
Lappeenranta University of Technology
Department of Information Technology

Achieving Traceability

The topic of the master’s thesis has been accepted June 14, 2000 by the

department council meeting of the Department of Information Technology.

The supervisor is prof. Heikki Kälviäinen.

The practical supervisor is M.Sc. Eng. Matti Ärmänen.

Helsinki, September 24, 2000
Ari Kujala
Hämeentie 27 c 69

00500 Helsinki

Phone: 040-7552651
e-mail: kujala@lut.fi

 1

ABSTRACT

Lappeenranta University of Technology

Department of Information Technology

Ari Kujala

Achieving Traceability

Master’s Thesis

2000

67 pages, 21 figures, 3 tables

Supervisor: Professor Heikki Kälviäinen

Keywords:

Requirement, requirement engineering, software engineering, system engineering,

traceability, user requirement, system requirement, requirement analysis.

This master’s thesis discusses requirement analysis and focuses on the problem of

traceability. Requirement analysis is a part of software engineering which is often

neglected someway. Engineers do know that to analyse the problem is a key to

understand it. This thesis discusses requirement analysis as a part of system

engineering process. Ways to present requirements are presented. The nature of

traceability is discussed and some conclusions are drawn to document and propose

additions to Sonera’s current practise in the Mobile Payment Platform project. As

result thesis will present a process model for requirement analysis, a structure for

requirement collection and some points for traceability manual.

 2

TIIVISTELMÄ

Lappeenrannan teknillinen korkeakoulu

Tietotekniikan osasto

Ari Kujala

Achieving Traceability

Diplomityö

2000

67 sivua ja 21 kuvaa ja 3 taulukkoa.

Tarkastaja: Professori Heikki Kälviäinen

Hakusanat:

vaatimusmäärittely, ohjelmistokehitys, systeemikehitys, ohjelmistotekniikka,

jäljitettävyys, käyttäjävaatimus, systeemivaatimus, vaatimusanalyysi,

Keywords:

requirement, requirement engineering, software engineering, system engineering,

traceability, user requirement, system requirement, requirement analysis, system

engineering

Tämä diplomityö käsittelee vaatimusmäärittelyä. Erityinen keskittymisalue on

vaatimusten jäljitettävyys. Vaatimusmäärittely on osa ohjelmistokehitysprosessia.

Insinöörit tietävät, että ymmärtääkseen ongelmaa on sen lähtökohdat ymmärrettävä.

Tästä huolimatta määrittelyvaihe epähuomioidaan helposti. Diplomityössä

kartoitetaan ensin vaatimusmäärittelyä järjestelmäprojektin osana.

Vaatimusmäärittelyn rakennetta tarkennetaan ja sen sisältöä tuodaan esille.

Olemassaolevana projektina analysoidaan, kuinka Soneran Mobile Pay osaston

suorittama vaatimusmäärittely on toteutunut Mobile Payment Platform projektin

alkuvaiheessa. Lähinnä keskitytään näyttämään, kuinka vaatimukset on kirjattu

ylös. Tämän jälkeen tarkastellaan jäljitettävyyden olemusta. Työssä kartoitetaan

lukijalle, mitä jäljitettävyys tarkoittaa. Kartoituksen jälkeen käydään läpi

jäljitettävyyttä tukevia toimenpiteitä Sonera Mobile Payn tuotekehitysprosessissa.

 3

Työn tuloksena on esitetty prosessimalli vaatimusten keräämiseksi, malli

vaatimusdokumentille sekä ohjeita jäljitettävyyden luomiseksi.

 4

Contents

1 INTRODUCTION.. 7

2 SYSTEMS ENGINEERING .. 8
2.1 FUNDAMENTAL STEPS IN SYSTEMS ENGINEERING 8
2.2 GENERAL SONERA LTD R&D PROCESS MODEL............................. 11

2.2.1 DECISION POINTS... 11
2.2.2 EFFECTS ON MASTER’S THESIS... 12

3 REQUIREMENT ANALYSIS ... 14
3.1 COSTS AND BENEFITS... 15
3.2 REQUIREMENTS ... 17

3.2.1 IRRATIONALITY ... 18
3.2.2 RATIONALITY ... 18

3.3 GENERATING REQUIREMENTS ... 19
3.3.1 UNCOVERING THE BASIC IDEA... 19
3.3.2 ADJUSTED MODEL ... 22

3.4 PLACE FOR USER REQUIREMENTS... 25
3.5 COLLECTING USER REQUIREMENTS ... 27
3.6 PLACE FOR SYSTEM REQUIREMENTS.. 28
3.7 GENERATING SYSTEM REQUIREMENTS ... 32

4 IMPLEMENTED REQUIREMENT ANALYSIS PROCESS 34
4.1 FIRST ROUND.. 34
4.2 STRUCTURE OF THE USER REQUIREMENTS DOCUMENT............ 35

4.2.1 VIEWPOINT APPROACH .. 36
4.2.2 VIEWPOINTS WITH MPP .. 37
4.2.3 PROBLEMS WITH THE APPROACH .. 39

4.3 HOW TO DESCRIBE USER REQUIREMENTS..................................... 40
4.4 STRUCTURE OF THE SYSTEM REQUIREMENTS DOCUMENT....... 41
4.5 HOW TO DESCRIBE SYSTEM REQUIREMENTS 42

5 TRACEABILITY... 45
5.1 THE NATURE OF TRACEABILITY .. 45
5.2 DIFFERENT TYPES OF TRACEABILITY... 46

5.2.1 FORWARD/BACKWARD... 48
5.2.2 INSIDE/OUTSIDE ... 49

5.3 TRACEABILITY TECHNIQUES.. 50
5.3.1 TRACEABILITY TABLES.. 50
5.3.2 TRACEABILITY LISTS .. 51
5.3.3 REFERENCES ... 52
5.3.4 AUTOMATED TRACEABILITY LINKS.. 53

5.4 TRACEABILITY MANUAL ... 54
5.4.1 BENEFITS ... 54
5.4.2 IMPLEMENTATION... 55

6 ENHANCHING REQUIREMENT PROCESS ... 57
6.1 REQUIREMENT PROCESS.. 57
6.2 REQUIREMENT CATALOGUE... 59
6.3 TRACEABILITY MANUAL ... 62

 5

6.3.1 COMPLEXITY .. 63
6.3.2 STRUCTURE... 64

7 CONCLUSIONS.. 67

8 REFERENCES... 69

 6

List of symbols and abbrevations

MPP Mobile Payment Platform

SMP Sonera Mobile Pay

R&D Research and Design

IVR Interactive Voice Response, connects the computer to the phone

network.

KISS Keep It Stupid Simple. A non scientific "common sense" method to
make things work.

 7

1 INTRODUCTION

This thesis was started in January 2000 at Sonera Mobile Pay in Helsinki. SMP

(Sonera Mobile Pay) was formed to design Mobile Payment Platform (MPP). MPP

is a system which can handle mobile payment transactions and fix them up with

implemented services such as vending machines or car wash. MPP contains the

main platform with system logic, datalink interfaces for service applications to join

and a billing interface for billing the use of service applications.

The aim of the work is to generate a process model for requirement collection and

to study how traceability is connected to the requirements. This task was

approached by steps. The first step was to participate in SMP’s work to observe and

take part in requirement collection. During this phase reference material was

collected. After studying how the requirements were collected it was possible to

document the working practises and compare them to the theories and practises

found from the book material. After studying already existing working practises, it

was time to study how these practises could be improved.

Chapters two and three contain the theoretical study for process models. General

system engineering process is discussed and a requirement analysis phase is taken

out from it with greater detail. Chapter four contains observations made during the

requirement engineering. It discusses how the work was done and what kind of

decisions were made. Chapter five concentrates on studying what traceability

means. Chapter six contains the main results from this work such as requirement

process improvements.

 8

2 SYSTEMS ENGINEERING

Software engineering aims to produce a software application. When a project is

launched to create an application or enhance an existing one, systematization is

needed. The reason for this is that a single entity cannot be handled if it has grown

too large. It has to be broken down into parts and each part has to be dealt with

separately. These parts can be arranged into phases etc. but the principal idea is to

create a systematic procedure which takes care of all the necessary functions to

create a workable solution to our problem. A software project can be managed as a

process if it is systematic enough.

2.1 FUNDAMENTAL STEPS IN SYSTEMS ENGINEERING

The first step in creating a new venture is to consider what is wanted. This step is

the requirement phase of a software project. Only after knowing what to do,

solutions can be chosen and optimised to meet those needs. They can be

implemented and tested against needs (Figure 1). Consider the whole problem

before jumping into solutions. This sounds simple and obvious but it is not.

 9

Figure 1. The essence of system engineering / 5, page 345 /

Figure 1 presents the structure of systems engineering. This information has been

familiar to the ancient people as well as to us modern people. The Japanese samurai

Miyamoto Musashi told in his book of Five Rings to us think of our daily tasks like

crossing an ocean. / 3, page 81 / This was a requirement. We need to process our

needs and find out simple tasks what to do. Before that we can do nothing but

wonder about all the possibilities.

The next step is to find a suitable place for crossing. We do not want to start a

voyage which would have too much distance or which would prohibit our voyage

by some other obstacle. This compares to the second task of systems engineering

where we propose the design and consider the costs.

After we have found a good place to cross, we prepare our ship and wait for the

right weather. Now there is a need to choose and optimize the design of our plan

against our needs. In this phase it is still possible to change our mind and not to

cross. If we choose not to cross, we must go back to start and consider some other

possibilities. If we want to cross, we must follow the next step.

When the wind seems right, we will set our sail and start our voyage. This is the

implementation of our plan. Hopefully we have made right decisions, when we

were still planning the whole project, because now we have to live with our

 10

choices. Every time everything does not go like planned. So there might be a need

to review our plans.

If the wind suddenly changes when we are on our voyage and we still have a couple

miles to cross. We must take our oars and row the rest of the journey. This

compares to changing our plan a little and taking the project to the end with an

altered design. It is good to have options if something fails in our planning. There is

also a possibility that we notice the wind changing. If we are just about to begin our

journey we may need to come back and review our plan. We might also be on

journey when we notice that some other great mistake has been made and we are

forced to come all the way back to the start. There will also be a followup for future

ventures because experience from old projects should be carried over to the new

ones wherever possible. So the foundations of all our ventures are based on the

simple question what do we want to do?

In this example we can see how important the vision to do something is. It is the

spring which starts a stream of creativity. If we would know the exact requirement

to “cross the ocean”, which would satisfy our need, we would have a possibility to

complete this task. It would not be easy though but we would have a goal in sight

and that would give us strength to proceed. If we want to do something and if we

can see the way to do it, we can do it. By studying our way hard we might achieve

many great things.

 11

2.2 GENERAL SONERA LTD R&D PROCESS MODEL

At Sonera there is a research and design process model, called Sonera R&D Process

Model / 6 /, which consists of three main parts. These parts are a pre-study, a

feasibility study and project execution. In the Sonera model the pre-study is a phase

where it is stated what is needed to be done to execute the project. In a feasibility

study phase the requirements are collected. Based on requirements design and cost

proposal are made. If the cost and design proposals are all right, the project to

implement the design is launched. This project will contain in itself three phases

which are encapsuled into the same frame. These parts are to make a design out of

proposed design and requirements, to implement the design and to pilot the

outcome. After piloting, a new release is ready to be launched.

The Sonera model also contains decision points and milestones. Decision points are

external control points and there are six of them. They form the main barometer

showing how far the process is going. Milestones are project specific control points.

The project groups are responsible for defining them. To guide the process through

these points, a review is called and a decision is made if the project is ready to

proceed to the next step.

2.2.1 DECISION POINTS

The use of decision points provides structure and decision-making routines into

projects and studies. At each decision point there is a meeting where the use of

projects resources and their costs and benefits are reviewed. If the project seems

worthy the decision to continue is issued. Other possible outcomes can be

suspending it, cancelling it or continuing the previous phase with further study.

 12

The decision points are as follows:

DP0 – decision to start pre-study

DP1 – decision to start a feasibility study

DP2 – decision to execute a project

DP3 – decision to implement a design

DP4 – decision to pilot the outcome of the project

DP5 – decision to conclude the project and release the final outcome.

2.2.2 EFFECTS ON MASTER’S THESIS

The sonera R&D model will have an effect on the thesis because the work is done

in the context of the Sonera R&D environment. To show that the Sonera model fits

in with the system engineering model in Section 2.1, and with the main idea used

later in the work, there is a comparision of these two at a general level in Figure 2.

Both models are displayed side to side in the same figure. Similarity of these

models is well shown. If there would have been great conflicts, the model of system

engineering should have been considered again with this work.

 13

Figure 2. Comparing Sonera Ltd R&D model with essence of system engineering.

 14

3 REQUIREMENT ANALYSIS

In Section 2.1 we had the task of crossing the ocean. The first phase was the need to

do something. In the example the need was “to cross the ocean”. It was a clear by

stated requirement to make the crossing. Things would be easy to start if we would

know all the time what we want to do. We would see the target and the way to get

there and then we would just cover the distance and achieve our goal.

Usually our needs are not so easy to realise. Ideas are usually very general and hard

to describe in an understandable way. If we want to make a product out of our

visions we need a process for preparing up our ideas so that we can say what kind

of physical manifestation our visions would have this time. This is the job for

requirement analysis.

Requirement analysis should generate at least a functional specification document.

Other possible outputs are a preliminary testing plan,a project plan for launching

the implementation project and a preliminary user manual. / 2, page 59 /

 15

3.1 COSTS AND BENEFITS

Requirement analysis is one of the inexpensive parts of the system engineering

process (Figure 3). Later the costs will rise when the design starts to get more

detailed.

Figure 3. Cost distribution during the lifecycle / 2, page 39 /

The biggest potential for cutting the costs is in support and maintenance. It seems

clear that one way to achieve this is to ensure that the system is well designed and

documents are kept up to date.

 16

There are reasons why the system might fail and these reasons are listed by

frequency. When inspecting failed products through the product perspective, the

reasons can be classified (Figure 4).

Table 1. Distribution of error reasons.

Type I (28%) “product qualities did not meet the needs of end-users, the

product was good but nobody really needs it” (planning error)

Type II (24%) “product qualities did not give a competitive edge” (planning

error)

Type III (13%) “product qualities are mediocre, someone has made this already

better” (planning error)

Type IV (7%) “product qualities did not fill the needs of the environment.

Everything which can go wrong goes wrong.” (Planning error)

Type V (15%) “Technical errors, the design does not work with current

technology” (design error)

Type VI (13%) “budget error, the product is too expensive” (design error)

72 % of failures are caused of bad planning and 28% because of bad design.

/ 7, page 10 /

A well planned requirement process can cut out most of the common failure

reasons and help diminishing the total costs by decreasing the maintenance costs.

 17

3.2 REQUIREMENTS

When speaking of requirements in software engineering it does not mean that every

requirement is possible. System engineers want to talk about the requirements that

are pointed to the system they are designing. They want to limit the topic to the

most important requirements which will define ideas and later the design in a

comprehensive but not too wide way. That is because usually the software system

will grow so large that one man cannot handle it all. They also want that the effort

of the group needed is focused on a single goal. The group must be united to follow

the same goal. Requirements will help them to carry out what they started to do.

Requirements are used for a variety of tasks in the life cycle and are consequently

needed to be kept up to date throughout the development. Initially, they define the

business and user objectives and are then used for an abstract definition of the

solution. An individual design can then usually be optimised by selectively cutting

out high-cost and low-benefit areas. Cost-to-completion estimates must be firmly

based on the deliverable linked to the requirements. / 5, page 12 /

During design and implementation, potential changes are evaluated against their

costs and impact on the design and requirements. Requirements are also a form of

retained knowledge, a set of rules extracted from experience and re-applied to the

next generation of new systems. / 5, page 13 /

 18

3.2.1 IRRATIONALITY

When discussing about requirements there is a desire for them to be rational. It

would also be nice to have a set of rational requirements that would generate

rationality to the whole project. The bad news is that the design process not be

rational because

- Requirements given for software are almost never wholly known at the

beginning.

- Even if requirements would be known, many aspects joining to the design

are covered later during the engineering process.

- Even if all facts would be known they would make such a mass that no one

could handle them without errors.

- Even if there would be no errors, the facts can change during the process.

- People tend to stick to the solutions they have made earlier.

- Re-usage of old software can lead to strange solutions.

/ 2, page 41 /

3.2.2 RATIONALITY

On the other hand, there are things that convince to follow the rational process

model. These are

- Rationale process will guide its user what to do in each phase.

- It is easier for people to join another project if the processes within follow

the same principles as in earlier projects.

- When there is a model for a project, it becomes possible to plan and follow

it.

- It will be easier for an outside prospector to inspect the process.

/ 2, page 42 /

The practice has shown that it is possible to follow process models and it is possible

and reasonable to collect rationale requirements.

 19

Even if the process itself is impossible to make rational, there should be rationale

processes and documentation, which are followed as strictly as possible.

/ 2, page 42 /

To make a rationale specification, it means the specifications must be complete,

sharp, flawless, understandable, testable and traceable. Complete means that the

specifications define all things needed but not more. Sharpness and flawless may

sometimes conflict with understandable. Testable means that during a test phase it

should be possible to check the test procedures and check if all the requirements

can be tested. Traceability means that requirements can be followed to where they

have been derived from or what they are affecting (more at Section 5). / 2, page 49 /

3.3 GENERATING REQUIREMENTS

The same way as the whole software engineering project can be thought out as one

big process, the smaller parts of a whole project can be constructed into smaller

processes. This way the whole process will be constructed of smaller processes.

Requirement analysis is the first part of a whole project and it should be constructed

as a requirement analysis process which has the structure to serve the purpose of

getting to the next phase of a whole system engineering process.

3.3.1 UNCOVERING THE BASIC IDEA

Now imagine that there would be a problem and there would be a feeling that some

kind of software product can make profit. Continue to an idea that we want to

produce software which will fit our wish. How can the idea be crystallised?

Five hundred years ago Columbus had a feeling that the riches of India will serve

him well if he would find a shorter (faster) route to them. So at the end Columbus

had the same feeling for profit as almost every business idea has and he wanted to

cross the ocean to fulfil his dream.

 20

If the product is created for a market, where the behaviour of the end users will

decide whether software project will succeed or fail, a way must be found to satisfy

end users’ needs. Such set of user requirements must be generated that will guide

the project to the crossing point which will take it to its marketing segment. In other

words it must be found out what the customers want from the product.

The ship must be prepared and it must wait for the right weather to cross the ocean.

Likewise the set of requirements must satisfy the environment the product will be

dealing with. This is the part where user requirements are transformed to better-

defined system requirements. If some of the user requirements are not in harmony

with the system requirement, it would be the same as the ship would leak or it

would be in a peril to miss the route and not reach the right destination.

Waiting for the right weather is like optimising the enterprise before leaving the

shore and moving to the next phase. In system engineering many possible ways

must be studied to achieve the goal during collecting system requirements, and then

there is a need to choose a solution which fits the current situation best and proceed

with it.

Finally if it is noticed, despite all the effort in optimising and analysing the set of

requirements, that the wind changes and starts to blow the ship back. The plans

must be changed and the ship must be rowed the final distance. Requirements

should be possible to change if it is noticed that some of them are not well suited

for a purpose.

When the requirement analysis is analysed, two different groups of requirements

can be found out: user requirements and system requirements.

Separating these two is essential, because these two elements are so different in

their nature and organisation. The former defines the results that the system will

supply to users, while the latter imposes requirements on an abstract model of the

final system. / 5, page 22 /

 21

These two groups will also contain two kinds of requirements, functional and non-

functional requirements. Very roughly functional requirements will describe what

we want the system to do and non-functional requirements place constraints how

these functional requirements are implemented.

Every non-trivial system has to interact with other organisations and people with in

an existing environment. The environment is considered as all those things outside

the system that will affect what we want to build. The major components

influencing the developing system are

- operational environment (cooperating, competitive, and support

systems);

- development environment. / 5, page 24 /

User requirements must also work within the context of the requirements of the

business that has spawned the project. A customer may, for example, specify

geographical areas of operations or when operations should be started. These are

called business requirements. This business, which has spawned the project, is

sometimes called a part of the requirement analysis phase. It can contain parts such

as feasibility study or problem definition. Business requirements are good to be

linked to the user requirements because there are many traces between these two.

In Figure 4 there are three basic steps in requirement analysis. These steps are a

proposal of my own according to the discussion in previous sections. This model is

very general but is used as basics in what is needed. The first two steps are the main

steps, and they should be included in every requirement analysis. The last two steps

are a path towards a design; these are the phases where requirements are optimised

and a proposal for a design is made. After an initial analysis phase, the set of

requirements must reviewed occasionally in moments when input comes from later

parts of the design cycle. This will help when the need to do changes arises or when

a decision to start new releases of the system has been made. In other words, there

must also be a way to collect and process the changes.

 22

Figure 4. Inside requirement analysis.

3.3.2 ADJUSTED MODEL

Sometimes the requirement analysis is also included with a feasibility study.

Feasibility study comes around when approaching a whole new area and when it is

not known if it will create new business. It is like a reconnaissance for a military

action. It is good to have at the start when it will be of help before the action begins.

Feasibility study can be made analysing the problem area at the start of the

requirement analysis phase. This is a good way if the marketing segment is not

known. This is like looking for shore quickly and deciding if there is a real need to

try to cross the waterway. If there is not the effort can be used in some other

projects. This part is usually done when new business is generated.

Sometimes prototyping can be used as general method for feasibility study. This is

the way which is used when there is a solution for markets but decision makers are

not sure if the solution is solid enough. This is like making a small boat and testing

it on short trip to ensure that the boats can be made that way. If the boat makers are

unfortunate enough to notice that they can not make boats they will realise it soon

enough and not in the middle of the ocean, but if they have enough spirit they can

construct a big boat and cross the waterway.

 23

Sven Dahlman has presented a model for a user-oriented approach to the

requirement analysis (Table 2, / 1, Page 176 /). This differs from the basic model

presented in the previous chapter in a way that a project definition part is here in the

beginning where the problem area is mapped. This can be called a feasibility study.

This model will also contain prototype generating which part was used in MPP as a

feasibility study.

Table 2. Schema of an adjusted model of a user-oriented approach / 6, page 176 /
Project phases 1-4 Methods Documents Decisions regarding
1. Project definition. Searching, examining, based on normative values.
Choice of problem
Description of problem
structure

Formulation of goals and
project
Analysis of interested groups

-literature studies
-hearings
-interviews with strategic
persons
-interviews with experts
-analysis of functions
-system analysis
-study visits

Problem structure
-delimitation of system
-relevant variables
-hypothesized dependencies

-interested groups

Choice of problem

Formulation of goals and
project

2. Collection and structuring of information. Recording, systematising, objective.
Plan for user studies

Requirements of the users and
the usage situation.

Formulation of user
requirements

Allocation of priorities and
systematising to user
requirements

Strategy of solution

-inventory of resources
-allocation of resources

-formal interviews
-informal interviews
-user and observer scaling
-demonstration-observation
-measuring env. Conditions
-measuring user ability
-projective methods
-recording usage.

-identification of object
-ident. Of verification
method
-ident. Of verification level

-analysis of needs
-methods for allocating
priorities
-aggregation
-sorting with regard to
object level
-analysis of connected
functions.
-complementary expert
requirements.

Plan for user studies

User requirements

Use requirements

Strategy of solution
-object (system or subsyst)
for technical development
-consequenses for users

 24

3. Development of requirements & solutions. Interpreting, looking for structure, transforming, creative
Goals of the development work

Interpreparation and
transformation of requirements

Generation of ideas and design
work.

Specification of requirements

Primary product

Building of a prototype

Delimitation of system
Systemfuncs allocation
Product type
Performance of activities
Working principle
Working method
Configuration
Critical properties
Embodiment
Physical properties
Materials
Prefabricated parts

Solution
Specification of requirem.

Goals of the development
work

Principle product
-scetches
-mockup models

Primary product

Prototype generation I
-drawings
-specification
-prototype

Building of a prototype

Evaluation study
-object for evaluation

4. Evaluation of requirements and solutions. Recording, comparing, objective.
Plan of evaluation

Evaluation studies

Analysis of the evaluation

Modification of redesign

-inventory of resources
-choice of methods and
locality
-in real use
-in experimental use
-in laboratory situation
-measurement of single
properties

-against requirements
-against goals
-against needs

Plan of evaluation

Evaluation results

Primary product:
Prototype generation II

Modification of primary
product prototype

 Technical product
appropriate for use

 25

3.4 PLACE FOR USER REQUIREMENTS

To be successful the system needs to satisfy its end users, and so it must defined

who they are and what they want. If the product is understood well it is to know

what is dominant today, but understanding the user requirements tells what will

dominate the future. These needs can then drive all subsequent development stages

from a user perspective. Even if the requirements are not all practical, user needs

must be understood.

When starting to collect the user requirements, first the users should be identified.

The users, who will use our system and stakeholders who have some influence on

our system, must be separated. The environment of the product must also be

covered.

For defining the user requirement, we must find the needs of users. Users often

initally state their requirements in terms of solutions, and these have to be pushed

back to the real requirements. For example a user might start by stating: “I need to

archive the system in a database every week.” A moment’s reflection will make you

realise that users do not care about archiving, databases or storage of information.

They need to avoid loss of work or perhaps to be able to retrieve information. By

asking the question “Why?” we could find out the actual requirement, which might

transform the original statement into: “I do not want to lose more than one week’s

work by any predictable incident” The second expression is a far better expression

of what is wanted.

User requirements are usually captured in a random, disorganised fashion, and they

cannot be organised interactively. They must be organised into the right structure

and style for designers to use them well.

A backbone structure for the user requirements is the ‘operational scenario’. This is

a ‘thought experiment’ analysing the results provided to users as the system is

operated, organised by the time. Breaking goals into sub-goals allows the

 26

requirements to be viewed at any required level of detail. ‘Use cases’ in software

follow similar principles. Capabilities are user requirements which define main

capabilities the system is able to do within an operational scenario. Another major

type of user requirements are constraints, not adding any extra capability, but

affecting the quality of results provided. These are types of requirements which do

not fit comfortably within the scenario – they might apply across the whole

scenario or parts of it.

In addition to an individual requirement, we need to add some attributes to it.

Attributes are extra information attached to individual requirements, for a variety of

purposes such as explanation, selection, filtering, or checking. Individual

requirements can be assessed against a checklist and flagged for different

characteristics. For example, each requirement must be verifiable, clear and

unambiguous. Information to support these characteristics is tagged to each

requirement as an ‘attribute value’, i.e., information linked to the main requirement.

Typical attributes attached to user requirements are: / 5, Page 36 /

- Source – who asked for the requirement?

- Priority – how important is the requirement?

- Performance – how quickly must this requirement be met?

- Urgency – how soon is the requirement needed?

- Stability – is the requirement really solid enough to start work on?

- Verifiability – can the final product be tested or assessed against this

requirement?

- Ownership – who needs this requirement?

- Acceptance criteria – what is the nature of the test that would satisfy the

user that the requirement is met?

- Absolute reference – an unchanging control tag that identifies the

requirement uniquely. The reference is not re-used if the requirement is

moved, changed or deleted.

 27

3.5 COLLECTING USER REQUIREMENTS

There are a variety of different sources for user requirements (Figure 5). You must

always remember that users will always know more than you – about their needs

from the project. Users ‘own’ the requirements but they can rarely write them down

in a structured organised form. The specialised role of a requirements engineer

captures the requirements, writes and structures the information in to more suitable

form. This demands persistence in questioning users, forcing requirements to be

clarified, and pushing back solutions without ever trying to impose personal views.

Figure 5. Sources of user requirements / 5, page 28 /

After collecting and organising user requirements we need a way to close the

collection. The initial user requirement process is closed by a formal review of the

user requirement document. Review is a powerful mechanism for making plenty of

small enhancements, by focusing the brainpower onto the document as a whole. / 5,

Page 40 /

The review starts by ‘baselining’ the user document, and issuing it to the reviewers.

They must be notified in advance and allowed sufficient time to read and

 28

understand the material. Reviewers then write change requests to the document and

locate the problems. These change requests are then sorted by the review secretary

against their position in the document. Change requests are typically handled on

specific forms which allow each change to be managed and documented as it flows

through the process. Non-specific change requests are rejected and returned

immediately – trying to provoke the reviewer into making better, more specific,

suggestions. All change requests referring to the same problem are joined together

to allow a single decision to be made about the whole group.

During the review, all the requirements proposed for change and their current status

must be available to every reviewer. At the review meeting a decision is made on

each change request moving through the document. The only allowed decisions are

‘accepted’, ‘rejected’ or ‘accepted with modification’. A review decision can,

however, be put on hold while further exploratory work is performed outside the

review. When all decisions have been made, the review meeting is closed, but the

review process is not finished. All decisions have still to be implemented in the

document and all the background work be done to get those decisions realised. The

action list from the review has to be chased down to zero, and only then can the

user requirement document be signed off.

3.6 PLACE FOR SYSTEM REQUIREMENTS

System requirements explore the solution, but ideally avoid commitment to any

specific design. Defining them is a highly creative process, aimed at showing what

the system will do, but not how it will be done. The system requirements form a

model of the system, acting as an intermediate step between the user requirements

and the design, often couched in functional terms. System requirements have to be

traceable to both user requirements and design, but they are primarily an artefact

needed for the development.

System engineers ‘own’ the system requirements. Users should understand them

enough to be confident that they meet their requirements. System requirements

 29

should meet every user requirement and users should be able to check this. Adding

some extra detail into system requirements allows users to detect those that were

not thought through correctly. This can lead to controlled change in user

requirements.

System requirements contain both formal requirements and descriptive information.

They have several distinct uses:

- Giving an abstract view of the system;

- Allowing trade-offs, exploration and optimisation before committing to

design;

- Demonstrating to users how their needs are reflected in the

development;

- Providing a solid foundation for design;

- Providing a basis for testing the final system;

- Communicating the previous decisions to developers. / 5, page 50 /

System requirements need to be understandable by almost everyone in the project,

so they must be short and clear. This also means that the notation for systems

requirements should be as non-technical as possible, without sacrificing accuracy.

In practise, both textual and graphical notations are essential for a typical mix of

users (Figure 6). Specific types of system requirements, such as safety, integrity,

security or legal requirements, may need to be expressed formally, and

consequently may not be easily be understood by users. This is fine as long as the

system requirements are traceable back to user requirements.

 30

Figure 6. Different representations of information. / 5, page 51 /

Many different characteristics may need to be defined – functionality is not enough.

System requirements must show how non-functional requirements, such as safety

or reliability, are linked to specific functions. Functionality in itself is useless if the

function is, for example, unreliable or not fast enough. Any of the following types

of requirements may also be necessary:

- performance requirements;

- information relationship and history requirements;

- temporal and dynamic behaviour requirements;

- requirements for parallelism or concurrency;

- logical behaviour (e.g. conformance to a mathematical model);

- flow of control;

- flows of data or material;

- non-functional requirements (constraints);

- interactions with external systems;

- End-to-end scenarios. / 5, page 54 /

 31

In a system requirements document, the constraints are typically organised (Figure

7) in the following sections:

- transformation of user requirements;

- discipline-specific constraints;

- applied and induced environmental constraints.

Figure 7. Example sources and targets of non-functional requirements. / 5, page 70 /

 32

3.7 GENERATING SYSTEM REQUIREMENTS

Figure 8 presents the overall process for defining system requirements. The first

activity defines the major functional elements, typically as functional block

diagrams or state diagrams. Non-functional requirements are defined

simultaneously and linked to the relevant functions. Transforming functional

requirements into textual form can make them more precise and approachable to

non-specialists. This is one of the few times in the system life cycle that

information duplication is advisable. The review process for system requirements is

similar to that for user requirements, but developers control the requirements

instead of users.

Figure 8. Producing system requirements. / 5, page 52 /

Any realistic set of system requirements will need to be organised hierarchially,

helping us to view and manage information at different levels of abstraction.

Decomposition should be done two or three levels at a time, exploring the levels

below before confirming any choice above. At the top level of a system, this may

take only a few minutes, and involve intense interaction and arguments between

engineers.

 33

Non-functional requirements should not be applied in bulk at the system level. A

requirement such as a safety constraint may be limited to a single function. Unless

this is done many functions will end up being over specified.

 34

4 IMPLEMENTED REQUIREMENT ANALYSIS
PROCESS

There are existing pilot projects for a mobile payment, but all the applications are

independent. If continued this way the approach was thought to cause problems in

the future. The main problems would be complexity for support and the cost in

production. Complexity would come from many different applications and their

versions. Cost in production would rise because of the need to develop many

individual systems. The business wanted more efficiency and engineering needed

to cope with it. The idea of implementing all mobile payment services to the one

platform was born.

4.1 FIRST ROUND

The first round of requirement analysis for MPP started in Week 5 2000. This

round is called the first because the SMP department was just formed for a new

venture. At the beginning it was not decided if the MPP would form a project. The

first part was to make requirements and test if the concept is possible. This is often

the case with new technologies. The time schedule was also tight because of the

business, which required pilot project to start in June. Weeks 5 and 6 were allocated

for collecting the user requirements. Weeks 7, 8 and 9 were saved for a feasibility

study to test if the concept can be implemented.

Figure 9 presents the theory constructed earlier. The whole requirement analysis

phase is divided into 2 pieces which fall down to phases called collecting

requirements and feasibility study. In short, the requirement analysis went through

collecting user requirements which formed the requirement catalogue. After this the

analysed main requirements document was constructed. This name is a bit

misleading compared to the steps in theoretical requirement analysis, actually this

 35

represents better the system requirements document and could be named as it. The

document grew in size as the system was analysed and the basic functionality was

tested with prototype. This part was analysing the system requirements. It did not

create a new document but it purified the system requirements. During the process

the document became an analysed main requirements. After the analysis phase a

technical implementation proposal was constructed. It contained the system

requirements and the knowledge of tested technologies that can be used to

implement the concept.

Figure 9. Comparing theoretical steps to the steps in actual process.

In the next chapters we review more detailed how the requirement analysis was

carried through.

4.2 STRUCTURE OF THE USER REQUIREMENTS DOCUMENT

Requirements can be gathered and ideas invented, but they remain formless unless

they are given a form. As long as they are formless they remain invisible and are

hard to pass on forward. A good way to give ideas a form is to write them down in

such a way so that they can be called, for example, user requirements. (Section

 36

3.2.1). When these requirements are collected into same document, the document

will also take form. The form is as important to a document than to a requirement.

Documents can have pre-made forms which are called templates. These templates

show a way how to structure information. When the right form for a requirements

document is chosen it can help collecting the requirements by showing what kind of

information is expected to fill the structure.

With the MPP-project the starting point was such that the users/stakeholders were

quite clear, but the system was a bit dizzy. With this kind of problem it is good to

approach unknown from a direction that is visible. This is the case where one has a

business idea but not the way to achieve it. This leads to a viewpoint approach.

4.2.1 VIEWPOINT APPROACH

The main idea with viewpoint approach / 4, Page 72 / is that if we look our system

concept from different perspectives, it will look different and it must deliver

different functionalities. For example end-users will be using mobile phones to get

the service and our billing partners will be monitoring if transactions are delivered

into their systems. The billing partner does not care much of the time it takes for a

user to use the service but he/she will care if the bills are coming properly from the

system. So by taking different views from different stakeholder groups the whole

spectrum of required attributes for the system can be generated. Viewpoints can

also be arranged by the functionalities, not only by the stakeholders.

The principal advantages offered by viewpoints are as follows.

- The requirements are likely to be more complete than if viewpoints are

not explicitly identified. In the latter case, important requirements may

be easily overlooked because their viewpoints were never recognised.

- A separation of concerns is provided which permits the development of

a set of ‘partial specifications’ in isolation from other viewpoints. This

avoids having to conform conflicts with other viewpoints’ requirements

during elicitation. A result of this is that, when they prove necessary, the

trade-offs between requirements can be better informed.

 37

- Traceability is enhanced by the explicit association of requirements with

the viewpoints from which they are derived.

4.2.2 VIEWPOINTS WITH MPP

The first part in the MPP-project was to find out who are the users interacting with

the new system concept. Three main groups were identified right from the

beginning. They were: end user, service operator and vending operator. Each group

was reviewed and requirements that could come up with brainstorming were

written down. In the light of these requirements, the systems main functionality was

thought up and list of different stakeholders was updated. To help collecting new

and arranging old requirements, the requirement catalogue was divided into main

functionalities, which were identified to be:

- Registration

- Ordering

- Delivery control

- Payment

- Management

- General

Updated actor or stakeholder list contains:

- User

- Product provider

- Payment service operator

- Service owner

- Partner operator

- Billing partner

- Mobile portal

- IVR

- Support

Under each of these functionalities, there is space for requirements for each of

stakeholder group. Every stakeholder does not have requirements for every

 38

functionality but every functionality will have requirements from some of the

stakeholders (Figure 10). Main advantages from this type of structure seems to be:

- Whole big entity is divided into smaller entities, which will contain their

own requirements. Requirements are easier to collect, because they can

be collected one functionality at time.

- Reviewing through requirements is easier because there is some logic in

structure of how they are collected.

- Structure makes it possible to continue breaking requirements into

components while starting to construct system requirements.

Traceability is more easily supported because the base of the

functionality breakdown can be used with system requirement

documents also.

 39

1 Purpose
2 Revision history
3 Terms, acronyms and abbreviations
4 Introduction
4.1 Sender
4.2 Receiver
4.3 Background
4.4 Description and motive
4.5 Planning information
4.6 Acceptance criteria
5 References
6 General requirements
6.1 Technology independence
6.2 High availability
6.3 Architecture
7 Registration
8 Ordering
9 Delivery control
10 Payment
11 Management
12 Example of use

Figure 10. Structure in a first version of MPP requirement catalogue.

4.2.3 PROBLEMS WITH THE APPROACH

The main problem with the current structure is that it is hard to understand. Almost

all of the requirements are placed under the functionality that they are thought to

belong to. This is an easy way when the requirements are identified for the first

time but it seems to cause a setback when someone asks something that is not

directly connected to any specific funtionalities. Examples are the performance and

interfaces. These kinds of questions are prone to rise with possible business

partners. Partners cannot know the functionality and so they cannot ask any specific

questions about some functions, even Sonera’s own sales people find this hard to

handle. The first solution was to make a document which was aimed to sales people

and to customers. A better solution might be to reconstruct the bad parts from the

requirement catalogue structure and maintain the good part (see Chapter 6 for a

 40

suggested solution). It seems wise to use a little more effort while generating a

better structured document so that later there will be less need to generate whole

new documents ad hoc (see Chapter 3).

4.3 HOW TO DESCRIBE USER REQUIREMENTS

Single user requirement in requirement catalogue contains an identification code

and a description. The description contains information of importance of the

requirement , we categorised them by priority as must-, shall- and may-

requirements. This is a rough priorisation because must-requirements are something

which are implemented into system, shall-requirements are something that shall be

implemented some day and may-requirements are something of which we are

uncertain if they will ever be implemented. Good for this is that the single

requirement does not take too much space to be described and this will limit the

size of the requirement catalogue so that it is easier to be read through. A drawback

is that requirements will miss information that is attached for requirements in

theory discussion (Chapter 3.4).

These missing attributes are

- Performance – how quickly must this requirement be met?

- Urgency – how soon is the requirement needed?

- Stability – is the requirement really solid enough to start to work on?

- Verifiability – can the final product be tested or assessed against this

requirement?

- Ownership – who needs this requirement?

- Acceptance criteria – what is the nature of the test that would satisfy the

user that the requirement is met?

 41

4.4 STRUCTURE OF THE SYSTEM REQUIREMENTS

DOCUMENT

The system requirements document at MPP project is called as “analysed main

requirements document”. It contains an abstract view of the system. In the user

requirements document the requirement was textual and in one format. System

requirements are different. Only part of them are in textual format and the rest of

the requirements are presented in graphs or diagrams.

The system requirement document contains (analysed main requirement document)

- An abstract view of the system.

- Information about pieces represented elsewhere, requirements for

testing, documentation, deployment and runtime maintenance.

- Main use case showing all the functional parts of the system.

- Detailed diagrams for each functional part.

- Traceability matrixes for checking which user requirements are filled.

- A list of user requirements which are suspended from the current design.

First parts of the system requirements are general requirements. They are

requirements, which will affect the concept as whole, not just some functions. They

are constructed mainly from the requirements coming from the business and then

processed to the basic environment and basic functionality requirements. These

requirements are quite general. These might be for example “R20. Service

application fault control must be supported.”

The document contains also chapters for testing, documentation, deployment and

runtime management processes. These are detailed more specifically with test plan

and other documents.

 42

In the last chapter of the document the functionality of the platform is presented

with use cases. Use cases contain diagrams and textual information to present

particular case with functionalities and operations.

4.5 HOW TO DESCRIBE SYSTEM REQUIREMENTS

In the chapter 4.4 it came out that system requirements are presented with many

different ways. In the Mobile Payment Platform two different kinds of diagram

presentations and textual presentations have been used.

Textual presentation is used for requirements that are not directly tied to any single

function as a functional part of it. Diagrams are used to show how different

functions within the concept are wanted to operate. So the system requirements are

not about how we want the functions to work, they are more about what operations

we want to put into our functions. System requirements define small operations and

together they form the concept which shows the designer what our functions need

as input and what is wanted to come out as output.

Functionalities are presented as diagrams and explained with text. First diagram is a

main use case (Figure 11). The main use case contains all functions on level which

shows who are the participants dealing with each function. These functions contain

tasks like initiating the service (ordering from vending machine for example),

registering, managing profile and calling to helpdesk.

 43

Figure 11. Example of main use case diagram.

Following the main use case there are chapters to describe each functionality. For

example one functionality case is the ordering for vending machines. This use case

is presented with a diagram (Figure 12) which shows more accurately how each

actor is communicating with each other. This is followed by textual description

explaining what happens when something is ordered. The function is divided into

operations which will follow each other. These operations are listed also in textual

form. Functions contain also a list of error cases and how they are planned to

recover. For example one of the errors with ordering is “E-1: the number of the

service does not answer” and a way to recover follows it “The user calls again. The

administrator of the system is informed of problems.”

Figure 12. Example of the diagram showing communication between each actor.

Each use case has also a matrix attachment which has entries for requirements that

are traced from the user requirements to the system requirements in that particular

use case. If some of the user requirements need more details, there is a column in a

 44

matrix which contains a more detailed hint. For example the registration chapter

contains a matrix entry, as shown in Table 3.

Table 3. Example of matrix entry.

User actor Fulfil Comment

R23. Use of some services must not require registration. Yes Only phone bill

This means that the concept has a user requirement which tells the service about

use without registration. The comment adds a detail that this is filled if the user uses

phone bill as a payment method. The process is presented with more detail in use

cases. Matrix is for traceability and checking that all the requirements are taken

care of in the document. Unused user requirements are listed as an appendix so that

it is possible to check what has been left out from the concept.

The systems requirements should satisfy the following list of features: / 5, Page 50 /

- Giving an abstract view of the system;

- Allowing trade-offs, exploration and optimisation before committing to

design;

- Demonstrating to users how their needs are reflected in the

development,

- Providing a solid foundation for design;

- Providing a basis for testing the final system;

- Communicating the previous decisions to developers.

 45

5 TRACEABILITY

One demand for a good requirement was to be traceable (Section 3.2.2). If

requirements are traceable then it can be said that traceability is included in them.

Without working traceability requirements and design could not communicate and

it would not be known what would happen if something changes requirements or in

worst case, no one would even know if they were on a right track, because there

would not be a workable way to check it out. Traceability is needed for system

requirements to be traced to user requirements to show that all the user

requirements are met, and that all the system requirements are necessary. This task

needs engineering judgement, is arduous and error-prone. Also users always need

to find out which requirements are accepted, rejected or postponed which is why

traceability to the users requirements must be retained. Traceability is not

implemented for free. It needs some tracking and maintenance to work. Some

requirements management tools can help document the links and their rationale.

5.1 THE NATURE OF TRACEABILITY

The nature of traceability is to show us a way to answers considering our

requirements. By studying books describing the questions, lists of different

questions can be found out to define different types of traceability.

A set of questions for traceability to answer:

- Are these user requirements met by the current design?

- Are these user requirements met by the current implementation?

- What is the level of criticality of this piece of equipment?

- What is the functionality of this equipment?

- Which requirements are to be met in the next release?

 46

- Which user requirements have not been tested?

- What is the likely cost of this proposed change? / 5, page 270 /

Information on the source of the requirement could also be added to the list.

Another definition for a traceable requirement is:

“A requirement is traceable if you can discover who suggested the requirement,

why the requirement exists, what requirements are related to it and how that

requirement relates to other information such as system designs, implementations

and user documentation.” / 4, page 217 /

5.2 DIFFERENT TYPES OF TRACEABILITY

A lot of things can be asked of requirements. All these questions would get

different answers. As many questions can be made as there are relationships

between requirements. As many answers can be given as there are questions. These

question/answer dilemmas can be called as relationships between the requirements.

I have found a list of relationships by combining lists from / 5, page 270 / and / 4,

page 226 /. My list includes:

1. A relationship describing who specified the requirement. This is

recording the requirement source.

2. A dependency relationship between the requirements. Also called

coverage relationship which is showing that one process covers the

specification of a previous process. This should always be included.

3. A relationship between the rationale and requirement. Also called as an

applicability relationship to show how non-functional requirements

apply to functional requirements;

4. A relationship to show how tests are related to components and the

requirements for those components;

5. A development relationship that show who is responsible for performing

specific tasks. This can be divided into three different domains, which

may or may not be applicable for a single requirement. These domains

 47

are requirements-architecture, requirements-design and requirements-

interface traceability.

6. A relationship to show how structured information is related to

descriptive information.

7. Relationships of generic engineers to specialist engineers, usually

working with specialist tools (data flows, control flows).

To achieve traceability there are a few principles that must be followed.

Traceability tends to weight our requirement process and we do not want to get it

too heavy. Too heavy requirement process would also easily lead to piles of

requirement data, which nobody would have energy and will to comprehend.

When dealing with the problem of traceability and thinking of what relations are

more important than others are, there will be a need to sort these relations out

somehow. Figure 13 presents a requirement catalogue which contains 4

requirements. These requirements and this catalogue are tied to its surrounding.

Lines and arrows in the figure show how the business idea comes before

requirements and how the test plan tests the single requirement and how the

implementation proposal is made after collecting requirements. There is also a

market study showing a new market invention that is converted to requirements and

that way into the design. The picture shows the main types of relations with

requirements themselves and their surroundings. The picture should show also how

these relationships can be sorted out with couple different characteristics:

- Whether the relation is forward or backward in a design cycle;

- If the relation is going inside or outside of scope of the requirements

catalogue.

 48

Figure 13. Traces leading forward/backward and going inside/outside requirement

catalogue context.

5.2.1 FORWARD/BACKWARD

In this study, it was noticed that there are forward and backward relationships.

Forward type of relationship means to look what will follow the requirement in a

design cycle. Backward means to look what was stated before the requirement.

All types of relations contain both forward and backward type of relation. That is

because if there is a relationship between two objects in a traceability kind of sense,

we can look relations both ways. If we are looking at, for example, what will follow

an object as more detailed requirements or as some designed solution, we are

looking at a forward trace. If we look at the same relations the other way, from the

design solution or some detailed requirement, we can find out what was the source

we have used to justify our detailed requirement or solution. This is a backward

trace.

 49

Some might ask about requirements, which are simultaneous? If they are in the

same phase and do not follow each other, but are like two different requirements

each describing the same source requirement, like requirements R2 and R3 in

Figure 13, the answer is, they do not have a trace between them. Surely they have

some kind of relation, everything is relative, but in the context of traceability they

do not have a straight trace between them.

5.2.2 INSIDE/OUTSIDE

In this study it was noticed that relationships can also be arranged by inside/outside

type of relations. Inside type relationship means we are dealing with relationship

which does not lead directly to the outside of our requirement document. An

example of this could be the relationship between non-functional requirement and

functional requirement. An outside type relationship means we are going out from

our requirement documents;for example, if we have a relation between a

requirement and the design component we are speaking of an outside trace.

Examples of inside relations are using the numbering of the list in section 4.2:

•= 2. A dependency relationship between the requirements. Also called

coverage relationship which is showing that one process covers the

specification of a previous process.

•= 3. A relationship between the rationale and requirement. Also called as an

applicability relationship to show how non-functional requirements apply to

functional requirements;

Examples of outside relations are:

•= 1. A relationship describing who specified the requirements. This is

recording the requirement source.

•= 4. A relationship to show how tests are related to components and the

requirements for those components;

•= 5. A development relationship that shows who is responsible for performing

specific tasks. This can be divided for three different domains which may or

 50

may not be applicable for a single requirement. These domains are

requirements-architecture, requirements-design and requirements-interface

traceability.

•= 6. A relationship to show how structured information is related to

descriptive information.

•= 7. Relationships of generic engineers to specialist engineers usually working

with specialist tools (data flows, control flows).

5.3 TRACEABILITY TECHNIQUES

The whole system can be thought of as a set of organised information, linked to

minimise duplication. A requirement should ideally be stated once and applied to

many different areas, by linkages, rather than repeating the requirement. If a change

is required, only one item needs to be updated, and the result is cloned to many

different places. / 1, page 269 /

There are three basic techniques, which may be used to maintain traceability

information. These are as follows.

1. Traceability tables

2. Traceability lists

3. References

4. Automated traceability links

5.3.1 TRACEABILITY TABLES

Traceability tables show the relationships between requirements or between

requirements and design components. The requirements are listed along the

horizontal and vertical axes and relationships between requirements are marked in

the table cells. They can be implemented using a word processor or spreadsheet

tables; a requirements database is not necessary. / 4, page 227 /

 51

Traceability tables showing requirements dependencies should be defined with

requirement numbers used to label the rows and columns of the table. Then if

requirements have some kind of dependency you simply put a mark (* for example)

in the table cell. Tables should be constructed so that the leftmost column shows a

requirement and rows are showing which requirements are dependent on it. For

example in Figure 14 we have three requirements (R1, R2, R3) and we can see that

R2 is somehow dependent on R1 and R3 is dependent on R1 and R2. R1 is not

dependent on any other requirements. This kind of representation shows us both a

forward and a backward type of relations in a same table. The main disadvantage is

that the tables will become unmanageable if the number of requirements grows too

big.

 R1 R2 R3

R1
R2 *
R3 * *

Figure 14. Example of traceability table.

5.3.2 TRACEABILITY LISTS

Traceability lists are a simplified form of traceability tables where, along with each

requirement description, you keep one or more lists of the identifiers of related

requirements. Traceability lists (Figure 15) are more compact than traceability

tables and do not become as unmanageable with large number of requirements. / 4,

page 229 /

Requirement Depends-on

R1
R2 R1
R3 R1,R2

Figure 15. Example of traceability list.

 52

Traceability lists are more compact than traceability tables. For this reason they do

not become unmanageable with large number of requirements. Extra information

like comments can also be added to them (Figure 16). If both forward and

backward type of relations are shown, independent lists must be maintained for

these relations.

Requirement Depends-on Comments

R3 R1,R2 Here is something good to know.

Figure 16. Example of a comment field in a traceability list.

Traceability lists can also be joined together to form forward and backward type of

information and still achieve more compact form than traceability table. (Figure

17).

Requirement Depends-on Affects-to
R1 R2,R3
R2 R1 R3
R3 R1,R2

Figure 17. Forward and backward trace in a same list.

5.3.3 REFERENCES

References are also traceability information. They are often used in documents

where some information is derived from some other document. Even in my thesis I

must use references. I use them like / 2, page 236 / which means that I have found

information from the source number two and on page 236. Requirements can

contain references. This can be used when linking outside-type of relations, for

example non-structured descriptive information, to the requirements. An example

for descriptive information might be a marketing study.

 53

5.3.4 AUTOMATED TRACEABILITY LINKS

It is possible to use automated traceability links if the requirements are maintained

in an established database where individual requirements are stored as entries in

this database. The main benefits are: / 4 , page 236 /

- It makes easier to maintain links between individual requirements and to

search for and abstract related groups of information.

- If the database is a general-purpose repository for system information,

links from the requirements to design and implementation information

may be maintained.

- If the database supports concurrent working, it allows for different

groups to work on the requirements specification at the same time

without generating requirements inconsistencies. Database facilities for

backup, integrity and security mean that requirements engineers need

not be concerned with these issues.

- The requirements may be automatically processed to extract particular

types of information. For example, it may be possible to generate

traceability tables and lists automatically from the information in the

requirements database.

 54

5.4 TRACEABILITY MANUAL

To give traceability a form of some kind of traceability, techniques must be used.

To give techniques a form, so that design and requirement engineers can benefit,

they must also be structured. This is done by the same kind of principle why we

must have a structured way to generate for example requirements document. The

traceability manual should tell how the traces are generated and where they are

stored. / 4, page 232 /

The traceability manual is a supplement to the requirements document which

includes the specific traceability policies used in a project and all requirements

traceability information. This document is used by requirements engineers and

system developers.

5.4.1 BENEFITS

It is no use to make documents just because they look nice . So why not just

implement the traceability right into the user requirements document and technical

implementation plan, etc? If traceability policies and all traceability tables would

be incorporated right into the requirements document, the size of that single

document would grow much. Too much information (too thick document) will

make it useless just because of lack of energy and time people have. The documents

should be thin so that the information can be found fast enough. Another point is

that the traceability comes from many different directions. It comes from design

and it comes from stakeholders, market studies, etc. The information would spread

all over the project and an exact piece would be hard to find if there would not be a

central record for traceability information. It is possible to list all the policies in the

manual. From these policies it is possible to check where to find a single piece of

traceability information needed at the time or where to make updates when traces

need changes. The manual should contain much traceability information.

 55

The main benefits for a traceability manual is: / 4, Page 232 /

- Team members can easily find the specific traceability policies for their

project.

- A traceability manual keeps all traceability information in one place and

makes information (relatively) easy to find and update.

- The specific traceability policies used in a project are made available to

all project members through the traceability manual.

- For systems where a safety or security case must be made a traceability

manual may be used to show that components are independent or to

argue that component failure cannot propagate in an uncontrolled way.

5.4.2 IMPLEMENTATION

The traceability manual is a central record of the traceability policies for a specific

project and all of the relevant traceability information. Your general traceability

policies should be specialised to take into account the characteristics of the project.

This may involve leaving out some traceability information, deciding exactly how

traceability information should be represented, deciding on the responsibilities for

traceability information collection, etc.

The specific traceability policies, which should be used for a project, depend on a

number of factors. These factors include the following: / 4, Page 233 /

1. Number of requirements.

2. Estimated system lifetime.

3. Level of organisational maturity.

4. Project team size and composition.

5. Type of system.

Traceability information must be regularly updated. If it is not it will not stay

useful. The traceability manual is good to be implemented as a networked

electronic document rather than as a paper document. When traceability

information is needed it can be consulted from the screen or the important parts can

 56

be printed on paper. Maintaining the whole document on paper will make frequent

updating cumbersome. The traceability manual should be managed using normal

configuration management processes. To ensure that the traceability manual is kept

up-to-date, someone should be assigned to manage it. He/she should work with

system developers and ensure that changes to the requirements/design, etc. have

been incorporated in the manual and should review and update traceability policies.

Assigning tasks to people and not just hoping that someone should do them is a

workable solution because things that are not assigned to any specific person will

soon turn out to be things not done by anyone.

 57

6 ENHANCHING REQUIREMENT PROCESS

In Section 3.1.2 it was pointed out that the requirements should be complete, sharp,

flawless, understandable, testable and traceable. The aim of this work is to discuss

what traceability is and how it is implemented with requirements. It also seems that

when enhancing traceability, the whole process can be enchanced the same time.

This section contains practises that have been formed according to earlier

discussion. I have found it important to discuss three topics which will have an

effect on traceability:

1. Requirement process and its surroundings

2. Structure of the requirement catalogue

3. Traceability manual

6.1 REQUIREMENT PROCESS

Knowing yourself is basic for starting to improve. For this reason it is important to

draw a figure how the requirement process will fit into the SMP business (Figure

18). This figure will also help the reader to understand what are inputs (traces into)

and outputs (traces out from) to the requirement analysis.

 58

Figure 18. Process model for SMP requirement phase.

The requirement analysis gets as an input collected requirements, a roadmap plan

and a product portfolio. Outputs for the process are a requirement catalogue, a

product roadmap and the order. The order is documented independently because

SMP does not make implementation but orders it from different subcontractors.

The first phase of this model is to structure the information. This phase will review

requirement collection process and get a set of already collected requirements from

there. Requirement collection is a continual process. It contains all types of

requirement collection, starting from ideas and lasting to the collecting changes

made through change management. The requirement collection is its own entity so

that it is done during other phases of the whole system engineering process and

during this time it does not consume much time. Only results are needed.

After structuring the requirements there is a phase where requirements are

prioritised. This is where some are left out and others are reviewed and decided if

they should go to the next release.

The last phase is analysing the requirements. This phase is here to deliver the

requirement catalogue to the partners who are responsible for implementing the

 59

design. The requirements may need to be presented as system requirements to

ensure they are understood.

6.2 REQUIREMENT CATALOGUE

The structure of a catalogue is important. If the structure is bad even good

requirements will become hard to use. On the other hand even bad requirements

will benefit if the structure of the document is good. Traceability does also concern

the whole structure of the requirement catalogue. It is not just in the requirements, it

is also in the group they form. This shows up for example in version control.

The structure of a requirement catalogue must be made clear so it can be used to

skim through the text to find the areas of interest. For example if the reader is

interested mainly in the performance abilities and the catalogue has a chapter about

performance, the reader can go right there from a contents list. Largely this is a part

of traceability because it helps to find a connection between a quality criterium

(performance ability) and a requirement. A more common sense way would be to

say, “It is easier to read this”.

 60

Figure 19 presents an adjusted structure for a requirement catalogue. It is based

mostly on the model presented in reference 2, page 60, and adjusted with lessons

from the previous MPP requirement catalogue structure (see Section 4.2).

1. Preface

1.1. Revision history
1.2. Contents
1.3. Purpose
1.4. Terms, acronyms and abbreviations
1.5. Guidelines with the document
1.6. References

2. General description
2.1. Product background
2.2. Environment
2.3. Main functionality
2.4. Modules and their relations
2.5. User groups
2.6. Performance
2.7. Costs/benefits
2.8. General constraints

3. Data and database
4. Functional requirements
 4.1. Functionalities
5. Interfaces

5.1. User interfaces
5.2. Hardware interfaces
5.3. Software interfaces
5.4. Datalink interfaces

6. Other characteristics
6.1. Performance

6.1.1. Static requirements
6.1.2. Dynamic requirements

6.2. Security
6.3. Support & maintenance

6.3.1. Maintenance
6.3.2. Installing

6.4. Compatibility
6.5. Operationing

7. Design constraints
7.1. Standards

7.1.1. Software standards and programming languages
7.1.2. Datacommunication standards

7.2. Hardware constraints
7.2.1. Used hardware
7.2.2. Database constraints

7.3. Software constraints
7.3.1. Operating system

7.4. Output formats
8. Testing requirements

8.1. Acceptance Criteria
Figure 19. Structure for a requirement catalogue

 61

Chapter 1 is a preface. It contains information about the document itself. It has the

revision history from where the document is derived, a contents list, the purpose

why the document exists, a term list to help understanding the text, guidelines for

using the document and a list of references used with the document.

Chapter 2 is a general description. It has information about the product, the reason

why the system is made, in what environment it is interacting, what are its main

functionalities, what modules does it consist of, who are the user groups dealing

with it in greater detail than in the environment chapter, what general performance

ability it contains, what are its possible costs and benefits with business and what

general constraints it deals with. General constraints might deal with law or work

tools used to implement the system.

Chapter 3 contains requirements for data and databases needed in the system. It

clarifies the information contained, data storing, capacity, search-time, etc.

Chapter 4 has an entry for each main functionality and these entries should contain

a list of requirements for each functionality. There should be a purpose for function,

the input it needs, how the handling takes place and what output it generates. The

format for each technique sub-chapter should contain requirements organised from

the viewpoint they came in with (see Chapter 4.2.1). This is to list requirements by

a user group that the requirement most affects. The structure could be

4.1 Ordering
 End user:
 …
 Product provider:
 …

4.2 Payment
…

Chapter 5 contains more definite requirements for systems interface. A general

description for these should be found from Chapter 2.2 Environment. Interfaces can

be described in detail or they can be left to design phase. It is optional.

 62

Chapter 6 contains systems non-functional requirements which make up most of the

quality requirements associated with the product.

Chapter 7 holds the constraining requirements. These contain limits which are set

by standards, laws, software, hardware, etc associated with the product.

Chapter 8 holds the requirements for testing. It can contain tests needed and also

criteria when tests are accepted.

6.3 TRACEABILITY MANUAL

Because the traceability techniques are not currently defined at the SMP department

and the whole implementation process would take a long time, it is here rather

discussed what should be done in the first place to create a condition for successful

adaptation of traceability techniques needed.

The traceability manual should normally be developed incrementally as the system

is specified, designed and implemented. The first chapter should always include the

project traceability policies. Requirements dependencies can then be documented as

soon as the requirements document is agreed but design traceability, documentation

traceability, etc. must be added at later stages of the development process.

/ 4, page 233 /

 63

6.3.1 COMPLEXITY

The Sonera Mobile Pay department is mainly concerned with designing the concept

for mobile payment and selling it internationally. The department generates

requirements for the concept and tests the functionality. The design phase where the

code is generated is carried out in different departments. So the main concern for

the Sonera Mobile Pay department is to gather and handle the business area for a

MPP and to verify that the MPP design is filling the requirements generated by the

business.

According to the factors presented in Section 5.4.2 the following factors can be

obtained from the MPP concept:

1. Requirement catalogue contains 153 user requirements.

2. Estimated system lifetime is long. This system should be one that can be

updated as needed so that the platform should be alive after at least a decade.

This will generate a need to know what was implemented in each version and

what has changed. There is also a need to find out what will change when some

old requirement changes in later versions.

3. Level of organisational maturity is low. The SMP-department was generated

from a scratch for a whole new business area. This means that there are no

previously implemented practises.

4. Project team size and composition. The department contains roughly three main

areas. The First one is the business staff who are selling the concept and

gathering new customers. The second one consists of the technical workers who

are working as engineers and making requirements out from the business

requirements and are also responsible for verifying that the design made by

other partners will fit together and form a solid platform. The third staff is

formed of the people who are responsible for implementing the concept when it

is ready for production.

5. Type of the system is a user oriented commercial system which will handle

small billing transactions. Failures will cause possible loss of finance and bad

 64

design can give discomfort while used resulting into smaller usage.

Transactions with money will be quite small but there will be a lot of them.

Small streams can build up a big river if errors start to cumulate.

Sections two and four indicate that the traceability should be maintained quite

strictly. From the sections one and three we can see that while the business is just

beginning, it is not catastrophic even if there are no currently working traceability

techniques. That is because a small number of requirements and a new organisation

which does not have strict practisis hard to change. Section five gives also a little

time because it states that we do not deal with human lives. For the future it seems

wise to at least make preparations for practises ready for implementation.

6.3.2 STRUCTURE

The traceability manual should now take a form, otherwise the information cannot

be stored. Figure 20 presents a possible structure and a discussion of how it should

be used.

1 Preface
1.1 Revision history
1.2 Contents
1.3 Purpose
1.4 Terms, acronyms and abbrevations
1.5 Guidelines with the document
1.6 References
2 Project policies
2.1 Requirements
2.2 Dependencies
2.3 Source
2.4 Rationales
2.5 Tests
2.6 Development
2.7 Descriptive information
2.8 Resources
3 Traceability information
3.1 …

Figure 20. Structure for a traceability manual.

 65

Chapter 1 is a preface and it contains information of the document in much the

same way as in the first chapter of the requirements catalogue structure in Figure

19. This is also trace information for the document. The revision history will show

the previous versions and their numbering before the current document. The

contents will help the reader to find interesting parts in the document. The purpose

will tell why this document has been created. Terms, etc. will help understanding

e.g. the shortcuts. Guidelines will have information assisting with the use of the

document and a references list for further reading.

Chapter 2 contains traceability policies used with the project the document belongs

to. It has been structured so that first there is a chapter on requirements. This is used

to define how new requirements are approved to existent requirement catalogue and

in what format they should be written down. This is followed with seven chapters

which each define a different type of relations associated with requirements (see

Chapter 5.2). These relations can be shown with traceability techniques (see

Chapter 5.3 for available traceability techniques). In Figure 21 there is a suggested

list of techniques that can be used to show the relation with the MPP project.

 Guide how to implement
Requirements

Dependencies

Source

Rationales

Tests

Development

Descriptive
information

Resources

Attach the requirement with unique id, author, source, description

Use tables or automated links

This should be written down while collecting the requirement.

This connection with functional<->non-functional requirement is
implemented with automated links or with tables.

When tests are made up tables should be used to check that all
requirements are tested. Later these tables can be used to check what each
test was actually testing from a requirements catalogue.

This contains three areas, architecture, design and interface. A good
structure with requirements catalogue should clear this quite much at first
place.

Use references to show where to find more information.

Here should be defined who are working with special tools, for example
with the doors if they are implemented.

Figure 21. Guide how to implement different kinds of traceability.

 66

Chapter 3 contains requirement information. Traceability information is presented

in such way as defined under policies in Chapter two. This information can be

references to documents which contain traceability information, or it can be the

traceability information or combination of both.

 67

7 CONCLUSIONS

The main results achieved during this study were the process model for requirement

analysis, the template for collecting requirements and clarifying what traceability

means. These were also mostly due to my own research and observation. Other

result was a principle which has also been told to be the KISS principle (Keep It

Simple Stupid). This is an informal and unscientific principle but it reminds to

forget about too much complexity. In conclusion I will also clarify some thoughts

about it.

It seems that in theory its quite easy to produce models for requirement analysis.

The hard part is to find a level where the models are right. The work models should

not get on a level where they are too detailed. Too many details will make them

cumbersome, because there is a level where people just act and do not think. This is

the same as acting in a spirit of void which is told to be the principle how things

should be done in Musashi’s book. In my opinion it can be said that people can be

beginners, novices and professionals. This is very rough.

Beginners are people who are just studying the general skills needed or have never

heard of them. In terms of warfare this would mean that they are learning the tactics

which is the same as small movements and how they are carried out in the right

way. In computer science this means that they are practising how the program is

written and what languages there are to choose, etc. Larger parts are also revealed

but they cannot be tried out in detail. One can read about managing a big company

or producing a huge software project but in practise it is not possible to try it out in

this phase. A lot of studying is needed.

Novices are people who know what should be done and the general way how to do

it but they are not certain of all things. They need support and assistance. This is the

case when one starts to work in a workplace and does not yet know how things are

 68

done there. Here the worker starts to learn how to adapt small things into a bigger

scale. Studying continues, not so much in theory but also in practise by trying out

and looking how things just seem to be carried out.

Professionals are people who have the knowledge and who have found out the

variations or many of them which can take place. Professionals have the ability to

adapt to new situations fast because they do not need to think so much. In other

words they can see the whole strategy and just act according to it.

The models introduced should be on a level where they guide beginners and do not

restrict the professionals. It could be said that documented models and rules should

be on a level where they define the strategy that is followed and leave the workers

freedom to follow it. So the greatest benefit of models and templates is when new

employees are introduced to work. Documentation should help to sew skills into

strategy to achieve a uniform way for a company.

 69

8 REFERENCES

1. Sven Dahlman, User requirements a resource for the development of technical

products, Chamlers Tekniska Högskola, Department of Consumer Technology

Göteborg 1986.

2. Ilkka Haikala&Jukka Märijärvi, Ohjelmistotuotanto, 3.painos,ISBN 951-762-

497-2, Gummerus Kirjapaino Oy Jyväskylä 1997.

3. Miyamoto Musashi, Maa,Vesi,Tuli,Tuuli ja Tyhjyys,

3.painos,kustannusosakeyhtiö Otavan painolaitokset, Keuruu 1995, ISBN 951-

1-07526-8.

4. Ian Sommerville&Pete Sawyer, Requirements engineering, a good practice

guide, reprinted July 1998, ISBN 0 471 97444 7.

5. Richard Stevens, Peter Brook, Ken Jackson & Stuart Arnold, Systems

Engineering , coping with complexity, 1998 edition published by Prentice Hall

Europe.

6. Sonera R&D Process Model, revision 1.1.

7. INSKO. Vaatimusmäärittely järjestelmän suunnittelussa, 2. Painos Helsinki,

Insinöörijärjestöjen koulutuskeskus INSKO 1991. (INSKO-julkaisu 124 - 90).

