
ted area in a thresh-olded image. All extremal regions are found by thresholding the image with all possible
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al image feature dete
tionthresholds, [0 − 255] for normal gray-s
ale images, and �nding then all 
onne
ted areas.Maximally stable extremal regions are extremal regions whi
h do not 
hange, or 
hangeas little as possible, when the threshold is 
hanged. In pra
ti
e this means that MSERsare regions with relatively �at intensity surrounded by sharp intensity 
hange.Regions found by MSER are invariant to all adja
en
y preserving transformations, whi
hin
ludes s
ale, rotation and a�ne transforms as long as the stable region is found in aplanar obje
t, invariant to shifts in image intensity but not invariant to large 
ontrast
hanges.2.2.5 Performan
e evaluationPerforman
e of various interest point dete
tors (
alled a�ne region dete
tors) was testedin [63℄. The performan
e was tested by 
he
king how many of the same interest pointswere found in image sets where the viewpoint, s
ale, rotation or illumination varied, orimages were blurred or JPEG-
ompressed. A

urate homography between images (howthe points in one image map to points in the other image) was measured beforehand, andthe a

ura
y of interest point dete
tors was measured by how many of the found pointswere mat
hed within 
ertain limit in both images. MSER (Maximally Stable ExternalRegions) [57℄ and Hessian-A�ne [61℄ were found to perform best overall. The resultsare not dire
tly appli
able to obje
t dete
tion as the tests used images of exa
t sames
enes under various 
hanges: there was no intra-
lass variations 
hara
teristi
 to obje
tdete
tion problems.2.3 Lo
al image des
riptionIn the following some methods used as lo
al image des
riptors are explained shortly.When lo
al image des
riptors are used with interest point dete
tors whi
h dete
t s
aleand orientation, and potentially also a�ne shape of the interest point, the image pat
h
an be normalized before 
reating the lo
al des
ription. Therefore, in su
h 
ase the lo
aldes
riptor itself does not have to be s
ale or rotation invariant. However, invarian
e, atleast to some degree, to imaging 
ondition 
hanges (lighting 
hanges or noise), and toother small perturbations is important. Invarian
e to small perturbations is even moreimportant when the des
riptor is used in obje
t dete
tion where the des
riptor shouldnot be too sele
tive to small variations, otherwise it 
annot represent reliably an obje
t
lass.In addition to the des
riptor not having to be s
ale or rotation invariant, the use ofinterest point dete
tion as a �rst step has also the added bene�t that the des
riptor 
anbe 
omputationally 
omplex as there is only a limited number of des
riptors to 
ompute.If an interest point dete
tor is not used, or rather the lo
al image feature 
ombines bothinterest point dete
tor and lo
al des
riptor, the lo
al des
riptor has to be used in anexhaustive sear
h and the 
omputational 
omplexity must be low.Multiresolution Gabor �lters are the main lo
al image des
riptor used in this thesis, andthey are therefore presented in their own se
tion, Se
tion 3.1, in more detail.



2.3 Lo
al image des
ription 252.3.1 Lo
al des
ription by pixel valuesThe most straightforward idea for lo
al image des
ription is taking a part of the im-age around the interest point and using the gray-level pixel-values dire
tly as an imagedes
riptor (see Fig. 2.5). If the interest point dete
tor dete
ts s
ale and rotation ofthe interest point, the lo
al image area 
an be s
aled and rotated to a

ount for these
hanges. There are two major problems with this kind of des
riptor: high dimensionalityof the des
riptor (for example, 20 × 20 area will have a des
riptor of length 400) andpoor invarian
e to small perturbations of the image. Both of these problems 
an be alle-viated by redu
ing the dimensionality, for example by using PCA (prin
ipal 
omponentanalysis). This kind of lo
al des
riptor has been used for example by Fergus et al. [18℄.A pat
h of the image based on the s
ale of the interest point was taken and s
aled tosize 11× 11. The image pat
h was used as a ve
tor of the gray-level values of length 121and proje
ted onto 10-15 prin
ipal 
omponents. Prin
ipal 
omponents were 
al
ulatedbeforehand based on a large number of interest points.

Figure 2.5: Image des
ription by dire
t pixel values.2.3.2 SIFT des
riptorSIFT (S
ale Invariant Feature Transform) by Lowe [55℄ in
ludes a lo
al image des
riptorbased on lo
al image gradients. The des
riptor is 
reated for the s
ale level found by theinterest point dete
tor and the rotation of the interest point is also taken into a

ountso that the des
riptor is s
ale and rotation invariant.Fig. 2.6 shows an example of des
riptor 
reation. The des
riptor is 
reated by �rst 
al-
ulating image gradients (their magnitudes and orientations) around the lo
ation of theinterest point. In the example Fig. 2.6(a), gradients for 8×8 points have been 
al
ulated.Gradient magnitudes are weighted by a Gaussian so that they be
ome gradually smallerwhen the distan
e to the 
enter point in
reases. Weighting is performed to avoid large
hanges in the des
riptor when the window moves slightly. Then, for ea
h 4 × 4 subre-gion, weighted gradients are divided using interpolation to 8 primary dire
tions and thensummed (Fig. 2.6(b)), i.e., the gradients pointing roughly to the 8 primary dire
tions aresummed together. The a
tual des
riptor is the ve
tor of dire
tional gradient sums from
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al image feature dete
tionall subwindows (Fig. 2.6(
)). In the example the des
riptor is of length 32 (8 primarydire
tions for 4 sub-windows), but usually an area of 16 × 16 points is used with 4 × 4subregions, therefore 
reating a des
riptor with a length of 128 (8 primary dire
tionswith 16 sub-windows). The des
riptor is �nally normalized to unit length.
(a) Image gradients (b) Weighted sum of gradients 0 8 16 24 32(
) Complete des
riptorFigure 2.6: An example of SIFT lo
al des
riptor 
reation.High dimensionality of the des
riptor is a problem for 
lassi�ers. Therefore a variant ofSIFT has been proposed: PCA-SIFT [46℄. In PCA-SIFT the dire
tional sums of gradientsfor subregions are not 
al
ulated, instead the whole pat
h of lo
al image gradients is usedand the dimensionality is redu
ed by using PCA. The eigenspa
e is pre
al
ulated usinga large number of image pat
hes. It was found out that using only the �rst 20 prin
ipal
omponents gave good results; this means that the feature ve
tor is only of length 20,
onsiderably shorter than the des
riptor of original SIFT. Another form of 
ombinationof SIFT des
riptor and PCA has also been used for example by Mikolaj
zyk et al. [60℄,where a normal 128 dimensional SIFT des
riptor is redu
ed to 40 dimensions.2.3.3 Lo
al binary patternsThe original LBP feature is 
al
ulated by 
omparing the value of a 
enter pixel to otherpixels in a 3× 3 area, and the resulting binary number is the result of the LBP operator(see the example in Fig. 2.7). A 256-bin histogram of LBP-values is formed when thefeature is 
omputed over a larger area. The histogram 
an be used e�
iently as a texturedes
riptor.The LBP operator has been extended in two ways [66℄. LBP operator 
an operate ondi�erent neighborhoods. LBPP,R refers to a LBP operator whi
h 
onsiders P neighborsat the distan
e of R, for example, LBP16,2 
onsiders 16 neighbors at the distan
e of 2.LBPP,R produ
es 2P output values whi
h also means that the histogram will be of thelength 2P . The histogram be
omes impra
ti
ally large if P is in
reased, however, it hasbeen noti
ed that so 
alled uniform patterns 
ontain more information than the othersand the histogram length 
an be redu
ed by bundling all non-uniform patterns into asingle bin. Uniform patterns in
lude only a limited number of bitwise transitions � from0 to 1 or the opposite. For example, 00000000 has zero transitions and 00111100 has twotransitions. An uniform LBP-operator whi
h bundles the patterns with more than twotransitions to a single bin is marked as LBPu2

P,R.
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Figure 2.7: An example of LBP 
al
ulation. Pixels surrounding the 
enter pixelare thresholded based on the value of the 
enter pixel and a binary feature isformed.LBP is mainly a texture des
riptor and one LBP histogram does not in
lude any infor-mation on how the texture 
hanges spatially and therefore normal LBP features are notvery useful dire
tly as lo
al image des
riptors. For that purpose, as proposed by Hadidet al. in [26℄, an image pat
h is divided into smaller pat
hes for whi
h separate LBPhistograms are 
omputed. The histograms from adja
ent image pat
hes are 
ombined toform an image feature whi
h 
an des
ribe 
omplex lo
al image areas. Image pat
hes arerepresented with a 
ombination of LBP4,1 and LBPu2

8,1 histograms [26℄. A 19× 19 imagepat
h is divided into 9 overlapping 9× 9 pat
hes. An example 
an be seen in Fig. 2.8. ALBPu2
8,1 histogram is 
omputed for the whole 19×19 image pat
h and LBP4,1 histogramsfor smaller 9× 9 images. The total length of the 
ombined histograms is 203 � 59 for theLBPu2
8,1 histogram and 16 for ea
h of the 9 LBP4,1 � and it is used dire
tly as the lo
alimage feature.

Figure 2.8: Lo
al image pat
h representation with LBP histograms.LBP features 
an be 
omputed e�
iently. However, when used as image features in thisfashion the resulting feature ve
tors are long and the e�
ien
y of the 
lassi�er may 
reatea bottlene
k for total e�
ien
y.2.3.4 Steerable pyramidThe steerable pyramid is a linear de
omposition of image into s
ale and orientation sub-bands, and is jointly shiftable in the both orientation and s
ale [81℄. The basis fun
tionsfor the de
omposition transform 
an be formed by translations, dilations and rotations ofa single �lter. The transform is 
onstru
ted as a re
ursive pyramid. The basis fun
tions
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al image feature dete
tionare dire
tional derivative operators, and the number of orientations is de�ned by theorder of the derivative; Nth order derivative has N+1 orientations. Examples of orientedbandpass �lter kernels are shown in Fig. 2.9.
(a) (b)Figure 2.9: 3rd order (4 orientations) steerable �lters: (a) Spatial domain, (b)Frequen
y domain.The pyramid is formed by 
onvolving the input signal with a set of oriented bandpasskernels and a low-pass kernel. To avoid aliasing the bandpass portion is not subsambled,but the low-pass portion is subsambled by a fa
tor of two. The low-pass �ltered portionis then used for 
omputing the next level in the pyramid. In addition to the bandpass�ltered levels, also the high frequen
y residual highpass sub-band and the low-pass sub-bands 
an be stored to be able to re
onstru
t the original signal. An example of animage de
omposed into a 2-level pyramid with 3rd order steerable �lters is presented inFig. 2.10.

(a) (b) (
)Figure 2.10: Example of image de
omposition using steerable �lters: (a) Originalimage; (b) Pyramid level de
omposition with the 3rd order steerable �lter (possess4 orientations), 2 pyramid levels and the lowpass sub-band; (
) Highpass residualsub-band.Steerable pyramid features have been used in obje
t dete
tion and re
ognition by Ballardand Wixson in [3℄. The des
ription of an obje
t is 
reated by using �lters with severaldi�erent orders (number of orientations) and s
ales. Here, a slightly di�erent approa
his taken to be 
ompatible with the approa
h used with multiresolution Gabor features,and only �lters with a spe
i�ed number of orientations is used in several s
ales. Only thebandpass �ltered levels of the pyramid are used and the highpass and lowpass portionsof the image are dis
arded. The responses 
an be arranged to a similar matrix formas is used with the multiresolution Gabor features (Se
tion 3.1, (3.8)). Computational
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tion methods 29performan
e of �lter response 
omputations is 
omparable to Gabor �lters, however,when �ltering in the spatial domain, smaller �lters 
an be used with steerable pyramid�lters than with Gabor �lters and there are only real values making steerable pyramidresponses faster to 
ompute.2.3.5 Performan
e evaluationThe performan
e of lo
al des
riptors was tested in [62℄. The test builds on the previousperforman
e testing of interest point dete
tors [63℄. First, interest points (or regions) aresear
hed in two images where the viewpoint, s
ale, rotation or illumination are varied,or images were blurred or JPEG-
ompressed. Then, the des
riptors are evaluated basedon how well they 
an �nd the 
orre
t (same) points among the interest points found intwo images. SIFT [55℄ and its modi�
ation made by the authors of the arti
le, gradientlo
ation and orientation histogram (GLOH), performed best, but again the performan
e
hara
teristi
s in this test 
annot be dire
tly applied to obje
t dete
tion.2.4 Obje
t dete
tion methodsIn the following few obje
t dete
tion methods are shortly des
ribed. Some of the methods
ombine interest point dete
tors and lo
al des
riptors to perform dete
tion of 
ompleteobje
ts, some use di�erent approa
hes.2.4.1 Feature-based a�ne-invariant dete
tion and lo
alization of fa
esThe methods presented in the following 
hapters of this thesis are 
onne
ted to a fa
e(obje
t) lo
alization method developed by Hamouz et. al, [27, 28, 29, 30℄. The dis
us-sion here is based mostly on [30℄. The paper distinguishes between fa
e dete
tion andlo
alization so that fa
e dete
tion methods estimate the position and pose of the fa
eroughly, for example by a bounding box, and fa
e lo
alization as pre
ise lo
alization offa
ial features.The method uses a separate lo
al image feature dete
tion phase to dete
t and lo
alizefa
ial parts (10 fa
ial parts: eyes, eye-
orners, nostrils and sides of mouth) and thenanother phase to 
ombine them to 
omplete the fa
e lo
alization using a 
onstellationmodel. Lo
al image features used are multiresolution Gabor features as presented in [48℄,and the Gaussian mixture model is used for learning the di�erent fa
ial feature 
lasses.During the dete
tion the 200 best 
andidates for ea
h fa
ial feature is returned.After fa
ial feature 
andidates have been dete
ted, a 
onstellation model is used to sele
twhi
h of the found 
andidates forms a fa
e. The 
onstellation model works by sele
tingthree 
andidates of di�erent types of fa
ial features (for example two eye-
enters and anostril) and 
al
ulating with whi
h kind of a�ne transform the 
andidate points �t tothe fa
e model formed from the training set. If the required transformation has not beenseen in the training set, the three points are probably false positives and do not belongto a fa
e.After a likely fa
e, or generally an obje
t, hypotheses have been found with the 
onstel-lation model, an appearan
e model is used to verify if a real fa
e was found, or if the
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al image feature dete
tionhypothesis was badly lo
alized or resides in the ba
kground. This step works in the imagelevel and does not use lo
al features: an image pat
h is extra
ted and it is 
lassi�ed witha SVM (support ve
tor ma
hine) 
lassi�er whi
h gives a s
ore for the pat
h being a fa
e.Classi�er is trained from training data where pat
hes are manually marked and a boot-strapping te
hnique is used to generate negative examples. Two di�erent SVM 
lassi�ersand two di�erently sized image pat
hes are used. First 
oarse 20 × 20 pat
hes are usedto prune out 
learly in
orre
t fa
e hypotheses and then the most likely hypotheses ofthose are further veri�ed using 45×60 pat
hes. Multiple steps are used be
ause with the
oarse resolution small misalignments 
annot be noti
ed. The lo
alization results werefound to be very good.The di�eren
es to the method presented in this thesis are:
• An improved 
lassi�
ation method, Gaussian mixture model with 
on�den
e infor-mation.
• The performan
e of Gabor �ltering has been improved greatly, and is now up to50x faster.
• Cross-validation for sele
ting Gabor �lter parameters has led to distin
tly betterresults [43℄.2.4.2 Distin
tive image features from s
ale-invariant keypointsSIFT interest point dete
tor was introdu
ed in Se
tion 2.2.2 and SIFT des
riptor inSe
tion 2.3.2. Together, they 
an be used for obje
t re
ognition [55℄.Naturally, the dete
tor is used to �nd the interest points and their s
ales and orienta-tions, then the des
riptor 
reates a des
ription for all of these points, 
alled keypoints.For training, the presented method uses a single image for the obje
t whi
h should bere
ognized, the image should in
lude no other obje
ts and have a 
lutter-free ba
kground.From the training image the keypoints are sear
hed and their des
riptions stored in adatabase, in
luding the spatial relations of the des
riptors. The pro
edure 
an be re-peated for other images with other obje
ts.During dete
tion, again, interest points are dete
ted and des
riptors 
reated. For ea
h ofthe keypoints a 
losest mat
h, smallest eu
lidean distan
e, in the database is sear
hed.Many of the found interest points arise from the 
luttered ba
kground or unknown ob-je
ts, so there may not always be a 
orre
t mat
h. Therefore, a threshold is applied. Aglobal threshold does not perform well, but a threshold based on the di�eren
e betweenthe 
losest mat
h and the se
ond 
losest mat
h found in the database is used instead.The idea is that if the mat
h is 
orre
t, the se
ond 
losest mat
h will be mu
h moredistant, and if the mat
h is in
orre
t the se
ond 
losest mat
h will likely have a similardistan
e.Even after dis
arding many of the false mat
hes based on thresholds a large part of theremaining interest points will still be in
orre
t. Hough transform is used to determineif several of the features vote for the same obje
t pose. Ea
h keypoint has parametersfor 2D lo
ation, s
ale and orientation, and the database 
ontains the same informationfor keypoints found in the training image. A Hough transform 
an be 
reated predi
ting
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ation, orientation and s
ale from the mat
hed keypoints. In addition, ea
h 
luster ofthree or more features found by Hough transform is subje
ted to a geometri
 veri�
ationpro
edure to dis
ard keypoints whi
h do not agree with the model a

urately enough,or add keypoints whi
h agree but were not found with the Hough transform. Finally, aprobabilisti
 model is used to a

ept or reje
t the obje
t hypothesis based on an a
tualnumber of mat
hed features.The method 
an re
ognize the trained obje
ts in highly varying poses and when theyare heavily o

luded. Several obje
ts 
an be dete
ted at the same time. However, themethod is intended for dete
ting the same obje
t (single obje
t instan
e): intra-
lassvariations are not 
onsidered at all.2.4.3 Obje
t 
lass re
ognition by unsupervised invariant learningThe arti
le by Fergus, Perona and Zisserman [18℄ presents an obje
t 
lass re
ognitionmethod where obje
t 
lasses are learned and re
ognized from unsegmented images of theobje
t in 
luttered s
enes. The method is not 
ompletely unsupervised as the trainingset images are all assumed to 
ontain an instan
e of the obje
t 
lass, i.e., when traininga dete
tor for motor
y
les, all training set images must 
ontain a motor
y
le.The method applies the parts and stru
ture model. The obje
t model 
onsists of partswhere for ea
h part appearan
e, relative s
ale and mutual position with other parts isknown. Some parts may also be o

luded. The model is generative and probabilisti
:parts are modeled with probability density fun
tions, more pre
isely Gaussians. Duringlearning, interest points and their s
ales are �rst sear
hed. From the appearan
e, s
aleand mutual position a model is learned so that it gives maximum-likelihood des
ription.Re
ognition is performed by dete
ting interest points and their s
ales in the query imageand evaluating found regions in the Bayesian manner applying model parameters foundduring training.First N interest points are found with lo
ations X, s
ales S, and appearan
es A. Thede
ision is based on likelihood for obje
t presen
e modeled as
p(X ,S,A; θ) =

∑

hǫH

p(X,S,A,h; θ)

=
∑

hǫH

p(X; A,S,h; θ) p(X; S,h; θ) p(X; S,h; θ) p(S,h; θ) p(h; θ)where h is a hypothesis ve
tor of length P , whi
h enumerates whi
h of the dete
ted
N interest points belong to the obje
t. Some of them maybe zero, whi
h means thatthat parti
ular obje
t part is not present. All valid allo
ations of features to the partsare presented by H, whi
h is of O(NP ). From this 
omplexity it 
an be seen that thenumber of dete
ted interest points, N , must be relatively low, usually up to 30, and thenumber of obje
t parts, P , even lower, typi
ally 3 − 7. The four p(·) 
lauses representprobabilities for appearan
e, shape, relative s
ale and other, the last one handling e�e
tsof o

lusion. The �rst three are modeled with Gaussians, and the last one with a Poissondistribution.
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al image feature dete
tionInterest point dete
tion is performed with an entropy based dete
tor presented in Se
-tion 2.2.3. The lo
al des
ription is performed based on the pixel values, as des
ribed inSe
tion 2.3.1: a pat
h around the interest point is taken, where the size is based on thes
ale given by the interest point dete
tor. The pat
h is then s
aled to size 11 × 11, andthe resulting ve
tor of length 121 is redu
ed to 10 − 15 dimensions using PCA, and thisve
tor is the des
riptor for appearan
e, A. From the positions and s
ales of the interestpoints also X and S are known. When these are known for the images in the trainingset, parameters, θ, of the model are learned using expe
tation-maximization algorithm.The method performed very well on six diverse datasets, in
luding obje
t 
lasses su
h ashuman fa
es, motorbikes, airplanes and spotted 
ats.2.4.4 Rapid obje
t dete
tion using a boosted 
as
ade of simple featuresViola and Jones presented an e�
ient obje
t dete
tion method in [88℄. The methoduses simple features based on integral images whi
h are extremely e�
ient to 
ompute.These simple features are 
ombined by an AdaBoost 
lassi�er to 
reate an e�
ient obje
tdete
tor. The 
lassi�er is used in a 
as
ade, if �rst simple 
lassi�ers already determinethat there is no obje
t in the image pat
h, using more 
omplex 
lassi�ers is omitted,whi
h further improves the e�
ien
y. The method is supervised, it is trained usingsegmented images of the training 
lass and ba
kground images. During dete
tion thedete
tor goes through the image in a windowed fashion: the image is divided to pat
hesand the dete
tor is used in ea
h of them separately.The method uses simple re
tangular features, examples are shown in 2.11. The valueof a feature is 
omputed by taking the sum of pixel values in the white parts of the�lter, and subtra
ting it from the sum of pixel values in the gray parts. The size of there
tangular features are varied. With the base size of 24 × 24 used for the dete
tor, the
omplete set of re
tangular features is over one hundred thousand. Therefore, e�
ient
omputation of feature values is important and they 
an be 
omputed very e�
ientlyusing an intermediate representation of the image, integral image.
Figure 2.11: Re
tangular features work so that the sum of pixel values in whiteparts of the re
tangle are subtra
ted from the sum of pixel values in gray parts.Features 
onsist of 2 (A and B), 3 (D) or 4 (D) re
tangles.The integral image 
ontains the sum of pixel values above and to the left of the 
urrentpixel in the original image. It is 
omputed as

Ii(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) , (2.9)
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tion methods 33where Ii(x, y) is the integral image and I(x, y) is the original image. The integral image
an be 
omputed in one pass over the image:
s(x, y) = s(x, y − 1) + I(x, y) (2.10)
Ii(x, y) = Ii(x − 1, y) + s(x, y) ,where s(x, y) holds the 
umulative row sum and negative indexes equal to zero. Fig. 2.12demonstrates how value inside any re
tangle 
an be 
al
ulated using only few operations.Values of the a
tual features (examples in Fig. 2.11) 
an be 
omputed in a similar fashion.

Figure 2.12: Using integral image to 
al
ulate sum values inside grayed area 
anbe performed as 4− 2− 3 + 1, i.e., take the value at point 4, dedu
t the values atpoints 2 and 3 and then add value at point 1 be
ause previous step dedu
ted itssum twi
e.Computation of a single feature is fast, 
omputation of all of them still takes a long timeand a small subset of the features should be sele
ted. AdaBoost [22℄ is a 
lassi�er whi
h
an sele
t a small number of relevant features and 
ombine them into a powerful 
lassi�er:the 
omplete 
lassi�er 
ombines several weak 
lassi�ers, ea
h weak 
lassi�er here operateson one re
tangular feature. The AdaBoost 
lassi�er sele
ts at ea
h training step onefeature whi
h best separates the positive and negative training samples. The weights ofthe training samples are adjusted so that the next weak 
lassi�er will 
on
entrate on thesamples whi
h have been wrongly 
lassi�ed with previous weak 
lassi�ers. The trainingerror be
omes smaller with ea
h added weak 
lassi�er.The dete
tion is performed in sub-windows and a vast majority of them are negative,i.e., the obje
t to be dete
ted is not there. Therefore, reje
ting negative samples shouldbe done as fast as possible, whi
h is a
hieved by using 
lassi�ers in a a 
as
ade. The�rst 
lassi�er is very simple, trying to a
hieve a very small false negative rate, i.e., nopositive samples should be reje
ted. However, the �rst 
lassi�er should reje
t manyof the true negatives. Following 
lassi�ers are more 
omplex targeting 
onse
utivelysmaller false positive rates, i.e., trying to reje
t more and more of the true negativesamples. To be 
lassi�ed as positive, all 
lassi�ers must give a positive result and the
lassi�
ation pro
edure ends if any of the 
lassi�ers give a negative result. During trainingea
h 
lassi�er will get as its input only the samples whi
h passed through the previous
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lassi�er, also the thresholds for false negatives and false positives are modi�ed for later
lassi�ers.The method was tested in fa
e dete
tion. The results were very good and, at the time,the dete
tor was 
onsiderably faster than any of the earlier approa
hes.2.5 SummaryThis 
hapter presented an overall model of parts-and-stru
ture type obje
t dete
tionmethods. The methods pertaining to this model usually 
ombine an interest point dete
-tor whi
h �rst �nds signi�
ant points in images, whi
h should stay stable when imaging
onditions or even obje
t instan
es 
hange, and a lo
al image des
riptor, whi
h is usedto des
ribe the lo
al appearan
e of the image. Some of the most well-known interestpoint dete
tion, lo
al image des
ription and 
omplete obje
t dete
tion methods werethen presented.



Chapter IIIMultiresolution Gabor features

Gabor �lters, originally introdu
ed by Dennis Gabor in 1946 for 1D signals [23℄, havea well-known 
onne
tion to re
eptive �eld re
eptor pro�les of mammalian visual sys-tems [13℄. They also are a realization of the general image pro
essing operator proposedby Granlund [25℄. Multiresolution stru
ture of Gabor �lters is similar to wavelets, but itla
ks the important orthogonality property [52℄: Gabor �lters do not form a basis. Theyform instead a frame, whi
h is a generalization of the basis without orthogonality andunique dual transform properties.Gabor �lters have been a popular feature extra
tion method in last few de
ades, and dur-ing the 2000s the a
tivity has a
tually in
reased a

ording to IEEE XploreTM database.The most important reason for the in
rease is probably the wide su

ess in some appli
a-tion areas, su
h as biometri
 authenti
ation. Methods based on Gabor features have beenvery su

essful in iris re
ognition [14℄, large s
ale fa
e re
ognition 
ontests (e.g. 2 bestmethods in [59℄), and provided state-of-the-art a

ura
ies in �ngerprint mat
hing [40℄and fa
e lo
alization [30℄. It 
an be assumed that Gabor features will have an impor-tant role also in the future. However, in the relevant literature a major disadvantage ofGabor features, the 
omputational heaviness, is often overlooked. This Chapter explains
onstru
tion of Gabor �lters and e�
ient 
omputation of multiresolution Gabor features.3.1 Constru
ting Gabor featuresGabor �lters are linear �lters whose responses are de�ned by a sinusoidal wave multipliedby a Gaussian fun
tion. An example of a 2D Gabor �lter is presented in Fig. 3.1.Usually in image pro
essing Gabor �lter responses are used in a multiresolution stru
ture:the features are based on responses of Gabor �lters on multiple s
ales and orientationsforming a multiresolution Gabor frame stru
ture. While the Gabor �lter responses are
omplex-valued, 
ommonly only response magnitudes are used, but it will be shown laterthat using the 
omplex values (or magnitude and phase presentation) improves resultsin many appli
ations. 35
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(a) (b) (
)Figure 3.1: Gabor �lter in 2D with parameters f0 = 0.2, θ = 0, γ = η = 1; (a)spatial domain, real 
omponent; (b) spatial domain, imaginary 
omponent; (
)frequen
y domain.3.1.1 1D Gabor �lterThe 1D Gabor �lter is presented �rst sin
e many of the e�
ien
y improvements 
an beobtained easily in 1D and then generalized to 2D Gabor �lters.A normalized Gabor �lter in the time domain 
an be de�ned as [44℄

ψ(t; f0) =
|f0|
γ
√
π
e
−

“

|f0|
γ

”2
t2
ej2πfot (3.1)where f0 denotes the �lter tuning frequen
y and γ the �lter bandwidth. The �lterfun
tion 
an be divided into two parts: a 
omplex sinusoidal wave on the tuning frequen
yand a Gaussian envelope de�ning the e�e
tive time duration. The e�e
tive time durationis inversely proportional to the e�e
tive bandwidth via the un
ertainty relation.The 
orresponding equation in the Fourier domain is [44℄

Ψ(u; f0) = e
−

“

γπ
f0

”2
(u−f0)2 (3.2)where u denotes the frequen
y.3.1.2 2D Gabor �lterSimilarly to the 1D 
ase, the 2D �lter 
an be divided into an ellipti
al Gaussian and a
omplex plane wave. The �lter in the 2D spatial domain is [44℄

ψ (x, y; f0, θ) =
f2
0

πγη
e
−

„

f2
0

γ2 x′2+
f2
0

η2 y′2
«

ej2πf0x′

x′ = x cos θ + y sin θ (3.3)
y′ = −x sin θ + y cos θ
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ting Gabor features 37where the new variable θ denotes the rotation angle of both the Gaussian and plane wave.This is not the most general form of the 2D Gabor �lter, but a form whose propertiesare the most useful for image pro
essing, namely that the �lters in di�erent frequen
ieswith the same bandwidth parameters are s
aled versions of ea
h other. The bandwidthis 
ontrolled by two parameters, γ and η, 
orresponding to the two perpendi
ular axesof the Gaussian.The same �lter in the frequen
y domain is [44℄
Ψ(u, v; f0, θ) = e

−π2
“

u′−f0
α2 + v′

β2

”

u′ = u cos θ + v sin θ (3.4)
v′ = −u sin θ + v cos θ.The �lter in (3.3) is 
entered to the origin and its response for an image fun
tion ξ(x, y)
an be 
al
ulated at any lo
ation (x, y) with the 
onvolution [44℄

rξ(x, y; f, θ) = ψ(x, y; f, θ) ∗ ξ(x, y)

=

∫∫ ∞

−∞
ψ(x− xτ , y − yτ ; f, θ)ξ(xτ , yτ )dxτdyτ .

(3.5)3.1.3 Multiresolution stru
tureA �lter bank 
onsisting of several �lters needs to be used be
ause relationships betweenresponses provide the basis for distinguishing obje
ts. The sele
tion of dis
rete rota-tion angles θl has been demonstrated for example in [69℄, where it was shown that theorientations must be spa
ed uniformly.
θl =

l2π

n
l = {0, . . . , n− 1} , (3.6)where θl is the lth orientation and n is the total number of orientations to be used.The 
omputation 
an be redu
ed by half sin
e responses on angles [π, 2π[ are 
omplex
onjugates of responses on [0, π[ in the 
ase of a real valued input. The frequen
ies mustbe sele
ted exponentially [44, 50℄,

fl = k−lfmax l = {0, . . . ,m− 1}. (3.7)Common values for k in
lude k = 2 for o
tave spa
ing and k =
√

2 for half-o
tavespa
ing.Using the features to 
over frequen
ies of interest f0, . . . , fm−1 and the orientations fordesired angular dis
rimination, one 
an 
onstru
t a set of features at an image lo
ation
(x0, y0). The �lter responses are arranged into matrix form as

G =







r(x0,y0;f0,θ0) r(x0,y0;f0,θ1) ··· r(x0,y0;f0,θn−1)
r(x0,y0;f1,θ0) r(x0,y0;f1,θ1) ··· r(x0,y0;f1,θn−1)... ... . . . ...

r(x0,y0;fm−1,θ0) r(x0,y0;fm−1,θ1) ··· r(x0,y0;fm−1,θn−1)






(3.8)where rows 
orrespond to responses on the same frequen
y and 
olumns 
orrespond toresponses on the same orientation. The �rst row is the highest frequen
y and the �rst
olumn is typi
ally the angle 0◦.



38 3. Multiresolution Gabor features3.1.4 Feature manipulation for invariant sear
hLinear row-wise and 
olumn-wise shifts of the response matrix 
orrespond to s
aling androtation in the input spa
e, and therefore, invariant sear
h 
an be performed by simpleshift operations: by sear
hing several spatial lo
ations (spatial shift) and by shiftingresponse matri
es. With normalization of the response matrix, illumination invarian
e
an also be a
hieved [44, 48℄.Rotating an input signal ξ(x, y) anti-
lo
kwise by π
n equals to the following shift in thefeature matrix

G =







r(x0,y0;f0,θn−1)
∗ r(x0,y0;f0,θ0) ⇒ r(x0,y0;f0,θn−2)

r(x0,y0;f1,θn−1)
∗ r(x0,y0;f1,θ0) ⇒ r(x0,y0;f1,θn−2)... ... . . . ...

r(x0,y0;fm−1,θn−1)
∗ r(x0,y0;fm−1,θ0) ⇒ r(x0,y0;fm−1,θn−2)






(3.9)where ∗ denotes 
omplex 
onjugate.Downs
aling the same signal by a fa
tor 1

k equals to the following shift in the featurematrix
G =







r(x0,y0;f1,θ0) r(x0,y0;f1,θ1) ··· r(x0,y0;f1,θn−1)
r(x0,y0;f2,θ0) r(x0,y0;f2,θ1) ··· r(x0,y0;f2,θn−1)

⇑ ⇑
. . . ⇑

r(x0,y0;fm,θ0) r(x0,y0;fm,θ1) ··· r(x0,y0;fm,θn−1)






(3.10)For this to work new low frequen
ies fm must be 
omputed and stored in advan
e whilethe highest frequen
y responses on f0 vanish in the shift.3.1.5 Image re
onstru
tionThe original image pat
h 
an be re
onstru
ted from multiresolution Gabor featuresvia their bi-orthogonal transform fun
tions [71℄. An example of lo
al re
onstru
tionis demonstrated in Fig. 3.2. The re
onstru
tion of a 
omplete obje
t 
an be performedby 
ombining features from several spatially distant points.

(a) (b)Figure 3.2: A multiresolution Gabor feature re
onstru
tion example: (a) Origi-nal image of an eye; (b) Re
onstru
ted image using responses from a single point(at the 
enter of an eye).



3.1 Constru
ting Gabor features 393.1.6 Filter spa
ing - sele
tion of multiresolution feature parametersThe sele
tion of �lter bank values, �lter frequen
ies, bandwidths and number of orien-tations, is an appli
ation dependent problem. It is not, however, ne
essary to de�ne allparameters separately due to their interdependen
ies [35, 36℄. More detailed informationand the analyti
al solutions are presented in Appendix I.Filter frequen
iesThe multi-resolution frequen
ies fi are drawn from f0 = fmax, f1 = fmax/k, f2 =
fmax/k

2, fm = fmax/k
m−1 and these equations de�ne the relationships between theother parameters in (3.1), (3.2), (3.3) and (3.4). Table 3.1 
an be used to sele
t themulti-resolution feature parameters. Number of �lters is denoted by m, s
ale fa
tor (2for wavelets) is denoted by k and p denotes the interse
tion point of two 
onse
utive�lters, whi
h for normalized Gabor �lters is between 0 and 1. Other parameters are �lterbandwidth γ and lowest and highest �lter tuning frequen
ies, fmin and fmax, respe
tively.The most useful approa
h is to sele
t the �lter bandwidth γ based on �lter spa
ing kand overlap p. Equation for this 
an be found in the �rst line of Table 3.1, p and k areknown and based on them γ is 
al
ulated as γ = 1

π

(

k+1
k−1

)√− ln p.Table 3.1: Parameter equations for �lter frequen
y spa
ing.
p k γ m fmin fmax

p k 1
π

“

k+1
k−1

” √− ln p

p
1+ 1

γπ

√− ln p

1− 1
γπ

√− ln p
γ

e
−

“

γπ
k−1
k+1

”2

k γ

e
− ln fmin−ln fmax

m−1 m fmin fmax

k − ln fmin−ln fmax
ln k

+ 1 fmin fmax

k m 1
km−1 fmax fmax

k m fmin fminkm−1Filter orientationsThe equations for frequen
y spa
ing in Table 3.1 apply to both 1D and 2D �lters, butthe orientation spa
ing additionally depends on the number of orientations n and theminor axis bandwidth η. The analyti
al solutions 
an be derived and are 
olle
ted intoTable 3.2. Again the most useful equation is the sele
tion of �lter bandwidth η basedon the �lter overlap p and the number of �lter orientations n, whi
h gives equation
η =

√

− (ηπ2)2

4 ln p . The overlap p here is assumed to be the same for both frequen
y andorientation spa
ing, but it 
an also be di�erent over the orientations. Note that theseequations are approximations. To get a

urate �lter interse
tion values for orientationspa
ing the whole ellipti
al envelope of the �lter should be 
onsidered, not only its minoraxis. However, the 
ost would be more 
omplex equations be
ause both η and γ wouldhave to be in
luded and the di�eren
e to the approximation presented here is generallysmall.



40 3. Multiresolution Gabor featuresTable 3.2: Parameters equations for �lter orientation spa
ing.
p η n

p η
√

− (ηπ2)2

4 ln p

p 1
π

√
− ln p

π
2n

n

e
−

“

ηπ2

2n

”2

η nExample of filter spa
ingTwo �lter banks in the frequen
y spa
e are presented in Fig. 3.3. Only the upper halfof the �lter bank is needed be
ause responses on the lower half are 
omplex 
onjugates.In Fig. 3.3(a) �lters are 
losely lo
ated in the frequen
y spa
e (k =
√

2) and therefore inthe frequen
y dire
tion the �lters are relatively sharp (γ is large). The same value wasused for η and 
onsequently there are large gaps between �lters in di�erent orientations,and as a result some stru
tures in the image with spe
i�
 angles 
annot be dete
ted bythe �lter bank in Fig. 3.3(a). In Fig. 3.3(b) η has been solved based on equations inTable 3.2 and the gaps between �lters in di�erent orientations disappear.
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−0.5 (b) γ ≈ 2.35, η ≈ 1.03Figure 3.3: Examples of �lter banks in frequen
y spa
e, both use m = 5, n = 4,
p = 0.2 and k =

√
2; (a) γ = η ≈ 2.35; (b) γ ≈ 2.35, η ≈ 1.03.3.2 E�
ient 
omputationGabor �lters 
orrespond to linear �lters, so the most straightforward te
hnique to �lteris via 
onvolution in the spatial domain. Standard 
onvolution with Gabor �lters 
anbe improved by utilizing the separability of Gabor �lters [8, 65℄ or their symmetry, anti-symmetry and wavelet 
hara
teristi
s to redu
e the number of needed multipli
ationsand additions [74℄. Certain approximation te
hniques, su
h as re
ursive Gabor approxi-mation [92℄ or an approximation by de
omposition into Gaussians [6℄ lead to mu
h moree�
ient 
omputation than normal spatial domain �ltering by 
onvolution, but limit the



3.2 E�
ient 
omputation 41free sele
tion of �lter bank parameters. The approximations also do not guarantee thebene�
ial feature spa
e properties [44℄. Therefore, without having to limit �lter bankparameter sele
tion to some spe
ial 
ases, the textbook solution, performing �ltering inthe frequen
y domain, often provides the most signi�
ant general improvement.External knowledge on how the features are used is often negle
ted. The features aretypi
ally used in a multiresolution stru
ture utilizing several frequen
ies and orientations,and the stable numeri
al support for Gabor �lters is provided by a relatively smalle�e
tive area of the �lters. The multiresolution stru
ture is similar to 
omputing Gaborfeatures on an image de
omposed to a Gaussian pyramid, but using the Gaussian pyramidapproa
h the sele
tion of the �lter frequen
ies would be limited. Here no limitations areapplied as the unrestri
ted sele
tion of all �lter parameters is important for maximizingthe usability of Gabor features for all appli
ation areas in image and signal pro
essing.Sometimes Gabor �lter banks are optimized, for example, by �nding maximal separationbetween two input 
lasses [7℄, using a boosting te
hniques [12℄, or using a sto
hasti
sear
h method [86℄, whi
h enables using a fewer number of Gabor �lters leading to faster�ltering. However, these methods often lead to non-homogeneous parameter sampling,violating (3.6) and (3.7), whi
h in turn make invariant pro
essing di�
ult be
ause signalrotation and s
aling 
annot be handled by simple matrix manipulations as in (3.9) and(3.10). It would be possible to start with a �lter bank respe
ting (3.6) and (3.7) andhaving a large number �lter orientations and s
ales and then optimizing it, i.e., removingsome of the �lters whi
h are not helpful for 
lassi�
ation. However, the impa
t of thiswould be redu
ed be
ause invariant sear
h would still require 
omputation of many of theremoved �lters. Therefore, these types of �lter bank optimizations are not 
onsideredhere. However, the presented e�
ien
y improvements still apply if su
h methods areused.In this se
tion the most important 
hara
teristi
s of Gabor �lters and �ltering in bothdomains, spatial and frequen
y, are dis
ussed in the 
ontext of 
omputational 
omplexity.3.2.1 Related resear
hAt the 
ore of every Gabor feature is the �lter response in (3.5) 
omputed with the
onvolution. 1D 
onvolution at one point requires O(M) operations for a �lter of length
M . For a signal of length N the total 
omplexity is O(MN). For 2D images and �ltersthe 
omplexity be
omes O(M2N2). Due to these exhaustive 
omputing requirements,e�orts to de
rease the 
omplexity have been reported.If a �lter G 
an be expressed as a multipli
ation of two ve
tors, Gcol ∗Grow, it is sepa-rable. For separable �lters the 
onvolution 
an be 
omputed with two ve
tors, a 
olumnand a row ve
tor, redu
ing the 
omplexity from O(M2N2) to O(2MN2). Horizontaland verti
al Gabor �lters are separable, the �rst ve
tor is a sinusoidal with a Gaussianenvelope and the se
ond a Gaussian envelope. The separability 
an be extended to 
overalso the angle 45◦ [65℄, but for arbitrary orientations the input image must be rotatedwhi
h in
reases the 
omputational 
ost 
onsiderably.Gabor �lters also possess a signi�
ant degree of symmetry and anti-symmetry whi
h 
anbe utilized to redu
e the number of multipli
ations needed for the 
onvolution [74℄. Forexample in Fig. 3.4 is a Gabor �lter where the value 0.0620 or its negation is repeated



42 3. Multiresolution Gabor featuresfour times around the 
enter of the �lter. Using generi
 
onvolution the 
omputation
on
erning those four points would be 0.0620v1 + 0.0620v2 + (−0.0620)v3 + (−0.0620)v4whi
h in
ludes four multipli
ations and three additions. The same 
an be 
al
ulated as
0.0620 (v1 + v2 − v3 − v4), whi
h redu
es the number of multipli
ations to one. Similarre-ordering 
an be performed for many of the �lter lo
ations. Utilizing these proper-ties for generi
 Gabor �ltering is not sensible be
ause of meager savings and 
ompleximplementation, but may be useful for an appli
ation using a �xed set of �lters.

(a)-0.0009 0.0031 -0.0065 0.0084 -0.0065 0.0031 -0.0009-0.0031 0.0108 -0.0228 0.0293 -0.0228 0.0108 -0.0031-0.0065 0.0228 -0.0483 0.0620 -0.0483 0.0228 -0.0065-0.0084 0.0293 -0.0620 0.0796 -0.0620 0.0293 -0.0084-0.0065 0.0228 -0.0483 0.0620 -0.0483 0.0228 -0.0065-0.0031 0.0108 -0.0228 0.0293 -0.0228 0.0108 -0.0031-0.0009 0.0031 -0.0065 0.0084 -0.0065 0.0031 -0.0009(b)Figure 3.4: A spatial domain Gabor �lter: (a) �gure of the real part of the �lter;(b) real values of the Gabor �lter.
The 
onvolution 
an be performed in the Fourier domain, where it be
omes the produ
tbetween the Fourier transform of the the �lter and the Fourier transform of the signal.The 
omputation in the Fourier domain requires forward and inverse Fourier transformsfor an input image. The standard dis
rete Fourier transform (DFT) is not used butthe fast Fourier transform (FFT) whi
h has the 
omplexity O(N logN) for 1D signals.Compared to normal 
onvolution in spatial domain with 
omplexity O(MN), the Fourierdomain �ltering is always faster unless the �lter size, M , is very small. The 
omplexityof 2D FFT is O(N2logN). The Fourier domain enhan
ements are most signi�
ant dueto their generality and superior overall e�
ien
y. For �ltering in both domains savings
an be gained by using e�e
tive �lter envelopes whi
h will be presented next.



3.2 E�
ient 
omputation 433.2.2 E�e
tive �lter envelopesThe support of a Gabor �lter is in�nite, but in the dis
rete domain the �lter size isalways limited. An e�e
tive �lter envelope 
orresponds to the smallest support areawhi
h 
ontains a prede�ned portion of the total �lter energy. Filter 
oe�
ients outsidethe area 
an be dis
arded with a negligible e�e
t on the a

ura
y. The support area of aGabor �lter is de�ned by the Gaussian part of the fun
tion. The support of a Gaussianfun
tion is ellipti
al [85℄, and therefore, the support area of a Gabor �lter is also ellipti
al.However, ellipti
al envelopes are not very useful from the 
omputational point of view,and the smallest re
tangular envelope en
apsulating the ellipti
al envelope will be usedinstead. Using �lter envelopes, 
omputing time is redu
ed signi�
antly in spatial domain�ltering and a 
onsiderable amount of memory is saved in frequen
y domain �ltering.1D envelopesThe envelope has the standard Gaussian form,
N(t;µ, σ) =

1

σ
√

2π
e−

(t−µ)2

2σ2 . (3.11)The integral of the Gaussian fun
tion 
orresponds to the 
umulative distributive fun
tionof the normal distribution,
G(x;µ, σ) =

1

σ
√

2π

∫ x

−∞
e−

(t−µ)2

2σ2 dt . (3.12)The envelope 
an be solved from the inverse of the 
df: the point x where the 
df valueis p,
x = G−1(p;µ, σ) = {x : G(x|µ, σ) = p} . (3.13)Substitutions for µ and σ 
an be solved from the �lter equations in (3.1) and (3.2) yieldingthe substitutions µ = 0 and σ = γ√

2|f0|
in the time domain, and µ = f0 and σ = f0

γπ
√

2in the frequen
y domain. The envelope resides symmetri
ally around the mean of thedistribution where the density is highest. Therefore, envelope end-points for the spatialdomain �lter with e ∈]0, 1[ energy are
xs = ±G−1

(

1 + e

2
; 0,

γ√
2|f0|

) (3.14)and for the frequen
y domain �lter
xf = f0 ±G−1

(

1 + e

2
; 0,

f0

γπ
√

2

)

. (3.15)Note that neither G nor G−1 
an be solved analyti
ally but e�e
tive approximationmethods exist and are in
luded in many numeri
al 
omputing libraries.



44 3. Multiresolution Gabor features2D envelopesThe 2-D analog to the 1-D 
ase is an e�e
tive ellipse region, but for the 
omputationalreasons the ellipse must be repla
ed with a re
tangle 
overing the region. The separabilityof the Gabor �lters 
an be utilized, i.e., it is su�
ient to solve two 1-D problems in
luding
e1d per
ent of the �lter energy: total �lter energy is then e21d. The re
tangular envelope
an be determined by �nding the ultimate dimensions of the e�e
tive area ellipse (seeFig. 3.5). The generi
 ellipse equation is a2

x2 + b2

y2 = 1. For a spatial domain �lter a isset to xs from (3.14) using the major axis bandwidth γ, and b is set to xs applying theminor axis bandwidth η. To solve the re
tangular envelope for a �lter in orientation θ, thepoints in the derivative of the ellipse equation with slopes c = tan θ and c = − tan(π
2 −θ)must be solved. These four points, (x1, y1), (−x1,−y1), (x2, y2), and (−x2,−y2), lie inthe border of the envelope. The points must be rotated in relation to the origin by θ toget the �nal envelope for the spatial domain �lter,

As =

2

6

6

4

x1 y1

−x1 −y1

x2 y2

−x2 −y2

3

7

7

5

»

cos θ sin θ
− sin θ cos θ

–

. (3.16)Now, the smallest and largest x and y 
oordinates must be sele
ted from As. For θ = nπ
2(n = 0, 1, 2, ...) one of the slopes goes to in�nity and the four points are (a, 0), (−a, 0),

(0, b), and (0,−b).The envelope of a frequen
y domain �lter is solved similarly, but the pro
ess is started bysetting the values of a and b from (3.15). The frequen
y domain envelope is not 
enteredat the origin, and therefore, f0 must be added to the 
oordinates prior to rotation.
Af =

2

6

6

4

f0 + x1 y1

f0 − x1 −y1

f0 + x2 y2

f0 − x2 −y2

3

7

7

5

»

cos θ sin θ
− sin θ cos θ

–

. (3.17)The a
tual envelope is again determined by the smallest and largest x and y 
oordinatesof Af .3.2.3 The highest ne
essary frequen
yThe frequen
y domain envelope has an important property: the higher bound de�nesalso the highest frequen
y the �lter is attuned to, fhigh. The frequen
ies above fhigh arenot relevant for �ltering as the �lter response does not 
hange whether they are presentor not. Two examples 
an be seen in Fig. 3.6.The high frequen
ies are removed when the signal is downs
aled: if fhigh is low enough,the image 
an be downs
aled by a large fa
tor leading to faster �ltering. An input image
an be downs
aled before the �ltering by the s
aling fa
tor
asf =

0.5

fhigh
, (3.18)where 0.5 is the Nyquist frequen
y. After the downs
aling, the �lter frequen
y f mustbe adjusted, fnew = fold

0.5
fhigh

= asffold.
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Figure 3.5: Determining the 2D e�e
tive envelope in the spatial domain.Downs
aling does not de
rease the a

ura
y of the Gabor responses dire
tly. The onlynegative e�e
t of downs
aling is that the responses are 
omputed more sparsely, forexample, if an image is downs
aled by a fa
tor asf = 4 the responses 
an be 
omputedonly for every sixteenth pixel in the original image. Loss of this kind of resolution doesnot matter usually as the responses do not 
hange rapidly when the spatial lo
ation ofthe �lter is 
hanged slightly. However, there are some ex
eptions, for example, even asmall deviation from the 
enter of a perfe
t 
ir
le will 
ause a large 
hange to responses.To solve fhigh the maximum distan
e from the origin to the furthest edge of the frequen
ydomain envelope must be found. The 
enter of the ellipse is lo
ated at the point (f0, 0),where f0 is the frequen
y of the �lter and its major axis a is dire
ted along the u-axis andminor b along the v-axis (the frequen
y axes). The values of a and b are set to xf from(3.15) by respe
tively applying major and minor axis bandwidths γ and η respe
tively.The distan
e from the origin is
d(x) =

√

(f0 + x)2 +

(

b

a

√

a2 − x2

)2

, |x| ≤ a . (3.19)The 
on
ept is illustrated in Fig. 3.7. The lower half of the ellipse 
an be ignored sin
eit is symmetri
al to the upper half. Then, x 
an be solved from the previous equation,
x = − a2f0

a2 − b2
, b > a, |x| ≤ a . (3.20)The equation may result to a solution x > a in whi
h 
ase fhigh = f0 +a, otherwise fhigh
an be found by applying x to (3.19), fhigh = d(x).3.3 Optimal implementation frameworkThis se
tion des
ribes an optimal framework in whi
h the given properties and resultsare applied to enhan
e pra
ti
al 
omputation e�
ien
y. The optimality 
laim is basedon the analyti
ally derived 
omplexities.
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−0.5 (b)Figure 3.6: Examples of the highest ne
essary frequen
y for the �lter in thefrequen
y spa
e. Cir
le marks the highest frequen
y and frequen
ies outside ofthe re
tangle 
an be dis
arded; (a) f = 0.3, θ = π/3, γ = 2, η = 1 whi
h leads to
fhigh ≈ 0.37; (b) f = 0.1, θ = π/6, γ = 1, η = 1 whi
h leads to fhigh ≈ 0.14.

Figure 3.7: Determining fhigh with the help of an ellipsoidal envelope of a 2DGabor �lter in the frequen
y domain.3.3.1 Spatial domain �ltersA diagram of the �ltering in the spatial domain is presented in Fig. 3.8. The 
omplexitydepends dire
tly on the size of the Gabor �lter. The 
omplexity for 
al
ulating theresponse at a single lo
ation is O(M2) and for an entire image O(M2N2).Prior to �ltering the input image 
an be downs
aled by the fa
tor asf in (3.18). Inpra
ti
e, only the integer fa
tors, or even more preferably, the power of two fa
tors, areuseful sin
e then the downs
aling 
orresponds to an average of a group of pixels andinterpolation is not needed to avoid the aliasing e�e
ts. The 
omplexity of the averagingis O(N2) and every pixel parti
ipates on
e to produ
e N2/a2
sf pixels to the result image.When the image is downs
aled, the frequen
y of a �lter must be adjusted 
orrespondinglyby the fa
tor asf leading to the �lter envelope be
oming smaller by the fa
tor 1

a2
sf

. The
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Figure 3.8: Diagram of spatial domain feature extra
tion.
omplexity of 
omputing a single response is now O(M2/a2
sf ) and for the entire image

O(
N2M2

a4
sf

) . (3.21)The total 
omplexity of 
omputing K �lter responses is either (without and with down-s
aling)
O(KM2) or O(N2 +K

M2

a2
sf

) (3.22)depending on whether it is worth to downs
ale or not. The smaller one of the two
omplexities 
an be sele
ted using the a
tual values of the parameters: in the �rst 
asethere are very few points to �lter (K is small) and downs
aling would in
rease the
omplexity, and in the se
ond 
aseK is large enough for downs
aling to be
ome bene�
ial.There are two separate steps in the �ltering: the 
reation of a �lter and the �ltering itself.An algorithm for the 
reation of the spatial domain �lter is presented in Algorithm 1 andan algorithm for �ltering in the spatial domain in Algorithm 2.



48 3. Multiresolution Gabor featuresAlgorithm 1 Create a spatial Gabor �lter with parameters f , θ, γ and η.1: Solve fhigh using f , γ and η (Se
tion 3.2.3).2: Adjust f by asf , f ′ = asff , from (3.18).3: Solve �lter envelope E for a �lter with parameters (f ′, θ, γ, η) (Se
tion 3.2.2).4: Compute the �lter g for �lter area E with parameters (f ′, θ, γ, η).Algorithm 2 Filter an image s in the spatial domain with a �lter g (s
aling fa
tor asf )at lo
ations P = {(x, y)k}.1: Downs
ale the image s by fa
tor asf , s→ s′.2: for All points p in P do3: Adjust the point's 
oordinate, p′ = p/asf .4: Compute response r(p) by 
onvolving the image s′ in the point p′ with the �lter g.5: end forThe symmetry and separability properties of Gabor �lters 
ould be applied here [8, 65,74℄, but are negle
ted sin
e their e�e
t 
ompared to the downs
aling or frequen
y domain�ltering would be small and they apply only to some spe
i�
 �lter 
on�gurations.3.3.2 Frequen
y domain �ltersA diagram of the �ltering in the frequen
y domain is presented in Fig. 3.9. The 
om-plexity is dominated by FFT and IFFT, whi
h is O(N2 logN). The size of the e�e
tiveenvelope is not as 
ru
ial in the frequen
y domain as in the spatial domain sin
e theimage must be 
onverted to the frequen
y domain and ba
k whether the �lter envelopeis used or not. However, most of the 
oe�
ients will be 
lose to zero and 
an be omittedto minimize memory requirements and also the number of �oating point multipli
ationsde
reases, but the e�e
t is small 
ompared to the 
omplexity of FFT.An input image 
an be downs
aled in a similar manner as in the spatial domain. Anotheroption is to perform the downs
aling in the frequen
y domain, whi
h 
an be faster eventhough the spatial domain downs
aling has lower 
omplexity than the FFT. In the mul-tiresolution stru
ture the image needs to be 
onverted only on
e to the frequen
y domain,but if the spatial domain downs
aling is performed then the FFT has to be performed forall downs
aled images. Downs
aling in the frequen
y domain 
an be performed by dis-
arding frequen
ies higher than fhigh in the frequen
y spa
e (see Fig. 3.6). The frequen
ydomain downs
aling by the s
aling fa
tor asf redu
es the IFFT 
omplexity to
O(

N2

a2
sf

log
N

asf
) . (3.23)It should be noted that responses must be multiplied by the fa
tor 1/a2

sf to retain the
orre
t response magnitude as 
ompared to the non-downs
aled results.An algorithm for the �lter 
reation is presented in Algorithm 3 and for the �ltering inAlgorithm 4.
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Figure 3.9: Diagram of frequen
y domain feature extra
tion.Algorithm 3 Create a frequen
y domain Gabor �lter with parameters f , θ, γ and η.1: Solve the �lter envelope E with parameters (f , θ, γ, η) (Se
tion 3.2.2).2: Compute the �lter g for �lter area E with parameters (f , θ, γ, η).3: Solve fhigh using f , γ and η (Se
tion 3.2.3).4: Solve s
aling fa
tor asf , from (3.18).Algorithm 4 Filter an image s in the frequen
y domain with a �lter g (s
aling fa
tor
asf and �lter area E).1: Initialize r′ to the same size as s and set values to zero.2: Compute FFT of the image, s′ = F (s).3: Filter in �lter area, r′(E) = s′(E) ∗ g.4: Crop frequen
ies above 0.5

asf
out of r′.5: Transform responses ba
k to spatial domain with IFFT, r = F−1(r′).6: S
ale response magnitudes, r = r 1

a2
sf

.3.3.3 Multiresolution �lteringMultiresolution Gabor feature extra
tion is similar to the Lapla
ian pyramid [9℄. ALapla
ian pyramid represents an image as a pyramid of quasi-bandpassed images (see



50 3. Multiresolution Gabor featuresFig. 3.10), where the bottom of the pyramid represents the highest frequen
y 
ontent andis sampled densely, and the higher levels low frequen
y information sampled in
reasinglymore sparsely. Ea
h level of the pyramid redu
es the �lter's band limit by an o
tave,and the sample density 
an be redu
ed by the same fa
tor, i.e., to half a resolution. TheLapla
ian pyramid was originally used for image 
ompression, but the multiresolutionGabor features, su
h as simple Gabor feature spa
e [48℄, yield to a similar stru
ture.Both the 
omputation time and memory are saved as the responses are 
omputed atlower resolution than the original image.

Figure 3.10: The stru
ture of Lapla
ian pyramid.Implementing the multiresolution stru
ture with Gabor �lters is straightforward. Algo-rithm 4 
an be used as an example: the s
aling fa
tor asf is sele
ted based on fhigh andthe resolution depends dire
tly on the frequen
y. High frequen
y responses are sampleddensely and lower frequen
ies in
reasingly more sparsely. It should be noted that o
tavespa
ed �lter frequen
ies (k = 2) must be used if a similar stru
ture to Fig. 3.10 is re-quired: four lower level responses 
orrespond to one response in the next level. If anothervalue for k is used then the pyramid stru
ture will not have as 
lear 
orresponden
es be-tween responses at di�erent levels. In that 
ase, the pyramid levels 
an be downs
aled tohalf size when the frequen
y is suitable. A similar te
hnique 
an be found for example inthe di�eren
e-of-Gaussians stru
ture used in the SIFT interest point dete
tor [55℄. Forexample, with half-o
tave spa
ing (k =
√

2) there are always two pyramid levels withthe same resolution 
orresponding to two 
onse
utive �lters, but for the third �lter thepyramid level 
an be s
aled to half size.Using the multiresolution stru
ture 
an be problemati
 in the following pro
essing steps,for example, 
lassi�
ation and obje
t re
ognition. If the responses in di�erent frequen
iesmust be eventually used with the same resolution, sparse low frequen
y responses mustbe ups
aled ba
k to the required resolution. In pra
ti
e, it is preferable to 
ompute allresponses dire
tly at the same resolution and omit the ups
aling pro
edure. The baseresolution is sele
ted based on the highest frequen
y �lter, so pro
essing time 
an still



3.4 Results 51be saved if the highest frequen
y allows.3.3.4 Sele
ting the optimal �ltering pro
edureThe de
ision whether the �ltering should be performed in the spatial or in the frequen
ydomain depends mainly on the number of points to be 
omputed. If the entire imagemust be �ltered, the frequen
y domain �ltering pra
ti
ally always outperforms the spatialdomain �ltering as is evident from the 
omplexities in (3.21) and (3.23) where the latter
log-
lause is very likely to be smaller thanM2/a2

sf . When only K points are �ltered, thede
ision of the �ltering domain is based on the 
omplexities in (3.22) and (3.23). Theoptimal de
ision tree is sket
hed in Fig. 3.11.
Filter whole

image?

Filter in frequency domain

Is spatial domain (3.22)
or frequency domain (3.23)

more eff icient?

Beneficial to
downscale (3.22)?

Yes

Filter only
K points

Frequency
domain

Spatial domain

Filter in spatial domain

No Yes

Downscale

Figure 3.11: Pro
edure path for optimal Gabor �ltering.3.4 ResultsSele
tion of the optimal �ltering pro
edure was based on the analyti
ally devised 
om-plexity equations, but ina

ura
ies in the responses indu
ed by the proposed enhan
e-ments deserve a more pra
ti
al treatment addressed in this se
tion.3.4.1 Error indu
ed by e�e
tive envelopesIf e�e
tive envelopes are used to redu
e the �lter size, the required proportion of the�lter energy must be sele
ted. The dis
arded �lter 
oe�
ients indu
e error to the re-sponses. To study the behavior of the error, MSE (mean square error) was measured



52 3. Multiresolution Gabor featuresfor images 
ontaining Gaussian noise. MSEs as a fun
tion of the envelope energy areshown in Fig. 3.12. The e�e
tive envelope had a drasti
 impa
t on the 
omputing timein the spatial domain, but it also indu
ed a proportional ina

ura
y to �lter responses(Fig. 3.12(a)). The size of the envelope had pra
ti
ally no 
omputational e�e
t in thefrequen
y domain as was expe
ted be
ause of FFT dominating the 
omputation time,and therefore, the �ltering should always be performed with a su�
iently large envelopeas it provides better a

ura
y (Fig. 3.12(b)). Full size �lters may be used with smallimages, but otherwise the envelope energy limit between 0.99 − 0.999 seems to providesu�
iently a

urate results while saving a large amount of memory.
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(b)Figure 3.12: MSE between the responses of the full size �lter and the �lterwith an e�e
tive envelope (in
luding relative time 
omplexity): (a) In the spatialdomain; (b) In the frequen
y domain.3.4.2 Ina

ura
y due to the e�
ien
y improvementsThis experiment tests the e�e
ts of e�
ien
y improvements in a pra
ti
al and impor-tant appli
ation: what is the e�e
t to the speed and a

ura
y on the fa
e dete
tionexperiment using the XM2VTS image database [58℄. A detailed des
ription of the testis presented in Se
tion 5.2, and the fo
us here was only to evaluate how the proposede�
ient 
omputation methods a�e
ted the results and the 
omputation time. Only thefrequen
y domain �ltering was tested, sin
e the method always needs features from thewhole image and therefore the frequen
y domain �ltering is always faster.In the frequen
y domain 
hanging the �lter envelope energy, whi
h 
hanges also the sizeof the �lter, has only a small e�e
t on the 
omplexity (see Algorithm 4). Therefore, thespeed measurement results in Fig. 3.13(a) present no surprise as there were no speeddi�eren
e between the �lters of di�erent envelope energies. The dete
tion a

ura
y inFig. 3.13(b) however shows that the a

ura
y be
ame steadily better with higher energy.A large frequen
y domain �lter (0.99 − 0.999) should be used, but not ex
essively largeas it leads to a waste of memory.
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ial feature dete
tion a

ura
y (see Se
tion 5.2) and speed withvarying �lter envelope: (a) The �ltering speed; (b) Dete
tion a

ura
y.The amount of potential downs
aling depends on the �lter frequen
ies, and more spe
if-i
ally, on the highest frequen
y 
omponent, fhigh, of the highest frequen
y �lter.The s
aling fa
tor 
an be 
al
ulated by (3.18). If the image is further downs
aled, thenthe frequen
ies the �lter o

upies begin to disappear. The maximum s
aling fa
torfor the highest frequen
y �lter in this 
ase was asf = 8. The results with variousfa
tors are presented in Fig. 3.14. The �ltering speed (Fig. 3.14(a)) followed 
losely the
omplexity of the 2D FFT, O(N2 logN). The dete
tion a

ura
y results in Fig. 3.14(b)were surprising: the dete
tion a

ura
y be
ame slightly better when the image was s
aledto a smaller size. This was mainly an artifa
t of the used performan
e measurementmethod: with a high resolution a false dete
tion often 
aused a bun
h of false dete
tionsin the neighboring pixels, while only one false dete
tion o

urred using a low resolution.To 
on�rm this a pruning te
hnique was added, whi
h removes repli
ates from the vi
inityof dete
ted points, and using pruning the results stayed nearly 
onstant over the di�erents
aling fa
tors. Unless the image features must be dete
ted very a

urately, the initialdowns
aling seemed to present no di�
ulties.With the proposed e�
ien
y improvements, the same a

ura
y as reported in [30℄ wasa
hieved with nearly 1/50 of the original 
omputation time.3.5 SummaryThis 
hapter introdu
ed the 
on
ept of multiresolution Gabor features.Firstly, 
omputation of a single Gabor feature in 1D and 2D were studied followed byhow several �lter responses 
an be 
ombined using a multiresolution stru
ture and howthe �lter bank parameters should be sele
ted. Se
ondly, based on this information, ane�
ient 
omputation method for Gabor features was proposed utilizing an e�e
tive �lterand the highest tuning frequen
y. Third, an optimal framework for 
omputing Gabor fea-tures in the spatial or frequen
y domain was presented with information on how the most
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With pruning(b)Figure 3.14: Fa
ial feature dete
tion a

ura
y and speed with image downs
al-ing. (a) Filtering speed per image; (b) Dete
tion a

ura
y (note the s
ale ofy-axis).e�
ient �ltering pro
edure 
an be sele
ted in a spe
i�
 setting. Finally, experimentalresults of indu
ed ina

ura
ies 
aused by the proposed optimizations were presented. Itwas found that the proposed 
omputation improvements are able to signi�
antly in
reasethe feature extra
tion speed with negligible e�e
t on the a

ura
y.



Chapter IVImage feature 
lassi�
ation and ranking

Classi�
ation and ranking of low-level features is needed for image feature dete
tion andre
ognition when they are sear
hed from observed images. During training phase, feature
lasses are 
reated from training images by 
omputing lo
al image des
riptors in markedpoints and then training a 
lassi�er for the lo
al image feature. In the dete
tion phaselo
al image des
riptors are 
reated for all points in the image, and the 
lassi�er determinesthe best 
andidates for ea
h 
lass, for example, lo
ations most likely representing eye-
enters. To avoid the problem of 
reating a ba
kground 
lass, representing anything elsethan the lo
al image features whi
h are being sear
hed, one-
lass 
lassi�ers are used toonly learn the lo
al image feature 
lasses.Main lo
al image des
riptor in this work is the multiresolution Gabor feature and Gaus-sian mixture models (GMM) are proposed as the 
lassi�er. However, alternative methods
an be used and their requirements will be dis
ussed.This 
hapter starts with a ba
kground and des
ription of the used one-
lass 
lassi�
ationmethods. After that the lo
al image feature dete
tion method is presented. Additionallyproperties of the 
omplex-valued Gabor feature spa
e are studied be
ause they have beennoti
ed to have surprising e�e
ts on the 
lassi�
ation performan
e.4.1 Ba
kground and motivation for 
lassi�
ationOne-
lass 
lassi�
ation, also 
alled novelty dete
tion, outlier dete
tion, or data des
rip-tion [83℄, 
an be used to dete
t un
hara
teristi
 observations. One-
lass 
lassi�
ationis ne
essary when samples 
an be obtained only from a single known 
lass, for exam-ple, normal operation mode in motor 
ondition monitoring where all failure modes arenot known. One-
lass 
lassi�
ation is also useful when the ba
kground 
lass 
ontainsenormous variations making its estimation unfeasible, for example, a ba
kground 
lassin obje
t dete
tion: the ba
kground 
lass should 
ontain everything ex
ept the obje
t tobe dete
ted. One-
lass 
lassi�ers are used for this reason in this study.55



56 4. Image feature 
lassi�
ation and rankingAdditional requirement for the 
lassi�er in this appli
ation is that it must sort the featuresinto ranked order, it is not enough to simply de
ide whether a feature ve
tor belongs tothe 
lass or not. If a 
lassi�er is trained for dete
ting lo
al image features, for exampleeye-
enters, in the dete
tion phase the eye-
enter 
andidates must be returned in rankedorder where the �rst one resembles the eye-
enter the most and the following ones less.4.2 Gaussian mixture modelsMany types of pdfs 
an be approximated with �nite mixture models. Finite mixturemodels 
ombine several single distribution forms to be able to approximate arbitrarily
omplex pdfs. The most 
ommon distribution fun
tion is the normal distribution (Gaus-sian distribution) be
ause it is a well-understood distribution with useful properties formany appli
ation areas [85℄.When the density of the data 
an be estimated, the easiest method for obtaining a one-
lass 
lassi�er is to set a density value threshold to the estimated probability density[82℄. Gaussian mixture models (GMM) have been widely used in 
lassi�
ation and gen-eral density estimation tasks, and they are also suitable for one-
lass 
lassi�
ation. Theexpe
tation-maximization (EM) is a general method for estimating the mixture modelparameters, and the EM algorithm is proved to 
onverge to the global maximum likeli-hood estimate if the overlap between the Gaussians in the model is su�
iently small andthere is a su�
ient amount of data [56℄.The multiresolution Gabor feature 
omputed in a single lo
ation 
an be 
onverted fromthe matrix form in (3.8) to a feature ve
tor as
g = [r(x0, y0; f0, θ0) r(x0, y0; f0, θ1) . . . r(x0, y0; fm−1, θn−1)] . (4.1)4.2.1 Multivariate normal distributionThe multivariate normal distribution of a D dimensional random variable 
an be de�nedas
N (x; µ,Σ) =

1

(2π)D/2|Σ|1/2
exp

[

−1

2
(x − µ)T Σ−1(x − µ)

] (4.2)where µ is the mean ve
tor and Σ the 
ovarian
e matrix of the normally distributedrandom variable X. A multivariate Gaussian pdf is an ellipti
ally 
ontoured distributionwhere the equiprobability surfa
e is a µ-
entered hyperellipsoid [85℄.The Gaussian distribution in (4.2) 
an be used to des
ribe the pdf of a real valued randomve
tor (x ∈ R
D). However, a similar form 
an be derived for 
omplex random ve
tors(x ∈ CD) as (e.g. [24℄)

NC(x; µ,Σ) =
1

πD|Σ| exp
[

−(x − µ)∗Σ−1(x − µ)
] (4.3)where ∗ denotes the adjoint matrix.For a multimodal random variable, where values are generated by several randomlyo

urring independent sour
es instead of a single sour
e, a �nite mixture model 
an be



4.2 Gaussian mixture models 57used to approximate the true pdf. If the Gaussian form is su�
ient for single sour
esthen a Gaussian mixture model (GMM) 
an be used in the approximation. However,the underlying distributions do not need to be Gaussians as GMMs 
an approximate anyother distribution given a large enough number of 
omponents.The GMM probability density fun
tion 
an be de�ned as a weighted sum of Gaussians
p(x; θ) =

C
∑

c=1

αc N (x; µc,Σc) (4.4)where αc is the weight of cth 
omponent. The weight 
an be interpreted as a prioriprobability that a value of the random variable is generated by the cth sour
e, and thus,
0 ≤ αc ≤ 1 and ∑C

c=1 αc = 1. A Gaussian mixture model probability density fun
tion is
ompletely de�ned by a parameter list [16℄
θ = {α1,µ1,Σ1, . . . , αC ,µC ,ΣC} . (4.5)The main problem is how the parameters in (4.5) 
an be estimated from the training data.The most popular estimation method is the expe
tation maximization (EM) algorithm.The problem with the algorithm is that it requires the number of Gaussians, C, as aninput parameter. The number is often unknown and there is a strong motivation to applyadaptive unsupervised methods, su
h as that of Figueiredo-Jain [20℄ or the greedy EMalgorithm [87℄. The standard EM algorithm has been shown to outperform the adaptivemethods if the 
orre
t number of mixture 
omponents is known, but in the absen
e ofsu
h knowledge the adaptive estimation algorithms give a

urate and reliable results [68℄.Of the two adaptive methods the Figueiredo-Jain was noted to provide more a

urateresults and it has been extended to 
omplex values, and 
an therefore be dire
tly appliedto estimation of pdfs of 
omplex multiresolution Gabor feature ve
tors in (4.1).4.2.2 One-
lass 
lassi�
ation using 
on�den
e with GMMIn our 
ase 
on�den
e is used to estimate the reliability of a 
lassi�
ation result wherea 
lass label is assigned to an unknown observation. If the 
on�den
e is low it is moreprobable that a wrong de
ision has been made. Intuitively a value of 
lass 
onditionalpdf at an observation 
orresponds to de
ision 
on�den
e for favor of the 
orresponding
lass: the higher the pdf value is, the more 
lass instan
es appear similar to the observa-tion. However, using pdf values dire
tly 
an be di�
ult sin
e they are arbitrarily s
aled.Con�den
e values are always in the range [0, 1].The most straightforward use of 
on�den
e is to �nd a pdf value threshold for a 
lass [82℄.The threshold 
an be used to de
ide whether an observation is su�
iently similar to the
lass in question. The threshold 
an be sele
ted based on the training data, for example,by sele
ting a pdf threshold for whi
h half of the training data yields higher pdf values(median). Another possibility is to sele
t the threshold using 
on�den
e: �nding athreshold whi
h in
ludes a 
ertain proportion of the total probability mass. The pdftype is not limited to a single Gaussian distribution but to a mixture of models withan arbitrary number of 
omponents. The sele
tion method 
an be easily generalized forother types of pdfs.



58 4. Image feature 
lassi�
ation and rankingTo be a proper probability measure the 
on�den
e value should satisfy ∈ [0, 1]. For anysupport regionR of the de�nition spa
e Ω of the pdf, R ⊆ Ω, it holds that 0 ≤ p(x) <∞,
∀x ∈ Ω. The 
on�den
e value is de�ned via value κ whi
h related to a non-unique
on�den
e region R su
h that [68℄

∫

Ω\R
p(x)dx = κ . (4.6)The proposed 
on�den
e value is easily interpretable via the 
on�den
e region R whi
h
overs a proportion 1 − κ of the probability mass of p(x) be
ause for all probabilitydistributions ∫

Ω
p(x)dx = 1. It is 
lear that κ = 1 for R = ∅ and κ = 0 for R = Ω. The
on�den
e value has no meaning until the region R is de�ned as the minimal volumeregion. The minimal volume region is 
alled the highest density region (HDR) [33℄. Forsome distribution types the HDR 
an be non-unique (e.g., the uniform distribution).The proposed 
on�den
e value, 1 − κ, 
orresponds to the smallest region whi
h in
ludesobservation x and has a probability mass κ, de�ned as HDR.A 
on�den
e value 
orresponds to a proportion of a probability mass in the area Rj forthe 
lass ωj. In one-
lass 
lassi�
ation the 
on�den
e region Rj 
an be used instead ofthe 
on�den
e value: a sample ve
tor x is allowed to enter the 
lass ωj only if x ∈ Rj .If a sample is not within the 
on�den
e region of any of the 
lasses it is 
lassi�ed toa ba
kground 
lass. The ba
kground 
lass is a spe
ial 
lass and samples assigned tothe 
lass may need spe
ial attention depending on the appli
ation. For example, in atwo-
lass problem where data is available only from one 
lass the ba
kground 
lass mayrepresent another 
lass with an unknown distribution.To �nd the 
on�den
e region a reverse approa
h 
an be used to �nd a pdf value τ whi
his at the border of the 
on�den
e region: τ must be equal everywhere in the border,otherwise the region 
annot be the minimal volume region [33, 39℄. τ 
an be 
omputedby rank-order statisti
s using the density quantile F (τ) (e.g., [33℄) and by generatingdata a

ording to the pdf. It is assumed that the gradient of the pdf is never zero in theneighborhood of any point where the pdf value is nonzero. An example of the 
on�den
eregion 
an be seen in Fig. 4.1.4.2.3 Con�den
e estimation algorithmsAn analyti
al solution to the GMM 
on�den
e region 
annot be solved and thereforeestimation must be used. Estimation 
an be based on the GMM training data dire
tly,or it 
an be based on randomly generated data derived from the estimated pdf. If
on�den
e is determined based on the training data, volume of the 
on�den
e regiondoes not ne
essarily have a dire
t relation to the 
on�den
e value: if a threshold issele
ted to in
lude 50% of the training data, volume of the region may not be half of thetotal volume.A pdf value threshold for p(x) 
an be sele
ted with the help of training data. First, a
umulative pdf value histogram H for the data x1..N is 
reated (Algorithm 5). Se
ond,the threshold 
an be found using the 
umulative histogramH and the required 
on�den
evalue c = 1 − F (τ) using Algorithm 6.
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Figure 4.1: The highest density region (HDR) of a two-
omponent GMM pdfand the 
orresponding threshold in one dimension. The 
on�den
e region is nota simple 
onne
ted set.Algorithm 5 Create a 
umulative 
on�den
e histogram H for pdf p(x) with sample ve
tors
x1..N (training data)1: for k = 1..N do2: Cal
ulate pdf value for xk, Hk = p(xk)3: end for4: Sort H in as
ending order, H=sort(H)5: Return H.Algorithm 6 Sele
t a pdf threshold value τ for the 
on�den
e value c using the 
umulative
on�den
e histogram H1..N1: Sele
t histogram position, m=round(c ∗ N)2: Return τ = Hm.The 
on�den
e value for a new sample x 
an be 
al
ulated using Algorithm 7.Algorithm 7 Return 
on�den
e value c for a sample ve
tor x using the 
umulative 
on�den
ehistogram H1..N of the pdf p(x)1: Cal
ulate pdf value for the sample ve
tor x, px = p(x)2: Sele
t position of the 
losest pdf value to px in H, m = argmini|Hi − px|3: Return c = m/N .In Algorithms 6 and 7 interpolation 
an be used instead of sele
ting the nearest value.In the 
ase of Gaussian mixture models, it may be bene�
ial to use randomly generateddata. An algorithm for generating random data for any GMM is presented in Algorithm 8.The algorithm has been extended to multiple 
omponents from an algorithm presentedin [85℄.
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lassi�
ation and rankingAlgorithm 8 Generate N random samples, X, for a D-dimensional GMM of C 
omponentswith weights α1..C , mean ve
tors µ
1..C and 
ovarian
e matri
es Σ1..C1: k=12: for c = 1..C do3: T = 
hol(Σc) {Cholesky de
omposition }{Number of generated samples depends on the weight of the 
omponent, αc }4: for 1..round(αcN) do5: Z = randn(1 × D) {Generate D independent normally distributed (µ = 0, σ = 1)random variables}6: Xk = ZT + µc7: k=k+18: end for9: end for4.2.4 Experiments using 
on�den
eThe �rst experiment studies the required amount of data for distributions with in
reas-ing number of dimensions. The se
ond experiment demonstrates the bene�ts of the
on�den
e information on an image feature lo
alization problem.Data generationThe a

ura
y of the 
on�den
e and threshold 
omputation methods with Algorithms 5, 6,7 and 8 depends only on the amount of data, if the data and the estimated GMM representthe same underlying distribution. If that assumption holds, the only ina

ura
y in the
on�den
e values is 
aused by the limited amount of data. If the distributions deviateslightly from ea
h other, whi
h is typi
ally 
aused by the GMM parameter estimation, the
on�den
e values may be biased. If there is a large dis
repan
y between the distributionsthe 
on�den
e values may be
ome 
ompletely useless, for example, all be
ome binarizedto either 0 or 1.Here the relationship between data dimensionality and the required number of randomsamples is studied. To avoid the issue of distribution mismat
h, a D-dimensional GMMpdf was generated semi-randomly and data was derived from the generated GMMs.Random data was generated with Algorithm 8 and then a pdf threshold was sear
hedwith Algorithms 5 and 6. For ea
h value of D the number of required samples wasevaluated repeatedly; ea
h evaluation 
onsisted of 
reating a semi-random 
ovarian
ematrix and �nding a number of samples at whi
h the standard deviation of the foundpdf threshold value for 
on�den
e c = 0.5 was varying at most by 1% from the meanvalue. The result is shown in Fig. 4.2.The number of required samples in
reased linearly with the data dimensionality. Despitethe fa
t that the size of the 
ovarian
e matrix in
reases quadrati
ally, and the numberof required samples 
ould be assumed also to grow quadrati
ally, the linear dependen
yis as expe
ted based on the data generating Algorithm 8: a D-dimensional sample isgenerated using D random numbers. In pra
ti
e this means that the data generation isfeasible even for high dimensional distributions be
ause the required number of samplesgrows only linearly.
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+/− std devFigure 4.2: Required number of generated samples for a pdf threshold estimate(c = 0.5).Image feature dete
tion with 
onfiden
eThe dete
tion algorithm presented in Se
tion 4.4 returns a �xed number of highest rankedimage features found in the image. One obvious problem is that in the 
ase when there isnothing to dete
t, a �xed number of points will still be returned. Image feature dete
tionis followed by spatial 
onstellation model sear
h, whi
h will then do useless work if thereare spurious lo
al image features. Also, when the obje
t to be dete
ted is present in theimage, returning a �xed number of features may not be optimal, but the number shouldbe de
ided adaptively.In this example the use of 
on�den
e information is demonstrated in the fa
e dete
tionexperiment, whi
h is explained with more detail in Se
tion 5.2. This spe
i�
 example,results presented in Fig. 4.3, is 
on
erned with sear
hing one spe
i�
 image feature, theleft nostril, from an image. Fig. 4.3(a) shows a pdf surfa
e from a GMM pdf trainedfor re
ognizing the left (in the image) nostril. Figs. 4.3(b) and 4.3(
) show only the
on�den
e regions 
orresponding to 0.01 and 0.50 
on�den
e values. The 
orre
t imagefeature lo
ation and very little else was in
luded in the 0.50 
on�den
e region, and eventhe 0.01 
on�den
e region dis
arded very large part of the image.4.3 One-
lass SVM (support ve
tor ma
hine) 
lassi�erThe single-
lass SVM (support ve
tor ma
hine) 
lassi�er used in this study was a one-
lass 
lassi�er based on a µ-SVM 
lassi�er [79℄. The one-
lass SVM algorithm startswith a set of points and estimates a region with a spe
i�ed fra
tion of the points. Severaldi�erent regions are possible, whi
h region is sele
ted depends on the kernel and usedregularization. Internally the algorithm fun
tions by mapping the data to a featurespa
e using a kernel and �nding a hyperplane separating the data from the origin witha maximum margin. Fig. 4.4 shows an example. A new data point is 
lassi�ed based onwhi
h side of the hyperplane it falls on the feature spa
e.
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(a) (b) (
)Figure 4.3: Example of using density quantile for de�ning 
on�den
e regions: (a)pdf value surfa
e for the left (in the image) nostril 
lass; (b) 
on�den
e threshold

0.01 (F (τ ) = 0.99); (
) 
on�den
e threshold 0.50 (F (τ ) = 0.50).The algorithm starts with a set of unlabeled training data
X = x1, . . . , xm ⊂ X , (4.7)where m is the number of observations and X is some set, usually R

N . As usual withSVM algorithms, data point x is mapped to a dot-produ
t spa
e, X → X, with Φ(x)and the feature spa
e is de�ned so that a simple kernel 
an be used to evaluate thedot-produ
t (denoted by 〈·〉),
k(x, x′) = 〈Φ(x),Φ(x′)〉, (4.8)su
h as the Gaussian, whi
h is often 
alled RBF (radial basis fun
tion) kernel,
k(x, x′) = e−‖x−x′‖2/σ. (4.9)The algorithm returns value +1 for a small region 
apturing most of the training dataand −1 elsewhere. To separate data from the origin, the following quadrati
 program issolved:

minimize
w∈X,ξ∈R

m,ρ∈R

1

2
‖w‖2 +

1

νm

∑

i

ξi − ρ , (4.10)
subject to 〈w,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 . (4.11)Here, ν ∈]0, 1], is a parameter whi
h 
ontrols the number of outliers and support ve
tors,

ξi are the sla
k variables, and ρ is the the margin to hyperplane. Sla
k variables ξi areused to penalize outliers in the obje
tive fun
tion. The de
ision fun
tion is
f(x) = sgn (〈w,Φ(x)〉 − ρ) , (4.12)
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Figure 4.4: A hyperplane separating data from the origin with some outliers.whi
h is de�ned so that sgn(z) equals 1 for z ≥ 0, −1 otherwise. Using multipliers
αi, βi ≥ 0 for the weights of support ve
tors and outliers respe
tively a Lagrangian isintrodu
ed,
L(w, ξ, ρ, α, β) =

1

2
‖w‖2 +

1

νm

∑

i

ξi − ρ−
∑

i

αi(〈w,Φ(x)〉− ρ+ ξi)−
∑

i

βiξi . (4.13)Setting the derivatives with respe
t to the primal variables w, ξ and ρ equal to zero,yields to
w =

∑

i

αiΦ(xi) , (4.14)
αi =

1

νm
− βi ≤

1

νm
,
∑

i

αi = 1 . (4.15)The de
ision fun
tion (4.12) 
an now be transformed using (4.13) and (4.8) into
f(x) = sgn

(

∑

i

αik(xi, x) − ρ

)

. (4.16)The dual problem 
an be obtained by substituting (4.14) and (4.15) into Lagrangian L,(4.13), and by using the kernel, (4.8),
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minimize
α∈R

m

1

2

∑

ij

αiαjk(xi, xj) , (4.17)
subject to 0 ≤ αi ≤

1

νm
,

∑

i

αi = 1 .It 
an be shown that at the optimum the two inequality 
onstraints in (4.11) be
omeequalities if αi and βi are not equal to zero. Exploiting any su
h αi > 0 ρ 
an be
al
ulated,
ρ = 〈x,Φxi〉 =

∑

j

αjk(xi, xj) . (4.18)Interpretation of the parameter ν follows. When the parameter approa
hes zero, theproblem be
omes a hard margin problem, sin
e the penalization of errors is then in�nite.The problem is still feasible but the margin may be
ome negative. Overall, the parameter
ν 
hara
terizes the fra
tion of outliers and support ve
tors. Outliers are the points whi
hare on the wrong side of the hyperplane. As a rule of thumb, ν is the lower bound forthe fra
tion of support ve
tors and upper bound for the fra
tion of outliers.Some examples of the e�e
ts of parameters ν and the RBF kernel size σ are presentedin Fig. 4.5. The SVM 
lassi�er has been 
reated for a simple 2D problem, where thereare two distin
t sets of points. One problem 
ase 
an be seen in Fig. 4.5(a), where thekernel size is too small and the 
lassi�er is overly 
omplex. On the other hand, a toolarge kernel size may 
reate a too simple solution, as 
an be seen Fig. 4.5(
). When theparameter ν is small, see Fig. 4.5(d), only a few outliers are allowed and the distributionmay again be
ome too 
omplex. Large ν on the other hand leads to a large number ofoutliers, see Fig. 4.5(e).By default this SVM 
lassi�er only outputs a binary 
lassi�
ation de
ision based onwhi
h side of the hyperplane the point falls. This is not suitable for use in the imagefeature dete
tion des
ribed in this thesis; image feature 
andidates must be available inranked order, the most likely 
andidates having the largest values. While the theory isnot as well formulated as in the 
ase of GMM pdfs, this is still possible. The 
lassi�
ationde
ision in (4.16) �rst 
omputes the distan
e to the hyperplane, whi
h is positive whenthe point belongs to the 
lass, and then uses the sgn(·) fun
tion to binarize it to either
1 or −1. If the sgn(·) fun
tion is omitted, de
ision is a real valued number, the higher itis the further away on the in
lusion side the point is from the hyperplane, and therefore,in the most �dense� part of the distribution. This method is used to rank image featureswith a one-
lass SVM 
lassi�er in this thesis.4.4 Supervised image feature dete
tion methodThis se
tion presents the supervised image feature dete
tion method, �rst the train-ing phase and then the dete
tion phase. Requirements for lo
al image des
riptors and
lassi�ers are also dis
ussed.
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(a) ν = 0.5, σ = 0.2
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(b) ν = 0.5, σ = 0.8
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(
) ν = 0.5, σ = 0.2
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(d) ν = 0.1, σ = 1.0
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(e) ν = 0.5, σ = 1.0
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(f) ν = 0.9, σ = 1.0Figure 4.5: Examples of the SVM 
lassi�er and e�e
ts of ν and RBF kernel-size, σ, parameters. Thi
k line presents the de
ision boundary for 
lass in
lusion;(a)-(
) Di�erent kernel size σ, 
onstant ν; (d)-(e) 
onstant kernel size σ, varying
ν.4.4.1 Training the dete
torThe lo
al image feature dete
tor training method is presented in algorithmi
 form inAlgorithm 9 and visualized in Fig. 4.6 (dete
tor for left eye-
enters). The eye-
entersmust be annotated in the training images, and lo
al image des
riptors for those areas are
omputed. After the des
riptors have been 
omputed for all annotated positions in thetraining images, a 
lassi�er is trained. In our 
ase, the 
lassi�er is a one-
lass 
lassi�erwithout a ba
kground 
lass.Algorithm 9 Training a lo
al image feature dete
tor1: for all Training images do2: Align and normalize image to represent an obje
t in a prede�ned standard pose3: Compute multiresolution Gabor features at given landmark lo
ations4: Normalize the features5: Store the features to the sample matrix P and their 
orresponding 
lass labels (
lassnumbers) to the target ve
tor T
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Figure 4.6: A 
on
eptual diagram of lo
al image feature 
reation for an lo
alimage feature dete
tor (left eye-
enter).6: end for7: Train a one-
lass 
lassi�er using samples in P separately for ea
h 
lassIn the Algorithm 9 the training images must �rst be aligned to a standard pose: the poserepresenting obje
ts in the same s
ale and orientation. After the images have been trans-formed to the standard pose, multiresolution Gabor features in (3.8) are 
omputed atannotated landmark image feature lo
ations. Feature matri
es 
an be energy-normalizedif a 
omplete illumination invarian
e is required. Ea
h feature matrix is reformatted intoa ve
tor form in (4.1) and stored in the sample matrix P along with the 
orrespondingimage feature labels, T . Finally, pdfs (probability density fun
tions) over the 
omplexfeature ve
tors are estimated for ea
h image feature 
lass separately. The standard 
las-si�er has been a GMM 
lassi�er, but generi
 requirements for the 
lassi�er are presentedlater.



4.4 Supervised image feature dete
tion method 674.4.2 Dete
tionDete
tion is performed as presented in Algorithm 10. The dete
tion pro
edure is visu-alized in Fig. 4.7. Lo
al image des
riptors are 
omputed and 
lassi�ed separately for allpoints in the image. Be
ause a one-
lass 
lassi�er is used and there is no ba
kground
lass, the 
lassi�er only outputs a likelihood or probability value for a des
riptor to be-long to the spe
i�
 feature 
lass. Complete likelihood des
ription (likelihood image) 
anbe 
omputed from the whole image and the highest values 
an be sele
ted as the mostprominent image feature 
andidates (see Fig. 4.7). The only requirement for the 
lassi�eris that the value is higher the more the des
ribed point resembles the trained 
lass.

Figure 4.7: A 
on
eptual diagram of image feature dete
tion (left eye-
enter).Algorithm 10 Dete
t K best image features of ea
h image feature 
lass from image
I1: Normalize image if needed2: Compute multiresolution Gabor features G(x, y; fm, θn) for the whole image I(x, y)
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ation and ranking3: for all S
ale shifts do4: for all Rotation shifts do5: Shift Gabor features6: Normalize Gabor features7: Apply the 
lassi�er to 
ompute likelihood values for all 
lasses and for all (x, y)8: end for9: end for10: Sort the the likelihood of image features values for ea
h 
lass11: Return the K best 
andidates of ea
h image feature 
lassIf the observed images vary heavily in their photometri
 quality (e.g., large brightnessand 
ontrast di�eren
es), they 
an be �rst normalized. From the normalized imagemultiresolution Gabor features are extra
ted at every spatial lo
ation and likelihoodvalues for all image feature 
lasses are 
omputed for all invarian
e shifts. If Gabor featureswere energy normalized in the training phase the same normalization must be appliedhere. To save memory, only some prede�ned portion of the highest likelihood values 
anbe stored instead of storing all likelihood values. After the shifts have been inspe
tedthe best image feature 
andidates are returned and sorted based on the likelihood values.With this approa
h one lo
ation may represent more than one image feature, but ea
hfeature 
an be assigned to one pose only.4.4.3 Requirements for the lo
al image des
riptorThe two algorithms (Algorithm 9 and Algorithm 10) assume that multiresolution Gaborfeatures are used as lo
al image des
riptors. However, in general the sele
tion of thedes
riptor is free: any method 
an be used, but the method has to be fairly fast duringthe dete
tion phase sin
e lo
al des
riptors must be 
omputed for all points in the image,or at least for a reasonably large portion of all points if sparse sampling is used. Sparsesampling means that a part of the points are omitted either systemi
ally (e.g., handleevery se
ond or fourth pixel) or by adaptively sampling more densely in areas wherelikelihood values have been large. For the same reason also the 
lassi�er has to be e�
ientin pro
essing a large number of feature ve
tors. Fortunately with most 
lassi�ers onlythe training phase is 
omputationally heavy.4.4.4 Requirements for the 
lassi�erThere are few 
hallenges in 
lassi�
ation of multiresolution Gabor features for imagefeature lo
alization. Firstly, the features are 
omplex-valued whi
h many 
lassi�ers donot expli
itly 
onsider. Se
ondly, the lo
alization pro
ess is simpli�ed if the ba
kground
lass 
an be avoided leading to use of one-
lass 
lassi�ers, whi
h are not as 
ompletelystudied as more typi
al two-
lass 
lassi�ers. Thirdly, the feature-spa
e of multiresolutionGabor image features 
an be surprisingly 
omplex for 
ertain types of even simple signals,whi
h 
an 
ause problems for some 
lassi�ers. The properties of the feature spa
e arestudied in Se
tion 4.5. Fourthly, as already mentioned, the 
lassi�er should be fast, asexhaustive sear
h over the whole image or at least a large portion of it is performed.Based on the above mentioned requirements Gaussian mixture model (GMM) 
lassi�erwas used in this study. Gaussian mixture models 
an be extended to 
omplex values,



4.5 Properties of 
omplex-valued Gabor feature spa
e 69GMM is suitable for single-
lass 
lassi�
ation and are reasonably fast. The remainingunsolved property is the 
omplex behavior of the feature spa
e and GMM's di�
ulty inestimating it properly from limited training data. The sele
tion of an optimal 
lassi�-
ation strategy is still an open issue, but fortunately GMM performs well in pra
ti
e.Additionally, for the GMM 
lassi�er 
on�den
e 
an be de�ned from a solid probabilisti
ba
kground.A variant of the support ve
tor ma
hine (SVM) was tested as an alternative. For theSVM 
lassi�er the main problem is speed: usually quite large number of support ve
torsis required to a
hieve su�
ient dete
tion a

ura
y and this leads to slow 
lassi�
ation.The 
lassi�er 
an be tuned to use fewer number of support ve
tors, but the downsideis that dete
tion a

ura
y su�ers, and the main bene�t as 
ompared to GMM is lost,namely, that the SVM 
lassi�er 
annot anymore learn the 
omplex feature spa
es better.Gaussian mixture models and multiresolution Gabor features have two interesting, al-though not unique, properties whi
h are demonstrated in Fig. 4.8. First of all, estimationof GMM is similar to 
lustering and the found mixture 
omponents 
an be illustratedby sear
hing the 
losest mat
hes in the training set. This and the fa
t that images 
anbe re
onstru
ted from multiresolution Gabor features provides a ni
e property that boththe 
lassi�er and the image features 
an be examined visually.

Figure 4.8: Properties of GMM and multiresolution Gabor-features enable visu-alization of 
lassi�er and image feature extra
tion performan
e.4.5 Properties of 
omplex-valued Gabor feature spa
eIf an assumption about statisti
al properties of multiresolution Gabor features is made,it is usually assumed to be Gaussian [73℄, [90℄ or a mixture of Gaussians [80℄. It ishowever easy to show that even for a simple pattern the Gaussian distribution may besurprisingly far from the a
tual distribution and 
an lead to non-optimal results. Here,
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lassi�
ation and rankingresults from various situations where the responses of a single Gabor �lter have non-Gaussian properties are presented with some experimental results with multiresolutionstru
tures where the distributions be
ome even more 
omplex.In this se
tion properties of Gabor features are studied experimentally with a 1D signalwithout loss of generality in 2D. The experiments demonstrate situations where theGaussian assumption severely fails.4.5.1 Sensitivity to small misalignmentsIn Fig. 4.9 is a signal with two spikes at distan
e of 2d, where d = 50, and a Gabor �lterwith frequen
y f = 1/d. The spikes are lo
ated one wavelength o� the 
enter of theGabor �lter and the �lter has a strong response when lo
ated exa
tly between the twospikes. However, when the �lter is moved slightly away from the 
enter, there will belarge 
hange in the 
omplex responses. To properly interpret the behavior in Fig. 4.9 itmust be imagined in 2D Re-Im spa
e whi
h will be 
onsidered later.
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Filter response (imag)Figure 4.9: The upper �gure shows a signal with two spikes at distan
e 2d(d = 50) and real and imaginary parts of a Gabor �lter with frequen
y f = 1/dlo
ated at the 
enter of two spikes. The lower �gure shows the �lter's real andimaginary responses as a fun
tion of misalignment.The reason for this non-Gaussian behavior is that the real-valued (
osine) part of theGabor �lter 
aptures symmetri
 properties of the signal and the imaginary-valued (sine)part the anti-symmetri
 properties. When the �lter is exa
tly at the 
enter of the signalthere is perfe
t symmetry and a strong real-valued response. The signal does not haveany anti-symmetry and 
orrespondingly the imaginary-valued response is zero. Whenthe �lter is shifted slightly in either dire
tion, the symmetry starts to wane and the real-value response to de
rease slowly, but the anti-symmetry grows rapidly 
ausing a fast
hange in the imaginary-valued response.There are in�nitely many similar, symmetri
 or anti-symmetri
, 
on�gurations wherethe a
tivated areas of 
osine and sine parts are shifted to break the Gaussianity. This
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omplex-valued Gabor feature spa
e 71e�e
t 
an be either seen as a bene�
ial or a harmful property. On the positive side, thesignal 
an be lo
ated exa
tly be
ause the responses 
hange rapidly as the �lter lo
ationdeviates from the 
enter (Fig. 4.9). On the negative side, for example, obje
t dete
tionmay be
ome di�
ult if Gabor responses 
hange rapidly around a target obje
t. Stability
an be in
reased by using the �lter magnitudes instead of 
omplex responses, but thissigni�
antly redu
es the representative power of the �lter, and the problem should berather avoided by a proper 
lassi�
ation method or a similarity measure.4.5.2 E�e
t of 
hanges in the signalSmall perturbations in the lo
ation 
an 
ause surprisingly large 
hanges in the �lter re-sponses and misalignments frequently o

urs in pra
ti
e. Combined with other potential
hanges in signals, multiresolution Gabor feature values may form a very 
omplex stru
-ture. The response spa
e from the previous example (Fig. 4.9) is presented in Fig. 4.10(a),where the position of the Gabor �lter is 
hanged ±5 units from the 
enter. There is onlya small 
hange in the x-axis (real values), but a large variation in the y-axis (imaginaryvalues).If the distan
e between the spikes 
hanges the spikes are not exa
tly at the distan
e ofthe Gabor �lter wavelength. The imaginary response stays at zero be
ause the signalstays symmetri
. An example of the response spa
e is presented in Fig. 4.10(b) where
d = 30..50. When the spikes are moved 
loser to ea
h other, the response will be
omezero at a distan
e 2 3

4d as the spikes are lo
ated at points where the real part of the Gabor�lter 
rosses zero. If spikes are moved even 
loser the response be
omes negative.
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(b)Figure 4.10: Response spa
e of Gabor features with various alterations to thesignal in Fig. 4.9: (a) Lo
ation of the Gabor �lter 
hanged by ±5 units; (b)Distan
e between spikes 
hanged, d = 30...50.When both types of alterations are 
ombined, the lo
ation of the Gabor �lter varies by
±5 and d = 30..50, the response spa
e be
omes in
reasingly 
omplex as 
an be seen in
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ation and rankingFig. 4.11(a). However, addition of a large amount of Gaussian noise to the signal doesnot 
ause a dramati
 
hange (Fig. 4.11(b)). Furthermore, if the signal's 
ontrast 
hanges,i.e., how large its amplitude is 
ompared to the ba
kground, the responses will be linearlys
aled towards or away from the origin (not presented here).
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(b)Figure 4.11: Response spa
e of Gabor features with various alterations to thesignal in Fig. 4.9: (a) Lo
ation of the Gabor �lter 
hanged by ±5 units anddistan
e between spikes 
hanged, d = 30...50; (b) Gaussian noise added to thesignal.Previous examples used only one Gabor �lter, but with multiresolution Gabor featuresmany �lters at many frequen
ies and orientations are used. With two Gabor �lters theresponse spa
e be
omes 4-dimensional (two 
omplex valued responses) whi
h is not easilydemonstrated. A simpli�ed demonstration of multiresolution responses is presented inFig. 4.12(a) where in the x-axis are the response magnitudes of the previous example(
omplex responses in Fig. 4.10(b)), and in the y-axis magnitudes of �lter responses fora �lter at f = 1/35. The resulting response spa
e is far from Gaussian, and the featurespa
e does not get any less 
omplex when the �lter position is 
hanged by ±5 units andnoise is added as shown in Fig. 4.12(b).4.5.3 ExperimentsExperiments with generated and real data were 
ondu
ted in order to demonstrate dif-�
ulties for standard 
lassi�ers assuming Gaussianity to 
lassify multiresolution Gaborfeatures as 
ompared to more 
ompli
ated 
lassi�ers. However, simple 
lassi�ers areneeded be
ause multiresolution Gabor features are often involved in low level pro
essing,where e�
ien
y is important.Two di�erent one-
lass 
lassi�ers have been used in these experiments, a 
lassi�er basedon Gaussian mixture models (GMM), presented in Se
tion 4.2, and a one-
lass supportve
tor ma
hine 
lassi�er, presented in Se
tion 4.3.
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(b)Figure 4.12: Response spa
e of magnitudes of two Gabor �lters: (a) On x-axisresponse magnitudes for a Gabor �lter with f = 1/50 and on y-axis f = 1/35for a signal with distan
e between spikes d = 30..50; (b) Lo
ation of Gabor �lter
hanging by ±5 and Gaussian noise.Artifi
ial pollen imagesArti�
ial pollen images resemble real pollen images (Fig. 4.14(a)) whi
h have been usedin a dete
tion and identi�
ation task [77℄. Multiresolution Gabor features were appliedfor the same task, but surprising problems in 
lassi�
ation of the features were observed.A simpli�ed test with arti�
ially 
reated images was 
ondu
ted to eliminate the e�e
t ofvarious imperfe
tions in images of real pollens. The variables for arti�
ial pollen 
reationare their radius, the edge width and 
ontrast, and added Gaussian noise (Fig. 4.13(a)).Multiresolution Gabor features were 
omputed at 
enters of pollens for 500 training im-ages, ea
h with 5-9 arti�
ial pollens. The images, originally 1024×1024, have been down-s
aled by fa
tor of 8, be
ause the �lters only use low frequen
ies and 
omputing responsesfor a low resolution image is mu
h faster. However, the downs
aling introdu
es misalign-ment. An example of feature spa
e for Gabor �lters at frequen
y f = 1/50, θ = 0◦ ispresented in Fig. 4.13(b). Variation in the dire
tion of real axis was 
aused by varia-tions in the radius. The variations along the imaginary axis (anti-symmetry) are verysmall be
ause the 
enter lo
ations are known pre
isely and the obje
ts are symmet-ri
, but downs
aling to 1/8th of the original size 
auses an impre
ision to the 
enterposition. When a Gabor �lter is not pre
isely in the 
enter, the pollen is per
eivedas anti-symmetri
, whi
h leads to responses not being purely real. The eight di�erentmisalignment positions 
aused by downs
aling 
an be seen in the response spa
e (seeFig. 4.13(b)) as eight distin
t �stripes�. If downs
aling is not used, leading to a dras-ti
 in
rease in �ltering time, the stripes disappear be
ause the 
enter positions are nowexa
tly 
orre
t (see Fig. 4.13(
)).Real pollen imagesThe next experiment involved real pollen images � an example 
an be seen in Fig. 4.14(a).The radiuses of real pollens varied from 35 to 80 pixels. The real pollens are far from
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(
)Figure 4.13: Arti�
ial pollen experiment. (a) An arti�
ial pollen image (pollensof radius 35 − 50, varying edge widths and 
ontrasts, and Gaussian noise). (b)Gabor responses from the 
enters of arti�
ial pollens at frequen
y f = 1/50 and
θ = 0◦ with downs
aling to 1/8th size; (
) Without downs
aling.perfe
t 
ir
les and there were also three di�erent types of pollens present in the images.Furthermore, the 
enters 
annot be marked exa
tly, and thus, it is no surprise that Gabor�lter responses do not form as symmetri
 pattern as with the arti�
ial pollen experiment(Fig. 4.13(b)), but a smoother 
loud (Fig. 4.14(b)). Still, most of the responses arelo
ated 
lose to imaginary value 0 and vary in the dire
tion of the real axis, where thevariations are explained by varying radiuses. Phenomenon 
an be more easily seen whenonly angles of the 
omplex responses are observed, see Fig. 4.14(
). Note that only asingle feature is present in the �gure; the whole feature spa
e is more 
omplex and lessGaussian be
ause of the e�e
ts explained previously.
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)Figure 4.14: (a) A part of a real pollen image. (b) Gabor responses from the
enters at frequen
y f = 1

45
√

2
, θ = 0◦; (
) Histogram of 
omplex angles.Pollen dete
tion results for real pollen images in Fig. 4.15(a) (GMM) and in Fig. 4.15(b)(SVM) as ROC (Re
eiver Operating Chara
teristi
) 
urves. There were 606 pollens in



4.6 Summary 75the training set and 352 pollens in the testing set. Figures show results for di�erentdistan
es of lo
ation a

ura
y: in the best 
ase the pollens would be found exa
tlywithout generating false positives. A distan
e of 30 is an a

eptable a

ura
y as theminimum radius was 35. Results with the GMM 
lassi�er were bad as a huge number offalse positives was found before a signi�
ant number (90%) of real pollens. At the pointwhere 100 false positives were found, only 30% of the real pollens (approx. 100) werefound. With SVM the result is 
learly better at the same point, 65% (approx. 230).
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d=100(b)Figure 4.15: Dete
tion of real pollens. (a) ROC 
urve for the GMM 
lassi�er;(b) ROC 
urve for the SVM 
lassi�er.4.6 SummaryThis 
hapter presented an image feature lo
alization method based on multiresolutionGabor features and Gaussian mixture models. The method 
an use other lo
al imagedes
riptors or 
lassi�ers, and generi
 algorithms were presented where the individualparts 
an be 
hanged at will, given they ful�ll the requirements presented also in this
hapter. The 
hapter 
ontinued with motivations for using one-
lass 
lassi�ers and usageof 
on�den
e with a Gaussian mixture model 
lassi�er. An alternative 
lassi�er, ν-SVMwas presented as related to the problem, non-Gaussianity of Gabor features. In some
ases the 
omplexity of the feature spa
e 
auses problems for GMM estimation giventhe limited training data (to learn very 
omplex features spa
es the estimation requiresimpra
ti
ally large amount of training data) and the alternative SVM 
lassi�er proved tobe able to learn 
omplex feature spa
es (from pollen images) more e�e
tively. However,in the next 
hapter the experimental results shows that multiresolution Gabor featuresand GMM is still a powerful 
ombination for a

urately dete
ting image features.
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Chapter VExperiments and appli
ations

In this 
hapter image feature dete
tion and lo
alization is demonstrated using the pro-posed 
ombination of multiresolution Gabor feature and Gaussian mixture models using3 di�erent datasets in two 
hallenging problems. Furthermore, to 
on�rm validity of 
om-bination of Gabor features and GMM, the tests are repeated by repla
ing the des
riptorand the 
lassi�er with other well-known methods whi
h show no signi�
ant improve-ments. The method is further demonstrated in a 
ategorization experiment where theresults appear very natural. Finally, a similar approa
h is applied to a distin
tly di�erentsubje
t as a side study, a fault dete
tion problem with 1D signal.5.1 A

ura
y measureFor dete
tion of 
omplete obje
ts for example bounding boxes or ellipses are used, e.g.,[62℄. A �box� is drawn around the dete
ted obje
t and a union is taken between thedete
ted box and manually marked the groundtruth box. The a

ura
y measure is then
al
ulated as the area of the union divided by the area of the groundtruth box. Thistype of measure is problemati
 be
ause it does not 
onsider pose variations at all andthe results vary greatly depending on how tightly or loosely the bounding boxes aredrawn around the obje
t. Overall, for measuring a

ura
y of dete
ting separate imagefeatures the bounding box model is not very suitable. The used a

ura
y measure, basedon ranked order of image feature 
andidates and normalized error distan
e, is des
ribednext.Before generating the result graph the image feature 
andidates are ranked in order, i.e.,the most likely image 
andidate is �rst. The a

ura
y of lo
al image feature dete
tionis presented as a 
umulative graph where the x-axis is the number of dete
ted imagefeatures and the y-axis is the proportion of how often the 
orre
t image has been foundamong them. Lo
alization a

ura
y is rarely pixel-perfe
t, so an image feature is deemedas 
orre
tly dete
ted if it is within some pre-determined radius around the 
orre
t imagefeature position. For fa
e dete
tion tests the a

ura
y is measured by normalizing thedistan
e between the eyes to deye = 1.0 and various a

ura
ies are measured based on77



78 5. Experiments and appli
ationsthe normalized distan
e (Fig. 5.1(a)). This type of measure is 
onsidered as the mostappropriate for evaluating lo
alization methods in [76℄.An example of the a

ura
y measure graph is shown in Fig. 5.1(b). From the graph it 
anbe seen, for example, that only every tenth of the highest ranked feature 
andidates wasin the 
orre
t position within a distan
e of 0.05 (of deye). However, when the alloweddistan
e was in
reased to 0.20 six of the �rst ten 
andidates were 
orre
t. Using theten highest ranked image feature 
andidates the results improve so that the 
orre
t onewas among them half of the time for a distan
e of 0.05 and over eight times out of tenfor a distan
e of 0.20. A perfe
t result would be one where the �rst (highest ranked)image feature is always 
orre
t and the resulting graph would have a straight line at100%. This is seldom the 
ase and the graph stays below 100%. In general, if there is alarge di�eren
e between graphs of di�erent distan
es, like there is in the example graph(Fig. 5.1(b)), it means that the dete
tion method 
annot determine the 
orre
t lo
ationvery exa
tly but is quite good at dete
ting it approximately. Another 
ommonly seenvariant is that the graphs of di�erent distan
es are tightly bun
hed. In that 
ase, thedete
tion method 
an dete
t the 
orre
t lo
ation very a

urately when it �nds it at all.
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d = 0.20(b)Figure 5.1: Measuring lo
alization performan
e. (a) Demonstration of the useda

ura
y distan
e measure, deye; (b) An example result graph.For dete
ting single image features this kind of a

ura
y measure is very natural.5.2 Fa
e dete
tion5.2.1 XM2VTS fa
e databaseThe XM2VTS fa
ial image database is a publi
ly available database for ben
hmarkingfa
e dete
tion and re
ognition methods [58℄. The frontal part of the database 
ontains600 training images and 560 test images of size 720 × 576 (width × height) pixels. Theimages are of ex
ellent quality and the lightning 
onditions are stable, and therefore, fa
edete
tion methods should perform very well with this database. To train the proposedimage feature dete
tors a set of salient fa
e regions were sele
ted.



5.2 Fa
e dete
tion 79The sele
ted image features should be dis
riminative: they 
an be reliably found in theimages, and they 
an be used to distinguish the obje
t 
ategory from other 
ategoriesand ba
kgrounds. Ten spe
i�
 fa
ial regions (see Fig. 5.2 for example images from thedatabase with annotated image features) have been shown to have favorable properties toa
t as image features [30℄. To 
apture visual information of lo
al image pat
hes aroundthe marked lo
ations lo
al image des
riptors are used.
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9 10(d)Figure 5.2: Training images with 10 manually marked and annotated imagefeatures.Three di�erent image des
riptors were used: multiresolution Gabor features (Se
tion 3.1),lo
al binary patterns (Se
tion 2.3.3) and the steerable pyramid (Se
tion 2.3.4). In ad-dition the SIFT des
riptor with and without PCA was tested, but the results were veryweak and therefore not in
luded. It was assumed that the high sele
tivity of SIFT fea-tures is not suitable to a task where generalization is needed and additionally their highdimensionality 
auses problems for the GMM 
lassi�er. Testing was limited to thesedes
riptors be
ause other presented des
riptors are 
omputationally too heavy for theexhaustive sear
h; the number of points for whi
h the des
riptors are needed would haveto be limited somehow, for example, by using interest point dete
tors. The main lo
aldes
riptor has been multiresolution Gabor features, and their use is des
ribed here �rst.



80 5. Experiments and appli
ationsGabor feature parameter sele
tionThe parameters of multiresolution Gabor features must be sele
ted, either manuallyusing some heuristi
s or by optimization, e.g., 
rossvalidation. Both approa
hes wereapplied in the experiments, so 
alled �old parameters� have been sele
ted manually, andare in
luded as a 
omparison to results in a previously published arti
le [43℄, and �tunedparameters� have been sele
ted by 
rossvalidation. Heuristi
 sele
tion is also explainedto 
larify properties of multiresolution Gabor features.In the XM2VTS database all fa
es are in standard pose, everyone is looking at thedire
tion of 
amera from the same distan
e. Naturally, there are still some variations inthe distan
e between the eyes (Fig. 5.3(a)) and the angle between the eyes (Fig. 5.3(b)).The variations are small enough that invariant sear
hes are not ne
essary and the �lterbank parameters should be sele
ted to 
over the variations. For angular variations, whi
hare limited approximately to ±10◦, up to eight �lter orientations 
an be used, n ≤ 8,angular dis
rimination being then 22.5◦.Filter frequen
y spa
ing, k, should be sele
ted so that a single �lter in
ludes informationfrom all s
ales present. The s
ale of obje
ts here is presented approximately by the eyedistan
e, the largest eye distan
es are around 120 pixels and the lowest around 90 pixels.Filters should in
lude therefore s
ale variations in the order of k ≥ 120
90 ≈ 1.33. A slightlylarger value 
an be used to assure that one �lter 
overs suitable s
ales, and a natural
hoi
e is k =

√
2, i.e., half-o
tave s
aling of frequen
ies. For the �lter frequen
ies inthe �lter bank, de�ned by the sele
tion of frequen
y of the highest �lter, fhigh, and thenumber of �lter frequen
ies, m, no 
lear guidelines 
an be given. However, number of�lter frequen
ies m ≥ 3 should provide enough dis
riminative frequen
y information.
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ale and orientation 
ontents of XM2VTS training data 
omputedusing 
oordinates of the left and right eye 
enters: a) distribution of eye 
enterdistan
es; b) distribution of eye 
enter rotation angles.These heuristi
ally sele
ted �old parameters� were n = 3, m = 4, k =
√

2, fhigh = 1/30.The parameters 
alled �tuned parameters� were sele
ted experimentally by a 
rossval-



5.2 Fa
e dete
tion 81idation pro
edure and were n = 4, m = 6, k =
√

3, fhigh = 1/40. In both 
ases�lter sharpness parameters γ and η have been sele
ted using equations presented in Se
-tion 3.1.6. The tuned parameters di�er from the old parameters in two ways: overall,the number of �lters have been doubled from 3 ∗ 4 = 12 to 4 ∗ 6 = 24, and be
auseof the lower fhigh, larger �lter spa
ing k and larger number of frequen
ies, mu
h lowerfrequen
ies are in
luded in the �lter bank.Training the GMM 
lassifierThe 
lassi�er was trained with the Figueiredo-Jain method as presented in the Se
-tion 4.4. The multiresolution Gabor �lter responses were 
omputed for all 10 imagefeature lo
ations in all images in the training set. The responses were then arranged asfeature ve
tors whi
h 
an be used with any one-
lass 
lassi�er (provided that they workwith 
omplex numbers). A 
lassi�er based on GMM has been used in these tests. Duringthe evaluation Gabor �lter responses were 
omputed in all lo
ations of the image and
lassi�ed to ea
h of the 
lasses, and for ea
h of the 10 
lasses, a number of the highestranked feature lo
ations were sele
ted as potential image features.Results for original imagesAfter 
lassi�
ation image features are pro
essed in ranked order and an image featurewas 
onsidered to be 
orre
tly 
lassi�ed if it was within a pre-set distan
e limit from the
orre
t lo
ation. The distan
es are normalized to a distan
e between the eyes, deye = 1.0(Fig.5.1(a)). The results for the XM2VTS database are presented in Fig. 5.4(a) for theold parameters and in Fig. 5.4(b) for the tuned parameters. With the old parametersusing the tightest distan
e limit, 0.05, approximately 32% of the 
ases the highest rankedfeature was the 
orre
t one. By in
reasing the distan
e limit to 0.10, whi
h is still verygood, the 
orre
t one was ranked highest in approx. 63% of the 
ases. By using the 10highest ranked features from ea
h 
lass, the 
orre
t features were among them in 71% ofthe 
ases for the distan
e limit of 0.05 and 86% of the 
ases for the distan
e limit 0.10.In
reasing the distan
e limit further to 0.20 leads to a small improvement. Similarly forthe tuned parameters, the highest ranked feature was 
orre
t in 41% of the 
ases for adistan
e limit of 0.05, and 86% for the limit 0.10. With the 10 highest ranked featuresthe results were 93% and 98% for distan
e limits 0.05 and 0.10 respe
tively.It should be noted that the results with the tuned parameters are approa
hing the naturalvariation of the manual marking by di�erent humans, meaning that the results 
annotbe signi�
antly improved in this test.The a

ura
y di�eren
e between the old and tuned parameters is demonstrated in Fig. 5.5.With old parameters the highest ranked features were spread all over the image to manyfalse lo
ations, while usually a few of them were found in the 
orre
t pla
es. With thetuned parameters the highest ranked features were found 
ompa
tly around the 
orre
tlo
ations. The tuned parameters in
luded lower frequen
ies and re
ognized the imagefeature lo
ations based on a larger neighborhood, and therefore, did not lead to imagefeature 
andidates in false lo
ations as easily.
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d = 0.20(b)Figure 5.4: A

ura
y of image feature extra
tion from XM2VTS test images:(a) Old parameters; (b) Tuned parameters.Complex vs. magnitude responsesThe multiresolution Gabor features des
ribed in Se
tion 3 use naturally 
omplex valuedfeature responses. Still, a majority of studies using Gabor features utilize only magni-tude information instead of the 
omplex representation. Using magnitude informationis 
omputationally easier and the results may be satisfa
tory even with only magnitudeinformation. Previous experiments were performed by using only response magnitudesinstead of 
omplex numbers and the results are shown in Fig. 5.6, whi
h are 
learly notas good as the results with 
omplex values (Fig. 5.4). The results demonstrate that re-moving the phase information, whi
h is impli
itly in
luded in the 
omplex values, leadsto 
lear degradation of lo
alization results.The advantage of using 
omplex numbers, whi
h in
lude impli
itly both magnitudeand phase information, instead of magnitude-only representation 
an be 
learly seenin Fig. 5.7. The �gure shows responses of a single �lter for the left and right eye 
orners.In the 
omplex plot the two 
lasses are 
learly separable, but 
ompletely overlap in themagnitude-only plot.Results for artifi
ially rotated and s
aled imagesA problem of the XM2VTS data set is that the images do not 
over di�erent s
ales orrotations as the fa
es are almost always near the standard pose. Invarian
e properties ofthe image feature lo
alization 
annot therefore be veri�ed using the database. To be ableto test the invarian
e properties, the evaluation images of the database were randomlyrotated between ±45 degrees and up-s
aled fa
tor between 1 and √

2.The image features were �rst sear
hed for without using s
ale or rotation invarian
emanipulations. The results for old parameters are in Fig. 5.8(a) and for tuned parametersin Fig. 5.8(b). In the se
ond phase, the dete
tion was performed using one s
ale-shift and
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ted image features (left eye 
enter: blue, right eyeouter 
orner: green, left nostril: red, right mouth 
orner: 
yan, 5 highest rankedfeatures for ea
h, numbered from 1 to 5): (a),(b),(
) Old parameters from [43℄;(d),(e),(f) Tuned parameters.
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ura
y of image feature extra
tion from XM2VTS test images(response magnitudes used instead of 
omplex responses): (a) Old parameters;(b) Tuned parameters.
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Figure 5.7: S
atter plots of Gabor �lter responses for left and right eye 
orners.two orientation shifts (±1 step). For the old parameters this means that the s
ale-shiftwas √
2 and orientation shifts ±45◦, and for the tuned parameters the s
ale-shift was√

3 and the orientation shifts ±30◦. The results are presented in Fig. 5.8(
) for the oldparameters and in Fig. 5.8(d) for the new parameters. S
ale and rotation shifts gave
learly better results, and the di�eren
e is most noti
eable using the tuned parametersas evident between Fig. 5.8(b) and Fig. 5.8(d).5.2.2 Ban
a fa
e databaseIn this experiment a signi�
antly more 
hallenging BANCA fa
e database was used [2℄.Only the English se
tion of the database was used whi
h in
ludes 6240 test images ofvarying quality and ba
kground (see examples in Fig. 5.9). The training set 
onsistedof XM2VTS and worldmodel images from English, Spanish, Italian and Fren
h BANCAse
tions, leading to 1600 as total number of training images.A di�erent data set required 
hanging the parameters from the previous test with XM2VTSto get the best performan
e, the new �tuned� parameters were n = 3, m = 6, k =
√

3,
fhigh = 1/25. The di�eren
es to the settings used with XM2VTS are that higher fre-quen
ies are used (fhigh has been in
reased from 1/40) and one fewer frequen
y is used.There are higher variation in the s
ales in the BANCA database and the �lter bankmust be tuned to the smallest s
ales, hen
e the higher frequen
ies. The number of �lterfrequen
ies must be de
reased to prevent �lter bank �seeing� too wide an area, in
ludinga 
luttered ba
kground. The results are presented in Fig. 5.10, one s
ale-shift has beenused and no rotation shifts. It is 
lear from the results that the BANCA database is
onsiderably mode di�
ult than XM2VTS. At a distan
e 0.10 only 51% of the highestranked features were 
orre
t (86% for XM2VTS), and with the 10 highest ranked features68% (95% with XM2VTS). The spatial sear
h may still su

eed if at least three 
orre
tfeatures are found.
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ura
y of image feature extra
tion from arti�
ially rotated ands
aled images from XM2VTS test set; (a) old parameters � no invarian
e shifts;(b) tuned parameters � no invarian
e shifts; (
) old parameters � invarian
e shifts;(d) tuned parameters � invarian
e shifts.
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(a) 1013_f_g1_s01_1013_en_4.ppm (b) 1013_f_g1_s12_1013_en_5.ppmFigure 5.9: Example images from BANCA database.5.2.3 Comparison to other lo
al image featuresHere the lo
alization performan
e is tested with three di�erent lo
al image features are.All three image feature types were treated equally. Feature ve
tors were 
omputed for allimage points, and 
lass 
onditional Gaussian mixture model probability densities wereused to �nd the 100 best 
andidates. The probability densities were estimated using thetraining set.The LBP features were 
omputed as de�ned in Se
tion 2.3.3. The image features were
olle
ted from 19 × 19 pat
hes around the feature lo
ations in the training set. Theimages were �rst downs
aled by a fa
tor of 1.5; the downs
aling fa
tor was determinedmanually to give the best lo
alization results. The formed feature (
ontaining several
on
atenated LBP histograms) is a real-valued ve
tor of length 203. The images in thetest set were again downs
aled by a fa
tor of 1.5 and the dete
tion was performed as anexhaustive sear
h in all 19× 19 image areas. An example of training image with markedimage pat
hes is presented in Fig. 5.11.For the steerable pyramid, Se
. 2.3.4, 4 levels and 6 orientations (5th order �lter) wereused (24 real values). The images were downs
aled to half the size during both trainingand dete
tion. Several settings were tested to �nd the parameters giving the best results.Results of image feature lo
alization of the 10 di�erent fa
e features using the di�erentlow-level features are shown in Fig. 5.12. The results for multiresolution Gabor featuresare repeated here be
ause the testing method had to be 
hanged slightly to treat all thefeatures equally, namely with multiresolution Gabor features in the previous results, inFig. 5.4, images were downs
aled as aggressively as possible to maximize the dete
tionspeed. Now, downs
aling was done at most to half a resolution to be 
omparable to theother image features, 
hanging the results slightly. With all the image features, only thelo
al maxima of the pdf were sele
ted and values around them in a radius of 4 pixelswere taken out. This improves the results be
ause instead of several dete
tions in theneighboring pixels there is now only one. With aggressive downs
aling this is not needed.
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ura
y of image feature extra
tion from the English se
tion ofBANCA database (only tuned parameters).

Figure 5.11: Example of 19×19 image pat
hes used with LBP based lo
alizationmethod.



88 5. Experiments and appli
ationsThe results for LBP and the steerable pyramid features are similar to ea
h other, steer-able pyramid being slightly ahead and nearly equal to multiresolution Gabor featureswith the old parameters. The multiresolution Gabor features with tuned parametersprovided 
learly the best results. Better results with both LBP features 
ould likely bea
hieved by tuning how the dete
tion method is utilized or by 
hanging the 
lassi�er asthe Gaussian 
lassi�er may not be the best 
hoi
e for the high dimensional LBP features.Unfortunately, tuning the steerable pyramid method is limited by o
tave spa
ed s
alinglevels. The LBP based method 
an be 
hanged more freely as there are an unlimitednumber of 
ombinations of di�erent window sizes, how the window is broken into smallerpartitions, and whi
h LBP operators are used. However, tuning these settings is unintu-itive � the e�e
t to the 
lassi�
ation result is di�
ult to estimate beforehand � and thefeatures are already very long.
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d = 0.20(d) LBP (tuned) with GaussianFigure 5.12: Image feature lo
alization results for 10 di�erent fa
e features forthe XM2VTS database with di�erent lo
al image features.The 
omputation times between these des
riptors itself are similar. Like Gabor features,steerable pyramid features were 
omputed in the frequen
y domain making their 
om-plexity essentially equal. However, steerable pyramid features 
an be 
omputed slightlymore e�
iently in the spatial domain be
ause the �lters are small. LBP histograms are



5.2 Fa
e dete
tion 89fast to 
ompute, but with these high dimensional features the 
lassi�er be
omes mu
hslower, making the LBP features slowest by a large margin of the tested des
riptors.5.2.4 Comparison to SVM 
lassi�erThe results with the original images of XM2VTS with the GMM 
lassi�er were also
ompared to results with the SVM 
lassi�er presented in Se
tion 4.3. The results forSVM 
lassi�er are presented in Fig. 5.13. With the SVM 
lassi�er the 
omplex numberswere 
onverted to separate real and imaginary parts be
ause the 
lassi�er implementationdid not support 
omplex values. An RBF kernel was used. Compared to results withGMM 
lassi�er (Fig. 5.4) the results are fairly 
lose: with old parameters, the SVM
lassi�er outperformed the GMM 
lassi�er for less a

urate measurement distan
es 0.10and 0.20, but was slightly worse for the most a

urate distan
e 0.05. For the tunedparameters the results were pra
ti
ally the same for both 
lassi�ers.
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d = 0.20(b)Figure 5.13: A

ura
y of image feature lo
alization from XM2VTS images withSVM 
lassi�er: (a) Old parameters; (b) tuned parameters.The SVM 
lassi�er has few problems 
ompared to the GMM 
lassi�er. First of all,it has more parameters than GMM 
lassi�er, whi
h has only one parameter, sele
tingthe number of mixture model 
omponents, or not even that with adaptive estimationalgorithms like Figueiredo-Jain method.The SVM 
lassi�er however needs at least the kernel type to be sele
ted. The RBF kernelsare often used and the size of the kernel must be sele
ted based on the data: too widekernels 
annot learn true 
lass boundaries, and too small easily over�t to the trainingdata. With the normalized multiresolution Gabor features RBF kernel size γ = 0.3 wasfound to be a suitable value.Another important parameter is the parameter 
ontrolling the number of outliers andsupport ve
tors. With the used SVM 
lassi�er this parameter is ν ∈ [0, 1], where νdenotes the lower bound for fra
tion of support ve
tors and upper bound for fra
tion ofoutliers. In these experiments ν = 0.1 was used.



90 5. Experiments and appli
ationsThe most severe problem is the speed: the SVM 
lassi�er was 
onsiderably slower thanGMM 
lassi�er. The speed depends on the number of support ve
tors. For the resultspresented here there were over 200 support ve
tors for ea
h of the 10 
lasses and thedete
tion phase was approximately 50 times slower with the SVM 
lassi�er than withthe GMM 
lassi�er with similar dete
tion a

ura
y. Some of the di�eren
e is likely to beexplained by more optimal GMM 
lassi�er implementation, but the SVM 
lassi�er withRBF kernels remains 
omputationally too heavy when there are many support ve
tors.5.3 Li
ense plate dete
tionDes
riptionThe image feature lo
alization was tested further with a 
ommer
ial li
ense plate database.The testing methods were similar to the main tests with XM2VTS and BANCA fa
edatabases presented in the previous se
tion.Data and methodsA 
ommer
ial database was used due to a la
k of li
ense plate databases being availableto the general publi
. The training set 
onsisted of 157 images from randomly sele
teddate and the landmark points were manually annotated for all of them. The annotatedpoints were the four 
orners of li
ense plates (Fig. 5.14). Multiresolution Gabor featureswere extra
ted from annotated lo
ations in the training images and the GMM 
lassi�erwas trained for ea
h of them. In the testing Gabor features were 
omputed for all pointsand the 
lassi�er used to sele
t the highest ranked 
andidate points. Similarly to the fa
edete
tion experiment the lo
alization a

ura
y was normalized, this time by the averagedistan
e from a 
orner to the opposite 
orner of the li
ense plate. The a

ura
y measureis illustrated in Fig. 5.14(
) as small 
ir
les in the upper left 
orner of the li
ense plate.
(a) (b) (
)Figure 5.14: (a)-(b) Example images from li
ense plate database with imagefeature positions, li
ense plate 
orners, are marked with green 
ir
les; (
) Demon-stration of a

ura
y measure for li
ense plate lo
alization measure (green 
ir
lesin the upper left 
orner 
orresponding to distan
es 0.05, 0.1 and 0.2, and the large
ir
le demonstrates distan
e 1.0).



5.3 Li
ense plate dete
tion 91The evaluation set 
onsisted of 247 images from di�erent randomly sele
ted date. Theresults with multiresolution Gabor features are presented in Fig. 5.15(a). The tuned�lter bank parameters were m = 2, n = 4, k =
√

3, fhigh = 1/24. The 
orner pointsprovided very easily re
ognizable image features and with the tuned parameters, whi
hin
luded only two frequen
ies and four orientations, the results were very good, 93% ofthe �rst ranked image features were 
orre
t at the distan
e 0.05. Examples of dete
tedli
ense plate features are shown in Fig. 5.16.The tests were repeated with steerable pyramid and lo
al binary pattern features andthe results are shown in Fig. 5.16(b)-(
). Toth features were used similarly to the fa
edete
tion experiment, but the settings giving best results were sear
hed for this testseparately. Gaussian mixture model 
lassi�er was used in all 
ases.The steerable pyramid (Se
tion 2.3.4) used 3 levels and 6 orientations (5th order �lter)yielding to 18 real values. The images were downs
aled to 1
2.6 th size during both trainingand dete
tion. The LBP features were 
omputed as in Se
tion 2.3.3: the image featureswere 
olle
ted from 19 × 19 pat
hes around the feature lo
ations in the training set. Nodowns
aling was needed this time. The formed feature (
ontaining several 
on
atenatedLBP histograms) is a real-valued ve
tor of length 203. The dete
tion was performed asexhaustive sear
h over all 19 × 19 image areas.
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)Figure 5.15: A

ura
y of image feature (li
ense plate 
orner) lo
alization: (a)Multiresolution Gabor features; (b) Steerable pyramid; (
) LBP. With multires-olution Gabor features for d = 0.05, the a

ura
y rea
hes 93% with only one(highest rank) image feature extra
ted.Con
lusionsAs a 
on
lusion for this test, multiresolution Gabor features were able to provide verygood results. The presentation power of the steerable pyramid appeared to be be 
on-siderably lower, it needed more �lter frequen
ies and still the dete
tion performan
e waspoor. In
reasing the number of �lter frequen
ies, and therefore also the lowest frequen-
ies, were not helpful in this test be
ause the interesting obje
t, li
ense plate, is quitesmall and its neighborhood is not very helpful in dete
ting it. Lo
al binary patternfeatures gave better results than the steerable pyramid, but were still behind multires-olution Gabor feature results. The results with LBP features 
ould likely be improvedfurther by 
hanging the stru
ture of the features, i.e., using other area size than 19× 19
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1 1(b)Figure 5.16: Examples of extra
ted features with multiresolution Gabor imagefeatures (left upper 
orner: blue, right upper 
orner: green, left lower 
orner: red,right lower 
orner: 
yan, 5 best features for ea
h 
lass numbered from 1 to 5): (a)night s
ene; (b) day s
ene.and using di�erent pattern of LBP histograms extra
ted from the area. However, tuningthose settings is unintuitive and 
lassifying long feature ve
tors would still be ine�
ient.5.4 Visual obje
t 
ategorization using self-organizationDes
riptionVisual obje
t 
ategorization was studied in [34℄. The obje
t 
ategorization was performedusing the same data used in fa
e dete
tion in Se
tion 5.2.The 
ategorization was based on multiresolution Gabor features 
omputed at annotatedlo
ations and the spatial relationships between annotated lo
ations. Multiresolution Ga-bor features 
an a

urately 
apture lo
al image information and in addition, originalinformation 
an be re
onstru
ted (see Se
tion 3.1.5). A 
omplete obje
t 
an be rep-resented by 
ombining several lo
al des
tiptors and their spatial lo
ations. A spatial
onstellation model together with multiresolution Gabor features provides a basis for an-alyzing the visual appearan
e and its variation over any real obje
ts. The self-organizingmap provides a tool for unsupervised 
ategorization of obje
ts. The main goal was tostudy the proposed model in the 
ontext of automati
 
ategorization and visualization,and investigation of model 
apability to explain visual similarities of natural obje
ts,human fa
es.Related resear
hSin
e the introdu
tion of the basi
 self-organizing map (SOM) method by Kohonen [47℄its 
hara
teristi
s have been under a
tive resear
h. Self-organization has been o�ered asa solution for explaining the organization of information pro
essing in the brains. Thesame hypothesis 
ould apply to visual information and its pro
essing in the human visual



5.4 Visual obje
t 
ategorization using self-organization 93system. However, one of the main problems has been a la
k of robust representation ofvisual appearan
e whi
h 
ould allow meaningful organization.Due to the Gabor �lter's 
orresponden
e to the human visual system and the SOM'sability to self-organize information hypotheti
ally similarly to human brain, it is nota surprise that 
ombining Gabor �lters and SOM have been proposed before. Gabor�lters in a multiresolution sta
k have been utilized to represent visual information andused with the SOM in several studies [93, 72℄, but they have treated spatial informationvery 
oarsely. A large amount of re
eptive �eld responses 
overing a whole image hasbeen 
laimed to over
ome the problem of poor spatial lo
alization of ea
h response. Theproblem however is severe, a small spatial 
hange may appear as a large 
hange in featurevalues (e.g., a misaligned fa
e). Moreover, a degree of allowed spatial 
hanges and lo
aldistortions 
annot be restri
ted without a spatial 
onstellation model.Obje
t 
ategorization with the self-organization over visual appearan
e is the basis ofthe well-known Pi
SOM method [49℄, but the Pi
SOM also su�ers from the same basi
problem. The Pi
SOM utilizes global feature histograms making the method unable toa

ount for spatial 
hanges.Suitability of Gabor based re
eptive �eld responses in 
ategorization by self-organizationhave been demonstrated by Lampinen et al. [51℄. They however dis
arded the phaseinformation of (
omplex) Gabor �lters whi
h is important for lo
al appearan
e, and theirstudy 
onsidered the 
ategorization only for lo
al obje
t parts, not 
omplete obje
ts.MethodsThe representation of lo
al appearan
e is based on multiresolution Gabor features, Chap-ter 3, whi
h are utilized similarly to the obje
t dete
tion and lo
alization method pre-sented in Chapter 4. Multiresolution Gabor features have an useful property, they 
anbe used to re
onstru
t the original image.Su

essful 
ategorization requires information of both the lo
al appearan
e variation andthe global spatial variation of lo
al parts. To form a proper input for the SOM the lo
alappearan
e des
riptions and their spatial 
onstellation must be 
ombined to a fusedfeature stru
ture. A feature ve
tor 
an be 
onstru
ted by 
on
atenating responses oflo
al parts (the feature matrix in (3.8)) into a ve
tor. The spatial information 
an befused by simply adding the 
oordinates of the 
orresponding parts into the same ve
tor.Spatial normalization is needed, i.e. a �xed origin must be de�ned, in order to preventdistortions due to the variation in lo
ation, s
ale and orientation (see Fig. 5.17). However,the s
ale variation 
an be natural in 
ertain 
ases (e.g., large vs. small fa
es).The basi
 SOM method is based on the Eu
lidean distan
e, and therefore, s
aling ofall variables should be similar, or otherwise variables with large values dominate theself-organization pro
ess. The problem 
an be solved by normalization. The Gaborresponses and 
oordinates by themselves do not require normalization, but when theyare 
on
atenated into one feature ve
tor their relative weights must be adjusted. Theweighting depends on total 
ombined magnitude of the lo
al re
eptive �eld responses andthe s
aling of 
oordinates.
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ationsResultsThe obje
t 
ategorization method was tested using frontal fa
e images from the XM2VTSdatabase (see Se
tion 5.2 for further details). The method should 
ategorize fa
es so thatsimilar fa
es are near ea
h other. This 
an be visualized in two ways: use of the rawneural weight information and the re
onstru
tion property of Gabor features or �nd the
losest mat
hing fa
es.Multiresolution Gabor features were 
omputed using 5 di�erent frequen
ies down fromthe highest frequen
y fmax = 1
10 with a s
aling fa
tor k =

√
3, and 6 orientations forminga 6× 5 feature matrix, (3.8). The matri
es from 10 image points were 
on
atenated to asingle feature ve
tor of 300 dimensions. In addition, lo
ations of the 10 image features,a 
onstellation model, were added to the ve
tor resulting in a total of 320 dimensionsrepresenting visual appearan
e of ea
h fa
e. The lo
ation 
oordinates were normalizedsin
e fa
es 
an be in any lo
ation and pose. A straightforward method was used bynormalizing the 
oordinates to a form where the middle point between eyes is lo
ated inthe origin, (0, 0), and the rest of the 
oordinates are s
aled and rotated in order to setthe eye 
enters to the 
oordinates (−0.5, 0) and (0.5, 0). An example of the normalizedspatial 
on�guration 
an be seen in Fig. 5.17.
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500Figure 5.17: Example of the spatial model 
on�guration normalized by thedistan
e and angle between eye 
enters. Frontal fa
e with 10 salient image features(left and right outer eye 
orners, left and right inner eye 
orners, left and righteye 
enters, left and right nostrils, and left and right mouth 
orners).The SOMmethod was applied to feature ve
tors of all 600 training images. A re
tangularSOM of size 17 × 13 was used. The uni�ed distan
e matrix of the SOM is visualized inFig. 5.18. Large values (light 
olors) in the distan
e matrix represent large 
hangesbetween neighboring 
ells of the map. Respe
tively, the dark 
olors denote relativelysimilar values in the 
orresponding area of the map.Due to the re
onstru
tion property of the appearan
e model it was possible to visualizeraw fa
es formed by the SOM. In Fig. 5.19(a) re
onstru
ted fa
es from the SOM areshown; note that only every fourth 
ell is presented. In Fig. 5.19(b) are shown the 
losestmat
hing fa
es from the XM2VTS database. The 
onne
tion between the distan
e matrixin Fig. 5.18 and the both re
onstru
ted and 
losest mat
hing fa
es 
an be 
learly seen:the distan
e matrix is dark (i.e., the 
hanges are small) for the most part ex
ept for
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13Figure 5.18: Uni�ed distan
e matrix of 17×13 SOM. Bright shades denote large
hanges in map values.the top right 
orner where the bearded men seem to belong. Overall, there is a 
leartrend that feminine fa
es are in the bottom left 
orner and there is a gradual 
hange tomas
uline fa
es in the top right 
orner.Next, the SOM was used to 
ategorize individuals to similar visual appearan
e 
lasses.The lo
al image features and spatial 
onstellations were 
al
ulated for all images in theXM2VTS test set and the best mat
hing SOM units were sear
hed. In Fig. 5.20 areshown fa
es belonging to the same best mat
hing unit, i.e, fa
es having a similar visualappearan
e. Note that the examples may in
lude the same person several times sin
e theXM2VTS in
ludes several images of ea
h person. The formed 
ategories 
an be easilyinterpreted: the 
ategory in Fig. 5.20(a) in
ludes older men with eye-glasses and/orbeards, and the 
ategory in Fig. 5.20(
) in
ludes only women. However, the genderis not the dis
riminative fa
tor in all 
ases as 
an be seen in Fig. 5.20(b), where the
ategory in
ludes both women and 
lean-shaven men with the 
ommon fa
tor that nonehave eye-glasses.Con
lusionsThis experiment addressed the problem of �nding 
ategori
al similarity between visualappearan
e of real obje
ts. The similarity enables automati
 
ategorization of visual ob-servations: formation of obje
t groups via their natural self-organization. MultiresolutionGabor features were used to extra
t and represent lo
al appearan
es, and the the lo
alappearan
es were 
onne
ted by a spatial 
onstellation model. A fused representation wasformed whi
h 
ombines both appearan
e at a lo
al level and global spatial variation toa single feature stru
ture. The representational power of the proposed stru
ture was in-vestigated by performing a self-organization with the self-organizing map method. Fromthe experimental results on fa
e images it 
an be seen that the stru
ture en
apsulatesthe visual appearan
e leading to a natural self-organization of visually similar obje
ts.
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(a)

(b)Figure 5.19: (a) Re
onstru
ted raw visual appearan
es from 
ells of the 17× 13SOM (only every fourth fa
e is shown); (b) The 
losest mat
hing fa
es from thedatabase.
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(a)

(b)

(
)Figure 5.20: Examples of unsupervisedly found visual appearan
e 
ategories(fa
e 
lasses). (a) Older men with eye-glasses or beards; (b) Women and 
lean-shaven men without eye-glasses; (
) Women.
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ations5.5 Fault dete
tion in ele
tri
al motorsDes
riptionAutomati
 fault dete
tion was studied in [37℄. This study was not dire
tly related tothe more general topi
 of image features, but multiresolution Gabor features were usedwith 1D signals for fault dete
tion in ele
tri
 motors. Two-
lasses of signals, normal anddamaged, were used during training and new signals were to be 
lassi�ed in these 
lasses.Measurements were very noisy and damage was visible only at some frequen
ies. To easethe work of the 
lassi�er, the Gabor �lters with maximal separation between normal anddamaged 
lasses were �rst sear
hed.Automati
 
ondition monitoring and diagnosis are important in industrial installationswhere a high degree of automation is desired. Automati
 monitoring 
an be used todete
t and re
ognize system faults, su
h as motor failures, where an early warning 
ouldprevent es
alation of the problem. This is the 
ase for example in motor bearing damagedete
tion [78, 91℄.A diagnosis method was proposed to �nd dis
riminative regions, bands, from frequen
y
ontent of the two 
lasses of signals (normal/damaged) and to 
lassify new measurementsto these 
lasses. The proposed method is useful in 
ases where there are measurements,but the physi
al 
hara
teristi
s of failures are not known. A su�
ient amount of mea-surements from the both normal and damaged 
lasses are needed in order to �nd themost dis
riminative features, but the 
ase where there are measurements mainly from thenormal 
lass is of spe
ial importan
e. In pra
ti
e, measurements from failure 
onditions
annot be 
omprehensive be
ause measuring signals from various failure modes is tooexpensive to realize.MethodsTwo sets of signals, xk(t) and yk(t), represent examples from two 
lasses, C1 and C2,respe
tively. The sub-index k denotes a measurement number, k = 0, 1, . . . , N1 − 1for C1 and k = 0, 1, . . . , N2 − 1 for C2. It is assumed that the signals are measuredduring a stationary system mode, i.e., system parameters su
h as rolling speed and loadare 
onstant. Now, the dis
riminative information should be present at some frequen
yband and it is su�
ient to apply a band-pass �lter ψ(t). In a stationary system modethe time information 
an be ignored and a global feature, su
h as a power spe
trum 
anbe utilized. The sele
tion of the best features is redu
ed to �nding the optimal values forthe 
entral frequen
y f and bandwidth γ of a band-pass �lter. The normalized Gabor�lter (3.1) was used as the band-pass �lter.If there are several frequen
y bands where the 
ontents of the 
lasses C1 and C2 aredissimilar, then the band where the separation of the 
lasses is most evident should besele
ted. The �rst-order statisti
s approa
h is not su�
ient sin
e it simply sele
ts thefrequen
y band where the distan
e between the expe
tations is largest, but negle
ts thevarian
e information, and a signi�
ant overlap of the 
lass probabilities may exist [54, 45℄.It was assumed that the features are extra
ted from signals measured during a 
onstantoperation mode where varian
e in the measurements is supposed to be 
aused by a
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al motors 99large number of unknown independent sour
es. The form of the probability distributionsis therefore assumed to be Gaussian and the 
lasses 
an be uniquely de�ned by theirexpe
tations, µx and µy, and varian
es, σ2
x and σ2

y . For Gaussians Fisher's dis
riminantratio (FDR) 
an be used to measure the distan
e between the distributions [70℄
FDR(px(n), py(n)) =

(µx − µy)2

σ2
x + σ2

y

. (5.1)Using the divergen
e measure in (5.1) the dis
riminative energy fun
tion 
an be de�nedas
E =

1

2

(

(µx − µy)2

σ2
x + σ2

y

)2

. (5.2)Using the dis
riminative energy fun
tion (5.2) the frequen
y f and bandwidth γ of theband-pass �lter in (3.1) 
an be optimized. Single or several frequen
ies 
an be sele
ted.For the two 
lasses GMMs (Se
tion 4.2) are estimated and then Bayesian 
lassi�
ationis used [84℄. However, the quality or number of failure measurements is not usuallysu�
ient or does not 
over all failure states. In that 
ase the 
lassi�
ation should bebased only on the probability distribution of normal 
ondition measurements. Therefore,one-
lass 
lassi�
ation with only the GMM of the normal 
lass was used.ResultsIndu
tion motor bearing damagesIndu
tion motors have been a widely studied subje
t of 
ondition monitoring [91, 5℄. Animportant sub-
ategory of indu
tion motor failures are bearing damages, whi
h 
an bedete
ted from vibration, a
ousti
 noise, temperature, or stator 
urrent signals. Bearingdamages are attra
tive for evaluating the proposed method sin
e 
hara
teristi
 frequen-
ies of damage appearan
e 
an be analyti
ally solved and 
ompared to automati
allyfound frequen
ies.Bearing damage dete
tion based on the stator 
urrentThe stator 
urrent data 
onsisted of stator 
urrent signals measured from motors in anormal 
ondition (C1) and motors with bearing damage (C2). The measurements 
on-tain two 
ases: no load 
onne
ted to motors and with a full load. In these experimentsthe 
lassi�
ation was performed using the Bayesian 
lassi�er, whi
h requires examplesfrom both 
lasses, and using one-
lass 
lassi�
ation with the 
on�den
e based limit (Se
-tion 4.2.2), when failure measurements are not needed. The pdf limit was 
al
ulatedfrom the normal 
lass training data so that the whole training set was a

epted, and thepdf values lower than that were 
lassi�ed as a failure.For motors with no load dis
riminative energyE and 
lassi�
ation results are presented inFig. 5.21. The dis
riminative energy had its maximum near the �rst harmoni
 (202 Hz) ofthe 
hara
teristi
 frequen
y (101 Hz). Also both 
lassi�
ation s
hemes had the maximala

ura
y at the same frequen
y band.
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Figure 5.21: Dis
riminative energy and 
lassi�
ation a

ura
ies for motors withno load.For motors with a full load, results are shown in Fig. 5.22. This was a more di�
ultsituation sin
e the full load 
aused various disturban
es, but still, the 
hara
teristi
frequen
y (101 Hz) and some of its harmoni
s 
ontained dis
riminative information.Classi�
ations su

eeded at the same frequen
ies, but due to disturban
es the a

ura
yde
reased.
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Figure 5.22: Dis
riminative energy and 
lassi�
ation a

ura
ies for motors withfull load.Using both the Bayesian 
lassi�er and the one-
lass 
lassi�er the same 
lassi�
ationa

ura
y was a
hieved at the most dis
riminative frequen
ies.The test was repeated for the full load dataset using six of the most dis
riminativefrequen
ies and Gaussian mixture models to estimate 
lass pdfs. The results for both theBayesian 
lassi�er and one-
lass 
lassi�er are presented in Fig. 5.23 as an ROC (re
eiveroperating 
hara
teristi
) 
urve for di�erent 
on�den
e levels. Only normal 
onditionmeasurements were used to form a pdf and 
on�den
e was used to de
ide between normaland failure 
onditions. From the 
urve it 
an be seen that by de
reasing the 
on�den
emore normal 
ondition measurements were 
orre
tly identi�ed (true positives), but alsoan in
reasing number of failure 
onditions were 
onsidered as normal (false positives).
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tri
al motors 101The optimal trade-o� depends on the appli
ation. On the other hand, there was only aminor di�eren
e 
omparing the results where also the failure 
ondition pdf was used inBayesian 
lassi�
ation (a priories were estimated from the training set, whi
h does not
orrespond to real situations).
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eiver operating 
hara
teristi
 (ROC) 
urve for using 
on�den
efor 
lassi�
ation of motor failures.Comparative resultsThe experiments were repeated by utilizing the analyti
ally 
al
ulated 
hara
teristi
 fre-quen
ies as reported by Yazi
i and Kliman in [91℄. For the 
hara
teristi
 frequen
iesand our approa
h the results are shown in Table 5.1. Classi�
ation was done using theBayesian 
lassi�
ation. The three most dis
riminative frequen
ies were used for 
lassi�-
ation both separately and 
ombined, and the results were 
ompared to the 
lassi�
ationresults using the 
hara
teristi
 frequen
ies. Chara
teristi
 frequen
ies provided an a

u-ra
y of 97.5% 
orre
t 
lassi�
ation for a motor with no load. The most dis
riminativefrequen
y of E provided the same a

ura
y, but 100% a

ura
y was a
hieved with a
ombination of the three most dis
riminative frequen
ies. For a motor with a full load
lassi�
ation with the 
hara
teristi
 frequen
ies provided an a

ura
y of only 66.8% whilethe three most dis
riminative frequen
ies provided a slightly better 
lassi�
ation result,72.1%.Utilizing the most dis
riminative frequen
ies of E a better a

ura
y was a
hieved thanwith the 
omputed 
hara
teristi
 frequen
ies as used in the literature. It seems that someof the harmoni
s in
lude noise whi
h harms the 
lassi�
ation.Con
lusionsHere, automati
 motor 
ondition diagnosis was studied: methods on how to automati-
ally sele
t the most dis
riminative features and how to 
lassify new signals were investi-gated. In addition to this, the 
ase where the amount of failure 
ondition measurements
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ationsTable 5.1: Classi�
ation results using 
al
ulated 
hara
teristi
 frequen
ies andthe three most dis
riminative frequen
ies of E.No load Full loadFreq. Corre
t Freq. Corre
tChar. freq. 97.5% 66.8%1st peak 206.3 Hz 97.5% 100.1 Hz 69.3%2nd peak 23.6 Hz 87.9% 206.3 Hz 77.9%3rd peak 383.6 Hz 91.4% 403.9 Hz 68.6%Combined 100.0% 72.1%is not su�
ient was 
onsidered and one-
lass 
lassi�
ation was used. The 
lassi�
ationsu

eeded using the dis
riminative dis
riminative frequen
ies with both Bayesian 
lassi-�
ation with two 
lasses and with one-
lass 
lassi�
ation using only the normal 
lass.5.6 SummaryThis 
hapter presented the experiments. First was the main experiment, fa
e dete
tion,with two di�erent datasets. The experiment was about lo
alization of landmark positionsin the fa
e, eye-
enters and 
orners, nostrils and sides of the mouth. The experimentwas repeated with two di�erent �lter bank settings of multiresolution Gabor features,lo
al binary patterns and steerable pyramid �lters. As a 
lassi�er, the Gaussian mixturemodel based one-
lass 
lassi�er and the ν-SVM one-
lass 
lassi�er were used. Resultswere good and the 
ombination of the multiresolution Gabor features and GMM 
lassi�ergave the best results in nearly all tests. Another similar experiment was lo
alization ofthe 
orners of li
ense plates and the results were very good for the proposed method.Two di�erent but related appli
ations were also presented. The �rst was about visual
ategorization of obje
ts using self-organization and the se
ond about fault dete
tion inele
ti
al motors.



Chapter VIDis
ussion

The obje
tive of this thesis was to study and develop lo
al image features usable in anobje
t dete
tion and lo
alization method. Many of the 
urrently popular methods aresemi-supervised, they require only labeled training images to learn obje
t 
lass. However,semi-supervised methods 
annot guarantee good lo
alization performan
e, and thereforea supervised approa
h was the main interest in this thesis. The 
urrent methods areoften based on separate interest point dete
tion and lo
al image des
ription steps, andthey both 
an be 
onsidered separately. Complete obje
t dete
tion methods 
ombininginterest point dete
tion and lo
al image des
ription were introdu
ed and brie�y experi-mented.The method presented in this thesis is based on an approa
h whi
h 
ombines the interestpoint dete
tion and lo
al des
ription into one step, 
omplete image feature dete
tion.We proposed the 
ombination of multiresolution Gabor features and a one-
lass 
lassi�erbased on Gaussian mixture models (GMM). The method 
an be trained with manuallyannotated landmark positions. The lo
al image feature dete
tion method was testedin two main appli
ations: fa
e dete
tion and li
ense plate dete
tion. Fa
e dete
tionprovided ex
ellent results with XM2VTS image database, and good results with a mu
hmore 
hallenging BANCA database. For li
ense plate dete
tion a 
ommer
ial databasewas used, and the results were almost perfe
t.One of the main problems has been the low 
omputational e�
ien
y of the multiresolutionGabor features, and therefore a major obje
tive and 
ontribution was to study e�
ientimplementation of multiresolution Gabor �ltering. Improving the e�
ien
y also providedbetter results, sin
e tuning the parameters be
ame feasible in the experiments.Other possible lo
al des
ription methods were also tested as an alternative for multires-olution Gabor features. The limiting fa
tor for many des
riptors remains 
omputationalheaviness: with this image feature lo
alization method exhaustive sear
h is used and thedes
riptor should be qui
k to 
ompute and to 
lassify. Usually the des
riptors are usedafter interest point dete
tors, in whi
h 
ase the 
omputational 
omplexity is of less im-portan
e. Two alternatives were tested, steerable pyramid and lo
al binary pattern based103
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ussionfeatures. The �exibility of multiresolution Gabor features provided better lo
alizationresults in both fa
e and li
ense plate dete
tion tests.An alternative to a GMM 
lassi�er was tested. The limitation here is that a one-
lass
lassi�er is used to be able to omit the ba
kground 
lass, the 
lass representing everythingelse but the sear
hed image features, and one-
lass 
lassi�ers are not as 
ompletely studied�eld as normal two-
lass 
lassi�ers. A support ve
tor ma
hine (SVM) based one-
lass
lassi�er was used as an alternative, as one of the main problems of the GMM 
lassi�er
an be its ability to represent o

asionally very 
omplex distributions of multiresolutionGabor features, given limited training data. The SVM 
lassi�er was able to surpass theresults of the GMM 
lassi�er in some of the tests, but with the pri
e of being slower andthe di�eren
e in 
lassi�
ation performan
e was not dramati
.The data used for supervised obje
t dete
tion and lo
alization experiments was also usedfor obje
t 
ategorization. Lo
al image des
ription and the spatial relationships betweenmarked landmark positions was used to 
ategorize fa
e images to visually similar 
lustersusing the self-organizing map. The 
ategorization method was able to 
reate natural
ategorization of similar fa
es.Gabor features and one-
lass 
lassi�
ation were also applied to a 
ompletely di�erentappli
ation area, fault dete
tion in ele
tri
 motors. In this appli
ation a failure in anele
tri
 motor must be noti
ed based on measurements of stator 
urrent. There are var-ious failure modes and they all 
annot be reliably measured and in
luded in the trainingdata, and therefore one-
lass 
lassi�
ation is useful. Tests were performed with datagathered from motors in normal 
ondition and with a bearing failure. The 
lassi�
ationresults were good and in a

ordan
e with the theoreti
al results.Overall, the proposed image feature dete
tion and lo
alization method performed verywell. However, this thesis did not in
lude one important part of a 
omplete obje
t de-te
tion method, the spatial model 
ombining dete
ted lo
al image features, only theperforman
e of lo
al image feature dete
tion was studied. The requirement of manuallymarked landmark positions in the training data is also a severe 
onstraint for a generi
obje
t dete
tion method. This requirement is not easily removed without giving up themain bene�t, ability to exa
tly lo
ate obje
ts by using high quality lo
al image featureslearned from manually marked landmark positions. Still, by 
ombining our proposed im-age feature method with a spatial 
onstellation model the lo
alization a

ura
y 
hallengesthat of the 
urrent state-of-the-art methods.
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Appendix
I Analyti
al solutions for �lter spa
ing formulasThe parameter equations for �lter frequen
y spa
ing and �lter orientation spa
ing werepresented in Table 3.1 and Table 3.2. How these equations were solved is presented here.Analyti
al solutions to �lter spa
ing formulas are for a multiresolution Gabor �lter bankusing parameters shown in Table 1. Note that while p is used for �lter overlap in both�lter frequen
y and �lter orientation formulas, the value does not have to be the same.Table 1: Parameters of a multiresolution Gabor �lter bank.Parameter Des
ription

p Crossing point between adja
ent �lters
k S
aling fa
tor for �lter frequen
ies
γ Filter sharpness along the major axis
m Number of �lters at di�erent frequen
ies
fmin Tuning frequen
y of the lowest frequen
y �lter
fmax Tuning frequen
y of the highest frequen
y �lter
η Filter sharpness along the minor axis
n Number of �lters in di�erent orientationsFilter frequen
iesUsing equation for 1D Gabor �lter in frequen
y domain, (3.2), a point ua 
an be solvedwhere the value of the equation is p. Conse
utive �lters 
ross in a pla
e where both oftheir values are equal to p (see Fig. 1).

Ψ(u) = e
−

“

γπ
f0

”2
(ua−f0)2

= p

⇒ ua = f0

(

1 ± 1

γπ

√

− ln p

)

, (1)whi
h 
orresponds to two adja
ent �lters at frequen
ies f0 and f0/k. Therefore,113
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fFigure 1: Fixed frequen
y fa
tor k =
√

2 and overlap value p = 0.2.
f0

(

1 − 1

γπ

√

− ln p

)

=
f0
k

(

1 +
1

γπ

√

− ln p

)

⇒ k =
1 + 1

γπ

√− ln p

1 − 1
γπ

√− ln p
. (2)On the other hand k and p, �lter frequen
y s
aling fa
tor and 
rossing point betweenadja
ent �lters, are spe
i�ed, γ 
an be solved from (2):

γ =
1

π

(

k + 1

k − 1

)

√

− ln p. (3)Also p 
an be solved from (2) when γ and k are known as
p = e−(γπ k−1

k+1 )
2

. (4)Additionally, we might want to solve k when f0 = fmax, fm−1 = fmin and m are given:
fmin =

1

km−1
fmax

⇒ k = e−
ln fmin−ln fmax

m−1 . (5)Also an indi
ative value for m 
an be solved from (5) based on fmax, fmin and k,
m = − ln fmin − ln fmax

ln k
+ 1. (6)The exa
t value returned by the equation is not usable dire
tly be
ause m is an integer.
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al solutions for �lter spa
ing formulas 115Filter orientationsThe minor axis sharpness of a 2D Gabor �lter, η, 
an be 
al
ulated based on the numberof orientations and required overlap. In Fig. 2 a diagram of two Gabor �lters in thefrequen
y spa
e is shown. Note that these �lter overlap equations are approximations.To get an a

urate overlap value, 2D equation of Gabor �lters should be used as thewhole ellipti
al �lter envelope a�e
ts the overlap. However, the overlap equations wouldbe then more 
omplex as both �lter bandwidth values, η and γ, are needed. Therefore,as the di�eren
e between results of a

urate and approximate equations is not large ingeneral, these approximate equations 
onsidering only minor axis bandwidth η are used.

Figure 2: Two Gabor �lters with di�erent orientations in the frequen
y spa
e.Solving η is based on (3.2) with a 
rossing point p between two �lters in adja
ent orien-tations:
Ψ(u) = e

−
“

ηπ
f0

”2
u2

b = p

→ η =
f0
π

√− ln p

ub
(7)Now, ub 
an be solved from ub = tan

(

π
2n

)

f0 , where n is the number of �lter orientations.However, this 
reates needlessly wide �lters when the number of �lter orientations issmall, n < 4. Another possibility is to use an approximation for ub by dividing the
ir
umferen
e of a 
ir
le by a number of �lters, ub = πf0

2n . Therefore, η 
an be solved toeither
η =

1

π

√− ln p

tan
(

π
2n

) or η =
1

π

√− ln p
π
2n

. (8)When the number of orientations, n, is large, η 
al
ulated by both of the equationsapproa
hes the same value, but with a small n, the �rst solution for ub leads to needlessly



116 APPENDIXwide �lters, so the latter equation is preferred. With an approximate for ub p 
an besolved from (7) as
p2 = e

−
“

ηπ2

2n

”2

. (9)Additionally an indi
ative value for n 
an be solved based on p and η,
n =

√

− (ηπ2)
2

4 ln p2
. (10)The a
tual value must be an integer.
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