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This thesis is about detection of local image features. The research topic belongs to the
wider area of object detection, which is a machine vision and pattern recognition problem
where an object must be detected (located) in an image. State-of-the-art object detec-
tion methods often divide the problem into separate interest point detection and local
image description steps, but in this thesis a different technique is used, leading to higher
quality image features which enable more precise localization. Instead of using interest
point detection the landmark positions are marked manually. Therefore, the quality of
the image features is not limited by the interest point detection phase and the learning
of image features is simplified.

The approach combines both interest point detection and local description into one phase
for detection. Computational efficiency of the descriptor is therefore important, leaving
out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor
features has been the main descriptor in this thesis and improving their efficiency is a
significant part. Actual image features are formed from descriptors by using a classifier
which can then recognize similar looking patches in new images. The main classifier is
based on Gaussian mixture models. Classifiers are used in one-class classifier configura-
tion where there are only positive training samples without explicit background class.

The local image feature detection method has been tested with two freely available face
detection databases and a proprietary license plate database. The localization perfor-
mance was very good in these experiments. Other applications applying the same under-
lying techniques are also presented, including object categorization and fault detection.

Keywords: Gabor filters, multiresolution filtering, object detection, computer vision,
machine vision, pattern recognition
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SYMBOLS AND ABBREVIATIONS

Intensity image

Difference of Gaussians

Crossing point between adjacent Gabor filters
Scaling factor for Gabor filter frequencies

Gabor filter sharpness along major axis

Gabor filter sharpness along minor axis

Number of filters in different frequencies

Number of filters in different orientations

Tuning frequency of the lowest frequency Gabor filter
Tuning frequency of the highest frequency Gabor filter
The highest frequency included in Gabor filter
Scaling factor for image

Rotation of Gabor filter

1D Gabor filter in spatial domain

1D Gabor filter in frequency domain

2D Gabor filter in spatial domain

2D Gabor filter in frequency domain

Image function

Gabor responses for image &(x,y)

Simple Gabor feature matrix

Gaussian (normal) distribution

Multidimensional normal distribution

Cumulative Gaussian function

Cumulative inverse Gaussian function

Envelope endpoints for spatial and frequency domain Gabor filters
Confidence region

Pdf value at border of confidence region

Quantile value, confidence ¢ =1 — k

Confidence value

Kernel function

The sharpness of RBF kernel

Parameter controlling number of outliers in SVM classifier
Support vector weights

Margin to the hyperplane



1D
2D
EM
DFT
FFT
GMM
HDR
IFFT
LBP
MSER
PCA
pdf
RBF
ROC
SIFT
SOM

SVM

One dimensional

Two dimensional

Expectation maximization
Discrete Fourier transform

Fast Fourier transform

Gaussian mixture model

High density region

Inverse Fast Fourier transform
Local binary pattern

Maximally stable extremal regions
Principal component analysis
Probability density function
Radial basis function

Receiver operating characteristic
Scale-invariant feature transform
Self-organizing map

Support vector machine
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CHAPTER [

Introduction

1.1 Object detection and localization

Object detection is a computer vision task where presence and location of an object
is determined from an image. Object detection methods are useful in various problems,
e.g. license plate detection and recognition [11], face detection [32] and detection of aerial
targets [75]. Often methods for specific applications exploit application specific informa-
tion to succeed, for instance, skin color in face detection. Therefore, object detection
has been a disconnected field of study applying a variety of techniques. However, lately
object detection approaches have started to converge; many new generic object detection
methods use local image features to describe local appearance of an image and combine
these local features with a model capturing their geometric relations, together creating
a complete object description.

Even with this “parts and structure” approach of object detection there are still many
different types of actual methods and some of their central differences are listed here.
First is the importance of localization. Some object detection methods concentrate on
detecting presence of the object, is it there at all, and exact localization is of secondary
importance, while for some other methods accurate localization is important. Second is
whether the method tries to detect always the same object or more generally a class of
objects. Related to this is whether the method explicitly considers detection of multiple
object classes or only a single class at a time. Third is the level of supervision, manual
labor, that is required for training the detector.

This thesis presents a supervised method for localizing local image features efficiently
and accurately for one object class at a time. A supervised method is used instead
of a more fashionable semi-supervised approach to maximize the quality of local image
features, and consequently detection performance. Semi-supervised methods start with
an interest point detector to detect “interesting” or salient parts of an image, then create
local descriptions for the detected parts and finally try to select automatically local
features which are shared by all objects of the object class. With the supervised method
the task is considerably more simple. Complex combination of interest point detection,

11



12 1. Introduction

description and model creation is not needed because we know the important points and
their spatial relationships as they are manually marked. Now, during detection with our
supervised method the local descriptor has to perform the function of determining, for
instance, "does this point look like an eye", while a method which separates interest
point detection and local description first decides "does this point look interesting" and
then "is this point similar to some of the image features we know".

In our case the interest points are reliable because we know they really are related to
the object class, while the quality of image features determined by the semi-supervised
methods is not guaranteed. It is possible that a semi-supervised method returns points
commonly found in the background, for example, traffic signs are common in images with
cars, therefore a method can decide that the presence of a traffic sign is related to the
presence of the car. Furthermore, as human knowledge is used when common points are
selected, the selection is not limited by what is deemed interesting by an interest point
detection method.

1.2 Contributions and publications

A central contribution is the efficiency improvements of Gabor filtering. Compared to
our older implementation the speed has improved by a factor of 50. This work has
been published as a comprehensive research report, [35], and a shorter version has been
published in a conference, [36]. This thesis also includes novel research on properties of
complex-valued Gabor feature space.

Another important contribution is computation of confidence values for Gaussian mixture
models (GMM), which converts the arbitrarily scaled probability density function (pdf)
values to a probability score. One conference article has been published about this [39],
and there is a journal article about GMM’s in general [68].

In this thesis a supervised method for local image feature detection is proposed which
is based on multiresolution Gabor features and their ranking using Gaussian mixture
models. One conference article related to the method proposed in this thesis has been
published, [43], and it includes also face detection experiments. There is also a journal
submission, accepted with minor changes, about large parts of the complete work [38].
The proposed method has been applied to many important object detection tasks, such
as face and license plate detection with excellent results.

Based on the image feature detection method an alternate application was developed for
visual categorization of objects. The categorization is based on multiresolution Gabor
features and their self-organization and has been published in [34]. Another application
of multiresolution Gabor features and GMM classifier was developed for fault detection
in electrical motors and has been published as a journal article, [37].

In these publications, the author has made a major contribution to the development and
writing in [34, 35, 36, 37, 39|, performed experiments, participated in the development
and writing in [43, 38] and had a minor writing contribution in [68§].
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1.3 Thesis outline

Chapter 2 reviews methods related to local image features used in object detection.
The chapter is divided to three parts: interest point detection, local image description,
and complete object detection methods. The division is natural as many of the detection
methods clearly separate interest point detection and local image description; in our own
method the local image descriptor operates also as the interest point detector.

Multiresolution Gabor features are the topic of Chapter 3. The chapter first introduces
Gabor features in both one and two dimensions, and then describes their efficient imple-
mentation and an implementation framework. Experimental results related to efficiency
improvements are presented here.

Chapter 4 presents information about classification and feature ranking of local image
features. Ome-class classifiers and their requirements are first described and then the
chapter describes algorithms for creating local image feature detectors and how they
can be used for detection. Also included is information on properties of multiresolution
Gabor feature space, as it has been noticed to be occasionally challenging for classifiers.

Chapter 5 presents experiments and applications of multiresolution Gabor filter re-
sponses in various tasks. The main experiment has been object detection (face and
license plate detection). Other applications are visual categorization of objects based on
local image features and their spatial configuration and an approach for fault detection
in electrical motors, which is based on 1D Gabor features and their classification.

Finally, Chapter 6 discusses what was achieved in this thesis, and the strengths and
weaknesses of our proposed image feature detection approach.
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CHAPTER I

Local image feature detection

In pattern recognition features are numeric or symbolic units of information constructed
from measurements by sensors. In case of images image features contain information of
the image content; the information can represent small parts of the image (local image
features), or the whole image (global image features). Global image features, such as
gray level histograms, represent information from the whole image, they do not reveal
information about local structures. Conversely, local image features represent the local
image patches capturing information from the local content of the image. However,
when several local image features are combined, their spatial relationships can be useful,
revealing larger structures in the image. Local image features are a very large topic; this
work concentrates on local image features suitable for object detection. In this field local
image features are often represented by local (image) descriptors. In this work distinction
between local image descriptors and local image features is defined so that local image
descriptor is a numeric feature computed from an image patch and local image feature is
a more refined presentation which can be used at the detection phase to localize desired
image patches. Before going to the topic of local image description, the workings of the
object detection systems are studied first.

2.1 Object detection with parts-and-structure model

State-of-the-art object detection and recognition systems work by dividing the object
into smaller parts, and then defining the appearance model and spatial relationship for
those parts — “parts and structure”. An example is presented in Fig. 2.1. “Parts” are the
small image parts characteristic to the object class, and “structure” defines the spatial
structure between these parts.

This kind of method was first introduced by Fischler and Elschlager in 1973 [21], but was
then largely ignored for two decades until Lades et al. [50] released their paper in 1993.
The method has become popular for object detection and localization lately because of
many benefits compared to detecting the whole object: description of local image parts
can be simpler than description of the whole object, and the occlusion, part of the object

15



16 2. Local image feature detection

Figure 2.1: An example of object class detection with “parts and structure”

model. Same parts — tires, motor and handlebars — of two motorcycles are marked
by green circles and their spatial relationships with blue lines.

being hidden by another element in the image, can be naturally handled as well as defor-
mations in the object. Common stages of object class detection systems utilizing “parts
and structure” is presented in Fig. 2.2. Foreground images are the images containing ob-
jects to be learned and background images are images of basically everything else. First,
interest points are found in the foreground training images, descriptions are created for
these points and then a model for the object class is learned. Sometimes background
images are utilized when the model is learned, while some methods work without explicit
examples from the background class.

Foreground test images

Foreground . )
3 Interest point Local image )
Fralnlng — detection - description —m Model learning Testing
images
A
Background
training images Background test images

Figure 2.2: A conceptual diagram of learning stages for object class detection
with the “parts and structure” model.

One important difference between methods following the approach in Fig. 2.2 is the
level of supervision. Supervised systems require more manual help in the interest point
detection phase. Manual help can range from segmentation of foreground objects to
manually marking interest points. More supervision leads to interest points of assured
quality, and the task of model learning becomes easier. Conversely, when the level of
supervision is decreased the model learning becomes more complex as the interest points
can be found outside of the objects to be learned, and therefore pruning of outlier interest
points is required.

In the following some current object detection methods are partitioned by their level of
supervision. The basic levels here are unsupervised, semi (weakly) supervised, supervised
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and strongly supervised methods, but the division between groups is not clear as the
different methods require different levels of supervision in respect to labeling, image
alignment and segmentation of training images.

e Unsupervised methods: learning object classes from a set of unlabeled images con-
taining several different object classes. This is yet to be reliably achieved, however,
many methods are called unsupervised when they actually belong to the following
class, semi-supervised.

e Semi-supervised methods: learning object classes from a set of labeled images.
Many studies are concentrating on these kind of methods, some of them are briefly
described here.

Some methods use only a set of image features without a structure (constellation)
model, for example, a method using various interest point detectors and local de-
scriptors combined with AdaBoost by Opelt et al. [67], a method utilizing Bayesian
learning of image features by Carbonetto et al. [10], and with shape based region
detectors and descriptors by Jurie and Schmid [41].

Many methods also use the structure model, for example, an object detection
method using a vocabulary for parts of the object used along with information
of their spatial relationships by Agarwal and Roth [1] and various methods from
Perona’s group, for example, classical parts and structure model learned with EM
algorithm [89, 18]. There is a similar method using a star model instead of full
constellation model [19] and “One-shot learning of object categories” by Fei Fei et
al. [17] which is almost truly unsupervised in the sense that it tries to learn a new
object class even from a single image, though knowledge from previously learned
classes and background is used. A method by Mikolajzcyk et al. [60] detects mul-
tiple object classes (simultaneously), and the training is done from roughly aligned
images using a hierarchically formed tree structure of local features (PCA-SIFT).

e Supervised methods: learning from labeled and segmented images. Some examples
of these kind of methods are a method by Dorgo and Schmid [15] which selects parts
for the object detection using Harris-Laplace and SIFT interest point detection,
SIFT description and uses GMM and SVM classifiers without a spatial model, and
a face detection method by Viola and Jones [88] which learns a face model from
segmented training images using AdaBoost and integral images.

e Strongly supervised methods: labeled training images with manually selected “in-
terest points” or areas. Some examples are detection of humans from a sub-window
by detecting head, legs and arms separately by using Haar wavelets and SVM by
Mohan et al. [64], and the work this thesis is related to, object classes learned from
manually marked interest points using the Gaussian mixture models and multires-
olution Gabor filters [43, 30].

Object detection methods can be further divided into another two classes. Some methods
only detect whether the object is present in the image or not, not giving the object’s
precise location or even any kind of guess of its location. Some methods detect also the
object’s location and pose, however, in many publications the localization performance
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is not explicitly measured. Here, the term “object detection” is used for methods which
detect an object’s presence in an image (is it there or not), and the term “localization”
meaning that in addition to detecting the object’s presence the method accurately local-
izes where in the image the object resides. Most of the object detection methods can give
an estimate for the object’s location, but with unsupervised or semi-supervised methods
it is not generally possible to ensure that the features that are learned to distinguish
objects really belong to the object itself instead of using some contextual information
commonly found in the background, as noted in [67]. An example of this could be in the
detection of cars, where an unsupervised method could learn that the presence of traffic
signs implies also presence of cars because cars are often found in areas (roads or parking
lots) where there are also traffic signs. However, even if the method could localize the
object in addition to detecting its presence, it is commonplace to only measure whether
the presence was correctly detected, not how precisely the object was localized.

To get an overview of the required level of supervision and suitability to localization,
these properties of the object detection methods cited in this section are collated in
Table 2.1. The methods are sorted roughly in order of increasing level of supervision.
While some methods (e.g., [89]) claim to use “unlabeled” data they still use separate
positive and negative training sets, and therefore are counted as using labeled data. Many
methods could be used for localization, however, often the localization performance is not
explicitly considered or measured, and these methods are marked with “not explicitly” for
“localization”. Methods which give a rough location estimate are marked with “bounding
box”.

Table 2.1: A table of object detection methods listing their level of supervision
and capability of localization. A * in the segmented/normalized field means that
the requirement is implicit in the training set, i.e., training images contain objects
in roughly similar settings.

Labeled Segmented /aligned Localization
[67] Yes No No
[10] Yes No No
[41] Yes Aligned Bounding box
[1] Yes Aligned and normalized Bounding box
[89] Yes Roughly aligned * Not explicitly
[18] Yes Roughly aligned * Not explicitly
[19] Yes Roughly aligned * Not explicitly
[17] Only 1 image Roughly aligned * Not explicitly
[60] Yes Roughly aligned Bounding box
[15] Yes Segmented Not explicitly
[88] Yes Segmented Yes
[64] Yes Segmented Bounding box
[43, 30] Yes Manually marked keypoints Yes

Another distinction for methods is whether they are intended for object or object instance
detection (object matching). In object detection the object class should be learned in
general fashion and the method must not be too selective, otherwise it will be led astray
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by intra-class variations (the differences between objects belonging to the same class),
but still be able to capture inter-class variations (to distinguish objects from different
classes from one another). In object instance detection the same object must be detected
in different images. The method must learn details specific to the object so that it can
distinguish that object from all others in the image.

Object instance detection methods are often used for matching (for example matching of
stereo images) and therefore the method should be highly robust to viewpoint changes.
One use is matching differing views of the same object or scene, and some examples of this
are the original use of SIFT (Scale Invariant Feature Transform) features by Lowe [55]
or maximally stable extremal regions (MSER) by Matas et al. [57]. In general, structure
and motion problems do not necessarily require the use of local image descriptors; correct
correspondences between interest points obey a geometric constraint, epipolar geometry,
which can be solved, for example, by the RANSAC algorithm (e.g. [4]). Local image
descriptors become useful when the difference between matched views is large.

The following sections review some of the most widely used interest point detection and
local image description methods. In the end of the chapter also some complete object
detection methods are shortly described.

2.2 Interest point detection

Interest points are known by many names, among them are distinguished regions [57],
affine regions [63] and salient regions [55]. While they are called regions, most of the
methods return a specific interest point and not an interest region. Whether the point
is deemed interesting depends naturally on what is around it. To be useful the methods
have to be invariant, or at least robust, to scale, rotation, noise and illumination changes
and possibly for all affine changes; the same points should be found when for example
image viewpoint changes or when there are changes in imaging conditions. For object
detection they should also be in general robust to intra-class variations. For an example
of different types of image changes see Fig. 2.3.

Many methods also determine scale and rotation of the interest point, and that informa-
tion can be used when local image description is created for the interest point. In the
following some of the most known interest point detectors are described shortly.

2.2.1 Harris corner detector

One of the first interest point detectors was a combined corner and edge detector by
Harris and Stephens [31], where the main motivation was motion analysis from an image
sequence created with a moving camera. The detector is based on local auto-correlation
of the signal the local auto-correlation measures changes when a patch is shifted slightly.
A change of intensity for image I(x,y) for a shift (u,v) is

E(u, U) = Eﬂﬂyyw(x?y) [I(,T + u,y + U) - I(‘ra y)]2 (2'1)

where w(z,y) is a windowing function, usually Gaussian. For small shifts an approxima-
tion can be used,
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Original object
and detected
interest point

W

Figure 2.3: An example of types of changes the interest point detector should
tolerate.

E(x,y) = [AxAy]M[Asz]T , (2.2)

where M is a symmetric 2 X 2 matrix computed from image derivatives as (I, is the
image derivative calculated in direction «)

(2.3)

2
M:zr,ywu,y)[ L My]

LI, I?

Eigenvalues A\; and Ay of the matrix M are then solved. If both A\; and Ao are small,
image is flat in that point, if both are large there is a corner, and if one is large and the
other small there is an edge. Corner response can then be calculated without explicit
eigenvalue decomposition,

R = det M — k(trace M)?* | (2.4)

where k is an empirical constant, usually 0.04...0.06. Small |R| means a flat point,
R > 0 a corner point and R < 0 an edge point. The actual selected corner points are the
local maxima of the R, so only one point per corner is actually selected. Local minima
can also be searched which will isolate edge-points, but this is not as useful as detection
of the corner points, because corner points are much more stable for small variations
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in the image. The Harris corner detector is invariant to rotation, partially invariant to
intensity change (if contrast becomes too low in a corner area, R becomes small and the
point is classified as a flat area), but not invariant to scale.

The groundwork for automatic selection of scale of the interest point was investigated by
Lindeberg [53], and based on that work the Harris detector has been extended to scale
invariance by Mikolajczyk and Schmid [61] — the detector is called the Harris-Laplace
detector. The scale invariance is achieved by computing a multi-scale representation for
the Harris detector and then selecting points which have a local maximum of normalized
image derivatives (the Laplacians).

The Harris-Laplace works by first detecting the Harris corner points in multiple scales.
A threshold of |R] is used to remove corner points which are not distinctive enough, as
they are not stable for changes. For each point found an iterative algorithm is used to
detect scale and the location of the interest point, as the exact location may change when
different scales are searched through. The scale of the interest point is detected by finding
the maximum for the Laplacian-of-Gaussians response. In a simplified version which is
faster to compute the iterative steps are removed and the interest point is rejected if it
is not a maximum of Laplacian-of-Gaussians.

In addition to scale invariance, Mikolajczyk and Schmid [61] extended the Harris detector
to affine invariance and the detector is called the Harris-Affine. The main addition to
Harris-Laplace is the detection of the shape of the interest point. The shape is determined
by a rotated ellipse: the rotation is determined from local gradient orientation and the
axes of the ellipse are determined from the ratio of eigenvalues of the second moment
matrix.

2.2.2 SIFT detector

SIFT (Scale Invariant Feature Transform) by Lowe [55] includes both interest point
detector and a local image descriptor. Only the detector is presented here, the descriptor
will be discussed in the following section. SIFT works in four major stages:

1. Scale-space extrema detection. Potential interest points are searched in all scales
and locations and potential interest points are identified with a difference-of-Gaussian
function.

2. Keypoint localization. A model is used to determine location and scale of the
interest point and interest points which are not deemed stable are pruned out.

3. Orientation assignment. Local image gradients are used to assign one or more
orientations for each keypoint.

4. Keypoint descriptor. Descriptions for keypoints are created.
First, interest points are detected by applying a continuous function of scale: a scale

space. The scale space function used here, L(x,y,0), is a product of the variable-scale
Gaussian, G(x,y,0) and an input image, I(z,y),

L(z,y,0) = G(x,y,0) « I[(z,y) , (2.5)
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where * is the convolution operation and G(x,y, o) is the Gaussian function,

1 (22442 o2
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Note that L(x,y, o) can be thought of as an image smoothed by a Gaussian kernel. Lowe
has proposed to use the extrema of the difference-of-Gaussian function as interest points
which can be detected efficiently. Difference-of-Gaussians is defined as

D(z,y,0) = (G(z,y, ko) — G(x,y,0)) « I(x,y) (2.7)

a difference of two Gaussians on nearby scales separated by constant factor k. This can
be efficiently computed from two smoothed images,

D(z,y,0) = (G(z,y, ko) — G(x,y,0)) * I(x,y) = L(x,y, ko) — L(x,y,0) . (2.8)

An example of computation of difference-of-Gaussians can be seen in Fig. 2.4. The image
is smoothed with Gaussians which are separated by a constant factor &k in scale space —
these images, L(z,y, o), form the right image stack. Adjacent images are then subtracted
from each other to produce difference-of-Gaussians images, D(x,y,c). Each octave, a
doubling of o, can be handled separately and the computation time can be saved by
downscaling the image for every octave. The interest points are located by finding local
extrema from the stack of difference-of-Gaussians images, i.e., a point is an interest point
if it is the smallest or largest of the 3 x 3 x 3 pixels surrounding it at the same scale level
and the levels above and below.
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Figure 2.4: Initial image is convolved with Gaussians with different scales,
G(z,y,0), producing smoothed images, L(z,y,o). Difference-of-Gaussians,
D(z,y,0), can then be computed as difference of two adjacent images.

Next, the exact location of the interest point is measured by fitting a 3D quadratic
function to local image points. This calculation also reveals interest points which are
in areas with too low contrast; these are removed. The difference-of-Gaussians has a
strong response near edges, but edge points are not stable as location along the edge
is unstable to small amounts of noise. Therefore, similarly to the Harris detector, the
principal curvature is computed for each point by calculating eigenvalues of the Hessian
matrix for each interest point. The interest point is accepted only if the ratio between
eigenvalues is small enough, and the actual calculation of eigenvalues can be avoided,
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again, similarly to the Harris detector. Orientation of the keypoint is determined by
computing an orientation histogram for each interest point and its neighborhood. The
highest peak of the histogram is defined as the interest point’s orientation, but also other
peaks higher than 80% of the highest peak are accepted as separate interest points, i.e.,
one interest point can be split into several different interest points if there are many
dominant directions in the orientation histogram.

2.2.3 Entropy based detector

Kadir et al. have developed an interest point detector which is based on an information
theoretical approach, the entropy of local image regions [42]. Unlike many other interest
point detectors, their detector is explicitly designed while having intra-class variations in
mind. The detector works in three steps:

1. Calculate entropy of the local image areas (the entropy of a gray-level or color
histogram) in several scales (circles with varying sizes). A flat image area has a
histogram with one strong peak and the entropy is low, and an image area with
more variations will have a histogram with several peaks or even a flat histogram
which has the highest entropy.

2. Select scales which have peaks of entropy.

3. Use an inter-scale unpredictability measure to weight entropy values. Image areas
where a specific scale has strong peak get weighted higher than areas where a peak
is weak compared to nearby scales. For example, in a very noisy image area, entropy
is high at all scales, but there is not one specific scale which has a strong peak.

For instance a bright circle on a black background will have its entropy maximum when
the detector’s area contains some black area around the circle so that there are approxi-
mately an equal number of white and black pixels inside it. Entropy is small if the area
is completely inside the circle, and will become smaller when the area size is increased
and black pixels start to dominate.

This entropy based saliency measure for interest points is naturally invariant to rotation,
translation and small affine transforms: the histogram does not change during these
changes. However, it is only invariant to shifts in image intensity, not to contrast changes.
Invariance to all affine changes is possible when a circular image scanning window is
changed to a ellipse. This increases complexity considerably, because in addition to scale
(i.e., the radius of the circle) there is now also rotation and ratio between major and
minor axes of the ellipse to search. For that reason a local search strategy is used: first
a circular window is used to search for seed points (only position and scale), and then

the rotation and shape of the ellipse is iteratively changed to maximize saliency.

2.2.4 Maximally stable extremal regions

MSER (Maximally Stable Extremal Regions) has been introduced by Matas et al. [57].
MSER is based on thresholding and an extremal region is a connected area in a thresh-
olded image. All extremal regions are found by thresholding the image with all possible
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thresholds, [0 — 255] for normal gray-scale images, and finding then all connected areas.
Maximally stable extremal regions are extremal regions which do not change, or change
as little as possible, when the threshold is changed. In practice this means that MSERs
are regions with relatively flat intensity surrounded by sharp intensity change.

Regions found by MSER are invariant to all adjacency preserving transformations, which
includes scale, rotation and affine transforms as long as the stable region is found in a
planar object, invariant to shifts in image intensity but not invariant to large contrast
changes.

2.2.5 Performance evaluation

Performance of various interest point detectors (called affine region detectors) was tested
in [63]. The performance was tested by checking how many of the same interest points
were found in image sets where the viewpoint, scale, rotation or illumination varied, or
images were blurred or JPEG-compressed. Accurate homography between images (how
the points in one image map to points in the other image) was measured beforehand, and
the accuracy of interest point detectors was measured by how many of the found points
were matched within certain limit in both images. MSER (Maximally Stable External
Regions) [57] and Hessian-Affine [61] were found to perform best overall. The results
are not directly applicable to object detection as the tests used images of exact same
scenes under various changes: there was no intra-class variations characteristic to object
detection problems.

2.3 Local image description

In the following some methods used as local image descriptors are explained shortly.
When local image descriptors are used with interest point detectors which detect scale
and orientation, and potentially also affine shape of the interest point, the image patch
can be normalized before creating the local description. Therefore, in such case the local
descriptor itself does not have to be scale or rotation invariant. However, invariance, at
least to some degree, to imaging condition changes (lighting changes or noise), and to
other small perturbations is important. Invariance to small perturbations is even more
important when the descriptor is used in object detection where the descriptor should
not be too selective to small variations, otherwise it cannot represent reliably an object
class.

In addition to the descriptor not having to be scale or rotation invariant, the use of
interest point detection as a first step has also the added benefit that the descriptor can
be computationally complex as there is only a limited number of descriptors to compute.
If an interest point detector is not used, or rather the local image feature combines both
interest, point detector and local descriptor, the local descriptor has to be used in an
exhaustive search and the computational complexity must be low.

Multiresolution Gabor filters are the main local image descriptor used in this thesis, and
they are therefore presented in their own section, Section 3.1, in more detail.
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2.3.1 Local description by pixel values

The most straightforward idea for local image description is taking a part of the im-
age around the interest point and using the gray-level pixel-values directly as an image
descriptor (see Fig. 2.5). If the interest point detector detects scale and rotation of
the interest point, the local image area can be scaled and rotated to account for these
changes. There are two major problems with this kind of descriptor: high dimensionality
of the descriptor (for example, 20 x 20 area will have a descriptor of length 400) and
poor invariance to small perturbations of the image. Both of these problems can be alle-
viated by reducing the dimensionality, for example by using PCA (principal component
analysis). This kind of local descriptor has been used for example by Fergus et al. [18].
A patch of the image based on the scale of the interest point was taken and scaled to
size 11 x 11. The image patch was used as a vector of the gray-level values of length 121
and projected onto 10-15 principal components. Principal components were calculated
beforehand based on a large number of interest points.

[

/

[ 179,175,171, 174 ...56, 42,38 ]

Figure 2.5: Image description by direct pixel values.

2.3.2 SIFT descriptor

SIFT (Scale Invariant Feature Transform) by Lowe [55] includes a local image descriptor
based on local image gradients. The descriptor is created for the scale level found by the
interest point detector and the rotation of the interest point is also taken into account
so that the descriptor is scale and rotation invariant.

Fig. 2.6 shows an example of descriptor creation. The descriptor is created by first cal-
culating image gradients (their magnitudes and orientations) around the location of the
interest point. In the example Fig. 2.6(a), gradients for 8 x 8 points have been calculated.
Gradient magnitudes are weighted by a Gaussian so that they become gradually smaller
when the distance to the center point increases. Weighting is performed to avoid large
changes in the descriptor when the window moves slightly. Then, for each 4 x 4 subre-
gion, weighted gradients are divided using interpolation to 8 primary directions and then
summed (Fig. 2.6(b)), i.e., the gradients pointing roughly to the 8 primary directions are
summed together. The actual descriptor is the vector of directional gradient sums from
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all subwindows (Fig. 2.6(c)). In the example the descriptor is of length 32 (8 primary
directions for 4 sub-windows), but usually an area of 16 x 16 points is used with 4 x 4
subregions, therefore creating a descriptor with a length of 128 (8 primary directions
with 16 sub-windows). The descriptor is finally normalized to unit length.
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(a) Image gradients (b) Weighted sum of gradients (¢) Complete descriptor

Figure 2.6: An example of SIFT local descriptor creation.

High dimensionality of the descriptor is a problem for classifiers. Therefore a variant of
SIFT has been proposed: PCA-SIFT [46]. In PCA-SIFT the directional sums of gradients
for subregions are not calculated, instead the whole patch of local image gradients is used
and the dimensionality is reduced by using PCA. The eigenspace is precalculated using
a large number of image patches. It was found out that using only the first 20 principal
components gave good results; this means that the feature vector is only of length 20,
considerably shorter than the descriptor of original SIFT. Another form of combination
of SIFT descriptor and PCA has also been used for example by Mikolajczyk et al. [60],
where a normal 128 dimensional SIFT descriptor is reduced to 40 dimensions.

2.3.3 Local binary patterns

The original LBP feature is calculated by comparing the value of a center pixel to other
pixels in a 3 x 3 area, and the resulting binary number is the result of the LBP operator
(see the example in Fig. 2.7). A 256-bin histogram of LBP-values is formed when the
feature is computed over a larger area. The histogram can be used efficiently as a texture
descriptor.

The LBP operator has been extended in two ways [66]. LBP operator can operate on
different neighborhoods. LBP p i refers to a LBP operator which considers P neighbors
at the distance of R, for example, LBP4 2 considers 16 neighbors at the distance of 2.
LBPp r produces 2 output values which also means that the histogram will be of the
length 2F. The histogram becomes impractically large if P is increased, however, it has
been noticed that so called uniform patterns contain more information than the others
and the histogram length can be reduced by bundling all non-uniform patterns into a
single bin. Uniform patterns include only a limited number of bitwise transitions from
0 to 1 or the opposite. For example, 00000000 has zero transitions and 00111100 has two
transitions. An uniform LBP-operator which bundles the patterns with more than two
transitions to a single bin is marked as LBP}S?R.
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Figure 2.7: An example of LBP calculation. Pixels surrounding the center pixel
are thresholded based on the value of the center pixel and a binary feature is
formed.

LBP is mainly a texture descriptor and one LBP histogram does not include any infor-
mation on how the texture changes spatially and therefore normal LBP features are not
very useful directly as local image descriptors. For that purpose, as proposed by Hadid
et al. in [26], an image patch is divided into smaller patches for which separate LBP
histograms are computed. The histograms from adjacent image patches are combined to
form an image feature which can describe complex local image areas. Image patches are
represented with a combination of LBP4 1 and LBPg? histograms [26]. A 19 x 19 image
patch is divided into 9 overlapping 9 x 9 patches. An example can be seen in Fig. 2.8. A
LBPg?l histogram is computed for the whole 19 x 19 image patch and LBP,4 ; histograms
for smaller 9 x 9 images. The total length of the combined histograms is 203 59 for the
LBP3 histogram and 16 for each of the 9 LBP,;  and it is used directly as the local
image feature.

19x19 image patch with
9 overlapping 9x9 areas

Figure 2.8: Local image patch representation with LBP histograms.

LBP features can be computed efficiently. However, when used as image features in this
fashion the resulting feature vectors are long and the efficiency of the classifier may create
a bottleneck for total efficiency.

2.3.4 Steerable pyramid

The steerable pyramid is a linear decomposition of image into scale and orientation sub-
bands, and is jointly shiftable in the both orientation and scale [81]. The basis functions
for the decomposition transform can be formed by translations, dilations and rotations of
a single filter. The transform is constructed as a recursive pyramid. The basis functions
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are directional derivative operators, and the number of orientations is defined by the
order of the derivative; Nth order derivative has N +1 orientations. Examples of oriented
bandpass filter kernels are shown in Fig. 2.9.

(a) (b)

Figure 2.9: 3rd order (4 orientations) steerable filters: (a) Spatial domain, (b)

Frequency domain.

The pyramid is formed by convolving the input signal with a set of oriented bandpass
kernels and a low-pass kernel. To avoid aliasing the bandpass portion is not subsambled,
but the low-pass portion is subsambled by a factor of two. The low-pass filtered portion
is then used for computing the next level in the pyramid. In addition to the bandpass
filtered levels, also the high frequency residual highpass sub-band and the low-pass sub-
bands can be stored to be able to reconstruct the original signal. An example of an
image decomposed into a 2-level pyramid with 3rd order steerable filters is presented in
Fig. 2.10.

(c)

Figure 2.10: Example of image decomposition using steerable filters: (a) Original
image; (b) Pyramid level decomposition with the 3rd order steerable filter (possess
4 orientations), 2 pyramid levels and the lowpass sub-band; (¢) Highpass residual
sub-band.

Steerable pyramid features have been used in object detection and recognition by Ballard
and Wixson in [3]. The description of an object is created by using filters with several
different orders (number of orientations) and scales. Here, a slightly different approach
is taken to be compatible with the approach used with multiresolution Gabor features,
and only filters with a specified number of orientations is used in several scales. Only the
bandpass filtered levels of the pyramid are used and the highpass and lowpass portions
of the image are discarded. The responses can be arranged to a similar matrix form
as is used with the multiresolution Gabor features (Section 3.1, (3.8)). Computational
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performance of filter response computations is comparable to Gabor filters, however,
when filtering in the spatial domain, smaller filters can be used with steerable pyramid
filters than with Gabor filters and there are only real values making steerable pyramid
responses faster to compute.

2.3.5 Performance evaluation

The performance of local descriptors was tested in [62]. The test builds on the previous
performance testing of interest point detectors [63]. First, interest points (or regions) are
searched in two images where the viewpoint, scale, rotation or illumination are varied,
or images were blurred or JPEG-compressed. Then, the descriptors are evaluated based
on how well they can find the correct (same) points among the interest points found in
two images. SIFT [55] and its modification made by the authors of the article, gradient
location and orientation histogram (GLOH), performed best, but again the performance
characteristics in this test cannot be directly applied to object detection.

2.4 Object detection methods

In the following few object detection methods are shortly described. Some of the methods
combine interest point detectors and local descriptors to perform detection of complete
objects, some use different approaches.

2.4.1 Feature-based affine-invariant detection and localization of faces

The methods presented in the following chapters of this thesis are connected to a face
(object) localization method developed by Hamouz et. al, [27, 28, 29, 30]. The discus-
sion here is based mostly on [30]. The paper distinguishes between face detection and
localization so that face detection methods estimate the position and pose of the face
roughly, for example by a bounding box, and face localization as precise localization of
facial features.

The method uses a separate local image feature detection phase to detect and localize
facial parts (10 facial parts: eyes, eye-corners, nostrils and sides of mouth) and then
another phase to combine them to complete the face localization using a constellation
model. Local image features used are multiresolution Gabor features as presented in [48],
and the Gaussian mixture model is used for learning the different facial feature classes.
During the detection the 200 best candidates for each facial feature is returned.

After facial feature candidates have been detected, a constellation model is used to select
which of the found candidates forms a face. The constellation model works by selecting
three candidates of different types of facial features (for example two eye-centers and a
nostril) and calculating with which kind of affine transform the candidate points fit to
the face model formed from the training set. If the required transformation has not been
seen in the training set, the three points are probably false positives and do not belong
to a face.

After a likely face, or generally an object, hypotheses have been found with the constel-
lation model, an appearance model is used to verify if a real face was found, or if the
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hypothesis was badly localized or resides in the background. This step works in the image
level and does not use local features: an image patch is extracted and it is classified with
a SVM (support vector machine) classifier which gives a score for the patch being a face.
Classifier is trained from training data where patches are manually marked and a boot-
strapping technique is used to generate negative examples. Two different SVM classifiers
and two differently sized image patches are used. First coarse 20 x 20 patches are used
to prune out clearly incorrect face hypotheses and then the most likely hypotheses of
those are further verified using 45 x 60 patches. Multiple steps are used because with the
coarse resolution small misalignments cannot be noticed. The localization results were
found to be very good.

The differences to the method presented in this thesis are:

e An improved classification method, Gaussian mixture model with confidence infor-
mation.

e The performance of Gabor filtering has been improved greatly, and is now up to
50x faster.

e (Cross-validation for selecting Gabor filter parameters has led to distinctly better
results [43].

2.4.2 Distinctive image features from scale-invariant keypoints

SIFT interest point detector was introduced in Section 2.2.2 and SIFT descriptor in
Section 2.3.2. Together, they can be used for object recognition [55].

Naturally, the detector is used to find the interest points and their scales and orienta-
tions, then the descriptor creates a description for all of these points, called keypoints.
For training, the presented method uses a single image for the object which should be
recognized, the image should include no other objects and have a clutter-free background.
From the training image the keypoints are searched and their descriptions stored in a
database, including the spatial relations of the descriptors. The procedure can be re-
peated for other images with other objects.

During detection, again, interest points are detected and descriptors created. For each of
the keypoints a closest match, smallest euclidean distance, in the database is searched.
Many of the found interest points arise from the cluttered background or unknown ob-
jects, so there may not always be a correct match. Therefore, a threshold is applied. A
global threshold does not perform well, but a threshold based on the difference between
the closest match and the second closest match found in the database is used instead.
The idea is that if the match is correct, the second closest match will be much more
distant, and if the match is incorrect the second closest match will likely have a similar
distance.

Even after discarding many of the false matches based on thresholds a large part of the
remaining interest points will still be incorrect. Hough transform is used to determine
if several of the features vote for the same object pose. Each keypoint has parameters
for 2D location, scale and orientation, and the database contains the same information
for keypoints found in the training image. A Hough transform can be created predicting
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location, orientation and scale from the matched keypoints. In addition, each cluster of
three or more features found by Hough transform is subjected to a geometric verification
procedure to discard keypoints which do not agree with the model accurately enough,
or add keypoints which agree but were not found with the Hough transform. Finally, a
probabilistic model is used to accept or reject the object hypothesis based on an actual
number of matched features.

The method can recognize the trained objects in highly varying poses and when they
are heavily occluded. Several objects can be detected at the same time. However, the
method is intended for detecting the same object (single object instance): intra-class
variations are not considered at all.

2.4.3 Object class recognition by unsupervised invariant learning

The article by Fergus, Perona and Zisserman [18] presents an object class recognition
method where object classes are learned and recognized from unsegmented images of the
object in cluttered scenes. The method is not completely unsupervised as the training
set images are all assumed to contain an instance of the object class, i.e., when training
a detector for motorcycles, all training set images must contain a motorcycle.

The method applies the parts and structure model. The object model consists of parts
where for each part appearance, relative scale and mutual position with other parts is
known. Some parts may also be occluded. The model is generative and probabilistic:
parts are modeled with probability density functions, more precisely Gaussians. During
learning, interest points and their scales are first searched. From the appearance, scale
and mutual position a model is learned so that it gives maximum-likelihood description.
Recognition is performed by detecting interest points and their scales in the query image
and evaluating found regions in the Bayesian manner applying model parameters found
during training.

First IV interest points are found with locations X, scales S, and appearances A. The
decision is based on likelihood for object presence modeled as

p(X,8,A4;0) = > p(X,S,A h;0)

heH

> p(X; A, S, h;0) p(X;S,h;0) p(X;S,h;0) p(S,h;0) p(h;0)
heH

where h is a hypothesis vector of length P, which enumerates which of the detected
N interest points belong to the object. Some of them maybe zero, which means that
that particular object part is not present. All valid allocations of features to the parts
are presented by H, which is of O(N¥). From this complexity it can be seen that the
number of detected interest points, /N, must be relatively low, usually up to 30, and the
number of object parts, P, even lower, typically 3 — 7. The four p(-) clauses represent
probabilities for appearance, shape, relative scale and other, the last one handling effects
of occlusion. The first three are modeled with Gaussians, and the last one with a Poisson
distribution.
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Interest point detection is performed with an entropy based detector presented in Sec-
tion 2.2.3. The local description is performed based on the pixel values, as described in
Section 2.3.1: a patch around the interest point is taken, where the size is based on the
scale given by the interest point detector. The patch is then scaled to size 11 x 11, and
the resulting vector of length 121 is reduced to 10 — 15 dimensions using PCA, and this
vector is the descriptor for appearance, A. From the positions and scales of the interest
points also X and S are known. When these are known for the images in the training
set, parameters, 0, of the model are learned using expectation-maximization algorithm.

The method performed very well on six diverse datasets, including object classes such as
human faces, motorbikes, airplanes and spotted cats.

2.4.4 Rapid object detection using a boosted cascade of simple features

Viola and Jones presented an efficient object detection method in [88]. The method
uses simple features based on integral images which are extremely efficient to compute.
These simple features are combined by an AdaBoost classifier to create an efficient object
detector. The classifier is used in a cascade, if first simple classifiers already determine
that there is no object in the image patch, using more complex classifiers is omitted,
which further improves the efficiency. The method is supervised, it is trained using
segmented images of the training class and background images. During detection the
detector goes through the image in a windowed fashion: the image is divided to patches
and the detector is used in each of them separately.

The method uses simple rectangular features, examples are shown in 2.11. The value
of a feature is computed by taking the sum of pixel values in the white parts of the
filter, and subtracting it from the sum of pixel values in the gray parts. The size of the
rectangular features are varied. With the base size of 24 x 24 used for the detector, the
complete set of rectangular features is over one hundred thousand. Therefore, efficient
computation of feature values is important and they can be computed very efficiently
using an intermediate representation of the image, integral image.

A B C D
Figure 2.11: Rectangular features work so that the sum of pixel values in white

parts of the rectangle are subtracted from the sum of pixel values in gray parts.
Features consist of 2 (A and B), 3 (D) or 4 (D) rectangles.

The integral image contains the sum of pixel values above and to the left of the current
pixel in the original image. It is computed as

Il(xay) = Z I(:E/vy/) ’ (29)

v/ <z,y'<y
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where I;(x,y) is the integral image and I(z,y) is the original image. The integral image
can be computed in one pass over the image:

s(x,y — 1) + I(z,y) (2.10)
= Ii(x - 1,y) + s(z,y) ,

where s(z,y) holds the cumulative row sum and negative indexes equal to zero. Fig. 2.12
demonstrates how value inside any rectangle can be calculated using only few operations.
Values of the actual features (examples in Fig. 2.11) can be computed in a similar fashion.

Figure 2.12: Using integral image to calculate sum values inside grayed area can
be performed as 4 —2 — 3+ 1, i.e., take the value at point 4, deduct the values at
points 2 and 3 and then add value at point 1 because previous step deducted its
sum twice.

Computation of a single feature is fast, computation of all of them still takes a long time
and a small subset of the features should be selected. AdaBoost [22] is a classifier which
can select a small number of relevant features and combine them into a powerful classifier:
the complete classifier combines several weak classifiers, each weak classifier here operates
on one rectangular feature. The AdaBoost classifier selects at each training step one
feature which best separates the positive and negative training samples. The weights of
the training samples are adjusted so that the next weak classifier will concentrate on the
samples which have been wrongly classified with previous weak classifiers. The training
error becomes smaller with each added weak classifier.

The detection is performed in sub-windows and a vast majority of them are negative,
i.e., the object to be detected is not there. Therefore, rejecting negative samples should
be done as fast as possible, which is achieved by using classifiers in a a cascade. The
first classifier is very simple, trying to achieve a very small false negative rate, i.e., no
positive samples should be rejected. However, the first classifier should reject many
of the true negatives. Following classifiers are more complex targeting consecutively
smaller false positive rates, i.e., trying to reject more and more of the true negative
samples. To be classified as positive, all classifiers must give a positive result and the
classification procedure ends if any of the classifiers give a negative result. During training
each classifier will get as its input only the samples which passed through the previous
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classifier, also the thresholds for false negatives and false positives are modified for later
classifiers.

The method was tested in face detection. The results were very good and, at the time,
the detector was considerably faster than any of the earlier approaches.

2.5 Summary

This chapter presented an overall model of parts-and-structure type object detection
methods. The methods pertaining to this model usually combine an interest point detec-
tor which first finds significant points in images, which should stay stable when imaging
conditions or even object instances change, and a local image descriptor, which is used
to describe the local appearance of the image. Some of the most well-known interest
point detection, local image description and complete object detection methods were
then presented.



CHAPTER III

Multiresolution Gabor features

Gabor filters, originally introduced by Dennis Gabor in 1946 for 1D signals [23], have
a well-known connection to receptive field receptor profiles of mammalian visual sys-
tems [13]. They also are a realization of the general image processing operator proposed
by Granlund [25]. Multiresolution structure of Gabor filters is similar to wavelets, but it
lacks the important orthogonality property [52]: Gabor filters do not form a basis. They
form instead a frame, which is a generalization of the basis without orthogonality and
unique dual transform properties.

Gabor filters have been a popular feature extraction method in last few decades, and dur-
ing the 2000s the activity has actually increased according to IEEE Xplore™ database.
The most important reason for the increase is probably the wide success in some applica-
tion areas, such as biometric authentication. Methods based on Gabor features have been
very successful in iris recognition [14], large scale face recognition contests (e.g. 2 best
methods in [59]), and provided state-of-the-art accuracies in fingerprint matching [40]
and face localization [30]. It can be assumed that Gabor features will have an impor-
tant role also in the future. However, in the relevant literature a major disadvantage of
Gabor features, the computational heaviness, is often overlooked. This Chapter explains
construction of Gabor filters and efficient computation of multiresolution Gabor features.

3.1 Constructing Gabor features

Gabor filters are linear filters whose responses are defined by a sinusoidal wave multiplied
by a Gaussian function. An example of a 2D Gabor filter is presented in Fig. 3.1.
Usually in image processing Gabor filter responses are used in a multiresolution structure:
the features are based on responses of Gabor filters on multiple scales and orientations
forming a multiresolution Gabor frame structure. While the Gabor filter responses are
complex-valued, commonly only response magnitudes are used, but it will be shown later
that using the complex values (or magnitude and phase presentation) improves results
in many applications.

35
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Figure 3.1: Gabor filter in 2D with parameters fo = 0.2, § =0, v =n = 1; (a)
spatial domain, real component; (b) spatial domain, imaginary component; (c)
frequency domain.

3.1.1 1D Gabor filter

The 1D Gabor filter is presented first since many of the efficiency improvements can be
obtained easily in 1D and then generalized to 2D Gabor filters.

A normalized Gabor filter in the time domain can be defined as [44]

b(t; fo) = J%B_W)z#eﬂw (3.1)

where fy denotes the filter tuning frequency and ~ the filter bandwidth. The filter
function can be divided into two parts: a complex sinusoidal wave on the tuning frequency

and a Gaussian envelope defining the effective time duration. The effective time duration
is inversely proportional to the effective bandwidth via the uncertainty relation.

The corresponding equation in the Fourier domain is [44]

U (u; fo) = o (35) wwsor® (3.2)

where u denotes the frequency.

3.1.2 2D Gabor filter

Similarly to the 1D case, the 2D filter can be divided into an elliptical Gaussian and a
complex plane wave. The filter in the 2D spatial domain is [44]

2 _ (13,2 05 2 ,
w(:ﬂ,y;fb,@) - f—oe (:2_ nZY >63271'me
™y
¥ = wcosf +ysind (3.3)

/

—xsinf 4+ ycos 6
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where the new variable 6 denotes the rotation angle of both the Gaussian and plane wave.
This is not the most general form of the 2D Gabor filter, but a form whose properties
are the most useful for image processing, namely that the filters in different frequencies
with the same bandwidth parameters are scaled versions of each other. The bandwidth
is controlled by two parameters, v and 7, corresponding to the two perpendicular axes
of the Gaussian.

The same filter in the frequency domain is [44]

(o y ot

W, fo,0) = ¢ )
v = wcosh+vsinf (3.4)
v/ = —usinf + vcosd.

The filter in (3.3) is centered to the origin and its response for an image function £(x, y)
can be calculated at any location (z,y) with the convolution [44]

re(@,y; f,0) = P, y; f,0) « {(2, )

) 3.5
:/[ ¢(x_:E‘ruy_yT;fae)g(:E‘ruy‘r)dxrdy‘r . ( )

3.1.3 Multiresolution structure

A filter bank consisting of several filters needs to be used because relationships between
responses provide the basis for distinguishing objects. The selection of discrete rota-
tion angles 6; has been demonstrated for example in [69], where it was shown that the
orientations must be spaced uniformly.

12
91:%1:{0,...@—1}, (3.6)

where 0; is the [th orientation and n is the total number of orientations to be used.
The computation can be reduced by half since responses on angles [, 27| are complex
conjugates of responses on [0, 7| in the case of a real valued input. The frequencies must
be selected exponentially [44, 50],

fi=k " frnaw 1 =10,...,m—1}. (3.7)
Common values for k£ include £ = 2 for octave spacing and k = V2 for half-octave
spacing.
Using the features to cover frequencies of interest fo,..., fin—1 and the orientations for

desired angular discrimination, one can construct a set of features at an image location
(z0,y0). The filter responses are arranged into matrix form as

r(xo0,y05f0,00)  r(wo,y05f0,01) - 7r(x0,Y905f0,0n-1)
r(x0,Y0;f1,00) r(z0,y03f1,01) -+ r(z0,y0if1,0n-1)
G = . . _ . (3.8)
T(ioyym}m—lﬁo) 7‘($07y0;}‘m—1>91) T(IOyyO§f7;171>9n71)

where rows correspond to responses on the same frequency and columns correspond to
responses on the same orientation. The first row is the highest frequency and the first
column is typically the angle 0°.
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3.1.4 Feature manipulation for invariant search

Linear row-wise and column-wise shifts of the response matrix correspond to scaling and
rotation in the input space, and therefore, invariant search can be performed by simple
shift operations: by searching several spatial locations (spatial shift) and by shifting
response matrices. With normalization of the response matrix, illumination invariance
can also be achieved [44, 48].

Rotating an input signal {(z,y) anti-clockwise by Z equals to the following shift in the
feature matrix

r(x0,Y0;f0,0n—1)" r(x0,y0;f0,00) = r(x0,y0;f0,0n—2)
r(x0,Y0;f1,0n-1)" r(xo,y0;f1,00) = r(x0,y05f1,0n—2)

G= . . . : (3.9)
T(onyo;fm.flﬁnfl)* T($07y0;}m—1>90) = T(:E[)yy();f7;171y9n72)
where * denotes complex conjugate.

Downscaling the same signal by a factor % equals to the following shift in the feature
matrix

r(zo,y0;f1,00) r(xo,y0;f1,01) - (0,90 1,0n-1)
r(zo,y05f2,00) r(xo,y0;f2,01) - 7r(x0,90;f2,0n-1)
G = . (3.10)
i T - i)

(20,905 fm,00) 7(x0,Y05fm,01) - 7(x0,Y0;fm,0n—1)

For this to work new low frequencies f,,, must be computed and stored in advance while
the highest frequency responses on fj vanish in the shift.

3.1.5 Image reconstruction

The original image patch can be reconstructed from multiresolution Gabor features
via their bi-orthogonal transform functions [71]. An example of local reconstruction
is demonstrated in Fig. 3.2. The reconstruction of a complete object can be performed
by combining features from several spatially distant points.

(b)

Figure 3.2: A multiresolution Gabor feature reconstruction example: (a) Origi-
nal image of an eye; (b) Reconstructed image using responses from a single point
(at the center of an eye).
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3.1.6 Filter spacing - selection of multiresolution feature parameters

The selection of filter bank values, filter frequencies, bandwidths and number of orien-
tations, is an application dependent problem. It is not, however, necessary to define all
parameters separately due to their interdependencies [35, 36]. More detailed information
and the analytical solutions are presented in Appendix I.

FILTER FREQUENCIES

The multi-resolution frequencies f; are drawn from fo = foae, f1 = fimaz/k, fo =
fmaz/k%, fm = fmaz/k™ ! and these equations define the relationships between the
other parameters in (3.1), (3.2), (3.3) and (3.4). Table 3.1 can be used to select the
multi-resolution feature parameters. Number of filters is denoted by m, scale factor (2
for wavelets) is denoted by k and p denotes the intersection point of two consecutive
filters, which for normalized Gabor filters is between 0 and 1. Other parameters are filter
bandwidth v and lowest and highest filter tuning frequencies, fi,,in and f,q., respectively.

The most useful approach is to select the filter bandwidth v based on filter spacing k
and overlap p. Equation for this can be found in the first line of Table 3.1, p and k are

known and based on them ~ is calculated as v = < (%) v—Inp.

K

Table 3.1: Parameter equations for filter frequency spacing.
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FILTER ORIENTATIONS

The equations for frequency spacing in Table 3.1 apply to both 1D and 2D filters, but
the orientation spacing additionally depends on the number of orientations n and the
minor axis bandwidth 7. The analytical solutions can be derived and are collected into
Table 3.2. Again the most useful equation is the selection of filter bandwidth 1 based
on the filter overlap p and the number of filter orientations n, which gives equation

2
n=4/— (271;2; . The overlap p here is assumed to be the same for both frequency and

orientation spacing, but it can also be different over the orientations. Note that these
equations are approximations. To get accurate filter intersection values for orientation
spacing the whole elliptical envelope of the filter should be considered, not only its minor
axis. However, the cost would be more complex equations because both 7 and vy would
have to be included and the difference to the approximation presented here is generally
small.
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Table 3.2: Parameters equations for filter orientation spacing.

p K | n
2
p n NaTS:
» 1vTp |,
777"2 2 " n
ei(w) n n

EXAMPLE OF FILTER SPACING

Two filter banks in the frequency space are presented in Fig. 3.3. Only the upper half
of the filter bank is needed because responses on the lower half are complex conjugates.
In Fig. 3.3(a) filters are closely located in the frequency space (k = v/2) and therefore in
the frequency direction the filters are relatively sharp (v is large). The same value was
used for 1 and consequently there are large gaps between filters in different orientations,
and as a result some structures in the image with specific angles cannot be detected by
the filter bank in Fig. 3.3(a). In Fig. 3.3(b) n has been solved based on equations in
Table 3.2 and the gaps between filters in different orientations disappear.

L L L L L L L L L L L L L L L L L L
-04  -03 02  -01 0 0.1 0.2 0.3 0.4 05 -04 03 -02  -01 0 0.1 0.2 0.3 0.4 05

(a) v =1n~2.35 (b) v ~ 2.35, n ~ 1.03

Figure 3.3: Examples of filter banks in frequency space, both use m =5, n =4,
p=02and k=2; (a) vy =1~ 2.35; (b) v~ 2.35,n ~ 1.03.

3.2 Efficient computation

Gabor filters correspond to linear filters, so the most straightforward technique to filter
is via convolution in the spatial domain. Standard convolution with Gabor filters can
be improved by utilizing the separability of Gabor filters [8, 65] or their symmetry, anti-
symmetry and wavelet characteristics to reduce the number of needed multiplications
and additions [74]. Certain approximation techniques, such as recursive Gabor approxi-
mation [92] or an approximation by decomposition into Gaussians [6] lead to much more
efficient computation than normal spatial domain filtering by convolution, but limit the
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free selection of filter bank parameters. The approximations also do not guarantee the
beneficial feature space properties [44]. Therefore, without having to limit filter bank
parameter selection to some special cases, the textbook solution, performing filtering in
the frequency domain, often provides the most significant general improvement.

External knowledge on how the features are used is often neglected. The features are
typically used in a multiresolution structure utilizing several frequencies and orientations,
and the stable numerical support for Gabor filters is provided by a relatively small
effective area of the filters. The multiresolution structure is similar to computing Gabor
features on an image decomposed to a Gaussian pyramid, but using the Gaussian pyramid
approach the selection of the filter frequencies would be limited. Here no limitations are
applied as the unrestricted selection of all filter parameters is important for maximizing
the usability of Gabor features for all application areas in image and signal processing.

Sometimes Gabor filter banks are optimized, for example, by finding maximal separation
between two input classes [7], using a boosting techniques [12], or using a stochastic
search method [86], which enables using a fewer number of Gabor filters leading to faster
filtering. However, these methods often lead to non-homogeneous parameter sampling,
violating (3.6) and (3.7), which in turn make invariant processing difficult because signal
rotation and scaling cannot be handled by simple matrix manipulations as in (3.9) and
(3.10). It would be possible to start with a filter bank respecting (3.6) and (3.7) and
having a large number filter orientations and scales and then optimizing it, i.e., removing
some of the filters which are not helpful for classification. However, the impact of this
would be reduced because invariant search would still require computation of many of the
removed filters. Therefore, these types of filter bank optimizations are not considered
here. However, the presented efficiency improvements still apply if such methods are
used.

In this section the most important characteristics of Gabor filters and filtering in both
domains, spatial and frequency, are discussed in the context of computational complexity.

3.2.1 Related research

At the core of every Gabor feature is the filter response in (3.5) computed with the
convolution. 1D convolution at one point requires O(M) operations for a filter of length
M. For a signal of length N the total complexity is O(M N). For 2D images and filters
the complexity becomes O(M?2N?). Due to these exhaustive computing requirements,
efforts to decrease the complexity have been reported.

If a filter G can be expressed as a multiplication of two vectors, Geo; * Grow, it is sepa-
rable. For separable filters the convolution can be computed with two vectors, a column
and a row vector, reducing the complexity from O(M?N?) to O(2M N?). Horizontal
and vertical Gabor filters are separable, the first vector is a sinusoidal with a Gaussian
envelope and the second a Gaussian envelope. The separability can be extended to cover
also the angle 45° [65], but for arbitrary orientations the input image must be rotated
which increases the computational cost considerably.

Gabor filters also possess a significant degree of symmetry and anti-symmetry which can
be utilized to reduce the number of multiplications needed for the convolution [74]. For
example in Fig. 3.4 is a Gabor filter where the value 0.0620 or its negation is repeated
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four times around the center of the filter. Using generic convolution the computation
concerning those four points would be 0.0620v1 4 0.0620v2 + (—0.0620)v3 + (—0.0620)v4
which includes four multiplications and three additions. The same can be calculated as
0.0620 (v + v — v3 — v4), which reduces the number of multiplications to one. Similar
re-ordering can be performed for many of the filter locations. Utilizing these proper-
ties for generic Gabor filtering is not sensible because of meager savings and complex
implementation, but may be useful for an application using a fixed set of filters.

Rely(xv))

-0.0009  0.0031  -0.0065 | 0.0084 | -0.0065 0.0031 -0.0009
-0.0031  0.0108 -0.0228 | 0.0293 | -0.0228 0.0108 -0.0031
-0.0065 0.0228 -0.0483 | 0.0620 | -0.0483 0.0228 -0.0065
-0.0084 0.0293 -0.0620 | 0.0796 | -0.0620 0.0293 -0.0084
-0.0065  0.0228  -0.0483 | 0.0620 | -0.0483 0.0228 -0.0065
-0.0031  0.0108 -0.0228 | 0.0293 | -0.0228 0.0108 -0.0031
-0.0009 0.0031 -0.0065 | 0.0084 | -0.0065 0.0031 -0.0009
(b)

Figure 3.4: A spatial domain Gabor filter: (a) figure of the real part of the filter;
(b) real values of the Gabor filter.

The convolution can be performed in the Fourier domain, where it becomes the product
between the Fourier transform of the the filter and the Fourier transform of the signal.
The computation in the Fourier domain requires forward and inverse Fourier transforms
for an input image. The standard discrete Fourier transform (DFT) is not used but
the fast Fourier transform (FFT) which has the complexity O(N log N) for 1D signals.
Compared to normal convolution in spatial domain with complexity O(M N), the Fourier
domain filtering is always faster unless the filter size, M, is very small. The complexity
of 2D FFT is O(N?logN). The Fourier domain enhancements are most significant due
to their generality and superior overall efficiency. For filtering in both domains savings
can be gained by using effective filter envelopes which will be presented next.
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3.2.2 Effective filter envelopes

The support of a Gabor filter is infinite, but in the discrete domain the filter size is
always limited. An effective filter envelope corresponds to the smallest support area
which contains a predefined portion of the total filter energy. Filter coefficients outside
the area can be discarded with a negligible effect on the accuracy. The support area of a
Gabor filter is defined by the Gaussian part of the function. The support of a Gaussian
function is elliptical [85], and therefore, the support area of a Gabor filter is also elliptical.
However, elliptical envelopes are not very useful from the computational point of view,
and the smallest rectangular envelope encapsulating the elliptical envelope will be used
instead. Using filter envelopes, computing time is reduced significantly in spatial domain
filtering and a considerable amount of memory is saved in frequency domain filtering.

1D ENVELOPES

The envelope has the standard Gaussian form,

1 (t=m?
e 22 3.11
oV 22w ( )

The integral of the Gaussian function corresponds to the cumulative distributive function
of the normal distribution,

N(t;p, o) =

1 T amw?
G(z;p,0) = e 22 dt . (3.12)

oV 2
The envelope can be solved from the inverse of the cdf: the point x where the cdf value
is p,
r=G Yp;p,0)={x:Gxly o) =p} . (3.13)

Substitutions for p and o can be solved from the filter equations in (3.1) and (3.2) yielding

. . _ _ Y . . . _ _ fO
the substitutions 4 = 0 and ¢ = Vo] M the time domain, and u = fy and o = po—o

in the frequency domain. The envelope resides symmetrically around the mean of the
distribution where the density is highest. Therefore, envelope end-points for the spatial
domain filter with e €]0, 1 energy are

1 (1+e 0
Ty =+G! <—;0, ) (3.14)
2 V2| fol

and for the frequency domain filter

(3.15)

xf—foiG1<1+e'0 fo > .

257’7#\/5

Note that neither G nor G~! can be solved analytically but effective approximation
methods exist and are included in many numerical computing libraries.
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2D ENVELOPES

The 2-D analog to the 1-D case is an effective ellipse region, but for the computational
reasons the ellipse must be replaced with a rectangle covering the region. The separability
of the Gabor filters can be utilized, i.e., it is sufficient to solve two 1-D problems including
e1q percent of the filter energy: total filter energy is then e%d. The rectangular envelope
can be determined by finding the ultimate dimensions of the effective area ellipse (see
Fig. 3.5). The generic ellipse equation is i—z + Z—z = 1. For a spatial domain filter a is
set to xs from (3.14) using the major axis bandwidth ~, and b is set to zs applying the
minor axis bandwidth 7. To solve the rectangular envelope for a filter in orientation 6, the
points in the derivative of the ellipse equation with slopes ¢ = tan§ and ¢ = — tan(Z —0)

2
must be solved. These four points, (z1,y1), (—21, —y1), (22, y2), and (—z2, —ys2), lie in

3

the border of the envelope. The points must be rotated in relation to the origin by 6 to
get the final envelope for the spatial domain filter,

1 Y1
I AR 1 cos 0 sin 6
As = To Y2 {— sinf cos 9] ’ (3.16)
—X2 Y2

Now, the smallest and largest x and y coordinates must be selected from A,. For 6 = n3
(n=0,1,2,...) one of the slopes goes to infinity and the four points are (a,0), (—a,0),
(0,b), and (0, —b).

The envelope of a frequency domain filter is solved similarly, but the process is started by
setting the values of a and b from (3.15). The frequency domain envelope is not centered
at the origin, and therefore, fy must be added to the coordinates prior to rotation.

fo+z1 w
| fo—z1 = cos@ siné
Ar = fot+z2 o —sinf cosO| (3.17)
fO — T2 Y2

The actual envelope is again determined by the smallest and largest = and y coordinates
of Af.

3.2.3 The highest necessary frequency

The frequency domain envelope has an important property: the higher bound defines
also the highest frequency the filter is attuned to, fpign. The frequencies above fyiqp are
not relevant for filtering as the filter response does not change whether they are present
or not. Two examples can be seen in Fig. 3.6.

The high frequencies are removed when the signal is downscaled: if fj;g is low enough,
the image can be downscaled by a large factor leading to faster filtering. An input image
can be downscaled before the filtering by the scaling factor

0.5

 fhigh

asf , (3.18)

where 0.5 is the Nyquist frequency. After the downscaling, the filter frequency f must
be adeStedz fne’w = foldf}om;jh = asffold-



3.3 Optimal implementation framework 45

A ] __ envelope

y=tan(0) x +p, y = -tan(n/2-0) x + p,

\J

Figure 3.5: Determining the 2D effective envelope in the spatial domain.

Downscaling does not decrease the accuracy of the Gabor responses directly. The only
negative effect of downscaling is that the responses are computed more sparsely, for
example, if an image is downscaled by a factor a5y = 4 the responses can be computed
only for every sixteenth pixel in the original image. Loss of this kind of resolution does
not matter usually as the responses do not change rapidly when the spatial location of
the filter is changed slightly. However, there are some exceptions, for example, even a
small deviation from the center of a perfect circle will cause a large change to responses.

To solve frign the maximum distance from the origin to the furthest edge of the frequency
domain envelope must be found. The center of the ellipse is located at the point (fo,0),
where fj is the frequency of the filter and its major axis a is directed along the u-axis and
minor b along the v-axis (the frequency axes). The values of a and b are set to x¢ from
(3.15) by respectively applying major and minor axis bandwidths v and n respectively.
The distance from the origin is

2
d(x) = \/(fo + ) + (S a? — :v2) el <a . (3.19)

The concept is illustrated in Fig. 3.7. The lower half of the ellipse can be ignored since
it is symmetrical to the upper half. Then, x can be solved from the previous equation,

a2f0

m,b>ﬂ:, |$| Sa . (320)

T =—
The equation may result to a solution > a in which case frign = fo+a, otherwise fpign
can be found by applying = to (3.19), frigh = d(z).

3.3 Optimal implementation framework

This section describes an optimal framework in which the given properties and results
are applied to enhance practical computation efficiency. The optimality claim is based
on the analytically derived complexities.
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(a) (b)

Figure 3.6: Examples of the highest necessary frequency for the filter in the
frequency space. Circle marks the highest frequency and frequencies outside of
the rectangle can be discarded; (a) f = 0.3, 0 = 7/3, v = 2, n = 1 which leads to
frigh = 0.37; (b) f=0.1,0 =x/6, v =1, n = 1 which leads to frign =~ 0.14.

y=E ()

Figure 3.7: Determining fj;gn with the help of an ellipsoidal envelope of a 2D
Gabor filter in the frequency domain.

3.3.1 Spatial domain filters

A diagram of the filtering in the spatial domain is presented in Fig. 3.8. The complexity
depends directly on the size of the Gabor filter. The complexity for calculating the
response at a single location is O(M?) and for an entire image O(M?N?).

Prior to filtering the input image can be downscaled by the factor asy in (3.18). In
practice, only the integer factors, or even more preferably, the power of two factors, are
useful since then the downscaling corresponds to an average of a group of pixels and
interpolation is not needed to avoid the aliasing effects. The complexity of the averaging
is O(N?) and every pixel participates once to produce N?/a?; pixels to the result image.
When the image is downscaled, the frequency of a filter must be adjusted correspondingly

by the factor a,; leading to the filter envelope becoming smaller by the factor a%f' The
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Figure 3.8: Diagram of spatial domain feature extraction.

complexity of computing a single response is now O(M2/a§f) and for the entire image

O(N jw ) - (3.21)

asf

The total complexity of computing K filter responses is either (without and with down-

scaling)
2

M
O(KM?) or O(N* + K—) (3.22)

ags
depending on whether it is worth to downscale or not. The smaller one of the two
complexities can be selected using the actual values of the parameters: in the first case
there are very few points to filter (K is small) and downscaling would increase the
complexity, and in the second case K is large enough for downscaling to become beneficial.

There are two separate steps in the filtering: the creation of a filter and the filtering itself.
An algorithm for the creation of the spatial domain filter is presented in Algorithm 1 and
an algorithm for filtering in the spatial domain in Algorithm 2.
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Algorithm 1 Create a spatial Gabor filter with parameters f, 6, v and n.

: Solve frign using f, v and n (Section 3.2.3).

: Adjust f by asy, f' = assf, from (3.18).

: Solve filter envelope E for a filter with parameters (f', 60, v, n) (Section 3.2.2).
: Compute the filter g for filter area E with parameters (f', 0, v, n).

A W O

Algorithm 2 Filter an image s in the spatial domain with a filter g (scaling factor asy)
at locations P = {(x,y)r}-

: Downscale the image s by factor asy, s — .
: for All points p in P do

Adjust the point’s coordinate, p' =p/asy.

Compute response r(p) by convolving the image s’ in the point p' with the filter g.
end for

SR NN

The symmetry and separability properties of Gabor filters could be applied here [8, 65,
74], but are neglected since their effect compared to the downscaling or frequency domain
filtering would be small and they apply only to some specific filter configurations.

3.3.2 Frequency domain filters

A diagram of the filtering in the frequency domain is presented in Fig. 3.9. The com-
plexity is dominated by FFT and IFFT, which is O(N?log N). The size of the effective
envelope is not as crucial in the frequency domain as in the spatial domain since the
image must be converted to the frequency domain and back whether the filter envelope
is used or not. However, most of the coefficients will be close to zero and can be omitted
to minimize memory requirements and also the number of floating point multiplications
decreases, but the effect is small compared to the complexity of FFT.

An input image can be downscaled in a similar manner as in the spatial domain. Another
option is to perform the downscaling in the frequency domain, which can be faster even
though the spatial domain downscaling has lower complexity than the FFT. In the mul-
tiresolution structure the image needs to be converted only once to the frequency domain,
but if the spatial domain downscaling is performed then the FFT has to be performed for
all downscaled images. Downscaling in the frequency domain can be performed by dis-
carding frequencies higher than f;45, in the frequency space (see Fig. 3.6). The frequency
domain downscaling by the scaling factor as; reduces the IFFT complexity to

N2 N
asf Qsf

It should be noted that responses must be multiplied by the factor l/agf to retain the
correct response magnitude as compared to the non-downscaled results.

An algorithm for the filter creation is presented in Algorithm 3 and for the filtering in
Algorithm 4.
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Figure 3.9: Diagram of frequency domain feature extraction.

Algorithm 3 Create a frequency domain Gabor filter with parameters f, 6, v and 7.

: Solve the filter envelope E with parameters (f, 0, v, n) (Section 3.2.2).
- Compute the filter g for filter area E with parameters (f, 0, v, n).

: Solve frign using f, v and n (Section 3.2.3).

: Solve scaling factor asy, from (8.18).

N RN

Algorithm 4 Filter an image s in the frequency domain with o filter g (scaling factor
as¢ and filter area E).

1: Initialize 1" to the same size as s and set values to zero.

: Compute FFT of the image, s' = F(s).

: Filter in filter area, v'(E) = §'(E) * g.

2
3

. ; 0.5 /
4: Crop frequencies above S out of r'.
7]
6

5: Transform responses back to spatial domain with IFFT, r = F~1(r").
: Scale response magnitudes, r = TE%—.
s

3.3.3 Multiresolution filtering

Multiresolution Gabor feature extraction is similar to the Laplacian pyramid [9]. A
Laplacian pyramid represents an image as a pyramid of quasi-bandpassed images (see
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Fig. 3.10), where the bottom of the pyramid represents the highest frequency content and
is sampled densely, and the higher levels low frequency information sampled increasingly
more sparsely. Each level of the pyramid reduces the filter’s band limit by an octave,
and the sample density can be reduced by the same factor, i.e., to half a resolution. The
Laplacian pyramid was originally used for image compression, but the multiresolution
Gabor features, such as simple Gabor feature space [48], yield to a similar structure.
Both the computation time and memory are saved as the responses are computed at
lower resolution than the original image.

//
AN

Figure 3.10: The structure of Laplacian pyramid.

Implementing the multiresolution structure with Gabor filters is straightforward. Algo-
rithm 4 can be used as an example: the scaling factor ass is selected based on fr;gn and
the resolution depends directly on the frequency. High frequency responses are sampled
densely and lower frequencies increasingly more sparsely. It should be noted that octave
spaced filter frequencies (k = 2) must be used if a similar structure to Fig. 3.10 is re-
quired: four lower level responses correspond to one response in the next level. If another
value for k is used then the pyramid structure will not have as clear correspondences be-
tween responses at different levels. In that case, the pyramid levels can be downscaled to
half size when the frequency is suitable. A similar technique can be found for example in
the difference-of-Gaussians structure used in the SIFT interest point detector [55]. For
example, with half-octave spacing (k = /2) there are always two pyramid levels with
the same resolution corresponding to two consecutive filters, but for the third filter the
pyramid level can be scaled to half size.

Using the multiresolution structure can be problematic in the following processing steps,
for example, classification and object recognition. If the responses in different frequencies
must be eventually used with the same resolution, sparse low frequency responses must,
be upscaled back to the required resolution. In practice, it is preferable to compute all
responses directly at the same resolution and omit the upscaling procedure. The base
resolution is selected based on the highest frequency filter, so processing time can still
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be saved if the highest frequency allows.

3.3.4 Selecting the optimal filtering procedure

The decision whether the filtering should be performed in the spatial or in the frequency
domain depends mainly on the number of points to be computed. If the entire image
must be filtered, the frequency domain filtering practically always outperforms the spatial
domain filtering as is evident from the complexities in (3.21) and (3.23) where the latter
log-clause is very likely to be smaller than Mz/agf. When only K points are filtered, the
decision of the filtering domain is based on the complexities in (3.22) and (3.23). The
optimal decision tree is sketched in Fig. 3.11.

Filter only
K points Filter whole

image?

Spatial domain Frequency

Is spatial domain (3.22) d .
omain

or frequency domain (3.23)
more efficient?

Beneficial to
downscale (3.22)?

Downscale

Filter in spatial domain Filter in frequency domain

Figure 3.11: Procedure path for optimal Gabor filtering.

3.4 Results

Selection of the optimal filtering procedure was based on the analytically devised com-
plexity equations, but inaccuracies in the responses induced by the proposed enhance-
ments deserve a more practical treatment addressed in this section.

3.4.1 Error induced by effective envelopes

If effective envelopes are used to reduce the filter size, the required proportion of the
filter energy must be selected. The discarded filter coefficients induce error to the re-
sponses. To study the behavior of the error, MSE (mean square error) was measured
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for images containing Gaussian noise. MSEs as a function of the envelope energy are
shown in Fig. 3.12. The effective envelope had a drastic impact on the computing time
in the spatial domain, but it also induced a proportional inaccuracy to filter responses
(Fig. 3.12(a)). The size of the envelope had practically no computational effect in the
frequency domain as was expected because of FFT dominating the computation time,
and therefore, the filtering should always be performed with a sufficiently large envelope
as it provides better accuracy (Fig. 3.12(b)). Full size filters may be used with small
images, but otherwise the envelope energy limit between 0.99 — 0.999 seems to provide
sufficiently accurate results while saving a large amount of memory.
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Figure 3.12: MSE between the responses of the full size filter and the filter
with an effective envelope (including relative time complexity): (a) In the spatial
domain; (b) In the frequency domain.

3.4.2 Inaccuracy due to the efficiency improvements

This experiment tests the effects of efficiency improvements in a practical and impor-
tant application: what is the effect to the speed and accuracy on the face detection
experiment using the XM2VTS image database [58]. A detailed description of the test
is presented in Section 5.2, and the focus here was only to evaluate how the proposed
efficient computation methods affected the results and the computation time. Only the
frequency domain filtering was tested, since the method always needs features from the
whole image and therefore the frequency domain filtering is always faster.

In the frequency domain changing the filter envelope energy, which changes also the size
of the filter, has only a small effect on the complexity (see Algorithm 4). Therefore, the
speed measurement results in Fig. 3.13(a) present no surprise as there were no speed
difference between the filters of different envelope energies. The detection accuracy in
Fig. 3.13(b) however shows that the accuracy became steadily better with higher energy.
A large frequency domain filter (0.99 — 0.999) should be used, but not excessively large
as it leads to a waste of memory.



3.5 Summary 53

100

0.5 T T T T T T T j j . . ‘ -
ool /_‘——————-
0.45- J a0l
< 701
X
0.4F i 9;
I S
Z 3
2 0.350 {1 & 5of
ET c
E S
T 40r
o)
L 53
03 O 30r
201
0.25¢ .
10r BRGNS —s— Accuracy
L R Comparative size of filter|
0.2 . . . . . . . 0 . . . n n n
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.4 0.6 0.8 0.99 0.9999
Filter energy Filter energy

(a) (b)

Figure 3.13: Facial feature detection accuracy (see Section 5.2) and speed with
varying filter envelope: (a) The filtering speed; (b) Detection accuracy.

The amount of potential downscaling depends on the filter frequencies, and more specif-
ically, on the highest frequency component, fpign, of the highest frequency filter.

The scaling factor can be calculated by (3.18). If the image is further downscaled, then
the frequencies the filter occupies begin to disappear. The maximum scaling factor
for the highest frequency filter in this case was a,y = 8. The results with various
factors are presented in Fig. 3.14. The filtering speed (Fig. 3.14(a)) followed closely the
complexity of the 2D FFT, O(N%log N). The detection accuracy results in Fig. 3.14(b)
were surprising: the detection accuracy became slightly better when the image was scaled
to a smaller size. This was mainly an artifact of the used performance measurement
method: with a high resolution a false detection often caused a bunch of false detections
in the neighboring pixels, while only one false detection occurred using a low resolution.
To confirm this a pruning technique was added, which removes replicates from the vicinity
of detected points, and using pruning the results stayed nearly constant over the different
scaling factors. Unless the image features must be detected very accurately, the initial
downscaling seemed to present no difficulties.

With the proposed efficiency improvements, the same accuracy as reported in [30] was
achieved with nearly 1/50 of the original computation time.

3.5 Summary

This chapter introduced the concept of multiresolution Gabor features.

Firstly, computation of a single Gabor feature in 1D and 2D were studied followed by
how several filter responses can be combined using a multiresolution structure and how
the filter bank parameters should be selected. Secondly, based on this information, an
efficient computation method for Gabor features was proposed utilizing an effective filter
and the highest tuning frequency. Third, an optimal framework for computing Gabor fea-
tures in the spatial or frequency domain was presented with information on how the most



54 3. Multiresolution Gabor features

25 T 98
[ JFiltering time j
---FFTcomplexity| | | L ae-e--==
N PP
. -
oL 1
AN 97.5¢
\
\
\ =
157 ‘\ 1§ ort
@ . g
H . 3
£ A @
= Al s
(s}
- N 1 5 9650
N 2
A I3
e o
0.5F RREN -~ 1 96}
—— Without pruning
- - - With pruning
0 95.5 L
2 4 8 2 4 8
Scaling factor Scaling factor
(a) (b)

Figure 3.14: Facial feature detection accuracy and speed with image downscal-

ing. (a) Filtering speed per image; (b) Detection accuracy (note the scale of
y-axis).

efficient filtering procedure can be selected in a specific setting. Finally, experimental
results of induced inaccuracies caused by the proposed optimizations were presented. It
was found that the proposed computation improvements are able to significantly increase
the feature extraction speed with negligible effect on the accuracy.



CHAPTER 1V

Image feature classification and ranking

Classification and ranking of low-level features is needed for image feature detection and
recognition when they are searched from observed images. During training phase, feature
classes are created from training images by computing local image descriptors in marked
points and then training a classifier for the local image feature. In the detection phase
local image descriptors are created for all points in the image, and the classifier determines
the best candidates for each class, for example, locations most likely representing eye-
centers. To avoid the problem of creating a background class, representing anything else
than the local image features which are being searched, one-class classifiers are used to
only learn the local image feature classes.

Main local image descriptor in this work is the multiresolution Gabor feature and Gaus-
sian mixture models (GMM) are proposed as the classifier. However, alternative methods
can be used and their requirements will be discussed.

This chapter starts with a background and description of the used one-class classification
methods. After that the local image feature detection method is presented. Additionally
properties of the complex-valued Gabor feature space are studied because they have been
noticed to have surprising effects on the classification performance.

4.1 Background and motivation for classification

One-class classification, also called novelty detection, outlier detection, or data descrip-
tion [83], can be used to detect uncharacteristic observations. One-class classification
is necessary when samples can be obtained only from a single known class, for exam-
ple, normal operation mode in motor condition monitoring where all failure modes are
not known. One-class classification is also useful when the background class contains
enormous variations making its estimation unfeasible, for example, a background class
in object detection: the background class should contain everything except the object to
be detected. One-class classifiers are used for this reason in this study.

35
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Additional requirement for the classifier in this application is that it must sort the features
into ranked order, it is not enough to simply decide whether a feature vector belongs to
the class or not. If a classifier is trained for detecting local image features, for example
eye-centers, in the detection phase the eye-center candidates must be returned in ranked
order where the first one resembles the eye-center the most and the following ones less.

4.2 Gaussian mixture models

Many types of pdfs can be approximated with finite mixture models. Finite mixture
models combine several single distribution forms to be able to approximate arbitrarily
complex pdfs. The most common distribution function is the normal distribution (Gaus-
sian distribution) because it is a well-understood distribution with useful properties for
many application areas [85].

When the density of the data can be estimated, the easiest method for obtaining a one-
class classifier is to set a density value threshold to the estimated probability density
[82]. Gaussian mixture models (GMM) have been widely used in classification and gen-
eral density estimation tasks, and they are also suitable for one-class classification. The
expectation-maximization (EM) is a general method for estimating the mixture model
parameters, and the EM algorithm is proved to converge to the global maximum likeli-
hood estimate if the overlap between the Gaussians in the model is sufficiently small and
there is a sufficient amount of data [56].

The multiresolution Gabor feature computed in a single location can be converted from
the matrix form in (3.8) to a feature vector as

g = [r(z0,Y0; fo,00) 7(x0,0;5 fo,01) ...7(%0,Y0; frn—1,0n-1)]. (4.1)
4.2.1 Multivariate normal distribution

The multivariate normal distribution of a D dimensional random variable can be defined
as

1 1 Tao1
WGXP —5(3’5—#) (- p) (4.2)

where p is the mean vector and ¥ the covariance matrix of the normally distributed

random variable X . A multivariate Gaussian pdf is an elliptically contoured distribution
where the equiprobability surface is a p-centered hyperellipsoid [85].

N(z;p,X) =

The Gaussian distribution in (4.2) can be used to describe the pdf of a real valued random
vector (z € RP). However, a similar form can be derived for complex random vectors

(x € CP) as (e.g. [24])

NE(@; 1, 3) = g exp [~ (@ — )" S~ (@ — ) (43)

where * denotes the adjoint matrix.

For a multimodal random variable, where values are generated by several randomly
occurring independent sources instead of a single source, a finite mixture model can be
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used to approximate the true pdf. If the Gaussian form is sufficient for single sources
then a Gaussian mixture model (GMM) can be used in the approximation. However,
the underlying distributions do not need to be Gaussians as GMMs can approximate any
other distribution given a large enough number of components.

The GMM probability density function can be defined as a weighted sum of Gaussians

C
p(x;0) = > acN(@;pe, ) (4.4)
c=1

where . is the weight of cth component. The weight can be interpreted as a priori
probability that a value of the random variable is generated by the cth source, and thus,
0<a.<1and 25:1 a. = 1. A Gaussian mixture model probability density function is
completely defined by a parameter list [16]

0:{04171141721,---7@&#«0720} . (45)

The main problem is how the parameters in (4.5) can be estimated from the training data.
The most popular estimation method is the expectation maximization (EM) algorithm.
The problem with the algorithm is that it requires the number of Gaussians, C', as an
input parameter. The number is often unknown and there is a strong motivation to apply
adaptive unsupervised methods, such as that of Figueiredo-Jain [20] or the greedy EM
algorithm [87]. The standard EM algorithm has been shown to outperform the adaptive
methods if the correct number of mixture components is known, but in the absence of
such knowledge the adaptive estimation algorithms give accurate and reliable results [68].
Of the two adaptive methods the Figueiredo-Jain was noted to provide more accurate
results and it has been extended to complex values, and can therefore be directly applied
to estimation of pdfs of complex multiresolution Gabor feature vectors in (4.1).

4.2.2 One-class classification using confidence with GMM

In our case confidence is used to estimate the reliability of a classification result where
a class label is assigned to an unknown observation. If the confidence is low it is more
probable that a wrong decision has been made. Intuitively a value of class conditional
pdf at an observation corresponds to decision confidence for favor of the corresponding
class: the higher the pdf value is, the more class instances appear similar to the observa-
tion. However, using pdf values directly can be difficult since they are arbitrarily scaled.
Confidence values are always in the range [0, 1].

The most straightforward use of confidence is to find a pdf value threshold for a class [82].
The threshold can be used to decide whether an observation is sufficiently similar to the
class in question. The threshold can be selected based on the training data, for example,
by selecting a pdf threshold for which half of the training data yields higher pdf values
(median). Another possibility is to select the threshold using confidence: finding a
threshold which includes a certain proportion of the total probability mass. The pdf
type is not limited to a single Gaussian distribution but to a mixture of models with
an arbitrary number of components. The selection method can be easily generalized for
other types of pdfs.
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To be a proper probability measure the confidence value should satisfy € [0,1]. For any
support region R of the definition space Q of the pdf, R C Q, it holds that 0 < p(x) < oo,
Ve € €. The confidence value is defined via value s which related to a non-unique
confidence region R such that [6§]

/ p(x)de =k . (4.6)
O\R

The proposed confidence value is easily interpretable via the confidence region R which
covers a proportion 1 — x of the probability mass of p(x) because for all probability
distributions [, p(x)dx = 1. Tt is clear that k = 1 for R = @ and x = 0 for R = Q. The
confidence value has no meaning until the region R is defined as the minimal volume
region. The minimal volume region is called the highest density region (HDR) [33]. For
some distribution types the HDR can be non-unique (e.g., the uniform distribution).
The proposed confidence value, 1 — x, corresponds to the smallest region which includes
observation & and has a probability mass k, defined as HDR.

A confidence value corresponds to a proportion of a probability mass in the area R; for
the class w;. In one-class classification the confidence region R; can be used instead of
the confidence value: a sample vector x is allowed to enter the class w; only if € R;.
If a sample is not within the confidence region of any of the classes it is classified to
a background class. The background class is a special class and samples assigned to
the class may need special attention depending on the application. For example, in a
two-class problem where data is available only from one class the background class may
represent another class with an unknown distribution.

To find the confidence region a reverse approach can be used to find a pdf value 7 which
is at the border of the confidence region: 7 must be equal everywhere in the border,
otherwise the region cannot be the minimal volume region [33, 39]. 7 can be computed
by rank-order statistics using the density quantile F(7) (e.g., [33]) and by generating
data according to the pdf. It is assumed that the gradient of the pdf is never zero in the
neighborhood of any point where the pdf value is nonzero. An example of the confidence
region can be seen in Fig. 4.1.

4.2.3 Confidence estimation algorithms

An analytical solution to the GMM confidence region cannot be solved and therefore
estimation must be used. Estimation can be based on the GMM training data directly,
or it can be based on randomly generated data derived from the estimated pdf. If
confidence is determined based on the training data, volume of the confidence region
does not necessarily have a direct relation to the confidence value: if a threshold is
selected to include 50% of the training data, volume of the region may not be half of the
total volume.

A pdf value threshold for p(x) can be selected with the help of training data. First, a
cumulative pdf value histogram H for the data @1 x is created (Algorithm 5). Second,
the threshold can be found using the cumulative histogram H and the required confidence
value ¢ = 1 — F(7) using Algorithm 6.
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Figure 4.1: The highest density region (HDR) of a two-component GMM pdf
and the corresponding threshold in one dimension. The confidence region is not
a simple connected set.

Algorithm 5 Create a cumulative confidence histogram H for pdf p(x) with sample vectors
x1.n (training data)

1: for k=1..N do

2 Calculate pdf value for i, Hy = p(xi)
3: end for

4: Sort H in ascending order, H —sort(H)
5: Return H.

Algorithm 6 Select a pdf threshold value T for the confidence value ¢ using the cumulative
confidence histogram Hi. N

1: Select histogram position, m=round(c * N)

2: Return 7 = H,,.

The confidence value for a new sample  can be calculated using Algorithm 7.

Algorithm 7 Return confidence value ¢ for a sample vector x using the cumulative confidence
histogram Hi..n of the pdf p(x)

1: Calculate pdf value for the sample vector @, py = p(x)

2: Select position of the closest pdf value to p, in H, m = argmin,|H; — px|

3: Return ¢ =m/N.

In Algorithms 6 and 7 interpolation can be used instead of selecting the nearest value.

In the case of Gaussian mixture models, it may be beneficial to use randomly generated
data. An algorithm for generating random data for any GMM is presented in Algorithm 8.
The algorithm has been extended to multiple components from an algorithm presented
in [85].
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Algorithm 8 Generate N random samples, X, for a D-dimensional GMM of C' components
with weights o1..c, mean vectors p, o and covariance matrices ¥1..c

1: k=1

2: for c=1..C do

3: T = chol(X.) {Cholesky decomposition }

{Number of generated samples depends on the weight of the component, a. }
4: for l.round(a.N) do
5: Z = randn(l x D) {Generate D independent normally distributed (u = 0, o = 1)
random variables}

6 X, =2T+p,
7: k=k+1

8 end for

9: end for

4.2.4 Experiments using confidence

The first experiment studies the required amount of data for distributions with increas-
ing number of dimensions. The second experiment demonstrates the benefits of the
confidence information on an image feature localization problem.

DATA GENERATION

The accuracy of the confidence and threshold computation methods with Algorithms 5, 6,
7 and 8 depends only on the amount of data, if the data and the estimated GMM represent
the same underlying distribution. If that assumption holds, the only inaccuracy in the
confidence values is caused by the limited amount of data. If the distributions deviate
slightly from each other, which is typically caused by the GMM parameter estimation, the
confidence values may be biased. If there is a large discrepancy between the distributions
the confidence values may become completely useless, for example, all become binarized
to either 0 or 1.

Here the relationship between data dimensionality and the required number of random
samples is studied. To avoid the issue of distribution mismatch, a D-dimensional GMM
pdf was generated semi-randomly and data was derived from the generated GMMs.
Random data was generated with Algorithm 8 and then a pdf threshold was searched
with Algorithms 5 and 6. For each value of D the number of required samples was
evaluated repeatedly; each evaluation consisted of creating a semi-random covariance
matrix and finding a number of samples at which the standard deviation of the found
pdf threshold value for confidence ¢ = 0.5 was varying at most by 1% from the mean
value. The result is shown in Fig. 4.2.

The number of required samples increased linearly with the data dimensionality. Despite
the fact that the size of the covariance matrix increases quadratically, and the number
of required samples could be assumed also to grow quadratically, the linear dependency
is as expected based on the data generating Algorithm 8: a D-dimensional sample is
generated using D random numbers. In practice this means that the data generation is
feasible even for high dimensional distributions because the required number of samples
grows only linearly.
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Figure 4.2: Required number of generated samples for a pdf threshold estimate
(c=0.5).

IMAGE FEATURE DETECTION WITH CONFIDENCE

The detection algorithm presented in Section 4.4 returns a fixed number of highest ranked
image features found in the image. One obvious problem is that in the case when there is
nothing to detect, a fixed number of points will still be returned. Image feature detection
is followed by spatial constellation model search, which will then do useless work if there
are spurious local image features. Also, when the object to be detected is present in the
image, returning a fixed number of features may not be optimal, but the number should
be decided adaptively.

In this example the use of confidence information is demonstrated in the face detection
experiment, which is explained with more detail in Section 5.2. This specific example,
results presented in Fig. 4.3, is concerned with searching one specific image feature, the
left nostril, from an image. Fig. 4.3(a) shows a pdf surface from a GMM pdf trained
for recognizing the left (in the image) nostril. Figs. 4.3(b) and 4.3(c) show only the
confidence regions corresponding to 0.01 and 0.50 confidence values. The correct image
feature location and very little else was included in the 0.50 confidence region, and even
the 0.01 confidence region discarded very large part of the image.

4.3 One-class SVM (support vector machine) classifier

The single-class SVM (support vector machine) classifier used in this study was a one-
class classifier based on a p-SVM classifier [79]. The one-class SVM algorithm starts
with a set of points and estimates a region with a specified fraction of the points. Several
different regions are possible, which region is selected depends on the kernel and used
regularization. Internally the algorithm functions by mapping the data to a feature
space using a kernel and finding a hyperplane separating the data from the origin with
a maximum margin. Fig. 4.4 shows an example. A new data point is classified based on
which side of the hyperplane it falls on the feature space.
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Figure 4.3: Example of using density quantile for defining confidence regions: (a)

pdf value surface for the left (in the image) nostril class; (b) confidence threshold
0.01 (F(7) = 0.99); (c) confidence threshold 0.50 (F'(7) = 0.50).

The algorithm starts with a set of unlabeled training data

X=x1,...,0m CX, (4.7)

where m is the number of observations and X is some set, usually RY. As usual with
SVM algorithms, data point z is mapped to a dot-product space, X — X, with ®(x)
and the feature space is defined so that a simple kernel can be used to evaluate the
dot-product (denoted by (-)),

k(xax/) = <(I)(;U),(I)(;E')>’ (4.8)

such as the Gaussian, which is often called RBF (radial basis function) kernel,

k(z,2") = e lle=a"l*/o. (4.9)

The algorithm returns value +1 for a small region capturing most of the training data
and —1 elsewhere. To separate data from the origin, the following quadratic program is
solved:

minimize 1 1
wEX,EER™ pER §||w||2 T Z& P, (4.10)
subject to (w, ®(x;)) > p—&,& >0 . (4.11)

Here, v €]0, 1], is a parameter which controls the number of outliers and support vectors,
& are the slack variables, and p is the the margin to hyperplane. Slack variables &, are
used to penalize outliers in the objective function. The decision function is

f(x) = sgn ((w, ®(x)) — p), (4.12)



4.3 One-class SVM (support vector machine) classifier 63

v outliers

o/llwl|

\J

Figure 4.4: A hyperplane separating data from the origin with some outliers.

which is defined so that sgn(z) equals 1 for z > 0, —1 otherwise. Using multipliers
«;, B; > 0 for the weights of support vectors and outliers respectively a Lagrangian is
introduced,

L(w,&p0,8) = sl + = 36— p= 3 aul(w, () — p+6) — 4 - (413)

Setting the derivatives with respect to the primal variables w, & and p equal to zero,
yields to

w = Zaié(xi), (4.14)

1 1
i = — =0 < —, i=1. 4.15
“ vm bi< vm ;a ( )
The decision function (4.12) can now be transformed using (4.13) and (4.8) into

f(x) =sgn (Z aik(z;,x) — p) . (4.16)

The dual problem can be obtained by substituting (4.14) and (4.15) into Lagrangian L,
(4.13), and by using the kernel, (4.8)
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It can be shown that at the optimum the two inequality constraints in (4.11) become
equalities if «; and (; are not equal to zero. Exploiting any such «; > 0 p can be
calculated,

p=(x, ;) = Z ajk(zi, xj) (4.18)

Interpretation of the parameter v follows. When the parameter approaches zero, the
problem becomes a hard margin problem, since the penalization of errors is then infinite.
The problem is still feasible but the margin may become negative. Overall, the parameter
v characterizes the fraction of outliers and support vectors. Qutliers are the points which
are on the wrong side of the hyperplane. As a rule of thumb, v is the lower bound for
the fraction of support vectors and upper bound for the fraction of outliers.

Some examples of the effects of parameters v and the RBF kernel size ¢ are presented
in Fig. 4.5. The SVM classifier has been created for a simple 2D problem, where there
are two distinct sets of points. One problem case can be seen in Fig. 4.5(a), where the
kernel size is too small and the classifier is overly complex. On the other hand, a too
large kernel size may create a too simple solution, as can be seen Fig. 4.5(c). When the
parameter v is small, see Fig. 4.5(d), only a few outliers are allowed and the distribution
may again become too complex. Large v on the other hand leads to a large number of
outliers, see Fig. 4.5(e).

By default this SVM classifier only outputs a binary classification decision based on
which side of the hyperplane the point falls. This is not suitable for use in the image
feature detection described in this thesis; image feature candidates must be available in
ranked order, the most likely candidates having the largest values. While the theory is
not as well formulated as in the case of GMM pdfs, this is still possible. The classification
decision in (4.16) first computes the distance to the hyperplane, which is positive when
the point belongs to the class, and then uses the sgn(-) function to binarize it to either
1 or —1. If the sgn(-) function is omitted, decision is a real valued number, the higher it
is the further away on the inclusion side the point is from the hyperplane, and therefore,
in the most “dense” part of the distribution. This method is used to rank image features
with a one-class SVM classifier in this thesis.

4.4 Supervised image feature detection method

This section presents the supervised image feature detection method, first the train-
ing phase and then the detection phase. Requirements for local image descriptors and
classifiers are also discussed.
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(¢) v=10.5,0 =0.2

(d) v =0.1,0 = 1.0 (e) v=05,0=10 (f) v=0.9,0=1.0

Figure 4.5: Examples of the SVM classifier and effects of v and RBF kernel-
size, o, parameters. Thick line presents the decision boundary for class inclusion;
(a)-(c) Different kernel size o, constant v; (d)-(e) constant kernel size o, varying
v.

4.4.1 Training the detector

The local image feature detector training method is presented in algorithmic form in
Algorithm 9 and visualized in Fig. 4.6 (detector for left eye-centers). The eye-centers
must be annotated in the training images, and local image descriptors for those areas are
computed. After the descriptors have been computed for all annotated positions in the
training images, a classifier is trained. In our case, the classifier is a one-class classifier
without a background class.

Algorithm 9 Training a local image feature detector

1: for all Training images do

2 Align and normalize image to represent an object in a predefined standard pose

3 Compute multiresolution Gabor features at given landmark locations

4: Normalize the features

5 Store the features to the sample matriz P and their corresponding class labels (class
numbers) to the target vector T
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Figure 4.6: A conceptual diagram of local image feature creation for an local
image feature detector (left eye-center).

6: end for
7: Train a one-class classifier using samples in P separately for each class

In the Algorithm 9 the training images must first be aligned to a standard pose: the pose
representing objects in the same scale and orientation. After the images have been trans-
formed to the standard pose, multiresolution Gabor features in (3.8) are computed at
annotated landmark image feature locations. Feature matrices can be energy-normalized
if a complete illumination invariance is required. Each feature matrix is reformatted into
a vector form in (4.1) and stored in the sample matrix P along with the corresponding
image feature labels, T. Finally, pdfs (probability density functions) over the complex
feature vectors are estimated for each image feature class separately. The standard clas-
sifier has been a GMM classifier, but generic requirements for the classifier are presented
later.
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4.4.2 Detection

Detection is performed as presented in Algorithm 10. The detection procedure is visu-
alized in Fig. 4.7. Local image descriptors are computed and classified separately for all
points in the image. Because a one-class classifier is used and there is no background
class, the classifier only outputs a likelihood or probability value for a descriptor to be-
long to the specific feature class. Complete likelihood description (likelihood image) can
be computed from the whole image and the highest values can be selected as the most
prominent image feature candidates (see Fig. 4.7). The only requirement for the classifier
is that the value is higher the more the described point resembles the trained class.

Observed image

Vl—[ ...... }
Compute descriptors
for all points .
V,:[ ...... }
Classify
Classifier

Likelihood map

Highest ranked points

Figure 4.7: A conceptual diagram of image feature detection (left eye-center).

Algorithm 10 Detect K best image features of each image feature class from image
I

1: Normalize image if needed
2: Compute multiresolution Gabor features G(x,y; fm,0n) for the whole image I(x,y)
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: for all Scale shifts do
for all Rotation shifts do
Shift Gabor features
Normalize Gabor features
Apply the classifier to compute likelihood values for all classes and for all (x,y)
end for
end for
10: Sort the the likelihood of image features values for each class
11: Return the K best candidates of each image feature class

S N R

If the observed images vary heavily in their photometric quality (e.g., large brightness
and contrast differences), they can be first normalized. From the normalized image
multiresolution Gabor features are extracted at every spatial location and likelihood
values for all image feature classes are computed for all invariance shifts. If Gabor features
were energy normalized in the training phase the same normalization must be applied
here. To save memory, only some predefined portion of the highest likelihood values can
be stored instead of storing all likelihood values. After the shifts have been inspected
the best image feature candidates are returned and sorted based on the likelihood values.
With this approach one location may represent more than one image feature, but each
feature can be assigned to one pose only.

4.4.3 Requirements for the local image descriptor

The two algorithms (Algorithm 9 and Algorithm 10) assume that multiresolution Gabor
features are used as local image descriptors. However, in general the selection of the
descriptor is free: any method can be used, but the method has to be fairly fast during
the detection phase since local descriptors must be computed for all points in the image,
or at least for a reasonably large portion of all points if sparse sampling is used. Sparse
sampling means that a part of the points are omitted either systemically (e.g., handle
every second or fourth pixel) or by adaptively sampling more densely in areas where
likelihood values have been large. For the same reason also the classifier has to be efficient
in processing a large number of feature vectors. Fortunately with most classifiers only
the training phase is computationally heavy.

4.4.4 Requirements for the classifier

There are few challenges in classification of multiresolution Gabor features for image
feature localization. Firstly, the features are complex-valued which many classifiers do
not explicitly consider. Secondly, the localization process is simplified if the background
class can be avoided leading to use of one-class classifiers, which are not as completely
studied as more typical two-class classifiers. Thirdly, the feature-space of multiresolution
Gabor image features can be surprisingly complex for certain types of even simple signals,
which can cause problems for some classifiers. The properties of the feature space are
studied in Section 4.5. Fourthly, as already mentioned, the classifier should be fast, as
exhaustive search over the whole image or at least a large portion of it is performed.

Based on the above mentioned requirements Gaussian mixture model (GMM) classifier
was used in this study. Gaussian mixture models can be extended to complex values,
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GMM is suitable for single-class classification and are reasonably fast. The remaining
unsolved property is the complex behavior of the feature space and GMM’s difficulty in
estimating it properly from limited training data. The selection of an optimal classifi-
cation strategy is still an open issue, but fortunately GMM performs well in practice.
Additionally, for the GMM classifier confidence can be defined from a solid probabilistic
background.

A variant of the support vector machine (SVM) was tested as an alternative. For the
SVM classifier the main problem is speed: usually quite large number of support vectors
is required to achieve sufficient detection accuracy and this leads to slow classification.
The classifier can be tuned to use fewer number of support vectors, but the downside
is that detection accuracy suffers, and the main benefit as compared to GMM is lost,
namely, that the SVM classifier cannot anymore learn the complex feature spaces better.

Gaussian mixture models and multiresolution Gabor features have two interesting, al-
though not unique, properties which are demonstrated in Fig. 4.8. First of all, estimation
of GMM is similar to clustering and the found mixture components can be illustrated
by searching the closest matches in the training set. This and the fact that images can
be reconstructed from multiresolution Gabor features provides a nice property that both
the classifier and the image features can be examined visually.

GMM Classifier

Gaussian mixture

components
(multi-resolution
Gabor features) A A

1 Reconstruction and closest
: match from same features
v v

v f = seseas

P e

Closest matching
local image patches
in training set

Figure 4.8: Properties of GMM and multiresolution Gabor-features enable visu-
alization of classifier and image feature extraction performance.

4.5 Properties of complex-valued Gabor feature space

If an assumption about statistical properties of multiresolution Gabor features is made,
it is usually assumed to be Gaussian [73], [90] or a mixture of Gaussians [80]. It is
however easy to show that even for a simple pattern the Gaussian distribution may be
surprisingly far from the actual distribution and can lead to non-optimal results. Here,



70 4. Image feature classification and ranking

results from various situations where the responses of a single Gabor filter have non-
Gaussian properties are presented with some experimental results with multiresolution
structures where the distributions become even more complex.

In this section properties of Gabor features are studied experimentally with a 1D signal
without loss of generality in 2D. The experiments demonstrate situations where the
Gaussian assumption severely fails.

4.5.1 Sensitivity to small misalignments

In Fig. 4.9 is a signal with two spikes at distance of 2d, where d = 50, and a Gabor filter
with frequency f = 1/d. The spikes are located one wavelength off the center of the
Gabor filter and the filter has a strong response when located exactly between the two
spikes. However, when the filter is moved slightly away from the center, there will be
large change in the complex responses. To properly interpret the behavior in Fig. 4.9 it
must be imagined in 2D Re-Im space which will be considered later.

Signal and Gabor filter
0.1 T T T T

A
sy N
0.05F = RN 1
g o v A~
{ B -
_ Y Lo oy \ i) AT~ Signal )
0 S ’ T — — — Gabor filter (real)

=7 Vo Vi — — Gabor filter (imag)

-0.05f N [

-0.1 I I I I I I I I I
-100 -80 -60 -40 -20 0 20 40 60 80 100

| — Filter response (real)
— — — Filter response (imag)

Figure 4.9: The upper figure shows a signal with two spikes at distance 2d
(d = 50) and real and imaginary parts of a Gabor filter with frequency f = 1/d
located at the center of two spikes. The lower figure shows the filter’s real and
imaginary responses as a function of misalignment.

The reason for this non-Gaussian behavior is that the real-valued (cosine) part of the
Gabor filter captures symmetric properties of the signal and the imaginary-valued (sine)
part the anti-symmetric properties. When the filter is exactly at the center of the signal
there is perfect symmetry and a strong real-valued response. The signal does not have
any anti-symmetry and correspondingly the imaginary-valued response is zero. When
the filter is shifted slightly in either direction, the symmetry starts to wane and the real-
value response to decrease slowly, but the anti-symmetry grows rapidly causing a fast
change in the imaginary-valued response.

There are infinitely many similar, symmetric or anti-symmetric, configurations where
the activated areas of cosine and sine parts are shifted to break the Gaussianity. This
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effect can be either seen as a beneficial or a harmful property. On the positive side, the
signal can be located exactly because the responses change rapidly as the filter location
deviates from the center (Fig. 4.9). On the negative side, for example, object detection
may become difficult if Gabor responses change rapidly around a target object. Stability
can be increased by using the filter magnitudes instead of complex responses, but this
significantly reduces the representative power of the filter, and the problem should be
rather avoided by a proper classification method or a similarity measure.

4.5.2 Effect of changes in the signal

Small perturbations in the location can cause surprisingly large changes in the filter re-
sponses and misalignments frequently occurs in practice. Combined with other potential
changes in signals, multiresolution Gabor feature values may form a very complex struc-
ture. The response space from the previous example (Fig. 4.9) is presented in Fig. 4.10(a),
where the position of the Gabor filter is changed 45 units from the center. There is only
a small change in the x-axis (real values), but a large variation in the y-axis (imaginary
values).

If the distance between the spikes changes the spikes are not exactly at the distance of
the Gabor filter wavelength. The imaginary response stays at zero because the signal
stays symmetric. An example of the response space is presented in Fig. 4.10(b) where
d = 30..50. When the spikes are moved closer to each other, the response will become
zero at a distance 2%d as the spikes are located at points where the real part of the Gabor
filter crosses zero. If spikes are moved even closer the response becomes negative.
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Figure 4.10: Response space of Gabor features with various alterations to the
signal in Fig. 4.9: (a) Location of the Gabor filter changed by £5 units; (b)
Distance between spikes changed, d = 30...50.

When both types of alterations are combined, the location of the Gabor filter varies by
+5 and d = 30..50, the response space becomes increasingly complex as can be seen in
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Fig. 4.11(a). However, addition of a large amount of Gaussian noise to the signal does
not cause a dramatic change (Fig. 4.11(b)). Furthermore, if the signal’s contrast changes,
i.e., how large its amplitude is compared to the background, the responses will be linearly
scaled towards or away from the origin (not presented here).
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Figure 4.11: Response space of Gabor features with various alterations to the
signal in Fig. 4.9: (a) Location of the Gabor filter changed by +5 units and
distance between spikes changed, d = 30...50; (b) Gaussian noise added to the
signal.

Previous examples used only one Gabor filter, but with multiresolution Gabor features
many filters at many frequencies and orientations are used. With two Gabor filters the
response space becomes 4-dimensional (two complex valued responses) which is not easily
demonstrated. A simplified demonstration of multiresolution responses is presented in
Fig. 4.12(a) where in the x-axis are the response magnitudes of the previous example
(complex responses in Fig. 4.10(b)), and in the y-axis magnitudes of filter responses for
a filter at f = 1/35. The resulting response space is far from Gaussian, and the feature
space does not get any less complex when the filter position is changed by 45 units and
noise is added as shown in Fig. 4.12(b).

4.5.3 Experiments

Experiments with generated and real data were conducted in order to demonstrate dif-
ficulties for standard classifiers assuming Gaussianity to classify multiresolution Gabor
features as compared to more complicated classifiers. However, simple classifiers are
needed because multiresolution Gabor features are often involved in low level processing,
where efficiency is important.

Two different one-class classifiers have been used in these experiments, a classifier based
on Gaussian mixture models (GMM), presented in Section 4.2, and a one-class support
vector machine classifier, presented in Section 4.3.
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Figure 4.12: Response space of magnitudes of two Gabor filters: (a) On z-axis
response magnitudes for a Gabor filter with f = 1/50 and on y-axis f = 1/35
for a signal with distance between spikes d = 30..50; (b) Location of Gabor filter
changing by +5 and Gaussian noise.

ARTIFICIAL POLLEN IMAGES

Artificial pollen images resemble real pollen images (Fig. 4.14(a)) which have been used
in a detection and identification task [77]. Multiresolution Gabor features were applied
for the same task, but surprising problems in classification of the features were observed.
A simplified test with artificially created images was conducted to eliminate the effect of
various imperfections in images of real pollens. The variables for artificial pollen creation
are their radius, the edge width and contrast, and added Gaussian noise (Fig. 4.13(a)).

Multiresolution Gabor features were computed at centers of pollens for 500 training im-
ages, each with 5-9 artificial pollens. The images, originally 1024 x 1024, have been down-
scaled by factor of 8, because the filters only use low frequencies and computing responses
for a low resolution image is much faster. However, the downscaling introduces misalign-
ment. An example of feature space for Gabor filters at frequency f = 1/50,0 = 0° is
presented in Fig. 4.13(b). Variation in the direction of real axis was caused by varia-
tions in the radius. The variations along the imaginary axis (anti-symmetry) are very
small because the center locations are known precisely and the objects are symmet-
ric, but downscaling to 1/8th of the original size causes an imprecision to the center
position. When a Gabor filter is not precisely in the center, the pollen is perceived
as anti-symmetric, which leads to responses not being purely real. The eight different
misalignment positions caused by downscaling can be seen in the response space (see
Fig. 4.13(b)) as eight distinct “stripes”. If downscaling is not used, leading to a dras-
tic increase in filtering time, the stripes disappear because the center positions are now
exactly correct (see Fig. 4.13(c)).

REAT POLLEN IMAGES

The next experiment involved real pollen images an example can be seen in Fig. 4.14(a).
The radiuses of real pollens varied from 35 to 80 pixels. The real pollens are far from



74 4. Image feature classification and ranking

Imag
o

Imag
o

-006 -004 -002 O 002 004 006 -006 -004 -002 O 002 004 006
Real Real

(a) (b) (c)

Figure 4.13: Artificial pollen experiment. (a) An artificial pollen image (pollens
of radius 35 — 50, varying edge widths and contrasts, and Gaussian noise). (b)
Gabor responses from the centers of artificial pollens at frequency f = 1/50 and
6 = 0° with downscaling to 1/8th size; (¢) Without downscaling.

perfect circles and there were also three different types of pollens present in the images.
Furthermore, the centers cannot be marked exactly, and thus, it is no surprise that Gabor
filter responses do not form as symmetric pattern as with the artificial pollen experiment
(Fig. 4.13(b)), but a smoother cloud (Fig. 4.14(b)). Still, most of the responses are
located close to imaginary value 0 and vary in the direction of the real axis, where the
variations are explained by varying radiuses. Phenomenon can be more easily seen when
only angles of the complex responses are observed, see Fig. 4.14(c). Note that only a
single feature is present in the figure; the whole feature space is more complex and less
Gaussian because of the effects explained previously.
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Figure 4.14: (a) A part of a real pollen image. (b) Gabor responses from the
centers at frequency f = ﬁ, 0 = 0°; (c) Histogram of complex angles.

Pollen detection results for real pollen images in Fig. 4.15(a) (GMM) and in Fig. 4.15(b)
(SVM) as ROC (Receiver Operating Characteristic) curves. There were 606 pollens in
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the training set and 352 pollens in the testing set. Figures show results for different
distances of location accuracy: in the best case the pollens would be found exactly
without generating false positives. A distance of 30 is an acceptable accuracy as the
minimum radius was 35. Results with the GMM classifier were bad as a huge number of
false positives was found before a significant number (90%) of real pollens. At the point
where 100 false positives were found, only 30% of the real pollens (approx. 100) were
found. With SVM the result is clearly better at the same point, 65% (approx. 230).
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Figure 4.15: Detection of real pollens. (a) ROC curve for the GMM classifier;
(b) ROC curve for the SVM classifier.

4.6 Summary

This chapter presented an image feature localization method based on multiresolution
Gabor features and Gaussian mixture models. The method can use other local image
descriptors or classifiers, and generic algorithms were presented where the individual
parts can be changed at will, given they fulfill the requirements presented also in this
chapter. The chapter continued with motivations for using one-class classifiers and usage
of confidence with a Gaussian mixture model classifier. An alternative classifier, v»-SVM
was presented as related to the problem, non-Gaussianity of Gabor features. In some
cases the complexity of the feature space causes problems for GMM estimation given
the limited training data (to learn very complex features spaces the estimation requires
impractically large amount of training data) and the alternative SVM classifier proved to
be able to learn complex feature spaces (from pollen images) more effectively. However,
in the next chapter the experimental results shows that multiresolution Gabor features
and GMM is still a powerful combination for accurately detecting image features.
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CHAPTER V

Experiments and applications

In this chapter image feature detection and localization is demonstrated using the pro-
posed combination of multiresolution Gabor feature and Gaussian mixture models using
3 different datasets in two challenging problems. Furthermore, to confirm validity of com-
bination of Gabor features and GMM, the tests are repeated by replacing the descriptor
and the classifier with other well-known methods which show no significant improve-
ments. The method is further demonstrated in a categorization experiment where the
results appear very natural. Finally, a similar approach is applied to a distinctly different
subject as a side study, a fault detection problem with 1D signal.

5.1 Accuracy measure

For detection of complete objects for example bounding boxes or ellipses are used, e.g.,
[62]. A “box” is drawn around the detected object and a union is taken between the
detected box and manually marked the groundtruth box. The accuracy measure is then
calculated as the area of the union divided by the area of the groundtruth box. This
type of measure is problematic because it does not consider pose variations at all and
the results vary greatly depending on how tightly or loosely the bounding boxes are
drawn around the object. Overall, for measuring accuracy of detecting separate image
features the bounding box model is not very suitable. The used accuracy measure, based
on ranked order of image feature candidates and normalized error distance, is described
next.

Before generating the result graph the image feature candidates are ranked in order, i.e.,
the most likely image candidate is first. The accuracy of local image feature detection
is presented as a cumulative graph where the x-axis is the number of detected image
features and the y-axis is the proportion of how often the correct image has been found
among them. Localization accuracy is rarely pixel-perfect, so an image feature is deemed
as correctly detected if it is within some pre-determined radius around the correct image
feature position. For face detection tests the accuracy is measured by normalizing the
distance between the eyes to deye = 1.0 and various accuracies are measured based on

7
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the normalized distance (Fig. 5.1(a)). This type of measure is considered as the most
appropriate for evaluating localization methods in [76].

An example of the accuracy measure graph is shown in Fig. 5.1(b). From the graph it can
be seen, for example, that only every tenth of the highest ranked feature candidates was
in the correct position within a distance of 0.05 (of deye). However, when the allowed
distance was increased to 0.20 six of the first ten candidates were correct. Using the
ten highest ranked image feature candidates the results improve so that the correct one
was among them half of the time for a distance of 0.05 and over eight times out of ten
for a distance of 0.20. A perfect result would be one where the first (highest ranked)
image feature is always correct and the resulting graph would have a straight line at
100%. This is seldom the case and the graph stays below 100%. In general, if there is a
large difference between graphs of different distances, like there is in the example graph
(Fig. 5.1(b)), it means that the detection method cannot determine the correct location
very exactly but is quite good at detecting it approximately. Another commonly seen
variant is that the graphs of different distances are tightly bunched. In that case, the
detection method can detect the correct location very accurately when it finds it at all.

proportion of correct image features [%]

6
number of image features

(b)

Figure 5.1: Measuring localization performance. (a) Demonstration of the used
accuracy distance measure, deye; (b) An example result graph.

For detecting single image features this kind of accuracy measure is very natural.

5.2 Face detection
5.2.1 XM2VTS face database

The XM2VTS facial image database is a publicly available database for benchmarking
face detection and recognition methods [58]. The frontal part of the database contains
600 training images and 560 test images of size 720 x 576 (width x height) pixels. The
images are of excellent quality and the lightning conditions are stable, and therefore, face
detection methods should perform very well with this database. To train the proposed
image feature detectors a set of salient face regions were selected.
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The selected image features should be discriminative: they can be reliably found in the
images, and they can be used to distinguish the object category from other categories
and backgrounds. Ten specific facial regions (see Fig. 5.2 for example images from the
database with annotated image features) have been shown to have favorable properties to
act as image features [30]. To capture visual information of local image patches around
the marked locations local image descriptors are used.

Figure 5.2: Training images with 10 manually marked and annotated image

features.

Three different image descriptors were used: multiresolution Gabor features (Section 3.1),
local binary patterns (Section 2.3.3) and the steerable pyramid (Section 2.3.4). In ad-
dition the SIFT descriptor with and without PCA was tested, but the results were very
weak and therefore not included. It was assumed that the high selectivity of SIFT fea-
tures is not suitable to a task where generalization is needed and additionally their high
dimensionality causes problems for the GMM classifier. Testing was limited to these
descriptors because other presented descriptors are computationally too heavy for the
exhaustive search; the number of points for which the descriptors are needed would have
to be limited somehow, for example, by using interest point detectors. The main local
descriptor has been multiresolution Gabor features, and their use is described here first.
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GABOR FEATURE PARAMETER SELECTION

The parameters of multiresolution Gabor features must be selected, either manually
using some heuristics or by optimization, e.g., crossvalidation. Both approaches were
applied in the experiments, so called “old parameters” have been selected manually, and
are included as a comparison to results in a previously published article [43], and “tuned
parameters” have been selected by crossvalidation. Heuristic selection is also explained
to clarify properties of multiresolution Gabor features.

In the XM2VTS database all faces are in standard pose, everyone is looking at the
direction of camera from the same distance. Naturally, there are still some variations in
the distance between the eyes (Fig. 5.3(a)) and the angle between the eyes (Fig. 5.3(b)).
The variations are small enough that invariant searches are not necessary and the filter
bank parameters should be selected to cover the variations. For angular variations, which
are limited approximately to £10°, up to eight filter orientations can be used, n < 8,
angular discrimination being then 22.5°.

Filter frequency spacing, k, should be selected so that a single filter includes information
from all scales present. The scale of objects here is presented approximately by the eye
distance, the largest eye distances are around 120 pixels and the lowest around 90 pixels.
Filters should include therefore scale variations in the order of k& > % ~ 1.33. A slightly
larger value can be used to assure that one filter covers suitable scales, and a natural
choice is k = /2, i.e., half-octave scaling of frequencies. For the filter frequencies in
the filter bank, defined by the selection of frequency of the highest filter, fp;gn, and the
number of filter frequencies, m, no clear guidelines can be given. However, number of
filter frequencies m > 3 should provide enough discriminative frequency information.
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Figure 5.3: Scale and orientation contents of XM2VTS training data computed
using coordinates of the left and right eye centers: a) distribution of eye center
distances; b) distribution of eye center rotation angles.

These heuristically selected “old parameters” were n = 3, m = 4, k = /2, frigh = 1/30.
The parameters called “tuned parameters” were selected experimentally by a crossval-
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idation procedure and were n = 4, m = 6, k = /3, frigh = 1/40. In both cases
filter sharpness parameters v and n have been selected using equations presented in Sec-
tion 3.1.6. The tuned parameters differ from the old parameters in two ways: overall,
the number of filters have been doubled from 3 x4 = 12 to 4 * 6 = 24, and because
of the lower fr;gn, larger filter spacing £ and larger number of frequencies, much lower
frequencies are included in the filter bank.

TRAINING THE GMM CLASSIFIER

The classifier was trained with the Figueiredo-Jain method as presented in the Sec-
tion 4.4. The multiresolution Gabor filter responses were computed for all 10 image
feature locations in all images in the training set. The responses were then arranged as
feature vectors which can be used with any one-class classifier (provided that they work
with complex numbers). A classifier based on GMM has been used in these tests. During
the evaluation Gabor filter responses were computed in all locations of the image and
classified to each of the classes, and for each of the 10 classes, a number of the highest
ranked feature locations were selected as potential image features.

RESULTS FOR ORIGINAL IMAGES

After classification image features are processed in ranked order and an image feature
was considered to be correctly classified if it was within a pre-set distance limit from the
correct location. The distances are normalized to a distance between the eyes, deye = 1.0
(Fig.5.1(a)). The results for the XM2VTS database are presented in Fig. 5.4(a) for the
old parameters and in Fig. 5.4(b) for the tuned parameters. With the old parameters
using the tightest distance limit, 0.05, approximately 32% of the cases the highest ranked
feature was the correct one. By increasing the distance limit to 0.10, which is still very
good, the correct one was ranked highest in approx. 63% of the cases. By using the 10
highest ranked features from each class, the correct features were among them in 71% of
the cases for the distance limit of 0.05 and 86% of the cases for the distance limit 0.10.
Increasing the distance limit further to 0.20 leads to a small improvement. Similarly for
the tuned parameters, the highest ranked feature was correct in 41% of the cases for a
distance limit of 0.05, and 86% for the limit 0.10. With the 10 highest ranked features
the results were 93% and 98% for distance limits 0.05 and 0.10 respectively.

It should be noted that the results with the tuned parameters are approaching the natural
variation of the manual marking by different humans, meaning that the results cannot
be significantly improved in this test.

The accuracy difference between the old and tuned parameters is demonstrated in Fig. 5.5.
With old parameters the highest ranked features were spread all over the image to many
false locations, while usually a few of them were found in the correct places. With the
tuned parameters the highest ranked features were found compactly around the correct
locations. The tuned parameters included lower frequencies and recognized the image
feature locations based on a larger neighborhood, and therefore, did not lead to image
feature candidates in false locations as easily.
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Figure 5.4: Accuracy of image feature extraction from XM2VTS test images:
(a) Old parameters; (b) Tuned parameters.

COMPLEX VS. MAGNITUDE RESPONSES

The multiresolution Gabor features described in Section 3 use naturally complex valued
feature responses. Still, a majority of studies using Gabor features utilize only magni-
tude information instead of the complex representation. Using magnitude information
is computationally easier and the results may be satisfactory even with only magnitude
information. Previous experiments were performed by using only response magnitudes
instead of complex numbers and the results are shown in Fig. 5.6, which are clearly not
as good as the results with complex values (Fig. 5.4). The results demonstrate that re-
moving the phase information, which is implicitly included in the complex values, leads
to clear degradation of localization results.

The advantage of using complex numbers, which include implicitly both magnitude
and phase information, instead of magnitude-only representation can be clearly seen
in Fig. 5.7. The figure shows responses of a single filter for the left and right eye corners.
In the complex plot the two classes are clearly separable, but completely overlap in the
magnitude-only plot.

RESULTS FOR ARTIFICIALLY ROTATED AND SCALED IMAGES

A problem of the XM2VTS data set is that the images do not cover different scales or
rotations as the faces are almost always near the standard pose. Invariance properties of
the image feature localization cannot therefore be verified using the database. To be able
to test the invariance properties, the evaluation images of the database were randomly
rotated between +45 degrees and up-scaled factor between 1 and V2.

The image features were first searched for without using scale or rotation invariance
manipulations. The results for old parameters are in Fig. 5.8(a) and for tuned parameters
in Fig. 5.8(b). In the second phase, the detection was performed using one scale-shift and
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Figure 5.5: Examples of extracted image features (left eye center: blue, right eye
outer corner: green, left nostril: red, right mouth corner: cyan, 5 highest ranked
features for each, numbered from 1 to 5): (a),(b),(c) Old parameters from [43];
(d),(e),(f) Tuned parameters.
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Figure 5.6: Accuracy of image feature extraction from XM2VTS test images
(response magnitudes used instead of complex responses): (a) Old parameters;
(b) Tuned parameters.
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Figure 5.7: Scatter plots of Gabor filter responses for left and right eye corners.

two orientation shifts (+1 step). For the old parameters this means that the scale-shift
was V2 and orientation shifts £45°, and for the tuned parameters the scale-shift was
V/3 and the orientation shifts +30°. The results are presented in Fig. 5.8(c) for the old
parameters and in Fig. 5.8(d) for the new parameters. Scale and rotation shifts gave
clearly better results, and the difference is most noticeable using the tuned parameters
as evident between Fig. 5.8(b) and Fig. 5.8(d).

5.2.2 Banca face database

In this experiment a significantly more challenging BANCA face database was used [2].
Only the English section of the database was used which includes 6240 test images of
varying quality and background (see examples in Fig. 5.9). The training set consisted
of XM2VTS and worldmodel images from English, Spanish, Italian and French BANCA
sections, leading to 1600 as total number of training images.

A different data set required changing the parameters from the previous test with XM2VTS
to get the best performance, the new “tuned” parameters were n = 3, m = 6, k = /3,
fnign = 1/25. The differences to the settings used with XM2VTS are that higher fre-
quencies are used (frign has been increased from 1/40) and one fewer frequency is used.
There are higher variation in the scales in the BANCA database and the filter bank
must be tuned to the smallest scales, hence the higher frequencies. The number of filter
frequencies must be decreased to prevent filter bank “seeing” too wide an area, including
a cluttered background. The results are presented in Fig. 5.10, one scale-shift has been
used and no rotation shifts. It is clear from the results that the BANCA database is
considerably mode difficult than XM2VTS. At a distance 0.10 only 51% of the highest
ranked features were correct (86% for XM2VTS), and with the 10 highest ranked features
68% (95% with XM2VTS). The spatial search may still succeed if at least three correct
features are found.
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Figure 5.9: Example images from BANCA database.

5.2.3 Comparison to other local image features

Here the localization performance is tested with three different local image features are.
All three image feature types were treated equally. Feature vectors were computed for all
image points, and class conditional Gaussian mixture model probability densities were
used to find the 100 best candidates. The probability densities were estimated using the
training set.

The LBP features were computed as defined in Section 2.3.3. The image features were
collected from 19 x 19 patches around the feature locations in the training set. The
images were first downscaled by a factor of 1.5; the downscaling factor was determined
manually to give the best localization results. The formed feature (containing several
concatenated LBP histograms) is a real-valued vector of length 203. The images in the
test set were again downscaled by a factor of 1.5 and the detection was performed as an
exhaustive search in all 19 x 19 image areas. An example of training image with marked
image patches is presented in Fig. 5.11.

For the steerable pyramid, Sec. 2.3.4, 4 levels and 6 orientations (5th order filter) were
used (24 real values). The images were downscaled to half the size during both training
and detection. Several settings were tested to find the parameters giving the best results.

Results of image feature localization of the 10 different face features using the different
low-level features are shown in Fig. 5.12. The results for multiresolution Gabor features
are repeated here because the testing method had to be changed slightly to treat all the
features equally, namely with multiresolution Gabor features in the previous results, in
Fig. 5.4, images were downscaled as aggressively as possible to maximize the detection
speed. Now, downscaling was done at most to half a resolution to be comparable to the
other image features, changing the results slightly. With all the image features, only the
local maxima of the pdf were selected and values around them in a radius of 4 pixels
were taken out. This improves the results because instead of several detections in the
neighboring pixels there is now only one. With aggressive downscaling this is not needed.
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Figure 5.10: Accuracy of image feature extraction from the English section of
BANCA database (only tuned parameters).

Figure 5.11: Example of 19 x 19 image patches used with LBP based localization
method.
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The results for LBP and the steerable pyramid features are similar to each other, steer-
able pyramid being slightly ahead and nearly equal to multiresolution Gabor features
with the old parameters. The multiresolution Gabor features with tuned parameters
provided clearly the best results. Better results with both LBP features could likely be
achieved by tuning how the detection method is utilized or by changing the classifier as
the Gaussian classifier may not be the best choice for the high dimensional LBP features.
Unfortunately, tuning the steerable pyramid method is limited by octave spaced scaling
levels. The LBP based method can be changed more freely as there are an unlimited
number of combinations of different window sizes, how the window is broken into smaller
partitions, and which LBP operators are used. However, tuning these settings is unintu-
itive  the effect to the classification result is difficult to estimate beforehand and the
features are already very long.
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Figure 5.12: Image feature localization results for 10 different face features for
the XM2VTS database with different local image features.

The computation times between these descriptors itself are similar. Like Gabor features,
steerable pyramid features were computed in the frequency domain making their com-
plexity essentially equal. However, steerable pyramid features can be computed slightly
more efficiently in the spatial domain because the filters are small. LBP histograms are
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fast to compute, but with these high dimensional features the classifier becomes much
slower, making the LBP features slowest by a large margin of the tested descriptors.

5.2.4 Comparison to SVM classifier

The results with the original images of XM2VTS with the GMM classifier were also
compared to results with the SVM classifier presented in Section 4.3. The results for
SVM classifier are presented in Fig. 5.13. With the SVM classifier the complex numbers
were converted to separate real and imaginary parts because the classifier implementation
did not support complex values. An RBF kernel was used. Compared to results with
GMM classifier (Fig. 5.4) the results are fairly close: with old parameters, the SVM
classifier outperformed the GMM classifier for less accurate measurement distances 0.10
and 0.20, but was slightly worse for the most accurate distance 0.05. For the tuned
parameters the results were practically the same for both classifiers.
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Figure 5.13: Accuracy of image feature localization from XM2VTS images with
SVM classifier: (a) Old parameters; (b) tuned parameters.

The SVM classifier has few problems compared to the GMM classifier. First of all,
it has more parameters than GMM classifier, which has only one parameter, selecting
the number of mixture model components, or not even that with adaptive estimation
algorithms like Figueiredo-Jain method.

The SVM classifier however needs at least the kernel type to be selected. The RBF kernels
are often used and the size of the kernel must be selected based on the data: too wide
kernels cannot learn true class boundaries, and too small easily overfit to the training
data. With the normalized multiresolution Gabor features RBF kernel size v = 0.3 was
found to be a suitable value.

Another important parameter is the parameter controlling the number of outliers and
support vectors. With the used SVM classifier this parameter is v € [0, 1], where v
denotes the lower bound for fraction of support vectors and upper bound for fraction of
outliers. In these experiments v = 0.1 was used.
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The most severe problem is the speed: the SVM classifier was considerably slower than
GMM classifier. The speed depends on the number of support vectors. For the results
presented here there were over 200 support vectors for each of the 10 classes and the
detection phase was approximately 50 times slower with the SVM classifier than with
the GMM classifier with similar detection accuracy. Some of the difference is likely to be
explained by more optimal GMM classifier implementation, but the SVM classifier with
RBF kernels remains computationally too heavy when there are many support vectors.

5.3 License plate detection
Description

The image feature localization was tested further with a commercial license plate database.
The testing methods were similar to the main tests with XM2VTS and BANCA face
databases presented in the previous section.

Data and methods

A commercial database was used due to a lack of license plate databases being available
to the general public. The training set consisted of 157 images from randomly selected
date and the landmark points were manually annotated for all of them. The annotated
points were the four corners of license plates (Fig. 5.14). Multiresolution Gabor features
were extracted from annotated locations in the training images and the GMM classifier
was trained for each of them. In the testing Gabor features were computed for all points
and the classifier used to select the highest ranked candidate points. Similarly to the face
detection experiment the localization accuracy was normalized, this time by the average
distance from a corner to the opposite corner of the license plate. The accuracy measure
is illustrated in Fig. 5.14(c) as small circles in the upper left corner of the license plate.

Figure 5.14: (a)-(b) Example images from license plate database with image

feature positions, license plate corners, are marked with green circles; (¢) Demon-
stration of accuracy measure for license plate localization measure (green circles
in the upper left corner corresponding to distances 0.05, 0.1 and 0.2, and the large
circle demonstrates distance 1.0).
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The evaluation set consisted of 247 images from different randomly selected date. The
results with multiresolution Gabor features are presented in Fig. 5.15(a). The tuned
filter bank parameters were m = 2, n = 4, k = /3, frigh = 1/24. The corner points
provided very easily recognizable image features and with the tuned parameters, which
included only two frequencies and four orientations, the results were very good, 93% of
the first ranked image features were correct at the distance 0.05. Examples of detected
license plate features are shown in Fig. 5.16.

The tests were repeated with steerable pyramid and local binary pattern features and
the results are shown in Fig. 5.16(b)-(c). Toth features were used similarly to the face
detection experiment, but the settings giving best results were searched for this test
separately. Gaussian mixture model classifier was used in all cases.

The steerable pyramid (Section 2.3.4) used 3 levels and 6 orientations (5th order filter)
yielding to 18 real values. The images were downscaled to 2—%th size during both training
and detection. The LBP features were computed as in Section 2.3.3: the image features
were collected from 19 x 19 patches around the feature locations in the training set. No
downscaling was needed this time. The formed feature (containing several concatenated
LBP histograms) is a real-valued vector of length 203. The detection was performed as
exhaustive search over all 19 x 19 image areas.
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Figure 5.15: Accuracy of image feature (license plate corner) localization: (a)
Multiresolution Gabor features; (b) Steerable pyramid; (c) LBP. With multires-
olution Gabor features for d = 0.05, the accuracy reaches 93% with only one
(highest rank) image feature extracted.

Conclusions

As a conclusion for this test, multiresolution Gabor features were able to provide very
good results. The presentation power of the steerable pyramid appeared to be be con-
siderably lower, it needed more filter frequencies and still the detection performance was
poor. Increasing the number of filter frequencies, and therefore also the lowest frequen-
cies, were not helpful in this test because the interesting object, license plate, is quite
small and its neighborhood is not very helpful in detecting it. Local binary pattern
features gave better results than the steerable pyramid, but were still behind multires-
olution Gabor feature results. The results with LBP features could likely be improved
further by changing the structure of the features, i.e., using other area size than 19 x 19



92 5. Experiments and applications

Figure 5.16: Examples of extracted features with multiresolution Gabor image
features (left upper corner: blue, right upper corner: green, left lower corner: red,
right lower corner: cyan, 5 best features for each class numbered from 1 to 5): (a)
night scene; (b) day scene.

and using different pattern of LBP histograms extracted from the area. However, tuning
those settings is unintuitive and classifying long feature vectors would still be inefficient.

5.4 Visual object categorization using self-organization
Description

Visual object categorization was studied in [34]. The object categorization was performed
using the same data used in face detection in Section 5.2.

The categorization was based on multiresolution Gabor features computed at annotated
locations and the spatial relationships between annotated locations. Multiresolution Ga-
bor features can accurately capture local image information and in addition, original
information can be reconstructed (see Section 3.1.5). A complete object can be rep-
resented by combining several local desctiptors and their spatial locations. A spatial
constellation model together with multiresolution Gabor features provides a basis for an-
alyzing the visual appearance and its variation over any real objects. The self-organizing
map provides a tool for unsupervised categorization of objects. The main goal was to
study the proposed model in the context of automatic categorization and visualization,
and investigation of model capability to explain visual similarities of natural objects,
human faces.

Related research

Since the introduction of the basic self-organizing map (SOM) method by Kohonen [47]
its characteristics have been under active research. Self-organization has been offered as
a solution for explaining the organization of information processing in the brains. The
same hypothesis could apply to visual information and its processing in the human visual
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system. However, one of the main problems has been a lack of robust representation of
visual appearance which could allow meaningful organization.

Due to the Gabor filter’s correspondence to the human visual system and the SOM’s
ability to self-organize information hypothetically similarly to human brain, it is not
a surprise that combining Gabor filters and SOM have been proposed before. Gabor
filters in a multiresolution stack have been utilized to represent visual information and
used with the SOM in several studies [93, 72], but they have treated spatial information
very coarsely. A large amount of receptive field responses covering a whole image has
been claimed to overcome the problem of poor spatial localization of each response. The
problem however is severe, a small spatial change may appear as a large change in feature
values (e.g., a misaligned face). Moreover, a degree of allowed spatial changes and local
distortions cannot be restricted without a spatial constellation model.

Object categorization with the self-organization over visual appearance is the basis of
the well-known PicSOM method [49], but the PicSOM also suffers from the same basic
problem. The PicSOM utilizes global feature histograms making the method unable to
account for spatial changes.

Suitability of Gabor based receptive field responses in categorization by self-organization
have been demonstrated by Lampinen et al. [51]. They however discarded the phase
information of (complex) Gabor filters which is important for local appearance, and their
study considered the categorization only for local object parts, not complete objects.

Methods

The representation of local appearance is based on multiresolution Gabor features, Chap-
ter 3, which are utilized similarly to the object detection and localization method pre-
sented in Chapter 4. Multiresolution Gabor features have an useful property, they can
be used to reconstruct the original image.

Successful categorization requires information of both the local appearance variation and
the global spatial variation of local parts. To form a proper input for the SOM the local
appearance descriptions and their spatial constellation must be combined to a fused
feature structure. A feature vector can be constructed by concatenating responses of
local parts (the feature matrix in (3.8)) into a vector. The spatial information can be
fused by simply adding the coordinates of the corresponding parts into the same vector.
Spatial normalization is needed, i.e. a fixed origin must be defined, in order to prevent
distortions due to the variation in location, scale and orientation (see Fig. 5.17). However,
the scale variation can be natural in certain cases (e.g., large vs. small faces).

The basic SOM method is based on the Euclidean distance, and therefore, scaling of
all variables should be similar, or otherwise variables with large values dominate the
self-organization process. The problem can be solved by normalization. The Gabor
responses and coordinates by themselves do not require normalization, but when they
are concatenated into one feature vector their relative weights must be adjusted. The
weighting depends on total combined magnitude of the local receptive field responses and
the scaling of coordinates.
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Results

The object categorization method was tested using frontal face images from the XM2VTS
database (see Section 5.2 for further details). The method should categorize faces so that
similar faces are near each other. This can be visualized in two ways: use of the raw
neural weight information and the reconstruction property of Gabor features or find the
closest matching faces.

Multiresolution Gabor features were computed using 5 different frequencies down from
the highest frequency fpax = 11—0 with a scaling factor k = v/3, and 6 orientations forming
a 6 x 5 feature matrix, (3.8). The matrices from 10 image points were concatenated to a
single feature vector of 300 dimensions. In addition, locations of the 10 image features,
a constellation model, were added to the vector resulting in a total of 320 dimensions
representing visual appearance of each face. The location coordinates were normalized
since faces can be in any location and pose. A straightforward method was used by
normalizing the coordinates to a form where the middle point between eyes is located in
the origin, (0,0), and the rest of the coordinates are scaled and rotated in order to set
the eye centers to the coordinates (—0.5,0) and (0.5,0). An example of the normalized
spatial configuration can be seen in Fig. 5.17.

Figure 5.17: Example of the spatial model configuration normalized by the
distance and angle between eye centers. Frontal face with 10 salient image features
(left and right outer eye corners, left and right inner eye corners, left and right
eye centers, left and right nostrils, and left and right mouth corners).

The SOM method was applied to feature vectors of all 600 training images. A rectangular
SOM of size 17 x 13 was used. The unified distance matrix of the SOM is visualized in
Fig. 5.18. Large values (light colors) in the distance matrix represent large changes
between neighboring cells of the map. Respectively, the dark colors denote relatively
similar values in the corresponding area of the map.

Due to the reconstruction property of the appearance model it was possible to visualize
raw faces formed by the SOM. In Fig. 5.19(a) reconstructed faces from the SOM are
shown; note that only every fourth cell is presented. In Fig. 5.19(b) are shown the closest
matching faces from the XM2VTS database. The connection between the distance matrix
in Fig. 5.18 and the both reconstructed and closest matching faces can be clearly seen:
the distance matrix is dark (i.e., the changes are small) for the most part except for
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Figure 5.18: Unified distance matrix of 17 x 13 SOM. Bright shades denote large
changes in map values.

the top right corner where the bearded men seem to belong. Overall, there is a clear
trend that feminine faces are in the bottom left corner and there is a gradual change to
masculine faces in the top right corner.

Next, the SOM was used to categorize individuals to similar visual appearance classes.
The local image features and spatial constellations were calculated for all images in the
XM2VTS test set and the best matching SOM units were searched. In Fig. 5.20 are
shown faces belonging to the same best matching unit, i.e, faces having a similar visual
appearance. Note that the examples may include the same person several times since the
XM2VTS includes several images of each person. The formed categories can be easily
interpreted: the category in Fig. 5.20(a) includes older men with eye-glasses and/or
beards, and the category in Fig. 5.20(c) includes only women. However, the gender
is not the discriminative factor in all cases as can be seen in Fig. 5.20(b), where the
category includes both women and clean-shaven men with the common factor that none
have eye-glasses.

Conclusions

This experiment addressed the problem of finding categorical similarity between visual
appearance of real objects. The similarity enables automatic categorization of visual ob-
servations: formation of object groups via their natural self-organization. Multiresolution
Gabor features were used to extract and represent local appearances, and the the local
appearances were connected by a spatial constellation model. A fused representation was
formed which combines both appearance at a local level and global spatial variation to
a single feature structure. The representational power of the proposed structure was in-
vestigated by performing a self-organization with the self-organizing map method. From
the experimental results on face images it can be seen that the structure encapsulates
the visual appearance leading to a natural self-organization of visually similar objects.
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Figure 5.19: (a) Reconstructed raw visual appearances from cells of the 17 x 13
SOM (only every fourth face is shown); (b) The closest matching faces from the
database.
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(c)

Figure 5.20: Examples of unsupervisedly found visual appearance categories
(face classes). (a) Older men with eye-glasses or beards; (b) Women and clean-
shaven men without eye-glasses; (c) Women.
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5.5 Fault detection in electrical motors
Description

Automatic fault detection was studied in [37]. This study was not directly related to
the more general topic of image features, but multiresolution Gabor features were used
with 1D signals for fault detection in electric motors. Two-classes of signals, normal and
damaged, were used during training and new signals were to be classified in these classes.
Measurements were very noisy and damage was visible only at some frequencies. To ease
the work of the classifier, the Gabor filters with maximal separation between normal and
damaged classes were first searched.

Automatic condition monitoring and diagnosis are important in industrial installations
where a high degree of automation is desired. Automatic monitoring can be used to
detect and recognize system faults, such as motor failures, where an early warning could
prevent escalation of the problem. This is the case for example in motor bearing damage
detection [78, 91].

A diagnosis method was proposed to find discriminative regions, bands, from frequency
content of the two classes of signals (normal /damaged) and to classify new measurements
to these classes. The proposed method is useful in cases where there are measurements,
but the physical characteristics of failures are not known. A sufficient amount of mea-
surements from the both normal and damaged classes are needed in order to find the
most discriminative features, but the case where there are measurements mainly from the
normal class is of special importance. In practice, measurements from failure conditions
cannot be comprehensive because measuring signals from various failure modes is too
expensive to realize.

Methods

Two sets of signals, zx(t) and yg(¢), represent examples from two classes, C7 and Cjy,
respectively. The sub-index k denotes a measurement number, £ = 0,1,..., N7y — 1
for C; and k£ = 0,1,...,No — 1 for C5. It is assumed that the signals are measured
during a stationary system mode, i.e., system parameters such as rolling speed and load
are constant. Now, the discriminative information should be present at some frequency
band and it is sufficient to apply a band-pass filter ¢ (¢). In a stationary system mode
the time information can be ignored and a global feature, such as a power spectrum can
be utilized. The selection of the best features is reduced to finding the optimal values for
the central frequency f and bandwidth ~ of a band-pass filter. The normalized Gabor
filter (3.1) was used as the band-pass filter.

If there are several frequency bands where the contents of the classes C; and Cy are
dissimilar, then the band where the separation of the classes is most evident should be
selected. The first-order statistics approach is not sufficient since it simply selects the
frequency band where the distance between the expectations is largest, but neglects the
variance information, and a significant overlap of the class probabilities may exist [54, 45].

It was assumed that the features are extracted from signals measured during a constant
operation mode where variance in the measurements is supposed to be caused by a
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large number of unknown independent sources. The form of the probability distributions
is therefore assumed to be Gaussian and the classes can be uniquely defined by their
expectations, p, and p,, and variances, o2 and 05. For Gaussians Fisher’s discriminant
ratio (FFDR) can be used to measure the distance between the distributions [70]

_ 2
FDR(p, (n),p, (n) = L0 (5.1

Using the divergence measure in (5.1) the discriminative energy function can be defined

) p=1 (7(/% _“y)z)Q . (5.2)

2 2
2 oz + oy

Using the discriminative energy function (5.2) the frequency f and bandwidth ~ of the
band-pass filter in (3.1) can be optimized. Single or several frequencies can be selected.
For the two classes GMMs (Section 4.2) are estimated and then Bayesian classification
is used [84]. However, the quality or number of failure measurements is not usually
sufficient or does not cover all failure states. In that case the classification should be
based only on the probability distribution of normal condition measurements. Therefore,
one-class classification with only the GMM of the normal class was used.

Results
INDUCTION MOTOR BEARING DAMAGES

Induction motors have been a widely studied subject of condition monitoring [91, 5]. An
important sub-category of induction motor failures are bearing damages, which can be
detected from vibration, acoustic noise, temperature, or stator current signals. Bearing
damages are attractive for evaluating the proposed method since characteristic frequen-
cies of damage appearance can be analytically solved and compared to automatically
found frequencies.

BEARING DAMAGE DETECTION BASED ON THE STATOR CURRENT

The stator current data consisted of stator current signals measured from motors in a
normal condition (C7) and motors with bearing damage (C2). The measurements con-
tain two cases: no load connected to motors and with a full load. In these experiments
the classification was performed using the Bayesian classifier, which requires examples
from both classes, and using one-class classification with the confidence based limit (Sec-
tion 4.2.2), when failure measurements are not needed. The pdf limit was calculated
from the normal class training data so that the whole training set was accepted, and the
pdf values lower than that were classified as a failure.

For motors with no load discriminative energy E and classification results are presented in
Fig. 5.21. The discriminative energy had its maximum near the first harmonic (202 Hz) of
the characteristic frequency (101 Hz). Also both classification schemes had the maximal
accuracy at the same frequency band.
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Figure 5.21: Discriminative energy and classification accuracies for motors with
no load.

For motors with a full load, results are shown in Fig. 5.22. This was a more difficult
situation since the full load caused various disturbances, but still, the characteristic
frequency (101 Hz) and some of its harmonics contained discriminative information.
Classifications succeeded at the same frequencies, but due to disturbances the accuracy
decreased.
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Figure 5.22: Discriminative energy and classification accuracies for motors with
full load.

Using both the Bayesian classifier and the one-class classifier the same classification
accuracy was achieved at the most discriminative frequencies.

The test was repeated for the full load dataset using six of the most discriminative
frequencies and Gaussian mixture models to estimate class pdfs. The results for both the
Bayesian classifier and one-class classifier are presented in Fig. 5.23 as an ROC (receiver
operating characteristic) curve for different confidence levels. Only normal condition
measurements were used to form a pdf and confidence was used to decide between normal
and failure conditions. From the curve it can be seen that by decreasing the confidence
more normal condition measurements were correctly identified (true positives), but also
an increasing number of failure conditions were considered as normal (false positives).
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The optimal trade-off depends on the application. On the other hand, there was only a
minor difference comparing the results where also the failure condition pdf was used in
Bayesian classification (a priories were estimated from the training set, which does not
correspond to real situations).
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Figure 5.23: Receiver operating characteristic (ROC) curve for using confidence
for classification of motor failures.

COMPARATIVE RESULTS

The experiments were repeated by utilizing the analytically calculated characteristic fre-
quencies as reported by Yazici and Kliman in [91]. For the characteristic frequencies
and our approach the results are shown in Table 5.1. Classification was done using the
Bayesian classification. The three most discriminative frequencies were used for classifi-
cation both separately and combined, and the results were compared to the classification
results using the characteristic frequencies. Characteristic frequencies provided an accu-
racy of 97.5% correct classification for a motor with no load. The most discriminative
frequency of E provided the same accuracy, but 100% accuracy was achieved with a
combination of the three most discriminative frequencies. For a motor with a full load
classification with the characteristic frequencies provided an accuracy of only 66.8% while
the three most discriminative frequencies provided a slightly better classification result,
72.1%.

Utilizing the most discriminative frequencies of F a better accuracy was achieved than
with the computed characteristic frequencies as used in the literature. It seems that some
of the harmonics include noise which harms the classification.

Conclusions

Here, automatic motor condition diagnosis was studied: methods on how to automati-
cally select the most discriminative features and how to classify new signals were investi-
gated. In addition to this, the case where the amount of failure condition measurements
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Table 5.1: Classification results using calculated characteristic frequencies and
the three most discriminative frequencies of F.

No load Full load
Freq. Correct Freq. Correct
Char. freq. 97.5% 66.8%

1st peak | 206.3 Hz 97.5% | 100.1 Hz 69.3%
2nd peak | 23.6 Hz 87.9% | 206.3 Hz 77.9%
3rd peak | 383.6 Hz 91.4% | 403.9 Hz 68.6%
Combined 100.0% 72.1%

is not sufficient was considered and one-class classification was used. The classification
succeeded using the discriminative discriminative frequencies with both Bayesian classi-
fication with two classes and with one-class classification using only the normal class.

5.6 Summary

This chapter presented the experiments. First was the main experiment, face detection,
with two different datasets. The experiment was about localization of landmark positions
in the face, eye-centers and corners, nostrils and sides of the mouth. The experiment
was repeated with two different filter bank settings of multiresolution Gabor features,
local binary patterns and steerable pyramid filters. As a classifier, the Gaussian mixture
model based one-class classifier and the v-SVM one-class classifier were used. Results
were good and the combination of the multiresolution Gabor features and GMM classifier
gave the best results in nearly all tests. Another similar experiment was localization of
the corners of license plates and the results were very good for the proposed method.
Two different but related applications were also presented. The first was about visual
categorization of objects using self-organization and the second about fault detection in
electical motors.



CHAPTER VI

Discussion

The objective of this thesis was to study and develop local image features usable in an
object detection and localization method. Many of the currently popular methods are
semi-supervised, they require only labeled training images to learn object class. However,
semi-supervised methods cannot guarantee good localization performance, and therefore
a supervised approach was the main interest in this thesis. The current methods are
often based on separate interest point detection and local image description steps, and
they both can be considered separately. Complete object detection methods combining
interest point detection and local image description were introduced and briefly experi-
mented.

The method presented in this thesis is based on an approach which combines the interest
point detection and local description into one step, complete image feature detection.
We proposed the combination of multiresolution Gabor features and a one-class classifier
based on Gaussian mixture models (GMM). The method can be trained with manually
annotated landmark positions. The local image feature detection method was tested
in two main applications: face detection and license plate detection. Face detection
provided excellent results with XM2VTS image database, and good results with a much
more challenging BANCA database. For license plate detection a commercial database
was used, and the results were almost perfect.

One of the main problems has been the low computational efficiency of the multiresolution
Gabor features, and therefore a major objective and contribution was to study efficient
implementation of multiresolution Gabor filtering. Improving the efficiency also provided
better results, since tuning the parameters became feasible in the experiments.

Other possible local description methods were also tested as an alternative for multires-
olution Gabor features. The limiting factor for many descriptors remains computational
heaviness: with this image feature localization method exhaustive search is used and the
descriptor should be quick to compute and to classify. Usually the descriptors are used
after interest point detectors, in which case the computational complexity is of less im-
portance. Two alternatives were tested, steerable pyramid and local binary pattern based
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features. The flexibility of multiresolution Gabor features provided better localization
results in both face and license plate detection tests.

An alternative to a GMM classifier was tested. The limitation here is that a one-class
classifier is used to be able to omit the background class, the class representing everything
else but the searched image features, and one-class classifiers are not as completely studied
field as normal two-class classifiers. A support vector machine (SVM) based one-class
classifier was used as an alternative, as one of the main problems of the GMM classifier
can be its ability to represent occasionally very complex distributions of multiresolution
Gabor features, given limited training data. The SVM classifier was able to surpass the
results of the GMM classifier in some of the tests, but with the price of being slower and
the difference in classification performance was not dramatic.

The data used for supervised object detection and localization experiments was also used
for object categorization. Local image description and the spatial relationships between
marked landmark positions was used to categorize face images to visually similar clusters
using the self-organizing map. The categorization method was able to create natural
categorization of similar faces.

Gabor features and one-class classification were also applied to a completely different
application area, fault detection in electric motors. In this application a failure in an
electric motor must be noticed based on measurements of stator current. There are var-
ious failure modes and they all cannot be reliably measured and included in the training
data, and therefore one-class classification is useful. Tests were performed with data
gathered from motors in normal condition and with a bearing failure. The classification
results were good and in accordance with the theoretical results.

Overall, the proposed image feature detection and localization method performed very
well. However, this thesis did not include one important part of a complete object de-
tection method, the spatial model combining detected local image features, only the
performance of local image feature detection was studied. The requirement of manually
marked landmark positions in the training data is also a severe constraint for a generic
object detection method. This requirement is not easily removed without giving up the
main benefit, ability to exactly locate objects by using high quality local image features
learned from manually marked landmark positions. Still, by combining our proposed im-
age feature method with a spatial constellation model the localization accuracy challenges
that of the current state-of-the-art methods.
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APPENDIX

I Analytical solutions for filter spacing formulas

The parameter equations for filter frequency spacing and filter orientation spacing were
presented in Table 3.1 and Table 3.2. How these equations were solved is presented here.
Analytical solutions to filter spacing formulas are for a multiresolution Gabor filter bank
using parameters shown in Table 1. Note that while p is used for filter overlap in both
filter frequency and filter orientation formulas, the value does not have to be the same.

Table 1: Parameters of a multiresolution Gabor filter bank.

Parameter | Description
P Crossing point between adjacent filters
k Scaling factor for filter frequencies
¥ Filter sharpness along the major axis
m Number of filters at different frequencies
fmin Tuning frequency of the lowest frequency filter
Smaz Tuning frequency of the highest frequency filter
n Filter sharpness along the minor axis
n Number of filters in different orientations

Filter frequencies

Using equation for 1D Gabor filter in frequency domain, (3.2), a point u, can be solved
where the value of the equation is p. Consecutive filters cross in a place where both of
their values are equal to p (see Fig. 1).

Ulu) = e_(%)Q(u“_fU)zzp

- ua_f0<1i%r\/Tnp), (1)

which corresponds to two adjacent filters at frequencies fy and fo/k. Therefore,
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Figure 1: Fixed frequency factor k = v/2 and overlap value p = 0.2.

_1+#\/Tnp

k= . 2
1—%\/—111;) @

On the other hand k and p, filter frequency scaling factor and crossing point between
adjacent filters, are specified, v can be solved from (2):

™

1 /k+1
=2 () v 3)
Also p can be solved from (2) when « and & are known as
k—1)\2
p= e_(wm) . (4)

Additionally, we might want to solve k when fo = fiaz, frn—1 = fmin and m are given:

1
fmin = Jm—1 fma;ﬂ

_Infpmin=In frmax

= k=e — mI . (5)
Also an indicative value for m can be solved from (5) based on fiaz, fmin and k,

1 min_l max
m =S Bfmaz g (6)
Ink

The exact value returned by the equation is not usable directly because m is an integer.
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Filter orientations

The minor axis sharpness of a 2D Gabor filter, 7, can be calculated based on the number
of orientations and required overlap. In Fig. 2 a diagram of two Gabor filters in the
frequency space is shown. Note that these filter overlap equations are approximations.
To get an accurate overlap value, 2D equation of Gabor filters should be used as the
whole elliptical filter envelope affects the overlap. However, the overlap equations would
be then more complex as both filter bandwidth values, n and -y, are needed. Therefore,
as the difference between results of accurate and approximate equations is not large in
general, these approximate equations considering only minor axis bandwidth 7 are used.

A

Figure 2: Two Gabor filters with different orientations in the frequency space.

Solving 7 is based on (3.2) with a crossing point p between two filters in adjacent orien-
tations:

U(u) = e_<%)2u§_p
L (7

Now, up can be solved from u;, = tan (%) fo , where n is the number of filter orientations.
However, this creates needlessly wide filters when the number of filter orientations is
small, n < 4. Another possibility is to use an approximation for u, by dividing the

circumference of a circle by a number of filters, u, = 7;—{1“ Therefore, n can be solved to
either
1 y/=Inp 14/~ Inp (8)
_Wtan(%) n_w 5 '

When the number of orientations, n, is large, n calculated by both of the equations
approaches the same value, but with a small n, the first solution for u; leads to needlessly
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wide filters, so the latter equation is preferred. With an approximate for u; p can be
solved from (7) as

’771'2 2
py = e (%7) (9)
Additionally an indicative value for n can be solved based on p and 7,
2 2
oo ) (10)

The actual value must be an integer.
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