
Lappeenranta University of Technology

Department of Information Technology

Master’s Thesis

Design Patterns in EPOC Software Development

The topic of the Master’s Thesis has been accepted September 13, 2000 by the

Department Council Meeting of the Department of Information Technology.

Supervisor:

Prof. Heikki Kälviäinen

Instructor:

M.Sc. Jouni Vaahtera

Lappeenranta April 1, 2001

Kimmo Hoikka

Pellonmäenraitti 3 as 8

53850 Lappeenranta

+358 40 738 0747

Kimmo.Hoikka@Digia.com

 ii

ABSTRACT

Lappeenranta University of Technology

Department of Information Technology

Kimmo Hoikka

Design Patterns in EPOC Software Development

Master’s Thesis, 2001

81 pages, 31 figures

Supervisor: Professor Heikki Kälviäinen

Keywords: Design Patterns, Architectural Patterns, Design Principles, OOD, EPOC,

UML

The thesis studies design patterns in the EPOC operating system. The thesis studies

general design patterns and also patterns in the EPOC operating system. The focus is

on the requirements and the benefits of using design patterns in EPOC along with its

own patterns. During the thesis an EPOC software was designed using design patterns

and following the design principles.

Design patterns have become more common in the recent years. The basis for the

design patterns is the design principles and environment specific principles. Design

patterns are a part of software pattern family, which contains process, analysis,

architectural, etc patterns. Design patterns speed up and simplify the design, and

improve reusability in higher abstraction level.

EPOC is one of the most common operating system for the future mobile

environments. EPOC is completely object-oriented and contains several patterns that

must be understood by software developers. Since the platforms where EPOC is mostly

used have limitations on resources, the developers must be careful when applying

general design patterns into EPOC. Some general patterns must be modified to fit into

EPOC and some do not work at all.

 iii

TIIVISTELMÄ

Lappeenrannan teknillinen korkeakoulu

Tietotekniikan osasto

Kimmo Hoikka

Design Patterns in EPOC Software Development

Diplomityö, 2001

81 sivua, 31 kuvaa

Tarkastaja: Professori Heikki Kälviäinen

Hakusanat: Suunnittelumallit, arkkitehtuurimallit, suunnitteluperiaatteet, oliopohjainen

sunnittelu, EPOC, UML

Keywords: Design Patterns, Architectural Patterns, Design Principles, OOD, EPOC,

UML

Työssä tutkittiin oliosuunnittelumalleja EPOC-käyttöjärjestelmässä. Työssä tutkittiin

sekä yleisiä suunnittelumalleja että EPOC-ympäristössä esiintyviä oliorakenteita,

niiden aiheuttamia vaatimuksia sovelluksille sekä niiden käyttämisestä saatavia

hyötyjä. Työssä toteutettiin EPOC-ohjelmiston suunnittelu hyödyntäen

suunnittelumalleja ja periaatteita.

Oliosuunnittelumallit ovat yleistyneet huomattavasti viime vuosina. Suunnittelumallien

lähtökohtana ovat sekä yleiset että ympäristökohtaiset suunnitteluperiaatteet ja säännöt.

Suunnittelumallit ovat osa isompaa rakennekokonaisuutta, joka käsittää sekä prosessi-,

analyysi-, arkkitehtuuri- ym. malleja. Oliosuunnittelumallit nopeuttavat ja helpottavat

suunnittelua sekä parantavat uudelleenkäytettävyyttä korkeammalla abstraktiotasolla.

EPOC on tulevaisuuden mobiililaitteiden yleisimpiä käyttöjärjestelmiä. EPOC on

kokonaisuudessaan oliopohjainen ja sisältää lukuisia oliorakenteita, joiden

ymmärtäminen on sovelluskehityksen kannalta elintärkeää. Koska ympäristöt, joissa

EPOC-käyttöjärjestelmää käytetään, ovat yleensä resurssien puolesta rajoittuneita, on

yleisten suunnittelumallien käytössä oltava tarkkana. EPOC vaatii yleisiin

suunnittelumalleihin muutoksia ja estää joidenkin käytön kokonaan.

 iv

PREFACE

This thesis was written for Digital Information Architects, Digia Inc. in Digia

Lappeenranta branch office. I started to get acquainted with design patterns early in

spring 2000. The implementation part of this thesis was done during autumn 2000 and

the writing started at September 2000. I also had the opportunity to give a presentation

on the subject at the Symbian Developer Expo November 2000.

I would like to thank the people who have helped in processing this thesis during its

lifetime. Especially the instructor of the work, Jouni Vaahtera, whose idea this subject

was in the first place. I must also thank the software architects at Symbian, whom I had

the opportunity to talk with during the Symbian Developer Expo in November 2000.

They gave an important insight into EPOC and its structures. Big thank must also go to

the supervisor of this thesis, Heikki Kälviäinen about good guidance and patience on

continuous delays on deliveries �.

 v

TABLE OF CONTENTS

1 INTRODUCTION...1

1.1 BACKGROUND..1

1.2 OBJECTIVES AND RESTRICTIONS...2

1.3 STRUCTURE OF WORK...2

2 TERMINOLOGY ...3

2.1 NOTATIONS AND LANGUAGE ..3

2.2 DIAGRAMS ...3

2.3 ARTIFACTS ...4

2.3.1 Mix-in ..4

2.3.2 Specialization ..4

2.3.3 Composition ..5

2.3.4 Delegation ...5

2.3.5 Instantiation ..6

2.3.6 Template..6

3 EPOC..7

3.1 THE SYMBIAN PLATFORM ..7

3.2 SPECIAL CHARACTERISTICS..8

3.3 HARDWARE CHARACTERISTICS ..9

3.4 SYSTEM STRUCTURE...10

3.5 THE EPOC OPERATING SYSTEM...11

4 DESIGN PRINCIPLES ..13

4.1 SOFTWARE DESIGN...13

4.2 COMMON OBJECT-ORIENTED PRINCIPLES ...14

4.2.1 Open Closed Principle ..14

4.2.2 Dependency Inversion Principle ...15

4.2.3 Interface Segregation Principle ..16

4.2.4 Acyclic Dependency Principle ..17

4.3 EPOC PRINCIPLES..17

 vi

4.3.1 Memory allocation ..18

4.3.2 Function overloads..18

4.3.3 Object code..19

4.3.4 Inline functions..19

4.3.5 Typecasting ...20

4.3.6 Resource acquisition ...20

4.3.7 Coding Conventions ..21

5 DESIGN PATTERNS ...23

5.1 DEFINITION ..23

5.2 CATEGORIZATION ..23

5.3 ARCHITECTURAL PATTERNS...25

5.3.1 Layers..25

5.3.2 Model-View-Controller ...27

5.3.3 Microkernel ...28

5.4 CREATIONAL PATTERNS ...31

5.4.1 Factory Method...31

5.4.2 Singleton..34

5.5 STRUCTURAL PATTERNS ..36

5.5.1 Adapter..36

5.5.2 State...38

5.6 BEHAVIORAL PATTERNS...40

5.6.1 Observer ..41

6 EPOC PATTERNS ...43

6.1 SYSTEM ARCHITECTURE...43

6.2 APPLICATION ARCHITECTURE...45

6.3 ACTIVE OBJECTS ..47

6.4 EIKON ..48

6.5 EPOC IDIOMS ..49

6.5.1 Construction..49

6.5.2 Thin templates ...51

7 EPOC APPLICATION DESIGN USING DESIGN PATTERNS..................53

 vii

7.1 INTRODUCTION...53

7.2 EXAMPLE APPLICATION..53

7.2.1 Purpose ...53

7.2.2 Features...54

7.3 REQUIREMENTS..54

7.4 ANALYSIS ..55

7.4.1 Selecting patterns ..57

7.5 DESIGN...58

7.5.1 Adapter..58

7.5.2 State...59

7.5.3 Observer ..60

7.5.4 Factory Method...61

7.5.5 Singleton..62

7.6 FINAL DESIGN ..63

7.7 DISCUSSION..64

8 CONCLUSIONS ...65

9 REFERENCES..67

 viii

LIST OF FIGURES

Abstract interface. ..4

Specialization. ..5

Composition. ..5

Delegation. ...6

Instantiation..6

Class template. ...6

Nokia 9210, an example of Crystal DFRD. ...8

Quartz Reference Device. ..8

The Symbian Platform Structure..11

EPOC Architecture...12

Dependency Inversion Principle. ...16

Pattern categorization...24

Model - View – Controller architectural pattern..27

Microkernel architectural pattern. ..29

Factory method design pattern. ..32

Factory Method Sequence Diagram...33

Singleton design pattern. ..34

Class adapter design pattern...36

Object adapter design pattern...37

State design pattern. ...39

State Sequence Diagram. ...40

Observer design pattern..41

EPOC System Architecture..43

EPOC Graphics Architecture. ..44

EPOC Kernel and privilege boundaries. ..45

Pattern finding cycle. ...56

Adapter Design Pattern in AppTest. ..59

State Design Pattern in AppTest. ...60

Observer Design Pattern in AppTest..61

Factory Method Design Pattern in AppTest...62

 ix

AppTest class diagram. ..63

 x

ABBREVIATIONS

ADP Acyclic Dependency Principle

API Application Programming Interface

APPARC Application Architecture

DFRD Device Family Reference Design

DIP Dependency Inversion Principle

DLL Dynamic Link Library

EXE Executable program

GCC Gnu C Compiler

GDI Graphics Device Interface

GOF Gang-Of-Four

GUI Graphical User Interface

HAL Hardware Abstraction Layer

ISP Interface Segregation Principle

LAF Look and Feel

MVC Model-View-Controller

OCP Open Closed Principle

OOD Object Oriented Design

OOM Out Of Memory

OOR Out Of Resources

OPL Organizer Programming Language

PC Personal Computer

PDA Portable Digital Assistant

RAD Rapid Application Development

RAM Random Access Memory

ROM Read-Only Memory

RTTI Real Time Type Identification

SDK Software Development Kit

STL Standard Template Library

TCP/IP Transmission Control Protocol / Internet Protocol

UI User Interface

 xi

UML Universal Modeling Language

WID Wireless Internet Device

WLAN Wireless Local Area Network

 1

1 INTRODUCTION

1.1 Background

Software design has become an increasingly important task in software industry during

the recent decade. The biggest need for good design is the growing size and amount of

features in today’s software. Object-oriented programming environments and platforms

have helped to do the design with structuring and encapsulation. On the other hand,

they have also increased the need for design specialists who understand the capabilities

of object-orientation and also the need for tools, methods and models that enable

powerful Object-Oriented Design (OOD). Design patterns have been evolved from the

use of such methods and models by those design specialists in their real life software

development.

The most recent revolution in information technology is mobility. Computing devices

are no longer bound to a specific location, they are mobile and move around in peoples

backpacks and pockets. Such devices are no longer called computers or pocket

computers. They are referred to as Wireless Information Devices (WID) or Personal

Digital Assistants (PDA). Those mobile devices combine the features of a phone, a

calendar and a pocket computer. They have capabilities to handle all kinds of digital

media available in the future broadband wireless networks. The most competitive

platform for such devices is the Symbian Platform.

Software development for rapidly evolving field of PDA devices has to be swift, robust

and reproducible. Most vertical applications have similar look and feel, functionalities

and features outside and when peeking inside they often have very similar control

structures, data flows and dynamic behavior. These facts must be considerer early in

the design phase of a software process to enable rapid development of applications and

to prevent work duplication.

 2

1.2 Objectives and restrictions

The objective of this thesis was to study general design patterns, patterns that exist in

EPOC and to research the use of design patterns in the EPOC environment. The first

task was to identify and learn the most common design patterns and mechanisms

behind them. Common design patterns are well defined and studied in the literature and

in real life usage. The Gang-of-Four (GOF) presented their famous 23 design patterns

already in 1995 /1/. Another approach of patterns was introduced in Pattern Oriented

Software Architecture in 1996 /2/. This thesis will introduce a few of those patterns and

study their applicability in the EPOC environment. The EPOC operating system has a

large amount of frameworks and Application Programming Interfaces (API) that either

are built using some patterns or force the application programmer to use a pattern. A

few of those patterns are also presented and discussed in this thesis.

1.3 Structure of work

The thesis starts with an introduction to the notations, artifacts and terminology used

later in the document. After terminology is a brief introduction to EPOC as an

operating system in Chapter 3. Chapter 4 first presents some common OOD principles

and then some principles specific to the EPOC operating system. Chapter 5 starts by

introduction to design patterns, what they are, how they can be used and how they are

categorized. Some of the most important EPOC patterns are presented in Chapter 6.

Chapter 7 concretizes the use of some EPOC patterns in collaboration with common

patterns and in the end briefly analyzes the design that was done. The example

presented in chapter 7 is also discussed in /3/. The work done in the thesis is discussed

and concluded in Chapter 8.

Chapters 3 to 6 are based on literature study and actual work done before and during

the writing of thesis in Digia. Chapters 7 and 8 present the experience gained in the

implementation phase of this thesis. The example application discussed in Chapter 7 is

only presented in design level since the implementation details would have taken too

much space and would not give any deeper insight in the scope of this thesis.

 3

2 TERMINOLOGY

Object-oriented software field is full of different ways to express similar things. This

chapter gives the reader an oversight about the techniques, terminology and notations

used in following chapters. All terminologies used in this thesis derive from Digia

operational models and processes.

2.1 Notations and language

The presentation of software in design level is most commonly done using diagrams.

Architectural diagram specifies the component level structures and collaborations.

Class diagram presents object classes and their relationships such as ‘has’, ‘is-a’,

‘owns’, etc. Modeling languages have specified unique ways to present those

relationships and entities. Class diagram defines the static model of the design. The

dynamic design model is presented with sequence diagrams. Sequence diagram

presents object instances and the messages that are used for collaboration.

Architectural diagrams in this document are presented in block charts. Class diagrams

are drawn using Unified Modeling Language (UML). UML is the most common

language in today’s object-oriented modeling /4/. UML is a language for specifying,

visualizing, constructing, and documenting the artifacts of software systems /5/. UML

is the proper successor to the object modeling languages of three previously leading

object-oriented methods (Booch, OMT, and OOSE). Program code examples are

presented in fixed font and a smaller size. Program code examples use Digia coding

conventions /6/.

2.2 Diagrams

Design pattern structures in this document are presented as class diagrams. Class

collaborations inside patterns are visualized using sequence diagrams. Architectural

structures are presented in either component diagrams or plain block diagrams. Class

diagrams use various UML artifacts to describe the class relations and the system

 4

structure. Sequence diagrams contain nested method calls without signatures or return

values for clarity.

2.3 Artifacts

UML diagrams have many different artifacts and all artifacts can be specialized to have

unique meanings. This document uses simplified diagrams and only a few artifacts

described below.

2.3.1 Mix-in

Mix-in is one type of class inheritance. Mix-in is an abstract base class that defines

only an interface, which is implemented in derived class. Mix-in is used to add an

interface to an existing class framework. Abstract class contains only the header and no

implementation. Abstract base class cannot be instantiated. Mix-in is indicated with

cursive font and <<abstract>> keyword in its methods. Figure 1 shows how mix-in can

be visualized in UML.

Abstract

<<abs tract>> Operation()

Concrete

<<virtual>> Operation()

Implements

Figure 1. Abstract interface.

2.3.2 Specialization

Specialization is a typical case of class polymorphism. Base class defines an algorithm

as well as an interface. Derived class specializes that behavior. Base class can specify

default behavior and thus be instantiated or it can be an abstract class and leave the

behavior specification to derivates. Specialization is indicated with a normal

 5

inheritance symbol as shown in Figure 2. The base class has virtual methods marked

with <<virtual>> -tag.

Base

<<virtual>> O peration()

Inherited

Operation()

Specializes

Figure 2. Specialization.

2.3.3 Composition

Composition forms a whole – part relationship between two classes. Whole – part

relationship can be used for several purposes. The most common purpose is to

encapsulate one to n relationship in data. Compound class can also define an algorithm,

which is implemented using a sequence of atomic operations. Composition enables the

run-time modification of the aggregates. Aggregate is indicated with a line having a

diamond in the end of the owning class. When the relationship also contains delegation,

there can be an arrow at the end of the line. Figure 3 shows the visualization of a

normal type of composition.

Aggregate

AtomicOperation()

Compound

Algorithm()

Owns

Figure 3. Composition.

2.3.4 Delegation

Delegation is used as class collaboration technique. A class delegates a task into a sub-

unit, which can be a single class or a pattern of classes. The delegate can be changed in

 6

run-time or be bind in compile time. Delegation is indicated with a solid arrow as

shown in Figure 4.

Delegate

Operation()

Client
Delegates

Figure 4. Delegation.

2.3.5 Instantiation

Instantiation arrow specifies the class that instantiates a specific class. Class

instantiation is not indicated separately if it is obvious. Figure 5 shows the notation

used for visualizing instantiation. Instantiation is indicated with a dashed arrow and can

be explained more in detail with a note.

Client

Instantiates

Class

NewL()

Figure 5. Instantiation.

2.3.6 Template

Template is a C++ specific technique to improve the reusability and versatility of

source code. Template specifies a generic algorithm from which the compiler generates

the type specific implementations. Template can be a whole class or just one method of

a class or just one separate function. Class template notation is presented in Figure 6.

TYPE

Template

TemplateFunction()

Figure 6. Class template.

 7

3 EPOC

EPOC is an operating system developed by Symbian Ltd. This chapter briefly presents

the EPOC operating system and some of its main features and characteristics of the

environments it is mostly used in. The chapter is based on the Professional Symbian

Programming book /7/ and other material released about EPOC in printed media and on

the Internet /8/.

3.1 The Symbian Platform

The Symbian platform is a platform specially designed for wireless information devices

often referred to as Personal Digital Assistant (PDA) or Wireless Information Device

(WID). The Symbian Platform is not just an operating system; it contains the

middleware and applications as well. The Symbian platform is based on the early Psion

operating systems /9/, SIBO and Protea, which were used in organizers and early

pocket computers. The Symbian platform is intended to become an industry standard

for the mobile community and has been licensed by all major mobile device

manufacturers.

PDA devices are lightweight and have low memory consumption. In the Internet era all

the PDA devices are communications oriented. People do not want to carry around

separate devices for mobile communications, organizers, notebooks etc, so they are

combined to form small hand-portable wireless information devices.

The Symbian platform defines three standard models of WIDs. They are defined as

Device Family Reference Documents (DFRD). A DFRD defines the general outlook of

the device and the way it is used. The three currently defined DFRDs are called Pearl,

Crystal and Quartz. Pearl devices are future smart phones; Crystal and Quartz devices

are communicator style WIDs. Pearl reference design assumes that the device is a

modern phone size lightweight device with a small color screen. Crystal devices have a

real keyboard and can have a touch screen. Crystal devices are often foldable so that

keyboard becomes visible after the device is opened as shown in Figure 7. The device

 8

in Figure 7 is the Nokia 9210 Communicator. Nokia 9210 is a typical Crystal device

without a touch screen. The original picture is from Nokia homepage /10/.

Figure 7. Nokia 9210, an example of Crystal DFRD.

Quartz devices are pen oriented, with a virtual keyboard and a few operational buttons.

Quartz devices have also built-in handwriting recognition. Figure 8 shows an example

of Quartz device. Original picture is from Digia SCC brochure at Digia homepage /11/.

Figure 8. Quartz Reference Device.

3.2 Special characteristics

EPOC is the operating system powering the Symbian platform. It is based on the early

Psion organizer operating systems and is thus optimized for PDA and WID usage.

WIDs are physically considerably small and they run on batteries. Size and weight set

 9

quite strict limits for the hardware. The mass storage media like hard disks; CD- and

DVD-ROMs cause most of the power consumption in a modern Personal Computer

(PC). They also require quite a lot of space. WID devices have no mass storage media

so all users and applications data is in battery backed Random Access Memory (RAM).

The device can be turned off in an eye-blink. When power is off the device does not

consume batteries practically at all, only clock and some mandatory resources are

processed. EPOC WID is practically on all the time. The switch from the sleep mode to

active mode is fast and requires no loading of operating system or any other drivers.

When the device is put to sleep mode no applications are closed, the CPU is just

switched to halt mode and screen is put off. This means that the user can continue

exactly from where he was left when he closed the device.

3.3 Hardware characteristics

The fact that the physical PDA devices are small and lightweight affects the design of

their hardware system. EPOC is designed for 32 bit CPUs, running at rather low speeds

compared to laptop computers. The power consumption of the CPU has to be small

since the device is operating on rechargeable batteries most of the time. There is also

backup battery to keep the user’s documents safe when the main battery runs out. The

device automatically turns itself off when batteries are low.

The Read Only Memory (ROM) holds the operating system and all the built in

middleware and applications. System RAM is used for two purposes: for active

programs and the kernel to store their data and as a disk space for user’s documents.

EPOC devices do not have any other storage media apart from the battery backed up

RAM and flash memory cards. This sets quite strict limits to memory allocation and

memory control overall. It is unaffordable that some application consumes all the free

memory or leaks memory every time it is used.

EPOC devices have several input and output devices. Most devices have a keyboard

and a touch screen for pen input. There is also an infrared port for communications

 10

with other WID and IR –controllable devices like IR-printers. The device has also a

serial port for communicating with a PC. PC connection is used for backup and

synchronization purposes as well as for installing new programs to the EPOC device.

Some EPOC devices are also integrated with a phone, either into the same device or

with a separate device. Future EPOC releases will also have Wireless Local Area

Network (WLAN) and Bluetooth support.

3.4 System structure

The Symbian Platform is completely object-oriented. Every EPOC framework and API

is based on object-oriented solutions, which demands from developers that they use and

are familiar with object-oriented methods and tools. That fact affects all software

developed and ported for EPOC although the framework provides some help for old

procedural style program porting. Version 6.0 EPOC releases have Software

Development Kit (SDK) support for C++, Java and Organizer Programming Language

(OPL). C++ and Java are the SDKs for application development and OPL is mainly

supported for Rapid Application Development (RAD) and for prototyping application

ideas.

Figure 9 presents a slightly modified version of the Symbian platform system structure

/7/.

 11

Figure 9. The Symbian Platform Structure.

Figure 9 shows the different groupings belonging to the Symbian Platform. The

platform includes the built-in applications and SDKs as well as the operating system,

EPOC. Base provides all EPOC programs with the fundamental APIs. Base includes

the kernel, servers and their APIs. COMMS provides industry standard protocols for

data communications, including dial-up networking, Transmission Control Protocol /

Internet Protocol (TCP/IP) and infrared. On top of the base and COMMS are the EPOC

Connect software and middleware such as streams, clipboard, etc. Middleware is a set

of services, APIs and support utilities enabling powerful application development /12/.

The topmost layer in Figure 9 has the SDKs for software development, UI frameworks

and the base set of applications that belong to EPOC. The built-in application suite

consists of typical office programs like Word, Sheet, Agenda, Contacts and Calc.

3.5 The EPOC operating system

EPOC is a layered operating system as shown in Figure 10. Only 20% of the code is

different between the three DFRDs, which shows the effectiveness of layering. Other

benefits of a layered architecture are discussed in Chapter 5.3.1. The topmost layer

forms the UI architecture. The core of the operating system is the E32, which is the

 12

same in all reference designs. The main layers above the E32 are the APIs for file

server and the stream stores. Below the E32 are the device drivers and other machine

dependent parts, the Hardware Abstraction Layer (HAL). Even though the E32 layer is

the lowest layer normal application programmer uses, the platform enables the use of

device drivers straight without the E32. The layered architecture makes EPOC easy to

port to new hardware since only the lowest layers, HAL and device drivers have to be

modified or rewritten.

Figure 10. EPOC Architecture.

Since EPOC is an object-oriented operating system and PDA devices have limited

resources, most of EPOC software development is done with C++ /13/. C++ is very

comprehensive tool for software development. It has given many other aspects and

paradigms to application programming than just inheritance and object orientation /14/.

In a resource limited environment one has to be especially careful with the caveats and

pitfalls of unnecessary inheritance, dynamic binding and exception handling /15/

although they are powerful tools when used correctly. EPOC has its own restrictions

and principles for them as discussed in Chapter 4.3.

 13

4 DESIGN PRINCIPLES

This section introduces the different principles behind every good software design. All

design principles have the same goal, which is to avoid common pitfalls. The design

principles are more like general-purpose guidelines. Most common principles are

object-oriented and can be applied to all environments supporting object-orientation.

EPOC principles are more strictly bound to the Symbian platform. Between those two

types of principles is the safe area for the designer to do good software. Design

principles are the first step towards design techniques and design patterns. The main

tools to obtain the design principles in object-oriented environment are abstraction and

encapsulation /16/. Those two mechanisms are behind all major principles.

4.1 Software design

Software design is a complex form of art. When an application evolves to design phase

it is often not ready, features are not clearly specified and interfaces are fuzzy.

Combined with a tight time schedule this often leads to a design that is impossible to

reuse, complex and impossible to develop further.

There are four primary symptoms to indicate a poor design: rigidity, fragility,

immobility and viscosity /17/.

Rigidity is the tendency for software to become difficult to change. Every change

causes a cascade of changes in dependent classes and modules. Cascaded changes are

often avoided adding unwanted dependencies, which lead to even bigger problems,

usually fragility and viscosity.

Fragility is the tendency of the software to break up every time something is modified.

This is very common when the design has illogical dependencies. Fragility makes

software testing a nightmare. Each bug fix may break something and cause new bugs

and all the tests must be run repeatedly.

 14

Immobility is the inability to reuse software. Engineers often program modules that are

partially generic and could be reused in other projects or even inside the same project.

However, it often ends up in a situation where porting that module causes so much

work that it’s easier to rewrite it again. Adding new features to modules constantly

often adds viscosity to the design.

Viscosity comes in two forms: viscosity of the design and viscosity of the environment.

High viscosity in design means that when a change is required, preserving the design is

so difficult that the engineer is more likely to do a hack and break the design. Improper

tools and slow and inefficient environment cause high viscosity. High viscosity in

environment causes engineers to optimize on compiling time instead of preserving and

optimizing on design.

There are many steps in software process development to avoid the symptoms of bad

design. Object-oriented software society is full of design principles and patterns, which

help in the design and managing of the software. Those principles are mostly general

and applicable to most programming environments. Most programming environments

have also their own set of design and implementation principles.

4.2 Common object-oriented principles

All the common design principles presented in this chapter can be found in an article by

Robert C. Martin: Design Patterns and Design Principles. /17/.

4.2.1 Open Closed Principle

The Open Closed Principle (OCP) is perhaps one of the most important Object –

Oriented design principles /18/. The idea of the OCP is that in early phases of the

analysis and design of the application the designers must decide, which parts of the

system will be expanded later and which will stay solid for the whole lifecycle of the

application. That decision enables the design team to start defining the abstract

 15

interfaces inside the application and to start selecting design patterns to fulfill the

abstractions and dependencies of the design.

OCP states that the design is extended by adding new code and classes rather than

modifying the existing ones. New classes are inherited from existing frameworks and

base classes. This requires that the frameworks have to be designed with a level of

abstraction. Code that has been completed and tested is declared closed, so it will never

be modified. Existing errors in code will be fixed, but new code will be put elsewhere.

This makes the design open for expansion and adding features, but closed for

modification.

Most design patterns use abstract interfaces and inheritance to keep the pattern easily

expandable. When designing with design patterns the OCP will quite easily be fulfilled.

The application programmer must also understand the patterns and the principles

correctly in order not to break the principles in his application code.

4.2.2 Dependency Inversion Principle

The idea of Dependency Inversion Principle (DIP) is to depend on abstractions, not

concretions /19/. This means that when you have dependency between two concrete

classes A and B you should build an abstract interface in between then so that neither

of the two classes have to depend strictly on each other. This way the design can later

be expanded and the concrete class easily changed on each side without having to

modify the interface in between them. Figure 11 shows the addition of an abstract

interface in between the two dependent classes.

 16

Class A

Class B

Class B

Class A

Abstract
Interface

Figure 11. Dependency Inversion Principle.

The OCP sets the goal for an object-oriented design and the DIP is one of the most

important methods to obtain it. However, there are a few places where you must

depend on concretion instead of abstraction. The most common place is object creation.

It is not possible to instantiate an abstract class. Creation of instances is possible

throughout the application, so it might seem that you need to depend somewhat on

concretion everywhere. This bottleneck can however be avoided by using the Factory

pattern discussed in Chapter 5.4.1 or Abstract Factory /1/.

4.2.3 Interface Segregation Principle

Interface Segregation Principle (ISP) states that large interfaces should be divided into

smaller ones /20/. Software designers often tend to combine several interfaces into

single abstract classes to make it easier to modify the interfaces since they can be found

in a single file. This packaging also leads to smaller class hierarchies and might falsely

seem more efficient. However, it is often indicated that combining interfaces makes it

impossible to vary or reuse them independently. Smaller interfaces let us have smaller

granularity on concrete class interfaces and allow us to define clearer roles for entities

inside the class structure. Clients should not be forced to depend upon interfaces that

they do not use.

 17

4.2.4 Acyclic Dependency Principle

The Acyclic Dependency Principle (ADP) states that dependencies between software

entities must not form cycles /21/. Simplified this means that if class A depends on

class B, class B must not be dependent on class A or it’s base classes. Most design tools

and C++ compilers make it possible to program dual dependencies using thin

declarations. Dual dependencies lead to a situation where modifying one class forces us

to modify the other also. To avoid cascaded changes it is better to use single

declarations and to go back to the design board when a cyclic dependency occurs.

There also exists design patterns to prevent acyclic dependencies /22/ /23/.

In iterative software development process, new features are added to the design during

the whole development time. This often leads to tight and unwanted dependencies

inside modules and between them. This is because there is never enough time for

proper design in the beginning of the process and new features are being added all the

time. New features require modifications to the class hierarchy. At some point of the

development, the hierarchy becomes impossible to change and the designer is forced to

make some “dirty” solutions, which end up adding dependencies between logically

unrelated classes. To avoid this the design needs to be refactored continuously /24/.

Using design patterns and following the OCP and DIP greatly decreases the need for

refactoring, since the model is open at the places where the new features fit into the

class hierarchy.

4.3 EPOC principles

EPOC is a very restricted environment from a developer’s point of view. The

restrictions result mostly from the special characteristics discussed earlier in chapter

3.2. The EPOC principles presented here are from the Symbian Quartz 6.0 C++ SDK

/25/, the Professional Symbian Programming book /7/ and from the Symbian

Developers Network Homepage /26/.

 18

4.3.1 Memory allocation

Each thread in an EPOC application has a limited standard stack space of 8Kb, which

should be carefully managed. The stack is allocated during the thread creation so the

programmer can always trust it to exist. To prevent stack overflow developers must

avoid copy-by-value, except for basic types. Because of small stack size, programmers

must minimize the lifetime of automatic variables by appropriately defining their

scope.

All large classes and arrays must be created to the heap rather than the stack. This adds

an extra possibility for programs to leak memory. Since the heap can run out at any

point of the program execution, all heap-allocated objects must be carefully constructed

and it can never be assumed that the construction fully succeeds.

4.3.2 Function overloads

If a function definition has default arguments, and if that function is often called with

the caller assuming the default arguments, the programmer should consider providing

an overloaded function that doesn't have the additional arguments. This is because

every time the compiler supplies a default parameter, it generates additional code where

the function is called.

So instead of:

Function(int aValue = 0, int aValue2 = 0);

Should be defined as:

Function(void); // calls Function(0, 0);

Function(int aValue); // calls Function(aValue, 0);

Function(int aValue, int aValue2);

 19

4.3.3 Object code

Avoidance of object code duplication is a difficult issue in a C++ implementation.

Especially templates can be difficult to manage. A template really defines a whole

family of classes /15/. Each member of the family that is instantiated requires its own

object code.

In EPOC operating system, object code duplication must be avoided at all costs. This is

especially important for programs that will reside in the devices ROM memory. Object

code duplication can be avoided by using effective algorithms, avoiding copy-pasting

code around and using the thin template idiom described in Chapter 6.5.2.

4.3.4 Inline functions

Inline functions are intended to speed up code by avoiding the expense of a function

call, but retain its modularity by disguising operations as functions. Before using them,

two issues should be checked:

• Code compactness: limited memory resources may mean that the speed cost of

a function call is preferable to large bodies of inline code.

• Binary compatibility: changing the implementation of an inline function can

break binary compatibility. This is important if your code is going to be used by

other developers.

The most common cases where inline functions are acceptable are:

• Get and set methods for one- or two-machine word quantities: for example,

inline ConEnv() const { return iConEnv; };

• Trivial constructors for T classes:

inline TPoint::TPoint(TInt aX, TInt aY) { iX=aX; iY=aY; };

• Certain other operators and functions whose definition is not subject to change

and purpose is to map one operation onto another, for example:

template <class T> inline T Min(T aLeft,T aRight)

 20

{ return(aLeft<aRight ? aLeft : aRight); }

4.3.5 Typecasting

Typecasting is used when an instance or a reference of a specific type has to be

converted into another type used in this context. Typecasts should be used with caution,

as in other operating systems. If a cast seems to be needed, it should be checked that

this does not reflect a design weakness. Typecasts are the most common cause for

unfound bugs that crash programs after they have been released /27/.

EPOC provides its own macros to encapsulate the C++ cast operators. These should be

used in preference to using the C++ operators explicitly. Programs for hardware

running EPOC are compiled mostly using the Gnu C Compiler (GCC). GCC currently

has a poor support for typecasts so in GCC compiles the macros just replace the C++

casts with plain C-style casts. Current EPOC releases do not support Real Time Type

Identification (RTTI) /13/. For this reason the more sophisticated C++ dynamic_cast

operator can not be used. This also disables the use of some design patterns in EPOC

that are based on RTTI /22/.

4.3.6 Resource acquisition

EPOC devices have a limited set of resources and limited performance. It is therefore

crucial that application developers free the resources they use after they are not needed.

Open handles and references cost memory and slow down performance. The operating

system frees some of the resources automatically, but there is always some time gap.

Some resources are not freed until all handles for it have been closed.

For example a thread, even when it has been killed, will not be removed until all open

handles to it have been released. This is because the removal also removes the reason

why it terminated as well as all other information. Therefore, when application

 21

programmer opens handles to threads he must remember to close them too or the

system will start degrading because of “ghost threads”.

4.3.7 Coding Conventions

EPOC has strict coding conventions to ensure software quality and to improve the

readability and understandability /25/ /6/. Class names begin with a letter indicating its

type. T-classes are flat small classes that can be allocated from the stack. Flat means

that their size is constant.

C-classes are compound classes that have two-phase construction because they have to

allocate some memory for their resources. C-classes must all be derived from CBase

class and allocated dynamically from the heap. A C-class destructor must never assume

a full construction. Temporarily created C-classes must be pushed into cleanup-stack if

there is a possibility that the program might exit before the correct deletion of the class.

CThing* temp = CThing::NewL(); // NewL handles construction

CleanupStack::Push(temp);

SomethingL(…);

CleanupStack::PopAndDestroy(); // pops and deletes the temp

M-classes describe only an interface so they can only be used as a reference. Mix-in

classes are not allowed to have any implementation. R-classes are references to EPOC

resources such as fileserver session, threads, handles, etc. R-classes can be allocated

from stack and therefore need no cleanup handling. Most R-classes require a

connection to be opened before operating with the resource and closed after the use.

RFs fsession; // create a handle to fileserver

fsession.Connect(); // open connection, start session

… // use fileserver session

fsession.Close(); // close connection, free resources

 22

Instead of C++ style exception handling, EPOC has a TRAP - Leave exception

handling /26/ /25/. When there happens an error that requires attention, the program

calls User::Leave() method. When a leave occurs the execution of the program

returns to the last TRAP, after which the developer can program the exception handler.

Methods and functions that may cause a leave must have an L as their name postfix.

void DoSomeL(void)

{

User::Leave(0);

}

TRAPD(error, DoSomeL());

If(error)

// handle error situation

The L postfix tells the user of the class that the method does something that might fail

and requires error handling. C postfix at the end of a method tells that the method

leaves something to the cleanup stack, and the user has to remove it from there later. D

postfix after the method name informs that the method deletes the object that it gets as

a parameter.

CThing temp = CThing::NewLC(); // temp is now created and put to

// cleanup stack

… // use temp

ProcessLD(temp); // this may leave so keep temp in cleanup stack

CleanupStack::Pop(); // remove temp from stack since ProcessLD

succeeded

Coding conventions are a very informative way of telling the user about the method

and class behaviour and resource usage inside it. They are also a very effective way of

checking possible errors in a code review. Every EPOC programmer must be aware of

all the conventions because the frameworks use them everywhere. A misunderstood or

misused convention leads into unpredicted behaviour, unstable programs and unusable

interfaces.

 23

5 DESIGN PATTERNS

This chapter describes what design patterns are and how they can be used and

categorized. Different patterns types will be introduced with a few illustrative

examples. Architectural patterns will be visualized with component diagrams. Design

patterns will be presented using a formal notation with UML class diagrams and

sequence diagrams. Most of the design patterns presented here are among the 23 “Gang

of Four” patterns /1/.

5.1 Definition

Design patterns are “descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context” /2, page 3/.

Design pattern tend to be simple, yet effective solutions to problems that arise

repeatedly in object-oriented modeling of software. Design patterns can also be seen as

higher-level reusable building blocks /3/. Design patterns can be general and usable in

various problem domains or they can have a very strict problem domain where they

best fit in. A design pattern rarely solves a design problem on it’s own. Patterns often

need to be modified and specialized to properly fit the software environment and the

problem domain /28/. Patterns also rarely exist alone. Most software architectures /29/

contain pattern systems having patterns co-working and even many patterns merged as

bigger compound patterns. Design patterns are a part of a whole family of software

patterns containing Process Patterns /30/, Analysis Patterns /31/, Architectural Patterns

/29/ /2/ /12/, Design Patterns and much more.

5.2 Categorization

Design patterns can be categorized in many different ways. The categorizations rarely

exclude each others. They often just present the patterns in another perspective. Figure

12 shows three different categorization methods combined into a single table. Patterns

presented in bold text in the table are also discussed in this thesis. Abstract Factory,

Template Method and Iterator can be found in Design Patterns /1/. Another aspect for

 24

iterator can also be found in the C++ Standard Template Library (STL) /32/. The

patterns in Figure 12 are both general and EPOC patterns.

The most common categorization method is the GOF /1/ method, which categorizes

design patterns into three categories by their task in the application. The GOF

categorization is in the horizontal axis of Figure 12. Creational patterns abstract the

object instantiation process, Structural patterns define ways how larger structures are

formed from classes and objects and Behavioral patterns implement algorithms and

assign responsibilities and tasks between classes and objects. Another categorization

method is to divide patterns to static and dynamic structures /33/. The idea behind static

and dynamic division is that static and dynamic modeling of software often happens in

separate phases of the software development.

Figure 12. Pattern categorization.

Another way to categorize patterns is by their scale and abstraction /2/ /12/. The scale

categories are on the top of Figure 12. The highest level of patterns in this

categorization is the architectural patterns. Their task is to support the refinement and

modeling of subsystems and components. The mediate level patterns are the design

patterns help to implement particular design aspects and solve domain specific design

problems. The lowest level of patterns is idioms. Idioms help to implement the

particular design aspects and higher-level patterns. The vertical division on patterns

presented in Figure 12 is not as strict and clear in real life as it may seem. Many

architectural patterns can be considered design patterns and vice versa. The horizontal

 25

division is clearer even though patterns from different categories can be used to solve

similar problems.

5.3 Architectural patterns

Architectural patterns describe the large-scale structures of the software. Architectural

patterns provide a set of subsystems, specify their responsibilities and include rules and

guidelines for organizing the relationships between them. The architectural pattern

presented here can all be found in Pattern Oriented Software Architecture /2/.

Software developer very seldom has the privilege to select the architecture for the

design; it is defined by the business models and the platform that is used. Design tools

and other environmental factors can also specify the architecture or some of its

restrictions.

The meaning of architectural patterns in the design pattern context is primarily to

understand the higher-level abstractions and the way that applications are meant to be

built within a specific environment. The architectural patterns often define the lower

level design patterns or lead to the selection of them. Architectural patterns are the

basis for frameworks in the software development environment and frameworks define

the individual patterns to be used in a specific task on an application.

5.3.1 Layers

Layers architectural pattern describes a design that is divided into several layers on top

of each other. Each layer has its own tasks in the whole system and interfaces to the

neighboring layers.

Most modern interactive operating systems are based on layers. The highest layer is the

user’s interface to the system and the lowest level is the kernel and the device drivers.

In between there are several layers defined for specific tasks like event handling,

 26

drawing, file managing, etc. The application programmer chooses the level of detail he

wants to deal with and designs the application using the services provided in that layer.

Most layered systems require the application to interact with several layers and the

more freedom the programmer needs the lower layers he must use.

Data communication protocols like TCP/IP are usually designed as a layered system.

Operating systems also use layering to improve modularity.

Structure

The layers architectural pattern can be implemented in several ways. The best-known

solution is the top-down approach where the client issues a request from layer N. If the

layer N can’t carry out the request, it passes it to the N-1 layer. Then the N-1 layer tries

to serve the request and calls N-2 and so forth. When the correct layer is found to serve

the request, the result is carried back to the client through the layers.

Another solution is that two stacks of N layers are communicating with each other. This

is a well-known scenario from communication protocols, where the stacks are known

as protocol stacks. The client request moves down from layer N to layer one where it is

sent to the other stack and upwards on the corresponding layer N there.

Consequences

Individual layers can be reused if they are well defined and well documented.

Dependencies in layers are kept local inside one layer. A layered architecture is very

modular and can be tested individually on each layer. Layered architectures also have

good portability and scalability. Typical upgrades and modifications of the architecture

require changes only in individual layers.

The biggest disadvantage of layered architecture is that when a big architectural

requirement changes the modification cascades through all layers, it thus creates

enormous amount of work. However, big changes happen very rarely and they can be

 27

avoided with careful planning and design. A layered architecture has more interfaces

and is more complex than a monolith system, and therefore suffers somewhat in

efficiency.

5.3.2 Model-View-Controller

Model-View-Controller (MVC) pattern is perhaps the most varied architectural pattern.

It is the basis for most interactive user interfaces. Model contains the data and the

program logic, view describes how it will be represented to the user and controller

handles user inputs and commands. MVC pattern enables quite fluent porting of

existing systems to new environments. Most of the modern operating systems support

MVC patterns in framework level so the only thing needed for implementation is a

group of adapters to overcome the platform specific implementation problems. The

MVC pattern divides an interactive application into three components /2/. The structure

and relations between the components in the MVC pattern is shown in Figure 13.

Model View

Controller

Presents

Update Update

Figure 13. Model - View – Controller architectural pattern.

The model is an independent entity. The model encapsulates the application data.

The view uses the model. Its task is to represent the data by drawing it to the screen or

some other viewing device. The controller coordinates the model and view updates.

 28

Consequences

Model-view-controller architecture separates the model from its presentations and

therefore provides the possibility for multiple views of the same model. MVC pattern

enables easy changing and customization of the ‘look and feel’ since the user interface

is separated from general application structure. The separation also makes it easy to

port the application to a new platform. Only the user-interface components need

rewriting. If the view part of the application is built and designed properly, the porting

only requires a few adapters to be written. Adapter design pattern is described in

Chapter 5.5.1.

5.3.3 Microkernel

The microkernel architectural pattern introduces a software system, which can adapt to

changing system requirements and environments. Microkernel separates minimal

functional core from extended functionalities and customer-specific parts. A

microkernel design pattern greatly improves the portability of the platform. Modularity

of the microkernel makes upgrading and customizing the platform easier than monolith

architectures.

Structure

Figure 14 presents the five main modules of the microkernel architecture.

 29

Microkernel Internal serversExternal servers

ClientAdapter

Calls

Figure 14. Microkernel architectural pattern.

The participating components are:

• Microkernel

• Internal servers

• External servers

• Adapters

• Clients

Microkernel component implements atomic services that are needed for all applications

throughout the system. The microkernel has the functionality for inter-process

communications. Microkernel also maintains system wide resources and controls and

coordinates the access to them. Core functionalities that cannot be implemented within

the kernel without unnecessarily increasing its size and complexity are separated into

internal servers.

Internal servers extend the functionalities of the microkernel. Internal servers can for

example handle graphics and storage media. Internal servers can have their own

processes or they can be shared Dynamic Link Libraries (DLL) loaded inside the

kernel.

External servers implement their own view of the underlying microkernel. External

servers use the services of the microkernel and internal servers to provide their own

services for the clients. External servers run in their own processes.

 30

A client is the application that is associated with exactly one external server. The client

uses the communication services provided by the microkernel to communicate with the

server it is associated with. The client provides the application-programming interface

(API) for using the external server.

The role of the adapter is to provide a transparent interface for clients to communicate

with external servers. Adapter hides the system dependencies such as communication

facilities from the client. Adapter thus improves the scalability and changeability of the

system. The adapter enables the servers and clients to be distributed over a network

Consequences

The microkernel pattern improves the system portability since in most cases you only

need to modify hardware dependent parts when migrating the architecture to a new

hardware. The external server and client code can remain the same.

The biggest advantages of the microkernel are the flexibility and extensibility. If a new

device is added to the system, all that has to be done is to write a new server for it. No

modification to existing client, server or kernel code is required.

Compared to monolith architectures the microkernel system requires much more inter-

process communication inside one application execution because of the calls to internal

and external servers. If the system is not optimized for communication and context-

switch the slow execution speed of applications is the price we have to pay for

flexibility and extensibility.

The design and implementation of the microkernel -based system is far more complex

than of a monolith system.

 31

5.4 Creational patterns

Creational patterns encapsulate knowledge about the concrete objects the system uses

and the way in which they are instantiated. The rest of the systems use the objects via

the abstract interfaces and have no special knowledge about the concretion. Depending

on abstraction rather that concretion is also the goal of the DIP principle so using

creational design patterns greatly improves the flexibility of the design.

Creational patterns are closely interrelated as they all deal with object instantiation. The

biggest difference between different creational patterns is the ownership of the created

instances.

5.4.1 Factory Method

Factory method defines an interface for creating an object, but letting subclasses decide

which concrete classes to instantiate. Factory method works as an abstract interface

between the client and the concrete objects. A variation of factory method is the

parameterized factory method, where the parameter defines which concrete class to

create. This is really useful when the objects to be created are defined in the run-time.

Structure

Figure 15 shows the structure of generic factory method pattern. Client depends on the

abstract creator and product classes. Creator and concrete creator classes may also

implement template method design pattern /1/.

 32

ConcreteProduct
ConcreteCreator

FactoryMethod()

Creator

<<abstract>> FactoryMethod()

Product

Client

product = FactoryMethod()

return new concreteproduct()

Figure 15. Factory method design pattern.

Participants

• Product

o The abstract interface of objects that the factory method creates.

• Concrete product

o The concrete object that the concrete factory instantiates.

• Creator

o The abstract interface for creating the products. Introduces the factory

method prototype.

o May contain a default implementation of the object creation.

• Concrete creator

o Instantiates the concrete products. Implements the factory method,

which returns the concrete product.

Collaborations

Creator depends on its subclasses to define the factory method so that it returns the

appropriate concrete product. The client uses the abstract creator class to get product

 33

instances. Figure 16 shows the sequence where client creates a product through factory

method.

Concrete Factory :
ConcreteCreator

User : Client Factory :
Creator

Product :
Product

Concrete Product :
ConcreteProduct

FactoryMethod()

FactoryMethod()

New()

Operate

Figure 16. Factory Method Sequence Diagram.

Consequences

Factory method eliminates the need to bind application specific classes everywhere into

application code. Therefore, the decision of the actual concrete classes can change later

in the application design or even in runtime. The design is also easier to divide into

smaller parts when the implementer of the factory can work at the same time as the

users of the factory since they both have abstract interfaces to rely on.

Factory method provides a very clever way to centralize object creation. Factory

method makes it possible to design systems that are very reusable from the core

implementation. By changing the concrete factory class, the same algorithms for

different problem domains can be used. Factory method is very often used with other

patterns to form a pattern system.

Following the OCP and DIP design principles the software should be designed relying

on abstraction and keeping the code open for expansion and closed from modification.

With the aid of factory method, it is easy to obtain both of those goals. The design can

 34

be expanded by adding new concrete products and modifying only the factory. The

users of the factory need no modification since they rely on the abstract product

interface. Even the modification of an existing factory can be avoided by inheriting a

new factory and only expanding the factory method with support for new concrete

products.

5.4.2 Singleton

Singleton is probably the most discussed, argued and varied design pattern. The idea of

the singleton design pattern is to guarantee that an object has one and only one

instance. Usually the instance is also made globally accessible.

Singleton pattern can also be used to guarantee that an object has a limited amount of

instances. This feature is obtained using the reference counting idiom. The

implementation of singleton pattern varies in different programming languages and

environments and therefore singleton is often considered more an idiom than a design

pattern.

Structure

Typical structure of singleton design pattern is presented in Figure 17. Client uses

singleton as a normal instance of the actual class. Singleton is therefore transparent for

the users.

Singleton

<<static>> uniqueinstance
singletondata

<<static>> Instance()
Operation()
GetSingletonData()

return uniqueinstance

Figure 17. Singleton design pattern.

 35

Participants

• Singleton

o Defines the interface for clients to globally access the unique instance of

singleton.

o May be responsible for creating and destroying its own unique instance.

Collaborations

Clients can access the singleton instance only through singletons interface. Singleton

can also control the access to the instance. Singleton can be seen as a proxy for the real

data or object.

Implementation

The implementation of the singleton pattern requires either a global registry, which

keeps track on the allocated singletons, or a class specific static variable that points to

the sole instance. In most environments this does not cause any problems, but in EPOC

writeable static data is forbidden in any DLLs including applications due to

architectural reasons discussed more deeply in Chapter 6.2. This makes it difficult to

implement an application type independent singleton in EPOC and the use of singleton

should therefore be avoided in general EPOC programs.

Consequences

Singleton provides controlled access to the sole instance of the desired resource.

Singleton provides global access to a single, perhaps limited resource. Singleton often

has to take care of allocating the instance when it is referenced for the first time and to

deallocate it when the program is finished.

 36

5.5 Structural Patterns

Structural patterns compose larger structures from classes and objects. Structural class

patterns use inheritance to compose interfaces or implementations. Structural object

patterns describe ways to compose objects in order to realize new functionality.

5.5.1 Adapter

Adapter is one of the most used design patterns in software design. However, most

adapters in existing systems are added to the system in implementation phase rather

than in design time. The reason for this is that the application often has to be adapted to

changing requirements and therefore adapters have to be added to keep the structure of

the original design. Another name for adapter design pattern is wrapper as it wraps

existing functionality to work in new environments. Adapter is a very essential pattern

when designing portable applications and porting existing applications.

Structure

Adapter can be implemented in two ways: either as a class adapter or as an object

adapter. The class diagram of a class adapter is shown in Figure 18. The class adapter

uses inheritance to obtain adaptee’s behavior.

Client Target

<<virtual>> Request()

Adaptee

SpecificRequest()

Adapter

Request()
SpecificRequest()

Spec ificRequest()

Figure 18. Class adapter design pattern.

 37

Object adapter is presented in Figure 19. Object adapter uses aggregation to enable

message transforming into adaptee’s interface.

Adaptee->SpecificRequest()

Adaptee

SpecificRequest()

Adapter

Request()
SpecificRequest()

Target

<<virtual>> Request()

Client

Figure 19. Object adapter design pattern.

Participants

• Target

o Defines the interface for this domain.

• Client

o Collaborates with objects using the target interface.

• Adoptee

o Defines an existing interface that needs adapting.

• Adapter

o Adapts the existing adaptee’s interface to the new domain.

Collaborations

Client uses the adapter via the interface that target defines. Adapter translates the client

calls to corresponding adaptee’s methods. Adapter is transparent for the client.

Consequences

 38

Class adapter adapts a concrete adoptee class to target since the adapter is directly

inherited from the adoptee via private inheritance. This prevents the use of adaptee’s

subclasses as adaptee without rewriting the adapter.

Class adapter also enables adapter to override adaptee’s behavior since adapter is a

subclass of adoptee. Class adapter is one concrete object and requires no pointers or

references to objects elsewhere. Class adapter can also be a two-way adapter when it

inherits from two adaptees. Such adapters provide transparency and can be used in both

adaptees’ environments.

Object adapter enables single adapter class to be used with all adoptee type objects. The

adapter can also add functionality to all adaptees at once. However, the object adapter

has no way to override the adaptee’s behavior.

5.5.2 State

The intent of the state pattern is to provide an entity the possibility to alter its behavior

when its internal state changes /1/. State pattern also lets us vary the state based

behavior by modifying the state transitions and reuse the behavior separately.

Structure

Figure 20 shows the structure of state pattern. The actual amount of concrete state

subclasses may vary.

 39

Concrete State1

<<virtual>> Handle()

Concrete State2

<<virtual>> Handle()

State

<<abstract>> Handle()

Context

Request()

State =
State->Handle()

Figure 20. State design pattern.

The state pattern describes a context, a state machine, which defines the entity that has

state based behavior. It also provides a uniform interface for the states. The interface is

abstract in most cases but can also contain some state shared behavior or data. The

transition from one state to another is usually defined inside the concrete states, but it

can also be defined inside the state machine. Declaring it inside the states decreases the

need to modify the context when state transitions are modified or new states are added.

Participants

• Context

o Defines the state machine.

• State

o Defines a uniform interface for the concrete states.

• Concrete state

o Implement the state based behavior.

Collaborations

Figure 21 shows the sequence diagram of a state change in state design pattern.

 40

User : Client State machine :
Context

Current State :
State

Init : Concrete
State1

Run : Concrete
State2

Request()
Handle() Handle()

Change state()

Request()
Handle()

Handle()

Figure 21. State Sequence Diagram.

The state change is invisible for the user; it has the same interface even though the

inner functionality of the state machine changes.

Consequences

State design pattern enables us to design very flexible and expandable solutions. The

state transition can be defined by the state subclasses or by the state machine itself. The

difficulty in implementing the state pattern arises when all the states use the same

resources. The resources are often defined in the state machine and the subclasses must

get a reference to the owning class, which is not a very elegant solution.

5.6 Behavioral patterns

Behavioral patterns describe object communication patterns, algorithms and their

implementation and control flow handling.

 41

5.6.1 Observer

Observer defines a one-to-many dependency between collaborating objects. Observer

enables the partitioning of a system into observers that react when their subjects change

state. Observer is used in many event-based systems to separate the event source from

the event monitors.

Structure

Figure 22 shows the structure of observer design pattern. The concrete observers attach

to the subject so that the subject knows which observers to notify when its state

changes.

Concrete Subject

<<virtual>> Attach()
<<virtual>> Detach()

Concrete Observer

<<virtual>> Update()

Observer

<<abstract>> Update()

Subject

<<abstract>> Attach()
<<abstract>> Detach()
<<virtual>> Notify()

Figure 22. Observer design pattern.

Participants

• Subject

o Defines the interface for the observers to attach and detach themselves

for a subject.

• Concrete subject

o Implements the list of interested observers and the notification logic.

 42

• Observer

o Defines the abstract update method that the subject calls when it changes

state.

• Concrete observer

o Implements the concrete update method for the subject to call.

Collaborations

Observers register themselves to the subjects they are interested in. A subject may have

multiple observers and an observer may listen to several subjects. The update method

may contain a flag indicating which subject changed state in case of many-to-many

relationship.

Consequences

The problem with standard observer pattern is that type information gets lost if the

subject or observer hierarchies are derived /28/. A single observer does not know which

subject sub-class changed state. There are however several special design patterns that

solve the problem /22/. Nevertheless, some of them are not applicable for EPOC

environment because they require RTTI to work.

 43

6 EPOC PATTERNS

EPOC is a fully object oriented operating system and is designed with great care on

modularity and flexibility. This chapter introduces a few of those architectural and

design patterns and idioms. Some of the patterns presented here were used in the

implementation phase of this thesis and they are also discussed in Chapter 7.

6.1 System architecture

EPOC is built to suit in many different types of small devices. This suitability requires

modularity and flexibility. Those characteristics are easily achieved with layering.

EPOC system architecture is a typical example of layers architectural pattern as shown

in Figure 23. Figure 23 is a slightly modified version of the original diagram presented

in Professional Symbian Programming /7/.

Figure 23. EPOC System Architecture.

The layered architecture makes EPOC a very modular operating system. Core EPOC

system includes the basic types like descriptors, exception and leave mechanism,

processes, thread handling, files, streams, stores, etc. They are the same for all different

EPOC implementations. Active objects and scheduler are the basis for asynchronous

 44

processing. Bitmapped graphics component contains generic bitmap handling and the

ability to draw or print into real devices. Application infrastructure handles application

launching, file associations and other supporting actions. COMMS protocol handles the

communications and support for protocols. CONE is the graphical control structure of

EPOC providing the abstract controls and the framework. UI level specifies the look

and feel of the user interface and provides the concrete controls to implement it. In

EPOC release 5 the UI level is called EIKON.

Applications are built on top of these layers using the services of several layers. Simple

applications only need to deal with the topmost layers, mostly EIKON and CONE.

Complex applications like client-server applications need to get deep inside the core

layer and to the kernel services.

The EPOC graphics architecture is also a layered structure. Figure 24 shows the

layering of EPOC release 5 graphics system.

Figure 24. EPOC Graphics Architecture.

At the bottom is the Graphics Device Interface (GDI), which defines the drawing

primitives and provides device independent drawing. Font and bitmap server provides

the system with fonts and bitmap handling functions. Window server manages screen,

pointer and keyboard on behalf of all GUI applications within the system. EIKON

provides reusable controls, menus, buttons, dialogs, etc.

 45

A simple graphic method call in the application level derives through the layers into

several calls in the GDI level. However, the user has the freedom of choosing the level

of detail and abstraction by selecting the appropriate layers to use to get the most

flexible and efficient solution for his graphical needs.

EPOC Kernel is an example of the microkernel architectural pattern. Figure 25 shows

the fact that kernel servers are run in user mode. The kernel server runs privileged and

is the highest priority thread in the system. The vertical lines in the Figure 25 show

different threads and the dashed line indicates the privilege boundary.

Figure 25. EPOC Kernel and privilege boundaries.

As Figure 25 shows, the kernel executive runs privileged code in the context of the

thread that’s running. Kernel executive code can therefore be pre-empted by higher

priority user-mode threads or the kernel server.

6.2 Application architecture

Considered from CPU side of view, all compiled C++ programs are just series of

binary instructions. In order to manage those binaries efficiently they must be

packaged. The different packages EPOC supports are:

 46

• Exe programs (EXE).

• Dynamic link libraries (DLL).

Both of these types contain executable program code. The difference between an EXE

and a DLL in EPOC is that an EXE is run separately and a DLL is dynamically

attached into the program that loads it. DLLs are further divided into separate types.

Two most important DLL types are shared library DLLs and polymorphic DLLs.

Shared library DLLs provide a fixed API that has several entry points that the user can

call. Programs that use such DLLs are marked so that when they are loaded the system

checks if the DLL is already loaded, and if not, the system automatically loads and

attaches it. Polymorphic DLLs implement an abstract API such as a device driver or a

GUI application. In EPOC, polymorphic DLLs usually have only a single entry point,

which allocates and constructs a derived class of some base class associated with that

DLL. EIKON applications, for example, are polymorphic DLLs that have an entry

point which instantiates the application class that is derived from the CEikApplication

base class. Polymorphic DLLs usually have a unique postfix in their name to separate

them from normal DLLs, for example .app for EIKON applications and .prn for printer

drivers.

An executable program has three types of binary data: program data, read-only static

data and read/write static data. EXE programs in EPOC are not shared so every time

such program is run it gets new areas of memory allocated for all those three types of

data. The only exceptions to that are EXEs that reside in ROM. ROM –based EXEs

allocate RAM only for read/write program data; the program code and read-only data

are read directly from ROM. This is an optimization to save expensive RAM and

improve efficiency; ROM –based code is executed in place so no copying is required.

Dynamically loaded link libraries are shared. When a DLL is loaded for the first time, it

is reallocated to a particular address. When a second thread requires the same DLL, it is

attached to the same copy of the code; no loading is required. A DLL resides in the

same memory address in all threads that are using it. EPOC maintains reference counts,

 47

so that the DLL is unloaded when no threads are using it. Because EPOC DLLs are

shared, they cannot have writeable static data. This applies to all EPOC DLLs including

GUI applications. Writeable static data is not supported because it brings so little

benefit in design considering the memory loss and possible error situations it causes /7,

p.55/. Static data can be avoided with proper design. In many cases, the design without

static data is more robust and modular.

EPOC applications are typically divided into engine, UI, and view components, which

are dependent on but logically separate from each other. This improves the modularity

and reusability of EPOC applications. The engine contains most of the application logic

and it can be shared among applications. The engine is therefore typically packaged as

a DLL. This also enables the development of the engine to be easily separated from the

user interface and the look and feel design. The EIKON application is a polymorphic

DLL, which has only one entry point.

6.3 Active objects

Active objects are an EPOC method to handle asynchronous requests in a modular and

effective way. Asynchronous requests mechanism has two main parts: an indicator for

the request completion and a semaphore used for informing the thread about the

request. Active object design pattern enhances concurrency and simplifies

synchronized access to resources /12/.

An asynchronous request status indicates the completion status of a request to a service

provider. When an application running in a thread makes a request, it passes an

asynchronous request status as a parameter. When the provider completes the request, it

stores a success or error code in the request status. Asynchronous request is always

between two threads of execution; the requesting thread and the serving thread.

A thread request semaphore is the means by which a provider signals a requester that it

has completed a request. The requester can then determine which request has

completed, and call the appropriate function to handle the completion of the request.

 48

Static user class methods provide the API to signal a thread request semaphore and to

wait until it has been signaled.

An active object encapsulates the general behavior of making requests to asynchronous

service providers, and handling the completion of requests. A particular asynchronous

service provider typically supplies active object based classes as interfaces by which

clients access them.

A thread that uses asynchronous services must have a main loop that waits on the

thread’s request semaphore for any outstanding requests to complete. The active

scheduler encapsulates this wait loop. The main loop of an active object –based

program is built around CActiveScheduler::Start() and CActiveScheduler::Stop() static

function calls. All functionality requesting and receiving the actual requests is

encapsulated within the active objects and their observers.

An active scheduler is provided by the application architecture for all Graphical User

Interface (GUI) programs. A high-level view of a GUI application is therefore a set of

active objects that handle request completion from events fed to it by its active

scheduler. Active objects are used throughout the EPOC. Active objects are used in

user interfaces for event handling, communication protocols to handle asynchronous

requests, single-thread multitasking and delayed function calls. Active object

framework is a good example of the template method –design pattern /1, p 325/. The

CActive –base class defines a skeleton of the functionality, which is then extended in

the derived concrete class. An active object is often used to control some other object

structure using the adapter design pattern presented in Chapter 5.5.1.

6.4 EIKON

EIKON applications are typically implemented using the Model-View-Controller

architectural pattern presented in Chapter 5.3.2. The MVC pattern enables easy porting

of applications between the three different DFRDs. They all have the same structure for

UI and event handling; only some DFRD specific features change.

 49

Every EIKON application is a DLL. The application is started by apprun.exe, which

loads and attaches it. Then the framework checks that the application has correct UID.

Next, the framework calls the first ordinal on the DLL, which must return an object of a

class derived from CApaApplication. After instantiating the application, the framework

calls application class’s CreateDocumentL method that instantiates the document.

Document class is derived from CEikDocument base class, which implements some

base functionality for document handling. The document class in EIKON application

then creates the AppUI, which is derived from CEikAppUI class and does the event

handling. AppUI then instantiates AppView, that handles the viewing of the document

to the user.

The document class in EPOC application is the model in the MVC pattern. The

document class presents the data and also has a reference to the engine that in most

cases handles the data modification algorithms. AppView is the view in the MVC

pattern. The controller handles updates to both the model and the view so in many

cases it is programmed as a separate class or into the application class.

The MVC pattern can become particularly blurred in some EPOC applications, because

one of the three parts is often missing or two aspects are combined, for example view

and controller in smaller applications. However, the MVC architecture is very effective

in use and gives so many benefits that it is profitable to use it. The MVC structure

enables easy porting of EPOC applications between DRFDs and also swift change of

application’s Look and Feel (LAF).

6.5 EPOC Idioms

6.5.1 Construction

EPOC has very strict definitions of how to instantiate objects and how to allocate

memory. That is due to the fact that the device is practically never turned off and there

is a limited amount of memory so one cannot afford allocating much memory and most

certainly cant afford loosing any of it with poorly handled memory allocation. C++ has

 50

some weak points in its constructor mechanism if the programmer is not very careful. It

is possible to cause memory leaks by allocating memory in class constructor.

EPOC uses two styles of object construction. Normal constructor is allowed only for T

and R –type objects that are always used as static objects. Objects that reserve some

additional memory for their resources are constructed in two phases. Those classes are

always separated from others with the C –prefix and they must be derived from CBase.

First phase constructor is a normal C++ constructor. Second phase constructor is a class

method usually named as ConstructL(). Two-phase construction details are usually

hidden from the user so that the whole construction is encapsulated inside one static

class method called NewL(). NewL method calls first the normal C++ constructor and

then stores the pointer to Cleanup stack. Then it calls the second phase construction and

after it succeeds it returns the pointer to the newly created object. If the second phase

construction fails the ConstructL leaves, the pointer to the class itself is safe in the

cleanup stack, and no memory leak occurs since the partly created object can be deleted

and memory released.

The construction of a typical C-class looks like this:

class CThing : public CBase

{

public: // Construct / destruct

static CThing* NewL();

virtual ~CThing();

protected: // Construct / destruct

CThing();

ConstructL();

};

The user calls NewL() to instantiate that class and normal destructor to delete the

instances. The real construction methods are protected so that the class can be derived,

but the user doesn’t have access to them.

 51

6.5.2 Thin templates

Thin templates are an EPOC idiom to avoid code duplication. In thin template pattern,

all functionality is provided in a non-typed base class.

class CArrayFixBase

{

IMPORT_C const TAny* At(TInt aIndex) const;

};

This base class has the real code so it exists only once. This code is exported from the

DLL it resides in. The base class may contain an arbitrary amount of code.

A derived template class is implemented as follows:

class CArrayFix<T> : public CArrayFixBase

{

inline const T& At(TInt aIndex) const

{

return(*((const T *)CArrayFixBase::At(anIndex)));

}

};

Because this class uses only inline functions, it generates no extra code. However,

because the casting is encapsulated in the inline function, the class is type safe to its

users. The derived template class is thin: it generates no new code at all. The user uses

the templates as normal template classes. EPOC uses thin templates for example in

containers. The details of the idiom are hidden from the application programmer so

they can be used like normal C++ STL containers /32/.

Example of EPOC container usage:

CArrayPtrSeg<TInt> avararray(16);

CArrayPtrSeg<TBool> anotherarray(32);

avararray.Insert(TInt(20)); // works fine

 52

anotherarray.Insert(TInt(-1)); // does not compile, int can’t

// go to boolean array

Normal template use would generate separate code for the integer array and Boolean

array in the example. With thin template pattern program code exists only once, but

still we have type safety for all array types, like integer and Boolean in the example.

 53

7 EPOC APPLICATION DESIGN USING DESIGN

PATTERNS

7.1 Introduction

In this chapter, the use of design patterns and EPOC patterns is illustrated with a real

world example of application design. The example starts with application description.

The work starts with problem domain analysis, which gives the system frameworks and

application architecture to start the design. After analysis and requirements we get the

architecture and base patterns we are going to use in the application. To that core

design, we start adding the features and the patterns and detailed design that

implements them.

7.2 Example application

The example application is a non-interactive application called AppTest. AppTest

launches another application and tests it by various means. AppTest has no user

interface and it is controlled by text scripts. AppTest is a replacement for the system’s

apprun.exe, and it takes care of all the things that launching an application requires.

7.2.1 Purpose

The purpose of AppTest is to automate feature testing of UI-based applications. Feature

testing is also known as black box testing. The term indicates that the application is

tested from outside and no modifications are made to the application while it is tested.

Black box testing is useful since it tries to do all the things from the same perspective

the actual user is using the application. The difficulty in black box testing is that it is

impossible to get adequate coverage doing the test manually. Automated testing

enables unlimited regression and excellent coverage since the automated test

application can permutate through all possible event sequences a UI has. Therefore, an

 54

application to automate black box testing is very important to software development

and also improves the quality of testing tremendously.

7.2.2 Features

For a UI-based application, there are several things to test. The basic environmental

factors to test are various Out-Of-Memory (OOM) and Out-Of-Resources (OOR)

situations. The testing application has to be capable of sending UI events to the tested

application to simulate the user using the application. AppTest also tries to monitor the

state of the tested application and observe if the tested application hangs or exits

abnormally. AppTest writes a log of test procedure and of the tested application’s

behavior.

7.3 Requirements

Requirements for AppTest are easily derived from its features. A certain set of

requirements also comes from the EPOC environment and its properties. The software

development process also sets some boundaries and requirements. Some of the EPOC

requirements and boundaries are presented in Chapters 4.3 and 6.

AppTest is used to test another application so obviously it must be very stable and

affect the operating system and resources as little as possible. If AppTest itself would

be very resource consuming it would most certainly affect the tested application and

would either lead to abnormal behavior of the tested application or misinterpreted test

results.

The used software process will be incremental and iterative. Each increment adds some

functionality to a working application from the previous increment. The design must be

as flexible as possible so that features can be added, modified and removed at any

phase of the development.

 55

At some point, a user interface might be added to improve usability. This forces the

design to be modular and not strictly tied to the environment. The design should also

provide reusable classes and components for future use and development. At the end of

the requirement analysis, we have a set of features we want to include in the

application. We also have to check that the features are not in contradiction against

each other.

7.4 Analysis

The requirements set quite strict limits for the analysis and design of the application.

On the other hand, EPOC has also limitations and restrictions that we have to deal with.

Before starting to analyze the problem domain in class or pattern level, we have to

make some architectural decisions. The architecture we choose to use is very often

dictated by the environment and the size and type of the application we are building.

The analysis on the application domain is an iterative process illustrated in Figure 26.

First, we prioritize and categorize the requirements. Then we take a requirement, check

out the environment restrictions, design restrictions and if it passes the restriction

analysis then we try to find a pattern that best encapsulates that behavior. After that, we

add that pattern to our skeleton design and check it’s effect on the whole design. A

pattern may solve several requirements at once or make some requirements impossible

to fit in the design. A pattern also adds, removes and modifies the restrictions for

further features.

 56

Figure 26. Pattern finding cycle.

AppTest does not have a UI nor does it use any other external modules besides the

EPOC kernel. All parameters are read from configuration scripts. This enables us to

encapsulate the whole functionality inside one executable.

AppTest has to monitor events that happen asynchronously on the other application.

EPOC has a few different ways to deal with asynchronous requests and services. The

possibilities are to use wait-loop programming, callback functions, or active objects.

The most effective and modular solution is to use active objects and active scheduler.

The use of active object framework forces our application skeleton into a certain form

and also sets requirements for all other features we are to implement into our

application.

We have a basic requirement that our application has to be aware about the state of the

other application that is under test. AppTest has to monitor certain flags and incidents

to be aware about the state of the application. The incidents that cause the state changes

vary in different states so the behavior of AppTest must also vary. RThread is the main

class that is used to analyze, monitor and control the application.

 57

AppTest will monitor another application that is executed in a separate thread. EPOC

has an API for monitoring the state of a thread. This API has a class RUndertaker that

we are going to use to inform us that the tested application thread has exited. During

the automated test, the tested application may end up in a deadlock for some reason.

Therefore we have to instantiate a timer that stops the test and kills the application if it

has hung. RTimer is a basic EPOC timer class that can be used for this.

To do the actual black box testing we need to send UI events to the tested application.

The sending is done according to a schedule that is recorded from the actual use of the

tested application. To play the recorded sequence, we need a timer and some

framework dependent classes to send the events of different type via proper interfaces.

The decision to use Active scheduler and active objects as a basis for the application

forces us to encapsulate those R-classes inside active objects so we will have to define

corresponding C-classes derived from CActive.

7.4.1 Selecting patterns

The functionality of AppTest changes as a function of its state. This kind of behavior is

best implemented by using the state design pattern. State design pattern’s intention is to

allow the change of behavior when internal state changes. We have several phases in

the application that we are trying to monitor and several different actions to take in

each phase. In the beginning of the development we are also not sure that how many

phases the tested application has in its lifecycle because we are not sure how deep in

detail we can monitor the tested application through EPOC kernel APIs. State pattern

as well enables easy addition of new states without breaking down the existing code.

State also fulfills the OCP design principle discussed in Chapter 4.2.1. We program the

states we know for sure, which are initialization, running and terminating. If we later

find out that we can monitor the application more in detail, we can add new states

without having to change the behavior of existing states.

 58

The actions in different phases are done by CActive -based active objects described in

the previous chapter. To implement asynchronous services provided by R –classes we

need to adapt them to the active object framework. Adapter design pattern transforms

existing functionality into a new interface or environment. Adapter enables us to wrap

the existing R –class functionality into more robust and intelligent active object

framework without having to write enormous amounts of new code.

The application has several active objects and several objects that are interested in their

state changes externally. Observer design pattern enables objects to inform other

objects about their state changes. Observer pattern also allows us to vary the observers

of certain subjects in run time, which is quite crucial when we have different subjects

active in different states of the program run.

7.5 Design

From the analysis phase, we have the main design patterns and the skeleton of our

design. The application will have its main loop around the active scheduler and the

state design pattern. The main actors in the application will be the active objects. The

states form an asynchronous state machine, which changes state as a function of active

objects. The active objects are the subjects for states and the states work as observers to

active object’s activity.

7.5.1 Adapter

We need to adapt R –classes into the active object framework. This is done using the

adapter pattern presented in Chapter 5.5.1. We use object adapters since R –classes are

meant to be used as references, not derived. CActiveScheduler is the user, CActive is

the target class, CdUndertaker is the adapter and RUndertaker is the adoptee.

CdUndertaker has similar structure. Figure 27 shows the CdUndertaker

implementation of the adapter design pattern.

 59

CdUndertaker

S tart()
<<virtua l>> RunL()
<<virtua l>> RunError()
<<virtua l>> DoCancel()

RUndertaker

Create()
<<const>> Logon()
<<const>> LogonCancel()

CActive

SetActive()
Cancel()
<<abstract>> RunL()
<<virtua l>> RunError()
<<abstract>> DoCancel()

CA ctiveScheduler

<<static>> Add()

UserClass

Figure 27. Adapter Design Pattern in AppTest.

7.5.2 State

State is used to improve flexibility of our design and to enable later additions or

changes to the monitoring logic. The state machine is implemented into CdAppTester

class. TState is the abstract base that defines the interface and contains the reference to

the state machine represented by the CdAppTester. Concrete state classes TStateInit,

TStateRun and TStateTerminate only add their own implementations for the EnterL(),

Continue() and Cancel() methods. EnterL is called when the state is entered and it

initializes the asynchronous requests the state uses. Continue is called when some of

the asynchronous request that the active states EnterL made is served. Continue returns

the reference to the next active state so that the state machine proceeds. Active states

Cancel gets called if the user wants to stop the state machine. In the beginning the

TStateInit is the active state so its EnterL is called. When one of the active requests it

makes is served, it returns the next active state in Continue. AppTest implementation of

state pattern is shown in Figure 28.

 60

CdAppTester

WatchThread()

TState

<<abstract>> EnterL()
<<abstract>> Continue()
<<abstract>> Cancel()

TStateInit

<<virtua l>> EnterL()
<<virtua l>> Continue()
<<virtua l>> Cancel()

TStateRun

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()

TStateTerminate

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()

Figure 28. State Design Pattern in AppTest.

7.5.3 Observer

Observer pattern is used to map the many-to-many relationship between different states

and different active objects. Each state may have several active objects making requests

and when any of the requests is fulfilled, the calling state must be informed. Observer

pattern makes it fairly easy to implement this behavior. The state classes are derived

from the observer interface and the active objects from the subject interface. The

subjects keep track on the active observers registered to them and notify them when

their inner state changes. When CdGrimreaper for example activates, it informs the

TStateRun and the TStateRun can move the state machine into next active state, which

in this case would be TStateTerminate. TdMessage is used to retain the information

about the subject that was activated. This is done with a flag object because EPOC does

not have RTTI and does not therefore support dynamic determination of the actual

subclass as discussed in Chapter 5.6.1. The use of observer in AppTest is shown in

Figure 29.

 61

MdSubject

<<abstract>> Attach()
<<abstract>> Detach()
<<abstract>> Notify()

TdMessage

MdObserver

<<abstract>> Update()
<<abstract>> Error()

CdGrimReaper

<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Notify()

TStateRun

<<virtual>> Update()
<<virtual>> Error()

Figure 29. Observer Design Pattern in AppTest.

7.5.4 Factory Method

To send the events we need a RTimer-based object that can play different types of

events. The easiest way is to define an abstract base class for events and to implement

an active object that adapts RTimer into the active scheduler. We also need to separate

the creation of the different concrete event types from the playback. Factory method is

a good choice when it is needed to encapsulate the instantiation of the concrete types.

Factory method also allows us to add new event types later without changing the

CdEventPlayer class or any its dependent. This clearly adds expandability and makes

the design follow the OCP design principle. Figure 30 shows the factory method used

in AppTest.

 62

MTestEvent

<<abstract>> ActL()
<<abstract>> InternalizeL()

CdKeyEvent

<<virtual>> ActL()
<<virtual>> InternalizeL()

TdEventFactory

ExtractEventL()

CdEventPlayer

Start()
Cancel()

UserClass

Figure 30. Factory Method Design Pattern in AppTest.

7.5.5 Singleton

The application has several services that are needed globally throughout the

application. Since the application is first built as an EXE without a UI, it is possible to

use Singleton pattern to enable global access to those resources. The singleton can be

implemented either by using normal form /1//16/ or by a more convenient template

based solution /28/. The template version of singleton can be seen in the top right

corner of the final design of the AppTest in Figure 31.With singleton, we could remove

most of the illogical references between collaborating classes thus making them more

separate and easier to reuse.

When the application will have a user interface, it will most certainly be changed into

an APP so it can no more have writeable static data as explained in Chapter 6.2. That

restriction will disable the standard singleton pattern implementation and either forces

us to implement the singleton using a global registry or to remove the singleton from

the design. Using a global registry to reference another object is a slow operation and

can therefore be forgotten. Removing the singleton would get us back to the situation

where we were before we added the singleton so it is better to forget the singleton in

the first place.

 63

7.6 Final Design

Figure 31 presents the final design of the AppTest combining all the patterns mentioned

earlier and a few other basic structures. The final design is a pattern system having

several interesting parts. State, observer and adapters are combined to work as an

asynchronous event based system. Factory method adds extensibility to the design. The

design is very modular, entities working in different tasks can be clearly seen and thus

easily traced. Different patterns are easy to see from the diagram.

CActive

SetActive()
Cancel()
<<abstract>> RunL()
<<virtual>> RunError()
<<abstract>> DoCancel()

CActiveScheduler

<<static>> Install()
<<static>> Start()
<<static>> Stop()
<<static>> Add()

TYPE

CdSingleton

<<static>> InstanceL()

DOOMED

CdDestroyer

iDoom ed : DOOMED*

TStateInit

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel ()
<<virtual>> Update()
<<virtual>> Error()

TStateRun

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()
<<virtual>> Update()
<<virtual>> Error()

TStateTerminate

<<virtual>> EnterL()
<<virtual>> Continue()
<<virtual>> Cancel()
<<virtual>> Update()
<<virtual>> Error()

CdMemoryFaultEvent

<<virtual>> Ac tL()
<<virtual>> InternalizeL()

CdKeyEvent

<<virtual>> ActL()
<<virtual>> InternalizeL()

MTestEvent

<<abstract>> ActL()
<<abstract>> InternalizeL()

RTimer

CreateLocal()
After()
Cancel()

CdEventPlayer

Start()
<<virtual>> RunL()
<<virtual>> RunError()
<<virtual>> DoCancel()
<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Notify()

0..n0..n

RTimer

Creat eLocal ()
After()
Cancel()

CdGrimReaper

Start ()
<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Noti fy()
<<virtual>> RunL()
<<virtual>> RunError()
<<virtual>> DoCancel()

RUndertaker

Create()
<<c onst>> Logon()
<<const>> LogonCanc el()

MdObserver

<<abstract>> Update()
<<abstract>> Error()

CdUndertaker

Start ()
<<virtual>> Attach()
<<virtual>> Detach()
<<virtual>> Noti fy()
<<virtual>> RunL()
<<virtual>> RunError()
<<virtual>> DoCanc el()

EikDll

<<static>> StartAppL()
<<static>> StartExeL()

CApaCommandLine

<<static>> NewL()

RProcess

<<const>> Id()
Terminate()
Kill()
Panic()

RThread

<<const>> Id()
Terminate()
Kill()
Panic()

CdAppRunner

Start()
Stop()
Thread()
Process()

TState

<<abstract>> EnterL()
<<abstract>> Continue()
<<abstract>> Cancel()

CdThreadScheduler

<<const>> Error()

CdAppTester

WatchThread()

TdEventFactory

ExtractEventL()

CdMouseEvent

<<virtual>> ActL()
<<virtual>> InternalizeL()

MdSubjec t

<<abstract>> Attach()
<<abstract>> Detach()
<<abstract>> Notify()

TdMessage

Figure 31. AppTest class diagram.

 64

7.7 Discussion

The design was built up rapidly with the aid of design patterns. The abstract interface

classes make it very easy to enhance existing features and add new ones by deriving

new classes. Patterns lead into well-encapsulated design where it is safe to modify one

part and be sure that the rest will keep working.

The collaborations between classes are specified using those abstract interfaces so the

testing of functionalities is uniform. When one test case is ready, it can be reused to

define the rest with little modifications. Only one unit test structure is needed for every

collaboration, all derived subclasses use the same form of test.

Analyzing the design, we see that OCP and DIP are followed very well. The design is

easily expandable at many places thanks to the abstract interfaces. Single class entities

can quite easily be reused since the ISP is also fulfilled in good degree. Most entities

work in several roles, defined by separate interfaces. ADP is somewhat followed since

concrete classes depend on abstract base classes, not from other concrete classes.

Classes handling the asynchronous requests have the subject interface to their observers

and adapted CActive interface to the framework. They can therefore be reused either as

subjects in another context, or active objects. TState based objects have similarly a

double role and thus greater reusability.

The use of design patterns in this application compressed time from both analysis and

design phase and improved the design making it more reusable, flexible and

expandable. Design patterns also made is simpler to test the classes and structures.

 65

8 CONCLUSIONS

The adaptation of design patterns is fairly easy for any software designer who is

familiar with UML or similar modeling language used to describe the patterns. Many

good designers who have not ever heard of design patterns often find out that they have

been using them unconsciously. The following conclusions are based on the

experiences gained during the work of this thesis.

Design patterns provide an excellent method to speed up and simplify the development

process. However, the statement “owning a hammer does not make one an architect”

applies to design patterns as to all other object-oriented design methods and tools /4/.

To properly use design patterns and to get the benefits from their usage requires

studying and experimenting with them in different problem domains. A perfect pattern

for one problem may prove to be a total disaster in another design even in a similar

problem domain. In the implementation phase of this thesis the adapter, state and

observer patterns proved to be very usefull in an EPOC application.

A design or a design pattern is only a model that describes the structure and

collaborations in an abstraction level. The design must be implemented using some

implementation methods and even the greatest design will fail if the implementation is

not done correctly and the design is not understood clearly enough. The implementors

have to understand the patterns to know the implementation tricks and to avoid ruining

the pattern by improper implementation.

The environment sets the strictest principles for the design to fulfill. Those principles

must be met in design and implementation. This fact is also a good starting point in

analyzing a design pattern and making conclusions of it usability in a problem domain.

If the pattern fails to fulfill for example EPOC restriction on writeable static data or

cleanup stack usage the pattern is not suitable for EPOC environment even if it would

be perfect in some other environment as was seen with the singleton pattern in this

thesis.

 66

General design principles are also good candidates when analyzing a software design.

The design principles have evolved through years or decades of software programming

and therefore have a solid base in defining what works and what often fails. The more

design principles the pattern can meet the better it will eventually prove to be. Using

those principles and other common software process metrics, it is quite easy to prove

that design patterns, when used by experienced software designers, really speed up and

simplify the design process and also lead to better quality.

An object-oriented environment, such as EPOC using patterns in frameworks and APIs

forces the developers to familiarize themselves with those patterns. A misuse of system

structures will eventually lead into nonworking application, bad user experience and

possible crashes. On the other hand, after identifying the patterns and using them

frequently the collaborations and structures inside them start reflecting into developers

own application designs leading into better quality, response times and usability. Active

object framework and the MVC pattern were discovered very useful during the work of

this thesis.

However, design patterns do not make a poor design excellent nor do they make a good

design fail. There are no “cookbook” methods that can replace intelligence, experience

and good taste in design and programming /13/. As the inventor of the C++ language,

Bjarne Straustrupp wisely said: “Design and programming are human activities; forget

that and all is lost”.

 67

9 REFERENCES

/1/ Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Object Oriented software. Addison Wesley Longman, Inc 1995.

19th printing, January 2000. ISBN 0-201-63361-2.

/2/ Frank Buschman, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.

Pattern oriented software architecture: A System of Patterns. John Wiley & Sons Ltd

1996. 6th printing June 2000. ISBN 0-471-95869-7.

/3/ Kimmo Hoikka. Design Patterns in EPOC Software Development. Presentation at

Symbian Developer Expo 6th November 2000, London. Available:

http://www.symbiandevnet.com/techlib/techcomms/transcripts/uk2000/technology.html

.

/4/ Craig Larman. Applying UML and Design Patterns: An Introduction to Object-

Oriented Analysis and Design. Prentice Hall, Inc 1998. ISBN 0-13-748880-7.

/5/ OMG Unified Modeling Language Specification. Version 1.3, June 1999.

Available: http://www.omg.com/uml/ [Referenced 20.1.2001].

/6/ Digia Coding Conventions. [Confidential]. Available: Digia Intranet.

/7/ Martin Tasker. Professional Symbian Programming: Mobile Solutions on the EPOC

platform. Wrox Press Ltd. First printing, 2000. ISBN 1-861003-03-X.

/8/ Symbian website [Internet]. Location: http://www.symbian.com/ [Referenced

25.2.2001].

/9/ Psion, Inc. [Internet]. Location: http://www.psion.com/. [Referenced 26.2.2001].

/10/ Nokia, Oyj [Internet]. Location: http://www.nokia.com/. [Referenced 25.2.2001].

 68

/11/ Digital Information Architects, Digia Inc [Internet]. Location:

http://www.digia.com/. [Referenced 25.2.2001].

/12/ Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschman. Pattern-oriented

Software Architecture volume 2: Patterns for Concurrent and Networked Objects. John

Wiley & Sons Ltd 2000. ISBN0-471-60695-2.

/13/ Bjarne Straustrupp. The C++ Programming Language, Third Edition. Addison

Wesley Longman, Inc 1997. 8th printing, October 1998. ISBN 0-201-88954-4.

/14/ James O. Coplien. Multi Paradigm Design in C++. Addison Wesley Longman, Inc

1998. ISBN: 0-201-82467-1.

/15/ Kayshav Dattatri. C++: Effective Object-Oriented Software Construction:

Concepts, Principles, Industrial Strategies, and Practices, Second Edition. Prentice Hall,

Inc 2000. ISBN 0-13-086769-1.

/16/ Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design

Patterns in C++. John Wiley & Sons Ltd 1999. ISBN 0-471-24134-2.

/17/ Design Principles and Design Patterns. Robert C. Martin. Available:

http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001]

/18/ Robert C. Martin. Open Closed Principle. C++ Report January 1996. Available:

http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001].

/19/ Robert C. Martin. Dependency Inversion Principle. C++ Report May 1996.

Available: http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001].

 69

/20/ Robert C. Martin. Interface Segregation Principle. C++ Report August 1996.

Available: http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001].

/21/ Robert C. Martin. Acyclic Dependency Principle. C++ Report November 1996.

Available: http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001].

/22/ Robert C. Martin. Design Patterns for Dealing with Dual Inheritance Hierarchies.

C++ Report April 1997. Available:

http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001].

/23/ Robert C. Martin. Acyclic Visitor: A design pattern for eliminating dependency

cycles in Visitors. Available:

http://www.objectmentor.com/publications/articlesBySubject.html [Checked

26.2.2001].

/24/ Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison

Wesley Longman, Inc 1999. 4th printing, February 2000. ISBN 0-201-48567-2.

/25/ Symbian. Quartz Version 6.0 Edition for C++. [CD-ROM].

/26/ Symbian Devnet [Internet]. Location: http://www.symbiandevnet.com/.

[Referenced 25.2.2001].

/27/ The reason why AriadneV exploded. [Internet] Location:

http://users.deltanet.com/~tegan/ariane.html. [Referenced 30.11.2000]. Also available

at:

http://www.student.math.uwaterloo.ca/~cs445/handouts/lectureSlides/W01/documents/

se_re.pdf [Checked 26.2.2001]

 70

/28/ John Vlissides. Pattern Hatchling: Design Patterns Applied. Addison Wesley

Longman, Inc 1998. ISBN 0-201-43293-5.

/29/ Christine Hofmeister, Robert Nord, Dilip Soni. Applied Software Architecture.

Addison Wesley Longman, Inc 2000. ISBN 0-201-32571-3.

/30/ Scott W. Ambler. Process Patterns: Building Large-Scale Systems Using Object

Technology. Cambridge University Press 1998. ISBN: 0-521-64568-9.

/31/ Martin Fowler. Analysis Patterns: Reusable Object Models. Addison Wesley

Longman, Inc 1997. 6th printing, December 1998. ISBN 0-201-89542-0.

/32/ Matthew H. Austern. Generic Programming and the STL: using and extending the

C++ Standard Template Library. Addison Wesley Longman, Inc 1998. ISBN 0-201-

30956-4.

/33/ Yun-Tung Lau. The Art of Objects: Object-Oriented design and Architecture.

Addison Wesley Longman, Inc 2001. ISBN 0-201-71161-3.

