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Abstract

Ville Kyrki

LOCAL AND GLOBAL FEATURE EXTRACTION FOR INVARIANT OB-
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Perceiving the world visually is a basic act for humans, but for computers it is still an
unsolved problem. The variability present in natural environments is an obstacle for
effective computer vision. The goal of invariant object recognition is to recognise objects
in a digital image despite variations in, for example, pose, lighting or occlusion.

In this study, invariant object recognition is considered from the viewpoint of feature
extraction. The differences between local and global features are studied with emphasis
on Hough transform and Gabor filtering based feature extraction. The methods are ex-
amined with respect to four capabilities: generality, invariance, stability, and efficiency.
Invariant features are presented using both Hough transform and Gabor filtering. A
modified Hough transform technique is also presented where the distortion tolerance is
increased by incorporating local information. In addition, methods for decreasing the
computational costs of the Hough transform employing parallel processing and local in-
formation are introduced.

Keywords: feature extraction, invariant object recognition, Hough transform, Gabor
filtering, computer vision, image analysis
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a(k) Fourier descriptor

glx] transformation belonging to group G acting on signal z
H(p,0) Hough transform accumulator

Mipq geometric moment of order (p + ¢)

e (t) response of 1-d Gabor filter

re(z,y) response of 2-d Gabor filter

T{z} measurement of signal

§{f} Fourier transform of f
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10) moment invariant

P(t) 1-d Gabor elementary function

Y(x,y) 2-d Gabor elementary function
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U(u,v) 2-d Gabor elementary function in Fourier domain
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Gabor elementary function
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CHAPTER [

Introduction

Efforts have been made over many years to equip computers with vision. Object recog-
nition is a classical problem in computer vision that aims to categorise objects to known
object classes using a digital image. It can be utilised in a vast number of applications
including industrial, medical, and scientific ones.

Already in 1960, Selfridge and Neisser presented in the context of character recognition
that the formulation of the recognition as a multi-stage process is beneficial [99]. Today,
most recognition systems are based on a sequential model that has at least two main parts:
feature extraction and classification. The goal of feature extraction is to extract useful
information from an input image, which is then utilised to perform the classification.
That is, the digital image is processed in order to find some structure, e.g. edges, which
is then used as the criterion on which the categorisation is based. The feature extraction
and classification are quite often also composed of several sub-stages.

The human visual system is nowadays thought to be a similar multi-stage model with
several levels of preattentive feature analysis at the early stages of processing [107].
As in many other tasks, the skills of a computer and those of a human are largely
complementary in object recognition. Humans can accurately determine the class of an
object among hundreds of others almost regardless of the viewpoint, illumination, or
partial occlusion. In contrast, in controlled environments computer vision can tirelessly
find flaws in complex manufactured products that would not appear to a human observer.

The main difference between the capabilities seems to result from the fact that the
machine is almost unerring in a controlled environment where it is known what visual
features to seek. On the other hand, in a natural environment the viewing conditions
vary, which is a remarkable problem for computer vision. For example, the object may be
viewed from a different pose or the lighting may change. Thus, the problem of invariant
object recognition is to recognise objects despite these variances.

Not much has changed since 1978 when Granlund [35] referred to feature extraction
methods as “a bag of tricks” since a method is often chosen based on experience seemingly
without explicit reasons. Nevertheless, the feature extraction method selected has a
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fundamental effect on the characteristics of a recognition system. Feature extraction can
play different parts in invariant recognition, depending if the feature itself is invariant,
such as moment invariants [39] or the Fourier-Mellin coefficients [18], or if the invariance
is a characteristic of the system, as in labelled graph matching [65]. Regardless of the
role of feature extraction, the following requirements and objectives can be stated: The
system should be general enough to recognise a large variety of objects, invariant to
natural variations, stable against distortions, and computationally efficient.

The aim of this thesis is to study some feature extraction methods that can be applied to
invariant object recognition. While in general, invariant object recognition encompasses
variations caused by the three-dimensional structure of the world, this thesis is limited
to the study of two-dimensional variations. In addition, the methods presented assume
that the object to be recognised has been segmented from the background, and that only
a single object is considered at a time. Two well known feature extraction methods, the
Hough transform (HT) and Gabor filtering, are examined and improved to be suitable
for invariant recognition. Primarily the shape of the objects is inspected as it is supposed
that the shape includes enough information for successful recognition. For that reason,
the scope of the thesis is limited to two-dimensional gray level images and the methods
presented are primarily applicable to man-made, geometric objects, where the object
shape can be efficiently modelled.

The thesis is divided into five chapters. In Chapter 2, the role of invariance in object
recognition is examined. Next, two feature extraction methods are presented and applied
to object recognition, namely, the Hough transform in Chapter 3, and Gabor filtering in
Chapter 4. Finally, the discussion and conclusions are presented in Chapter 5.

Summary of publications

In Publication I a new method for locating line segments was proposed. The method
is an extension of the Randomized Hough transform (RHT) which exploits connectivity
for the estimation of local structure of the image. The experiments indicated that the
method was more tolerant to missing data when compared to its predecessor. The author
of this thesis participated in the development of the method, performed the programming
and the experiments, and wrote the major part of the publication.

In Publication II a system of inspecting two-dimensional planar objects was proposed.
The inspection is based on a CAD model of the part. The system first estimates the
position of the part followed by a local measurement of each feature. In the experiments,
it was found that calibration was the most limiting factor for the accuracy of the system.
The author developed the system, performed the experiments, and wrote the major part
of the publication.

In Publication III two new methods for matching binary images were presented. The
methods use the Hough transform to extract prominent line features which are then
used to find matching images. The author participated in the method development, the
experiments, and writing the publication.

In Publication IV the use of Gabor filters as direction sensitive edge detectors was stud-
ied. A translation, rotation, and scaling invariant distance measure was proposed for the
Gabor features. Experiments were performed on images of digits to study the represen-
tation power of the features. The author participated in the development of the method,
programming, experiments, and writing of the publication.



In Publication V the Gabor feature was applied to matching of binary line-drawing
images. Rotation and scale invariance was demonstrated together with very good noise
tolerance against salt-and-pepper noise. The author of the thesis participated in the
development, programming, experiments, and writing of the publication.

In Publication VI the performance of the Hough transform was inspected in affordable
parallel environments. A parallel HT algorithm was developed suitable both for shared
memory multiprocessors and distributed memory workstation networks. Also, parallel
implementations of the Randomized Hough transform were proposed. The approaches
improved the performance notably compared to a sequential algorithm. However, the
approaches did not seem to be suitable for large scale parallelisation. The author of the
thesis developed the methods, participated in the programming and the experiments,
and wrote the major part of the publication.
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CHAPTER 11

Invariance in Object Recognition

The fundamental problem of object recognition is to analyse an image and provide a
high level symbolic representation of its contents. Each separate object in the image
should be localised, i.e., its location should be resolved, and classified, assigned to a
specific category. In addition to the three-dimensional structure of an object, there are
several other factors that affect the image of the object, for example, lighting, perspective
projection, and sensor noise. Invariant object recognition aims to solve the problem
despite these variances. In this work, the focus will be on recognition of objects based on
their shape because the shape is fairly independent of phenomena such as illumination,
contrast, and colour.

In this chapter, invariance in object recognition is discussed. The first section deals
with the role of invariance in general, concentrating on the definition, taxonomies, and
advantages. Next, variations occurring in natural images are examined to define more
precisely the types of invariance necessary for object recognition. In order to discuss
invariance, the idea of a class is also considered. After that, two groups of methods
for invariant object recognition are discussed. First, global invariants and invariant
transforms are presented, forming the oldest approach to invariance in computer vision.
Second, the use of local features and matching is considered. Finally, the role of invariance
in human visual perception is briefly discussed.

2.1 The role of invariance

The term invariant refers to a representation of a signal that is constant under some
transformation. For example, the measurement 7" of a signal z is invariant under trans-
formation g when [68]

T{x} = T{g[x]}- (2.1)
Using group theory this definition can be extended [29, 129]:
Assume that there is a group G which acts upon the set X of possible signals. Let T
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denote the action of measurement. Then, if
T{glz]} =T{x}h(g) Vg€ G,z € X, (2.2)

T is invariant under the action of the group. The group G can be, for example, the
group of translations. h(g) is a function of g alone. If h(g) = 1, T is a scalar invariant
[29], as in (2.1). For example, the Fourier transform is invariant under the group of
translations, while its amplitude is scalar invariant. Invariants can be categorised as
strong and weak, according to whether the degree of the action g can be measured
from the invariant representation. The representation is called strong if it contains a
component that explicitly encodes the degree of transformation [16]. Thus, according to
this definition, scalar invariants are weak invariants.

In computer vision and object recognition, invariants provide a method to measure images
while keeping the measurement unaffected by known deformations or variations. For
example, in image databases, geometric invariants can be used for indexing the database,
allowing the retrieval of an image despite geometric transformations. It has been argued
that object recognition is the search for invariants [127]. However, in this work, the
emphasis is not on the construction of invariant features, but on methods that allow
object recognition in the presence of variations. This distinction is important because
invariant recognition is possible without explicit invariants.

There are several taxonomies for invariant recognition. According to Wood [129], there
are two broad approaches: (1) Distinct feature extraction and classification; and (2)
parameterised invariants. In the first approach, each feature is itself invariant and the
classification can be performed based on the features without considering the symmetries
in the features. With parameterised invariants, the parameters of the invariant are
adopted to perform the classification. Invariants can also be classified as global and
local. Global invariants use the knowledge of a shape as a whole, while local ones are
based on local properties such as curvature. Most global invariants belong to the class
of distinct feature extraction and classification. When considering invariant recognition
of shape, the methods can also be classified as either region- or boundary-based [57].
Region-based methods use the whole region under consideration for determining the
feature while boundary-based methods consider only the outer boundary. However, this
taxonomy applies specifically to the global invariants of binary images and for that reason
many methods cannot be classified using it.

2.2 Variation in natural images

In this thesis, it is assumed that all objects representing a class are rigid and visually
similar to a very high degree. Thus, the intra-class geometric variations are very small
compared to the inter-class variations. In practice this means that only rigid objects
are considered. In addition, the classes are assumed to be disjoint, that is, each object
can belong to a single class, and there is no class hierarchy similar to the human visual
system. Based on these restrictions, the variations are now examined.

The process of imaging an object has a number of sources for variation in the result im-
age. Wechsler [126] states that the variability is due to perspective, changing orientation
and scale, sensor noise, occlusion, and illumination. Buhmann [15] gives the following
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list of variations: pattern translation, pattern distortion, perspective distortion, varia-
tion in background, partial occlusion, change in pattern size, change in orientation, and
change in lighting. The variations can be categorised according to the cause. First, the
three-dimensional position of the imaging equipment with respect to the object. Sec-
ond, the change in environment, primarily the lighting, but also encompassing changes
in background. Third, noise in the imager and in the environment. Fourth, the occlusion
of the target object by other objects. Traditionally, the study of invariants has focused
on the geometric variations, but it is important to note that while geometric variations
are important when describing the perspective projection of image formation, they are
only one class of image variation.

Geometric variations can be further categorised based on the allowed transforms. The
simplest variation is the translation of the object in the image. Translation together
with rotation forms the group of Euclidean transforms. Including isotropic scaling gives
the group of similarity transforms. The group of similarity transforms can be used to
describe the projection of a planar object which is orthogonal to the optical axis of the
imager. Similarity transforms are extended by allowing non-isotropic scaling and skewing,
forming the group of affine transforms. The most general group of geometric transforms
is the group of projective transforms, which represents perspective projections.

Changes in environment and the effect of noise are sometimes neglected in the study
of invariant recognition, although they definitely have an effect on applications. The
issue of nonuniform illumination is usually considered separate from other invariances,
but recently it has been proposed that geometric and illumination invariants should be
treated together [1]. In the methods presented in this thesis, the objects are, however,
assumed to be segmented from the background, as stated in the introduction.

In complex environments, invariant recognition in 3-D is also highly dependent on an
efficient world model. Without a model that can explain the overlap of objects, the
problem of occlusion is very likely to be impossible to solve. Also, the world model can
give valuable cues for segmentation, especially in multi-object cases.

The robustness of an object recognition system is an important consideration. To be effi-
cient in applications, invariant recognition has to be stable, general, and computationally
efficient. Stability means that small changes in environment should not have a remark-
able effect on the result because in natural scenes several types of variations are likely
to occur. In addition to invariant recognition, the system should be able to characterise
the variability because the variability itself carries important information [126].

2.3 Global features and invariant transforms

The two most famous invariant transforms in image processing are based on moments
and the Fourier-Mellin transform. Moment invariants, presented by Hu in 1962 [39], are

the first general invariants. The geometric moments of order (p + ¢) of f(z,y) can be
defined as

o0 o0
Mpq = / / xpyqf(xvy)dxdyv p,q= 07 1727 Tt (23)
—o00 J —o0
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By shifting the image centroid to origin, central moments f,, can be defined as

o= [ [ -0 -9 s dedy (2.4)

where the origin is (Z,7) = (mi0/moo,mMo1/moo). Central moments can be normalised
to obtain scale invariance as

7
Mg = =%, v=(p+q+2)/2. (2.5)
Moo

Hu presented that certain combinations of the normalised central moments are invariant
under the class of similarity transforms. The Hu’s moment invariants up to third order
are

¢1 =120 + "oz

3 = (20 + no2)” + 4ty

¢3 = (130 — 312)” + (103 — 3121)”
61 = (130 +112)° + (103 +21)°
¢5 = (

‘ ‘ (2.6)
n30 — 3112) (30 + M12) [(1730 + 7712)2 —3(na1 + 7703)2] +

(n03 — 3n21) (03 + 7M21) [(7703 + 7721)2 =3 (m2+ 7730)2]
b6 = (120 — 102) [(7730 +m2)” — (o3 + 7721)2] +4n11 (30 + m2) (103 + 121) -

Geometric moment invariants do not decode the degree of transformation and are there-
fore scalar invariants. Affine invariant combinations of geometric moments were intro-
duced later in [96]. A treatise on moment invariants can be found in [108] where several
types of moments are analysed, in addition to the geometric moments by Hu. Zernike
and pseudo-Zernike moments were found to have the best overall performance [108] in
terms of noise sensitivity, information redundancy, and image representation capability.
Surveys of moment based techniques for object recognition can be found in [95] and [5].

The Fourier-Mellin transform was presented in the context of invariant recognition by
Casasent and Psaltis in [18]. The Fourier transform can be defined as

S =Fo = [ h / " fy)e ) g dy (27)

where j is the imaginary unit. It is translation invariant since

3{f(x+xo,y+yo)}=/ / f@ + o,y + yo)e 2 =) dy dy

_ ej27r(uzo+vy0)g {f(x, y)} )

Thus, the amplitude is invariant to translations while the phase shift codes the degree of
translation. Mapping the amplitude into log-polar coordinates transforms rotation and
scaling into translations [126]:

(2.8)

f = tan~"

t = log (\/u2 + u2) . (2.9)

gls
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Applying the Fourier transform again and rejecting the phase gives a signature that is
invariant to translation, rotation, and isotropic scaling, that is the class of similarity
transforms. This process is known as the Fourier-Mellin transform. Using a log-log
mapping of the frequency space instead of the log-polar one,

s =logu t =logwv (2.10)
makes the result invariant to anisotropic scaling, but the rotation invariance is lost [123].

Moment invariants and Fourier-Mellin signatures are both region based methods of de-
scription. Several global contour based invariants have been proposed, the most notable
being perhaps the Fourier descriptors [133]. The list of points representing a closed object
boundary can be presented as a complex function of one variable as

u(n) = x(n) + jy(n), n=0,1,...,N — 1. (2.11)
The discrete Fourier transform coefficients a(k),
N-1 o
a(k) =Y u(n)e "N, k=0,1,...,N -1, (2.12)
n=0

are called the Fourier descriptors. They allow recognition invariant to similarity trans-
forms, since rotation causes only phase shift, translation changes only the DC-component
a(0), and scaling scales the coefficients correspondingly. Fourier descriptors have been
extended to full affine invariant recognition in [2]. Other boundary decompositions have
also been used. For example, a wavelet decomposition of the boundary has been used
to realise similarity transform invariant recognition [111] and full affine invariant recog-
nition [57]. The main problem of the global boundary based methods is that they are
usually restricted to objects which have a single, clear outer boundary.

Neural networks can be also used to obtain invariance in recognition. There seem to be
two general types of neural network approach: (i) using invariant features as input to a
neural network, and (ii) obtaining the invariance in the network by learning [90]. The
former approach does not differ much from conventional invariant feature extraction, but
the latter one is interesting because the invariance is inherent in the network structure
and weights. The Neocognitron model by Fukushima is one of the earliest successful
attempts to perform distortion tolerant recognition [30]. The invariances depend solely
on the training inputs of the networks, and thus the use of learned invariances in general
purpose tasks is not very strongly justified. However, the tangent propagation algorithm,
introduced by Simard [103], trains a neural network to be invariant to a known trans-
formation of input by minimising the gradient of the network in the direction of the
transformation. Thus, the network can be made invariant to analytic transformations of
the input.

Some problems are related particularly to global invariant features. First, global invari-
ants do not tolerate occlusion, as they assume that the whole object or shape can be
observed. Second, global invariants require segmentation if there are regions of the im-
age that do not belong to the object to be recognised. This limitation, of course, can be
overcome by a segmentation, equivalent to object detection [47]. However, it is not clear
if object detection can be performed separately from recognition. Finally, the recognition
of especially complex objects is often sensitive to noise and distortions as a small change
in a part of an image can sometimes cause large changes in the invariant.
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2.4 Local features and matching

The methods for invariant recognition that do not use global invariants will now be
considered. The main body of the research is related to methods that try to achieve
invariance through matching local features to a known model. The methods usually
have two distinct parts, feature extraction and matching. These phases will be considered
separately as they do not usually depend on each other.

The first approach that will be considered, template matching, does not have distinct
feature extraction since the gray-level values are used directly in the matching. It is
worth mentioning as it is one of the oldest techniques for object recognition [97]. In
template matching, the cross-correlation between an image and a template is computed.
The location of the template is then found as the location of the maximum correlation,
and the goodness of the match is related to the normalised value of the correlation.
Template matching does not itself produce invariance to geometric transforms other than
translation. However, rotation invariant recognition has been realised by convolving an
image with a radially symmetric filter to select possible candidates [20]. Also, if the
position of the object is known, rotation and scale invariant recognition is possible in
log-polar coordinates. In addition, template matching is sometimes used as a verification
step after a hypothesis of the object pose has been established. While template matching
can be made more efficient using Fourier and principal component transforms [116] or
wavelet decomposition [114], it is nevertheless usually considered computationally too
costly for invariant recognition because several templates are often needed.

Principal component analysis (PCA) has been applied in object recognition, for example
in the eigenfaces approach [105], but PCA is fundamentally a global method, and thus
does not offer robustness against changes in localised regions. Penev and Atick [89] have
proposed Local Feature Analysis (LFA), which modifies principal component analysis
by deriving local topographic receptive fields optimally matched to the second-order
statistics of input data.

Two basic approaches can be used for the matching of local features between an input and
a model. First, pairwise matching of each feature on the input to a feature in the model,
and second, optimisation of transform parameters that brings the features in the best
match. When the matching of local features is formulated as a graph matching problem,
each feature in the input and the model are encoded as vertices of a graph [11] and the
matching corresponds to finding the subgraph isomorphism where an error function has
its minimum. Finding the subgraph isomorphism is an NP-complete problem, thus there
are no efficient techniques for the general case. However, in image analysis the graphs are
usually topological, that is, they represent the two-dimensional topology of the image,
which reduces the complexity of the matching [15]. The search space can also be pruned
using various heuristics, for example, relative geometric constraints such as distance and
angle between graph vertices [11], matching of the attributes at graph vertices between
the model and the input [42], matching of vertex attributes with a hash lookup [66, 67],
or emphasising the topological coherence [101].

A limited matching procedure can be used to find likely candidates for the transform
parameters as in [131] where only the graph vertices on a convex hull are used in the
preliminary matching, as the points on the convex hull are invariant in affine transforms.
Then, the search through the likely candidates is less exhausting than full search.
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Another formulation for geometric invariants is an optimisation of the transform param-
eters. For the optimisation of parameters, least-squares [67] and evidence gathering [115]
methods have been used. In Publication II, translation and rotation of an object are
solved through the minimisation of the least-squares fitting error between the model and
the input. In evidence gathering, local matching evidences are accumulated to make a
global pose hypothesis. Evidence gathering methods for object recognition include the
Generalised Hough transform (GHT) [4], pose clustering [106], and evidence accumula-
tion [49, 77, 88]. Evidence gathering will be considered further in Chapter 3, where the
Hough transform is presented.

Feature extraction is also necessary for an object recognition system that uses matching
other than template matching. One of the simplest features to use are edge points.
They are often used with Hough transform methods. Interest points, such as curvature
maxima [48] and corners can also be used [131]. Lee et al. propose the use of line segments
[72]. In Publication II, line segments are also used. More complex features like Gabor
filter responses [15, 88] and local Fourier-Mellin descriptors [34] have also been used.
Lowe [77] proposes to use maxima and minima of a difference-of-Gaussian function in
a multi-scale grid to determine interest points, and then use the local gradients of the
neighbourhood as the feature. For the local features, two distinct properties are desired:
distinctiveness against false positives, and robustness against variations [88]. It is clear
that by increasing distinctiveness, robustness is lost, and vice versa. More complex
features often provide more distinctiveness but less robustness and large computational
costs. The most important requirement for a feature is that it should remain the same
regardless of the variations. In addition, it should provide invariant local information to
allow the pruning of the search space.

The problem of partial occlusion can be solved to some degree by a system that achieves
invariance through local features and matching. However, a reliable world model is still
necessary for 3-D inference and missing data handling. The problems that arise in the
matching of local features are often related to computational complexity. For example,
graph matching and Hough transform are both computationally quite expensive because
the search space is large. A second problem is the selection of the local features. An
important question is, which kind of features are able to represent a wide variety of
natural scenes.

In Publication II, a complete recognition system is presented that employs rotation in-
variant template matching for determination of an initial estimate of a two-dimensional
object position. Then, local feature extraction is performed based on the initial estimate
to extract straight edges and circular shapes based on the CAD model of the object.
Finally, a least-squares fitting is performed for the local features and, based on the pose
estimate, the difference between the object and the model is determined for each line
segment and circular shape.

2.5 Object recognition in human visual system

Because invariant recognition is evidently an unsolved problem, it is natural to take a look
at one known solution, the human visual system. It should be noted that the structure
of the human visual system is not completely known and the following theories do not
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Figure 2.1: Four stages of visual processing [86].

capture the full power of shape recognition in human vision. The following theories are,
however, based on observations in cognitive science and psychology.

At least two coincident structures are supposed to appear in the human visual system,
the sequential visual perception process and parallel pathways. Visual processing can be
divided into four stages: image-based, surface-based, object-based, and category-based
[86]. As illustrated in Fig. 2.1, the stages are sequential but feedback may exist to a
preceding stage. The image-based processing is supposed to extract two-dimensional
primitives of the retinal image. The surface-based processing attempts to recover the
properties of surfaces such as local surface orientation and depth. This stage is not fully
three-dimensional but employs local cues about the three-dimensionality, and for that
reason it is often called 2.5-dimensional. The object-based processing is then concerned
with the fact that an object is a three-dimensional entity which can have a totally different
two-dimensional shape from different viewpoints. Finally, the category-based stage is
mainly concerned with recovering the functional properties of an object by placing it
into known categories.

In computer vision, the term classification can be related to either object- or category-
based stages. The categories in computer vision are usually simple and disjoint, while
in the human visual system there is essentially a hierarchy of classes. Thus, a single
object can be categorised at several levels. It has been suggested that there are separate
processes in visual system for different levels. It is also important to note that the focus
of research in the categorisation behaviour of the human visual system has been on the
entry level categories, that is, those categories that can be determined most quickly, while
the computer vision has been traditionally related to subordinate level categorisation,
that is, the categories which are more specific. For example, a typical computer vision
application could be the classification of different types of bottles in a bottle recycling
machine. However, for a person, the entry level class “bottle” would be the most natural
one.

In addition to the sequential process framework, there is physiological evidence that
there are parallel pathways in early visual processing. The proposal suggests that there
are separate pathways for such features as form, colour, motion, and depth [75]. It has
been shown that significant cross-talk exists among the pathways [119], but nevertheless,
parallel processing seems to exist in the lower levels of visual processing.

The issue of object representation in the human visual system is under research but
two main approaches can be seen, structural descriptions and view-based representations
[107, 86]. Structural descriptions describe objects as compositions of three-dimensional
volumetric primitives. The view-based representations describe the two-dimensional ap-
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pearance of the object from a single view, while three-dimensional recognition is incor-
porated by using multiple views.

This thesis concentrates on recognition based on the two-dimensional shape and for that
reason the discussion will be now limited to shape recognition. Palmer [86] approaches
the question of shape recognition from two distinct points of view, shape equivalence
and shape representation. Shape equivalence is the phenomenon that two shapes are
perceived as having the same shape. This theory is mainly concerned with perceived
shape and does not specify the processes that are used in determining the equivalence.
An important finding is that while the perceived shape often does not depend on the
orientation, in some cases it does [79]. Thus, the human visual system is not totally
invariant to rotations even in the categorical level.

Shape representation considers how the shape of objects might be represented within the
visual system and how such representations might be compared. Palmer presents the
following as the four major theories of shape representation: a) templates, b) Fourier
spectra, c¢) feature lists, and d) structural descriptions. It should be noted that none of
these has been accepted generally as the definitive theory of shape representation in the
human visual system, but they provide some insight to the issue of invariance.

Templates correspond closely to the template matching approach in computer vision. In
biological vision, templates are seen as useful in providing simple low-level information
about object parts but lacking the versatility required for the representation of complete
shapes. This is in accord with the methods of local features and matching, where the
local features can be extracted using a template matching type method.

The Fourier spectrum has been suggested as the shape representation [33, 50]. Early
studies suggested the power spectrum as the representation. This corresponds closely
to the use of Fourier transform in computer vision to obtain translation invariance.
However, later studies have revealed that the phase spectrum dominates the perception
[91]. This result may indicate the importance of phase information in Fourier domain
feature extraction in computer vision. However, the existence of localised frequency
sensitive cells has been shown at the lower levels of processing in mammalian visual
systems [40, 41].

The feature lists approach states that an object’s perceived shape can be described by a
set of features, such as the number of lines and their relative lengths. The features need
to be invariant to variations, relating this approach to the use of global invariant features.
However, the basic approach of a set of features has a flaw because the interdependencies
between the features cannot be taken into account. To solve this problem, feature maps
have been proposed that include additional constraints to the mutual positions of features
[76, 117]. However, pure feature-based approaches are often considered inadequate as
describing the shape of an object often requires not only the components and global
properties but also the spatial relations between the parts.

The need for relative information gives the motivation for structural descriptions. They
can be compared to graphs in which vertices represent objects parts and labelled arcs
represent the relations [85]. The representation is strong as the graph structure allows the
relations to be separate from the parts. The structural descriptions are closely related to
the graph based approaches in computer vision. As also in computer vision, the weakness
of this approach is the complexity of representation, with also the problem that a set of
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sufficiently powerful primitives and relations needs to be identified. For example, it is
very hard to find a set of simple primitives that could describe a human.



CHAPTER III

Hough Transform

In 1962, Paul Hough presented a method for detecting straight line tracks of charged
particles in a bubble chamber [38]. In the 1970’s the method gained popularity in the
computer vision community and became known as the Hough transform (HT) ! [27]. In
1981, Deans [25] showed that the mathematical roots of HT lie in the Radon transform,
as the Hough and Radon transforms are essentially the same in certain circumstances
[94]. There are numerous different variants of HT [44, 71, 52].

While Paul Hough presented the method as a means to detect straight lines, today
the Hough transform is considered more generally as a tool for detecting parameterised
shapes. HT processes binarised images. Usually, the binary image is produced using an
edge detection method such as Prewitt [93] or Canny [17] edge detectors. The Hough
transform is based on the principle that each edge point in the image gives positive
evidence for curves through that point. This evidence is accumulated for all points. If
there are many points giving evidence for a particular curve, then that curve is likely to
exist in the image.

In this chapter, the Hough transform algorithm for finding line segments is first presented
with its benefits and pitfalls. Then, the problem domain is extended to cover more
complex shapes and an application to image matching. Finally, improvements to the
computational complexity are overviewed with emphasis on probabilistic and parallel
methods.

3.1 Hough transform for line detection

The Hough transform is essentially a transform from an image space to a parameter
space. The parameters of curves that are present in the image appear as maxima in the
parameter space. For example, a line can be represented in the slope-intercept form as

y =az +b. (3.1)

IThe terms Hough transform and standard HT are used to refer to the same concept.

15
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Figure 3.1: Projection of a point is a line in the parameter space. The line represents
all the lines through the point in the image. The intersection of lines in the parameter
space represents the line defined by the corresponding points.

In this equation, x and y denote the coordinates of a point, a is the slope of a line, and b
is the intercept on the y-axis. By rearranging (3.1), it can be seen that each point (z,y)
in the image defines a unique line in the parameter space (a,b) as

b=—za+y. (3.2)

When several points lie on the same line in the image, the corresponding parameter space
lines intersect. As illustrated in Fig. 3.1, the line can be detected as the intersection
in the parameter space called the accumulator. Each coordinate pair (a,b) denotes a
specific line in the original image. To find the intersection in the parameter space, a
procedure called accumulation is normally used. The parameter space is first discretised,
that is, it is divided into a finite number of non-overlapping cells covering the whole
parameter space. Then, accumulation is performed by transforming each image point
into a parametric curve and incrementing counters associated with those accumulator
cells for which the transformed locus intersects the cell. In this way, each point in the
image gives partial evidence that a certain feature, with certain parameters, is present.
Finally, local maxima are searched for in the accumulator. The locations of the local
maxima specify the parameters of apparent lines. In addition, a verification may be
performed where each local maxima is checked to assess whether it really represents the
desired feature in the original image.

The accumulation can be specified more strictly as follows:

Algorithm 1 Hough transform accumulation.
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Let D denote the set of points in the image. Let A denote the accumulator and S represent
the indices used to index the accumulator. Let T be the function that projects a point in
the image to a curve, that is a set of indices, in the parameter space.

1. Initialise A(s) =0,Vs € S.
2. For alld in D

2.1 For each s in T(d)
2.1.1 Increment A(s) = A(s) + 1.

The slope-intercept parameterisation of (3.1) has a problem in that the parameter space
is not bounded, since for a vertical line both parameters approach infinity. This problem
can be overcome by using two accumulators, one for lines with slope |a| < 1 and the
other for lines with |a| > 1. Another parameterisation, the normal parameterisation,

p=mxcosl +ysinb (3.3)

was introduced by Duda and Hart [27]. As illustrated in (3.2), 6 represents the angle
between the normal of the line and the z-axis and is bounded to interval [0, 7), while p is
the distance from the line to the origin and its range depends on the image size. Other
bounded parameterisations also exist for lines, for example the points of intersections with
the edges of the image can be used [121]. However, the boundedness of the parameter
space seems to be the most important restriction for the selection of the parametric
representation.

X

Figure 3.2: (p,f)-parametrisation of a line.

Because only positive evidence is considered, HT is very robust against missing data,
i.e. image points. This robustness is considered to be one of the main advantages of
the Hough transform. The main drawbacks of the HT are related to computational
complexity in terms of both time and space. The computation time is related to the
number of edge points in the image times the larger dimension of the accumulator. Thus,
the discretisation of the parameter space affects both the time and space complexity. In
addition, the discretisation can present difficulties in the implementation of the algorithm
that have to be taken into account [120].
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3.2 Extending the problem domain
3.2.1 More complex shapes

Kimme et al. were some of the first researchers to extend the problem domain from
the detection of lines to more complex shapes by presenting a HT based method for
circle detection in 1975 [58]. In addition to using more complex analytic shapes, they
discovered that the edge direction information could be used to decrease the computa-
tional complexity of the transform. In 1981, Deans suggested a framework in which the
Hough transform may be generalised to detect any analytically defined curves. This is
accomplished by first defining HT as an integral transform as

H(p,0) = //_00 I(z,y)0(p — xcosf —ysinb) dx dy. (3.4)

Now, I(z,y) is the image with edge points having a value 1 and all others value 0. §(-)
is the Dirac delta function. The argument of the delta function evaluates to zero only
on the line with parameters (p,#). Deans proposed [25] that (3.4) can be generalised as

7. = [ " I, y)(p — Cle,y:6)) da dy (3.5)

where I(x,y) is a function defined on the (x, y)-plane representing the image. The argu-
ment of the delta function defines a family of curves parameterised by a scalar p and a
vector & = (&1,...,&n—1). With two-dimensional parameter space (as in lines), a point
(z,y) is projected into a curve parameterised by scalar . In more than 2 dimensions, the
point is projected into an n — 1-dimensional hypersurface in the n-dimensional parameter
space. For each point (x,y), the accumulation is performed by calculating the values of
p for each value of the vector ¢ and incrementing the corresponding accumulator cells.
Now, it is evident that the space complexity of the accumulator is O(m™) where m is
the number of indices for each dimension of the accumulator. The time complexity is
O(m"™~1) being also exponential. Finally, finding the maxima involves searching in the
n-dimensional accumulator. Altogether, the computation becomes unrealistic for large
n. As already presented, additional information such as edge direction can be used to
constrain the computation. In terms of the methodology of Deans, this corresponds to
using information besides the coordinates of a single pixel to lower the dimensionality of
&. This can be formulated as

1.9 = [ " 1w, y)5(p - C(x: €)) dedy (3.6)

where p is the vector of parameters that can be solved using x = (z,y,...) and ¢, that
is, an additional parameter can be solved for each additional element of x. Thus, the
dimensionality of £ is reduced which reduces the computational complexity. In practice,
the use of the edge direction is problematic because the estimation of the gradient is
prone to errors due to noise.

The previous formulation of HT is valid for analytic curves. Nevertheless, already in
1975, Merlin and Farber presented a Hough transform type algorithm for detecting non-
analytic curves in images [83]. However, their method is equivalent to convolution of
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the edge image and is impractical for real image data. In 1981, Ballard presented the
Generalised Hough transform (GHT), which allows the detection of arbitrary shapes [4],
giving also the theory for extending the method for rotation and scale invariance. In
GHT, the edge direction is used to constrain the search. However, the parameter space
is still four-dimensional if the rotation and scale invariances are allowed. Ballard also
comments that pairs of edge points could also be used to constrain the search but the
comment is left at that. GHT has been later improved by using local curvature and slope
[78], higher level primitives [72], relative angles [110, 56], and edge point pairs [100]. A
comparison of the variants can be found in [56].

3.2.2 Invariant image matching

The accumulator of the straight line Hough transform has also been used as a description
of an image content. In Publication III, a translation, rotation, and scaling invariant
image matching method is presented which uses HT as a feature extraction method. An
invariant feature vector can be constructed as follows: Let the (p,0) accumulator be
presented as a matrix A, where each row corresponds to a particular value of p, and each
column to a value of 6. First, the matrix is thresholded as

Al = Aij) ?fA"j>t Vi=1l..m,j=1...n (3.7)
J 0, lfAijSt

where t is the threshold value. Next, the thresholded matrix is shrunk to a one-dimensional
# vector by summing the matrix across columns as

m
FP=Y Al Vi=1...n (3.8)
i=1
This vector is then normalised with respect to the mean as
1< )
Fj=F)~> F) Vj=1..n. (3.9)
=1

Intuitively, the vector can be thought of as an orientation histogram of lines exceeding ¢
in length. The vector is translation invariant because only angular information is used
to build it. The normalisation makes the vector invariant also to scaling. Rotational
invariance can be obtained by using a rotation invariant distance to measure the similarity
between two feature vectors. If R and S are the feature vectors, their rotation invariant
distance can be calculated as

n
2
d(R,$) = min >~ (R; - s{) (3.10)
k=1..n %
=1

where S¥) is a cyclic rotation of the vector s by k steps to the right. The problem of this
approach is that it cannot be used for large and complex images because the orientations
of lines do not carry a sufficient amount of information for the matching. The method
can also be modified to include spatial information by incorporating the p-dimension of
the accumulator.
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3.3 Computational improvements

As stated in the previous section, one of the main problems of HT is its computational
complexity. Several lines of research have emerged to address this problem [71, 52].
The improvements may be based on deterministic versions of the original algorithm,
probabilistic methods, or using parallel hardware. Deterministic methods aim to decrease
the computation time, for example, by recursive partitioning of the accumulator as in the
Fast Hough transform [74] and the Adaptive Hough transform [43]. Other deterministic
methods include using constraints on parameter calculation, as presented in the previous
section, and multi-stage methods. However, the most active line of algorithmic research
seems to be the probabilistic methods, which use random sampling for selecting a subset
of the input data.

3.3.1 Probabilistic methods

Probabilistic Hough transforms are a family of methods that apply random selection
in order to reduce the computational complexity. Already Ballard [4] commented that
several points can be used to restrict the accumulation. The Randomized Hough trans-
form [130] (RHT) is a method that is based on the selection of n points at random to
map them into a single point in the accumulator (see Fig. 3.3). However, the use of all
possible point sets would lead to a combinatorial explosion. For this reason, the random
sampling and accumulation is continued only until an accumulator cell exceeds a prede-
fined threshold value. Then, that cell presents a candidate feature that is verified in the
image. If a feature is found, the points corresponding to it can be removed and the accu-
mulation can be continued. This method corresponds to a Monte-Carlo approximation
of the integral in (3.6). Thus, when a larger threshold is selected, it is more probable
that the maximum found corresponds to a maximum of the standard Hough transform.
The RHT algorithm can be presented as follows:

Algorithm 2 Kernel of Randomized Hough transform.
Let t denote the detection threshold.

1. Create the set D of all edge points in a binary image.
Select two points d; and d; from D at random.
Calculate the line parameters (a,b) corresponding to d; and d;.

Accumulate A(a,b) = A(a,b) + 1.

If a threshold is not reached, A(a,b) < t, go to Step 2. Otherwise, the parameters
a and b describe the parameters of the detected curve.

In the Probabilistic Hough transform by Kiryati et al. [59], a subset of points is sampled
and a standard Hough transform is then performed. In the framework of (3.6), this cor-
responds to computing the integral only over a random subset of the xy-plane. Because
the Hough transform tolerates missing data, this method performs well as long as enough
data is retained. The Dynamic Combinatorial Hough transform [8] uses a pairing of a
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Figure 3.3: In the Randomized Hough transform for a line, a pair of image points is
mapped to a single point in the accumulator.

random seed point with all other points to perform the accumulation in a 1-dimensional
accumulator. Thus, if the seed point is part of a line, it is found at this stage. Because
the line must be through the seed point, only a 1-dimensional accumulator is needed.
The Dynamic Generalised Hough transform [70] is an extension, where a connected seed
point is first determined and then a procedure similar to RHT is followed. In the Con-
nective Hough transform [132], seed points are used with a row-wise accumulation of a
1-dimensional accumulator.

Probabilistic methods can also be used in conjunction with local data, such as the gradient
direction. The Randomized Generalised Hough transform [31] combines the efficiency of
RHT with the ability to detect general shapes of GHT. As in GHT, the gradient angles are
locally estimated from a gray level image. In the Window Randomized Hough transform
[52, 51], a window is placed over a randomly selected point and a line is fitted to the
points inside the window. If the fitting error is small, the accumulator cell corresponding
to the line parameters is accumulated. The Connective Randomized Hough transform
[51] (CRHT) is a similar method that also restricts the fitted points to be connected to
the centre point. In addition, the search for connected points is performed as a sectored
scan, which means limiting the search directions to the three adjacent compass directions
each time to reject paths with loops and sharp bends.

In Publication I, an extension to CRHT is presented that loosens the requirement of a
connected line by allowing gaps in the line. The algorithm for the Extended Connective
Randomized Hough transform (ECRHT) can be presented as:

Algorithm 3 Kernel of Extended Connective Randomized Hough transform.

1. Create the set D of all edge points in a binary edge picture.
2. Select a point d; randomly from the set D.

3. Create a w X w window centred at d;, and locate points connected to d; using the
mazimum gap criterion and the sectored scan.

4. If enough connected points are found, fit a curve to those points using the least
square sum method and calculate the line parameters (a,b); Otherwise go to Step
2.
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Figure 3.4: In the Extended Connective Randomized Hough transform, local fitting
around a single image point is used to present evidence about a particular parameter

combination.

5. If the fitting error is within a tolerance, accumulate the cell A(a,b) in the accumu-
lator space; Otherwise go to Step 2.

6. If the A(a,b) is equal to the threshold t, the parameters a and b describe the param-
eters of the detected curve; Otherwise continue to Step 2.

The parameters a and b are calculated from the least-squares approximation

YT = 2T ) Yi
ny i — (X xi)?
b = Zyi_azxi

= =R (3.12)

(3.11)

where z; and y; denote the coordinates of pixel ¢ and n denotes the number of pixels.
Using the fitting error e,

Ay x>yl —2a > wyi 4 2ab Y xy — 20 Y y + nb?
N n(a? +1)

e , (3.13)
only reliable estimates of the local gradient are accumulated. The idea is that accumulat-
ing only good local estimates decreases the total number of accumulations compared for
example to the randomised Hough transform. This improves the performance especially
with images with many lines. The local line segments do not need to be very long as they
do not yet qualify as lines but just present evidence about a line (see Fig. 3.4). Compared
to CRHT, the main advantage of ECRHT is its tolerance to missing data. Compared to
RHT, the advantage is the decreased amount of computation and storage because local
information is used to verify accumulations. The main disadvantage is that if a large
amount of data is missing, the algorithm will fail because sufficient local information will
not be available.

3.3.2 Parallel processing

The parallel Hough transform algorithms have been studied widely for both dedicated
hardware architectures and general purpose parallel environments. The implementations
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Figure 3.5: Division of the data and computation in parallel Hough transforms: Either

source image or the accumulator can be divided between processing elements.

can be categorised into two classes depending on the division of the data and computation:
either (a) the source image, or (b) the accumulator is split between the processors. This
is illustrated in Fig. 3.5. The differences in these approaches have been evaluated by
Thazhuthaveetil et al. [109]. An approach to split both the image and the accumulator
has also been proposed [9)].

Special hardware architectures include mesh-connected SIMD processors [98], discrete
logic [23], transputers in a hypercube [22] reconfigurable processor array [55], reconfig-
urable multi-ring network [10], and VLSI content addressable memory [84, 82]. These
specialised hardware solutions can offer the highest performance at the time they are built
but the rapid advance of computer technology makes them grow old almost overnight.
For this reason, more general parallel architectures are of great interest.

General purpose hardware architectures for the Hough transform include shared memory
multiprocessors [21], distributed memory multiprocessors like Cray T3D [22], IBM SP2
[60], and Fujitsu AP1000 [118], and general purpose digital signal processors [9, 23, 63].
An implementation of the Hough transform in a distributed workstation network is re-
ported in Publication VI, where the slow communication environment is taken into ac-
count by minimising the communication by using division of the accumulator instead of
the image. In addition to decreasing the computation time, this approach decreases the
storage requirement as the accumulator is divided between the processing elements. In
addition to the workstation environment, the implementation is examined in a multi-
processor PC, demonstrating that inexpensive general purpose hardware can be used to
speed up the computation remarkably.



24 3. Hough Transform

Improved performance has been obtained by using modified Hough Transform techniques.
The Multiresolution Hough Transform has been successfully implemented using a pyra-
mid architecture [3]. Also the Fast Hough Transform [74] has been improved for use
in a multiprocessor architecture [36]. Parallel implementation on a distributed memory
system reported in [9] uses digital signal processors and overlapping shared memory.

In Publication VI, algorithms for parallel RHT are presented for a shared-memory mul-
tiprocessor. In RHT frequent communication between processing elements (PE) is nec-
essary. Therefore, the algorithm uses shared memory which allows relatively easy and
fast interaction between PEs compared to message passing parallel systems. The data
structure for the list of points is an important determination, since it should allow paral-
lel creation and a parallel update mechanism when lines are found. The image is divided
into n parts and each PE creates the list of points corresponding to that part. The list
update is performed by each PE updating the corresponding list, regardless of the line
found. Parallel algorithm for RHT can be presented as:

Algorithm 4 Parallel Randomized Hough Transform.
Let n denote the number of processing elements (PE). The identifier of a PE is denoted
by id={0,1,...,n — 1}. The same algorithm is executed in each PE.

1. Make a list of the points D;q in the image region where id X Ty, /n < z < (id +
1) X Tynaz /M. Tz 1S the mazimum value of the z-coordinate.

Synchronise.

If id = 0 then calculate the total number of points in the lists D;,0 <i < n.
Synchronise.

Select two points d; and d; at random.

Accumulate with the line parameters corresponding to the points.

If threshold t is reached, set the flag Ffound-

If the flag Frouna is not set, return to Step 5.

ST T S B o S

Synchronise.

~
S

Update the point list D;q by removing points corresponding to the line found.

11. If all lines are not found, return to Step 2.

There are two main parts in the algorithm, accumulation (Steps 5 to 8) and point list
update (Step 9). Synchronisation points are needed to separate these. At each synchro-
nisation point, no PE can continue before all designated PEs have reached the synchro-
nisation point.

Because the overhead of parallelisation varies depending on the variable number of points
in the image and the number of processes, a dynamic control of the number of processes
is necessary for good performance. The overhead of the parallelisation is measured for
each line sought and the number of processes is controlled to minimise the execution
time. The dynamic parallel algorithm for RHT can be presented as follows:
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Algorithm 5 Dynamic Parallel Randomized Hough transform.
Let n denote the total number of processing elements (PE) and p denote the number of
active PEs. Initially p =n.

1. Make a list of points D;q in the image region where id X Tper/n < @ < (id+ 1) X
Tmaz [T Tmaz 1S the mazimum value of the z-coordinate.

Synchronise.

If id = 0 calculate the total number of points in lists D;,0 < i < n.
Synchronise.

Select two points d; and d; at random.

Accumulate with the line parameters corresponding to the points.
If threshold t is reached, set the flag Fround.

If the flag Frouna is not set, return to Step 5.

© NS = A

Update point lists, each process updates n/p lists.

~
S

If synchronisation time is greater than the effective accumulation time, set flag
Freduce .

~
~

. Af Freduce 15 set, terminate processes p/2+1...p and set p = p/2.

~
SS)

. Synchronise. If flag Frequce 15 set, change the number of processes arriving to the
next barrier.

13. If all lines are not found, return to Step 3.

The parallel HT presents very good speedups compared to the sequential algorithm.
Because little communication is needed, the parallel algorithm is scalable and can be
applied efficiently also in widely parallel environments. However, the efficiency of RHT
is remarkable compared to HT, exceeding also that of the parallel HT in multiprocessor
workstations. However, the Parallel RHT requires a substantial amount of communica-
tion. Therefore, it cannot be applied in a standard networked workstation environment.
The parallelisation overhead is thus larger with RHT than with HT, and the scalability
of RHT is not as good. By incorporating the dynamic allocation of work, the commu-
nication overhead can be constrained and the Parallel RHT outperforms the sequential
algorithms as well as the parallel HT.
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CHAPTER 1V

Gabor Filtering

Gabor analysis [32] is a method for combining time and frequency domain analyses. In
computer vision, Gabor filtering has been used for a number of tasks, including edge and
line detection [81, 19], texture classification [12], and compression [92, 73].

In this chapter, the use of Gabor filters in the context of feature extraction and object
recognition is examined. First, the formulation of the Gabor elementary functions is cov-
ered in the one-dimensional case. Then, the formulation is extended for two-dimensional
images with the focus on filter normalisation, parameter selection, and the advantages
of Gabor filtering. Next, the applications of Gabor filtering in object recognition are
examined noting their invariance properties. Finally, a scale, rotation, and translation
invariant Gabor feature is presented for recognising binary images.

4.1 Gabor elementary functions
4.1.1 One-dimensional time-frequency space

In 1946, Dennis Gabor presented a new method of analysing signals in which time and fre-
quency analyses are combined [32]. The effective widths of a signal in time and frequency
domains, At and Af, are defined based on the variance of the signal in the correspond-
ing domains, which leads to the definition of minimal uncertainty as the product of the
effective widths,

1
AtAf > 7 (4.1)
Gabor then shows that the signal for which the product AtA f is minimal and turns the

inequality into an equality, is

W(t) = e*a2(t*t0)2£j(2ﬂfot+¢) (4.2)

~~ ~~

Gaussian sinusoid

where j is the imaginary unit. The function represents a complex sinusoidal wave mod-
ulated by a Gaussian probability function. «, tg, fo, and ¢ are constants which denote
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Figure 4.1: One-dimensional Gabor elementary function in time and frequency domains.

the sharpness of the Gaussian, centre of the Gaussian in time domain, and the frequency
of the sinusoid and its phase shift. Applying Fourier transform to (4.2) gives

B(f) = ?\67(5)3f*fo)iej(f27rto‘(fffo)+¢) (4.3)

Gaussian sinusoid

which also is a complex sinusoid modulated by a Gaussian. The effect of the parameters
is illustrated in Fig. 4.1 which shows the Gaussian envelope of the function in both the
time and frequency domains. The real and imaginary parts are separately shown in
Fig. 4.2. The function in (4.2) became later known as the Gabor elementary function
(GEF) and can be used to analyse signals by decomposing them into a number of GEFs.
Gabor motivated this decomposition by the minimal joint uncertainty of the GEF in
time-frequency space. It can also be noticed that the decomposition includes the Fourier
analysis and the time-domain analysis as special cases, namely,

a —0 = ¢(t) — sinusoid = Fourier analysis (4.4)
a —00 = 9(t) — Dirac-delta = time description. '
The Gabor decomposition is a predecessor of multiresolution and wavelet analyses. The
problem of the decomposition is that the GEFs are not orthogonal, which causes compu-
tational problems when they are used as a wavelet basis.

Instead of decomposition, signals can be analysed by convolving them with GEFs. The
filter response to input £(t), that is the convolution, can be defined as:

re(t) = /_00 P(t —7)&() dr. (4.5)
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Figure 4.2: The real and imaginary parts of a Gabor elementary function.

In this thesis, the convolution is also used in the two-dimensional analysis of images
because it is more straightforward than decomposition.

4.1.2 Two-dimensional spatial-frequency space

In 1978, Granlund presented a general picture processing operator which is a two-
dimensional counterpart of the GEF [35], arguing that a single image processing operator
which could detect and describe structure at different levels was of interest. However, the
event that increased the popularity of Gabor analysis in the computer vision community
was the result that the two-dimensional GEF resembles the receptive fields of simple cells
in a mammalian visual system [80, 24]. When the GEFs are used as filters, the filter can
be centred at origin and the phase and time shift parameters, ¢ and ty, dropped. The
filtering will be considered in continuous domain for simplicity.

The two-dimensional Gabor filter is a complex sinusoidal plane wave modulated by an
elliptical Gaussian probability density function (see Fig. 4.3). Several forms of Gabor
filters have been proposed for the two-dimensional case [35, 24]. Following Gabor’s
formulation for the one-dimensional GEF, a two-dimensional Gabor filter ¢(x,y) can be
defined as

2 12 2, /2 . ’
U(z,y) —e— (0722 +B%Y"7) i2mfox 7
~—— —
Gaussian planewave
, : (4.6)
&' =wcosf+ ysinb,

!

—xsinf + ycosb,

where fj is the frequency of the sinusoidal plane wave, 6 is the anti-clockwise rotation of
the Gaussian and the plane wave, a the sharpness of the Gaussian along the axis parallel
to the wave, and 3 is the sharpness along the axis perpendicular to the wave. It should
be noted that the 2-D Gabor filter in (4.6) is not in the most general form of the 2-D
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Figure 4.3: 2-D Gabor filter. a) real part; b) imaginary part.

Gabor elementary function but the orientation of the elliptical Gaussian is the same as
the orientation of the plane wave. In addition, the shifts in space and phase have been
dropped because the function is used as a convolution filter. The response to input image
&(x,y) is then

o0
relw) = [ wle oy )€y de' dy' (47)

— o
The filter in (4.6) can be normalised by fixing the ratio of the frequency of the wave
and the sharpness values of the Gaussian, i.e., 7 = %, n = fo, Thus, the spatial

filter includes a constant number of waves. This formulation fixes the behaviour of
the response regardless of the frequency and makes the DC-response identical for all
frequencies. It is desired that the DC-response is small, otherwise the average image
intensity affects the response. This can be controlled by setting parameter v large enough.
Another approach is to use a modified Gabor filter where a Gaussian with the same DC-
response is subtracted from the filter [128]. To make the area under the Gaussian unity,
a normalisation factor % has to be used. Thus, a normalised filter can be presented as
2 2

v(x,y) G

™n

2o (4.8)

Using Fourier transform, (4.8) can be presented in the frequency domain as
_m2 (2, p N2, 2 2
\IJ(U7’U) —e fg ('Y (U« fO) +n7v )7
u' =ucosfh +vsinb, (4.9)

v’ = —usin@ + v cosé.

Thus, in the frequency domain the filter is a real Gaussian with centroid at frequency fo
at orientation #. The parameters of a frequency domain filter are illustrated in Fig. 4.4.
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Figure 4.4: Gabor filter parameters in frequency domain.

e

Several Gabor filters are usually combined to form a filter bank. The filter bank is usually
composed of filters in several orientations and frequencies, with equal orientation spacing
and octave frequency spacing, as presented in Fig. 4.5, while the relative widths v and n
stay constant. That is,

k
ek:n_ﬂ— k:{o,].,...,’l’Lg—].} fl:Silfmaz l:{0717nf_1}7 (410)
0

where 6}, is the kth orientation, ng the number of orientations, f; the Ith frequency, fiae
the maximal frequency, ny the number of frequencies, and s (>1) the ratio between two
consecutive frequencies. As shown in the figure, only a half of the frequency plane needs

to be covered, because the input to the filters is assumed to be real and thus its frequency
representation is symmetric and Hermitian [13].

As Bovik et al. note, parameter selection is a nontrivial problem having no simple solution
[12]. The most common criteria proposed in the literature include manual selection
(e.g., [102]), biological considerations (e.g., [73]) and optimisation (e.g., [45, 28]). If the
selection is based on the knowledge about primate visual system, there is a drawback
that it is unclear, what has been the goal of evolution in the visual system, that is, to
which purpose the visual system has evolved. On the other hand, optimisation based
selection has the drawback of being dependent on the training set.

If the feature to be detected can be formulated analytically, the selection can also be
based on analysis of the filter response. Mehrotra et al. optimise the filter parameters
for edge detection based on the criteria proposed by Canny [81]. Chen et al. select some
parameters based on experimental results while others are selected based on mathematical
analysis [19]. Analytic parameter selection has also been used in image representation
using GEFs [73]. In Publication IV, a method for selecting Gabor filter parameters is
presented for direction sensitive edge detection in binary images. The method is based
on the analysis of the filter spatial size and its effect on the angular accuracy.

Despite the problems of parameter selection, Gabor filters have a number of attractive
qualities. First, they can be used to extract various kinds of visual features, including
texture [12], edges [81], lines [19], and shapes [53]. This is illustrated in Fig. 4.6 where
the absolute responses of a coin image to filters in several orientations and frequencies
are shown. Also the similarity with the simple cells of the mammalian visual cortex
supports the representation power of the filters. Second, Gabor filter responses are
robust. It is known that the amplitudes of complex Gabor coefficients are invariant
under small translation, rotation, and scaling. An explanation for this is the shiftability
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Figure 4.5: A bank of 2-D Gabor filters in frequency domain.

of the Gabor filters in spatial and frequency domains. While the shiftability requires
a nonorthogonal, overcomplete representation [104], it provides the required robustness.
In addition, shiftability makes it possible to interpolate responses both in spatial and
frequency coordinates. Furthermore, the Gaussian nature of the filters makes them
tolerant to noise [54]. However, the stability of the responses concerns primarily the
amplitudes of the complex filter responses, while quite often only the real or imaginary
part of the filter is used. In some applications, such as edge detection, this is justified,
but generally the robustness and smoothness of the filter response is lost.

4.2 Applications in object recognition

Gabor filters have been applied to several tasks in object recognition, including segmen-
tation, representing local features, and extracting size information. Some applications
depend on a separate segmentation step before recognition can be performed. For that
reason, the use of Gabor filters in segmentation will be considered first before moving
to their use in the representation of objects, which will form the most significant part of
this section.

The power of inspecting locally prominent frequencies has made Gabor filters popular in
texture analysis. This has been utilised by Jain et al. for the segmentation of objects in
complex backgrounds [47]. A multi-channel decomposition of an image is first performed,
followed by a selection of channels based on minimising the reconstruction error. The
responses are subjected to a sigmoid nonlinearity, averaged, and then clustered to form
the segments. A bottom-up merging has also been used to segment images based on
Gabor filter responses and colour information [102].
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Figure 4.6: Absolute filter responses in different frequencies and orientations.
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In addition to segmentation, Gabor filters have been applied as features to represent
objects. These approaches can be divided into four categories depending on the type of
the information used: a) response at a single point is used; b) responses on a predefined
grid of points are used; c) responses on a deformable grid are used; d) global features of
responses over an area are used.

Gabor filter response on a single point has been used to realise affine invariant recog-
nition of image patches [6, 123, 7]. Full affine invariance was established by a log-log
mapping of the frequency domain together with filters in several orientations. However,
the image needs to be segmented in order to find the centres of the image patches. Weber
and Casasent performed distortion invariant recognition by an entirely different concept
using a linear combination of several separately optimised filters [124, 125]. The relative
filter positions were also optimised in addition to other filter parameters. While the
distortion tolerance of the system is good, there was no invariance to geometric trans-
formations. The author has used Gabor filters to perform distortion tolerant rotation
invariant recognition of electronic components [54, 53]. The recognition is based on a
robust estimation of the dimensions of an object in different orientations around a single
point. For a single sampling point, it is possible to realise invariances using analysis of
the filter response.

The Gabor responses on a rigid predefined grid have been used to recognise handwritten
numerals [37]. Filter parameters were optimised by hand with a 1-NN classification of
the response vectors. Walter and Arnrich propose to use a grid of nine real (even) Gabor
filters with a backpropagating multi-layer perceptron to position a robot manipulator
[122]. Jain et al. use even symmetric (real) Gabor filters to extract the local ridge
structures of fingerprints [46]. The fingerprint is inspected using a circular grid around
a detected reference point. For each cell of the grid, the deviation of the filter responses
for each filter is used to construct the feature vector. Altogether, none of the systems
employing rigid sampling of responses achieve rotation or scale invariances.

Invariance to small scale geometric deformations has been achieved through the use of a
deformable graph to represent the Gabor filter responses [15, 14, 65]. A single node of
a graph represents the filter responses of a bank of filters, often called a Gabor jet [15].
The model graph of an object can be constructed either using sampling on a regular grid
[15, 101] or sampling in interest locations [112]. The model graph is then compared with
an image to find the locations for each node in the image that minimise both the geometric
deformation of the graph and the difference of filter responses at these locations. This
approach is invariant to small changes in the locations of the graph nodes which may
result, for example, from geometric transformations. However, full invariance to rotation
or scale is not achieved as the filter responses are directly compared yet the responses
are invariant only to small changes in scale and rotation. This restriction is alleviated by
storing several model graphs for objects of different sizes. The approach has been applied
to face recognition [15, 14, 65, 128] and classification of hand postures [112, 113]. Kriiger
and others present a variant that utilises Gabor features to extract local line segments
which are then fed to a learning process that outputs the model graph [61, 62]. Park and
Yang combine the use of local Gabor features with Randomized Hough transform type
evidence accumulation to estimate the parameters of a similarity transform (translation,
rotation, and scaling) [88]. Local Gabor features similar to Gabor jets are used to find
candidates of local structural elements which are then used as partial evidences. The
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matching of local elements is performed in a rotation invariant manner which should
guarantee full rotational invariance while the invariance in scale remains small.

Gabor filter responses can be combined over an area to achieve a global descriptor for that
area. Lampinen and Oja [69] employ clustering of the responses of a Gabor jet to assign
each pixel to a single cluster. Then, the histogram of clusters over a Gaussian window is
used as an input to a subspace classifier. Douville [26] uses the responses summed over
the image. Shioyama et al. [102] compute a histogram of responses over a segmented
image region as a description of that segment. They demonstrate the performance by
detecting cars in real traffic scenes. The global systems presented are only scale and
translation tolerant and do not achieve full invariance.

In Publication IV, invariant recognition properties of Gabor filters are examined in the
context of directional edge detection in binary images. A method to select filter parame-
ters is presented which assures that the circular Gaussian is able to capture the required
number of angles. Translation invariance is achieved by summing the filter responses
over the image. That is, a feature vector G is constructed from the individual responses
r(z,y;0) as

G

(G1 Gy - Gn)
= (Zz,y |T(I,y,01)| Ez,y |T(x7y762)| Zz7y |T(I,y,0n)|)
where n is the number of filters in different orientations. Because the filter responses rep-

resent the edges in different orientations, scale invariance can be realised by normalising
the feature magnitudes. Let G’ denote the normalised feature,

(4.11)

1

GI == niG’
Ei:l Gi

(4.12)

Rotation invariant distance measure for the features can be presented by first defining
the rotation of the feature vector as

G(0+k):(Gn7k+l o Gn Gio Gay) (4.13)

where k = 0...n—11is the rotation index. Then the rotation invariant squared Euclidean
distance of two feature vectors can be defined as the minimum over all rotations, that is,

d(G,H) = min {zn: (c= Hf*’“)z} (4.14)

i=1

where G and H are the feature vectors. In Publication IV the invariances are demon-
strated with an experiment with digits. A preliminary version of Publication IV was
published as [64].

In Publication V, the recognition method is applied to matching of binary symbols. The
method is inspected using the larger data set presented in more detail in Publication III.
Both the Gabor filtering and Hough transform methods are based on the construction of
a histogram of edges in different orientations. The noise tolerance of the Gabor filtering
based image matching is found out to be superior to the Hough transform generated
features.



36

4., Gabor Filtering




CHAPTER V

Discussion

Invariant object recognition has been recognised as one of the most central problems in
computer vision. Feature extraction is an important part of a vision system which con-
verts digital image data into higher level features. In this thesis, new feature extraction
methods have been presented and analysed. Methods based on Hough transform and
Gabor filtering have been improved. The publications will now be reviewed based on the
objectives of an object recognition system, and then discussed one by one concentrating
on the contributions and restrictions.

In Chapter 1, the objectives of an object recognition system were defined as: “The
system should be general enough to recognise a large variety of objects, invariant to
natural variations, stable against distortions, and computationally efficient.” These can
be used to survey the contents of this thesis. Both the line segments detected by the
Hough transform and the Gabor features can be thought of as general shape primitives
because they are not limited to a single application and are able to represent many
objects, particularly those which are man made and have geometric shapes. However, it
seems likely that these low level features cannot be used directly but must be used in the
generation of a higher level description.

It is doubtful if global shape type features can be used for the recognition of complex
objects. The shapes of such objects can be complex and often cannot be described by a
single contour. Also, the global features can often be spatially instable, that is, they are
not equally sensitive over the whole shape, and the objects need to be segmented from
the background in order to use global features. While local features can overcome these
problems, at least partially, the question is how local and global information should
be combined. The idea of combining local and global information can be seen both
in the Hough and Gabor approaches. The Hough transform is inherently an evidence
gathering process that accumulates local evidence to examine the global configuration. In
Publication I a robust local estimation technique is presented to estimate the parameters
of a line segment inside a local window to be used in the evidence gathering. The
inspection system presented in Publication II utilises information on local line segments
and centroids of circles fitting and compares it to a known global model. Likewise, Gabor
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filtering provides a way to robustly extract local directional edges and lines, which can
then be combined to a global description as in Publication IV and Publication V.

Translation, rotation, and scale invariant recognition using global Gabor features is pre-
sented in Publication IV and Publication V. In Publication II the rotation invariant
recognition was realised using local features with known spatial relationships. The Hough
transform based translation, rotation, and scale invariant features presented in Publica-
tion III were based on global and local line orientations.

The existence of truly invariant features is questionable even in the human visual system,
as it has been found that humans recognise certain views of an object more quickly than
others [87]. In addition, the human visual system can be primed to certain poses of an
object. For example, alphabetic characters are recognised more quickly in their normal
position than upside down. An important note is that a human being can still recognise
these characters regardless of the pose even though the recognition time changes. While
this evidence is contradictory to the existence of global invariants, research in invariant
recognition is certainly warranted and the evidence may, in addition, provide ideas for
further approaches to computer vision. It is not very likely that the global features will
provide enough information for discriminating images in large data sets. It seems that
responses of Gabor filters are powerful as descriptors of local parts but the local parts
have to be combined in a global description.

The stability against distortions is one of the most important qualities of a computer vi-
sion system which operates in natural surroundings. In Publication I the noise tolerance
of the connective randomised Hough transform was improved with a new algorithm for
the local estimation. The experiments in Publication V verify the noise tolerance of the
Gabor filtering based features. Comparing the Hough and Gabor approaches it seems
that the local features extracted by Gabor filtering are more stable against such distor-
tions as noise and small displacements of the target. However, the evidence gathering
nature of the Hough transform makes it more tolerant against missing data. Thus, it can
only be concluded that while the stability of features is desirable, the optimally stable
feature extraction method depends on the application.

The Hough transform is known to be computationally demanding. In Publication I a
variant was proposed that reduces the computational burden by employing local infor-
mation. While the method for local estimation is more complex than in the preceding
method, CRHT, the total computation time is decreased in some cases due to the better
estimates of the local structure. While separate analyses of parts of the algorithm can
reveal important information, they cannot be combined directly to form a truth about
the whole.

The standard Hough transform is normally impractically burdensome. In Publication VI
it was shown that with modern parallel environments computation can be sped up consid-
erably. The focus was on the Randomized Hough transform, which has been found out to
outperform the standard Hough transform. A proposed parallel algorithm was discovered
to be superior both to sequential randomised and parallel standard Hough transforms in
the chosen environments. From the research the conclusion can be drawn that a low-scale
parallelisation of known algorithms is often possible in an efficient way. On the other
hand, in highly parallel environments the algorithm design should be strongly related to
the characteristics of the environment, otherwise the performance will suffer considerably.
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Publication I presents a new method to extract local information to improve the ro-
bustness of evidence accumulation in CRHT. The underlying idea of using the local
information has been presented by other authors, but the novel contribution of the paper
is the robust local estimation method. A restriction of the technique is that it only helps
in the detection problem, that is, it is helpful when a random subset of evidences, i.e.,
edge points, is missing causing short gaps in local line segments. In addition, if only short
gaps are present, the method can lower execution time because of the better estimates of
line parameters. However, the method is not applicable for long gaps in the lines because
the execution time grows intolerable.

Publication II presents a system for inspecting two-dimensional sheet metal parts. The
contribution of the publication is in combining existing methods into a real-world appli-
cation, and in the analysis of the measurement accuracy. A drawback of the system is
that it is based on two-dimensional models of the parts. Thus, the calibration is esti-
mated using two-dimensional similarity transform, the part and the image plane of the
camera must lie parallel, and the thickness of the parts cannot be taken into account.

Publication III presents new global features based on Hough transform for matching
images. Originally, it was desired that these features could be used for discriminating
between different types of documents such as electrical and architectural drawings and
maps because in these technical drawings, the orientations of lines often depend on the
type of the drawing. However, it was discovered that the feature vector did not have
strong correlation to the drawing type. Nevertheless, the features were found capable
of discriminating line drawing symbols. A major restriction of the method as a global
feature is that successful segmentation must be performed before recognition. For recog-
nising the drawing type, it seems that a more effective scheme could be constructed by
identifying typical primitives for each type, and performing the recognition based on
these.

Publication IV presents a global, Gabor filtering based feature for recognition. The pub-
lication has two primary contributions, the selection of filter parameters and the global
feature. The method of parameter selection is based on a formulation of a Gabor filter
that forces the filter envelopes to be circular Gaussians. In addition, the relative fre-
quency bandwidth is selected. Therefore, the spatial size of a filter could be controlled
only using the frequency. However, as stated in Chapter 4, the frequency and orien-
tation bandwidths can be controlled independently using parameters v and 7, which
would seem to be a more reasonable way to solve the problem of parameter selection.
The histogram like scaling and rotation invariant global feature presented is to author’s
knowledge original, but it is closely related to the energy on a certain band, which has
previously been used and is also computationally lighter to compute. The necessity of
segmentation applies also to this feature as the result of its global nature, and presents
one of the major limitations for the application of the feature.

Publication V presents the application of the global Gabor features to symbol recognition
and compares the results to those in Publication III. The noise tolerance of the Gabor
feature is found superior to Hough transform based features. This is an important at-
tribute of using Gabor type features, as the noise tolerance is often very good because the
use of a limited range of the frequency spectrum suppresses noise on other frequencies.
It would be beneficial to compare the presented features to other global features such as
moment invariants to better demontrate their strengths and weaknesses in applications.
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Publication VI presents parallel Hough transform algorithms. The contributions of the
publication are the parallel algorithm for the Randomized Hough transform and the
assessment of suitability of the parallel environment to the Hough transform. While the
results show that the use of networked PCs can decrease the computation time of HT,
it is not very likely that the environment would be useful in a real application because
in the case of standard network hardware, the network latencies are always considerable
and thus real time performance is hard to obtain if even possible. However, the use
of multiprocessor PCs seems to provide a cost efficient platform for image processing
and computer vision. A problem with the parallel RHT algorithm is that while good
performance is obtained, the algorithm does not scale up very well to a large number
of processors because of the random unpredictable nature of the algorithm. For optimal
performance in multiprocessor environments it could be beneficial to study other efficient
HT variants, such as the Adaptive HT, that do not have random behaviour and would
be more suitable to a parallel environment.

Some directions for future research can already be seen. First, incorporating the higher
level structure to the local features seems to be necessary, since global invariant features
do not seem to be effective in discriminating large and complex data sets. The spatial
relationships of the local features should be included in the representation. The cur-
rent graph based approaches suffer from the fact that while the features or the model
matching can be invariant, the non-invariant knowledge about local features, such as the
orientation, is not included in the matching. Another area of research is the application
of learning. Research on artificial neural networks has produced the means to incorpo-
rate knowledge through training by examples. However, the downside of neural networks
is that their acquired knowledge is often very hard to interpret after the learning. In
contrast, traditional artificial intelligence techniques, such as decision trees, can be in-
terpreted, but they often do not tolerate uncertainty and also cannot describe complex
relationships. Therefore, future research is clearly necessary in the use of learning, both
inside the feature extraction and classification stages and in the interaction between the
stages. In 1960, Selfridge and Neisser [99] wrote: “No current program can generate test
features of its own.” While this is no longer true as general low-level features are known,
knowledge about the interaction between the stages of a vision system is still mostly
nonexistent, and it is not clear, what kind of general higher level descriptions should be
used.
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