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ABSTRACT 

  

Lappeenranta University of Technology 

Department of Information Technology 

Kimmo Hoikka 

Design Patterns in EPOC Software Development 

Master’s Thesis, 2001 

81 pages, 31 figures 

Supervisor: Professor Heikki Kälviäinen 

Keywords: Design Patterns, Architectural Patterns, Design Principles, OOD, EPOC, 

UML 

 

The thesis studies design patterns in the EPOC operating system. The thesis studies 

general design patterns and also patterns in the EPOC operating system. The focus is 

on the requirements and the benefits of using design patterns in EPOC along with its 

own patterns. During the thesis an EPOC software was designed using design patterns 

and following the design principles. 

 

Design patterns have become more common in the recent years. The basis for the 

design patterns is the design principles and environment specific principles. Design 

patterns are a part of software pattern family, which contains process, analysis, 

architectural, etc patterns. Design patterns speed up and simplify the design, and 

improve reusability in higher abstraction level. 

 

EPOC is one of the most common operating system for the future mobile 

environments. EPOC is completely object-oriented and contains several patterns that 

must be understood by software developers. Since the platforms where EPOC is mostly 

used have limitations on resources, the developers must be careful when applying 

general design patterns into EPOC. Some general patterns must be modified to fit into 

EPOC and some do not work at all. 
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Työssä tutkittiin oliosuunnittelumalleja EPOC-käyttöjärjestelmässä. Työssä tutkittiin 

sekä yleisiä suunnittelumalleja että EPOC-ympäristössä esiintyviä oliorakenteita, 

niiden aiheuttamia vaatimuksia sovelluksille sekä niiden käyttämisestä saatavia 

hyötyjä. Työssä toteutettiin EPOC-ohjelmiston suunnittelu hyödyntäen 

suunnittelumalleja ja periaatteita. 

 

Oliosuunnittelumallit ovat yleistyneet huomattavasti viime vuosina. Suunnittelumallien 

lähtökohtana ovat sekä yleiset että ympäristökohtaiset suunnitteluperiaatteet ja säännöt. 

Suunnittelumallit ovat osa isompaa rakennekokonaisuutta, joka käsittää sekä prosessi-, 

analyysi-, arkkitehtuuri- ym. malleja. Oliosuunnittelumallit nopeuttavat ja helpottavat 

suunnittelua sekä  parantavat uudelleenkäytettävyyttä korkeammalla abstraktiotasolla. 

 

EPOC on tulevaisuuden mobiililaitteiden yleisimpiä käyttöjärjestelmiä. EPOC on 

kokonaisuudessaan oliopohjainen ja sisältää lukuisia oliorakenteita, joiden 

ymmärtäminen on sovelluskehityksen kannalta elintärkeää. Koska ympäristöt, joissa 

EPOC-käyttöjärjestelmää käytetään, ovat yleensä resurssien puolesta rajoittuneita, on 

yleisten suunnittelumallien käytössä oltava tarkkana. EPOC vaatii yleisiin 

suunnittelumalleihin muutoksia ja estää joidenkin käytön kokonaan.



 iv

PREFACE 

 

This thesis was written for Digital Information Architects, Digia Inc. in Digia 

Lappeenranta branch office. I started to get acquainted with design patterns early in 

spring 2000. The implementation part of this thesis was done during autumn 2000 and 

the writing started at September 2000. I also had the opportunity to give a presentation 

on the subject at the Symbian Developer Expo November 2000. 

 

I would like to thank the people who have helped in processing this thesis during its 

lifetime. Especially the instructor of the work, Jouni Vaahtera, whose idea this subject 

was in the first place. I must also thank the software architects at Symbian, whom I had 

the opportunity to talk with during the Symbian Developer Expo in November 2000. 

They gave an important insight into EPOC and its structures. Big thank must also go to 

the supervisor of this thesis, Heikki Kälviäinen about good guidance and patience on 

continuous delays on deliveries �.



 v

TABLE OF CONTENTS 

 

1 INTRODUCTION.................................................................................................1 

1.1 BACKGROUND..............................................................................................1 

1.2 OBJECTIVES AND RESTRICTIONS...................................................................2 

1.3 STRUCTURE OF WORK...................................................................................2 

2 TERMINOLOGY .................................................................................................3 

2.1 NOTATIONS AND LANGUAGE ........................................................................3 

2.2 DIAGRAMS ...................................................................................................3 

2.3 ARTIFACTS ...................................................................................................4 

2.3.1 Mix-in ..............................................................................................4 

2.3.2 Specialization ..................................................................................4 

2.3.3 Composition ....................................................................................5 

2.3.4 Delegation .......................................................................................5 

2.3.5 Instantiation ....................................................................................6 

2.3.6 Template..........................................................................................6 

3 EPOC......................................................................................................................7 

3.1 THE SYMBIAN PLATFORM ............................................................................7 

3.2 SPECIAL CHARACTERISTICS..........................................................................8 

3.3 HARDWARE CHARACTERISTICS ....................................................................9 

3.4 SYSTEM STRUCTURE...................................................................................10 

3.5 THE EPOC OPERATING SYSTEM.................................................................11 

4 DESIGN PRINCIPLES ......................................................................................13 

4.1 SOFTWARE DESIGN.....................................................................................13 

4.2 COMMON OBJECT-ORIENTED PRINCIPLES ...................................................14 

4.2.1 Open Closed Principle ..................................................................14 

4.2.2 Dependency Inversion Principle ...................................................15 

4.2.3 Interface Segregation Principle ....................................................16 

4.2.4 Acyclic Dependency Principle ......................................................17 

4.3 EPOC PRINCIPLES......................................................................................17 



 vi

4.3.1 Memory allocation ........................................................................18 

4.3.2 Function overloads........................................................................18 

4.3.3 Object code....................................................................................19 

4.3.4 Inline functions..............................................................................19 

4.3.5 Typecasting ...................................................................................20 

4.3.6 Resource acquisition .....................................................................20 

4.3.7 Coding Conventions ......................................................................21 

5 DESIGN PATTERNS .........................................................................................23 

5.1 DEFINITION ................................................................................................23 

5.2 CATEGORIZATION ......................................................................................23 

5.3 ARCHITECTURAL PATTERNS.......................................................................25 

5.3.1 Layers............................................................................................25 

5.3.2 Model-View-Controller .................................................................27 

5.3.3 Microkernel ...................................................................................28 

5.4 CREATIONAL PATTERNS .............................................................................31 

5.4.1 Factory Method.............................................................................31 

5.4.2 Singleton........................................................................................34 

5.5 STRUCTURAL PATTERNS ............................................................................36 

5.5.1 Adapter..........................................................................................36 

5.5.2 State...............................................................................................38 

5.6 BEHAVIORAL PATTERNS.............................................................................40 

5.6.1 Observer ........................................................................................41 

6 EPOC PATTERNS .............................................................................................43 

6.1 SYSTEM ARCHITECTURE.............................................................................43 

6.2 APPLICATION ARCHITECTURE.....................................................................45 

6.3 ACTIVE OBJECTS ........................................................................................47 

6.4 EIKON ......................................................................................................48 

6.5 EPOC IDIOMS ............................................................................................49 

6.5.1 Construction..................................................................................49 

6.5.2 Thin templates ...............................................................................51 

7 EPOC APPLICATION DESIGN USING DESIGN PATTERNS..................53 



 vii

7.1 INTRODUCTION...........................................................................................53 

7.2 EXAMPLE APPLICATION..............................................................................53 

7.2.1 Purpose .........................................................................................53 

7.2.2 Features.........................................................................................54 

7.3 REQUIREMENTS..........................................................................................54 

7.4 ANALYSIS ..................................................................................................55 

7.4.1 Selecting patterns ..........................................................................57 

7.5 DESIGN.......................................................................................................58 

7.5.1 Adapter..........................................................................................58 

7.5.2 State...............................................................................................59 

7.5.3 Observer ........................................................................................60 

7.5.4 Factory Method.............................................................................61 

7.5.5 Singleton........................................................................................62 

7.6 FINAL DESIGN ............................................................................................63 

7.7 DISCUSSION................................................................................................64 

8 CONCLUSIONS .................................................................................................65 

9 REFERENCES....................................................................................................67 

 



 viii

LIST OF FIGURES 

 

Abstract interface. ............................................................................................................4 

Specialization. ..................................................................................................................5 

Composition. ....................................................................................................................5 

Delegation. .......................................................................................................................6 

Instantiation......................................................................................................................6 

Class template. .................................................................................................................6 

Nokia 9210, an example of Crystal DFRD. .....................................................................8 

Quartz Reference Device. ................................................................................................8 

The Symbian Platform Structure....................................................................................11 

EPOC Architecture.........................................................................................................12 

Dependency Inversion Principle. ...................................................................................16 

Pattern categorization.....................................................................................................24 

Model - View – Controller architectural pattern............................................................27 

Microkernel architectural pattern. ..................................................................................29 

Factory method design pattern. ......................................................................................32 

Factory Method Sequence Diagram...............................................................................33 

Singleton design pattern. ................................................................................................34 

Class adapter design pattern...........................................................................................36 

Object adapter design pattern.........................................................................................37 

State design pattern. .......................................................................................................39 

State Sequence Diagram. ...............................................................................................40 

Observer design pattern..................................................................................................41 

EPOC System Architecture............................................................................................43 

EPOC Graphics Architecture. ........................................................................................44 

EPOC Kernel and privilege boundaries. ........................................................................45 

Pattern finding cycle. .....................................................................................................56 

Adapter Design Pattern in AppTest. ..............................................................................59 

State Design Pattern in AppTest. ...................................................................................60 

Observer Design Pattern in AppTest..............................................................................61 

Factory Method Design Pattern in AppTest...................................................................62 



 ix

AppTest class diagram. ..................................................................................................63 



 x

ABBREVIATIONS 

 
ADP Acyclic Dependency Principle 

API Application Programming Interface 

APPARC Application Architecture 

DFRD Device Family Reference Design 

DIP Dependency Inversion Principle 

DLL Dynamic Link Library 

EXE Executable program 

GCC Gnu C Compiler 

GDI Graphics Device Interface 

GOF Gang-Of-Four 

GUI Graphical User Interface 

HAL Hardware Abstraction Layer 

ISP Interface Segregation Principle 

LAF Look and Feel 

MVC Model-View-Controller 

OCP Open Closed Principle 

OOD Object Oriented Design 

OOM Out Of Memory 

OOR Out Of Resources 

OPL Organizer Programming Language 

PC Personal Computer 

PDA Portable Digital Assistant 

RAD Rapid Application Development 

RAM Random Access Memory 

ROM Read-Only Memory 

RTTI Real Time Type Identification 

SDK Software Development Kit 

STL Standard Template Library 

TCP/IP Transmission Control Protocol / Internet Protocol 

UI User Interface 



 xi

UML Universal Modeling Language 

WID Wireless Internet Device 

WLAN Wireless Local Area Network 



 1

1 INTRODUCTION 

 

1.1 Background 

 

Software design has become an increasingly important task in software industry during 

the recent decade. The biggest need for good design is the growing size and amount of 

features in today’s software. Object-oriented programming environments and platforms 

have helped to do the design with structuring and encapsulation. On the other hand, 

they have also increased the need for design specialists who understand the capabilities 

of object-orientation and also the need for tools, methods and models that enable 

powerful Object-Oriented Design (OOD). Design patterns have been evolved from the 

use of such methods and models by those design specialists in their real life software 

development. 

 

The most recent revolution in information technology is mobility. Computing devices 

are no longer bound to a specific location, they are mobile and move around in peoples 

backpacks and pockets. Such devices are no longer called computers or pocket 

computers. They are referred to as Wireless Information Devices (WID) or Personal 

Digital Assistants (PDA). Those mobile devices combine the features of a phone, a 

calendar and a pocket computer. They have capabilities to handle all kinds of digital 

media available in the future broadband wireless networks. The most competitive 

platform for such devices is the Symbian Platform. 

 

Software development for rapidly evolving field of PDA devices has to be swift, robust 

and reproducible. Most vertical applications have similar look and feel, functionalities 

and features outside and when peeking inside they often have very similar control 

structures, data flows and dynamic behavior. These facts must be considerer early in 

the design phase of a software process to enable rapid development of applications and 

to prevent work duplication. 
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1.2 Objectives and restrictions 

 

The objective of this thesis was to study general design patterns, patterns that exist in 

EPOC and to research the use of design patterns in the EPOC environment. The first 

task was to identify and learn the most common design patterns and mechanisms 

behind them. Common design patterns are well defined and studied in the literature and 

in real life usage. The Gang-of-Four (GOF) presented their famous 23 design patterns 

already in 1995 /1/. Another approach of patterns was introduced in Pattern Oriented 

Software Architecture in 1996 /2/. This thesis will introduce a few of those patterns and 

study their applicability in the EPOC environment. The EPOC operating system has a 

large amount of frameworks and Application Programming Interfaces (API) that either 

are built using some patterns or force the application programmer to use a pattern. A 

few of those patterns are also presented and discussed in this thesis. 

 

1.3 Structure of work 

 

The thesis starts with an introduction to the notations, artifacts and terminology used 

later in the document. After terminology is a brief introduction to EPOC as an 

operating system in Chapter 3. Chapter 4 first presents some common OOD principles 

and then some principles specific to the EPOC operating system. Chapter 5 starts by 

introduction to design patterns, what they are, how they can be used and how they are 

categorized. Some of the most important EPOC patterns are presented in Chapter 6. 

Chapter 7 concretizes the use of some EPOC patterns in collaboration with common 

patterns and in the end briefly analyzes the design that was done. The example 

presented in chapter 7 is also discussed in /3/. The work done in the thesis is discussed 

and concluded in Chapter 8. 

 

Chapters 3 to 6 are based on literature study and actual work done before and during 

the writing of thesis in Digia. Chapters 7 and 8 present the experience gained in the 

implementation phase of this thesis. The example application discussed in Chapter 7 is 

only presented in design level since the implementation details would have taken too 

much space and would not give any deeper insight in the scope of this thesis. 
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2 TERMINOLOGY 

 

Object-oriented software field is full of different ways to express similar things. This 

chapter gives the reader an oversight about the techniques, terminology and notations 

used in following chapters. All terminologies used in this thesis derive from Digia 

operational models and processes. 

 

2.1 Notations and language 

 

The presentation of software in design level is most commonly done using diagrams. 

Architectural diagram specifies the component level structures and collaborations. 

Class diagram presents object classes and their relationships such as ‘has’, ‘is-a’, 

‘owns’, etc. Modeling languages have specified unique ways to present those 

relationships and entities. Class diagram defines the static model of the design. The 

dynamic design model is presented with sequence diagrams. Sequence diagram 

presents object instances and the messages that are used for collaboration.  

 

Architectural diagrams in this document are presented in block charts. Class diagrams 

are drawn using Unified Modeling Language (UML). UML is the most common 

language in today’s object-oriented modeling /4/. UML is a language for specifying, 

visualizing, constructing, and documenting the artifacts of software systems /5/. UML 

is the proper successor to the object modeling languages of three previously leading 

object-oriented methods (Booch, OMT, and OOSE). Program code examples are 

presented in fixed font and a smaller size. Program code examples use Digia coding 

conventions /6/. 

 

2.2 Diagrams 

 

Design pattern structures in this document are presented as class diagrams. Class 

collaborations inside patterns are visualized using sequence diagrams. Architectural 

structures are presented in either component diagrams or plain block diagrams. Class 

diagrams use various UML artifacts to describe the class relations and the system 
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structure. Sequence diagrams contain nested method calls without signatures or return 

values for clarity.  

 

2.3 Artifacts 

 

UML diagrams have many different artifacts and all artifacts can be specialized to have 

unique meanings. This document uses simplified diagrams and only a few artifacts 

described below. 

2.3.1 Mix-in 

 

Mix-in is one type of class inheritance. Mix-in is an abstract base class that defines 

only an interface, which is implemented in derived class. Mix-in is used to add an 

interface to an existing class framework. Abstract class contains only the header and no 

implementation. Abstract base class cannot be instantiated. Mix-in is indicated with 

cursive font and <<abstract>> keyword in its methods. Figure 1 shows how mix-in can 

be visualized in UML. 

Abstract

<<abs tract>> Operation()

Concrete

<<virtual>> Operation()

Implements

 

Figure 1. Abstract interface. 

2.3.2 Specialization 

 

Specialization is a typical case of class polymorphism. Base class defines an algorithm 

as well as an interface. Derived class specializes that behavior. Base class can specify 

default behavior and thus be instantiated or it can be an abstract class and leave the 

behavior specification to derivates. Specialization is indicated with a normal 
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inheritance symbol as shown in Figure 2. The base class has virtual methods marked 

with <<virtual>> -tag. 

Base

<<virtual>> O peration()

Inherited

Operation()

Specializes

 

Figure 2. Specialization. 

2.3.3 Composition 

 

Composition forms a whole – part relationship between two classes. Whole – part 

relationship can be used for several purposes. The most common purpose is to 

encapsulate one to n relationship in data. Compound class can also define an algorithm, 

which is implemented using a sequence of atomic operations. Composition enables the 

run-time modification of the aggregates. Aggregate is indicated with a line having a 

diamond in the end of the owning class. When the relationship also contains delegation, 

there can be an arrow at the end of the line. Figure 3 shows the visualization of a 

normal type of composition. 

 

Aggregate

AtomicOperation()

Compound

Algorithm()

Owns

 

Figure 3. Composition. 

2.3.4 Delegation 

 

Delegation is used as class collaboration technique. A class delegates a task into a sub-

unit, which can be a single class or a pattern of classes. The delegate can be changed in 
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run-time or be bind in compile time. Delegation is indicated with a solid arrow as 

shown in Figure 4. 

 

Delegate

Operation()

Client
Delegates

 

Figure 4. Delegation. 

2.3.5 Instantiation 

 

Instantiation arrow specifies the class that instantiates a specific class. Class 

instantiation is not indicated separately if it is obvious. Figure 5 shows the notation 

used for visualizing instantiation. Instantiation is indicated with a dashed arrow and can 

be explained more in detail with a note. 

Client

Instantiates

Class

NewL()

 

Figure 5. Instantiation. 

2.3.6 Template 

 

Template is a C++ specific technique to improve the reusability and versatility of 

source code. Template specifies a generic algorithm from which the compiler generates 

the type specific implementations. Template can be a whole class or just one method of 

a class or just one separate function. Class template notation is presented in Figure 6. 

 

TYPE

Template

TemplateFunction()  

Figure 6. Class template. 
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3 EPOC 

 

EPOC is an operating system developed by Symbian Ltd. This chapter briefly presents 

the EPOC operating system and some of its main features and characteristics of the 

environments it is mostly used in. The chapter is based on the Professional Symbian 

Programming book /7/ and other material released about EPOC in printed media and on 

the Internet /8/. 

 

3.1 The Symbian Platform 

 

The Symbian platform is a platform specially designed for wireless information devices 

often referred to as Personal Digital Assistant (PDA) or Wireless Information Device 

(WID). The Symbian Platform is not just an operating system; it contains the 

middleware and applications as well. The Symbian platform is based on the early Psion 

operating systems /9/, SIBO and Protea, which were used in organizers and early 

pocket computers. The Symbian platform is intended to become an industry standard 

for the mobile community and has been licensed by all major mobile device 

manufacturers. 

 

PDA devices are lightweight and have low memory consumption. In the Internet era all 

the PDA devices are communications oriented. People do not want to carry around 

separate devices for mobile communications, organizers, notebooks etc, so they are 

combined to form small hand-portable wireless information devices. 

 

The Symbian platform defines three standard models of WIDs. They are defined as 

Device Family Reference Documents (DFRD). A DFRD defines the general outlook of 

the device and the way it is used. The three currently defined DFRDs are called Pearl, 

Crystal and Quartz. Pearl devices are future smart phones; Crystal and Quartz devices 

are communicator style WIDs. Pearl reference design assumes that the device is a 

modern phone size lightweight device with a small color screen. Crystal devices have a 

real keyboard and can have a touch screen. Crystal devices are often foldable so that 

keyboard becomes visible after the device is opened as shown in Figure 7. The device 



 8

in Figure 7 is the Nokia 9210 Communicator. Nokia 9210 is a typical Crystal device 

without a touch screen. The original picture is from Nokia homepage /10/. 

 

 

Figure 7. Nokia 9210, an example of Crystal DFRD. 

Quartz devices are pen oriented, with a virtual keyboard and a few operational buttons. 

Quartz devices have also built-in handwriting recognition. Figure 8 shows an example 

of Quartz device. Original picture is from Digia SCC brochure at Digia homepage /11/.  

 

 

Figure 8. Quartz Reference Device. 

 

3.2 Special characteristics 

 

EPOC is the operating system powering the Symbian platform. It is based on the early 

Psion organizer operating systems and is thus optimized for PDA and WID usage. 

WIDs are physically considerably small and they run on batteries. Size and weight set 
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quite strict limits for the hardware. The mass storage media like hard disks; CD- and 

DVD-ROMs cause most of the power consumption in a modern Personal Computer 

(PC). They also require quite a lot of space. WID devices have no mass storage media 

so all users and applications data is in battery backed Random Access Memory (RAM). 

 

The device can be turned off in an eye-blink. When power is off the device does not 

consume batteries practically at all, only clock and some mandatory resources are 

processed. EPOC WID is practically on all the time. The switch from the sleep mode to 

active mode is fast and requires no loading of operating system or any other drivers. 

When the device is put to sleep mode no applications are closed, the CPU is just 

switched to halt mode and screen is put off. This means that the user can continue 

exactly from where he was left when he closed the device. 

 

3.3 Hardware characteristics 

 

The fact that the physical PDA devices are small and lightweight affects the design of 

their hardware system. EPOC is designed for 32 bit CPUs, running at rather low speeds 

compared to laptop computers. The power consumption of the CPU has to be small 

since the device is operating on rechargeable batteries most of the time. There is also 

backup battery to keep the user’s documents safe when the main battery runs out. The 

device automatically turns itself off when batteries are low. 

 

The Read Only Memory (ROM) holds the operating system and all the built in 

middleware and applications. System RAM is used for two purposes: for active 

programs and the kernel to store their data and as a disk space for user’s documents. 

EPOC devices do not have any other storage media apart from the battery backed up 

RAM and flash memory cards. This sets quite strict limits to memory allocation and 

memory control overall. It is unaffordable that some application consumes all the free 

memory or leaks memory every time it is used. 

 

EPOC devices have several input and output devices. Most devices have a keyboard 

and a touch screen for pen input. There is also an infrared port for communications 
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with other WID and IR –controllable devices like IR-printers. The device has also a 

serial port for communicating with a PC. PC connection is used for backup and 

synchronization purposes as well as for installing new programs to the EPOC device. 

Some EPOC devices are also integrated with a phone, either into the same device or 

with a separate device. Future EPOC releases will also have Wireless Local Area 

Network (WLAN) and Bluetooth support.  

 

 

3.4 System structure 

 

The Symbian Platform is completely object-oriented. Every EPOC framework and API 

is based on object-oriented solutions, which demands from developers that they use and 

are familiar with object-oriented methods and tools. That fact affects all software 

developed and ported for EPOC although the framework provides some help for old 

procedural style program porting. Version 6.0 EPOC releases have Software 

Development Kit (SDK) support for C++, Java and Organizer Programming Language 

(OPL). C++ and Java are the SDKs for application development and OPL is mainly 

supported for Rapid Application Development (RAD) and for prototyping application 

ideas.  

 

Figure 9 presents a slightly modified version of the Symbian platform system structure 

/7/. 
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Figure 9. The Symbian Platform Structure. 

 

Figure 9 shows the different groupings belonging to the Symbian Platform. The 

platform includes the built-in applications and SDKs as well as the operating system, 

EPOC. Base provides all EPOC programs with the fundamental APIs. Base includes 

the kernel, servers and their APIs. COMMS provides industry standard protocols for 

data communications, including dial-up networking, Transmission Control Protocol / 

Internet Protocol (TCP/IP) and infrared. On top of the base and COMMS are the EPOC 

Connect software and middleware such as streams, clipboard, etc. Middleware is a set 

of services, APIs and support utilities enabling powerful application development /12/. 

The topmost layer in Figure 9 has the SDKs for software development, UI frameworks 

and the base set of applications that belong to EPOC. The built-in application suite 

consists of typical office programs like Word, Sheet, Agenda, Contacts and Calc. 

 

3.5 The EPOC operating system 

 

EPOC is a layered operating system as shown in Figure 10. Only 20% of the code is 

different between the three DFRDs, which shows the effectiveness of layering. Other 

benefits of a layered architecture are discussed in Chapter 5.3.1. The topmost layer 

forms the UI architecture. The core of the operating system is the E32, which is the 
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same in all reference designs. The main layers above the E32 are the APIs for file 

server and the stream stores. Below the E32 are the device drivers and other machine 

dependent parts, the Hardware Abstraction Layer (HAL). Even though the E32 layer is 

the lowest layer normal application programmer uses, the platform enables the use of 

device drivers straight without the E32. The layered architecture makes EPOC easy to 

port to new hardware since only the lowest layers, HAL and device drivers have to be 

modified or rewritten.  

 

 

Figure 10. EPOC Architecture. 

 

Since EPOC is an object-oriented operating system and PDA devices have limited 

resources, most of EPOC software development is done with C++ /13/. C++ is very 

comprehensive tool for software development. It has given many other aspects and 

paradigms to application programming than just inheritance and object orientation /14/. 

In a resource limited environment one has to be especially careful with the caveats and 

pitfalls of unnecessary inheritance, dynamic binding and exception handling /15/ 

although they are powerful tools when used correctly. EPOC has its own restrictions 

and principles for them as discussed in Chapter 4.3. 
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4 DESIGN PRINCIPLES 

 

This section introduces the different principles behind every good software design. All 

design principles have the same goal, which is to avoid common pitfalls. The design 

principles are more like general-purpose guidelines. Most common principles are 

object-oriented and can be applied to all environments supporting object-orientation. 

EPOC principles are more strictly bound to the Symbian platform. Between those two 

types of principles is the safe area for the designer to do good software. Design 

principles are the first step towards design techniques and design patterns. The main 

tools to obtain the design principles in object-oriented environment are abstraction and 

encapsulation /16/. Those two mechanisms are behind all major principles. 

 

4.1 Software design 

 

Software design is a complex form of art. When an application evolves to design phase 

it is often not ready, features are not clearly specified and interfaces are fuzzy. 

Combined with a tight time schedule this often leads to a design that is impossible to 

reuse, complex and impossible to develop further. 

 

There are four primary symptoms to indicate a poor design: rigidity, fragility, 

immobility and viscosity /17/. 

 

Rigidity is the tendency for software to become difficult to change. Every change 

causes a cascade of changes in dependent classes and modules. Cascaded changes are 

often avoided adding unwanted dependencies, which lead to even bigger problems, 

usually fragility and viscosity. 

 

Fragility is the tendency of the software to break up every time something is modified. 

This is very common when the design has illogical dependencies. Fragility makes 

software testing a nightmare. Each bug fix may break something and cause new bugs 

and all the tests must be run repeatedly. 
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Immobility is the inability to reuse software. Engineers often program modules that are 

partially generic and could be reused in other projects or even inside the same project. 

However, it often ends up in a situation where porting that module causes so much 

work that it’s easier to rewrite it again. Adding new features to modules constantly 

often adds viscosity to the design. 

 

Viscosity comes in two forms: viscosity of the design and viscosity of the environment. 

High viscosity in design means that when a change is required, preserving the design is 

so difficult that the engineer is more likely to do a hack and break the design. Improper 

tools and slow and inefficient environment cause high viscosity. High viscosity in 

environment causes engineers to optimize on compiling time instead of preserving and 

optimizing on design. 

 

There are many steps in software process development to avoid the symptoms of bad 

design. Object-oriented software society is full of design principles and patterns, which 

help in the design and managing of the software. Those principles are mostly general 

and applicable to most programming environments. Most programming environments 

have also their own set of design and implementation principles. 

 

4.2 Common object-oriented principles 

 

All the common design principles presented in this chapter can be found in an article by 

Robert C. Martin: Design Patterns and Design Principles. /17/. 

 

4.2.1 Open Closed Principle  

 

The Open Closed Principle (OCP) is perhaps one of the most important Object – 

Oriented design principles /18/. The idea of the OCP is that in early phases of the 

analysis and design of the application the designers must decide, which parts of the 

system will be expanded later and which will stay solid for the whole lifecycle of the 

application. That decision enables the design team to start defining the abstract 
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interfaces inside the application and to start selecting design patterns to fulfill the 

abstractions and dependencies of the design. 

 

OCP states that the design is extended by adding new code and classes rather than 

modifying the existing ones. New classes are inherited from existing frameworks and 

base classes. This requires that the frameworks have to be designed with a level of 

abstraction. Code that has been completed and tested is declared closed, so it will never 

be modified. Existing errors in code will be fixed, but new code will be put elsewhere. 

This makes the design open for expansion and adding features, but closed for 

modification. 

 

Most design patterns use abstract interfaces and inheritance to keep the pattern easily 

expandable. When designing with design patterns the OCP will quite easily be fulfilled. 

The application programmer must also understand the patterns and the principles 

correctly in order not to break the principles in his application code. 

 

4.2.2 Dependency Inversion Principle 

 

The idea of Dependency Inversion Principle (DIP) is to depend on abstractions, not 

concretions /19/. This means that when you have dependency between two concrete 

classes A and B you should build an abstract interface in between then so that neither 

of the two classes have to depend strictly on each other. This way the design can later 

be expanded and the concrete class easily changed on each side without having to 

modify the interface in between them. Figure 11 shows the addition of an abstract 

interface in between the two dependent classes. 
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Figure 11. Dependency Inversion Principle. 

 

The OCP sets the goal for an object-oriented design and the DIP is one of the most 

important methods to obtain it. However, there are a few places where you must 

depend on concretion instead of abstraction. The most common place is object creation. 

It is not possible to instantiate an abstract class. Creation of instances is possible 

throughout the application, so it might seem that you need to depend somewhat on 

concretion everywhere. This bottleneck can however be avoided by using the Factory 

pattern discussed in Chapter 5.4.1 or Abstract Factory /1/. 

 

4.2.3 Interface Segregation Principle 

 

Interface Segregation Principle (ISP) states that large interfaces should be divided into 

smaller ones /20/. Software designers often tend to combine several interfaces into 

single abstract classes to make it easier to modify the interfaces since they can be found 

in a single file. This packaging also leads to smaller class hierarchies and might falsely 

seem more efficient. However, it is often indicated that combining interfaces makes it 

impossible to vary or reuse them independently. Smaller interfaces let us have smaller 

granularity on concrete class interfaces and allow us to define clearer roles for entities 

inside the class structure. Clients should not be forced to depend upon interfaces that 

they do not use. 
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4.2.4 Acyclic Dependency Principle 

 

The Acyclic Dependency Principle (ADP) states that dependencies between software 

entities must not form cycles /21/. Simplified this means that if class A depends on 

class B, class B must not be dependent on class A or it’s base classes. Most design tools 

and C++ compilers make it possible to program dual dependencies using thin 

declarations. Dual dependencies lead to a situation where modifying one class forces us 

to modify the other also. To avoid cascaded changes it is better to use single 

declarations and to go back to the design board when a cyclic dependency occurs. 

There also exists design patterns to prevent acyclic dependencies /22/ /23/. 

 

In iterative software development process, new features are added to the design during 

the whole development time. This often leads to tight and unwanted dependencies 

inside modules and between them. This is because there is never enough time for 

proper design in the beginning of the process and new features are being added all the 

time. New features require modifications to the class hierarchy. At some point of the 

development, the hierarchy becomes impossible to change and the designer is forced to 

make some “dirty” solutions, which end up adding dependencies between logically 

unrelated classes. To avoid this the design needs to be refactored continuously /24/. 

Using design patterns and following the OCP and DIP greatly decreases the need for 

refactoring, since the model is open at the places where the new features fit into the 

class hierarchy. 

 

4.3 EPOC principles 

 

EPOC is a very restricted environment from a developer’s point of view. The 

restrictions result mostly from the special characteristics discussed earlier in chapter 

3.2. The EPOC principles presented here are from the Symbian Quartz 6.0 C++ SDK 

/25/, the Professional Symbian Programming book /7/ and from the Symbian 

Developers Network Homepage /26/. 
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4.3.1 Memory allocation 

 

Each thread in an EPOC application has a limited standard stack space of 8Kb, which 

should be carefully managed. The stack is allocated during the thread creation so the 

programmer can always trust it to exist. To prevent stack overflow developers must 

avoid copy-by-value, except for basic types. Because of small stack size, programmers 

must minimize the lifetime of automatic variables by appropriately defining their 

scope. 

 

All large classes and arrays must be created to the heap rather than the stack. This adds 

an extra possibility for programs to leak memory. Since the heap can run out at any 

point of the program execution, all heap-allocated objects must be carefully constructed 

and it can never be assumed that the construction fully succeeds. 

 

4.3.2 Function overloads 

 

If a function definition has default arguments, and if that function is often called with 

the caller assuming the default arguments, the programmer should consider providing 

an overloaded function that doesn't have the additional arguments. This is because 

every time the compiler supplies a default parameter, it generates additional code where 

the function is called. 

So instead of: 

 

Function( int aValue = 0, int aValue2 = 0 );

 

Should be defined as: 

Function( void ); // calls Function( 0, 0 );

Function( int aValue ); // calls Function( aValue, 0 );

Function( int aValue, int aValue2 );
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4.3.3 Object code 

 

Avoidance of object code duplication is a difficult issue in a C++ implementation. 

Especially templates can be difficult to manage. A template really defines a whole 

family of classes /15/. Each member of the family that is instantiated requires its own 

object code.  

 

In EPOC operating system, object code duplication must be avoided at all costs. This is 

especially important for programs that will reside in the devices ROM memory. Object 

code duplication can be avoided by using effective algorithms, avoiding copy-pasting 

code around and using the thin template idiom described in Chapter 6.5.2. 

 

4.3.4 Inline functions 

 

Inline functions are intended to speed up code by avoiding the expense of a function 

call, but retain its modularity by disguising operations as functions. Before using them, 

two issues should be checked: 

 

• Code compactness: limited memory resources may mean that the speed cost of 

a function call is preferable to large bodies of inline code. 

• Binary compatibility: changing the implementation of an inline function can 

break binary compatibility. This is important if your code is going to be used by 

other developers. 

 

The most common cases where inline functions are acceptable are: 

• Get and set methods for one- or two-machine word quantities: for example,  

inline ConEnv() const { return iConEnv; };

• Trivial constructors for T classes: 

inline TPoint::TPoint(TInt aX, TInt aY) { iX=aX; iY=aY; };

• Certain other operators and functions whose definition is not subject to change 

and purpose is to map one operation onto another, for example: 

template <class T> inline T Min(T aLeft,T aRight)
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{ return(aLeft<aRight ? aLeft : aRight); }

 

4.3.5 Typecasting 

 

Typecasting is used when an instance or a reference of a specific type has to be 

converted into another type used in this context. Typecasts should be used with caution, 

as in other operating systems. If a cast seems to be needed, it should be checked that 

this does not reflect a design weakness. Typecasts are the most common cause for 

unfound bugs that crash programs after they have been released /27/. 

 

EPOC provides its own macros to encapsulate the C++ cast operators. These should be 

used in preference to using the C++ operators explicitly. Programs for hardware 

running EPOC are compiled mostly using the Gnu C Compiler (GCC). GCC currently 

has a poor support for typecasts so in GCC compiles the macros just replace the C++ 

casts with plain C-style casts. Current EPOC releases do not support Real Time Type 

Identification (RTTI) /13/. For this reason the more sophisticated C++ dynamic_cast 

operator can not be used. This also disables the use of some design patterns in EPOC 

that are based on RTTI /22/. 

 

4.3.6 Resource acquisition 

 

EPOC devices have a limited set of resources and limited performance. It is therefore 

crucial that application developers free the resources they use after they are not needed. 

Open handles and references cost memory and slow down performance. The operating 

system frees some of the resources automatically, but there is always some time gap. 

Some resources are not freed until all handles for it have been closed. 

 

For example a thread, even when it has been killed, will not be removed until all open 

handles to it have been released. This is because the removal also removes the reason 

why it terminated as well as all other information. Therefore, when application 
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programmer opens handles to threads he must remember to close them too or the 

system will start degrading because of “ghost threads”. 

 

4.3.7 Coding Conventions 

 

EPOC has strict coding conventions to ensure software quality and to improve the 

readability and understandability /25/ /6/. Class names begin with a letter indicating its 

type. T-classes are flat small classes that can be allocated from the stack. Flat means 

that their size is constant. 

 

C-classes are compound classes that have two-phase construction because they have to 

allocate some memory for their resources. C-classes must all be derived from CBase 

class and allocated dynamically from the heap. A C-class destructor must never assume 

a full construction. Temporarily created C-classes must be pushed into cleanup-stack if 

there is a possibility that the program might exit before the correct deletion of the class. 

 

CThing* temp = CThing::NewL(); // NewL handles construction

CleanupStack::Push( temp );

SomethingL(…);

CleanupStack::PopAndDestroy(); // pops and deletes the temp

 

M-classes describe only an interface so they can only be used as a reference. Mix-in 

classes are not allowed to have any implementation. R-classes are references to EPOC 

resources such as fileserver session, threads, handles, etc. R-classes can be allocated 

from stack and therefore need no cleanup handling. Most R-classes require a 

connection to be opened before operating with the resource and closed after the use. 

 

RFs fsession; // create a handle to fileserver

fsession.Connect(); // open connection, start session

… // use fileserver session

fsession.Close(); // close connection, free resources
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Instead of C++ style exception handling, EPOC has a TRAP - Leave exception 

handling /26/ /25/. When there happens an error that requires attention, the program 

calls User::Leave() method. When a leave occurs the execution of the program 

returns to the last TRAP, after which the developer can program the exception handler. 

Methods and functions that may cause a leave must have an L as their name postfix. 

 

void DoSomeL( void )

{

User::Leave( 0 );

}

TRAPD( error, DoSomeL() );

If( error )

// handle error situation

The L postfix tells the user of the class that the method does something that might fail 

and requires error handling. C postfix at the end of a method tells that the method 

leaves something to the cleanup stack, and the user has to remove it from there later. D 

postfix after the method name informs that the method deletes the object that it gets as 

a parameter. 

 

CThing temp = CThing::NewLC(); // temp is now created and put to

// cleanup stack

… // use temp

ProcessLD( temp ); // this may leave so keep temp in cleanup stack

CleanupStack::Pop(); // remove temp from stack since ProcessLD

succeeded

Coding conventions are a very informative way of telling the user about the method 

and class behaviour and resource usage inside it. They are also a very effective way of 

checking possible errors in a code review. Every EPOC programmer must be aware of 

all the conventions because the frameworks use them everywhere. A misunderstood or 

misused convention leads into unpredicted behaviour, unstable programs and unusable 

interfaces. 
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5 DESIGN PATTERNS 

 

This chapter describes what design patterns are and how they can be used and 

categorized. Different patterns types will be introduced with a few illustrative 

examples. Architectural patterns will be visualized with component diagrams. Design 

patterns will be presented using a formal notation with UML class diagrams and 

sequence diagrams. Most of the design patterns presented here are among the 23 “Gang 

of Four” patterns /1/. 

 

5.1 Definition 

 

Design patterns are “descriptions of communicating objects and classes that are 

customized to solve a general design problem in a particular context” /2, page 3/. 

Design pattern tend to be simple, yet effective solutions to problems that arise 

repeatedly in object-oriented modeling of software. Design patterns can also be seen as 

higher-level reusable building blocks /3/. Design patterns can be general and usable in 

various problem domains or they can have a very strict problem domain where they 

best fit in. A design pattern rarely solves a design problem on it’s own. Patterns often 

need to be modified and specialized to properly fit the software environment and the 

problem domain /28/. Patterns also rarely exist alone. Most software architectures /29/ 

contain pattern systems having patterns co-working and even many patterns merged as 

bigger compound patterns. Design patterns are a part of a whole family of software 

patterns containing Process Patterns /30/, Analysis Patterns /31/, Architectural Patterns 

/29/ /2/ /12/, Design Patterns and much more. 

 

5.2 Categorization 

 

Design patterns can be categorized in many different ways. The categorizations rarely 

exclude each others. They often just present the patterns in another perspective. Figure 

12 shows three different categorization methods combined into a single table. Patterns 

presented in bold text in the table are also discussed in this thesis. Abstract Factory, 

Template Method and Iterator can be found in Design Patterns /1/. Another aspect for 
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iterator can also be found in the C++ Standard Template Library (STL) /32/. The 

patterns in Figure 12 are both general and EPOC patterns.  

 

The most common categorization method is the GOF /1/ method, which categorizes 

design patterns into three categories by their task in the application. The GOF 

categorization is in the horizontal axis of Figure 12. Creational patterns abstract the 

object instantiation process, Structural patterns define ways how larger structures are 

formed from classes and objects and Behavioral patterns implement algorithms and 

assign responsibilities and tasks between classes and objects. Another categorization 

method is to divide patterns to static and dynamic structures /33/. The idea behind static 

and dynamic division is that static and dynamic modeling of software often happens in 

separate phases of the software development. 

 

 

Figure 12. Pattern categorization. 

 

Another way to categorize patterns is by their scale and abstraction /2/ /12/. The scale 

categories are on the top of Figure 12. The highest level of patterns in this 

categorization is the architectural patterns. Their task is to support the refinement and 

modeling of subsystems and components. The mediate level patterns are the design 

patterns help to implement particular design aspects and solve domain specific design 

problems. The lowest level of patterns is idioms. Idioms help to implement the 

particular design aspects and higher-level patterns. The vertical division on patterns 

presented in Figure 12 is not as strict and clear in real life as it may seem. Many 

architectural patterns can be considered design patterns and vice versa. The horizontal 
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division is clearer even though patterns from different categories can be used to solve 

similar problems. 

 

5.3 Architectural patterns 

 

Architectural patterns describe the large-scale structures of the software. Architectural 

patterns provide a set of subsystems, specify their responsibilities and include rules and 

guidelines for organizing the relationships between them. The architectural pattern 

presented here can all be found in Pattern Oriented Software Architecture /2/. 

 

Software developer very seldom has the privilege to select the architecture for the 

design; it is defined by the business models and the platform that is used. Design tools 

and other environmental factors can also specify the architecture or some of its 

restrictions. 

 

The meaning of architectural patterns in the design pattern context is primarily to 

understand the higher-level abstractions and the way that applications are meant to be 

built within a specific environment. The architectural patterns often define the lower 

level design patterns or lead to the selection of them. Architectural patterns are the 

basis for frameworks in the software development environment and frameworks define 

the individual patterns to be used in a specific task on an application. 

  

5.3.1 Layers 

 

Layers architectural pattern describes a design that is divided into several layers on top 

of each other. Each layer has its own tasks in the whole system and interfaces to the 

neighboring layers. 

 

Most modern interactive operating systems are based on layers. The highest layer is the 

user’s interface to the system and the lowest level is the kernel and the device drivers. 

In between there are several layers defined for specific tasks like event handling, 
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drawing, file managing, etc. The application programmer chooses the level of detail he 

wants to deal with and designs the application using the services provided in that layer. 

Most layered systems require the application to interact with several layers and the 

more freedom the programmer needs the lower layers he must use. 

 

Data communication protocols like TCP/IP are usually designed as a layered system. 

Operating systems also use layering to improve modularity. 

 

Structure 

 

The layers architectural pattern can be implemented in several ways. The best-known 

solution is the top-down approach where the client issues a request from layer N. If the 

layer N can’t carry out the request, it passes it to the N-1 layer. Then the N-1 layer tries 

to serve the request and calls N-2 and so forth. When the correct layer is found to serve 

the request, the result is carried back to the client through the layers. 

 

Another solution is that two stacks of N layers are communicating with each other. This 

is a well-known scenario from communication protocols, where the stacks are known 

as protocol stacks. The client request moves down from layer N to layer one where it is 

sent to the other stack and upwards on the corresponding layer N there. 

 

Consequences 

 

Individual layers can be reused if they are well defined and well documented. 

Dependencies in layers are kept local inside one layer. A layered architecture is very 

modular and can be tested individually on each layer. Layered architectures also have 

good portability and scalability. Typical upgrades and modifications of the architecture 

require changes only in individual layers. 

 

The biggest disadvantage of layered architecture is that when a big architectural 

requirement changes the modification cascades through all layers, it thus creates 

enormous amount of work. However, big changes happen very rarely and they can be 
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avoided with careful planning and design. A layered architecture has more interfaces 

and is more complex than a monolith system, and therefore suffers somewhat in 

efficiency. 

 

5.3.2 Model-View-Controller 

 

Model-View-Controller (MVC) pattern is perhaps the most varied architectural pattern. 

It is the basis for most interactive user interfaces. Model contains the data and the 

program logic, view describes how it will be represented to the user and controller 

handles user inputs and commands. MVC pattern enables quite fluent porting of 

existing systems to new environments. Most of the modern operating systems support 

MVC patterns in framework level so the only thing needed for implementation is a 

group of adapters to overcome the platform specific implementation problems. The 

MVC pattern divides an interactive application into three components /2/. The structure 

and relations between the components in the MVC pattern is shown in Figure 13. 

 

 

Model View 

Controller

Presents 

Update Update 

 

Figure 13. Model - View – Controller architectural pattern. 

 

The model is an independent entity. The model encapsulates the application data. 

The view uses the model. Its task is to represent the data by drawing it to the screen or 

some other viewing device. The controller coordinates the model and view updates. 
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Consequences 

 

Model-view-controller architecture separates the model from its presentations and 

therefore provides the possibility for multiple views of the same model. MVC pattern 

enables easy changing and customization of the ‘look and feel’ since the user interface 

is separated from general application structure. The separation also makes it easy to 

port the application to a new platform. Only the user-interface components need 

rewriting. If the view part of the application is built and designed properly, the porting 

only requires a few adapters to be written. Adapter design pattern is described in 

Chapter 5.5.1. 

 

5.3.3 Microkernel 

 

The microkernel architectural pattern introduces a software system, which can adapt to 

changing system requirements and environments. Microkernel separates minimal 

functional core from extended functionalities and customer-specific parts. A 

microkernel design pattern greatly improves the portability of the platform. Modularity 

of the microkernel makes upgrading and customizing the platform easier than monolith 

architectures. 

 

Structure 

 

Figure 14 presents the five main modules of the microkernel architecture. 
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Microkernel Internal serversExternal servers

ClientAdapter

Calls

 

Figure 14. Microkernel architectural pattern. 

 

The participating components are:  

• Microkernel  

• Internal servers 

• External servers 

• Adapters 

• Clients 

 

Microkernel component implements atomic services that are needed for all applications 

throughout the system. The microkernel has the functionality for inter-process 

communications. Microkernel also maintains system wide resources and controls and 

coordinates the access to them. Core functionalities that cannot be implemented within 

the kernel without unnecessarily increasing its size and complexity are separated into 

internal servers. 

 

Internal servers extend the functionalities of the microkernel. Internal servers can for 

example handle graphics and storage media. Internal servers can have their own 

processes or they can be shared Dynamic Link Libraries (DLL) loaded inside the 

kernel. 

 

External servers implement their own view of the underlying microkernel. External 

servers use the services of the microkernel and internal servers to provide their own 

services for the clients. External servers run in their own processes. 
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A client is the application that is associated with exactly one external server. The client 

uses the communication services provided by the microkernel to communicate with the 

server it is associated with. The client provides the application-programming interface 

(API) for using the external server. 

 

The role of the adapter is to provide a transparent interface for clients to communicate 

with external servers. Adapter hides the system dependencies such as communication 

facilities from the client. Adapter thus improves the scalability and changeability of the 

system. The adapter enables the servers and clients to be distributed over a network 

 

Consequences 

 

The microkernel pattern improves the system portability since in most cases you only 

need to modify hardware dependent parts when migrating the architecture to a new 

hardware. The external server and client code can remain the same. 

 

The biggest advantages of the microkernel are the flexibility and extensibility. If a new 

device is added to the system, all that has to be done is to write a new server for it. No 

modification to existing client, server or kernel code is required. 

 

Compared to monolith architectures the microkernel system requires much more inter-

process communication inside one application execution because of the calls to internal 

and external servers. If the system is not optimized for communication and context-

switch the slow execution speed of applications is the price we have to pay for 

flexibility and extensibility. 

 

The design and implementation of the microkernel -based system is far more complex 

than of a monolith system. 
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5.4 Creational patterns 

 

Creational patterns encapsulate knowledge about the concrete objects the system uses 

and the way in which they are instantiated. The rest of the systems use the objects via 

the abstract interfaces and have no special knowledge about the concretion.  Depending 

on abstraction rather that concretion is also the goal of the DIP principle so using 

creational design patterns greatly improves the flexibility of the design. 

 

Creational patterns are closely interrelated as they all deal with object instantiation. The 

biggest difference between different creational patterns is the ownership of the created 

instances. 

 

5.4.1 Factory Method 

 

Factory method defines an interface for creating an object, but letting subclasses decide 

which concrete classes to instantiate. Factory method works as an abstract interface 

between the client and the concrete objects. A variation of factory method is the 

parameterized factory method, where the parameter defines which concrete class to 

create. This is really useful when the objects to be created are defined in the run-time. 

 

Structure 

 

Figure 15 shows the structure of generic factory method pattern. Client depends on the 

abstract creator and product classes. Creator and concrete creator classes may also 

implement template method design pattern /1/. 
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ConcreteProduct
ConcreteCreator

FactoryMethod()

Creator

<<abstract>> FactoryMethod()

Product

Client

product = FactoryMethod()

return new concreteproduct()

 

Figure 15. Factory method design pattern. 

 

Participants 

• Product 

o The abstract interface of objects that the factory method creates. 

• Concrete product 

o The concrete object that the concrete factory instantiates. 

• Creator 

o The abstract interface for creating the products. Introduces the factory 

method prototype. 

o May contain a default implementation of the object creation. 

• Concrete creator 

o Instantiates the concrete products. Implements the factory method, 

which returns the concrete product. 

 

Collaborations 

 

Creator depends on its subclasses to define the factory method so that it returns the 

appropriate concrete product. The client uses the abstract creator class to get product 
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instances. Figure 16 shows the sequence where client creates a product through factory 

method. 

 

Concrete Factory : 
ConcreteCreator

User : Client Factory : 
Creator

Product : 
Product

Concrete Product : 
ConcreteProduct

FactoryMethod( )

FactoryMethod( )

New( )

Operate

 

Figure 16. Factory Method Sequence Diagram. 

Consequences 

 

Factory method eliminates the need to bind application specific classes everywhere into 

application code. Therefore, the decision of the actual concrete classes can change later 

in the application design or even in runtime. The design is also easier to divide into 

smaller parts when the implementer of the factory can work at the same time as the 

users of the factory since they both have abstract interfaces to rely on. 

 

Factory method provides a very clever way to centralize object creation. Factory 

method makes it possible to design systems that are very reusable from the core 

implementation. By changing the concrete factory class, the same algorithms for 

different problem domains can be used. Factory method is very often used with other 

patterns to form a pattern system.  

 

Following the OCP and DIP design principles the software should be designed relying 

on abstraction and keeping the code open for expansion and closed from modification. 

With the aid of factory method, it is easy to obtain both of those goals. The design can 
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be expanded by adding new concrete products and modifying only the factory. The 

users of the factory need no modification since they rely on the abstract product 

interface. Even the modification of an existing factory can be avoided by inheriting a 

new factory and only expanding the factory method with support for new concrete 

products. 

 

5.4.2 Singleton 

 

Singleton is probably the most discussed, argued and varied design pattern. The idea of 

the singleton design pattern is to guarantee that an object has one and only one 

instance. Usually the instance is also made globally accessible.  

 

Singleton pattern can also be used to guarantee that an object has a limited amount of 

instances. This feature is obtained using the reference counting idiom. The 

implementation of singleton pattern varies in different programming languages and 

environments and therefore singleton is often considered more an idiom than a design 

pattern. 

 

Structure 

 

Typical structure of singleton design pattern is presented in Figure 17. Client uses 

singleton as a normal instance of the actual class. Singleton is therefore transparent for 

the users. 

 

Singleton

<<static>>  uniqueinstance
singletondata

<<static>>  Instance()
Operation()
GetSingletonData()

return uniqueinstance

 

Figure 17. Singleton design pattern. 
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Participants 

• Singleton 

o Defines the interface for clients to globally access the unique instance of 

singleton. 

o May be responsible for creating and destroying its own unique instance. 

 

Collaborations 

 

Clients can access the singleton instance only through singletons interface. Singleton 

can also control the access to the instance. Singleton can be seen as a proxy for the real 

data or object. 

 

Implementation 

 

The implementation of the singleton pattern requires either a global registry, which 

keeps track on the allocated singletons, or a class specific static variable that points to 

the sole instance. In most environments this does not cause any problems, but in EPOC 

writeable static data is forbidden in any DLLs including applications due to 

architectural reasons discussed more deeply in Chapter 6.2. This makes it difficult to 

implement an application type independent singleton in EPOC and the use of singleton 

should therefore be avoided in general EPOC programs. 

 

Consequences 

 

Singleton provides controlled access to the sole instance of the desired resource. 

Singleton provides global access to a single, perhaps limited resource. Singleton often 

has to take care of allocating the instance when it is referenced for the first time and to 

deallocate it when the program is finished. 
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5.5 Structural Patterns 

 

Structural patterns compose larger structures from classes and objects. Structural class 

patterns use inheritance to compose interfaces or implementations. Structural object 

patterns describe ways to compose objects in order to realize new functionality.  

 

5.5.1 Adapter 

 

Adapter is one of the most used design patterns in software design. However, most 

adapters in existing systems are added to the system in implementation phase rather 

than in design time. The reason for this is that the application often has to be adapted to 

changing requirements and therefore adapters have to be added to keep the structure of 

the original design. Another name for adapter design pattern is wrapper as it wraps 

existing functionality to work in new environments. Adapter is a very essential pattern 

when designing portable applications and porting existing applications. 

 

Structure 

 

Adapter can be implemented in two ways: either as a class adapter or as an object 

adapter. The class diagram of a class adapter is shown in Figure 18. The class adapter 

uses inheritance to obtain adaptee’s behavior.  

 

Client Target

<<virtual>> Request()

Adaptee

SpecificRequest()

Adapter

Request()
SpecificRequest()

Spec ificRequest()

 

Figure 18. Class adapter design pattern. 
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Object adapter is presented in Figure 19. Object adapter uses aggregation to enable 

message transforming into adaptee’s interface. 

 

 

Adaptee->SpecificRequest()

Adaptee

SpecificRequest()

Adapter

Request()
SpecificRequest()

Target

<<virtual>>  Request()

Client

 

Figure 19. Object adapter design pattern. 

 

Participants 

• Target 

o Defines the interface for this domain. 

• Client 

o Collaborates with objects using the target interface. 

• Adoptee 

o Defines an existing interface that needs adapting. 

• Adapter 

o Adapts the existing adaptee’s interface to the new domain. 

 

Collaborations 

 

Client uses the adapter via the interface that target defines. Adapter translates the client 

calls to corresponding adaptee’s methods. Adapter is transparent for the client. 

 

Consequences 
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Class adapter adapts a concrete adoptee class to target since the adapter is directly 

inherited from the adoptee via private inheritance. This prevents the use of adaptee’s 

subclasses as adaptee without rewriting the adapter. 

 

Class adapter also enables adapter to override adaptee’s behavior since adapter is a 

subclass of adoptee. Class adapter is one concrete object and requires no pointers or 

references to objects elsewhere. Class adapter can also be a two-way adapter when it 

inherits from two adaptees. Such adapters provide transparency and can be used in both 

adaptees’ environments. 

 

Object adapter enables single adapter class to be used with all adoptee type objects. The 

adapter can also add functionality to all adaptees at once. However, the object adapter 

has no way to override the adaptee’s behavior. 

 

5.5.2 State 

 

The intent of the state pattern is to provide an entity the possibility to alter its behavior 

when its internal state changes /1/. State pattern also lets us vary the state based 

behavior by modifying the state transitions and reuse the behavior separately.  

 

Structure 

 

Figure 20 shows the structure of state pattern. The actual amount of concrete state 

subclasses may vary. 
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Concrete State1

<<virtual>> Handle()

Concrete State2

<<virtual>> Handle()

State

<<abstract>> Handle()

Context

Request()

State = 
State->Handle()

 

Figure 20. State design pattern. 

 

The state pattern describes a context, a state machine, which defines the entity that has 

state based behavior. It also provides a uniform interface for the states. The interface is 

abstract in most cases but can also contain some state shared behavior or data. The 

transition from one state to another is usually defined inside the concrete states, but it 

can also be defined inside the state machine. Declaring it inside the states decreases the 

need to modify the context when state transitions are modified or new states are added. 

 

Participants 

• Context 

o Defines the state machine. 

• State 

o Defines a uniform interface for the concrete states. 

• Concrete state 

o Implement the state based behavior. 

 

Collaborations 

 

Figure 21 shows the sequence diagram of a state change in state design pattern. 
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User : Client State machine : 
Context

Current State : 
State

Init : Concrete 
State1

Run : Concrete 
State2

Request( )
Handle( ) Handle( )

Change state( )

Request( )
Handle( )

Handle( )

 

Figure 21. State Sequence Diagram. 

 

The state change is invisible for the user; it has the same interface even though the 

inner functionality of the state machine changes. 

 

Consequences 

 

State design pattern enables us to design very flexible and expandable solutions. The 

state transition can be defined by the state subclasses or by the state machine itself. The 

difficulty in implementing the state pattern arises when all the states use the same 

resources. The resources are often defined in the state machine and the subclasses must 

get a reference to the owning class, which is not a very elegant solution. 

 

5.6 Behavioral patterns 

 

Behavioral patterns describe object communication patterns, algorithms and their 

implementation and control flow handling.  
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5.6.1 Observer 

 

Observer defines a one-to-many dependency between collaborating objects. Observer 

enables the partitioning of a system into observers that react when their subjects change 

state. Observer is used in many event-based systems to separate the event source from 

the event monitors. 

 

Structure 

 

Figure 22 shows the structure of observer design pattern. The concrete observers attach 

to the subject so that the subject knows which observers to notify when its state 

changes. 

 

Concrete Subject

<<virtual>> Attach()
<<virtual>> Detach()

Concrete Observer

<<virtual>>  Update()

Observer

<<abstract>> Update()

Subject

<<abstract>> Attach()
<<abstract>> Detach()
<<virtual>> Notify()

 

Figure 22. Observer design pattern. 

 

Participants 

 

• Subject 

o Defines the interface for the observers to attach and detach themselves 

for a subject. 

• Concrete subject 

o Implements the list of interested observers and the notification logic. 
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• Observer 

o Defines the abstract update method that the subject calls when it changes 

state. 

• Concrete observer 

o Implements the concrete update method for the subject to call. 

 

Collaborations 

 

Observers register themselves to the subjects they are interested in. A subject may have 

multiple observers and an observer may listen to several subjects. The update method 

may contain a flag indicating which subject changed state in case of many-to-many 

relationship. 

 

Consequences 

 

The problem with standard observer pattern is that type information gets lost if the 

subject or observer hierarchies are derived /28/. A single observer does not know which 

subject sub-class changed state. There are however several special design patterns that 

solve the problem /22/. Nevertheless, some of them are not applicable for EPOC 

environment because they require RTTI to work.  
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6 EPOC PATTERNS 

 

EPOC is a fully object oriented operating system and is designed with great care on 

modularity and flexibility. This chapter introduces a few of those architectural and 

design patterns and idioms. Some of the patterns presented here were used in the 

implementation phase of this thesis and they are also discussed in Chapter 7. 

 

6.1 System architecture 

 

EPOC is built to suit in many different types of small devices. This suitability requires 

modularity and flexibility. Those characteristics are easily achieved with layering. 

EPOC system architecture is a typical example of layers architectural pattern as shown 

in Figure 23. Figure 23 is a slightly modified version of the original diagram presented 

in Professional Symbian Programming /7/. 

 

 

Figure 23. EPOC System Architecture. 

 

The layered architecture makes EPOC a very modular operating system. Core EPOC 

system includes the basic types like descriptors, exception and leave mechanism, 

processes, thread handling, files, streams, stores, etc. They are the same for all different 

EPOC implementations. Active objects and scheduler are the basis for asynchronous 
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processing. Bitmapped graphics component contains generic bitmap handling and the 

ability to draw or print into real devices. Application infrastructure handles application 

launching, file associations and other supporting actions. COMMS protocol handles the 

communications and support for protocols. CONE is the graphical control structure of 

EPOC providing the abstract controls and the framework. UI level specifies the look 

and feel of the user interface and provides the concrete controls to implement it. In 

EPOC release 5 the UI level is called EIKON. 

 

Applications are built on top of these layers using the services of several layers. Simple 

applications only need to deal with the topmost layers, mostly EIKON and CONE. 

Complex applications like client-server applications need to get deep inside the core 

layer and to the kernel services.  

 

The EPOC graphics architecture is also a layered structure. Figure 24 shows the 

layering of EPOC release 5 graphics system. 

 

 

Figure 24. EPOC Graphics Architecture. 

 

At the bottom is the Graphics Device Interface (GDI), which defines the drawing 

primitives and provides device independent drawing. Font and bitmap server provides 

the system with fonts and bitmap handling functions. Window server manages screen, 

pointer and keyboard on behalf of all GUI applications within the system. EIKON 

provides reusable controls, menus, buttons, dialogs, etc. 
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A simple graphic method call in the application level derives through the layers into 

several calls in the GDI level. However, the user has the freedom of choosing the level 

of detail and abstraction by selecting the appropriate layers to use to get the most 

flexible and efficient solution for his graphical needs. 

 

EPOC Kernel is an example of the microkernel architectural pattern. Figure 25 shows 

the fact that kernel servers are run in user mode. The kernel server runs privileged and 

is the highest priority thread in the system. The vertical lines in the Figure 25 show 

different threads and the dashed line indicates the privilege boundary. 

 

 

Figure 25. EPOC Kernel and privilege boundaries. 

 

As Figure 25 shows, the kernel executive runs privileged code in the context of the 

thread that’s running. Kernel executive code can therefore be pre-empted by higher 

priority user-mode threads or the kernel server. 

 

6.2 Application architecture 

 

Considered from CPU side of view, all compiled C++ programs are just series of 

binary instructions. In order to manage those binaries efficiently they must be 

packaged. The different packages EPOC supports are: 
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• Exe programs (EXE). 

• Dynamic link libraries (DLL). 

 

Both of these types contain executable program code. The difference between an EXE 

and a DLL in EPOC is that an EXE is run separately and a DLL is dynamically 

attached into the program that loads it. DLLs are further divided into separate types. 

Two most important DLL types are shared library DLLs and polymorphic DLLs. 

 

Shared library DLLs provide a fixed API that has several entry points that the user can 

call. Programs that use such DLLs are marked so that when they are loaded the system 

checks if the DLL is already loaded, and if not, the system automatically loads and 

attaches it. Polymorphic DLLs implement an abstract API such as a device driver or a 

GUI application. In EPOC, polymorphic DLLs usually have only a single entry point, 

which allocates and constructs a derived class of some base class associated with that 

DLL. EIKON applications, for example, are polymorphic DLLs that have an entry 

point which instantiates the application class that is derived from the CEikApplication 

base class. Polymorphic DLLs usually have a unique postfix in their name to separate 

them from normal DLLs, for example .app for EIKON applications and .prn for printer 

drivers. 

 

An executable program has three types of binary data: program data, read-only static 

data and read/write static data. EXE programs in EPOC are not shared so every time 

such program is run it gets new areas of memory allocated for all those three types of 

data. The only exceptions to that are EXEs that reside in ROM. ROM –based EXEs 

allocate RAM only for read/write program data; the program code and read-only data 

are read directly from ROM. This is an optimization to save expensive RAM and 

improve efficiency; ROM –based code is executed in place so no copying is required. 

 

Dynamically loaded link libraries are shared. When a DLL is loaded for the first time, it 

is reallocated to a particular address. When a second thread requires the same DLL, it is 

attached to the same copy of the code; no loading is required. A DLL resides in the 

same memory address in all threads that are using it. EPOC maintains reference counts, 
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so that the DLL is unloaded when no threads are using it. Because EPOC DLLs are 

shared, they cannot have writeable static data. This applies to all EPOC DLLs including 

GUI applications. Writeable static data is not supported because it brings so little 

benefit in design considering the memory loss and possible error situations it causes /7, 

p.55/. Static data can be avoided with proper design. In many cases, the design without 

static data is more robust and modular. 

 

EPOC applications are typically divided into engine, UI, and view components, which 

are dependent on but logically separate from each other. This improves the modularity 

and reusability of EPOC applications. The engine contains most of the application logic 

and it can be shared among applications. The engine is therefore typically packaged as 

a DLL. This also enables the development of the engine to be easily separated from the 

user interface and the look and feel design. The EIKON application is a polymorphic 

DLL, which has only one entry point.  

 

6.3 Active objects 

 

Active objects are an EPOC method to handle asynchronous requests in a modular and 

effective way. Asynchronous requests mechanism has two main parts: an indicator for 

the request completion and a semaphore used for informing the thread about the 

request. Active object design pattern enhances concurrency and simplifies 

synchronized access to resources /12/. 

 

An asynchronous request status indicates the completion status of a request to a service 

provider. When an application running in a thread makes a request, it passes an 

asynchronous request status as a parameter. When the provider completes the request, it 

stores a success or error code in the request status. Asynchronous request is always 

between two threads of execution; the requesting thread and the serving thread. 

 

A thread request semaphore is the means by which a provider signals a requester that it 

has completed a request. The requester can then determine which request has 

completed, and call the appropriate function to handle the completion of the request. 
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Static user class methods provide the API to signal a thread request semaphore and to 

wait until it has been signaled. 

 

An active object encapsulates the general behavior of making requests to asynchronous 

service providers, and handling the completion of requests. A particular asynchronous 

service provider typically supplies active object based classes as interfaces by which 

clients access them.  

 

A thread that uses asynchronous services must have a main loop that waits on the 

thread’s request semaphore for any outstanding requests to complete. The active 

scheduler encapsulates this wait loop. The main loop of an active object –based 

program is built around CActiveScheduler::Start() and CActiveScheduler::Stop() static 

function calls. All functionality requesting and receiving the actual requests is 

encapsulated within the active objects and their observers. 

 

An active scheduler is provided by the application architecture for all Graphical User 

Interface (GUI) programs. A high-level view of a GUI application is therefore a set of 

active objects that handle request completion from events fed to it by its active 

scheduler. Active objects are used throughout the EPOC. Active objects are used in 

user interfaces for event handling, communication protocols to handle asynchronous 

requests, single-thread multitasking and delayed function calls. Active object 

framework is a good example of the template method –design pattern /1, p 325/. The 

CActive –base class defines a skeleton of the functionality, which is then extended in 

the derived concrete class. An active object is often used to control some other object 

structure using the adapter design pattern presented in Chapter 5.5.1. 

 

6.4 EIKON 

 

EIKON applications are typically implemented using the Model-View-Controller 

architectural pattern presented in Chapter 5.3.2. The MVC pattern enables easy porting 

of applications between the three different DFRDs. They all have the same structure for 

UI and event handling; only some DFRD specific features change. 
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Every EIKON application is a DLL. The application is started by apprun.exe, which 

loads and attaches it. Then the framework checks that the application has correct UID. 

Next, the framework calls the first ordinal on the DLL, which must return an object of a 

class derived from CApaApplication. After instantiating the application, the framework 

calls application class’s CreateDocumentL method that instantiates the document. 

Document class is derived from CEikDocument base class, which implements some 

base functionality for document handling. The document class in EIKON application 

then creates the AppUI, which is derived from CEikAppUI class and does the event 

handling. AppUI then instantiates AppView, that handles the viewing of the document 

to the user. 

 

The document class in EPOC application is the model in the MVC pattern. The 

document class presents the data and also has a reference to the engine that in most 

cases handles the data modification algorithms. AppView is the view in the MVC 

pattern. The controller handles updates to both the model and the view so in many 

cases it is programmed as a separate class or into the application class. 

 

The MVC pattern can become particularly blurred in some EPOC applications, because 

one of the three parts is often missing or two aspects are combined, for example view 

and controller in smaller applications. However, the MVC architecture is very effective 

in use and gives so many benefits that it is profitable to use it. The MVC structure 

enables easy porting of EPOC applications between DRFDs and also swift change of 

application’s Look and Feel (LAF). 

 

6.5 EPOC Idioms  

6.5.1 Construction 

 

EPOC has very strict definitions of how to instantiate objects and how to allocate 

memory. That is due to the fact that the device is practically never turned off and there 

is a limited amount of memory so one cannot afford allocating much memory and most 

certainly cant afford loosing any of it with poorly handled memory allocation. C++ has 
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some weak points in its constructor mechanism if the programmer is not very careful. It 

is possible to cause memory leaks by allocating memory in class constructor. 

 

EPOC uses two styles of object construction. Normal constructor is allowed only for T 

and R –type objects that are always used as static objects. Objects that reserve some 

additional memory for their resources are constructed in two phases. Those classes are 

always separated from others with the C –prefix and they must be derived from CBase. 

First phase constructor is a normal C++ constructor. Second phase constructor is a class 

method usually named as ConstructL(). Two-phase construction details are usually 

hidden from the user so that the whole construction is encapsulated inside one static 

class method called NewL(). NewL method calls first the normal C++ constructor and 

then stores the pointer to Cleanup stack. Then it calls the second phase construction and 

after it succeeds it returns the pointer to the newly created object. If the second phase 

construction fails the ConstructL leaves, the pointer to the class itself is safe in the 

cleanup stack, and no memory leak occurs since the partly created object can be deleted 

and memory released. 

 

The construction of a typical C-class looks like this: 

 

class CThing : public CBase

{

public: // Construct / destruct

static CThing* NewL();

virtual ~CThing();

protected: // Construct / destruct

CThing();

ConstructL();

};

 

The user calls NewL() to instantiate that class and normal destructor to delete the 

instances. The real construction methods are protected so that the class can be derived, 

but the user doesn’t have access to them. 
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6.5.2 Thin templates 

 

Thin templates are an EPOC idiom to avoid code duplication. In thin template pattern, 

all functionality is provided in a non-typed base class. 

 

class CArrayFixBase

{

IMPORT_C const TAny* At(TInt aIndex) const;

};

     

This base class has the real code so it exists only once. This code is exported from the 

DLL it resides in. The base class may contain an arbitrary amount of code. 

 

A derived template class is implemented as follows: 

 

class CArrayFix<T> : public CArrayFixBase

{

inline const T& At(TInt aIndex) const

{

return(*((const T *)CArrayFixBase::At(anIndex)));

}

};

    

Because this class uses only inline functions, it generates no extra code. However, 

because the casting is encapsulated in the inline function, the class is type safe to its 

users. The derived template class is thin: it generates no new code at all. The user uses 

the templates as normal template classes. EPOC uses thin templates for example in 

containers. The details of the idiom are hidden from the application programmer so 

they can be used like normal C++ STL containers /32/. 

 

Example of EPOC container usage: 

 

CArrayPtrSeg<TInt> avararray( 16 );

CArrayPtrSeg<TBool> anotherarray( 32 );

avararray.Insert( TInt( 20 ) ); // works fine
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anotherarray.Insert( TInt( -1 ) ); // does not compile, int can’t

// go to boolean array

 

Normal template use would generate separate code for the integer array and Boolean 

array in the example. With thin template pattern program code exists only once, but 

still we have type safety for all array types, like integer and Boolean in the example. 
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7 EPOC APPLICATION DESIGN USING DESIGN 

PATTERNS 

 

7.1 Introduction 

 

In this chapter, the use of design patterns and EPOC patterns is illustrated with a real 

world example of application design. The example starts with application description. 

The work starts with problem domain analysis, which gives the system frameworks and 

application architecture to start the design. After analysis and requirements we get the 

architecture and base patterns we are going to use in the application. To that core 

design, we start adding the features and the patterns and detailed design that 

implements them. 

 

7.2 Example application 

 

The example application is a non-interactive application called AppTest. AppTest 

launches another application and tests it by various means. AppTest has no user 

interface and it is controlled by text scripts. AppTest is a replacement for the system’s 

apprun.exe, and it takes care of all the things that launching an application requires. 

 

7.2.1 Purpose 

 

The purpose of AppTest is to automate feature testing of UI-based applications. Feature 

testing is also known as black box testing. The term indicates that the application is 

tested from outside and no modifications are made to the application while it is tested. 

Black box testing is useful since it tries to do all the things from the same perspective 

the actual user is using the application. The difficulty in black box testing is that it is 

impossible to get adequate coverage doing the test manually. Automated testing 

enables unlimited regression and excellent coverage since the automated test 

application can permutate through all possible event sequences a UI has. Therefore, an 
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application to automate black box testing is very important to software development 

and also improves the quality of testing tremendously. 

7.2.2 Features 

 

For a UI-based application, there are several things to test. The basic environmental 

factors to test are various Out-Of-Memory (OOM) and Out-Of-Resources (OOR) 

situations. The testing application has to be capable of sending UI events to the tested 

application to simulate the user using the application. AppTest also tries to monitor the 

state of the tested application and observe if the tested application hangs or exits 

abnormally. AppTest writes a log of test procedure and of the tested application’s 

behavior. 

  

7.3 Requirements 

 

Requirements for AppTest are easily derived from its features. A certain set of 

requirements also comes from the EPOC environment and its properties. The software 

development process also sets some boundaries and requirements. Some of the EPOC 

requirements and boundaries are presented in Chapters 4.3 and 6. 

 

AppTest is used to test another application so obviously it must be very stable and 

affect the operating system and resources as little as possible. If AppTest itself would 

be very resource consuming it would most certainly affect the tested application and 

would either lead to abnormal behavior of the tested application or misinterpreted test 

results. 

 

The used software process will be incremental and iterative. Each increment adds some 

functionality to a working application from the previous increment. The design must be 

as flexible as possible so that features can be added, modified and removed at any 

phase of the development. 
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At some point, a user interface might be added to improve usability. This forces the 

design to be modular and not strictly tied to the environment. The design should also 

provide reusable classes and components for future use and development. At the end of 

the requirement analysis, we have a set of features we want to include in the 

application. We also have to check that the features are not in contradiction against 

each other. 

 

7.4 Analysis 

 

The requirements set quite strict limits for the analysis and design of the application. 

On the other hand, EPOC has also limitations and restrictions that we have to deal with. 

Before starting to analyze the problem domain in class or pattern level, we have to 

make some architectural decisions. The architecture we choose to use is very often 

dictated by the environment and the size and type of the application we are building. 

 

The analysis on the application domain is an iterative process illustrated in Figure 26. 

First, we prioritize and categorize the requirements. Then we take a requirement, check 

out the environment restrictions, design restrictions and if it passes the restriction 

analysis then we try to find a pattern that best encapsulates that behavior. After that, we 

add that pattern to our skeleton design and check it’s effect on the whole design. A 

pattern may solve several requirements at once or make some requirements impossible 

to fit in the design. A pattern also adds, removes and modifies the restrictions for 

further features. 
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Figure 26. Pattern finding cycle. 

 

AppTest does not have a UI nor does it use any other external modules besides the 

EPOC kernel. All parameters are read from configuration scripts. This enables us to 

encapsulate the whole functionality inside one executable. 

 

AppTest has to monitor events that happen asynchronously on the other application. 

EPOC has a few different ways to deal with asynchronous requests and services. The 

possibilities are to use wait-loop programming, callback functions, or active objects. 

The most effective and modular solution is to use active objects and active scheduler. 

The use of active object framework forces our application skeleton into a certain form 

and also sets requirements for all other features we are to implement into our 

application.  

 

We have a basic requirement that our application has to be aware about the state of the 

other application that is under test. AppTest has to monitor certain flags and incidents 

to be aware about the state of the application. The incidents that cause the state changes 

vary in different states so the behavior of AppTest must also vary. RThread is the main 

class that is used to analyze, monitor and control the application. 
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AppTest will monitor another application that is executed in a separate thread. EPOC 

has an API for monitoring the state of a thread. This API has a class RUndertaker that 

we are going to use to inform us that the tested application thread has exited. During 

the automated test, the tested application may end up in a deadlock for some reason. 

Therefore we have to instantiate a timer that stops the test and kills the application if it 

has hung. RTimer is a basic EPOC timer class that can be used for this. 

 

To do the actual black box testing we need to send UI events to the tested application. 

The sending is done according to a schedule that is recorded from the actual use of the 

tested application. To play the recorded sequence, we need a timer and some 

framework dependent classes to send the events of different type via proper interfaces. 

 

The decision to use Active scheduler and active objects as a basis for the application 

forces us to encapsulate those R-classes inside active objects so we will have to define 

corresponding C-classes derived from CActive. 

 

7.4.1 Selecting patterns 

 

The functionality of AppTest changes as a function of its state. This kind of behavior is 

best implemented by using the state design pattern. State design pattern’s intention is to 

allow the change of behavior when internal state changes. We have several phases in 

the application that we are trying to monitor and several different actions to take in 

each phase. In the beginning of the development we are also not sure that how many 

phases the tested application has in its lifecycle because we are not sure how deep in 

detail we can monitor the tested application through EPOC kernel APIs. State pattern 

as well enables easy addition of new states without breaking down the existing code. 

State also fulfills the OCP design principle discussed in Chapter 4.2.1. We program the 

states we know for sure, which are initialization, running and terminating. If we later 

find out that we can monitor the application more in detail, we can add new states 

without having to change the behavior of existing states. 
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The actions in different phases are done by CActive -based active objects described in 

the previous chapter. To implement asynchronous services provided by R –classes we 

need to adapt them to the active object framework. Adapter design pattern transforms 

existing functionality into a new interface or environment. Adapter enables us to wrap 

the existing R –class functionality into more robust and intelligent active object 

framework without having to write enormous amounts of new code. 

 

The application has several active objects and several objects that are interested in their 

state changes externally. Observer design pattern enables objects to inform other 

objects about their state changes. Observer pattern also allows us to vary the observers 

of certain subjects in run time, which is quite crucial when we have different subjects 

active in different states of the program run. 

 

7.5 Design 

 

From the analysis phase, we have the main design patterns and the skeleton of our 

design. The application will have its main loop around the active scheduler and the 

state design pattern. The main actors in the application will be the active objects. The 

states form an asynchronous state machine, which changes state as a function of active 

objects. The active objects are the subjects for states and the states work as observers to 

active object’s activity. 

 

7.5.1 Adapter 

 

We need to adapt R –classes into the active object framework. This is done using the 

adapter pattern presented in Chapter 5.5.1. We use object adapters since R –classes are 

meant to be used as references, not derived. CActiveScheduler is the user, CActive is 

the target class, CdUndertaker is the adapter and RUndertaker is the adoptee. 

CdUndertaker has similar structure. Figure 27 shows the CdUndertaker 

implementation of the adapter design pattern. 
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CdUndertaker

S tart()
<<virtua l>> RunL()
<<virtua l>> RunError()
<<virtua l>> DoCancel()

RUndertaker

Create()
<<const>> Logon()
<<const>> LogonCancel()

CActive

SetActive()
Cancel()
<<abstract>> RunL()
<<virtua l>> RunError()
<<abstract>> DoCancel()

CA ctiveScheduler

<<static>> Add()

UserClass

 

Figure 27. Adapter Design Pattern in AppTest. 

 

7.5.2 State 

 

State is used to improve flexibility of our design and to enable later additions or 

changes to the monitoring logic. The state machine is implemented into CdAppTester 

class. TState is the abstract base that defines the interface and contains the reference to 

the state machine represented by the CdAppTester. Concrete state classes TStateInit, 

TStateRun and TStateTerminate only add their own implementations for the EnterL(), 

Continue() and Cancel() methods. EnterL is called when the state is entered and it 

initializes the asynchronous requests the state uses. Continue is called when some of 

the asynchronous request that the active states EnterL made is served. Continue returns 

the reference to the next active state so that the state machine proceeds. Active states 

Cancel gets called if the user wants to stop the state machine. In the beginning the 

TStateInit is the active state so its EnterL is called. When one of the active requests it 

makes is served, it returns the next active state in Continue. AppTest implementation of 

state pattern is shown in Figure 28. 
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CdAppTester

WatchThread()

TState

<<abstract>> EnterL()
<<abstract>> Continue()
<<abstract>> Cancel()

TStateInit

<<virtua l>> EnterL()
<<virtua l>> Continue()
<<virtua l>> Cancel()

TStateRun

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()

TStateTerminate

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()

 

Figure 28. State Design Pattern in AppTest. 

 

7.5.3 Observer 

 

Observer pattern is used to map the many-to-many relationship between different states 

and different active objects. Each state may have several active objects making requests 

and when any of the requests is fulfilled, the calling state must be informed. Observer 

pattern makes it fairly easy to implement this behavior. The state classes are derived 

from the observer interface and the active objects from the subject interface. The 

subjects keep track on the active observers registered to them and notify them when 

their inner state changes. When CdGrimreaper for example activates, it informs the 

TStateRun and the TStateRun can move the state machine into next active state, which 

in this case would be TStateTerminate. TdMessage is used to retain the information 

about the subject that was activated. This is done with a flag object because EPOC does 

not have RTTI and does not therefore support dynamic determination of the actual 

subclass as discussed in Chapter 5.6.1. The use of observer in AppTest is shown in 

Figure 29. 
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MdSubject

<<abstract>> Attach()
<<abstract>> Detach()
<<abstract>> Notify()

TdMessage

MdObserver

<<abstract>> Update()
<<abstract>> Error()

CdGrimReaper

<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Notify()

TStateRun

<<virtual>> Update()
<<virtual>> Error()

 

Figure 29. Observer Design Pattern in AppTest. 

 

7.5.4 Factory Method 

 

To send the events we need a RTimer-based object that can play different types of 

events. The easiest way is to define an abstract base class for events and to implement 

an active object that adapts RTimer into the active scheduler. We also need to separate 

the creation of the different concrete event types from the playback. Factory method is 

a good choice when it is needed to encapsulate the instantiation of the concrete types. 

Factory method also allows us to add new event types later without changing the 

CdEventPlayer class or any its dependent. This clearly adds expandability and makes 

the design follow the OCP design principle. Figure 30 shows the factory method used 

in AppTest. 
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MTestEvent

<<abstract>> ActL()
<<abstract>> InternalizeL()

CdKeyEvent

<<virtual>> ActL()
<<virtual>> InternalizeL()

TdEventFactory

ExtractEventL()

CdEventPlayer

Start()
Cancel()

UserClass

 

Figure 30. Factory Method Design Pattern in AppTest. 

 

7.5.5 Singleton 

 

The application has several services that are needed globally throughout the 

application. Since the application is first built as an EXE without a UI, it is possible to 

use Singleton pattern to enable global access to those resources. The singleton can be 

implemented either by using normal form /1//16/ or by a more convenient template 

based solution /28/. The template version of singleton can be seen in the top right 

corner of the final design of the AppTest in Figure 31.With singleton, we could remove 

most of the illogical references between collaborating classes thus making them more 

separate and easier to reuse. 

 

When the application will have a user interface, it will most certainly be changed into 

an APP so it can no more have writeable static data as explained in Chapter 6.2. That 

restriction will disable the standard singleton pattern implementation and either forces 

us to implement the singleton using a global registry or to remove the singleton from 

the design. Using a global registry to reference another object is a slow operation and 

can therefore be forgotten. Removing the singleton would get us back to the situation 

where we were before we added the singleton so it is better to forget the singleton in 

the first place. 
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7.6 Final Design 

 

Figure 31 presents the final design of the AppTest combining all the patterns mentioned 

earlier and a few other basic structures. The final design is a pattern system having 

several interesting parts. State, observer and adapters are combined to work as an 

asynchronous event based system. Factory method adds extensibility to the design. The 

design is very modular, entities working in different tasks can be clearly seen and thus 

easily traced. Different patterns are easy to see from the diagram. 

 

CActive

SetActive()
Cancel()
<<abstract>> RunL()
<<virtual>> RunError()
<<abstract>> DoCancel()

CActiveScheduler

<<static>> Install()
<<static>> Start()
<<static>> Stop()
<<static>> Add()

TYPE

CdSingleton

<<static>> InstanceL()

DOOMED

CdDestroyer

iDoom ed : DOOMED*

TStateInit

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel ()
<<virtual>> Update()
<<virtual>> Error()

TStateRun

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()
<<virtual>> Update()
<<virtual>> Error()

TStateTerminate

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()
<<virtual>> Update()
<<virtual>> Error()

CdMemoryFaultEvent

<<virtual>> Ac tL()
<<virtual>> InternalizeL()

CdKeyEvent

<<virtual>> ActL()
<<virtual>> InternalizeL()

MTestEvent

<<abstract>> ActL()
<<abstract>> InternalizeL()

RTimer

CreateLocal()
After()
Cancel()

CdEventPlayer

Start()
<<virtual>> RunL()
<<virtual>> RunError()
<<virtual>> DoCancel()
<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Notify()

0..n0..n

RTimer

Creat eLocal ()
After()
Cancel()

CdGrimReaper

Start ()
<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Noti fy()
<<virtual>> RunL()
<<virtual>> RunError()
<<virtual>> DoCancel()

RUndertaker

Create()
<<c onst>> Logon()
<<const>> LogonCanc el()

MdObserver

<<abstract>> Update()
<<abstract>> Error()

CdUndertaker

Start ()
<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Noti fy()
<<virtual>> RunL()
<<virtual>> RunError()
<<virtual>> DoCanc el()

EikDll

<<static>> StartAppL()
<<static>> StartExeL()

CApaCommandLine

<<static>> NewL()

RProcess

<<const>> Id()
Terminate()
Kill()
Panic()

RThread

<<const>> Id()
Terminate()
Kill()
Panic()

CdAppRunner

Start()
Stop()
Thread()
Process()

TState

<<abstract>> EnterL()
<<abstract>> Continue()
<<abstract>> Cancel()

CdThreadScheduler

<<const>> Error()

CdAppTester

WatchThread()

TdEventFactory

ExtractEventL()

CdMouseEvent

<<virtual>> ActL()
<<virtual>> InternalizeL()

MdSubjec t

<<abstract>> Attach()
<<abstract>> Detach()
<<abstract>> Notify()

TdMessage

 

Figure 31. AppTest class diagram. 
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7.7 Discussion 

 

The design was built up rapidly with the aid of design patterns. The abstract interface 

classes make it very easy to enhance existing features and add new ones by deriving 

new classes. Patterns lead into well-encapsulated design where it is safe to modify one 

part and be sure that the rest will keep working. 

 

The collaborations between classes are specified using those abstract interfaces so the 

testing of functionalities is uniform. When one test case is ready, it can be reused to 

define the rest with little modifications. Only one unit test structure is needed for every 

collaboration, all derived subclasses use the same form of test. 

 

Analyzing the design, we see that OCP and DIP are followed very well. The design is 

easily expandable at many places thanks to the abstract interfaces. Single class entities 

can quite easily be reused since the ISP is also fulfilled in good degree. Most entities 

work in several roles, defined by separate interfaces. ADP is somewhat followed since 

concrete classes depend on abstract base classes, not from other concrete classes. 

Classes handling the asynchronous requests have the subject interface to their observers 

and adapted CActive interface to the framework. They can therefore be reused either as 

subjects in another context, or active objects. TState based objects have similarly a 

double role and thus greater reusability. 

 

The use of design patterns in this application compressed time from both analysis and 

design phase and improved the design making it more reusable, flexible and 

expandable. Design patterns also made is simpler to test the classes and structures. 
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8 CONCLUSIONS 

 

The adaptation of design patterns is fairly easy for any software designer who is 

familiar with UML or similar modeling language used to describe the patterns. Many 

good designers who have not ever heard of design patterns often find out that they have 

been using them unconsciously. The following conclusions are based on the 

experiences gained during the work of this thesis. 

 

Design patterns provide an excellent method to speed up and simplify the development 

process. However, the statement “owning a hammer does not make one an architect” 

applies to design patterns as to all other object-oriented design methods and tools /4/.  

To properly use design patterns and to get the benefits from their usage requires 

studying and experimenting with them in different problem domains. A perfect pattern 

for one problem may prove to be a total disaster in another design even in a similar 

problem domain. In the implementation phase of this thesis the adapter, state and 

observer patterns proved to be very usefull in an EPOC application. 

 

A design or a design pattern is only a model that describes the structure and 

collaborations in an abstraction level. The design must be implemented using some 

implementation methods and even the greatest design will fail if the implementation is 

not done correctly and the design is not understood clearly enough. The implementors 

have to understand the patterns to know the implementation tricks and to avoid ruining 

the pattern by improper implementation. 

 

The environment sets the strictest principles for the design to fulfill. Those principles 

must be met in design and implementation. This fact is also a good starting point in 

analyzing a design pattern and making conclusions of it usability in a problem domain. 

If the pattern fails to fulfill for example EPOC restriction on writeable static data or 

cleanup stack usage the pattern is not suitable for EPOC environment even if it would 

be perfect in some other environment as was seen with the singleton pattern in this 

thesis. 

 



 66

General design principles are also good candidates when analyzing a software design. 

The design principles have evolved through years or decades of software programming 

and therefore have a solid base in defining what works and what often fails. The more 

design principles the pattern can meet the better it will eventually prove to be. Using 

those principles and other common software process metrics, it is quite easy to prove 

that design patterns, when used by experienced software designers, really speed up and 

simplify the design process and also lead to better quality. 

 

An object-oriented environment, such as EPOC using patterns in frameworks and APIs 

forces the developers to familiarize themselves with those patterns. A misuse of system 

structures will eventually lead into nonworking application, bad user experience and 

possible crashes. On the other hand, after identifying the patterns and using them 

frequently the collaborations and structures inside them start reflecting into developers 

own application designs leading into better quality, response times and usability. Active 

object framework and the MVC pattern were discovered very useful during the work of 

this thesis. 

 

However, design patterns do not make a poor design excellent nor do they make a good 

design fail. There are no “cookbook” methods that can replace intelligence, experience 

and good taste in design and programming /13/. As the inventor of the C++ language, 

Bjarne Straustrupp wisely said: “Design and programming are human activities; forget 

that and all is lost”. 
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