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ABSTRACT

This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of
Technology during the years 1991-1996. The research was a part of larger high speed technology
development research.

First, there was the idea of making high speed machinery applications with the Brayton cycle. There
was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field
of the research. Also, the removal of water from the humid air seemed very interesting.

The goal of this work was to study methods of designing high speed machinery for the reversed
Brayton cycle, from theoretical principles to practical applications.

The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine.
In this research the use of humid air as a working fluid has an environmental advantage, as well.

A new calculation method for the Brayton cycle is developed. In this method especially the expan-
sion process in the turbine is important because of the condensation of the water vapour in the humid
air. This physical phenomena can have significant effects on the level of performance of the
application. Also, the influence of calculating the process with actual, achievable process equipment
efficiencies is essential for the development of future machinery. The above theoretical calculations
are confirmed with two different laboratory prototypes.

The high speed machinery concept allows one to build an application with only one rotating shaft
including all the major parts: the high speed motor, the compressor and the turbine wheel. The use
of oil free bearings and high rotational speed outlines give several advantages compared to conven-
tional machineries: light weight, compact structure, safe operation and a higher efficiency at a large
operational region.

There are always problems when theory is applied to practice. The calibrations of pressure, tempera-
ture and humidity probes were made with care but still measurable errors were not negligible.
Several different separators were examined and in all cases the content of the separated water was
not exact. Due to the compact sizes and structures of the prototypes, the process measurement was
slightly difficult.

The experimental results agree well with the theoretical calculations. These experiments prove the
operation of the process and lay a ground for further development.

The results of this work give very promising possibilities for the design of new, commercially
competitive applications that use high speed machinery and the reversed Brayton cycle.
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1 INTRODUCTION

The Department of Energy Technology at Lappeenranta University of Technology (LUT) has stud-
ied the use of high speed technology since 1981. In the 1990s the research concentrated on co-
operation between the Department of Energy Technology at Lappeenranta University of Technology
(LUT), the Department of Electrical Engineering at Helsinki University of Technology (HUT) and
the High Speed Tech Oy Ltd in Tampere.

The Brayton cycle is familiar to many from gas turbines, where turbomachinery and combustors
convert fuel to electricity. This means that the cycle produces work with the generator in the cycle.
In normal cases the working fluid in the compressor is air and in the turbine exhaust gas. The re-
versed Brayton cycle has the same turbomachinery elements as a gas turbine — a compressor and a
turbine — but not a combustor. Because there is no energy input and the pressure levels in both
turbomachinery components are equal, the cycle needs work to compensate for the losses. This

means that the electric machine must be a motor.

The reversed Brayton cycle has one particularly interesting feature. Because the heat exchange is
not pressure dependant, the order of compression and expansion can be easily reversed. This fact
gives more flexibility in the design of the applications because it is possible to design a sub-' or

over-pressure cycle.

The purpose of this thesis was to examine the reversed Brayton process in detail and to design high
speed prototypes. With these prototypes the theoretical calculations were to be verified with mea-
surements. In the calculations and the experiments the significance of humid air was to be very

important.
In this work the following methods of research have been adapted:

First, making the theoretical calculations of the reversed Brayton cycle for humid air. Chapter 2
presents the theoretical calculation principles and Chapter 3 introduces the calculation programme.
These calculations take into account the real humid air compression and expansion, pressure losses

and efficiencies.

! This study uses the terms sub-pressure or sub-atmospheric instead of the term vacuum, which is
slightly errative in this context.
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Secondly, verifying the theoretical calculations with experimental measurements. The two test

facilities and the measurement results are presented in Chapter 4.

Thirdly, investigating application feasibilities in the view of the results, and this is done in Chapter

5.

The reversed Brayton cycle is an old invention referred fairly widely. There are several documents
of process applications that refer to patents, prototypes and commercial devices. In the reviewed
literature the process itself have been called with several different names: reversed Brayton cycle,
reverse Brayton cycle, Joule cycle, air heat pump. Because the design of this disseratation is focused

on cycles, where power is needed, the term reversed is used.
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Figure 1. The AirResearch reversed Brayton cycle. T=turbine, M=motor, C=compressor

/AirResearch 1979/ describes the performance of a sub-atmospheric reversed Brayton cycle ap-
plied for milk dryers. The working fluid was air and the theoretical calculations were made be-
tween dryer exhaust and supply temperatures. The reversed Brayton cycle performance was com-
pared with a Rankine cycle for a known milk dryer facility. These comparisons included a dryer-
only heat pump and a heat pump where the exhaust gas heated the inlet gas. The report includes
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specific cycle design but there is no mention of actual devices. In this report the mass flow, 0.453
kg/s, and the electric power, 13.7 kW, are very close to those of the first experimental prototype
reported in this thesis. There also is a preliminary heat exchanger design that compares three major
heat exchanger types. The maximal temperature is 92 °C, which is about 30 degrees higher than the

temperatures in this study.

The main disadvantage of the calculations is that the cycle pressure losses are ignored, compressor

and turbine efficiencies are fixed at a reasonably high level and the ambient air is considered totally

dry.
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Figure 2. The Cercem reversed Brayton cycle. T=turbine, M=motor, C=compressor

A French enterprise Compagnie Electro-Mecanique (Cercem) has studied industrial drying. /Flaux
1984/ describes the developing of a prototype for a high temperature reversed Brayton cycle de-
signed to operate in the drying industry. A typical installation would be a milk powder atomization
drier. The study includes the comparison of three possible cycle modes; open, semi-open and closed
cycle. The author adopted the open cycle where the electric power needed is 223 kW and the maxi-
mum cycle temperature is 163 °C. The exhaust, moist air from the drying system, is used through a

heat exchanger to warm the sub-atmospheric air.
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/Kajima 1995/ describes a reversed Brayton cooling device that is used to freeze ice hockey rinks,
bobsleighing tracks and air cooling systems. Here an over-pressure cycle is used, where the air is first
compressed to higher pressure, then the heated air is cooled close to inlet temperature with for exam-
ple water. After water cooling the air is cooled with return air from the refrigerating process and
finally run through the turbine. The air temperature after the turbine is significantly below the freez-
ing point water of water. This cold air is delivered for refrigerating purposes. The overall power
requirement is 400 kW and the air mass flow is 8,5 kg/s. The air is dried in an adsorption device
before the compressor, so the working fluid is dry air. As can seen in the Figure 3, the cycle is

closed.
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Figure 3. The Kajima cooling device principle. T=turbine, M=motor, C=compressor

/Dunn 1976/ describes the design and the results of a closed Helium-Xenon-cycle Brayton unit. This
unit is an application, which was intended to demonstrate energy conversion technology in space.
The system is designed to produce up to 10 kW net continuous electric power for at least five years.
One test unit accumulated over 21 thousand hours of operation with no apparent failure. The cycle
included very high temperatures - turbine inlet temperature 871 °C - and a reasonably high rotational
speed of 36 000 rpm. This study introduces an apparatus based to technology similar to that of the
present study.




5

High speed technology is a solution that does away with the gearbox: a high speed electric machine
drives the rotor of the turbine, compressor or pump, or the spindle of the milling machine directly.
By using suitable bearings it is possible to make the high-speed solution completely oil-free and

hermetic, which provides additional benefits.

High speed technology was probably first used in the production of liquid helium /Swift and
Sixsmith 1982/: the very low temperature and requirement of purity made it impossible to use gear-
boxes or conventional bearings. By using a high speed rotor with gas or magnetic bearings it was
possible to achieve the compression and expansion required for the liquefaction of helium without

any oil.

Oil-free high speed technology is also widely used in the helium circulators of nuclear reactors
/Decker 1976/, in small ORC-power plants for special applications /Bronicki 1982/, in air-circula-
tion systems in aeroplanes, in ultra high speed motors required to scan the laser beam, in some
milling and grinding machines /SMM 1984/ and in some space applications /Habermann and Brunet
1984/, /Dunn 1976/. All these are applications, where small size and oil free operation are very

important, or where a very high speed is required.

The high speed technology research in Finland has been all-inclusive research that aims at designing
a whole process facility. The technology consists of fluid engineering, mechanical engineering,

electrical engineering and control engineering.

The research of high speed technology at Lappeenranta University of Technology, at Helsinki Uni-
versity of Technology and in High Speed Tech Oy Ltd includes activities in the following areas:

- static and dynamic fluid bearings /Sallinen 1993/
- active magnetic bearings /Lantto and Antila 1995/
- high speed electric machine construction

- electric control engineering

- turbomachinery design /Larjola et al 1995/

- cooling construction.

The high speed technology theories are applied in several test facilities in waste heat utilization
/Larjola et al 1991b/, low pressure compressors /Backman 1989/, high pressure pumps /Larjola et al
1995/, refrigeration compressors and reversed Brayton cycles /Sahlberg 1993/.
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The bearing technology is based on ol free gas dynamic, hydro dynamic or electromagnetic bear-

ings that have very long operational cycles and are also practically maintenance free.

The technical high speed solutions are still today on the level of high technology and there are not
many commercial applications. The main obstacles are the electric components (the inverter and the
motor) and the bearings, which have been the top priorities of the high speed technology research in

Finland.

The research helps high speed technology to spread to more conventional applications, such as com-
pressors and small power plants. One major reason for this is the decreased price of suitable invert-
ers and bearings. In this view the reversed Brayton cycle is a very attractive choice in applying high

speed technology.
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2 THE REVERSED BRAYTON CYCLE

In the Brayton cycle the working, gaseous medium consists of two isobars and two isentropes. The
process in the Brayton cycle generates work to be used, but the term reversed explains that the ob-
tainable cycle needs external work. This can be electric, pneumatic or hydraulic etc. power. The

most common way is to use an electric motor to provide this work.

The performance of the reversed Brayton cycle is characterised so that the compressor takes care of
the pressure difference and the turbine takes care of the mass flow, and this counteraction at given

speed defines the operational points of the cycle.

[ Process el : PI‘OCGSS j————

A B

Figure 4. Example of ciosed (A) and open (B) reversed Brayton cycle

A typical application of the Brayton cycle is the gas turbine while the humidifier, ventilation sys-
tem, cryogenic machine or heat pump are typical applications of the reversed Brayton cycle. In
principle the reversed Brayton cycle can be either open - the fluid medium is constantly changed - or
closed. The loop is also defined open if the Brayton cycle is closed but the interface process is
open. This is the case when only part of the actual process air flow is forwarded to the Brayton
cycle. In the closed loop there is no material transfer between the process and the environment, Fig.

4.
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The limits for the process values in the reversed Brayton process are quite wide. There are no such
limits that are familiar to common organic cycles as critical temperature and pressure, evaporation
pressure, etc. In the cryogenic applications -80 °C could be considered as the lower limit and in
heat pumps the upper limit would be around 300 °C. The pressures vary from about 0.1 bar to 10
bar. The limits are mostly set by material restrictions and, finally, according to economical estima-

tions.

Point Temperature Pressure
1 15°C 1.0 bar

2 88 °C 2.0 bar p
2
3 20 °C 2.0 bar
4 -10°C 2.0 bar T
5 -45°C 1.1 bar 2
6 -15°C 1.0 bar
[P
Z
Jasi
S
Q
3 7, B
(]
= T
1

Entropy
Figure 5. The 7,s-chart of the reversed Brayton cycle in Fig. 3.

Several examples of different open, reversed Brayton cycles were described in Chapter 1. The cycle

chart is usually described as a 7,s- or h,s-chart as shown in Fig. 5.

The necessity of good efficiencies in the pressure cycles is the main reason for the fact that there

still are so few commercial applications that use the reversed Brayton cycle.

The many published calculation models are quite coarse and simple. The main compres-
sion/expansion losses are taken into account but usually the pressure losses are ignored. With even

moderate losses and efficiencies the calculations usually result with low overall cycle efficiencies.
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When the surrounding air is used as a medium, it is usually treated as dry, e.g. the water vapour in
the air is ignored. But for example during the expansion the water vapour pressure can drop beneath
the wet point and part of the water vapour condenses to water. The quantity of water is not large but

the phenomenon influences the enthalpy of the fluid because the vaporization heat is considerable.

In this thesis a calculation model is introduced which includes the actual turbomachinery efficien-

cies, the pressure losses and the use of humid air.

2.1 Humid air and perfect gas

The ambient air is a mixture of several gases. Normally dry air consists of nitrogen, oxygen and
argon to over 99.6%. The rest are small amounts of large number of different gases. Air is cata-
logued with specific molecular weights (M,) and gas constants (R,), and it is assumed to be a perfect

gas.

Humid air is a mixture of dry ambient air and water vapour. The amount of water vapour that there
can be in humid air (thermodynamical equilibrium assumed) is a function of temperature and thus

varies. Vapour in this context means gas that is near to liquefying.

The enthalpy in the real gas phase is defined as a function of the pressure and the temperature that
thermodynamically describe the gas particle motions. This relevance complicates calculations be-
cause in most processes that include air, the average distance between particles is usually so large
that there are only weak attractive forces among the particles. The approximation of perfect gas
usually simplifies these calculations by neglecting the intermolecular forces /Anderson 1990/. A gas

is defined as perfect gas when it governs the equation of state /Liepmann and Roshko 1957/

pv-RT M

where v = V' / m. The specific gas constant R, varies for each gas and is related to the universal gas
constant R, so for air R, = R / M,. The result is very close to the absolute value if the density is close
to zero. In the cases where the air pressure is between 0.5 and 10 bars and the temperature is be-
tween 250 and 600 K, the error is less than 0.5 % calculated from table values. In water vapour the

error is lower than 1% when p < 0.5 bar and T > 250 K /Vargaftig 1975/.
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If we ignore intermolecular forces, we can also express enthalpy and internal energy only as func

tions of the temperature along the isobar and isochor' /Anderson 1990/

dh - c,dT )

du - ¢ dT (3)

v

Here the enthalpy and the inner energy vary only with temperature.

If the specific heats were chosen as constants, calorimetrically perfect gas would be used. Because
the specific heat capacity of dry air varies from c,= 1.002 to ¢,= 1.016 when the temperature rises
from T=0 °C to T= 100 °C, the use of a conveniently chosen value for calorimetrically perfect gas
gives a very small error. In this research humid air is examined and therefore the use of calorimetri-

cally perfect gas is not preferable here.

The entropy change of the system is always positive, which tells us in what direction the process
evolves. The entropy of ideal gas is a function of both temperature and enthalpy. The entropy defini-
tion Aq = Tds can be differentiated with the help of the first law of thermodynamics and we obtain

for perfect gas

ds=c£—RéI—) (4)

An isentropic process is defined to be adiabatic and reversible. Thus the isentropic change of state is

obtained from Eq. (4) by setting ds = 0 and integrating

c ﬂ - R_.CZE.
P p
_ T
=»cpln—-2—=Rln£g 5
T, i P, (5
_n B
by 1

! a process is called isobar, when the pressure is constant, and isochor when the specific volume is
constant
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Equation (5) relates pressure and temperature for an isentropic process, and is of great importance in
the compressor and turbine design procedures. The mean specific heat capacity in constant pressure
is defined ¢, = ¢,{(7,+1, ) / 2)]. For small pressure ratios (= <4) and normal temperatures (250 K
< T'< 500 K), the temperature difference after the process would be smaller than 0.1 degrees in

comparison with the value obtained by accurate integration.

2.1.2 The Dalton gas mixture model

We have assumed that humid air can be treated as a perfect gas mixture. To calculate the mixture
the Dalton gas mixture model has been used. The law of Dalton declares /Liepmann and Roshko
1957/: that the total pressure of the ideal gas mixture is equal to the sum of the partial pressures, i.e.

individual gas component pressures. Thus, we get the equation

p =pat’r+pvap (6)

and the individual gas component's pressure is the outcome of the multiplication of the total pres-

sure of the mixture and the mole fraction

Pygp = *upP D

pair = xairp (8)

The water vapour pressure in air is regulated by the temperature so that it can be only as high as the
pressure of saturated water vapour. If the mole fraction of the vapour is greater than the tempera-
ture allows, the rest of the water is in liquid (water) or solid (ice or snow) state. The quantity of

water vapour is defined by relative humidity ¢

)

The amount of dry air is kept constant through the expansion process, and thus it is convenient to

define the mass fraction of the flow mixture as function of the mass flow and to call it humidity

! Relative humidity is often abbreviated as RH
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m
Wy = —
mair
- mice
a)ice = m
air
wwat = mww
m

and these together form the water-based humidity in air

ww = wvap * a)wat * a)ice

The mole fractions in the gas phase can be written

x - R B H
awr
n.+n w + U
air vap vap
Xoap = vap Dap
n.+n (7] + U
air vap vap
where p = M,,,/ M,,
The mass fractions in humid air are
_ mair ~ 1
ar - om em. em_ w1
air Vi wat ice
W = Y
w +1
w
w _ wwat
wat w 1
W +
Dice
wice =
w, +1
w

p, p
(‘)vap = p ap = ”_.._.ng—
pair E

'
ﬁpvap

(10)

an

(12)

(13)

(14




13

The condensation of water vapour is possible if the inlet relative humidity and the pressure ratio of
the turbine are suitable. According to the Dalton gas mixture model the condensation or sublimation

temperature depends solely from the partial pressure of the water vapour.

The thermodynamical properties of humid air are calculated by weighing the mixture mass compo-

nents using Eq. (13)

1
h = (hair M wvap hvap * a)wathwat * wice hice)
a)w +1
| (15)
§ - w +1 (sair * (‘)vapsvap * wwatswat * a)icesice)
w

The humid air gas constant R is calculated by weighing the gaseous components by their mole frac-

tions in Eq. (12)

(ﬂ Mair * a)vap Mvap) ( 1 6)

(7

The water vapour has surprisingly large effects on the thermodynamical properties of humid air
when compared to those on dry air. For example at 40°C the gas constant R (which is often consid-
ered constant) grows from 287 J/(kg,K) to 311 J/(kg,K) when the relative humidity is increased from
0% to 100%. This effect is smaller in the specific heat ratio vy, because the effect in both specific

heats is in the same direction.
2.1.3 Thermodynamical state property correlations

The thermodynamical changes in a process are usually examined in the 4,s-chart and therefore spe-
cific enthalpy and specific entropy have to be made relative with a physical reference point. If the
reversed Brayton process is calculated by hand, many iterative and labourious calculations have to

be made.

According to the definition of perfect air above, enthalpy will be expressed as a function of tempera-

ture and entropy as a function of both temperature and pressure.
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To simplify the property correlations of the humid air process, the reference point is chosen to
equal the point of water saturation at the triple point, 7., = 273,16 K and p,,,=611.3 Pa, where all

three phases can be represented simultaneously.

The values of specific heat capacity in constant pressure /Vargaftig 1975/ can be expressed with a

regressional third degree polynomial fit

cp(T):al+a2T+a3T2+a4T3 (18)

where the constants for the region 200 K < 7' < 1800 K are for dry air

a; = 9.82076E-1 kJ/ (kg.K)
a, = 1.64395E-5 kJ/ (kg.K?)
a; = 2.25868E-7 kl/ (kg.K)
a, = -8.81495E-11 kJ/ (kg.K*%)
and for water vapour
a, = 1.80768E-1 kJ/ (kg,K)
a, = 1.79273E-5 kJ/ (kg.,K?)
a; = 6.80617E-7 kJ/ (kg.K?)

a, = -2.22443E-10 kJ/ (kg,K*)

The specific enthalpy of water vapour and air can be expressed with similar regression coefficients

when Eq.(18) is placed into Eq.(2) and integrated

Ak - B(T) - h(T

r
re;

o - fT(al+a2T+a3T2+a4T3)dT
i 19

G o op2y Bors g3y Y o4 (19

c @l T ) (T2 Ty 2T - T - 1T - Tp)

Here the reference temperature is chosen to be T,,, = 273.16 K in which temperature the enthalpies
for dry air and water vapour are A, (T,.;) = 0 kJ/kg and h,,,(T,,) = 2501.3 kJ/kg. The latter equals

to latent heat between water and water vapour in the chosen reference point.

The specific entropy of water vapour and air can be expressed by integrating Eg.(4)

a R 1
AS=ST, -s(T . = T—l-+ + T+ T2dT__.i p_d
() o{Togs P | S R prnfp Y (20)
= alln(l)+a2(T-T )+-a—3(T2-Trzf)+ﬂ(T3_Tr3f)-.R_"1n(_E_)
Ty 2 3 Y M p,
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The reference point values are for dry air and vapour are
s. = 0 kI/(kg,K)
Svap = hvap (Trej’) / Tre/

The specific enthalpy of water is based on the values /Keenan et al 1978/ fitted by a third degree
polynomial fit

h, (T)-a-+al+al*aT’ 1)

wat (

where the constants for the region 273.16 K < T < 500 K are

a; =-1287 kJ/kg

a, = 5.54968 kJ/ (kg,K)

a; = -4.29195E-3 kJ/ (kg,K?)
4.47921E-6 kKJ/ (kg,K?)

I

a,

Because water is practically incompressible, the specific entropy of water is obtained by evaluating

Eq. (4) in the following way

dh v dh
ds - 2 Yoo % T
g T T P T s(T) (22)

and differentiating Eq.(21)
dh,, = (a,+2a,T+ 3a4T2)dT

a
- 5,,(T) - fT (?3+2a3+3a4T)dT

Ty

(23)

T
= azln(—z—;—-) + 2a3(T- Tr

3a
—(1*- Ty
ref 2

ef*

When suitable conditions exist, it is possible that the process is moved to an area where the
condensated water is ice. Therefore, we have to make regressional fittings also in this area. The
specific enthalpy of ice is based on the values /Keenan et al 1978/ fitted by second degree polyno-

mial fit

h T) = hice<Tref)+al +a2(T- Tc)"a3(T_ Tc)2 24

ice<

where the constants for the region 233.15K < T < 273.16 K are
a =0

2.10340 kJ/ (kg.K)

3.66290E-3 kJ/ (kg,K?)

i

a;

a;
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The reference point for ice enthalpy is #,, = -333.43 kJ/kg, which is the melting heat of water. Pa-

rameter 7, = 273.15 K is the 0 °C used in the original correlation.

The specific entropy of ice is expressed as with water from Eq. (23)

dh_, - (ay+2a,T-T))dl

ice

a,-2a,T
= 5 (T) = 5, (L)« [T (G- 2ay)dl 25)
ref

T
)+2a,T-T,)

Tref

* Sice (Tref) * (a2 - 2a3Tc) h'l(

The reference point value for entropy is
Sice = hice (Tref) / Tref

The water vapour pressure is expressed with a regressional exponential correlation /Schmidt 1989/
T /T(a,r-a,0% a, a7 q 75)
p'vap( T) - pcre [ 149% gl s (3 } (26)

where r = 1 - T/T,,, p,= 220.64 bar and T,,= 647.14 K and the constants for the region
273.16 K < T'< 647.14 K are

a, = -7.85823
a,= 1.83991
a;=-11.7811
a,= 22.6705
a; = - 15.9393
a, = 177516

The ice vapour pressure is expressed with a regressional exponential fit for the values
/Keenan 1978/

a
(a- =)
P'ice(T) _ ale T (27)

where the constants for the region 233.16 K < T'< 273.16 K are
a; = 34860760 bar

a,= 0
a;= 6136427K
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2.2 One-dimensional compressible flow

The flow in the reversed Brayton cycle with turbomachinery is continuous and direct forwarded.
The related flow passages are quite large and the velocities are significant only in the
turbomachinery components. The direction of the flow is abruptly changed only in the
turbomachinery (sometimes also in the droplet separator). Therefore, there are good possibilities to
consider the total cycle for an accurate design assignment. All the major components can be calcu-
lated on a level that would realize the commercial manufacturing of reversed Brayton cycle ma-

chines.

First we have to recognize the fact that we cannot calculate the flow at a 100% accuracy. It is cus-
tomary to simplify the process parameters as seen in Chapter 1. The use of turbomachinery means

compressible flow, where the use of the Bernoulli equation would be erroneous.

The approach starts by defining the basic flow principles and equations. Compressible flow has

variable density, and whenever the fluid meets a change in pressure, there will also be a change in

the density. This compressibility is defined as /Anderson 1990/
. 1ldp

28
o (28)

The compressibility of the fluid also varies in the flow, because the flows are started and maintained
by forces on the fluid, caused by changes in the pressure. It can be said that where there are pressure

differences there is flow.

Usually the boundary between compressible and incompressible flow is set to be at fluid speeds of
30% of the speed of sound. At a temperature of 300 K and pressure of 1 bar this would mean a

density change of around 5%, when air is used as a fluid.
2.2.1 The principles of motion

The first laws of motion were defined by Sir Isaac Newton /Newton 1686/ as axioms of decelera-
tion, action and reaction of mechanics, which are the first profound fluid dynamics analyses. Later,
they were developed by Leonhard Euler in 1757 and de Saint Venant in 1839 to equations of conti-
nuity, momentum and energy /Anderson 1990/.
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The fluid dynamics analysis at this time was based on one-dimensional and inviscous flow. With

proper interpretation these equations can still be used to explain the reversed Brayton cycle.

For calculating the properties of the fluid when it flows through the reversed Brayton cycle, a basic
model of flow needs to be created, into which physical principles can be applied. From this model
the necessary mathematical equations can be formulated that describe the model sufficiently. These
equations are derived from several gas dynamics textbooks /Liepmann and Roshko 1957/, /Zucrow

and Hoffman 1976/, /Anderson 1990/.

The basic model here is chosen to be a turbomachine with flow paths, illustrated in Fig. 6. The flow
of the model is assumed to be one-dimensional, steady-state, compressible and inviscid. The tem-

peratures, pressures and velocities of the flow are represented by their average values.

The specific work P, done to the system is positive for a turbine (the system delivers work), and
negative for the compressor. The heat term g is positive, when the heat is added to the system (heat-

ing from the surroundings) and negative, when the heat is subtracted from the system.

Figure 6. Turbomachine model for flow calculations

The definition of the model does not exclude the complicated, viscous flow inside the turbomachine,
but assumes that the flow is unsteady and uniform at the observation points in Fig. 6. To ensure this
kind of flow, the areas at the observation points are usually chosen to be quite large. Therefore, the

velocities of the fluid are clearly belove the compressible flow limit stated above, but the density
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between points 1 and 2 is changed due to the actions of the turbomachine. The compression and

expansion processes are defined below with the polytropic and isentropic efficiencies.

Continuity equation

The one-dimensional equivalent of the continuity equation is /Liepmann and Roshko 1957/
P64y = P64, (29)

When we look at the reversed Brayton cycle and its components, there are clear inlet and outlet

orifices in which the state of the fluid can be measured. Also, the flow is generally constant through

the cycle.

There are three exceptions to this constant mass flow:

. if the process is to be used in air drying, part of the water vapour condensates to water
and is removed from the cycle. The removal usually takes place after the droplet sepa-
rator, with a system (pipe, pump etc.) in which the mass flow of the water can be mea-
sured. Typically the mass flow of the water is less than 10% of the mass flow of the
inlet humid air.

. if there occurs condensation, part of the water will condensate on the surface of the
channels, and will affect the above mentioned water mass flow measurement. The
error caused by this phenomenon is proportional to the surface area, and is at largest at
the beginning of the operation of the cycle. When the surfaces are wet, the water runs
more rapidly to the collecting area. These two exceptions can be observed by measur-
ing the relative humidity before and when the cycle has reached the steady state oper-
ation.

. in the turbomachinery the gaps between the rotating wheels and the stationary chassis
are usually sealed up with contactless seals, such as labyrinth seals, to reduce mechan-
ical losses and ensure a long lifetime. Therefore, there always exist small paths where
the air can leak out. The smaller the turbomachinery, the relatively larger gaps have to

be used.

Momentum equation

As mentioned above, the flow is compressible and the density is not constant. The momentum equa-

tion for one-dimensional flow is /Anderson 1990/
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PP = Py pey (30)

Energy equation
Energy cannot be created nor destroyed but the form of energy can be changed, and so the energy

equation for one-dimensional flow becomes /Zucrow and Hoffman 1976/

2 2
C C
q + hl + —2%- + ng = h2 + -—22—— + P + g22 (31)

spec

P

02

Entahlpy

Y
wn

Entropy

Figure 7. The A,s- or Mollier-chart of the turbomachine model

The energy equation of the turbomachine model in Fig. 6 is illustrated for a compressor in Fig. 7.
Here the compressor uses work, -P,,,., and has a heat loss of -g to the surroundings. The potential

energy change is ignored'.

'The potential energy of gas is extremely small due the low density of the gas and the compact size of
the turbomachinery. For example in the atmospheric conditions, a 10 kW compressor working with the
pressure ratio of two, the potential energy is a 0.00002 part of the work needed in the compressor
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2.3 Compressor

The compressor compresses the working fluid to a higher pressure. One can use various kind of
compressors to accomplish this. To get high efficiencies in a reversed Brayton cycle and to accom-
plish the compression, the expansion and the external work on the same shaft, one attractive option

is to use turbomachinery. In such a case either axial or radial compressor can be used.

The axial compressor has a higher design efficiency but the radial compressor can be simpler — and
thus more economical — to manufacture and be more compact. In an axial compressor there are
more stages than tere are in the radial compressor. A trend to prefer radial turbomachinery can be
seen in the manufacture of turbochargers, where most compressors have a single radial wheel when

the pressure ratio is up to four.

In the turbo compressor, the rotation work is changed to pressure with rotationary and stationary
blades. First, the rotor wheel accelerates the flow and the absolute velocity over the blade. During
this work also the static pressure usually rises when the relative velocity over the rotor blade de-
creases. The stator slows the velocity and changes a greater part of the dynamic pressure to static

pressure. In a typical compressor the absolute velocities are several hundred metres per second.

In an axial compressor the flow enters an annular channel axially. First there is the rotor cascade and
then the stator cascade. After the stator the flow enters the diffuser, where the remaining kinetic
energy is partially transformed to static pressure. The diffuser is normally an evenly expanded chan-
nel. The high efficiencies are obtained by the highly developed computerized fluid dynamics (CFD),
which are very largely used by the compressor manufacturers around the world. The major govern-
ing equations were developed by Euler, Navier and Stokes. The first computer programmes for axial
compressors were written in the early 60s. Today there are quite good possibilities to achieve isen-
tropic efficiencies higher than 0.90 in commercial series production. In the axial compressor, the
area of the channel decreases with the rise of pressure and density, to keep the axial velocity of the
flow near constant. Because the flow out of the compressor is axial, the whole machine is quite

simple to fit to the surrounding system.

In a radial compressor the flow enters axially, but is then turned radially out from the impeller. The
static pressure rises due to the decrease of the relative velocity, but also due to the centrifugal forces.
After the impeller the flow enters a radially annular diffuser, in which there can be blades. Because
the radius increases, the diffuser can also be made without any blades (parallel diffuser), where the

flow is slowed by the free vortex flow. The high complexity of the flow, especially in the rotating
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impeller, makes CFD modelling very difficult. There has been much research in analysing the flow
and the different viscous phenomena, but there are still no programmes that can calculate the time
dependant flow explicitly. The radial compressor needs a gathering body, volute, to assemble the
flow to the next phase or to the outlet piping. Usually the volute is a logarithmically increasing
passage that ends to a circular outlet, which is easy to connect to piping. The velocities in the volute

should be kept low to keep the pressure losses small.
2.3.1 The velocity triangles and the h,s-chart of the compressor

The state values of the fluid — pressure rise vs. temperature rise (points 1 to 2 in Fig. 5) — in the
compressor are relatively simple to calculate. The velocities of the flow in the rotor can be divided

to three velocity vectors:

¢: the absolute velocity of the flow
W: the relative velocity of the flow
ii: the circumferential (tangential) velocity of the flow

The velocity vectors form a triangle in which the absolute velocity is the sum of the relative and

tangential velocities:

€= Wi (32)

The absolute velocity is formed of two velocity components that are perpendicular to each other:

c,: the velocity in the axial direction
c,: the velocity in the radial direction

The value of the absolute velocity is

c=yfefel (33)

In the diffuser there is no relative velocity. The flow is slowed and the flow angle is changed due to
the increase of the diffuser area and the radius. The volute gathers the flow from the diffuser cir-
cumferentially, and the volute area is increased in the proportion of gathered gas, in order to keep
the flow velocity constant. Finally, the flow is led out in a conical tube, which ends at a desired

diameter and is connected to the piping with for example a flange.
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Figure 8. Geometry, velocity vectors and velocity triangles of a radial compressor /Larjola 1988/

The geometry, the velocity vectors and the velocity triangles of a radial compressor are presented in
Fig. 8. The rotor blades rotate clockwise and the momentum of the flow is expressed at the inlet and
outlet of the rotor with the momentum equation /Dixon 1984/

M=F'r1+F-r2 (34)
where the force is F=g¢q,, " ¢,

When we add power P = w - M and tangential velocity ¥ = w - 7, we get the Euler turbomachine
equation /Dixon 1984/

Pos g le - cgt) (35)
where the minus sign denotes that power must be put in to obtain compression. When we divide the

power with the mass flow g,,, we obtain the specific power P,,., which is an equation that contains

only the velocities of the flow
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P = C U Cly (36)

spec

When the system is assumed to be adiabatic (isolated), and the potential energy change is ignored,

the energy balance of the flow system will be according to Eq. 31)

1 2 1 2 1 2
h1+-£c1 =h2+j2-c2+P =h3+—2—c3+P - h

spec

The h,s-chart shows that the work is done only in the impeller, and the enthalpies A, and h,; are the
same. If the outlet of the compressor is not directed to another compressor, the pressure rise that is
calculated from the velocity at the volute exit is lost. Consequently, the actual pressure obtained by

the compressor is the static pressure p,

h

A

hozhozhzuhm
h4
h, —+
h# T
=
= g
3 £
<
S

Entropy

Figure 9. The A s- or Mollier-chart of the compressor

The polytropic process from pressure p, to pressure p, is defined with the polytropic efficiency,
which can be best seen as an angle coefficient in Fig. 5 between compression points 1 and 2. It can
be defined as /Larjola 1988c/

vdp

T " o

(38)
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By integrating and applying the perfect gas definition, Eq. (38) becomes

R
T (P_)— 39

Equation (39) is used to calculate the compression process values.
2.3.2 The efficiency of the compressor

The efficiency of a machine determines its capability to work in comparison with the ideal work.
There can be several definitions of the efficiency, and this can cause difficulties, when different

machines are compared to each other.

In the A s-chart the phases are defined between the inlet and outlet flanges. The ideal process is
defined to be the isentropic process between the total inlet and static outlet conditions. This is cho-
sen, because the kinetic energy at the outlet cannot be used!. The real process is between the total
conditions at inlet and outlet. This definition will include the aerodynamic losses caused by the
turbulence of the internal gas friction and by the friction between the gas and flow passages. Also

the pressure drops at the inlet and the outlet are noted.

The ideal enthalpy rise is A~k and the actual enthalpy rise is A,,-h,,. The efficiency is defined by
the isentropic efficiency in the compressor, and the index includes the letters to define the state

between the total inlet state and the static outlet state. The isentropic efficiency is thus

n. - Ahs,TS _ h4 -hOI (40)
’ AhTT h04 - hOl

2.3.3 Off-design capabilities

When a compressor is designed, it is assumed to operate at one point. If the inlet conditions, pres-
sure and temperature, or rotation speed, piping and valve pressure losses etc. vary from this design

point, the performance of the compressor changes.

1

It might be argued that in the over pressure cycle most of the compressor outlet speed can be used in
the droplet separation channel and could therefore be counted in the ideal process. This would be right
if the speed in the channel were not slowed down as much as in test facility I. To keep identical basic
definitions to both cycles, this conventional approach was chosen.
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A Kinetic compressor operating with constant speed has two limiting points concerning the mass
flow. The phenomenon below the minimum mass flow operation point is called stalling, where the
flow will be detached from the rotating blade. Typically the unstable flow begins to pulsate in the
impeller. The impeller may be destroyed, if the stalling is allowed to continue a longer time. It is

absolutely important to operate with mass flows above the stalling point.

When the mass flow is increased enough, the velocity in some point of the compressor reaches the
velocity of sound of the fluid. In the compressor this means that the mass flow cannot be increased,

and the flow will be choked.

The compressor manufacturers provide compressor maps that are usually tested at essential opera-
tion points /Watson and Janota 1982/. It is very common that the abscissa of the map gives the mass
flow and the ordinate gives the pressure ratio. There are several constant speed lines from stalling to

choking. The efficiency equality curves help detecting of the best operation regions.

The map also includes two very important parameters: the reference pressure and temperature.
When the compressor is used with different inlet conditions, the aerodynamic performance differs
from that on the map. This will be taken into account with off-design calculation, in which a kine-

matic similarity is used.

The kinematic similarity requires that the model and the compressor have the same length-scale
ratio and the same time-scale ratio. The relations of the velocities are kept equal /Dixon 1984/, and

in this way operation of the compressor can be estimated at a large range.

The off-design calculation is very sensitive especially in the sub-pressure cycle, because here the
compressor inlet conditions change, and the interpretation of the compressor map becomes more
complex. In normal cases the map mass flow is calculated from the actual mass flow with the equa-

tion /Glassmann 1972/, /Watson and Janota 1982/

T, R
_ __p_ des™ “des ( 41 )
qm qm,des pdes TR

The map constant speed is calculated from the actual speed

TR
R

N=N

des
Tdes

(42)
des
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2.4 Turbine

The turbine design is very critical in a reversed Brayton cycle, because the power generated in the
turbine decreases the amount of electrical power needed in the motor. A turbine operating with a
good efficiency can be the factor that helps cross the threshold of the economical utilization of the

cycle.

We have chosen two main types of turbines: an axial and a radial inflow turbine. The choice of the
turbine type depends on many things, which can be the manufacturing costs, the flow paths of the
cycle, the rigidity of the shaft, the leakage questions, the foreign particles in the flow etc. The axial
turbine is commonly used in the commercial applications of medium or large size turbomachines,

but in small machines there are more often radial inflow turbines.

The flow in the axial turbine is less complex than the flow in the radial turbine, and therefore one
can achieve higher efficiencies. Also foreign particles that in humid air expansion coagulate with
water droplets run through the axial turbine without greater problems. This can be a very serious
erosion problem in the radial inflow turbine, because the flow direction is inwarded. There can be a
situation, where the flow forces thrust the foreign particles to swirl into the rotor impeller passage.
The problem arises from the fact that the centrifugal force pushes the particles back out from the
impeller. If the particles are stuck to circulate back and forth between the impeller and the stator,

there will very rapidly be serious erosions, especially in the rotating impeller blades / Wilson 1991/.

When the humid air flow expands through the turbine, part of the water vapour condensates to water
droplets or sublimates to ice particles. When this occurs, the expansion process becomes more com-

plex to calculate.

The blades in a high efficiency axial turbine can be very complicated in shape. Depending on the
manufacturing methods, the costs of the axial turbine cascades are often higher than with the radial

turbine.

The flow enters the turbine first through the stator, in which the pressure is turned to speed. In the
axial turbine the stator is an annulus shaped blade cascade, and in a radial turbine the blades are on
an annulus ring. The axial stator blades are 3-dimensional and they together form the blade cascade.
The radial stator blades are 2-dimensional on a ring and they form separate nozzle passages for the

flow.
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In the axial turbine the rotor cascade resembles the stator cascade very much, but in the radial turbine

the impeller wheel differs considerably from the stator. The impeller blades conform passages that are

3-dimensional and in which the flow is turned 90 degrees.

With the help of a diffuser, the main part of the kinetic energy after the rotor is turned to pressure to

prevent it from dissipating to heat.

P

{
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Figure 10. Axial turbine geometry and velocity triangles (top) and radial turbine geometry and

velocity triangles (bottom) /Larjola et al 1987/.

2.4.1 Velocity triangles and efficiency of the turbine

The turbine velocity triangles in Fig. 10 resemble those of the compressor very much. From the

triangles, the enthalpy drop and the power output can be calculated as described in Chapter 2.3.1. In

the momentum equation either the order of the triangle parameters are changed or the sign of the

specific power is switched

P - qm(culul ‘cu2u2)
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Particularly in the axial turbine, where the hub-tip-ratio A is large enough (1 > 0.85), the velocities
and the fluid parameters can be assumed to be constant. This means that the radial equilibrium can
be neglected and the blades can be straight, and the streamline radius is constant. This simplifies the

equation to
pP- 9m ¥ (cul - cu2) (44)

When the system is assumed to be adiabatic and the potential energy change is ignored, the energy

balance of the flow system becomes slightly different as for the compressor

1 2 1 2 1 2
hy+ Ecl = hy+—c; :h3+3c3 +P

2 spec (45 )

There is no work in the nozzle and A, = A,,.

The isentropic and polytropic efficiencies are defined in the same way as in the compressor, but
because the losses increase entropy, the real values are larger than in the ideal process. Therefore,
the isentopic efficiency of the turbine is

Ahp By - hy

7, = - (46)

Ahs,TS hOl N hs4

The efficiency of the turbine is defined in contrast to the isentropic, ideal process and as in the com-
pressor, the isentropic process is between the total inlet state and the static outlet state. The kinetic
energy is assumed to be lost after the turbine. The real process is defined between the total inlet state

and the total outlet state.

2.4.2 Condensing and the h,s-chart of the turbine

The expansion process differs physically from compression, when the water vapour in the humid air
begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in

humid air cannot exceed the pressure of saturated water vapour in corresponding temperature.

During the expansion in the turbine, the temperature (and the corresponding saturated water vapour
pressure) decreases more rapidly than the pressure of the water vapour component in the humid air.
This means that part of the water vapour condenses to water or sublimes to ice (7 < 273,16 K).
During this phase shift the water vapour delivers heat that corresponds to the difference between the

vapour and liquid enthalpies. If the water vapour sublimes, this difference is between the vapour and
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solid enthalpies. Due to this internal heat delivery, the temperature of the fluid after the expansion is

higher than it would be without this partial vapour phase change.

Condensation is theoretically defined to be either homogeneous or heterogeneous. Homogeneous
(also called spontaneous) condensation occurs due to the random agglomeration of vapour molecules
in totally clean flow conditions, and is believed to be the major condensation process. Heterogeneous
condensation occurs around foreign solid particles and on the walls of the flow channel. This nucle-

ation phenomenon is believed to have only a small influence in the condensation process /Moore and

Sieverding 1976/.

Homogeneous nucleation is a very sensitive process and laboratory results have shown that accurate
prediction of droplet size distributions is very difficult. Also, the heat transfer speed in the nucleation
area is restricted by many factors. Typically the whole process takes only 10-20 ps in a shock-like
front, and the temperature of the different fluid components differ, which in return causes an entropy

rise in the mixture. Furthermore, the condensing is not immediate /Moore and Sieverding 1976/.

In vapour turbines, depending on the rate of expansion and the pressure, the vapour becomes super-
cooled by 30-40 °C before condensing. Nucleation formation and growth are prevented by surface
tension. The droplets are very small and their surface-to-volume ratio is very high (droplets are in
clusters of less than 20 molecules /Young 1989/), and the nucleation is blocked by the free energy
barrier. This supercooled fluid is in a non-equilibrium state, and in subsonic flow the condensation

causes a small drop in the pressure.

Subcooling is defined in the steam turbine with the Wilson point, which is the maximal supercooling
temperature before condensing starts. If there also occurs heterogeneous condensation (dust, ions,
salt) supercooling is smaller, and condensing can even start just after crossing the saturation line.
This condensation is obvious if there are foreign particles. The smaller the particles, the less super-

cooling /Moore and Sieverding 1976/.

Expansion calculation during operation around the saturation zone is based on a quasi-static expan-
sion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters

are at every moment defined by the equation of state, and there is no supercooling in the vapour.

In the theoretical expansion process with humid air there exists a four-phase zone /Sahlberg 1988/
that is due to the fact that the triple point of humid air is not a discrete point, but a zone restricted by

the isotherm 0.01 °C. The zone is wedge shaped, and the tip is on the cutting point of the phase
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boundaries of vapour/water and vapour/ice. In this region there are four components and three
phases; air, water vapour, water and ice. Furthermore, at the isobars the amounts of dry air and
water vapour are constant. When the expansion state is above this zone under the saturation line, the
fluid contains two components (air and water) and two phases (gas or vapour and liquid). In manual
calculation with the A,s-chart this four-phase zone is easily observed, but due to the narrow area, the

numerical approach requires closer attention.

There has been very little research done on humid air water vapour condensation in expansion.
Some approaches have been noted in /Heikkinen et al 1992/ and /Ling and Li 1988/, but the meth-
ods differ from the approach presented below. In the calculations of this thesis it is assumed that all
the water exists as water vapour, which means that there are no water droplets in the inlet flow. The
default parameters in the turbine expansion are the turbine inlet pressure and temperature (both
stagnation and static), the turbine isentropic efficiency, the static pressure after the turbine and the
relative humidity. From this data the humidity and stagnation enthalpy can be directly calculated.

The calculation procedure requires several iteration loops within each other:

«  the temperature after the expansion 7, is first guessed with the help of the isentropic equation,
where the specific heat capacity ratios are calculated at the inlet mixture

- in this temperature the corresponding pressure of saturated steam p ,;, is calculated, and from
this we get the humidity 'y, that corresponds to 100% relative humidity. If the humidity is
greater than the humidity at the inlet ( @y, < w’,3, ), there occurs no condensation in the turbine.
If the humidity is smaller, part of the water vapour condensates to water.

» the total mixture specific entropy change is calculated. The separate component entropy change
is calculated, and the possible alteration in the partial pressures depending on the mole fractions
in the gas phase is observed. If the total specific entropy change does not equal nil, the tempera-
ture guess is corrected. The course is obtained from the specific entropy change. If it is negative,

we have to increase the temperature and vice versa.

When the iteration converges with desired accuracy, the isentropic enthalpy #;,, after the turbine is
calculated from the temperature T, and humidity portions. The actual enthalpy h,; is calculated
with the help of the efficiency. Also this enthalpy calculation has iteration loops that resemble those

above.

The method can be illustrated with the 4, s-chart of humid air. The calculations with the chart are
hampered with the fact that the A s-chart of humid air is dependent on the inlet air consistency. If



32

humidity in the inlet changes, another /,5-chart with different water vapour mass portion in the air
should be used.

2.4.3 Off-design performance

The off-design performance of the turbine can be evaluated with the blade speed ratio, v, and the

nozzle flow approximation.

The blade speed ratio is physically defined with the help of dimensional analysis /Glassman, 1972/

Ve ——— (47)

For the first theoretical calculations the flow can be considered isentropic and the turbine reaction
level to zero. Then the isentropic total-to-static efficiency can be derived to be only a parabolic

function of the blade speed ratio /Glassman 1975/

s = 4vsin(e) - 4v 2 (48)

Though this equation is achieved with considerable generalizations, it gives good results in actual
turbines. The maximal value of the efficiency is derived for the chosen outlet angle from Eq. (67).
When the reaction level is increased, the maximal blade speed ratio increases. In turbo chargers with
wide operational range, the blade speed ratio is also dependent on the pressure ratio /Watson and

Janota 1982/.

The blade speed ratio is a very good tool to make preliminary calculations of the turbine dimen-
sions. It is then easy to fit the turbine to the other components of the reversed Brayton cycle. When
the turbine inlet conditions and the pressure ratio are known, the isentropic enthalpy and the mean
circumferential speed can be calculated. The rotational speed is known from the compressor calcula-
tion, and the mean diameter is found. The tip and hub radius can be calculated from the continuity

equation.

The throat capacity tells the mass flow dependency of the rotational speed, the pressure ratio and the
fluid inlet conditions. This is applied with a semi empiric nozzle flow approximation that consider-

ably simplifies calculations. In the first test facility it also proved to be quite exact. The approxima-
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tion was first evaluated by Saint Venant /Anderson 1990/.

_ 2(,-R) 2R
P T ) Y I Y (49)
" \/—i R? P, D3

In the iterative off-design calculation, the pressure ratio is preliminarily determined by the compres-
sor calculations. This pressure ratio is then used to calculate the turbine mass flow (pressure losses
and water separation included), which in turn is again used to calculate the compressor pressure
ratio. The calculation is continued until the pressure ratios and mass flows are equal, both in the

turbine and in the compressor.
2.5 High speed motor

The reversed Brayton cycle needs power supplied through rotational work. In a high efficiency
turbomachinery the power required by the cycle can be reduced to less than a half of the compressor

power. The rotational work can be produced in many ways.

The electric motor has good advantages that have enlarged the use of motors in numerous places in
the world. The size of the motor is rather compact and electricity is properly available in many
places. The electric machine technology has developed greatly during the last century, and the drive
can be easily connected to turbomachinery. There are large amounts of commercial products from

1200 MW power production steam turbines to 1000 W vacuum cleaners.

When conventional electric machines are used, the rotational speed is set to the net frequency, in
which 50 Hz corresponds 3 000 rpm. In the Brayton cycle the compressor and turbine rotational
speeds are usually much higher. The processes studied in this thesis concern rotational speeds over
10 000 rpm, and therefore use mechanical means (gear or belt drive) have to be used to change the
speed of the conventional drive. Although this can be done, the efficiency can be very low due to

the high losses.

During the last two decades, the development of the technology to control the speed of electric
machines electrically has been quite rapid. Frequency inverters can vary the speed of the conven-
tional machines, but they can also be used to supply a higher frequency to the machine. This way it

is possible to have higher rotational speeds in the electric machine.
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The development of the power semiconductors has advanced so that in 1985 the power-speed-limit
of the commercial inverters was 20 KW / 30 000 rpm, in 1990 it was 100 kW /30 000 rpm and in
1995 it reached 100 kW / 150 000 rpm.

For special purposes, the reversed Brayton cycle could use an air turbine drive, in which pressurized
air drives a separate air turbine. The air turbine would be mounted to the same shaft with the other

turbomachinery. This kind of technology is used in dental drills.
2.6 Water droplet separator

The reversed Brayton cycle operation often requires that the condensed water be removed from the
cycle. This is usually an optimization problem, because, especially in the drying and heat pump
applications, it is essential for good cycle characteristics that the energy and pressure losses are kept

small.

The basic operational idea in a flow separator is to use centrifugal forces to separate the heavier
water droplets from lighter humid air. Following separators were considered:

- vertical cyclone separator.

- corrugated plate separator.

- mesh pad mist eliminator or knitted wire mesh separator.
2.7 The reversed Brayton process and high speed technology

It is a demanding task to design working, high efficiency machinery that includes turbomachinery,
high speed electric machinery and long operational life bearings. The design parameters have to be
chosen from a wide range, and they have meet high demands to give the process the possibility to

perform at a high efficiency.

The basic requirement for the high cycle efficiency is to have high efficiency turbomachinery. Usu-
ally this means rotational speeds that exceed the synchronic speed. For example the speeds of vehi-
cle turbo chargers are often in the range of 100 000 rpm. This is over 30 times the synchronic speed,

and it is almost impossible to realize the electric drive with a conventional gearing system.

In this research we have decided to use conventional kinetic turbomachinery to achieve both the

compression and expansion processes. The high speed electric motor and the turbomachinery are
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directly coupled on the same shaft without any gears and clutches. The frequency change of the
supply from the electric net (50 or 60 Hz) is made with the means of an electric inverter. The high
speed technology involves a totally new construction of the main process equipment, which in many

cases requires a new approach to the system. The advantages from this technology are:

» maintenance and oil-free operation. There is no gearbox, and the oil-free fluid or magnetic
bearings have a long lifetime. These bearings operate without mechanical contact between the
bearing and the rotor.

. high efficiency. The turbomachinery, high speed inverter and electric machine design includes
internal adaptation that ensures that all individual components are working with high efficiency.
The research on electric machines at LUT and HUT indicates that high speed electric machines
can be designed with significantly high efficiencies.

. small and compact size. When the rotational speed is increased, the size of the machinery is
decreased, often dramatically. The outer diameter of the compressor, the turbine or the pump
disc is inversely proportional to the rotational speed. The volume of the electric machine is
inversely proportional to the speed in the 3rd power.

+  low specific price. The economical studies show that the specific price of the machinery de-
creases, when the rotational speed increases at the same manufacturing levels. One main reason

is the reduced size and volume of the machinery.

The use of an inverter makes it possible to control the rotational speed to obtain the optimal opera-
tion of the process. This advantage does mean an increase in the price of the machinery but this

investment is obligatory to realize the high speed.

The inverter supplies the motor with the high frequency current that generates the high speed rota-
tion. This means the use of powerful transistors, but there have been very few commercial inverters
to give 100 A, 800 Hz current that would rotate a 50 kW motor with the rotational speed of 48 000
rpm. Because of the high production costs and the very low demand of today, the industry has not
been interested in developing such machines, although there have been theoretical ideas to exploit

the reversed Brayton cycle.

In the 90s, the use of inverters in Finland has shown definite increase, which explains why the rapid

development of power transistors has made a breakthrough in the control of electrical machines.
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3. THE PROCESS CALCULATION PROGRAMME - BCD

In the early stage of the research, the process calculations proved to be very iterative and time con-
suming to accomplish the required accuracy. The researchers, and later the product development and
marketing personnel, could benefit from a reliable process calculation programme that provides

explicit data about the performance and the components of the machine.

The Brayton Cycle Design (BCD) programme gives a realistic view of the most significant process
parameters and coefficients. Especially the analysis of the phenomenon of water vapour condensing

to water or sublimation to ice is very important.

The programme was generated in Turbo-Pascal' computer language, and was based on the equations

and fluid property correlation functions mentioned in Chapter 2.

Following simplifications are used in the calculations:

« the system is assumed to be adiabatic. This means that there is no heat transfer to the surround-
ings. This is a common practise, when the temperature differences are moderate as here. This
assumption can be confirmed with a thermal insulation of the machinery as was done with the
test facilities in this thesis.

«  the power of the cooling is omitted. The cooling construction is very dependent on the machine
and the distribution of the losses. Therefore the general calculation of the power is complicated.
The cooling construction of Test Facility II was ca. 10% of the total power, Fig. 39.

+ the flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour
condensing in the turbine can cause errors, but the errors are mainly included in the efficiency
calculation. The turbine performance in the test facilities did not significantly suffer from the

condensation.
3.1 The input data

The programme needs the following input data:

. the process connection that will be used. The connection is defined by a single parameter.

+ the state values of the humid air: temperature, pressure and relative humidity

«  the pressure ratio of either the compressor (over-pressure connection) or the turbine (sub-pres-

sure connection)

' Copyright of Borland International, Inc
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« the mass flow of the humid air

» the pressure drops between the calculation points (in the heat tubes, in the droplet separator, in
the inlet/outlet piping)

» the isentropic, mechanical and electrical efficiencies

« the droplet separation efficiency

If the user gives the rotational speed of the machine, the programme calculates the turbomachine

specific speeds.

3.2 The calculation routines

From the input data, the programme calculates the process iteratively. The different calculation
points are executed in the calculation procedures according to the process connection. The state
values are calculated with the help of fluid property correlation functions. Several extra routines
have been developed to ease the basic calculation of special cycle procedures: drying, coefficient

exploration, etc.

The calculation routines are explained below for a simple over-pressure cycle, connection number 1
in Fig. 15. The calculation of a sub-pressure cycle differs only slightly from this. With a more com-
plicated heat exchanger connection the calculation has to make iterative calculations that may in-

volve the whole process.

Compressor
The inlet conditions, the pressure drops at the inlet, and the isentropic efficiency are used to calcu-
late the temperature at the outlet from. Eq. (39) iteratively. The humidity is constant, because the

temperature of the fluid and the vapour pressure of water increase.

Heat exchanger
The heat exchanger calculation uses the continuity and energy equations to balance the enthalpies
and mass flows. In some regenerative connections, the heat exchanger calculation actively tests that

the temperature difference is not lower than allowed between the primary and the secondary side.

Turbine
The turbine pressure ratio is known from the compressor ratio and pressure losses. Equation (49) is

used to calculate the approximate flow area of the turbine. The condensation is calculated with the

routines explained on page 31.
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Off-design

Normally the process is designed to operate at the design point, but the off-design calculation en-
hances the prediction of the actual machinery operation. This is important once a Brayton machinery
has been designed or made, and this machinery is considered to operate at different process condi-

tions. The operation will be determined by the mutual operation of the turbine and compressor.

The user can use a particular compressor map that can be fed to the programme, or use the relative
compressor map of the programme. The turbine and compressor operations are calculated with the
principles explained in Chapter 2, and often require some iteration loops to match the mass flow and

power balances.
3.3 The rapid interactive environment

The programme is based on the Rapid Interactive Environment (RIE) that makes it possible for the
user to run the programme with only a few keystrokes, and the user can be acquainted with the
programme structure in a short period. Although the programme is easy to use, the user has to un-

derstand the process principles to be able to get all the benefits of the programme.

The programme always starts (for a new user) with an info screen collection. There is a total of five
info screens that can be viewed in a sequel, and the main features of the programme are explained in
these screens. The programme then starts with a default input data, and the results are printed on the

screen.

The user can have up to nine different windows during the same session. This has proved to be very
useful, when the influence of different input data is compared to the Brayton Cycle process behav-

iour.

Whenever the user has any doubts that there is some misunderstanding, the on-line help can be

looked up on the screen, or the user can glance through the info pages.

The default process calculation is chosen to give instant understanding about the process calculation
for the new user. When the results are on the screen (Fig. 11), it is rather easy to employ one's own
process parameters, compared with feeding them separately without any knowledge of the calcula-

tion procedures.




39

Data Input Efficiencies Pressloss HeatExch Optimization OffDesign
Reversed Brayton Cycle in over pressure process mode | ©LUT&HST

<—m—> NoName. rbc Window: 1
Cycle points T h p wi wh Fii
[ °C 1 [kJ/kg] [ kPa ] %

0 - Cycle inlet 14.0 24.1 100.0 0.9961 0.0039 39.0
1 - To Compressor 14.0 24.1 99.5 0.9961 0.0039 38.8
2 - From Compressor 64.5 75.4 160.0 0.9961 0.0039 4.1
3 - From heat exchanger 32.0 42.3 157.5 0.9961 0.0039 20.6
4 - From turbine -0.1 9.4 101.5 0.9963 0.0037 100.0
Compressor power Pc = 1.13 kW compressor isentropic efficiency = 0.823
Turbine power Pt = 725.81 W turbine isentropic efficiency = 0.906

mechanical efficiency = 0.948
Motor electric power Ps = 438.03 W motor electrical efficiency = 0.970

323.58 W refrigeration COP = 0.739
0.022 kg/s Turbine mass flow gm = 0.022 kg/

Refrigeration power Pre
Compressor mass flow gm

[

Rotational speed N = 145728 rpm

Condensate mass flow gv = 0.014 kg/h Vaporizate power Pva = 0.0 w
Droplet separation Ds = 100.00 % Specific energy Psm = 31.56 kWh/kg
Impeller diameter Dko = 35 mm Impeller diameter Dtu = 30 mm
Compressor specific speed= 0.70 Turbine specific speed = 0.76
Fl Help F2 Save F6 Graf F8 Infc F10 Run Alt+Fl0 Exit | 18. 7.1994

Figure 11. The BCD-programme screen output at default calculation

The first and last lines are the menu lines. The second line describes the process mode. There is a
small RBC-logo in the beginning of the 3rd row to inform that the results are matched to the input
data. The logo will disappear when the data is changed by the user. On this line there is also the
name of the input file that has the .rbe-extension as a default to separate the file from other files in

the computer's directory. The last information on this line is the window number.

The rest of the screen is dedicated to the process parameters. First there are the process parameter
data in the main points of the cycle. These parameters include the temperature (T), enthalpy (h),
pressure (p), the mass fractions of dry air (wi) and water vapour (wh), and the relative humidity of
the flow (Fii).

The most valuable calculation data are the component powers and efficiencies, the coefficient of the

process and the mass flows. With this data the realistic process flow is possible.

From this screen the user can begin to build a new cycle calculation. The input parameters can be
changed in the Jnpur Menu that is revoked just by pressing the key I (The letter is highlighted on the
first line called the Menu Line). As seen in Fig. 12, only a few parameters of the process fluid
values need to be known to make the calculations. In the Input menu the user presses the appropriate
highlighted letter, and the programme opens a data input window, in which the user can give a new

value to the parameter.
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| Data Input Efficencies PressLoss HeatExch Optimization OffDesign
o Input values ssure process mode | ©LUT&HST
Window: 1
Heat E| Cycle inlet pressure p0
Cycle Cycle inlet temperature TO wi wh Fii
Compressor outlet pressure p2 ] %
0 - Cy| Compressor mass flow qO 0 0.9800 0.0200 89.0
1 - Col Droplet separation efficiency Dropef 5 0.9800 0.0200 88.6
2 - Co| Cycle inlet relative humidity RHO 0 0.9800 0.0200 11.7
3 - He| Motor rotational speed N 5 0.9810 0.0190 100.0
4 - Tu 3 0.9872 0.0128 100.0
4%~ Mi 3 0.9872 0.0128 100.0
5 - Cy Hit Return to exit 0 0.9872 0.0128 97.8
Compressor power Pc = 1.15 kW compressor isentropic eff.= 0.850
Turbine power Pt = 651.45 W turbine isentropic eff. = 0.800
mechanical eff. = 0.948
Motor electric power Ps = 546.71 W motor electrical eff. = 0.970
Refrigeration power Pre = 597.08 W refrigeration COP = 1.092
Compressor mass flow gm = 0.022 kg/s Turbine mass flow gm = 0.022 kg/s
Rotational speed N = 147722 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gv = 0.577 kg/h Vaporizate power Pva = 0.0 W
Specific energy Psm = 0.95 Wh/g
Fl Help F¥F2 Save F6 Graf F9 Info F10 Run Alt+F10 Exit | 18. 7.1994
Figure 12. The BCD-programme input menu .
Data Input Efficencies PressLoss HeatExch Optimization OffDesign
Efficiencies | ©LUT&HST
Window: 1
Heat Exc etas = 97.0 % motor electrical efficiency
Cycle po etam = 94.8 % motor mechanical efficiency Fii
etak = 85.0 % compressor isentropic efficiency %
0 - Cycl etat = 80.0 % turbine isentropic efficiency o] 89.0
1 - Comp etak & etat = 0 => retain Ns-fitting Q 88.6
2 - Comp 0 11.7
3 - Heat 0 100.0
4 - Turb Nsk = 0.70 compressor specific speed 8 100.0
4*- Mist Nst = 0.78 turbine specific speed 8 100.0
5 - Cycl ny = 0.60 blade speed ratio 8 97.8
Hit Return to exit
Compressor power Pc = 1.15 kW compressor isentropic eff.= 0.850
Turbine power Pt = 651.45 W turbine isentropic eff. = 0.800
mechanical eff. = 0.948
Motor electric power Ps = 546.71 W motor electrical eff. = 0.970
Refrigeration power Pre = 597.08 W refrigeration COP = 1.092
Compressor mass flow gm = 0.022 kg/s Turbine mass flow gm = 0.022 kg/s
Rotational speed N = 147722 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 0.577 kg/h Vaporizate power Pva = 0.0 W
Specific energy Psm = 0.9% Wh/g
Fl1 Help F2 Save F6 Graf F9 Info F10 Run Alt+F10 Exit | 18. 7.1994

Figure 13. The BCD-programme efficiencies menu.

In the Efficiencies Menu (key E, Fig. 13), the efficiencies of the turbomachinery can be changed.
The default parameters in the efficiencies are already quite near the actual values. They have been
chosen into the programme by using the experience achieved during the prototype testing. This
menu also states the main turbo component characteristics. If the turbine or the compressor efficien-
cies are chosen to be zero, the programme calculates the efficiency according to the speed, the pres-

sure ratio and the mass flow. It should be noted that the programme includes electric and mechanical

losses to the calculations.
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The pressure losses (key P, Fig 14) are very important in the accurate calculation of the process. The

losses are given only to those parts of the process that are currently chosen.

Data Input Efficencies PressLoss HeatExch Optimization OffDesign

Pressure Losses ST
4

Heat Exchange dps = 500 Pa at the compressor inlet

Cycle points dprl = 2500 Pa in the heat exchanger (primary side)

dpm = 1000 Pa in the droplet separator

0 - Cycle inl

1 - Compresso dpu = 500 Pa at the turbine outlet

2 - Compresso

3 ~ HeatEx ou Hit Return to exit

4 - Turbine outlet 18.2 50.7 102.3 0.9872 0.0128 100.0
4*- MistElim outlet 18.2 50.7 101.3 0.9872 0.0128 100.0

5 - Cycle outlet 18.2 50.7 100.0 0.9872 0.0128 97.8
Compressor power Pc = 1.15 kw compressor isentropic eff.= 0.850
Turbine power Pt = 651.45 W turbine isentropic eff. = 0.800

mechanical eff. = 0.948

Motor electric power Ps = 546.71 W motor electrical eff. = 0.970
Refrigeration power Pre = 597.08 W refrigeration COP = 1.092
Compressor mass flow gm = 0.022 kg/s Turbine mass flow qm = 0.022 kg/s
Rotational speed N = 147722 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gv = 0.577 kg/h Vaporizate power Pva = 0.0 w
Specific energy Psm = 0.95 Wh/g
Fl Help F2 Save F6 Graf F9 Info F10 Run Alt+F10 Exit | 18. 7.1994

Figure 14. The BCD-programme pressure loss menu.

The use of heat exchangers diversifies the process calculations considerably. The programme can
calculate up to nine different heat exchanger connections. There are three main connections for the

over-pressure cycle, and six main connections for the sub-pressure cycle ( Fig. 15).

The heat exchanger (key H, Fig 16) connections can be chosen from these nine different composi-
tions. In some options the programme asks the outlet temperature of the heat exchanger. In such
cases the heating/cooling fluid can be taken from outside the actual process, it can be for example
could be running cold water or waste heat from an industrial process. In some cases the process uses
internal heat exchange, and then the programme asks for the temperature difference, d7’, of the heat

exchanger. The main connection parameters can be graphically checked with the key F4.

From the Data Menu (D-key), the user can open new files to new windows, save the current input
data into a new file or in the current file, close the current window, print the output data (as on the
screen) to a file or to the printer. If the user has chosen a special compressor, the map with the oper-

ation point can also be printed on a laser printer.
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Over-pressure connections

Sub-pressure connections
0

Figure 15. Heat exchanger connections.

Data Input Efficencies Pressloss HeatExch Optimization OffDesign

Heat Exchangers HST
Current connection number 4 |: 4
Heat Overpressure connections

Cycle| 1 Primary HE loop between compressor and turbine, give T3
2 Primary HE loop between compressor and turbine, give T3

0 ~-C Secondary HE loop after turbine, give T35

3 - T| 3 Primary HE loop between compressor and turbine, give T3

4 - T Secondary HE loop after turbine, give dT and program gets T5
4*- M Sub pressure connections

2 - C|*4 No heat exchangers, only turbine, droplet sep. and compressor
2*- C¢| 5 Primary HE loop between turbine and compressor, give T3

6 Primary HE loop between turbine and compressor, give T3
Secondary HE loop after compressor, give T5

7 Primary HE loop between turbine and compressor, give T3

Compr Secondary HE loop after compressor, program gets T5

Turbi| 8 Primary HE loop before turbine, give T3

Secondary HE loop after compressor, program gets T5

Motor| 9 Primary HE loop before turbine, give dT

Heati Secondary HE loop after turbine, program gets T3 and T5

Turbi kg/s
Rotat Hit Return to exit Ig
Condensate mass flow qv = 1.165 kg/h Vaporizate power Pva = 0.0 W

Figure 16. The BCD-programme heat exchange menu
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Figure 17. The compressor map as iliustrated on the screen.
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4. TEST FACILITIES

The theoretical calculations implicated that there could be commercially significant applications
using the Brayton cycle with high speed technology. Therefore, the building of test facilities was a

vital part of this research. Two test facilities were built and tested to demonstrate the theory.

4.1 Test facility I

In the early stage of the design, it was clear that a prototype was needed to verify the process calcu-
lations of the Reversed Brayton Cycle and its components. The first facility was based on the Re-
versed Brayton Cycle with partial high speed technology. The goals of the first facility (1992-93)
were to verify the calculation model and to check the results of the computer programme in favour-
able operation regions. It was very important was to get results concerning the condensation phe-
nomenon and its effect on the process parameters. The main components were decided to be built

from readily available components.

The largest turbomachinery manufacturers were contacted for offers for the turbomachinery parts —
the radial compressor and the axia turbine — which would finally determine the drive device. The

offers fixed two things very clearly:

1. There were no offers for the axial turbine, although one manufacturer informed of a
suitable turbine, but was not interested in giving an offer.
2. The rotational speed of the compressor that would give a good efficiency would be

around 15 000 to 30 000 rpm

Because of the latter point, a choice had to made between air turbine drive, belt drive, gear drive and
high speed drive. The closer examination of mechanical construction sketches showed that the last
alternative was most promising. With cooperation between ABB Motors and ABB Stromberg
Drives a slightly modified conventional electric motor and frequency inverter was designed to ac-

complish the desired power and rotational speed.
The first test facility was tested in the following reversed Brayton cycle process connections:
1. Sub-pressure connection that functions as an air dryer in a heat pump mode. The humid air is

first expanded to sub-pressure, then part of the condensated water is removed in the droplet

separator, and finally the compressor compresses the remaining air to the atmosphere pressure.
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In the first connection, the operational conditions of the test facility were designed to be close to
those of commercial air driers. The turbine outlet temperature was chosen to be above the freez-

ing point.

The process design values calculated with the BCD-programme are shown in Fig. 18.

Reversed Brayton Cycle in sub pressure process mode [] ®LUT&HST
<—M=> RBC1DES1,RBC Window: 1
Heat Exchanger connection number 4
Cycle points T h P wi wh Fii
{ °C 1 [kJ/kg] [ kPa ] %

0 - Cycle inlet 20.0 48.6 101.0 0.9884 0.0116 80.0
3 - Turbine inlet 20.0 49.6 100.7 0.9884 0.0116 79.8
4 - Turbine outlet 6.6 27.9 73.0 0.9916 0.0084 100.0
4*- MistElim outlet 6.6 27.9 72.0 0.9916 0.0084 100.0
2 - Compressor outlet 44.5 66.4 101.4 0.9916 0.0084 14.5
2*- Cycle outlet 44.5 66.4 101.0 0.9916 0.0084 14.5
Compressor power Pc = 14.96 kW compressor isentropic eff.= 0.758
Turbine power Pt = 8.46 kW turbine isentropic eff. = (0.820

mechanical eff. = 0.948
Motor electric power Ps = 7.53 kW motor electrical eff, = 0.910
Heating power Phe = 6.5 kW heating COP = 0.858
Turbine mass flow gm = 0.390 kg/s Compressor mass flow gm = 0.389 kg/s
Rotational speed N = 20200 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gv = 4.575 kg/h Vaporizate power Pva = 3.1 kW
Specific energy Psm = 1.65 Wh/g

Figure 18. The sub-pressure connection design values.
2. Over-pressure connection that functions as a heat pump. The humid air is first com-

pressed to over-pressure, then cooled in a heat exchanger and after that the cooled
fluid is expanded in the turbine close to the atmospheric pressure, and the condensated
water is removed in the droplet separator. The second connection was chosen so that it

would be possible to accomplish it with the same machinery.

The process design values calculated with the BCD-programme are shown in Fig. 19. Depend-

ing on the droplet separator efficiency and pressure drop, the cold coefficient of performance

(g,) would be close to unity, and the heat coefficient (g,) would be close to two.

In both connections, the theoretical specific electric power would be less than 2 kWh electricity for

each separated kilogram of water.

4.1.1 Compressor

The radial compressor was purchased from French the company Hispano-Suiza, and it was delivered

with the impeller wheel, the diffuser plate and the volute scroll. Originally this compressor, model
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HS-300, was developed for turbo chargers operating in larger diesel engines. The design was from

the year 1963 and the efficiency was rather modest, only 0.77 at the design point.

Reversed Brayton Cycle in over pressure process mode 0 eLUT&HST
<=l RBC1DESZ2.rbc Window: 4
Heat Exchanger connection number 1
Cycle points T h ol wi wh Fii
{ °Cc 1 [kdJ/kgl [ kpPa ] %

0 - Cycle inlet 20.0 49.6 101.0 0.9884 0.0116 80.0
1 - Compressor inlet 20.0 489.6 100.6 0.9884 0.0116 78.7
2 - Compressor outlet 58.0 88.4 140.0 0.9884 0.0116 14.3
3 - HeatEx outlet 25.0 54.7 13%9.0 0.9884 0.0116 81.3
4 - Turbine outlet 11.9 33.6 102.3 0.9815 0.0085 100.0
4%~ MistElim outlet 11.9 33.6 101.3 0.99%915 0.0085 100.0
5 - Cycle outlet 11.9 33.6 101.0 0.9915 G.0085 98.7
Compressor power Pc = 20.58 k¥ compressor isentropic eff.= 0.760
Turbine power Pt = 11.16 kW turbine isentropic eff. = 0.820

mechanical eff. = (.948
Motor electric power Ps = 10.92 kW motor electrical eff. = 0.910
Refrigeration power Pre = 8.49 kW refrigeration COP = 0.777
Compressor mass flow gm = 0.530 kg/s Turbine mass flow gm = 0.528 kg/s
Rotational speed N = 20700 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 5.947 kg/h Vaporizate power Pva = 4.1 kW
Specific energy Psm = 1.84 Wh/g

Figure 19. The over-pressure connection design values.
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Figure 20. Compressor performance at the sub-pressure cycle design point. Design point marked
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The impeller was made of cast iron, which increased the weight of the compressor in comparison
with modern aluminium alloy castings. The compressor operation points are illustrated in Figures 20
and 21, where it can be seen that both process connections are slightly on the lower part of the com-

pressor map, but reasonably good efficiencies can still be achieved with this wheel.

Compressor Mop H-S EBC 6234 89

PII to Iaserprxm, {esc) to exit
R B s L preener H i T "-'?Orei 104,285 kP:
H : H : : (TO0ref 15 °C
N +2.0%
iqn-2.0% + qu+2.0
2.40 N -2.0%
2.20 oo
2.00
1.0
1.60
1.40 ‘ """"""""" Operauon point
H igm = 0.54
ipii = 1.41
Pc = 14,68
1.20
+ + + + 0 g + kass
0.16 a.32 .48 g.64 .80 0.96 1.12 1.28

Figure 21. Compressor performance at the over-pressure cycle design point. Design point marked
with '+

4.1.2 Turbine

The turbine wheels were designed at LUT /Sahlberg 1993/ according to the turbine conditions in
Fig. 15. The turbine was an axial turbine with straight blades, and the design isentropic efficiencies
were 7, = 0.883 and 7,5 = 0.820. The turbine diffuser was angular with pressure recovery factor
C,; = 0,4 that leads to an isentropic efficiency of 7, = 0.845.

The nozzle and the rotor were manufactured in the Laboratory of Production Technology at Finnish
Technical Research Institute. They were made by milling from aluminium alloy mould (AlSiMgPb).

Due to the straight blades in the wheels, the work could be done on a three-axis milling machine.

The turbine was separately tested at LUT to get information of the turbine design and off-design

performance. When the compressor was not installed, the other end of the motor was free for a
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dynamometer connection and the turbine load could be measured. If tested with the whole test facil-

ity the turbine load could only be calculated numerically from the mass flow and temperatures. This
in practice tends to increase the error marginal, especially when the temperature range is narrow as

here, around 10 °C. Also, the turbine test results were needed to be certain that the blade speed ratio

and the nozzle flow approximations gave accurate results for this turbine.

The measured parameters were the mass flow, the rotational speed, the turbine inlet pressure and

temperature, the turbine outlet pressure and the motor torque.

The test results indicated that the turbine throat capacity was 6% larger than designed. This was
apparently caused by an overestimation of the boundary layers. The measured efficiency was 4
percentage points higher than designed, which in turn indicates inaccuracy in the efficiency correla-
tions. However, the achieved design point efficiency 7,5 = 0.86 is a very encouraging result for

one-dimensional design.

From the turbine test results the total-to-static isentropic efficiency and the throat capacity correla-

tion factor «, as a function of blade speed ratio could be presented /Sahlberg 1993/.
Turbine of Test Facility |
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Figure 22. Turbine efficiency in Test Facility I
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The curves can be accommodated to fit the measurement points with regression analysis and the

corresponding equations are /Sahlberg 1993/

s = 0.046+2.538 - 1.957v? (50)

2, - 1.139-0.0950 (51)

With this information the operation and performance of the turbine were known relatively well.

Also the test instrumentation and data acquisition operated very well.
4.1.3 Motor and frequency inverter

The direct drive was accomplished with two alternative commercial electric motors manufactured
by ABB Motors. The motor stators were rewound with thicker and fewer windings and the rotor
cooling fans were turned. In this way it was possible to get a load of 11 kW with 20 000 rpm from
both motors, when the powers were 3.2 kW and 5.5 kW at 3 000 rpm. The cooling fan was removed
because it would not have endured the higher speed. The cooling of the electric motor was made by
leading externally pressurized air through the motor chassis into the air gap of the motor at the
turbine end, and the air flowed freely out from the motor at the compressor side. The air flow was

controlled by monitoring the outlet temperature.

The original ball bearings were replaced by precision ball bearings to last the higher rotational

speed.

The unbalance of the rotor increases the effecting forces proportional to the rotational speed, and the

balancing has to be more accurate. The balancing was made at LUT.

The mechanical losses of the prototype were measured with the no-load test. The test composition
(test rotor with the turbine) was chosen so that the load was equal to those generating mechanical

losses at rotation. Compressor wheel losses generally increase the outlet temperature.

In the no-load test the supply voltage was decreased at constant speed. At zero voltage the measured
load is theoretically equal to the mechanical losses. The accuracy of the measurement did not en-
tirely depend on the accuracy of the measurement instruments (the dynamometer accuracy was
+2%), because it was not possible to operate the machine with zero voltage (the motor speed de-
creases at small voltages). The losses had to be interpolated from the measurement values. Sec-

ondly, bearing friction tended to change from one measurement to the other. Therefore, the mechan-



50

ical losses were chosen from the highest value measured from the turbine testing.

The measurements were processed with regression analysis /Sahlberg 1993/, and the mechanical

losses for Test Facility I were defined to be

227544
P -s37| ¥ (52)
NO

The accuracy was determined to be £50 W, which is equivalent to + 6%. The overall view of the test

facility I is presented in Fig. 21.

£

Figure 23. The rotating parts of Test Facility I. The radial compressor in the front, the motor rotor
in the middle and the axial turbine at the back.

4.1.5 Heat exchangers and lay-out

To minimize pressure losses in the heat exchangers, the speed of the fluid has to be slowed. This
according to the continuity equation, raises the area of the passage and the size of the heat ex-
changer. The heat exchangers were of the air/water model, and the air size was optimized to give a

bearable pressure loss around 100 Pa.

All the pipings between inlet and outlet piping, turbine, compressor, heat exchanger and droplet
separators were designed to suitable modules, so that the necessary change between sub- and over-

pressure connections would be easy. The droplet separator was also built to the same frame. All the
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pipings were isolated. The layout design is given in appendix A.
4.1.6 Test arrangements

Test Facility I was tested for the sub-pressure connection in two phases between September 1992 -
March 1993 and January - March 1994, The over-pressure tests were done between March and
September 1993. The main work during this time was dedicated to improving the test conditions

and making necessary changes to the test facility.

Test goals and grounds

The goals of the tests were to operate the test facility at the design point, and to make identical
measurements in both connections to get process characteristic that could be compared to those of
the design programme. The experimental knowledge about process performance would be valuable

in all cases.

The test facility consists of several units that operate at slightly different time responses. To get
accurate measurements, the measurements have to confirm each other, and must be obtained with

well-calibrated instruments.

The main concern was the air drying capacity of the exit flow, which can be expressed with the heat
coefficient of the process (g,). The condensation capacity was of great importance and this showed
to be an interesting measurement problem, because it involved inaccuracy factors. In these tests the

condensation phenomenon was measured in four different ways:

« measurement of the relative humidity, the mass flow, the temperature and the pressure of the
fluid both before and after the process. From these values the extracted water could be calcu-

lated.

+ measurement of the extracted water. This measurement had several inaccuracy factors: the
surface of the droplet separator, the separator channels and the piping between the turbine and
the compressor (relatively large). The condensation of water drops on the surface always caused
a start lag before any water was extracted from the process. Also the droplet separator installa-
tion in sub-pressure was problematic, because the place had to be sealed before the tests, and
could only be inspected afterwards. Therefore, several adjustments were made to ensure that
water flowed to the right place. However, this measurement gave us the lowest value of water

condensation, because all the errors decreased this value.



«  measurement of the relative humidity, the mass flow, the temperature and the pressure before
the turbine, the turbine pressure ratio and the efficiency (as a function of blade speed ratio from

the turbine test, Fig. 19).

+ by measuring the turbine outlet temperature and assuming negligible sub cooling in the turbine,

the saturation temperature could be obtained.

The two first mentioned methods are applied over the whole process, and the two latter methods are
concentrated on the turbine. In the simple sub-pressure connection this also includes the whole

process, because the turbine is the only place where condensation occurs.

Test arrangements and instrumentation

The test arrangements are illustrated in Fig. 22 (sub-pressure connection) and Fig. 25 (over-pressure
connection). When comparing the pictures it can be noted that the instrumentation is identical, and
the test arrangements do not differ much from each other. The heat exchangers that were not in use
with the sub-pressure connection were left in location to straighten the flow. At the actual test loca-

tion these differences of the arrangements were even smaller.

The test facility was connected to the normal ventilation system at LUT. The inlet flow was ob-
tained from the fresh air channel, and the outlet flow was directed to the exit channel. The relative

humidity of air at the inlet was regulated up to 100% with a Condair TS 660 air moistener.

The measured parameters were the relative humidity (RH) before and after the test facility, and the
essential pressures (p) and temperatures (7) in the compressor and the turbine, the mass flow after
the compressor (with the pressure difference, dp) over the orifice device, the motor power (P) and

the speed (n), and the water extracted from the process (gv).

The instrumentation arrangement and calibration were conducted in the following way:

. Relative pressure transducers TRAFAG 8890.21 were used at the process pressure points. The
pressure was measured with three vertical static probe holes (diameters 0.5 mm) each 120°
apart circumferentially. The holes were united with a 6 mm tube, in which the pressure was
measured. The pressure after the turbine was measured as mentioned above, but there were two
2 mm diameter probe holes in a 70° angle against the flow. This design was somewhat contrary
to measurement directions /ISO 5389/, but due to the very complicated structure of the scroll,

the correction would have caused a great uncertainty about the surface smoothness.
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Figure 24. Sub-pressure connection. The inlet air flows first into turbine. Therefore the air first
expands to sub-pressure and the compressor compresses it back to atmospheric pressure. The
water condensed in the turbine is extracted with the water separator situated between the turbine
and the compressor. Due to the extraction, the air leaving the compressor is drier and warmer.

+  The pressure difference of the mass flow orifice device was measured with a Valmet DP3 pres-

sure transducer. The manufacturer accuracies were + 1.2 kPa for the Trafag and +0.3 kPa for the

Valmet transducers. Because the pressures measured in the test facility were relatively small

(pressure difference over the compressor is about 30 kPa), there was a need to perform calibra-

tion. All probes were frequently calibrated with the Beamex DM2 pressure calibrator, which

operates within 0.01 kPa error at operational scale. The calibration procedure was made with the

whole measuring equipment so that the reference pressure was compared to the output of the

appropriate data acquisition channel. Also, the less accurate Trafag pressure sensors were sub-

jected to a one month long drift and repetition measurement with the Beamex DM2 calibrator.

This measurement showed a standard deviation of 0.23 kPa. For a single test measurement this

would mean an accuracy of & 0.45 kPa, with 95% confidence /Sirén 1995/.

¢  Mass flow was measured with a SFS-ISO 5167 standard orifice device. The standard gives an

error of 0.5 %, when the piping distances are adequate /SFS-ISO 5167-1/. Here the straight

length before the orifice device was more than 30 times the pipe diameter.
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»  The relative humidity was measured with Vaisala HMP 132Y-sensors, which were equipped
with PT100 thermometers. The manufacturer accuracy is =3%-units when the relative humidity
is above 75%. This requires a calibration once a year. We made frequent calibrations with a salt
bath, and found that calibrations done once a week resulted in a difference less than 1 percent-
age unit. The PT100 accuracy was + 0.25 °C, but these thermo sensors were extremely sensitive
to the inverter electromagnetic disturbance. At a startup the temperature jumped more than 1

°C. Therefore the gas temperatures were measured with thermocouples.

. The temperature probes were mainly K-type thermocouples with 0.35 mm conductor diameter.
The thermocouples in the compressor were situated at the flanges. Because the turbine outlet
temperature depends directly from the relative humidity of the expanded air, the rapid response
of the thermocouple is important. Therefore, K-type thermocouples with 0.15 mm were used for
this temperature measurement. The thermocouples in the turbine were situated just before the
stator ring and after the rotor wheel. The thermocouple manufacturer accuracy is+ 1 °C. The
thermocouple values were monitored on site in several long term measurements (24-hour closed
loop), in which the maximal deviation of the thermocouple values was 1.1 °C. Because the
absolute accuracy in temperature is significant when we calculate the water vapour content, the
absolute level was defined with a precision mercury thermometer (accuracy = 0.1 °C) and an
external PT100 sensor (accuracy % 0.05 °C). The accuracy in temperature after this procedure

was estimated to be £ 0.5 °C.

. The momentarily extracted water was measured with a Sartorius 1413 MP8 scale. The scale
accuracy (+ 2 g) was not significant, because the extracted water amount could be measured

later, as well.

«  The motor power and speed were obtained from the inverter. The values were checked by mea-
suring the electric values before and after inverter with two Norma AC-Power Analyzers. The
slip — the percentage difference of the supply and rotational frequencies — was determined to

be 3% from these values.

Data aquisition

The data acquisition of the process parameters requires a quick and accurate system. In an early
stage it was evident that programme which gives real time information of the process operation
would be beneficial. The available commercial data acquisition programmes were rejected because

the calculation of the parameters involves rather complicated functions from the raw data.
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All the parameters were measured with electrical sensors and the quantities were directed to data
acquisition unit Fluke Hydra 2620 A that gathered the information from these 19 signals in less than
1 second. Fluke Hydra operates with mechanical relays that ensure a low disturbance in data acqui-
sition. It was directed with an IBM PC-based computer via RS-232 serial bus, through which also

the signals were sent to the computer.

The computer ran the Tripleap-programme based on the QuickBasic' computer language. This
programme initiated and directed Fluke Hydra, calculated all process values needed in the analyses,
saved these values along with the raw measurement data and printed the results on the screen. The

programme's real time capability is described with the fact that all this was done within six seconds.

The programme output could be chosen from four different screens: one text screen (Fig. 25) where
all process parameters were printed basically in the same way as in the BCD-programme, and three
graphic screens showing the time rate of water condensing, the main temperatures or relative
humidities and turbo efficiencies (Fig. 26). From these graphics it was possible to watch different
unsteady phenomena and choose the possible steady state measurement points. The graphic views

were evaluated during the tests from practical needs and they were of real use during the test.

Because all the raw sensor data were saved, the tests can be simulated with the same programme, if
there are corrections in process calculation equations or in the calibration data. It also serves as an

excellent demonstration programme.

4.1.7 Test results—sub-pressure cycle

There were 35 different sub-pressure connection tests, which lasted 51 hours in total. The longest
test took 4.5 hours. After the start, when the desired rotational speed was achieved, it took about 10
minutes for the temperatures to stabilize. However, the water extraction did not begin until all the
surfaces in the separator channel had become wet and this took approximately fifteen minutes. In
Fig. 24 are the graphic output results of the longest test, starting before the end of the first hour.
Changes in the process are mainly caused by variations in the inlet relative humidity. The intervals
between measurements were 30 seconds and the whole test lasted 4.5 hours. The test scale value is
modified with a constant, because a considerable amount of water, 4 litres, did not flow out from the

droplet separator during the test.

! Copyright of Microsoft Corporation
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Data aquisition programme TRIPLAP
Time 11:25:53 04.03.93 LUT/Energy Technology
Reversed Brayton T h p yi vh RH
Sub pressure [ C [kJ/kgl [ kPa ] %
0. 704. 47 1186.
0 - Inlet state 17. 38.8 101.6 0.9916 0.0084 69.2
4 - Turbine outlet 3. 18.8 76.7 0.9937 0.0063 100.0
5 - Diffuusor out 2.
1 - Compressor in 3. 19.7 75.9 0.9938 0.0062 94.1
2 - Compressor out 40. 56.7 104.4 0.9938 0.0062 13.7
Compressor power Pk .749 kW compressor efficiency = 0.722
Turbine power Pt = .684 kW turbime efficiency = 0.867
Heat power Phe = .083 kW heat Coefficient Of Pr. = 0.859
Electric power Ps = .24% kW eletromech. efficiency = 0.857
Mass flow turbine gmt = .399 kg/s gqmeq = 0.400 kg/s
Mass flow compresso gmk .398 kg/s gmeg = 0.521 kg/s
Rotational speed N = 19646 rpm Negt = 19566 rpm
Water condensing qmv = .021 kg/h Negk = 20035 rpm
Evaporation power P = .098 kW Nyy = 0.617
Water mass flow  qvw_s .099 kg/h
1EXIT 2Cont 3Ltilat 4Vesigr 5Tunnus 6FILETRIPLi6 7Step
Process design programme BCD
Data Input Efficencies PressLoss HeatExch Optimization OffDesign
Reversed Brayton Cycle in sub pressure process mode | ©LUT&HST
<~ B> TRDESAP.RBC Window: 3
Cycle points T h P wi wh Fii
°c 1 [kJ/kg] [ kPa ] %
0 - Cycle inlet 17.3 38.8 101.6 0.9916 0.0084 69.2
3 - Turbine inlet 17.3 38.8 101.6 0.9916 0.0084 69.2
4 - Turbine outlet 3.1 19.0 76.7 0.9938 0.0062 100.0
4*- MistElim outlet 3.1 19.0 75.8 0.9938 0.0062 100.0
2 - Compressor outlet 39.7 56.1 104.4 0.9938 0.0062 14.3
2*- Cycle outlet 39.7 56.1 101.6 0.9938 0.0062 13.8
Compressor power Pc = 14.78 kW compressor isentropic eff.= 0.722
Turbine power Pt = 7.91 kW turbine isentropic eff. = 0.867
mechanical eff. = 0.921
Motor electric power Ps 8.02 kW motor electrical eff. 0.930
Heating power Phe = 6.9 kW heating COP = 0.855
Turbine mass flow gn = 0.399 kg/s Compressor mass flow gm = 0.398 kg/s
Rotational speed N = 19646 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 3.146 kg/h Vaporizate power Pva = 2.2 kW
Specific energy Psm = 2.55 Wh/g
F1 Help F2 Save F6 Graf F9 Info F10 Run Alt+F10 Exit | 29. 5.1995

Figure 25. The measured and the design sub-pressure process compared with each other at a
stabilized test point.

The measured process values (from a quasi stationary moment of the process) evaluated with the

design programme values give quite a good similarity.




57

igure 26. The output screens of the TRIPLAP-programme

F
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4.1.8 Test results — over-pressure cycle
The over-pressure connection was installed by changing the sub-pressure connection parts to a

slightly different order

Figure 27. Over-pressure connection. The inlet air flows first to the compressor, in which the
fluid is compressed to over-pressure, and the turbine expands it back to atmospheric pressure.
The water condensed in the turbine is extracted with the water separator situated after the
turbine.

The data acquisition and the programme were modified to the changes and the programme was
named TRIPLYP. The tests were made from March to September in 1993. There were 23 separate
tests that lasted 37 hours in total. The longest test took about 4 hours. The testing was made to three
different types of droplet separators. The test facility operated better step by step. Fig. 28 shows one
quasi steady operational point and Fig. 29 shows the different water condensation measurements,

the main temperatures and efficiencies from the same test.
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Time 10:40:30

Data aquisition programme TRIPLYP

Measurements 30 pts

02.06.93 LUT/Energy Technology

Reversed Brayton T h p yi vh Fii
Over-pressure [ C ] [kJ/kg] [ kPa ] %
2561. 5255. 3937. 4230.
1 -~ Compressor in 16.0 36.9 100.7 0.9918 0.0082 72.6
2 - Compressor out 53.0 74.6 137.5 0.9918 0.0082 12.7
3 -~ Turbine in 23.7 44.7 137.2 0.9%18 0.0082 65.0
4 - Turbine out 9.8 25.4 107.0 0.9934 0.0066 100.0
5 - Mist elim exit 9.5 25.4 102.9 0.9930 0.0070 100.0
Compressor power Pk = 19.310 kW compressor efficiency = 0.726
Turbine power Pt = 9.85%5 kW turbine efficiency = 0.869
Heat power Pla = 15.326 kW heat coefficient of pr. = 0.999
Electric power Ps = 11.687 kW electromech. efficiency = 0.806
Turbine mass flow gmt = 0.512 kg/s gmeq = 0.384 kg/s
Compressor mass flow = 0.512 kg/s gneq = 0.516 kg/s
Rotational speed N = 19986 rpm Negt = 19690 rpm
Water condensing gmv = 2.893 kg/h Negk = 19951 rpm
Evaporation power P = 2.009 kW Nyy = 0.640
Water mass flow qvw_s = 1.597 kg/h
1EXIT 2Cont 3TempGra 4WaterGra SEffGra 6FILETRIPLYi6 7Step
Process design programme BCD
Data Input Efficencies PresslLoss HeatExch Optimization OffDesign
Reversed Brayton Cycle in sub pressure process mode | ©LUT&HST
<> CH5CASE2.RBC Window:
Exchanger connection number 1
Cycle points T h o) wi wh Fii
[ °C 1 [(kd/kgl [ kPa ] %
0 - Cycle inlet 16.0 36.9 100.7 0.9918 0.0082 72.6
1 - Compressor inlet 16.0 36.9 100.6 0.9918 0.0082 72.5
2 - Compressor outlet 53.2 74.9 137.7 0.9918 0.0082 12.5
3 - HeatEx outlet 23.7 44.8 137.2 0.9918 0.0082 61.4
4 - Turbine outlet 9.3 26.8 107.0 0.9932 0.0068 100.0
4*~ MistElim outlet 9.3 26.8 103.0 0.9932 0.0068 100.0
5 - Cycle outlet 9.3 26.8 100.7 0.9932 0.0068 94.1
Compressor power Pc 19.45 kW compressor isentropic eff.= (0.726
Turbine power Pt 9.23 kW turbine isentropic eff. = 0.869
mechanical eff. = 0.862
Motor electric power Ps = 12,23 kW motor electrical eff. = (0.970
Refrigeration power Pre = 5.22 kW refrigeration COP = 0.427
Compressor mass flow gm = 0.513 kg/s Turbine mass flow qm = 0.512 kg/s
Rotational speed N = 19646 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gv = 2.515 kg/h Vaporizate power Pva = 1.7 kw
Specific energy Psm = 4.86 Wh/g
Fl Help F2 Save F6é Graf F9 Info F10 Run Alt+F10 Exit | 29. 5.1995%

Heat

Figure 28. The measured and design sub-pressure process compared with each other at a

stabilized test point.
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The tests in September 1993 with the over-pressure cycle concentrated on testing different droplet

separators in a similar test arrangement.

Following separators were used:

ACS mesh pad eliminator from ASC Inc,USA. Stainless steel. Medium priced. Guaranteed
to separate 95% of droplets that are bigger than 5 um. Estimated pressure loss around
300 Pa, Fig. 30.

Lechler corrugated plate separator from Lechler GmbH, Germany. PPTV-plastic. Expensive,
tailor-made. Guaranteed to separate 99.9% of droplets that are bigger than 17..20 pm.
Estimated pressure loss less than 100 Pa.

Munters corrugated plate separator from Germany. GLASdek (resembles cardboard). Inexpen-

sive, large series. No separation data. Estimated pressure loss less than 100 Pa.
The ACS separator was also equipped with a customized net separator to increase separation. Dur-
ing the test programme it was decided to do one test without any separator.

The results were the following:

Table 1. Droplet separator results

Test name Droplet separator Scale Surfaces Total Condensation | Efficiency
g g g g %
TRIPLYi6 ACS+net 3817 1528 5345 7 265 73,6
error + 1 360 14,6
TRIPLYi7 ACS 3333 1235 4568 6 635 68,8
error + 1100 09,8
TRIPLYi8 Lechler +Munters 3408 1442 4850 8 861 54,7
error + 2 160 10,7
TRIPLYi9 Lechler 2134 365 2499 6210 40,2
error + 2 300 10,9
TRIPLYiA No separator - 2142 2142 5904 36,3
error + 1470 07,3

The results and visual experiences from the outlet flow showed that the separation degree was al-
ways less than 100%. The droplets also gathered to the surfaces of the separator channel and the
tests did not last long enough to eliminate this influence on the test results. However, with the dif-

ferent droplet separators, the flow was apparently smoother and there was not so much water on the
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surfaces after the tests. The error was calculated with +2% maximal deviation of the relative humid-

ity and +0.3 °C of temperatures around the turbine.

Figure 30. The ACS droplet separator in Test Facility I.

4.1.9 Errors and uncertainty

The comparisons with theoretical values should take into account the possible errors and uncertain-

ties of the test arrangements /ISO 5389/

»  accuracy of measurements

« errors due to the inaccuracy or uncertainty in the thermodynamic properties of the process me-
dium

« errors due to unsteady conditions during the test

The main errors occured with the relative humidity and the temperatures. They affected the water
vapour content of the cycle. The measuring programme was used in numerical error analysis, in
which the measured values were changed according to the error margins. From this calculation the
sensitivity to these changes could be evaluated. When these margins were implemented to the test

results, the utmost values in the desired cycle variables were obtained.

The above procedure gives the extreme margins of error, which can be reduced by statistical error

analysis, where the uncertainty is defined
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n

2
d -+ % (_0%] ] (53)

i=1

The three main parameters to be analysed were the water condensation mass flow q,, ,,, , the inlet
motor power P,; and their ratio; the specific energy consumption E, that is the used electric energy

per the condensated water mass. The condensation mass flow is
qm,wa;( = qm,c wvapO N wvapl) (54)

where the water vapour mass fraction for both points is

(35

The motor input power can be evaluated to be

P -P 9 lhoy-hey) -4, (Boy- o)

t ,en 03 02 Lt 00 04
Pe1 - ¢ U In m (56)
Uimﬂmednﬂel ”inv’;medxrlel

Because of the complicated equations, the uncertainty derivation of Eq. (53) is done in blocks ac-
cording to Appendix B. When we use the values for sub-pressure cycle (Fig. 25) and the uncertain-

ties mentioned previously, we get the measured values at one point

condensation mass flow g¢,, ., = 3.02 kg/h +0.69 kg/h
electric input power P,, = 8.25 kW £ 0.57 kW
from these two E, = 2.73 kWh/kg,,, + 0.67 kWh/kg,.,

The values for over-pressure cycle calculations we get from Fig. 28 and the values are respectively

condensation mass flow ¢,,,,., = 2.89 kg/h 0.66 kg/h.
electric input power P, = 11.69 kW = 0.89 kW
from these two E, = 4.04 kWh/kg,,, = 1.05 kWh/kg,,,

" The droplet separation results were not conclusive. In the sub-pressure cycle the droplet separation
level was 80% and in the over-pressure cycle 70% of the theoretical separation value. But the errors

in the relative humidity sensors can at utmost limits be so extensive that the accuracy can vary up to
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30%. Therefore, the measurements could not be directly used to evaluate the droplet separation
efficiency or to substantiate the water extraction as planned originally. The error margins of the
sensors were analysed before actual tests by empirical tests, where the inlet relative humidity was
adjusted a level where there would not occur any condensation. In these cases the calculated

humidities were within a few per cent, which indicated much smaller errors in the sensors.

4.1.10 Discussion on Test Facility I

The operation of the test facility proved to be reliable. There were only some problems with the
bearings during the separate turbine testing. The mechanical system was reliable and the inverter
functioned without any faults. The design was found to fill the requirements stated earlier and the

test facility was operative.

The start sequence was 40 seconds, during which time the nominal rotational speed was achieved.
The test needed one person to supervise the humidifier and the water container, which had to be
emptied about twice an hour. The noise at the test facility was over 85 dB, because there was no

noise filter design.

The most problematic element was the Condair humidifier that was not capable to attain stationary
humidification circumstances at the nominal design conditions — RH 80%, 20 °C — but resulted in
ca. five minute oscillation with some 20 per cent amplitude. Despite several service jobs and control
manoeuvres, the oscillation remained in a long term test (over one hour). In some tests the inlet
relative humidity was originally high and the humidifier operated in a more stable manner. The
problem from the oscillation was the time responses of different components of the cycle. Espe-
cially, observing of the turbine operation that included visual condensing showers was somewhat

distracted, but fortunately the oscillation cycles were much longer than previously.

Because the test facility was installed in to the University ventilation system, the pressure levels at
the beginning and end of the cycle were different. This was the reason why the isentropic work in
the compressor was higher than that in the turbine. If the pressure levels had been the same, the

specific electric power would have been approximately 20% lower.

The installation and calibration of the test facility were time consuming. Also, the development of

the data acquisition programmes took time. That is why the test programme lasted nine months.
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The automated data acquisition system eased substantially the making of the tests and their analys-

ing. The programmes have proved to be very useful in demonstrating the test facility and the cycle.

The droplet formation was very difficult to verify. The theory indicated that the droplet sizes could
vary from micro metres to hundred micrometers. Visually, in the channel after the turbine, a few
sudden sprays of apparent water that occurred in an interval of some seconds could be seen. During
the experiments there were clear water bubble formations and small water streams along the sur-
faces. To examine the droplet size in the flow itself, laser droplet size measurement was made by the

Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technol-

ogy.

In these measurements a laser beam is sent through the channel perpendicular to the flow. The drop-
lets in flow distract in the light and scatter light observed in the receptor lens. The receptor data is
statistically analysed and the droplet size distribution can be calculated. Unfortunately, the test
channel proved to be too wide for qualitative test results, and the scatter radius was larger than the
receptor could measure. However, the Laboratory could conclude from the data that the droplet size
is smaller than five micro metres, although the exact size distribution could not be obtained. This

result conforms roughly with our expectations.

It was extremely difficult to extract water from of the test facility, especially in the sub-pressure

cycle tests, despite all the efforts made to correct this problem.

4.2 Test Facility II

The second test facility was built with high speed technology in the years 1994-95. It was designed
to function as an air drier in the operational range of commercial air driers, and it was planned to be

a serious reference for further development of commercial Reversed Brayton Cycles.

The main goals for the prototype were set as follows

« high speed technology applied in all possible parts

. overall efficiency of the turbomachinery above 80%
« electrical efficiency above 85%

» o external cooling

The first test facility operated at the rotational speed of 20 000 rpm and consumed 11 kW of power.

Although the operation was satisfactory, there was a need to make the second test facility clearly
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smaller. This would mean an increase in the operational speed and a decrease of power. A clearly

significant limit would be around 2 kW, which could be supplied in common households.

The theoretical optimum in the cycle pressure ratio would be 1.2-1.3 that would mean also smaller
condensing flow, as will be seen in Chapter 5. When the drying capacity becomes more important,
the optimum pressure ratio increases. The cycle for sub-pressure was determined with the BCD-

programme in the following way.

The main components are discussed below, but it can be directly seen from Fig. 31 that the tempera-
tures are quite moderate at the design circumstances. The maximal temperature is around 60 °C and
the minimal temperature is around 10 °C. Because of the decreased mass flow compared to Test

Facility I, the amount of condensed water would be around one litre per hour.

Data Input Efficencies PressLoss HeatExch Optimization OffDesign

Reversed Brayton Cycle in sub pressure process mode [ @LUT&HST
<—B—> TRDESAP.RBC Window: 3
Heat Exchanger connection number 4
Cycle points T h D wi wh Fii

[ °C 1 [kJ/kg] [ kpPa ] %

0 - Cycle inlet 25.0 65.6 100.0 0.9841 0.0159 80.0
3 -~ Turbine inlet 25.0 65.6 99.7 0.9841 0.0159 79.8
4 - Turbine outlet 8.1 34.8 64.2 0.9895 0.0105 100.0
4*- MistElim outlet 8.1 34.8 63.2 0.9895 0.0105 100.0
2 - Compressor outlet 63.1 90.9 100.4 0.9885 0.0105 7.4
2*- Cycle outlet 63.1 90.9 100.0 0.9895 0.0105 7.3
Compressor power Pc = 3.57 kW compressor isentropic eff.= 720
Turbine power Pt = 1.97 kW turbine isentropic eff. = 840

0
0
mechanical eff. 0.
2.28 kW motor electrical eff. = 0.850
0
0

I

Motor electric power Ps

Heating power Phe = 1.6 kW heating COP = 697
Turbine mass flow gm = 0.064 kg/s Compressor mass flow gm = 0.064 kg/s
Rotational speed N = 87300 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 1.252 kg/h Vaporizate power Pva = 849.7 W
Specific energy Psm = 1.82 Wh/g

Fl Help F2 Save F6 Graf F9 Info F10 Run Alt+Fl0 Exit | 5. 6.1995

Figure 31. Test facility II design parameters in the sub-pressure cycle

4.2.1 Compressor

The design of the compressor wheel in a small scale is quite demanding, because small errors can
easily lower the efficiency of the wheel. Therefore, the design advanced in three different paths:
manufacturing with own design, manufacturing with outside design and buying a commercial com-

pressor.
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Own design

Centrifugal compressor design is even today based on empirical knowledge. The test facility wheel
was preliminary designed with the design data of LUT high speed research /Larjola et al 1987/,
/Larjola 1988¢/, /Backman 1989/.

As can be seen in Fig. 32, the isentropic efficiency n,.,x = 0.82 (printed in bold), which can be con-
sidered very good. Because the design is based on empirical data, the efficiency has to be verified
by testing the possibly manufactured wheel with a proper arrangement /ISO 5389/. However, the

final design and manufacturing was not made during this research.

Data Input Impeller Diffuser Speed Boundaries Iteration OffDesign

Centrifugal compressor 1-D flow design program | eLuT
®) RBC2COMP.CCF Window: 2
Fluid :Air (humid) Compressor case:Testilaitteisto RH 100.0
STATE p T h v cn dlt dlh N gm Ns P
kPa K- kJ/kg——m3/kg~—m/ m 0 LPS——KG [/ S K omee

1 58.85 277.4 4.28 1.35 95.6 0.036 0.013 1455 0.064 0.93% 3.21
01 62.50 282.0 8.94
STATE p T h v c d b etas cpr N2
kPa K: kJ/kg—m3/kg—m/s m: me
2 85.77 313. 40.48 1.05 193.3 0.061 0.0046 0.874 18

02 104.87 331.6 58%.1¢

s8]

3 99.48 330.1 57.69 0.95 54.3 0.109 0.0046 0.791 0.714
03 101.04 331.6 59.16
4 100.42 331.0 58.55 0.95 34.9 0.047 0.822 0.600
VELOCITY TRIANGELS
TRIANGLE c cu cr w u alfa beta gamma iota Mach
1 95.6 0.0 95.6 191.3 165.7 0.0 30.0 30.1 0.1 0.57
2 193.3 173.5 85.2 136.6 276.6 63.9 51.4 40.0 -11.4 0.55
13:39:33
Fl Help F2 Save F6 Graf F9 Info F10 Run Alt+F10 Exit | 6. 6.1995

Figure 32. Main centrifugal compressor data for Test Facility II. Design by Jari Backman.

The wheel stresses due to the rather low circumferential speed u, = 276.6 m/s will not be critical.
For a conventional impeller wheel, an approximate equation /Backman 1989, Larjola 1987/ can be

used

o, = 03pu’ (57

where o, :the nominal tension
p the density of the wheel

The tension from Eq. 57 is for aluminium (o = 2700 kg/m®) g,, = 62 MPa, but the commonly used
aluminium alloys can easily endure 200 MPa /Backman 1989/.
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Outside design

During the design it was decided to get offers for the design of the compressor wheel. After some
consideration the offer from the Institute of Fluid Mechanics at Hannover University in Germany
was accepted. Their offer included the design of the impeller wheel, the unbladed stator and the

scroll. Also, the stresses of the wheel were to be calculated.

The Institute of Fluid Mechanics has several decades of experience in the design of radial
turbomachines. Their design is based on the experience and tests from numerous orders in the area

of radial machines. The results (Fig. 33) were quite near to those of our own design.

Data Input Impeller Diffuser Speed Boundaries Iteration OffDesign

Centrifugal compressor 1-D flow design program | eLuT
@ RBC2HAN.CCF Window: 2
Fluid :Air (humid) Compressor case:Testilaitteisto RH 0.0 %
STATE p T h v cn dit dih N am Ns P
kPa K: kJ/kg—m3/kg—m/ m: m rps——kg/ g————-kW—"

1 58.38 276.7 3.59 1.36 102.7 0.036 0.013 1455 0.064 0.918 3.27
01 62.50 282.0 8.87

STATE p T h v c d b etas cpr p/p0l N2
kPa K. kJ/kg—m3/kg—m/ T M

2 85.93 311.7 38.32 1.07 206.2 0.060 0.0043 0.523 1.37 16

02 108.16 332.9 60.00 0.939 1.73

3 97.04 322.9 51.84 0.98 127.8 0.096 0.0043 0.742 0.513 1.55

03 105.68 332.9 60.00 0.896 1.69
4 100.00 332.9 60.00 0.96 98.2 0.028 0.800 0.600 1.60
VELOCITY TRIANGELS
TRIANGLE o} cu cr w u alfa beta gamma iota Mach
1 102.7 0.0 102.7 1380.9 160.9 0.0 57.5 55.4 2.0 0.57
2 206.2 186.9 87.2 136.4 273.8 65.0 45.1 30.0 -15.1 0.56
13:50:20
Fl Help F2 Save F6 Graf F9 Info F10 Run Alt+F10 Exit | 6. 6.1995

Figure 33. Main centrifugal compressor data for Test Facility II. Design by Hannover Universit;/.i
Some of the data calculated by Jari Backman

Two wheels were manufactured but they were not tested for the Test Facility I

Commercial compressor

After contacts with major centrifugal compressor manufacturers, a compressor wheel with surround-
ing equipment was ordered from Garrett. The performance map of the compressor wheel TRIM 50
is illustrated in Figure 17. This compressor is from a vehicle engine turbo charger, in which the peak
efficiency is not very important. Therefore, the performance map shows that the maximal isentropic

efficiency n,.ss = 0.72 is considerably lower than the efficiencies of the other wheels.

In all the above cases the compressor was equipped with an unbladed stator and a logarithmical

scroll.
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4.2.2 Turbine

As with the first test facility, it was difficult to find turbine manufacturers and the design was de-
cided to be made by the research group at LUT. A numerical method was developed to use the
empirical data found in the literature. The turbine was chosen to be an axial turbine with diffuser in
the outward direction from the machine (in Test Facility I the diffuser was inwards directed). The

hub-tip-ratio A was larger than 0.85 so that the blades could be made straight.

The turbine efficiency calculations were based on three different efficiency determinations described
in /Ainley and Mathieson 1957/, /Traupel 1968/, /Dunham and Came 1970/, /Dixon 1978/ and
/Kacker and Okapuu 1981/. In these determinations the losses of the turbine are divided to:
- internal aerodynamic losses that are born from

fluid viscous friction

boundary layers in the blades and flow channels

turbulence and mixing
- internal frictional losses between the rotationary and stationary parts of the turbine

- external energy losses

The stator and rotor cascades were made by the Sahlberg-method, in which the blade geometry is

added to the mean stream line with geometrical means.

The isentropic efficiency was designed to be 5,5 = 0.84, which in the view of the results of the first

test facility was considered realistic.
4.2.3 Motor and frequency inverter

The rotational speed was set to 87 300 rpm, which means that the motor has to rotate 1 455 revolu-

tions per second. The increase in speed results in a much smaller motor size /Jokinen 1988/, which

in turn is a clear benefit in cost. The motor was designed by the HST motor design group. The re-

search on high speed motors at Lappeenranta University of Technology and at Helsinki University

of Technology has concentrated on three major areas:

« motor efficiency. To get a high efficiency from a smaller motor with a high speed current, much
scientific work has been done. The current is supplied with the inverter, and it is complicated

compared to the normal sinusoidal current. Usually this means increased electrical losses.
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« inverter technology. Because the demand of high frequency inverters is still rather small, the

manufacturers have not contributed very much in developing high speed inverters. This research
has been done in cooperation with Finnish inverter manufacturers.

«  cooling solutions. The high circumferential velocity of the motor rotor causes friction in the air
surrounding the rotor /Larjola et al 1991¢/. Firstly, the friction takes up mechanical power and
secondly, it dissipates to heat in the air gap and this heat has to be removed from the motor.
Finally, more problems are caused by the mass flow of the cooling fluid, which in turn gener-

ates more losses /Larjola et al 1991¢/, too.

Motor

The electric motor can be either synchronous or asynchronous. In the synchronous motor the rotor
rotates at the speed of the stator frequency and in principal the electrical efficiency is higher than in
the asynchronous motor. The problem with this type of motor tends to be the rigidness of the rotor
that especially with fluid bearings cannot be tolerated. The rotor has to be made either of dynamo
discs or permanent magnets. Although the LUT and HUT research has decided to concentrate on
asynchronous electric machines, there are also promising results of permanent magnet synchronous

machines /Malmqvist and Chudi 1995/.

The efficiency of an asynchronous motor with inverter current depends on many circumstances.
There are various choices of how to coil the stator, and how to manufacture the rotor. The HUT
research group has made theoretical calculations concerning the electromagnetical effect of the
inverter current. The manufacturing test programme of the rotor electromagnetic surface, made by

HST also, has given various solutions for different circumferential speed regions.

The electricity research group at LUT has studied the possibilities of enhancing the efficiency of the

solid asynchronous motor and these test results have also been very promising /Pyrhonen 1991/.

A solid rotor with copper coating was chosen for Test Facility II. The surface was ground smooth to
ensure small friction losses from the rotating shaft. The motor is a 3-phase induction motor with the
nominal power of 5 kW, which exceeded the design cycle power of 2.3 kW (Fig. 31). The motor
efficiency was not tested, because the gas bearings are very sensitive to the external load, which

makes a dynamometer connection difficult. The rotor losses were estimated to be 180 W, the stator

losses 130 W and the electrical efficiency 7,; = 85%.
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Figure 34. The rotating parts of Test Facility II. Radial compressor on the left, axial turbine on the
right, radial gas dynamic bearings at the bottom, motor rotor in the middle and axial magnetig
bearing on top. The scale can be seen from the 5 cm match between the radial bearings. Photo

Vesa Mikkonen

Figure 35.Test Facility I, sub-pressure connection. The rotating part vertically in front in the
order: compressor, motor and turbine. The droplet separator can be seen at the back. Photo vesa

Mikkonen
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Inverter
The inverter was delivered by the Finnish company Oy Vacon Ab. The Vacon 2.2 CX inverter was

custom designed for a high speed technology drive.

The test facility layout drawing is presented in Appendix C and the test facility in the sub-pressure

connection is in Fig. 35.

Cooling
The exact cooling losses are complex to calculate, because they depend very strongly on the sur-
faces of the stator and the rotor. Also, the heat transfer coefficients vary depending on these. In the

high speed technology research these losses have been experimentally researched /Larjola et al

1991c, Backman 1989/.

The radial gas bearing friction loss' can be calculated from /Gunter et al 1964/

P, - iﬂi'_l.u_%'l_x_nif (58)

The rotor free ends cause a friction loss /Polkowski 1984/

P, - piR’c, (59)
where
paR’
Re - (60)
H
c - 0.146
m Re°‘2 (61)

The friction losses in the air gap between motor rotor and stator for smooth surfaces are /Dibelius

1984/
P, - kppw'Rc, (62)

where

'Here, friction loss means the equivalent power that is strained to the mechanical power of the motor
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Re - P4Rb (63)
U

. 00105

7 Re%193 (64)

The stator of the test facility motor has normal slots that are large in dimension compared to the air
gap. Therefore, their influence to the friction coefficient is difficult to estimate. In the measurements
with large molecule organic fluid the surface roughness coefficient k was in the area of 1.7—2.5

/Larjola et al 1991c¢/.

The axial magnetic bearing disc air gap friction coefficient is /Dibelius 1984/
P, = poRc, (65)

when R is disc radius and ¢,, = 0.003 for a disc air gap of 0.2—0.5 mm.The cooling mass flow uses

mechanical power in the air gap
P, - 048 q,&R? (66)

The centrifugal compressor wheel also generates losses when exposed to high circumferential speed.

These are included in the impeller isentropic efficiency and are therefore excluded here.

Table 2. The cooling calculation ofTest Facility II

Source Loss [W] Reynolds nr.

Rotor free end 133 126346
Rotor zylinder 67.9 7657
Impeller disc 85.0 431710
Radial gas bearings 171.6
Gas gap 49.8
Axial bearing 79.4 417672
Electric rotor 180.0
Rotational Speed Mechanical losses Cooling mass flow

1455 1/s 382.0 W 0.005 kg/s
Electrical losses Temperature rise

180 W + 130 W 86.0 K

We get the theoretical electromechanical losses by summing the rotor electric losses to Eq.
* (58)..(66) at the design speed and allowed temperature rise. The calculations are iterative with the
cooling mass flow, and the results for internal cooling are given in Table 2. The theoretical mechan-

ical losses are estimated to be 382 W, and the mechanical efficiency to 82%.
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4.2.4 Bearings
One distinctive feature of high speed technology is the use of oil-free bearings. The reliability and

long lifetime of rotational machinery depend very much on the bearings.

High speed technology research has focused on three different radial bearing types: gas, liquid and
active electromagnetic bearings. This test facility is equipped with radial gas bearings and magnetic

axial bearings and they are discussed next.

Radial bearings

Gas bearings mainly employ two different types, dynamic and static. The research has concentrated
on dynamic bearings, because static bearings are vulnerable to the fact that there always has to be
pressurized gas to ensure normal operation. The research group at LUT has a vast experience in

designing dynamic gas bearings /Larjola et al 19914/, /Larjola and Backman 1995/.

Dynamic gas bearings are tilting-pad journal bearings that use the surrounding gas — atmospheric
air or process fluid vapour — to create the operative force. The bearings have several pivoted pads,
which form the carrying surface of the bearing. When the shaft rotates, the friction of the surround-
ing gas creates a pressure distribution between the shaft and pad, which separates the solid surfaces

/Larjola 1988b/.

One problem is the limited load carrying capacity, especially at the start and at low speeds. At the
start, the bearing pad and the shaft contact each other, the system acts as a journal bearing and there
can be some wear of the bearing system. This could be avoided with hybrid bearings, where there
exist external feed of pressurized gas. However, this in turn complicates the overall system, and in
tests the bearing load has been observed to rise at very small speeds /Larjola and Backman 1995/. In
inverter supply this wear can be minimized by programming the start sequence to cause minimal

radial forces.

The active magnetic bearings were also strongly considered, but the small size of the shaft was

decisive, and gas bearings were chosen.

Axial bearing

To limit the gravitational force affecting the radial bearings, the high speed technology machines are
usually built vertically. The axial bearing compensates also the forces generated by the pressure
distributions around the turbomachine wheels /Backman 1988b/. The high speed technology re-

search has worked very intensively with active magnetic bearings. This technology includes both
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axial bearings /Lantto and Anttila 1995/. The chosen axial magnetic bearing was made by HST. The
bearing concept consists of two stationary discs with electric coils, of rotationary disc assembled on
the shaft, and of the control electronics that supplies the currents. These currents generate the mag-
netic field, which places the rotationary disc at the desired axial level. The displacement level can be

controlled with the accuracy of 1/1000 of mm.

Fig. 34 show also the 22 mm radial gas bearings and the active magnetic axial bearing used in Test

Facility II.
4.2.5 Test arrangements
Test Facility II was tested for the sub-pressure connection between September 1995 and May 1996.

The main work during this time was dedicated to improving the test conditions and making necessary

changes to the facility.

Figure 36. Test Facility 11, sub-pressure connection. The cooling of the motor is either with
internal cooling via the path atmospheric-motor -compressor or by external blower. The bearings
are monitored with a capacitive sensor and an oscilloscope.

Goals of testing
The goals were to operate the test facility at the design point and to make measurements to ensure a
satisfactory cooling of the prototype. Experimental knowledge about the process performance would

also be valuable.
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Test arrangements and instrumentation
The test facility was installed in the test room of the Fluid Dynamics Laboratory at LUT. The test

arrangements are illustrated in Fig. 36

The measured parameters were the relative humidity before and after the test facility (RH), the
essential pressures (p) and temperatures (7) in the compressor and the turbine, the motor power (P)
and speed (n) and the water extracted from the process (gv). The mass flows were measured with

two venturis before and after the test facility (dp).
The instrumentation arrangement and calibration were conducted in the following manner:

.« Relative pressure transducers TRAFAG 8890.21at the inlet and outlet measuring stations with

installation and calibration as in Test Facility L.

+  Temperature probes were mainly K-type thermocouples with a 0.25 mm conductor diameter.
The thermocouples in the compressor were situated at the flanges. The thermocouple manufac-
turer accuracy is = 1 °C. The thermocouples were calibrated with a Braun Thermomix S calibra-
tor. This calibration included the whole temperature measurement chain. The estimated accu-

racy in temperature instrumentation after this procedure was estimated to be = 0.1 °C.
«  The momentarily extracted water was measured with a Sartorius 1413 MP8 scale.

« The mass flows at the inlet and outlet of the cycle were measured with two classical venturis.
The Reynolds number and the pipe diameter were below the recommended values /SFS-ISO
5167/, and therefore the venturis were tested against a larger orifice plate device. The discharge
factor C was then lowered 1%, which coincided with the ISO-standard recommendation. How-

ever, the measuring accuracy was estimated to be + 2%.

« The motor speed was obtained from the motor by a magnetic sensor. The motor supply fre-
quency was taken from the inverter, and the slip was calculated from the supply frequency and
the motor speed. The electric inlet power to the system was measured with a Norma AC-Power

Analyser.

Data acquisition
The data acquisition of the process parameters was made in the same fashion as in Test Facility 1.

All the parameters were measured with electrical sensors, and the signals were directed to the Fluke
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Hydra, and then forwarded to an IBM PC-based computer via the RS-232 serial bus. The computer
runs the RBC2TEST-programme, which was upgraded from the one used in Test Facility I.

4.2.6 Test results—sub pressure cycle

There were 34 different sub-pressure connection tests which lasted totally 70 hours. The longest test

lasted 4.5 hours.

In Fig. 37 there are the measured process values from a quasistationary moment of the process
compared with the design programme results with the same inlet values, pressure ratio and pressure

losses.

The results in Fig. 37 are with the internal cooling flow that is directed from the motor air gap to the
sub-pressure piping between the turbine and the compressor. This increases the compressor mass
flow and inlet temperature, and means that the cycle input power is increased. The turbine mass
flow and power calculations have been corrected to the program results.

Fig. 38 shows the changes in the mass flow and the pressure ratio, and Fig. 39 the powers and the

temperatures when cooling is changed on/off.

4.2.7 Errors and uncertainties

The errors in Test Facility II resemble those in Test Facility I. There are some small deviations. The
temperature errors are smaller because of the more accurate calibration method. The mass flow

measurement is slightly more inaccurate because of the lower mass flow.

4.2.8 Discussion on Test Facility II

The operation of the test facility proved to be reliable. The mechanical system needed only one
inspection during 18 months and the inverter functioned without any faults. The tests were found to

partly fill the requirements stated earlier, and the test facility was very operative.

The installation and calibration of the test facility was time consuming. In some cases the experi-
ences of Test Facility I gave false indications in planning the measurements. Because the relative
humidity measurement corresponded well with turbine operation, we decided first to use only the

inlet humidity measurements. Also the mass flow measurements were decided to be taken from the
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compressor manufacturer's map. All these elements were, however, added to the measurements, as

can be noted from Fig. 35.

Data aquisition programme RBC2TEST

Time 09:44:00 10.09.96 LUT/Energy Technology Measures 0 pcs
Reversed Brayton T h p yi vh RH

Sub pressure [ ¢ 1 1[kJ/kgl [ kPa ] %

72.

0 - inlet state 8.9 24.8 99.3 0.9938 0.0062 86.8

4 - turbine outlet -4.7 4.0 67.8 0.9962 0.0038 100.0

1 - compressor in 5.4 15.1 67.3 0.9962 0.0038 45.8

2 - compressor out 52.3 62.6 100.8 0.9962 0.0038 4.4

axial bearing temperature 80.0

Vaisala temperatur 8.2 51.8

compressor power Pk = 3.2514 kW compressor efficiency = 0.7287
turbine power Pt = 1.1262 kW turbine efficiency = 0.6904
heat power Pla = 4.6785 kW heat Coefficient Of Pr. = 1.7612
calc. elect. power Ps = 2.6564 kW eletromech. efficiency = 0.7982
mass flow turbine gmt = 0.0543 kg/s qmeq = 0.0548 kg/s

mass flow compressor gmk = 0.0684 kg/s gmap = 0.0747 kg/s

rotational speed N = 85812 rpm Neqgt = 86735 rpm

rotational mass flow qm = 0.0629 kg/s Negk = 89472 rpm

measured efficiency Pco = 0.7263 blade SR = 0.7561

input electric power Pel = 2.6624 kW

1EXIT 2Cont 3Temp_G 4Cond_G SEffi G 6FILEAJOL009A 7Step

Process design programme BCD

Data Input Efficencies PressLoss HeatExch Optimization OffDesign

Reversed Brayton Cycle in sub pressure process mode | ©LUT&HST
<> RBC2SUBl.rbc Window: 2
Heat Exchanger connection number 5
Cycle points T h o) wi wh Fii
[ °C 1 [kJd/kgl [ kPa ] %

0 - Cycle inlet 8.9 24.8 99.3 0.9938 0.0062 86.8
3 - Turbine inlet 8.9 24.8 99.3 0.9938 0.0062 86.8
4 - Turbine outlet -4.7 5.0 67.8 0.9962 0.0038 100.0
4*- MistElim outlet ~4.7 5.0 67.3 0.9962 0.0038 100.0
3 - HeatEx outlet 5.4 15.2 67.3 0.9962 0.0038 45.7
2 - Compressor outlet 52.2 62.6 100.8 0.9962 0.0038 4.5
2*- Cycle outlet 52.2 62.6 99.3 0.9962 0.0038 4.4
Compressor power Pc = 3.24 kw compressor isentropic eff.= 0.726
Turbine power Pt = 1.12 kW turbine isentropic eff. = 0.690

mechanical eff. = 0.877
Motor electric power Ps = 2.66 kW motor electrical eff. = 0.810
Refrigeration power Pre = 694.53 W refrigeration COP = 0.304
Turbine mass flow gqm = 0.054 kg/s Compressor mass flow gm = 0.068 kg/s
Rotational speed N = 85812 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 0.476 kg/h Vaporizate power Pva = 413.4 W
Specific energy Psm = 5.59 Wh/g

| F1 Help F2 Save F6 Graf F9 Info F10 Run Alt+Fl0 Exit | 15. 9.1995

Figure 37. The measured and design sub-pressure process compared to each other at a stabilized
test point.
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Figure 38. Mass flows and pressure ratios of the compressor and the turbine at Test Facility II
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Figure 40. Test Facility IT in test. In front the Vacon 2.2 CX inverter. The pipings and the droplet
separator were isolated. To the right of the inverter is the glass pipe, which was used for visual
mist determination. Photo Timo Mikkola.

The actual motor power measurement was troublesome. At the first measurements between May
and August 1995, we measured the current and voltage from one stage before and after the inverter.
The system power factor was assumed to be very close to one and therefore the motor power mea-
surement indicated 50-70% too high values. The oscillation of the current was 20% with 1-2 Hz
frequency oscillation. At the same time the mass flow of the cycle was calculated to be 20% too
high. The most problematic element was the turbine operation that turned out to be moderate, the

isentropic efficiency was measured to be about 70%.

The higher mass flow was due to an overestimation of the boundary layer blockage. To remedy the
problem, the blades of the turbine wheels were machined 5% shorter. Also a more comprehensive,

one-phase power measurement was installed before the inverter.

In the following tests from August 1995 to May 1996, the cycle measurements agreed much better
with the expectations. The power factor was found to be much lower than one, which information
had a considerable effect on the power calculation based on the current and the voltage. The reason

for this was the relatively large capacitors in the inverter circuits. Still, the power oscillation was
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about 10% with the 1-2 Hz frequency. The mass flow calculations were suspected to be erronous,
because the mass flow behaved inconsistently at lower operational speeds.

The internal cooling worked with the desired effect. The maximum temperature (measured at axial
magnetic bearing) was set to 110 °C and was usually achieved by opening the valve 30 %. When the
valve was totally open, this temperature dropped to 90 °C. Normally the valve was kept half-open
and the temperature was about 100 °C. The internal cooling raised the compressor mass flow, the
inlet temperature and the motor power. The temperature mixing before compressor was not com-

plete, and there were considerable differencies in the three inlet temperature sensors.

When the mass flow measurements were installed, it was discovered that compressor mass flow was
over 10% lower than calculated. The compressor map was verified with the manufacturer represen-

tative but in the view of the above results, it does not seem to be valid.

With the reduction of the mass flow, there was again a clear difference in power. After instrument
and sensor checks, a three-phase power measurement was installed to measure the inlet power. The
measurement showed that the power was slightly unsymmetric, which caused the above mentioned
oscillation in a single phase. The overall power was quite steady and the power was smaller than

measured before. The values in Fig. 37..39 are from these last tests.

The noise at the test facility was measured to be around 85 dB, when the inlet and outlet flows were

directed out of the measuring room. There was no noise filter design.

To examine the droplet size in the flow itself, a laser droplet size measurement was made in May
1996 by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University
of Technology. This time the measuring channel was more suited, but there were problems with the
channel windows. To avoid water droplets on the surfaces, an air stream was arranged to the win-
dows. Unfortunately, this stream proved to be difficult to control. If the stream was too weak, the
water droplets gathered very rapidly on the surface. With better air stream the conditions in the
channel changed and the condensation product began to vaporize. The Laboratory could confirm

from the few good measurements the previous results obtained at Test Facility L.
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5. APPLICATIONS

The commercial utilization of the reversed Brayton cycle is possible if target processes can be
found, where high efficiency, small size and environmentally friendly fluid give competitive design
properties. To demonstrate the feasibility of the system, three application concepts are presented: an

air dryer, a heat pump and a refrigeration machine. There are several cases in each concept.

The performance of the Reversed Brayton cycle can be evaluated with the BCD-programme. The
main parameters affecting the performance are discussed below. These application calculations are
not intended to explain individual devices, but to show how a realistically designed reversed
Brayton cycle machinery operates. In reality there are usually extra, case dependent connections
needed to fine tune the apparatus to the actual process. All the calculations are made with the same
cycle mass flow 1 kg/s, to give better understanding of the characteristic parameters in the process

calculation results.

If the mass flow is kept constant, the design rotational speed varies with different pressure ratios.
The rotational speed and the pressure ratio are dependent of the compressor specific speed N, that is
defined /Balje 1981/ as

2nN.\/q,,

N, - ARCTS 67

5

The best performance for a radial compressor can be achieved with specific speeds between 0.7 and
1.0, and it can be assumed that the turbine covers approximately half of the needed compressor

power.

Eq. (67) can be used to make a chart (Fig. 41) that shows the approximated rotational speed and the
power of the reversed Brayton cycle as a function of the pressure ratio. The rotational speed and

power of the sub-pressure cycle is slightly lower than those of the over-pressure cycle.

It should be noted that the inverter control gives an important tool to the process control. The possi-
bility to adjust the rotational speed of the motor permits a large range of operation. Therefore, the
reversed Brayton cycle device can operate at different optimal pressure ratios, depending of the

process parameters at a given time.
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Figure 41. Reversed Brayton cycle rotational speed and power for different pressure ratios.
Compressor isentropic efficiency n, = 0.8 and motor electromechanical efficiency 7,,, = 0.86.

5.1 Air dryer

CASE 1

Let us consider a simple sub-pressure process connection (number 4 in Fig. 15) that can be used as

an air dryer, such as the test facilities described in this thesis. The process calculation uses the fol-

lowing parameters to optimize the operation:

the inlet air temperature is between 20 and 60 °C

the relative humidity of the inlet air is between 60 and 100%

the pressure ratio is between 1.1 and 3

the mechanical efficiency is 93%, the electric efficiency 93%, the compressor isentropic effi-
ciency 80%, and the turbine efficiency 82%. These efficiencies correlate to those achieved
during the high speed technology research.

the pressure losses are considered to be 100 Pa at the inlet of the turbine, 1 kPa at the droplet

separator and 1 kPa at the outlet of the compressor

This kind of air dryers would be used to keep the ambient relative humidity at desired level in

houses, offices and industrial premises, to clear the possible condensation when cooling occurs, or

to dry humid or moist processes (laundry drying). The high relative humidity deteriorates products

in broad fields, such as metal and electrical components corrosion. Especially in the tropics the high

relative humidity affects practically all functions.
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From these parameters the main cycle characteristics can be evaluated with the BCD-programme.

The optimized parameters are the specific energy E, and condensation mass flow q,,,,,, Fig 43.

One of the calculation points from the programme is shown in Fig. 42.

Reversed Brayton Cycle in sub pressure process mode ! @LUT&HST
<-W-> CH5CAS1A.RBC Window: 3
Heat Exchanger connection number 4
Cycle points T h P wi wh Fii

[ °C 1 [kJ/kg] [ kPa ] %

0 - Cycle inlet 40.0 135.8 100.0 0.9624 0.0376 80.0
3 - Turbine inlet 40.0 135.8 98.9 0.9624 0.0376 79.9
4 - Turbine outlet 24.2 101.8 62.5 0.9694 0.0306 100.0
4*- MistElim outlet 24.2 101.8 61.5 0.9694 0.0306 100.0
2 ~ Compressor outlet 80.1 160.0 101.0 0.9694 0.0306 10.3
2*- Cycle outlet 80.1 160.0 100.0 0.9694 0.0306 10.2

Compressor power Pc = 57.77 kW compressor isentropic eff.= 0.800
Turbine power Pt = 34.06 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 27.42 kW motor electrical eff. = 0.930
Heating power Phe = 23.0 kW heating COP = 0.838
Turbine mass flow gm = 1.000 kg/s Compressor mass flow g = 0.993 kg/s
Rotational speed N = 23000 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 25.871 kg/h Vaporizate power Pva = 17.3 kW
Specific energy Psm = 1.06 Wh/g

Fig. 42. Calculation point of the sub-pressure connection nr. 4

It can be noted that the specific electricity consumption is lower, and the amount of condensed water
amount is bigger at higher inlet temperatures. The optimum point of the E is around 1 Wh/g, when
the relative humidity is high. The condensation mass flow increases when the relative humidity or

the pressure ratio are increased.

CASE 2
The heat exchange connection number 9 in Fig. 15 is also rather simple. Applying the same design

principles as above and having

- heat exchanger pressure loss of 4p =200 kPa

- heat exchanger temperature difference of 47 = 10 °C
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Figure 43. Sub-pressure air dryer characteristics.
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Fig. 45 shows a slightly lower energy consumption with this connection. The regeneration lowers
the needed pressure ratio and therefore the overall losses are smaller. The amount of condensed
water is somewhat higher as is the outlet temperature. These differences are also obvious from Fig.

44, where the inlet conditions are the same as in Fig. 42.

When the pressure ratio is more than 2, the increase of condensed water at the inlet temperature of
20 °C becomes smaller. The explanation is as follows: the temperature after the turbine is so low
that all water has condensed to water or ice. The values with pressure ratios above 1.7 are also un-
satisfactory, because the energy consumption E; has increased. At higher inlet temperatures this
phenomenon occurs at higher pressure levels. Clearly the freezing point might limit the general use

of this connection at lower relative humidity and pressure ratio values.

Reversed Brayton Cycle in sub pressure process mode | ®LUT&HST
<-B-> CHS5CAS1B.RBC Window: 3
Heat Exchanger connection number 9
Cycle points T h o) wi wh Fii
[ °C1 [kJ/kg] [ kPa ] A

0 - Cycle inlet 40.0 135.8 100.0 0.9624 0.0376 80.0
3 - HeatEx inlet 40.0 135.8 99.9 0.9624 0.037¢6 79.9
3 - HeatEx outlet 35.4 128.6 99.7 0.9634 0.0366 100.0
4 - Turbine outlet 23.0 94.9 62.5 0.9716 0.0284 100.0
4*~ MistElim outlet 23.0 94.9 61.5 0.9716 0.0284 100.0
5 - HeatEx outlet 30.0 102.2 61.3 0.9716 0.0284 64.8
2 - Compressor outlet 87.4 161.9 101.0 0.9716 0.0284 7.1
2*~ Cycle outlet 87.4 161.9 100.0 0.9716 0.0284 7.1
Compressor power Pc = 59.12 kW compressor isentropic eff.= 0.800
Turbine power Pt = 33.62 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 29.49 kW motor electrical eff. = 0.930
Turbine mass flow gm = 0.999 kg/s Compressor mass flow gn = 0.991 kg/s
Rotational speed N = 23000 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gqv = 34.017 kg/h Vaporizate power Pva = 22.8 kW
Specific energy Psm = 0.87 Wh/g

Fig. 44. Calculation point of the regenerative sub-pressure connection nr. 9

When controlling the sub-pressure connections, the flow is not very sensitive to speed change.
When the speed increases, the pressure ratio and volume flow increase, and the inlet pressure and
density of the compressor decrease. Thus, the mass flow change is small. The decrease in the inlet

temperature of the compressor, due to the increased expansion, has a smaller effect on the density.

The sub-pressure air dryer functions in two ways. It condensates water from the process and the
flow from compressor outlet can be directed back to the process. This dry air at high temperature

enhances the drying phenomenon.
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Figure 45. Regenerative sub-pressure air dryer.
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CASE3

The next dryer connection is an over-pressure connection, number 1 in Fig. 15, where the heat ex-
changer is between the compressor and the turbine. Water is used at the secondary side to cool the
air back to the temperature of the inlet condition. The warmed water is not considered here as an
asset to the calculations. One of the calculation points is shown in Fig. 46. The results in Fig. 47
show that this connection operates at lower inlet temperatures at the same level as the previous

connections, but the water gives a clear increase in condensation at higher inlet temperatures.

Reversed Brayton Cycle in sub pressure process mode | ©LUT&HST
<-W-> CH5CAS1C.RBC Window: 3
Heat Exchanger connection number 1
Cycle points T h P wi wh Fii
[ °Cc1 ({kJd/kgl [ kPa ] %

0 - Cycle inlet 20.0 49.9 100.0 0.9883 0.0117 80.0
1 - Compressor inlet 20.0 49.9 99.0 0.9883 0.0117 79.2
2 - Compressor outlet 73.5 104.7 160.0 0.9883 0.0117 8.3
3 - HeatEx outlet 20.0 43.4 159.8 0.9908 0.0092 100.0
4 - Turbine outlet 1.9 12.9 101.1 0.9957 0.0043 100.0
4%*- MistElim outlet 1.9 12.9 100.1 0.9957 0.0043 100.0
5 - Cycle outlet 1.9 12.9 100.0 0.9957 0.0043 98.9
Compressor power Pc = 54.78 kW compressor isentropic eff.= 0.800
Turbine power Pt = 30.45 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 28.14 kW motor electrical eff. = 0.930
Compressor mass flow gm = 1.000 kg/s Turbine mass flow gm = 0.993 kg/s
Rotational speed N = 26000 rpm Droplet separation Ds = 100.0 %
Condensate mass flow qv = 26.768 kg/h Vaporizate power Pva = 18.3 kW
Specific energy Psm = 1.05 Wh/g

Fig. 46. Calculation point of the water cooled over-pressure connection nr. 1

The results at lower pressure ratios in Fig. 47 are slightly erroneous, because the effect of water
cooling is so big, and energy consumption is highly dependent on the pressure losses in the heat

exchanger. Also, the pumping power of the secondary side is omitted.
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CASE 4
The last dryer example is a regenerative over-pressure connection, number 3 in Fig. 15. The results

in Fig. 48 and Fig. 49 are quite close to those in the sub-pressure connections.

In the over-pressure cycle there are clear choices, depending of the drier application. For a drier with
heating, the regenerative system would be chosen. The water cooled system would be the appropri-

ate choice for cooled air output.

Reversed Brayton Cycle in sub pressure process mode ] ®©LUT&HST
<-—%-> CHS5CAS1D.RBC Window: 3
Heat Exchanger connection number 3
Cycle points T h P wi wh Fii
[ °C 1 [kJ/kgl [ kPa ] %

0 - Cycle inlet 40.0 135.8 100.0 0.9624 0.0376 80.0
1 - Compressor inlet 40.0 135.8 99.0 0.9624 0.0376 79.2
2 - Compressor outlet 96.6 195.3 160.0 0.9624 0.0376 10.5
3 ~ HeatEx outlet 44.3 138.3 159.8 0.9632 0.0368 100.0
4 - Turbine outlet 31.4 104.2 101.3 0.9714 0.0286 100.0
4*- MistElim outlet 31.4 104.2 100.3 0.9714 0.0286 100.0
5*- HeatEx outlet 86.6 161.7 100.1 0.9714 0.0286 7.4
5 - Cycle outlet 86.6 161.7 100.0 0.9714 0.0286 7.4
Compressor power Pc = 59.44 kW compressor isentropic eff.= 0.800
Turbine power Pt = 33.77 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 29.68 kW motor electrical eff. = 0.930
Compressor mass flow gm = 1.000 kg/s Turbine mass flow gm = 0.991 kg/s
Rotational speed N = 14000 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gqv = 33.064 kg/h Vaporizate power Pva = 22.1 kW
Specific energy Psm = 0.90 Wh/g

Fig. 48. Calculation point of the regenerative over-pressure connection nr. 3
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5.2 Heat pump

Heat pump systems are discussed separately, although the air dryers in Chapter 5.1 could also con-
sidered to be heat pumps. Heat pump connections could be used for example in milk drying as
discussed in Chapter 1, in different drying applications in pulp and paper mill industry, as well as in

building ventilation applications.

The heat pump concept is more complicated than the air dryer, and the connections usually involve
special arrangements. Sometimes only part of the process flow is directed to the heat pump and then
mixed back to the process. There can also be several heat exchangers in a series, and part of the flow

can be separated from the main flow.
Reversed Brayton
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Figure 50. Over-pressure heat pump, heat exchange connection 2. Turbine inlet temperature 7' =
22 °C.

CASE 5

The over-pressure connection number 2 is used in the following study as a heat pump connection for
heating and ventilation purposes. The same cycle parameters apply as stated in Chapter 5.1, but the
temperature of the turbine inlet is set to 22 °C, which would be the temperature for example inside
a building. The temperature of the compressor inlet is varied between 15 and 35 °C. The coefficients

of heat &, and refrigeration &, are plotted as functions of pressure ratio in Fig. 50. The performance

of the heat pump is modest but the connection is operational.
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CASE 6

The second heat pump application is a which is done with heat exchange connection 1 in Fig. 15.
The inlet temperature of the compressor is set to 22 °C, The flow to the building is directed through
the heat exchanger secondary side, where the air is warmed with the outlet temperature of the com-
pressor. The heat pump coefficient of performance &, depends of the temperature outside the build-
ing. The lower the outside temperature is, the bigger gain is achieved with the heat pump. The heat
exchanger temperature difference is assumed to be 3 °C. A calculation case with outside tempera-
ture of 5 °C is shown in Fig. 51, and the heat pump characteristics with different outside tempera-

tures are shown in Fig. 52.

Reversed Brayton Cycle in sub pressure process mode l ©LUT&HST
<M= CHS5CAS1A.RBC Window: 3
Heat Exchanger connection number 1
Cycle points T h <} wi wh Fii
[ °C ] (kJ/kg] [ kPa ] %

0 - Cycle inlet 22.0 43.2 100.0 0.9917 0.0083 50.0
1 - Compressor inlet 22.0 43.2 99.0 0.9917 0.0083 49.5
2 ~ Compressor outlet 68.3 90.4 150.0 0.9917 0.0083 6.9
S - Qutside temperature 5.0
3 - HeatEx outlet 8.0 19.5 149.8 0.9955 0.0045 100.0
4 - Turbine outlet -9.2 -4.7 101.1 0.9983 0.0017 100.0
4%*- MistElim outlet -9.2 -4.7 100.1 0.9983 0.0017 100.0
5 - Cycle outlet ~9.2 -4.7 100.0 0.9983 0.0017 98.9
Compressor power Pc = 47.20 kW compressor isentropic eff.= 0.800
Turbine power Pt = 25.02 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 25.64 kW motor electrical eff. = 0.930
Heating power Phe = 70.90 kW heating COP = 2.769
Compressor mass flow gm = 1.000 kg/s Turbine mass flow gm = 0.993 kg/s
Rotational speed N = 14000 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gv = 23.581 kg/h Vaporizate power Pva = 16.0 kW
Specific energy Psm = 1.09 Wh/g

Fig. 51 Heating and ventilation heat pump at outside temperature of +5 °C

The characteristics show very high coefficients of performance at low pressure ratios. This is again
slightly erroneous, because the fan power is omitted. The calculation shows very promising results
with the pressure ratio levels between 1.3 and 2. If the temperature difference of the heat exchange

were bigger than 3 °C, the temperatures in Fig. 52 would, respectively, be smaller.
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Reversed Brayton

Over-pressure heat pump

12 lHeat Exchanger connection nr. | [
10
o
& 8
O6
5
T 4
2
O + + + + +
1 1.5 2 2.5 3 3.5

Pressure ratio
Outside ambient temperature

220 +-15 =+-10 -5 =0 =5 =10 - 15

Figure 52. Over-pressure heat pump characteristic for different outside temperatures, heat
exchange connection 1 for heating and ventilation. Compressor inlet temperature 7 = 22 °C.

5.3 Refrigeration machines

CASE 7

The third application group are refrigeration machines like the Kajima-concept discussed in Chapter
1. The heat pump connection in case 6 can be altered with two valves to a cooling connection. The
outside, warm air on the heat exchanger secondary side is used only to cool the compressor outlet
temperature, and the cool air from the turbine is directed to the building. With the temperature of 22
°C and relative humidity of 80% inside the building, the system operates with a moderate perfor-
mance, Fig. 54. However, the cooling is effective as can be seen from the operation calculation with

the outside temperature of 35 °C, Fig. 53.



96

Reversed Brayton Cycle in sub pressure process mode | ©LUT&HST
<-W-> CHSCAS2A.RBC Window: 3
Heat Exchanger connection number 1
Cycle points T h P wi wh Fii
[ °C 1 [kJ/kg]l [ kPa ] %

0 - Cycle inlet 22.0 55.8 100.0 0.9867 0.0133 80.0
1 - Compressor inlet 22.0 55.8 99.0 0.9867 0.0133 79.2
2 - Compressor outlet 68.2 103.1 150.0 0.9867 0.0133 11.0
3 - HeatEx outlet 38.0 72.2 149.8 0.9867 0.0133 47.8
4 - Turbine outlet 15.9 44.4 101.1 0.9888 0.0112 100.90
4*— MistElim outlet 15.9 44.4 100.1 0.9888 0.0112 100.0
5 - Cycle outlet 15.9 44.4 100.0 0.9888 0.0112 98.9
Compressor power Pc = 47.34 kW compressor isentropic eff.= 0.800
Turbine power Pt = 27.73 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 22.67 kW motor electrical eff. = 0.930
Refrigeration power Pre = 11.43 kW refrigeration COP = 0.504
Compressor mass flow qm = 1.000 kg/s Turbine mass flow gm = (.998 kg/s
Rotational speed N = 14000 rpm Droplet separation Ds = 100.0 %
Condensate mass flow gv = 7.546 kg/h Vaporizate power Pva = 5.1 kW
Specific energy Psm = 3.00 Wh/g

Fig. 53. Cooling connection at the outside temperature of +35 °C. In principle the same

connection used in Fig. 49 and 50.

Reversed Brayton

Over-pressure cooling machine

2 IHeat Exchanger connection nr. | l
S
ols
c
8
) B peE s awaE
£0.5 s
7] %
; 4

0 . ; "

1 1.5 2 2.5 3 3.5

Pressure ratio

l Outside ambient temperature

=25 + 30 - 35 =40

Figure 54. Over-pressure cooling device characteristics for different outside temperatures, heat
exchange connection 1 for cooling. Compressor inlet temperature 7= 22 °C.

CASE 8

A second alternative is to look at a sub-pressure connection to have the same influence.Basically

with the same operating values as in Fig. 53, the sub-pressure connection number 5 in Fig.15 is

calculated. The connection operates at a higher cooling performance, and the cooled air has a con-

siderably lower temperature, Fig. 55.
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Reversed Brayton Cycle in sub pressure process mode | ©LUT&HST

<-m-> CH5CAS2B.RBC Window: 3
Heat Exchanger connection number 5
Cycle points T h o] wi wh Fii
[ °C 1 [kJ/kgl [ kPa ] %

0 ~ Cycle inlet 22.0 55.8 100.0 0.9867 0.0133 80.0
3 - Turbine inlet 22.0 55.8 89.9 0.9867 0.0133 79.%
4 - Turbine outlet 6.1 28.6 66.7 0.9912 0.0088 100.0
4*~ MistElim ocutlet 6.1 28.6 65.7 0.9912 0.0088 100.0
3 - HeatEx outlet 32.0 66.0 65.5 0.9867 0.0133 29.1
2 - Compressor outlet 81.8 117.2 101.0 0.9867 0.0133 4.2
2%~ Cycle outlet 81.8 117.2 100.0 0.9867 0.0133 4.1
Compressor power Pc = 51.16 kW compressor isentropic eff.= (.800
Turbine power Pt = 27.27 kW turbine isentropic eff. = 0.820

mechanical eff. = 0.930
Motor electric power Ps = 27.62 kW motor electrical eff. = 0.930
Refrigeration power Pre = 37.47 kW refrigeration COP = 1.357
Turbine mass flow gm = 1.000 kg/s Compressor mass flow qm = 1.000 kg/s
Rotational speed N = 14000 rpm Droplet separation Ds = 0.0 %

Fig. 55. Sub-pressure cooling connection at the outside temperature of +35 °C.

The optimal pressure ratio seems to be around 1.5 and the cooling operates better in warmer
weather. This connection has one interesting feature; if the water is not removed from the cycle, the
cooling coefficient of performance will be higher, line 30" in Fig. 56.

Reversed Brayton

Sub-pressure cooling machine

lHeatExchangerconnecﬁon nr.

N

N
NS

o

i

Refrigeration COP
O g -~ O N O W

2 2.5 3 3.5
Pressure ratio
Outside ambient temperature

u20 ~25 =30 =35 - 40 = 30"

—_
-
[$)

Figure 56. Sub-pressure cooling device characteristics for different outside temperatures, heat
exchange connection 1 for cooling. Turbine inlet temperature 7= 22 °C. Line 30" means operation
where the water condensated in the turbine is not removed in the heat exchanger.
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Both cooling device calculations assume that all the circulated air flows through the machinery, and

the coefficient of performance is calculated for the whole process. By mixing the flow from inside
the building with fresh ambient air, sometimes performance of the Brayton cycle can be enhanced.
In the over-pressure cycle this mixing raises the compressor inlet temperature and the temperature

difference. The actual power depends on the control of the cooling and is not discussed here.

CASE9

The third refrigeration connection produces very low temperatures, number 9 in Fig. 15. The ambi-
ent air is directed through a regenerative heat exchanger, where the temperature is lowered. Then, in
the actual refrigeration process, the temperature rises before entering the turbine. This connection is
assumed to operate with dry air, because the heat transfer in the regenerative heat exchanger is very
sensitive to inlet air humidity. The achievable process temperature curves for different pressure

ratios are presented in Fig. 57.

) Reversed Brayton
= Sub-pressure cooling
5
*é 0
8 .40
£ \ \\
[V]
‘é’ -80
g 120 \ \ T~
g N
£ _160 ; | ;
§ 1 15 2 25 3
c,_ch Pressure ratio
[Process temperarare o |

= 10°C o-20°C .-30°C - 40°C

Figure 57. Sub-pressure, heat exchange connection 9 for cooling.
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6. DISCUSSION AND CONCLUSIONS

This thesis introduces a high speed technology application that uses environmentally friendly work-
ing fluid, humid air. The reversed Brayton cycle is a new concept in high speed technology, and
with this process it is possible to build devices with good overall efficiency. This technology can
also extend the use of the reversed Brayton cycle to applications where conventional bearings and

drives cannot operate.

The design programme and the test facilities described in this study give evidence of already mature
technology. The inverters and gas dynamic bearings have operated well in laboratory conditions.
The cooling of the high speed electric machines, due to the high power/weight ratio, can be prob-
lematic, but the internal cooling of Test Facility II has worked well. In some drying applications the
fluid temperature after the compressor needs to be raised higher, and in those cases internal cooling,

as realized here, would be an extra benefit for the cycle.

There are some aspects, however, that need more clarification and research in the future, and should

be added into the design instruments.

The pressure losses in various parts of the cycle lower the overall performance, and for a good per-
formance they should be minimized or at least optimized. For future Brayton cycle design, the outlet
diameter of the compressor should be chosen so that it prevents the forming of a high dynamic

pressure.

The selection of the droplet separator is always a question of optimization between separation effi-
ciency and pressure loss. This is an important issue for commercial devices and needs to be re-

searched more.

The good efficiency of the electrical motor improves the cycle efficiency in two ways as recorded at
Test Facility II. It reduces the power in motor losses and the power in removing those losses from

the apparatus. The research of the cooling solutions is vital.

Finally, the two test facilities showed that there are still interesting aspects in turbine design, and the
work is not necessary simple. With the increased knowledge the manufacturing of compact, high

efficiency machines can be realized.
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Uncertainty calculation

1) The condensated water mass flow

APPENDIX B.1

qm,wat = qm,t(wvapO_ wvapl) (1)
where
wi p p yapi
P @
¢7,- vapi
The first term in the denominator uncertainty is
1) 2
de - (_) dp?+| £ | (dg? 3)
@ ® ¢

2 1
dp* - ﬁ:{(d%) +(dpmp’i)2}5 ©

The humidity uncertainty becomes

el

Condensation uncertainty from Eq.

dgq

mwat [ m,wat

For the subpressure the parameters with uncertainies are

)2 =101.6 kPa <+ 0.2 kPa

@ =692 %£1.0%

Py  =1366Pa+40Pa

w, =0.00848

q, =0.399 kg/s £ 0.004 kg/s

With Eq. (3)...(5) we get

dple =+2.14kPa
dp*  =+2.14kPa
dw,  ==0.00030

And the condensated mass flow is

dqm, wat =

1

2
) (dp )2 (5)

(w2 - dw?) dg? ,ofehe, dwz)ZT ©)

j 22 =76.7 kPa+0.2 kPa
o =100 %

Dy = 793 Pax30Pa
w, = 0.00675

dp/p =2%02kPa

dp” =+0.21kPa

dw, ==0.0005

1216 +0.327 g/s = 4.378 kg/h £ 1.177 kg/h




Uncertainty calculation APPENDIX B.2

2) The electric power 7},

qm,c(hos B hoz) B qm,l(hOO B ho4)

P, -
”mv rlmech ,731

!

where we mark €= T, - T, and &,= T, - T, with respective uncertainties

do, - [dr; - dT,-fF

and assume constant ¢, The nominator uncertainty is

1
dp, - 4,46} - 4, 46 - {@a,,.67 - g, O

And the electric power uncertainty

1

dP ’ P : 2 Pn z 2 Pn : 2 2

ap, - | | e | | e | |
Ton T T, T T Tle T 70, Ty

For the subpressure the parameters with uncertainies are

Gme = 0.399 kg/s = 0,004 kg/s T, =173°C+0,5°C
o =0.398 kg/s + 0,004 kg/s T, = 35°C=+0,5C
T, =3.9°C=0,5°C 7, =0.88+0.02
T, =40.4°C+0,5°C 7 =0.88+0.02
P, =825kW e =0.95+0.02

First temperature difference uncertainty d@, = d6, =+ 0.71°C
Then nominator dP, =+ 0.40 kW
The electric power becomes P, = 8.25 kW +0.57 kW

3) The specific electric energy E;

The uncertainty dE; is

For the subpressure the parameters with uncertainies are
G e = 3.02 kg/s + 0.69 kg/h P, =825kW=x057kW
And the specific electric energy in drying is

E,=2.73 kWhikg,, + 067 kWhkg,.,
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TEST FACILITY II LAY-OUT
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