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Abstract
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Multispectral images are becoming more common in the field of remote sensing, com-
puter vision, and industrial applications. Due to the high accuracy of the multispectral
information, it can be used as an important quality factor in the inspection of indus-
trial products. Recently, the development on multispectral imaging systems and the
computational analysis on the muitispectral images have been the focus of a growing
interest.

In this thesis, three areas of multispectral image analysis are considered. First, a method
for analyzing multispectral textured images was developed. The method is based on
a spectral cooccurrence matrix, which contains information of the joint distribution of
spectral classes in a spectral domain. Next, a procedure for estimating the illumination
spectrum of the color images was developed. Proposed method can be used, for example,
in color constancy, color correction, and in the content based search from color image
databases. Finally, color filters for the optical pattern recognition were designed, and
a prototype of a spectral vision system was constructed. The spectral vision system
can be used to acquire a low-dimensional component image set for the two-dimensional
spectral image reconstruction. The data obtained by the spectral vision system is small
and therefore convenient for storing and transmitting a spectral image.
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CHAPTER [

Introduction

Color is becoming an important quality factor in industrial processes. The accuracy
of the color representation depends on the measuring system and the color coordinate
system used. Usually color is represented by three-dimensional color coordinate models,
which are based on the model of human color vision system, in which there are three
different types of photoreseptors [50]. Typical three-dimensional color coordinate models
are CIE zyY, CIELAB, CIELUV, and RGB models {39, 50, 107).

The color analysis based on the three-dimensional color coordinate systems is compu-
tationally effective and the accuracy of the color representation is enough for many
applications. Also the present color imaging systems are mostly based on the use of
color cameras with three color filters. However, there are some restrictions in these
color models. The three-dimensional color coordinate systems may have a problem of
metamerism {11, 12, 33, 39, 97), in which one three-dimensional color coordinate vector
corresponds to several different color spectra. One type of metamerism is that human
cannot distinguish the color of two objects under a certain illumination, but when the
illumination is changed, the difference between the color of two objects can be recog-
nized. In addition, sometimes the interesting part of the measurement can be outside
the visible part of the electromagnetic spectrum, e.g. in the ultraviolet (UV) or near
infrared/infrared (IR) region.

Basing on the physical approach, the highest accuracy of the color representation can
be obtained by representing the color as a color spectrum, which is measured in the
visible wavelength range from 380nm to 780nm of the electromagnetic spectrum. Two-
dimensional high-quality color images, in which every pixel contains a color spectrum,
are called muitispectral or spectral images. The spectral based representation of color
avoids the problem of metamerism and the spectra can be also measured outside the
visible light area, for example in the UV or IR regions.

The importance of color image processing is growing and the trend is to multispectral
images. The technical development in spectral imaging devices has received a great deal of
attention recently. Multispectral imaging systems have application areas such as remote
sensing (3, 8, 80, 81}, environmental monitoring 45, 82), material analysis [62], computer
vision [51], and industrial quality control [40]. The spectral information has been used, for
example, to improve the color reproduction of electronic endoscopes [27, 92], to simulate
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adaptation in the human vision system [63], and to analyze skin color [41, 42]. Recently,
the multispectral images of natural scenes have been used to investigate the coding in
the human vision system [78, 85]. In the analysis of works of art, the use of multispectral
imaging is a promising noninvasive approach {2].

The high-quality color images measured by the multispectral imaging systems have to
be analyzed by new methods of the color image analysis. For example, if the spectral
imaging system is tuned to measure the visible light from 400nm to 700nm at Inm
intervals, then a measured image contains 301 spectral channels, and the total size of the
8bits/pixel, 256 x 256 pixels spectral image is about 158 megabytes. The multispectral
image contains a large amount of data and therefore the transmission and storing of it
can be unconvenient. The compression and acquisition of the spectral images needs also
new techniques in order to be convenient to use in the field of high-quality color image
processing.

The objective for this thesis is to study computational techniques for spectral image
analysis. The main interest is in the multispectral images, where the number of spectral
channels is more than 30. The aims and a scope of this thesis contain an investigation
of a method for multispectral texture analysis, a study of spectral based illumination
estimation and a production of a prototype for the spectral imaging system, which we
call as the spectral vision system.

The thesis is divided into seven chapters. Following the introduction in Chapter 1, the
principles of color and texture representation are given in Chapters 2 and 3, respectively.
A method for analyzing multispectral textured images is described in Chapter 4. In
Chapter 5 the spectral based illumination estimation procedure is proposed. In Chap-
ter 6 a prototype of the spectral vision system is presented and Chapter 7 provides the
discussion and conclusions of this thesis.

Summary of the publications

In publication ! the generalization of the gray level cooccurrence matrix was proposed
for the multispectral texture analysis. The novelty of the proposed method is that the
cooccurrence is defined as a joint distribution of the spectral classes in a spectral domain.
From the generalized cooccurrence matrix, five Haralick’s features were calculated. The
experiments of multispectral texture segmentation with synthetic data were performed.
The author of this thesis participated in the development of the method, programmed
the procedure, performed the experiments, and wrote the publication.

In publication 2 the generalized cooccurrence matrix based method was tested with nat-
ural multispectral images. Furthermore, the cooccurrence matrix itself was used as a
feature vector for the classification process. The experimental results of segmenting nat-
ural multispectral textures were performed. The author of this thesis participated in the
development of the method, performed experiments, and wrote the publication.

In publication 3 a statistical technique based on the spectral-based illumination estima-
tion for solving the problem of color constancy was proposed. It was used for the color
correction and for the content based search from the color image database. The idea of
the method was developed by Dr. Reiner Lenz and Professor Peter Meer. The author
of this thesis participated in the program development and in some experiments of the
publication.



In publication 4 a new computational approach for designing broad band color filters for
the low-dimensional spectral imaging system was proposed. The author of this thesis
participated in the development of the method, programmed the procedure, performed
the experiments, and wrote the publication.

In publication 5 a prototype of the low-dimensional spectral vision system was proposed.
The optical setup was constructed and the color filters designed by the computer simu-
lations in publication { were implemented optically. The experiments of acquiring two-
dimensional spectral images were permormed. The author of this thesis participated
in the development of the method and in the construction of the optical setup. He
programmed the procedure, performed the experiments, and wrote the publication.
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CHAPTER II

Color Representation

Color of an object detected by a human being is a sensation which is produced by the
human brain [50] and therefore it is hard to define the color. Using a physical approach,
the color information is conveyed by light approaching the eye originating from the
observed object. Thus the color of the object is a continuous function of wavelength
of the electromagnetic radiation in the visible light range from 380nm to 780nm. In
practical use the wavelength range from 400nm to 700nm has been used. The spectrum
of this radiation can be measured and represented as a vector

A = [r(A), 7)., T(A)]T, (2.1)

where )\ is the wavelength and T denotes the transpose. For example, the spectrum
sampled at 5nm intervals from A} = 400nm to A, = 700nm can be defined as a vector
in a 61-dimensional Euclidean space. Figure 2.1 shows an example of the color spectrum
of green and red objects.

OIL 4 0s 1
o7 4 orh
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Figure 2.1: Example of the color spectrum of a) green and b) red object.
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The measured radiation is effected by the relative spectral power distribution E(\) of
the illuminant. Thus the measured radiation is defined as the product

T(A) = S(ME(N), (2.2)

where S(\) is the spectral reflectance, transmittance or radiance of the object {39, 50,
107]. There are a number of standard light sources recommended by the Commission
Internationale de I’Eclairage (CIE). These are commonly called the illuminants A, B,
C, and Dgs. For the standard daylight D illuminants, CIE has also recommended the
representations Dsg, Dss, and D75 [39]. These standard light sources have different spec-
tra which correspond to the illumination conditions of the measurement. The measured
radiation is also effected by the spectral sensitivity of the measuring sensors, but they
are not modeled here.

2.1 Three-dimensional colorspaces

The color is usually represented by three-dimensional color vision models. These models
are based on the model of human color vision system, in which there are three different
types of photoreseptors. Typical three-dimensional color vision models are CIE 1931 ryY,
CIELAB, CIELUV, and RGB models. Most of these three-dimensional color coordinate
systems are calculated from the tristimulus values (XY, Z ) which are calculated over
the spectrum 7(})

X = k/r(A):’c‘(A) d)
Y = & / (VT dA (2.3)

z k / T(NE() dA,

where the functions Z()), (), and Z()\) are the human color-matching curves defined
by the CIE. The normalizing factor k is chosen as

100

¢ TEOo & 4

The color-matching curves F(A), %()\), and Z(A) have been defined according to the
results of the experiments with human observes. Figure 2.2 shows the color-matching
curves T(A), ¥(A), and Z(A) at the wavelength range from 380nm to 780nm.

From the tristimulus values (X,Y, Z), other color coordinate systems can be derived.
The CIE 1931 (z,y, z) coordinates are defined as follows

X

X+Y+2
Y

X+Y+2Z
Z

X+Y+2'
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Figure 2.2: CIE 1931 color-matching functions ¥ (dashed curve), ¥ (solid curve) and 7
(dash-dotted curve).

where z +y+ z = 1. The CIE 1931 chromaticity diagram represents the two-dimensional
color space of the z and y coordinates. In this model the disadvantage is that the visual
color differences are not equal in all parts of the diagram. CIE has defined more uniform
color coordinate systems to avoid the nonuniformity of the color differences. One system
proposed is the CIELAB system, which is also called the CIE 1976 L*a*b* system. CIE
1976 L*a*b* color coordinates are defined as follows

L 116 (Y/Y,)'/® - 16
a® = 500 [(X/X,)/% - (Y/Y,)'/¥ (2.6)
b* 200 (Y/Y,)? = (2/2,)'7),

where X,,Y,, and Z, are the XY, and Z coordinates of the reference white. The color
coordinates in Eq. (2.6) are valid if the ratios X/X,, Y/Y,, and Z/Z, are larger than
0.008856. If Y/ Y, is equal or less than 0.008856, then L* is defined as L* = 903.3(Y/Y,).
If any of the ratios X/X,, Y/Y,, or Z/Z, for a* and b* is equal or less than 0.008856,
then it is replaced by 7.787F + 16/116, where F is X/X,, Y/Y,, or Z/Z,.

The color difference A E* between two colors in L*a*b* color coordinate system is defined
as

AE" = VAL"? + Aa*? + Ab*2. (2.7)

A detailed description of the three-dimensional color coordinate systems can be found in
Refs. [39, 50, 107).
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2.2 Spectral based representation of color

Basing on the physical approach, the highest accuracy of the color representation can be
obtained by representing the color as a measured color spectrum. The color spectrum
can be measured, for example, by a spectrophotometer, by an acousto-optic tunable filter
(AOTF) [24, 25], by a radiometer [45], or by a CCD camera with a set of narrow band
interference filters [52]. Figure 2.3 shows an example of the color reflectance spectrum
(solid line) measured by the spectrophotometer from an orange color plate. The spectrum
is sampled at the wavelength range from 400nm to 700nm at 5nm intervals and it contains
61 components. Figure 2.3 shows also a metameric spectrum (dash-dotted line) for the
orange color spectrum. The metameric spectrum for the real spectrum was generated
computationally. The (X,Y, Z) tristimulus values for this metameric pair of color spectra
are equal under the CIE standard illumination Dgs. Therefore, the RGB color coordinates
calculated from the (X, Y, Z) for these spectra are equal under the illumination Dgs, but,
for example, under the illumination A, the RGB color coordinates for these spectra are
different. Table 2.1 shows the RGB color coordinates for these two spectra.

] T T T

0.8} 4

o7k 4

o o o
~ o o
¥ T

"
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o
w
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200 450 500 550 600 850 700
Wavaelength (nm)

Figure 2.3: Example of metameric pair of color spectra.

Table 2.1: RGB color coordinates for the metameric pair of spectra. The Spectrum 1
and Spectrum 2 correspond to the spectra marked as 1 and 2 in Figure 2.3, respectively.

Illumination CIE Dg;y CIE A
Spectrum 1 Spectrum 2 | Spectrum 1  Spectrum 2
R 51.82 51.82 83.39 76.18

G 34.86 34.86 33.33 34.93

B 21.32 21.32 6.83 6.46
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From the computational analysis point of view, the effective analysis of a large amount of
high-dimensional spectra can be too restricted. Usually, the shape of the color spectrum
is smooth and the spectra strongly correlate with each other. It has been shown that
the spectral data can be represented accurately by the linear combination of a few basis
spectra, t.e. basis vectors [9, 15, 22, 44, 48, 60, 61, 76, 77, 106, 108]. Recently, the
linear models for the infrared spectra and for the outdoor illumination spectra have been
published (36, 93]. Usually these linear models are based on the use of the principal
component analysis (PCA) for defining the basis vectors.

Parkkinen et al. [77] showed that a large spectral database can be described accurately
by a few basis vectors calculated by the subspace method [68], which is based on the
Karhunen-Loéve expansion. In Ref. [77] the spectral database measured from the Munsell
Book of Color [66] containing 1257 color spectra was described accurately from 3 to 8
basis vectors. This basis can be also used to represent natural colors with a sufficient
accuracy (44]. In this thesis, some of the results are compared with the results obtained
by the subspace method and therefore the subspace method is briefly reviewed next.

To compute the basis vectors for the color spectra, the correlation matrix R of the spectra
set is used:

R=Y nW)nMT, (2.8)
1=l
where the index ¢ means ith spectrum in the set of /N measured spectra. The eigenvectors
¢ are the solutions of the equation

R¢ = a4, (2.9)

where ¢ are the eigenvalues of R. From the columns of the matrix ¢, the first p eigen-
vectors, corresponding to the p largest eigenvalues, form a basis B for the subspace of
dimension p. Figure 2.4 shows the basis vector set of 8 vectors for the Munsell spectral
database containing 1269 color spectra sampled from 400nm to 700nm at 5nm intervals.
These basis vectors contain 99.99% of the total variance of the database. A reconstruc-
tion 7 of the original spectrum 7 can be obtained by the linear combination of the basis

vectors
' = BBTr, (2.10)

where the columns of matrix B are the basis vectors. See Refs. [56] and [77] for the
detailed analysis of the basis vectors for the Munsell spectral database.

By the use of subspace method it is possible to compress a large amount of spectral
data. The subspace method can be also used in spectral classification where the sub-
spaces can be trained to represent the spectral classes. In Chapter 4 of this thesis, the
Averaged Learning Subspace Method (ALSM) of Oja [68] is used to classify color spec-
tra. In Ref. [63] the self-organizing PCA was used to simulate color-vision deficiency and
white-light adaptation characteristics. The basis vectors of the subspace method have
been implemented optically for measuring color spectra [34] and for classifying color
spectra [46].

Two-dimensional spectral images, in which every pixel contains a color spectrum, can
be measured, for example, by a CCD-camera with narrow band interference filters (2,
52, 78] or broad band filters [32, 65], by AOTF [24, 25], by Fourier-transform based
methods [43], or by the line scanning based spectral cameras [40]. In this thesis the
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Exgenvector No.1 Eigervecior No2 Egenvector No.5 Eigervecior No.8
3

400 500 L T00 00 500 800 T00 400 500 600 T00 400 500 600 T00

Exgervecion No.4 Eigenvector No.7 Egenvector No s

a) b)

Figure 2.4: Eigenvectors of the subspace method a) No.1-4, b) No.5-8.

color is mainly represented using the spectral information of the spectral images as such,
without calculating the three-dimensional color coordinates. Figure 2.5 shows an example
of the spectral image.

Wavelength (nm)

Figure 2.5: Example of the spectral image measured at the wavelength range from
400nm to 700nm at 10 nm intervals {78]. Wavelength bands 400nm, 500nm, 600nm and
700nm are shown.

2.3 Spectral databases used in this thesis

In this work we mainly experimented with commonly available spectral databases. Dur-
ing this work, there were only a few spectral databases and spectral images containing
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more than 30 channels commonly available. In publication 5 the author of this thesis
measured all color spectra and spectral images. The following spectral databases were
used:

1. In publication 1 the spectral database measured by the radiometer from the
canopy of growing trees (Scots pine, Norway spruce, and birch) [45] was used.
The spectral database was measured at the Vdiisila laboratory, University of
Joensuu, Finland, by Dr. Raimo Silvennoinen. Database contains 1056 spectra
measured at the wavelength range from 390nm to 850nm at 5nm intervals and
it is available at the www-server of the Lappeenranta University of Technology,
Finland, http://www.it.lut.fi/research/color/lutcs.database.html.

2. In publication 2 the spectral image database of Parraga et al. {78] was used.
The database consists of 29 spectral images measured from the natural scenes
by a CCD-camera with 31 narrow band interference filters at the wavelength
range from 400nm to 700nm at 10nm intervals. Each spectral image contains
a total of 31 monochrome 256 x 256 pixels images as 8bits/pixel format. The
database and a more detailed description are available at the www-server
http://www.crs4.it/”gjb/ftpJ OSAtab.html.

3. In publication 3 the spectral database measured from the Natural Color System
(NCS) [30] containing 1513 spectra was used. The spectra were measured at
the wavelength range from 380nm to 780nm at 5nm intervals. Database was
obtained from the Scandinavian Color Institute in Stockholm, Sweden, by
courtesy of Professor Bjérn Kruse, Link6ping University, Sweden.

4. In publications 3, 4, and 5 the spectral database measured by the spectropho-
tometer of 1269 color chips from the Munsell Book of Color [66] was used.
Database was measured at the Viisili laboratory, University of Joensuu,
Finland, by Mr. Jouni Hiltunen. The spectra was measured at the wave-
length range from 380nm to 800nm at lnm intervals. The spectral database
is available at the www-server of the Lappeenranta University of Technology,
Finland, http://www.it.lut.fi/research /color/lutcs_database.html.
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CHAPTER III

Texture Representation

3.1 Gray level texture

Texture is a property of a surface. In natural environment the objects like wood, grass,
sand, rock, textile, and skin contain textured regions. In digital images, the texture is
a context dependent feature, i.e. texture can not be defined for a pixel, but for a small
region in the image. A well-known texture database of gray level images is the Brodatz

album (5].

Methods for gray level texture analysis have been widely studied over the last three
decades. Texture is hard to define and there are several methods and different approaches
for texture analysis in digital image analysis. Usually these methods are based on the
use of statistical approaches [47]. Typical features used in the statistical texture analysis
are based on the gray level cooccurrence matrices, gray level difference matrices, run
length matrices (21}, Fourier power spectra, auto-correlation functions, and random-field
models [28, 47). Comparative studies of the gray level texture features can be found e.g.
in Refs. [67] and (73).

One of the most successful texture analysis method is based on the second-order statistics
of texture and is represented as a gray level cooccurrence matrix of Haralick et al. [29].
Cooccurrence is defined as a joint distribution of gray levels of two pixels separated by a
given displacement (Az, Ay). The gray level cooccurrence matrix P is defined as

P(i,5) = {#pair(i, j)limage(z, y) = i A image(z + Az,y + Ay) = 5}, 3.1)

where i, j are gray levels. The cooccurrence matrix is calculated by the following algo-
rithm. The time complexity for the Algorithm 3.1 is O(n), where n is the number of
locations ~ the number of pixels in an image.

13
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Algorithm 3.1: Gray level cooccurrence matrix.

begin
forall gray levels 7, j € image
P(i,j) = 0;
endfor

forall locations (z,y) € image and (z + Az,y + Ay) € image
i = image(zx, y);
J = image(z + Az,y + Ay);
P(7'7.7) = P(7'7.7) +1
endfor
end

Haralick et al. [29] described fourteen features extracted from the cooccurrence matrix.
Usually only a few of them are used and in this study the following five of them were

used:
Energy = Z Z P%(i, 5)
Entropy = - Z Z P(i,5)log P(i,5)
Contrast = Z Z(z - §)2P@,5) (3.2)
i
. 1 . .
Correlation = Z Z 720, (Tt — pa)(J — py)P(,7)

P
Homogeneity = Z Z 1 +(|lz —]- il

where pu,, py, 0, and o, are the means and standard deviations of summing the rows
and columns of P, respectively.

The cooccurrence matrix can be computed with different displacements which can be
represented as a pair (Az,Ay) in cartesian coordinates or (d,3) in polar coordinates.
The directions with angles 8 = 0°, 45°, 90°, 135° of the horizontal axis are usually used
and the features of these matrices can be combined for the classification process. The best
displacement for the cooccurrence matrix calculation can be approximated by analyzing
the periodicity of the texture. In Ref. [71] the x? and « statistics were compared and it
was shown that x statistics was a better choice for choosing the best displacement for
the cooccurrence matrix calculation.

Oja and Valkealahti [72] have proposed a method for quantizing the multidimensional
texture histograms by the Self-Organizing Map (SOM) of Kohonen (54]. In Ref. [72] the
reduced multidimensional histograms of the cooccurrence matrices were directly used for
the classification of gray level and color textures. Recently, Valkealahti and Oja (101]
speeded up the method proposed in [72] and published high classification accuracies
for the gray level Brodatz textures. Also in Ref. [70] the cooccurrence matrix itself
was used as a feature without calculating any features from it. Allam et al. [1] used
the orthonormal decomposition of the cooccurrence matrix as a texture feature. The
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methods of statistical pattern recognition and neural networks have been widely used for
classifying the texture features [67, 70, 73, 79, 88].

3.2 Color texture

Methods developed for texture analysis have been proposed to represent the spatial aspect
of the texture, but the color aspect in textures has not received as much attention. When
color textures are considered, both the texture and color must be analyzed. Two color
textures may have the same color and different structure, or different color and same
structure, or different color and different structure [89].

The color texture analysis based on the three-dimensional color representation has been
under a growing interest recently. Tan and Kittler [94, 95, 96] have proposed supervised
color texture analysis methods which use the Discrete Cosine Transform (DCT) features
extracted from the color textures. In Ref. [94] eight DCT texture features were extracted
from each of the three RGB color bands for classifying color textures. In Ref. [95]
eight DCT texture features were computed only for the intensity image and they were
augmented by six color features derived from the color histogram. Messer and Kittler [64]
have compared the statistical and neural network based methods in color texture analysis.
The results of using color codebooks [89], Markov models [75], and spatial correlation
functions [37, 55] for modeling color textures have been published. The color texture
segmentation methods have been proposed e.g. in Refs. [75] and [90]. Recently, Saber
and Tekalp [87] proposed an integration of the color and texture features for content-
based image retrieval from the color image databases.

In this thesis, the main interest is in the spectral images which contain more than 30
spectral channels at the wavelength range from 400nm to 700nm. In our approach, we are
interested in the high accuracy of the spectral information over the wavelength axis. For
this reason, we don’t compress the number of channels in the measured spectral images or
calculate the three-dimensional color representations for them. Some of the color texture
analysis methods described in the previous paragraph can be adapted successfully to
spectral images, but in that case the methods will be computationally too restricted. For
example, the color histogram calculations for the high-dimensional spectral data will be
computationally too demanding for the machine vision applications. In this thesis, the
aim is to propose a method which uses the spectral information of the measurement as
such, but the number of spectra in a spectral image is quantized. This idea was also
motivated by the spectral imaging system, which we recently developed in publication 5.
The multispectral texture analysis method described in the next chapter can be partly
implemented optically using the spectral vision system which provides an advantage of
the parallel image processing. Figure 3.1 shows an example of the color texture used in
the experiments of publication 2.
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Figure 3.1: Example of the color texture.



CHAPTER IV

Multispectral Texture

Multispectral textures contain the spectral and spatial domains [83]. An important
question related to human vision system is that should the spectral and spatial domains
be analyzed simultaneously or separately. In this thesis we are not trying to explain the
connection to the human visual system, but we are going to propose a computational
model for multispectral texture representation.

Many texture analysis methods proposed for the gray level textures are based on the
natural lightness based ordering of the gray levels. The color texture analysis based on the
three-dimensional color representation is also usually done by analyzing the component
images separately, for example in the case of RGB color textures, the color channels R,
G, and B are processed separately by the gray level texture analysis methods. However,
in the case of multispectral images, the number of spectral channels is large and therefore
the analysis based on the separate analysis of each channel is computationally difficult. In
the remote sensing, the common way is to classify the spectral domain {7, 16] and in the
spatial domain, the texture features are calculated from a few selected bands or channels
in an image [3, 8, 80]. In this thesis the aim is to propose a computationally effective
method which uses the spectral and spatial information of all bands in a multispectral
image.

In the case of multispectral images, the pixel values are color spectra (i.e. vectors),
and there is no natural order for them. The generalization of the gray level texture
analysis methods for the multispectral images is therefore not always straightforward.
Mathematically, one moves from scalar values into a multidimensional vector space, where
the order of the vectors is not uniquely defined [10, 58].

The number of high-dimensional spectra in a spectral image is large and it is computa-
tionally difficult to analyze the whole spectra as such. Therefore we reduce the spectral
information in an image into a lower number of spectra. In the proposed method, a two-
phase process is used: first, the spectral domain is quantized and labeled according to
the quantized spectra. Then, the spatial domain is represented by the joint distribution
of the spectral classes in the spectral domain. The joint distribution is represented as
a cooccurrence matrix which is a generalization of the gray level cooccurrence matrix
of Haralick. In this thesis it is also called as a spectral cooccurrence matrix. Chang
and Wang [6] have used the color cooccurrence matrix based method to analyze three-
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dimensional color textures. In their method they first quantized the color in an image,
labeled the color domain according to the quantized spectra, and then used the cooccur-
rence matrix based method for the labeled image.

4.1 Quantization of the spectral domain

In our method we first quantize the spectral domain of the multispectral images. In
the quantization, two methods, supervised and unsupervised, are used: the Averaged
Learning Subspace Method (ALSM) of Oja [68] and the Self-Organizing Map (SOM) of
Kohonen [54]. In the case of ALSM the spectral subspaces are first trained with known
classification. Then the spectral domain is classified into spectral subspaces according to
the projection criterion. In the case of SOM the spectral domain is first clustered into
spectral clusters and then the spectral domain is classified into these clusters according
to the shortest distance. Next the ALSM and SOM are briefly reviewed.

Averaged Learning Subspace Method (ALSM)

As discussed in Chapter 2, the principal component analysis (PCA) based methods have
been shown to be powerful statistical techniques for reducing the dimensionality of the
spectral data. One group of the PCA based classification methods are the learning
subspace methods which are especially suitable for classifying the spectral type data [68].

The classification procedure can be performed as follows. First, the color spectra from
the set of colors with known classification are measured. Then, the subspaces for each
class are formed. The eigenvectors ¢ corresponding to the first p largest eigenvalues are
chosen as a basis for the color subspaces representing each class w. The equations for
forming the subspaces are given in Chapter 2.

In the initialization phase of the ALSM the learning set is classified to color subspaces
according to the projection criterion. Note that in this phase the initial correlation
matrices R were formed by using Eq. (2.8) and in the following equation the matrices
C, ) are equal to the correlation matrices R in the first iteration step m = 1. If there are
mlsclas31ﬁcatlons then in the next iteration the subspaces are rotated by changing the
matrices C’m as follows:

CO =P, + 3 akli) - 3 oK, (4.1)
i #
where C’,(;) | is the matrix of a class w(® at iteration (m - 1), and a and b are small

numbers defining the weighting for misclassification. K,(,.f'j) is a conditional correlation
matrix formed by the pattern vectors that belong to class w(*, but have been classified
at iteration m to class w{/). Learning process continues until the results are correct or
stable.

After learning, the spectral domain of the multispectral image is classified to the spectral

classes using a projection criterion

T belongs to class w(¥),

if ZP— (t) 2 ZP— T¢ J) 2 vy # 7, (4.2)
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where the spectrum 7 is classified to class where its projection is longest. The spectral
image is finally labeled according to the spectral class numbers. The algorithm for the
ALSM is given as follows.

Algorithm 4.1: Averaged Learning Subspace Method.

begin
k = number of classes;
set iteration parameter m = 1;
compute correlation matrices C,Q), ey ,(,f);
form initial subspaces with dimensions p;
repeat
m=m-+1;
forall 7 € training set
classify 7 according to Eq. (4.2);
if 7 is misclassified then N
update matrices K7 and K@Y,
endfor
fori=1to k do _
update matrices CY according to Eq. (4.1);
form new subspaces with dimensions p;
endfor
until classification is correct or stable
end

Self-Organizing Map (SOM)

The self-organizing maps are based on unsupervised competitive learning which can be
used to cluster the input data [54]. In this thesis the one-dimensional SOM is used. By
the use of SOM the spectral domain of the spectral images is clustered, and after learning,
the weight vectors of the SOM are used as characteristics vectors for the spectral clusters.

First, the input data is normalized to unit norm and the map is initialized by the center
vector of the input data. At each iteration of the unsupervised learning, the weight vector
m¢, which has the closest Euclidean distance to the randomly selected input vector z, is
chosen as the winner neuron

lle = mell = min{||z —m,|1}, (4.3)

where ¢ is the index of the weight vectors. The winner m, is also called as the Best-
Matching Unit (BMU) [54]. The updating process of the weights including the winner
m. and its topological neighborhood N, is defined as follows [54]

‘ _Jmi(t) + a)[z(t) — mi(t)] ,ifi e N.(t)
mi(t+1) = {m;(t) , otherwise, (4.4)
where t is the iteration parameter and a(t) is a learning rate, 0 < a(t) < 1. The learning
rate decreases exponentially during the learning. Also the size of the neighborhood N,
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decreases during the learning. The following algorithm shows the steps for the self-
organizing learning.

Algorithm 4.2: Self-Organizing Map.

begin :
e = number of iterations;
normalize the input data to unit norm;
initialize the SOM by the center vector of the input data;
fort=1toedo

take randomly vector x from the input data;

find the BMU m,, for z by Eq. (4.3);

update the weights m; by Eq. (4.4);

decrease the learning rate o and the size of neighborhood N.;
endfor
end

The result of the self-organizing process is a map where the weight vectors m are adapted
towards the characteristics vectors of the spectral clusters in the spectral domain. After
learning the spectral domain is classified and labeled by the use of the self-organized
map by finding the Best-Matching Unit from the map for each spectrum in the spectral
domain. Figure 4.1 shows the self-organized maps computed in publication 2. The one-
dimensional map with 10 weight vectors in Figure 4.1 a) was formed for the 30720 training
spectra extracted from the spectral images. In Figure 4.1 b) the map was formed for
the 30720 RGB vectors extracted from the corresponding RGB images at the same pixel
locations as the spectral data.

a

Unit in SOM Wavalength (nm}) Unit in SOM RGB color coardinates

a) b)

Figure 4.1: Self-organized maps for the a) spectral data and b) RGB data extracted
from the same locations at the spectral and RGB images.
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4.2 Multispectral texture representation

After the spectral quantization the spectral domain was labeled according to the quan-
tized spectra. Now each pixel in a quantized image represents a spectral class or a
spectral cluster of the spectral domain. For the labeled image we use the gray level
cooccurrence matrix based method which is generalized for spectral images. The idea is
that we use the labeled image obtained from the spectral quantization process and define
the cooccurrence as a joint distribution of spectral classes. The spectral cooccurrence
matrix P(i,j) is defined as follows:

P(i,7) = {#pair(p, 9)lp(z,y) € i Aq(z + Az,y + Ay) € j}, (4.5)

where 7 and j are spectral classes for the spectra p and ¢, associated with the pixels at
the points (z,y) and (z + Az,y + Ay), respectively. The algorithm for calculating the
spectral cooccurrence matrix is as follows.

Algorithm 4.3: Spectral cooccurrence matrix.

begin
@ = quantized spectra by ALSM or SOM;
forall locations (z,y) € image
label the image according to the quantized spectra;

endfor

forall classes ¢, j € labeled image
P(i,j) = 0;

endfor

forall locations (z,y) € image and (z + Az,y + Ay) € image
i = class for spectrum p(z,y);
J = class for spectrum ¢q(z + Az, y + Ay);
P(i,j) = P(i,j) + 1;
endfor
end

Before the spectral cooccurrence matrix method in Algorithm 4.3 is applied, the spectra
is quantized by the ALSM or SOM. This quantization can be time consuming, depending
on the learning iterations needed in the learning process. However, after learning, the
spectral classes learned by the sufficient learning data can be used to represent also the
spectra which were not included in the learning data. Therefore, the spectral classes are
trained for the specific application only once. The labeling of the image depends on the
number of pixels and the number of spectral classes in an image. In the experiments
of this thesis, the maximum of 10 spectral classes were used and therefore the number
of comparisons in finding the best-matching class for spectra is small. Thus the time
complexity for the labeling process is O(n) where n is the number of pixels in the image.
The time complexity for the latter part of the Algorithm 4.3 is the same as for the
gray level cooccurrence matrix in Algorithm 3.1, O(n). The total time complexity for
the spectral cooccurrence matrix, excluding the spectral quantization, is O(2n) and it
belongs to the complexity class O(n).

One problem in this method is to define the spectral classes properly. If we are comparing
a fixed set of textures with each other, then the order of the spectral classes, computed for
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the fixed texture set is enough. However, if the cooccurrence matrices shall be uniquely
constructed, then the global, unique order for the spectral classes should be found. The
meaning of Haralick features in Eq. (3.2) for the spectral cooccurrence matrix can be
different to those calculated for the gray level cooccurrence matrix. Depending on the
defined order of the spectral classes, it is possible that the spectra pair close to each other
can be classified to classes far from each other. In this case the spectral cooccurrence
matrix is quite different compared to the gray level cooccurrence matrix. The most criti-
cal features are the location dependent features: contrast, correlation, and homogeneity.
However, the spectral quantization done by SOM can be a promising approach for the
natural order of the spectral data.

After the construction of the spectral cooccurrence matrix and the feature calculation,
a well-known classifiers can be used to classify multispectral textures. In publication 1
and publication 2 this method was applied to multispectral texture segmentation. The
feature vectors calculated from the spectral cooccurrence matrices were classified by the
k-nearest neighbor (k-NN) classifier [88] and by the multilayer perceptron (MLP) neural
network [86]. In publication 2 the spectral cooccurrence matrix itself was used as a
feature by stacking it row by row into a vector. In this case the ordering of the spectral
classes does not have so critical meaning when compared to Haralick’s feature calculation.
Figure 4.2 shows a schematic drawing including the steps of the proposed multispectral
texture analysis method.
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MULTISPECTRAL TEXTURE

SPECTRAL QUANTIZATION AND LABELING

- =

i LABELED IMAGE

SPECTRAL COOCCURRENCE MATRIX

HARALICK FEATURES OR STACKED COOCCURRENCE MATRIX

Figure 4.2: Schematic drawing of the multispectral texture representation.
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CHAPTER V

Illumination Estimation

It was discussed in Chapter 2 that the measured spectral radiation 7 is effected by
the relative spectral power distribution E(A) of the illuminant. The measured spectral
images are usually post-processed to eliminate the effect of the used illumination during
the measurement. This can be done, for example, by measuring the spectrum of a
standard reference white under the same illumination as used in the image measurement
and then dividing the image data by the spectrum of the reference white. The result of
this is object’s spectrum S(X), which is derived from the equation 7(A) = S(A)E()\).

However, it is also possible that only the measurements 7 are available. If the same
object with spectra S(A) is measured under a different illuminations, then the measured
spectral images will be different, even if the same object is examined. In this case the
machine vision system based recognition procedure usually treats the objects as different
objects and therefore the recognition will fail.

The problem described above is under a great deal of attention in the color image analysis
based on the three-dimensional color representations. In controlled laboratory experi-
ments, by the use of standard light sources with known illumination spectra, it is possible
to recognize the color of an object under different illuminations. However, in most real
world applications only the digital RGB color image information is available. In this case
the illumination changes can cause serious problems in machine vision based color image
recognition. This phenomenon is known as the problem of color constancy.

5.1 Color constancy

In Ref. [39] Hunt defines the color constancy as follows: The color constancy is an effect
of visual adaptation whereby the appearance of colors remains approzimately constant
when the level and color of the illuminant are changed. The human visual system can
successfully compensate changes in the intensity, hue, and saturation and therefore the
object’s color tends to be interpreted as constant under changing illumination conditions.
Color constancy has been widely studied in the field of color analysis [4, 13, 14, 15, 17,
18, 19, 20, 38, 109}, but in the real world applications a satisfactory solution for the
machine vision based color constancy is still an open question.

25
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Color constancy deals with separating the influence of the illumination and the spectral
characteristics of the object. In previous studies of color constancy the colors are usually
represented in the three-dimensional color coordinate systems, in which the transforma-
tion induced by the changing illumination can be sometimes quite complicated. In this
thesis a spectral based illumination estimation procedure is proposed.

5.2 Estimating the illumination spectrum

In publication & we developed a spectral based illumination estimation method. The
proposed method can be used to estimate the illumination from the three-dimensional
color images and from the multispectral images. Possible applications of the method are,
for example, color image normalization and color based search in color image databases.

First, we assume that all possible colors in a color image are described by a set of a large
database of color spectra. For this purpose we use the Munsell spectral database and the
spectral database measured from the NCS-system [30], which are described more detailed
in Chapter 2, section 2.3. These high-resolution reflectance spectra measured from the
color chips were combined into a spectral database containing 2782 spectra sampled from
400nm to 700nm at 5nm intervals. This spectral database can be represented accurately
by a few basis vectors from the Karhunen-Loéve expansion based subspace method. In
publication § we showed that also the logarithmic spectral database can be described
accurately by a few basis vectors calculated from the logarithmic spectral database. The
spectral based illumination estimation can be described as follows.

The measured color spectrum 7 in a pixel z is defined as
T(A,z) = S(A\z2)E(N), (5.1)

where the illumination E()) is assumed to be uniform across the investigated part of
the image. By taking the logarithms and defining them as log(r(\,z)) = m(A, ),
log(S(A, 7)) = s(A ), and log(E())) = [(\), the linear relation

m(\,z) = s(A\ z) + (N (5.2)

is obtained. If the k-th eigenvector of the logarithmic spectral database is bg()), then
the functions m, s and [ can be written as expansions

m(A\z) = Y m(a)be(A), s(h 1) = > ok(@be(n), () = S abe(V).  (5.3)
k k k

Thus, for a given k we obtain
1 (z) = p(T) + ax, (5.4)

where the effect of an illuminant is a location independent, constant shift. If only the mea-
sured spectra 7(A, ) are available, then only the coefficients ju(z) are known, whereas
the reflection coefficients p(z) for the object’s spectra S(\, z), and the constants a; for
the illumination E()\) are unknown.

We already assumed that all possible colors in a color image are described in a spectral
database. By using this we also assume that the distribution of the reflection coefficients
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Pk (z) has the same statistical characteristics as the coefficients computed from the spec-
tral database. Under this assumption the global shift parameters ax can be estimated
by comparing the two probability distributions of the measured spectral image and the
spectral database. In publication 3 the probability distributions were described by their
modes, i.e. the most probable value. Mode is a robust location estimator, which we use
to extract the center of the probability distributions [84]). From the modes for the dis-
tributions of the measurement coefficients 4, and the modes computed for the spectral
database coefficients px, the values for the global shift parameters ax can be computed.
From these a, the spectrum for the illuminant E()) can be derived by exponentiation
of the linear combination of the logarithmic basis vectors. The following is the algorithm
for this procedure.

Algorithm 5.1: Spectral based illumination estimation.

begin
V' = logarithm of the combined Munsell and NCS spectral database;
by = eigenvectors of the N-dimensional subspace for V;
pr = coefficients for the eigenvectors by;
compute the modes for distribution py;
X = a small number of random locations from the spectral image;
forall locations z € X
m(A, z) = logarithm of the spectrum 7(\, z);
pr(z) = coefficients for m(\, z);
endfor
compute the modes for distribution py;
ay = difference between the modes for p; and py;
illumination spectrum E()) = eLi=1 axbe,
end

The time complexity for the Algorithm 5.1 depends mostly on the number of randomly
chosen locations = and therefore the time complexity of it belongs to class O(n), where
7 is a small number of chosen locations. The more detailed description of this method
can be found in publication 3. This method can be also used for the color images based
on the three-dimensional color coordinate systems, for example for RGB images. In
this case the RGB image must be first converted to spectral image. This conversion is
an ill-defined problem since many different spectra may be mapped to the same three-
dimensional color coordinate vector. This phenomenon is known as metamerism, which
was discussed in Chapter 2. In publication 3 the RGB image was converted to a spectral
image using a color lookup-table technique based on the spectra from the database.

The shift parameters a; characterize the global color distribution in an image and there-
fore it can be used in color image retrieval applications. By the use of a the color images
can be normalized and the illumination spectrum can be estimated. The experimental
results can be found in publication 3.
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CHAPTER VI

Spectral Vision System

In the current machine vision applications, there are two basic approaches to measure
two-dimensional spectral images. One approach is to acquire a two-dimensional image
at different wavelengths at different times. Another approach is to acquire a line image
with simultaneous measurement of spectra at different wavelengths, and by scanning the
camera or an object along the spatial axis to acquire the two-dimensional spectral image.
Table 6.1 shows examples of existing spectral imaging systems, which are categorized into
dispersive and spectral sampling methods.

Table 6.1: Examples of existing spectral imaging systems.

Dispersive Spectral sampling
Prism Narrow band interference filters
Grating Broad band filters
Linear varible filter

Acousto-optic tunable filter (AOTF)

The spectral imaging systems based on the spectral sampling are mostly based on the
use of a CCD-camera with a set of narrow band interference filters and broad band
filters [32, 65]. The narrow band interference filters can be placed on a rotating filter
wheel in the front of CCD-camera [2]. The number of interference filters is usually more
than 30 and the transmittance of them is fixed. Also the use of electronically controlled
optical filters, for example, the acousto-optic tunable filter (AOTF) [24, 25] and liquid
crystal spatial light modulator (LCSLM) [46], belong to this category. The acquisition
times of the spectral images depends mostly on the setup time of the optical filter. For
example, in the case of narrow band interference filters the acquisition time can be several
minutes. In general these devices are suitable for static objects. An advantage is that
the spatial domain of the spectral images is acquired accurately for each wavelength
band. Another approach is based on the simultaneous measurement of the spectrum
along the wavelength axis, but scanning is needed along the spatial axis. In Ref. [40]
the dispersive prism-grating-prism (PGP) based add-on component for the CCD-camera
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was proposed. This device is especially suitable for industrial applications, in which the
moving objects are examined. There are also other techniques for acquiring spectral
images, for example, the Fourier transform based interferometric spectral imaging [43].
A comprehensive review of the spectral imaging systems can be found in Ref. [43] by
Itoh.

Most of the present spectral imaging systems produce a large amount of data to be stored
or transmitted. The compression of the high-dimensional spectral data is important to
make the storing and transmission convenient. There are two approaches to compress
spectral images:

e to have the measured spectra and compress them by software (49, 100],

¢ todesign the spectral imaging system so that we already acquire the low-dimensional
component images for the spectral reconstruction [98].

In this thesis the main interest is in the low-dimensional spectral imaging systems. The
purpose of the low-dimensional spectral imaging system is to acquire the optimal compo-
nent images for the spectral reconstruction by the use of a few optical color filters. This
can be done

e by filtering the reflecting or transmitting light from an object by color filters [65, 98]
or

¢ by illuminating an object by the light, which has the spectral characteristics of the
color filter.

In the both methods above, the component images can be detected by the monochrome
CCD camera. The detected intensity image corresponds to the optically calculated inner
product between the sample’s spectra and color filter. From these inner products the
spectra of the sample can be reconstructed by the use of a pseudoinverse matrix. Tom-
inaga [98] proposed a multispectral imaging system based on the use of a CCD camera
with 6 color filters. The color filters used in Ref. [98] were Kodak Wratten gelatin filters
with a fixed transmittance. In this thesis the aim is to propose a spectral vision sys-
tem, in which the transmittance of the optical color filters can be changed arbitrarily,
according to the filter set needed in each application.

In Chapter 2 it was discussed that a large Munsell spectral database can be represented
accurately by a few basis vectors calculated by the Karhunen-Loeve expansion based
subspace method. The basis vector set for the Munsell spectra can also represent natural
colors with a sufficient accuracy [44]. Jaaskelainen et al. [46] implemented the learning
subspace method optically. In Ref. [46] the liquid crystal spatial light modulator (LC-
SLM) was used to implement the color filters corresponding to the basis vectors of the
subspace method. Hayasaka et al. [34] developed the optical system described in [46] to
analyze two-dimensional microscopic images.

The basis vector set produced by the subspace method is orthogonal and it usually con-
tains negative coefficients, which cannot be directly implemented optically. In Refs. [34]
and [46] the basis vector set produced by the subspace method was biased and multiplied
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to make suitable filters for LCSLM. Some of these basis vectors have also complicated
shapes and it is often difficult to implement them accurately by the use of LCSLM. In
Ref. [34] an iterative feedback method was proposed to accurately implement the basis
vectors with complicated shapes by the LCSLM.

Recently, the color filter design with a constraint of positive spectral values has been the
focus of growing interest {56, 91, 104, 105]. In Refs. {59, 103, 104] the methods for choosing
the optimized set of a commercially available Kodak Wratten gelatin color filter set were
proposed. In Ref. {56] the positive color filters were found by optimizing an energy
function, which uses second- and fourth-order statistical moments {74]. In Refs. [26] and
[99] the simulated annealing based method was used to design positive color filters for
recording artworks {26] and for the electronic endoscope [99]. The color filters in these
studies were narrow band shaped. In publication 4 we proposed a new computational
method for designing broad band color filters with a constraint of positive spectral values.
By our method, the color filters can be designed according to an application, and they
can be directly implemented optically.

6.1 Color filter design

The aim was to find a method, which can cluster the spectra into a few clusters and
after clustering the centers of clusters could be used as color filters. We investigated the
clustering properties of competitive learning and self-organization methods (23, 35, 54]
and decided to use an unsupervised competitive neural network with a learning algorithm
basing on the Instar-algorithm by Grossberg [23]. We also incorporated Kohonen’s [54]
Self-Organizing Map with a Winner Take All (WTA) layer to our model.

The competitive learning is defined as follows. In each learning iteration the winner
neuron w. is the weight vector, which has the closest Euclidean distance to the input
vector x. The updating process of the weight vectors is defined by

wi(t) + a(t)z(t) — wi(t)] ,ifi=c,
wi(t) , otherwise,

wi(t+1) = { (6.1)

where ¢ is the iteration parameter and a(t) is a learning rate. The learning rate decreases
exponentially during the learning. In each cycle of the learning process the training
sample is taken randomly from the input data. The weights are initialized by the center
vector (> 0) of the input data. Eq. (6.1) can be written as w;(t + 1) = w;(£)[1 — a(t)] +
a(t)z(t), where 0 < a(t) < 1, wi(t) > 0, z(t) > 0 and therefore the weights w are always
positive. A detailed description of the competitive learning and self-organization can be

found in Ref. [54]. The algorithm for the unsupervised competitive neural network with
the WTA-layer is defined as follows.
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Algorithm 6.1: Unsupervised competitive neural network (Instar).

begin
= number of iterations;
normalize the input data to unit norm;
initialize the weights w by the center vector of the input data:
fort=1toedo
take randomly vector z from the input data;
find the winner w, for z by Eq. (4.3);
update the weight w; by Eq. (6.1);
decrease learning rate a;
endfor
end

In publication { we experimented with the Munsell spectral database containing 1269 re-
flectance spectra. The learned filter set containing 8 color filters with positive coefficients
is shown in Figure 6.1.
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Figure 6.1: Learned color filters, a) No.1-4, b) No.5-8.

The learned filter set is non-orthogonal and the reconstruction 7/ of the spectrum 7 can
be obtained by a pseudoinverse matrix

T =WWTW) ‘w7, (6.2)

where W is the filter set. In the optical implementation, W(WTW)~! is known and the
inner products, W77, between the color filter set W and spectrum 7 are determined ex-
perimentally. In publication 4 it was shown that the spectral reconstruction performance
by the learned filter set is comparable to the eigenvectors of the subspace method.

6.2 Spectral imaging system

The color filters with positive coefficients were designed to be used in our spectral imaging
system to calculate the inner products W7 in Eq. (6.2) optically. We will illuminate
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the object by the light which has the spectral characteristics of the color filter. For this
purpose we constructed a compact size optical setup for the spectral synthesizer, which
is shown in Figure 6.2. In the spectral synthesizer, the light source is white light, which
is filtered in the dispersion plane by the LCSLM, and the filtered light is mixed by the
second grating to produce the output light.

Concave grating LC-panel Concave grating
Lens 7 Polarizer

~~~~~~~~

Light source =~ Output light

Figure 6.2: Optical setup for the spectral synthesizer.
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Figure 6.3: Spectral vision system.

The experimental setup for the spectral vision system is shown in Figure 6.3. The object
is illuminated by the synthesized lights and the intensity images of the filtered object
are detected by the CCD-camera. Note that the inner products are obtained parallel for
every pixel. From these optically calculated inner products the object’s spectra can be
reconstructed by Eq. (6.2). In our experiments we noticed that a small error between
the theoretic and optically calculated inner product caused sometimes large errors in the
spectrum reconstruction. The investigations on this problem showed that the inverse
matrix in Eq. (6.2) was in those cases near singular. In order to avoid the problem of
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singularity, we used a regularization technique based on the truncated singular value
decomposition (SVD) in the spectrum reconstruction. Recently, Hardeberg et al. [31]
investigated the effect of noise in the spectrum reconstruction by computer simulations.
The acquisition of the spectral image by our spectral vision system is performed by the
following algorithm.

Algorithm 6.2: Spectral image acquisition.

begin
n = number of filters;
fori=1tondo
illuminate the object by the synthesized light of w;;
detect inner product w] 7 by CCD-camera;
endfor
store or transmit the acquired data;
if reconstruction = true then
reconstruct the spectral image by Eq. (6.2) and
if needed, use regularization;
endif
end

The time complexity for the spectral image acquisition by our spectral vision system
is O(n), where n is the number color filters or the number of component images to be
obtained. For one component image, the acquisition time complexity is O(1). We use
the low-dimensional color filter set designed by the unsupervised neural network, and
therefore the value for n is small. For example, in publication 5 four color filters were
used.

Some of the present spectral imaging systems are based on the line scanning [40]. In
these systems the spectra for one line are measured simultaneously along the wavelength
axis, but along the spatial axis, the measurement device or the object must be scanned.
The acquisition time complexity for each line is O(1) and for the whole image O(N),
where N is the number of lines in an image. Extra care should be taken for acquisition
of equilateral pixels when either the measurement device or the object is moving. In our
spectral vision system, the spatial resolution of the image is defined by the CCD-array
and one can obtain a two-dimensional image directly. The different spectral components
are, however, acquired separately. For the time complexity O(N) of our system and
for the time complexity O(N) of the line scanning based spectral camera, the following
O(n) <« O(N) is true. Our belief is that the proposed system is easier to use and a
better choice for static objects. For moving objects, the number of spectral components
and the speed of image acquisition set limits of use. The most critical part is the set-up
time of the LCSLM.

In publication 5 we used 4 color filters to acquire the spectral image at the wave-
length range from 400nm to 700nm at 10nm intervals. The data to be stored is only
4 monochrome images and they can be also used to transmit the spectral image. In
our system, the inner products are calculated optically and therefore this system can be
used in various optical pattern recognition tasks, in which the classification criterion con-
tains the inner product calculation. Publication 5 contains a detailed description of the
spectral vision system and shows the results of the experiments with real world objects.
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Discussion

Since the first prototype for the multispectral imaging instrument developed in the be-
ginning of 1970’s, the spectral images have been mainly used in the field of remote
sensing. However, due to the recent technological development in optics and computers,
the spectral imaging has received a great deal of attention in the industrial machine vision
applications. Due to the high accuracy, the spectral imaging is becoming an important
quality factor in industrial processes.

In this thesis three areas of spectral imaging were investigated. The analysis of spectral
textures, the illumination estimation, and the low-dimensional spectral imaging system
are all important research areas in the field of machine vision based industrial applica-
tions. The results of this thesis can be further developed to be more suitable and accurate
enough for machine vision. The usage of these techniques in industry are straightforward.

The multispectral texture analysis method was proposed basing on the gray level cooc-
currence matrix. The use of gray level cooccurrence matrix is a simple method and it’s
accuracy still competes with the recent techniques in texture analysis. This was one of
our motivations to generalize it for the multispectral texture analysis. It was shown that
the proposed method can be used to represent muitispectral textures. In publication 2
this method was tested with natural spectral images and RGB images, and the segmen-
tation accuracies with both images were approximately the same. The number of test
images was small and therefore the generalization of the results needs to be investigated
more deeply with larger data sets. Also the meaning of the location dependent Haralick
features calculated from the spectral cooccurrence matrix depends on the order of the
spectral classes and therefore the ordering of spectra needs to be studied more carefully.
In this thesis the meaning of Haralick features for the spectral cooccurrence matrix was
not studied in detailed, because of the nonuniquely defined order of the spectral classes.

The most important advantage of the proposed spectral cooccurrence matrix based
method is that it can be used to recognize metameric textures, in which case the tex-
ture analysis done with three-dimensional color images will fail. The optical implemen-
tation of the spectral quantization is an interesting research topic in the future. In
the Self-Organizing Map based spectral quantization, the characteristic vectors in the
one-dimensional map are vectors with positive coefficients. Thus, by the optical setup
described in publication 5, it is possible to calculate the optical inner products parallel

35
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for the whole image in one shot. For the online use in industrial applications, a further
investigation of the optical implementation is expected in future.

In machine vision the changing illumination conditions can cause serious problems for the
automatic recognition procedure. This is a problem of color constancy, which is under a
great deal of attention in the field of color research. In this thesis a new spectral based
illumination procedure was proposed. The method gives an efficient approximation of
the illumination spectrum on an image. It also describes the global color distribution in
an image and therefore the use of it in color based search from color image database is
straightforward. In general, the method can be used in color image normalization, which
is a great help in applications with changing illumination conditions. In the case of RGB
images, they must be first converted to spectral images, and after the illumination esti-
mation, the spectral images must be converted back to RGB images for visual purposes.
As discussed in publication 3, these conversions are ill-defined and need further study.

The spectral imaging is expected to increase in industrial use. Recently, the optical
color filter design has been the focus of growing interest. There exists commercially
available color filters, but they are usually expensive and with fixed transmittance, which
cannot be changed according to the application. Also the production cost of color filter
can be high. In publication 4 we proposed an unsupervised competitive neural network
based method to computationally design color filters. The color filters can be designed
according to the application. In publication 5 these filters were implemented optically by
the LCSLM. Using LCSLM, we can easily rewrite color filters with arbitrary shape, i.e.
we can reproduce optical color filters needed for a certain application. The construction
cost of the spectral synthesizer is low compared to the production cost, for example, of
the narrow band interference filters with a fixed transmittance.

The storing and transmission of the high-dimensional spectral data can be unconvenient.
We proposed a prototype of the low-dimensional spectral imaging system, which can be
used to reconstruct the spectral image from a few component images, with a sufficient
accuracy. The experimental results in publication 5 showed that our spectral vision
system has potential, but it must be developed further in its color representation. The
problem of near singularity in our experiments indicates that further study on the choice
of the filter set is needed. Possible methods include, for example, the use of Independent
Component Analysis (ICA) [57, 69]. In the spectrum reconstruction, the effect of the
spectral sensitivity of the CCD camera [102], the possible system noise, and the highlights
in images [53] need also further study. The spectral synthesizer can be used in various
optical pattern recognition tasks, in which the classification criterion contains the inner
product calculation.

The proposed spectral vision system is based on the use of the spectral synthesizer
and therefore it is sensitive to other illumination. This means that it is limited mainly
for indoor measurements. An interesting application could be to incorporate it to the
electronic endoscope to measure spectral images for medical purposes. Recently, our
group proposed a new spectral vision system [65], which is based on the use of the linear
variable filter (LVF) and LCSLM. The new system filters the reflecting or transmitting
light from an object by the rewritable optical transparent broad band filter, and it can
be used also for the outdoor measurements.
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In the future research, the following are planned to be investigated. In the multispectral
texture analysis, the method will be tested with larger datasets and the optical imple-
mentation of the spectral quantization will be studied. In the spectral based illumination
estimation, the conversion from RGB to spectra and vice versa will be improved. The
optical color filter design will be studied further and the spectral vision system will be
developed in its color representation.
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7. Discussion
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Abstract

We present a new cooccurrence matrix based approach
Sor multispectral texture analysis. The spectral and spatial
domains of the multispectral textures are processed sepa-
rately. The color space used in this study is represented by
subspaces and it is classified by the averaged learning sub-
space method (ALSM). In the spatial domain we use a gen-
eralized cooccurrence matrix for vector valued pixels. The
texture feature vectors are classified by the k-nearest neigh-
bor (KNN) classifier and the multilayer perceptron (MLP)
network. Experimental results of the multispectral texture
segmentation are presented.

1. Introduction

The use of color in image analysis is growing and re-
cently there has been a lot of interest in color textures. The
most common color representations for color images are the
RGB- and the Lab-model in industrial applications. Color
textures with three-dimensional colorspace have been stud-
ied by Kittler etal. {16], Scharcanski et al. [ 14], Kondebudy
etal. {7], Healey et al. {4] and by Panjwani et al. [10].

Methods of color image analysis are mainly based on
RGB-images. The RGB-model can represent only that re-
gion of the electromagnetic spectrum (400-700 nm), which
is visible to human. Furthermore, there is the problem of
metamerism, i.e. several spectra may have the same RGB-
values {2]. Therefore multispectral images can contain in-
formation that can not be detected in the corresponding
gray-level or RGB-image {8]. Since all three-dimensional
colorspaces have drawbacks, the whole spectrum is needed
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for accurate color representation.

Multispectral images and their analysis is receiving a
great deal of attention, due to the technical development
in imaging devices and computers. Multspectral images
are used e.g. in remote sensing and industrial quality con-
trol. For example, in AVIRIS (Airborne Visible/ Infrared
Imaging Spectrometer) imagery the images have 224 spec-
tral bands (400-2450 nm) [17]. The new generation col-
orimeters based on the spectral representation of color are
used in paper quality control at paper mills and the use of
imaging spectrometers is increasing in the industry. The
three-dimensional color coordinate systems are not accurate
enough to meet all requirements in color analysis.

Color image segmentation has been studied e.g. in pa-
pers {10] and {15]. During segmentation, regions of in-
terests are extracted from an image. There are two ba-
sic approaches to image segmentation: edge-based meth-
ods and region-based methods. The methods within these
approaches in gray level images are not always straight for-
ward expandable to multispectral images. Mathematically,
one move from one dimensional space of gray values into a
vector space of multispectral pixels. To define discontinuity
or similarity in a vector space has not a unique solution.

Multispectral textures have two domains to be analyzed:
the spectral domain and the spatial domain. In this study
we use a two phase process for multispectral textures. The
spectral domain is classified by the averaged learning sub-
space method. A widely used representation of second or-
der statistics in texture analysis, cooccurrence matrix, is
generalized for the multispectral images to analyze the spa-
tial domain,

We produced multispectral images synthetically from the
Brodatz textures {1]. Each gray level in these textures was



replaced by a natural color spectrum measured by the spec-
troradiometer from the canopy of pine, spruce and birch
forest [6]. We made also experiments with a real multispec-
tral image measured by the Finnish airborne spectrometer
AISA (Airborne Imaging Spectrometer for Applications).
The segmentation method described in this paper is region-
based and the experimental results of multispectral texture
segmentations are presented.

2. Classification of the spectral domain

The measured spectra span a high-dimensional pattern
space, where the classes are represented by subspaces. The
subspaces can be analyzed using the subspace method and
the color coordinates are now the projections on these sub-
spaces {5].

The definition for subspaces is based on the Karhunen-
Loeve transformation. A measured spectrum 7()) can be
represented as a vector [T(X1), 7(X2), ..., 7(Aa)]T, where
A is the wavelength and 7" denotes the transpose. To com-
pute the characteristic vectors for the subspaces, we used
the correlation matrix R = va:'l 1 (AN71(\)T, where the
index 7 means ith spectrum in the set of N,. measured spec-
tra. The characteristic vectors, i.e. the eigenvectors ¢ are
the solutions of the equation R¢ = ¢, where o is aneigen-
value of R. The first p eigenvectors form a basis for the
subspace.

The subspace classification is based on the idea, that
the classes are represented by the properly spanned sub-
spaces and the unknown vectors are then classified into
these classes according to the projection criterion. This su-
pervised classification can be performed as follows: In the
begin of the training phase, the color subspaces are formed
from the color spectra with known classification. Then the
training set 15 classified. If there are misclassifications in
this phase, the subspaces are rotated by changing the cor-
relation matrices [9] : S&) = S,(,")‘, + Z#, a(,-‘j)S,(,:‘J) -
i b(i'j)Sf,{"), where S | is the correlation matrix of
aclass w() atiteration (m — 1), a and b are small numbers
defining the weighting for misclassification, S,(,';‘J) 1s the au-
tocorrelation matrix formed by the pattern vectors that be-
long to class w™, but have been classified at iteration m to
class w(?). Learning process continues until the results are
correct or stable. This method is also known as the averaged
learning subspace method (ALSM) [9]. The unknown mea-
sured vectors are then classified into these subspaces using
the projection criterion.

3. A generalized cooccurrence matrix

The gray level cooccurrence matrix is defined as a sam-
ple estirnate of the joint probability density of the gray lev-
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els of two pixels separated by a given displacement. In
cartesian coordinates the displacement of the cooccurrence
can be chosen as a vector (Az, Ay). The gray level cooc-
currence matrix P is defined as

Pli.d) = (#pail limage(z.y) = in |
image(z + Az, y + Ay) = j},
where i, j are gray levels. Usually the cooccurrences are
based on the natural lightness-based order of the pixels. In
the multispectral images the pixel values are color spectra
i.e. vectors and there is no natural order for the pixel values.
Rosenfeld et al. {12] mentioned the cooccurrence matrix for
vector valued pixels, but their model was computationally
to0 expensive,

When each color spectrum in a multispectral image is
classified to the color subspace, the result is an image where
each pixel has a pointer to a certain color class. Now we can
use this class value as a pixel value, From this image the
generalized cooccurrence matrix can be computed. The el-
ement (w® w1} is the number of pairs of pixels with dis-
placement (Az, Ay), with a pair of color spectra belonging
to color class w(® and color class w9, respectively. This
generalized cooccurrence matrix is a joint probability func-
tion defined by pairs of color classes:

P, = (#pair(p, q)[p(z.y) € wA

g(z + Az,y + Ay) € WU}, @

where w(), ) are color classes, p and g are color spectra
associated to the pixels at the points (z,y) and (z-+ Az, y-+
Ay).

The problem now is to find out the proper subspaces
representing each color. This means that the most suitable
subspace representation can be chosen according to the ap-
plication. When we are comparing a fixed set of textures
with each other, e.g. in the texture segmentation problem,
the color classes are not necessary to be ordered. However,
if the cooccurrence matrices shall be repeatedly, uniquelly
reconstructed, unique order for the color classes shall be
found. The size of Pis G x G, where G denotes the num-
ber of gray levels or color classes. In order to avoid large
cooccurrence matrices, the number of gray levels is usually
compressed. Typical values for G in gray level images are
from 4 to 32. The number of color classes depends on the
number of the proper color subspaces for needed classifica-
ton accuracy,

Haralick et al. [3] described fourteen features extracted
from the cooccurrence matrix P, In this study we use the
following five of them : energy, entropy, contrast, correla-
tion and homogeneity.

4. Multispectral texture segmentation

The texture features calculated from the generalized
cooccurrence matrix are classified by the multilayer percep-



tron neural network. Recently, Raghu et al. [11] used MLP
to classify Gabor features in the gray level texture segmen-
tation. The MLP used in this study consists of an input
layer, one hidden layer and an output layer. Input vectors
are now the texture feature vectors and outputs are desired
classes. The network training is done by using the back-
propagation algorithm [13].

Generalization is an important property of MLP which
depends on the number of training epochs and the number
of neurons in the hidden layer. Usually it is easy to getalow
error rate for a training set when the training process is con-
tinued. However, this can lead to overtraining, i.e. the test
set error may actually start to increase after a certain num-
ber of training steps. To avoid overtraining, the expected
error of the network can be calculated using a test set that is
independent of the training set. Training should be stopped
when the error of this independent test set reaches its mini-
mum.

The segmentation process is performed as follows. First
the subspaces for spectral domain classification are con-
structed from the manually extracted training set. Next the
training set for segmentation process is created by taking
randomly image windows from each multispectral texture
used in our expeniment. Then the spectral domain is clas-
sified to subspaces by ALSM. Next the feature vectors are
calculated from the generalized cooccurrence matrix con-
structed from each image window. The MLP is trained with
these feature vectors with known classification.

In the beginning of the test image segmentation the spec-
tral domain is classified. Next the image is segmented by
gliding an image window from upper left comer to lower
right corner over the multispectral image and in each win-
dow position the generalized cooccurrence matrix is com-
puted, the feature vectors are calculated and classified by
MLP. Each pixel in an image window is then marked to be-
long to a same class that is the output of the MLP for the
image window feature vector.

5. Experiments
5.1. Multispectral texture image

First we made experiments with the synthetically pro-
duced multispectral textures. The spectral data used in this
experiment was measured by the spectroradiometer from
the canopy of growing trees (Scots pine, Norway spruce
and birch) [6]. Each set of spectra consists of 300 spec-
tra sampled from 400 to 700 nm at 5 nm intervals, i.e. 61
reflectance values. Fig. 1 shows the average spectra from
each set. It can be seen that the curve for pine is almost
equal to the curve for spruce.

A multspectral texture mosaic was made synthetically
combining the spectra measured from growing trees with
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Figure 1. The averaged reflectance spectra
from the pine (solid curve), spruce (dot-
dashed) and birch (dotted) spectra sets.

the Brodatz textures. The original textures (D28 and D33)
were 512 x 512 images with 256 gray levels, which were
first compressed to 2 gray levels. Six spectral textures were
then made as follows. First gray level O in both textures
was replaced by the black spectrum. Then gray level | in
both textures was replaced by 100 randomly selected spec-
tra from pine. Next two textures were made by replacing
gray level 1 by 100 randomly selected spectra from spruce
and the third texture pair was made by replacing gray level
I by 100 randomly selected spectra from birch,

Fig. 3 a) shows the gray level transformed multispectral
texture mosaic. The multispectral 512 x 512 texture mosaic
was formed from six textures so that in the left column is the
texture D28 and in the right column is the texture D33, At
the top of the image is the spectra from pine, in the middle
from spruce and at the bottom from birch. Now the segmen-
tation problem is to divide the multispectral texture mosaic
into six regions. This is the same kind of problem as to seg-
ment the forest region into thick and sparse forest in real
aerial images.

5.2. Gray level texture segmentation

First we segmented using only information from the spa-
tial domain. The corresponding gray level image was con-
structed by replacing each spectrum in the multispectral im-
age by its CIE 1976 lightness (L*) value. These were com-
pressed to 4 lightness values. The training data for the spa-
tial domain classification was extracted from six multispec-
tral textures, which made up the texture mosaic, These six
textures were transformed to gray level images same way
as the texture mosaic. From each of these textures 40 ran-
domly located 20 x 20 texture windows were taken as train-
ing data.

Next the gray level cooccurrence matrices were com-
puted from the training samples. The displacement of the
cooccurrence malrix was the right neighbor in horizontal di-
rection. The feature vectors were constructed by calculating
energy, entropy, contrast, correlation and homogeneity fea-
tures. The feature vectors were normalized (o unity. With
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MLP was trained using the backpropagation algorithm and
the training was stopped when the sum squared error (SSE)
of the independent test set was at its minimum.

The gray level texture mosaic was segmented by gliding
a 20 x 20 window from upper left corner to lower right cor-
ner. In each window position the cooccurrence matrix was
calculated, the feature vector was constructed and normal-
ized to unity, and classified by MLP. Then each pixel inside
this window was replaced by the feature vector’s classifica-
tion value. Fig. 3 b) shows the segmentation result in pure
spatial domain. The percentage of the correctly classified
pixels is 60 %.

5.3. Multispectral texture segmentation

The spectral domain of the multispectral image was clas-
sified by ALSM with a training set of 150 arbitrarily cho-
sen spectra from each tree. From the training data we con-
structed 3 subspaces of 11 dimensions. Three hundred spec-
tra used in test image were classified into these subspaces
giving a pointer from each spectrum into a color class. Per-
centages of correct classification were 62%, 69% and 89%
for pine, spruce and birch, respectively.

From each of the six multispectral textures that made
up the multispectral texture mosaic, 40 randomly located
20 x 20 texture windows were taken as a training data. The
spectral domain of each training window was classified to
the subspaces, the generalized cooccurrence matrices were
computed and the feature vectors were calculated and nor-
malized to unity.

The multispectral texture mosaic was segmented by glid-
ing the 20 x 20 window over the image, as in the previous
test, In each window position the generalized cooccurrence
matrix was calculated, the feature vector was constructed
and normalized to unity, and classified to the training set by
the k-nearest neighbor (KNN) classifier. Fig. 3 c) shows the
segmented image.
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Figure 2. Examples of the feature spaces of
two classes. Dot marks: upper left corner
texture, circles: middle left texture.

Fig. 2 shows the example of the feature spaces extracted
from the training data. Dot marks correspond to the upper
left corner texture and circles correspond to the middle left
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correlation and homogeneity features shows that the curved
class boundaries are needed in the feature space. The MLP
with nonlinear activation function is especially suitable for
this kind of data. We used the logistic sigmoidal activation
functions in the hidden and in the output layer neurons.

Figure 3. a) Multispectral texture mosaic (the
white lines show the edges between the re-
gions). Segmented multispectral texture b) in
pure spatial domain c) by KNN d) by MLP.

The MLP was trained as in the gray level segmentation.
The training data was the same as in the KNN-based seg-
mentation. The test image was segmented with the 20 x 20
window. In each window position the generalized cooccur-
rence matrix was calculated, feature vector was constructed
and normalized to unity, and classified by MLP. Fig. 3 d)
shows the segmented image. In Table 1 are the percentages
of the correctly classified pixels in KNN- and MLP-based
segmentation.

Table 1. The percentages of the correctly

classified pixels in the multispectral segmen-

tation by KNN and MLP. Region 1 : upper left
corner, region 6 : lower right corner.

Region KNN MLP
1 92.57% | 92.10 %
2 7736 % | 86.52 %
3 87.90 % | 92.89 %
4 91.65% | 90.74 %
5 77.04 % | 83.31%
6 7631 % | 87.17%

Average | 83.81% | 88.79%




Next we made experiments with the multispectral image
measured by the Finnish airborne spectrometer AISA (Air-
borne Imaging Spectrometer for Applications). The image
contains terrain regions such as forest, grassland and areas
with buildings. Each pixel has a 25-component spectrum
measured between 649.9 nm to 747.4 nm. Figure 4 a) shows
the 356 x 700 AISA-image gray level transformed.

The spectral domain of the AISA-image was classified
by ALSM. The training set was manually extracted con-
taining data from each of the four desired terrain categories.
The regions of interests were forest, grassland | (darkestre-
gion in upper left}, grassland 2 (dark region in middle) and
road. Training set sizes were from 132 to 840 pixels. From
the training data we constructed 4 subspaces of 8 dimen-
sions. Next each pixel (i.e. spectrum) of the multispectral
image was classified to these subspaces. Figure 4 b) shows
segmented AISA-image. The gray levels correspond to the
spectral subspaces.

a [s)]

Figure 4. a) AlS?&-image, b) result of the spec-

tral domain segmentation,

The segmentation result shows that the terrain regions
are clearly segmented in the spectral domain alone. How-
ever, if we want to segment the forest region (i.e. region
with same spectra) into thick and sparse forest (i.e. differ-
ent texture), then the spatial domain must also be analyzed.
In this experiment we pass the spatial domain analysis be-
cause there was no ground truth for the textured regions in
the AISA-image.

6. Discussion

We have presented a new method for multispectral tex-
ture analysis, which is based on the generalized cooccur-
rence matrix for vector valued pixels. The color space was
represented by subspaces and for this application we trained
the subspaces accurately for the natural spectra measured
from the canopy of trees.

The multispectral texture segmentation results show that
this methiod can recognize textures that have the same color
and a different structure, or the same structure and a dif-
ferent color. The use of MLP in feature classification was
suitable, because the curved class boundaries were needed
in the feature space. We showed that the spectral and spatial
domains processed together give good results in the multi-
spectral texture segmentation compared to the segmentation
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With the synthetic and real muitispectrai lmages we have
shown that this method can be used in multispectral texture
analysis. This study can be seen as a step towards the real
multispectral texture analysis. In the future we will test this
method with the real images.

Acknowledgement: We thank Pentti Pylkko for the
AISA-image.
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Multi-spectral Texture Segmentation Based on the

Spectral Cooccurrence Matrix

Abstract

Multi-spectral images are becoming more common in industrial inspection tasks where the
colour is used as a quality measure. In this paper we propose a spectral cooccurrence matrix
based method to analyse multi-spectral texture images, in which every pixel contains a meas-
ured colour spectrum. We first quantise the spectral domain of the multi-spectral images using
the Self-Organising Map (SOM). Next we label the spectral domain according to the quan-
tised spectra. In the spatial domain, we represent a multi-spectral texture using the spectral
cooccurrence matrix, which we calculate from the labelled image. In the experimental part of
this paper, we present the results of segmenting natural multi-spectral textures. We compared
the k-nearest neighbour (k-NN) classifier and the multilayer perceptron (MLP) neural net-
work-based segmentation results of the multi-spectral and RGB colour textures.
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1. INTRODUCTION

Multi-spectral image analysis is receiving a great deal of attention due to technical develop-
ments in imaging devices [1]. In industrial inspection tasks, such as in quality control of prod-
ucts, the importance of colour as a quality measure is growing. Usually, the colour is meas-
ured through a few filters, and the colour analysis is made using colour coordinates, which are
based on the CIE tristimulus values [2, 3). In industrial applications, common three-
dimensional colour coordinate systems are the Lab-model and the Luv-model, and in colour
image representation, the RGB-model is used. The colour analysis based on the three-
dimensional colourspaces can sometimes be too restrictive for accurate colour representation.
In these cases, the entire colour spectrum is needed to obtain the highest accuracy.

Recently, there has been a lot of interest in colour textures. Tan and Kittler [4] proposed a
supervised colour texture classification method, which uses eight Discrete Cosine Transform
(DCT) texture features extracted from each of the three RGB colour channels. They have also
proposed a method where the three-dimensional colour information and texture information
are processed separately [5]. Eight DCT features were calculated [5] from the intensity image,
and six colour features were derived from the colour histogram. Recent studies in the field of
colour textures of their group can be found in elsewhere [6,7]. Scharcanski, Hovis and Shen
[8] used colour codebooks to represent the colour aspect of the colour textures. Kondebudy
and Healey [9], Healey and Wang [10] and Panjwani and Healey [11] used Markov models
and spatial correlation functions for modelling colour textures.

All of these methods based on the three-dimensional colourspaces give a computationally ef-
fective way to process colour images, and their accuracy is enough for many applications.
However, there are some restrictions in these models. They can represent only that region of
the electromagnetic spectrum (380-780 nm), which is visible to humans. Sometimes, for ex-
ample, the interesting part of the measurement can be in the near infrared or infrared region of
the electromagnetic spectrum. Furthermore, there is a problem of metamerism, where several
different spectra may have the same three-dimensional colour coordinate values [12). In this
case, it is possible that humans cannot see the difference between the colour of two metameric
objects under a certain illumination, but when the illumination is changed, the difference be-
tween the colours of the objects can be seen. Due to these drawbacks of the three-dimensional
colour representation, sometimes the whole colour spectrum is needed for accurate colour
representation.

The use of imaging spectrometers is growing in remote sensing [13,14], and in industrial
quality control [1]. An imaging spectrometer allows accurate measurements of the spectral
reflectances over the visible and infrared regions. Such a multi-spectral image has a large
number of spectral channels, and can contain information that is not available in the corre-
sponding grey level or RGB image [15]). In AVIRIS-imagery (Airborne Visible/Infrared Im-
aging Spectrometer), one multi-spectral image consists of 224 spectral channels (400-2450
nm) [16,17]. Also, the industrial use of imaging spectrometers has received growing interest
recently [1], and Baronti et al [18) used a visible-infrared multi-spectral imaging system to



analyse works of art. If the multi-spectral imaging system is tuned to measure the visible light
in the wavelength range from 380-780 nm, then the measured image represents a high-quality
colour image where every pixel contains a colour spectrum. Multi-spectral images are, how-
ever, not restricted to the visible band of the electromagnetic spectrum. Other techniques for
obtaining images with more accurate colour information are also possible: Tominaga [19]
proposed a multi-channel vision system based on the use of a CCD-camera and a few colour
filters covering the spectral range from 400-700 nm.

During segmentation, Regions Of Interests (ROI) are extracted from an image. There are two
basic approaches to image segmentation. The first approach is based on the discontinuities in
an image (edge-based methods), while the second approach is based on the similarities in an
image (region-based methods). These methods are usually used for grey level images, and
their generalisation for multi-spectral images is not always straightforward. Mathematically,
one moves from a one-dimensional space into a multi-dimensional vector space, and disconti-
nuity or similarity in a vector space is not uniquelly defined {20,21]. Examples of RGB image
segmentation can be found elsewhere [11,22].

Multi-spectral images have two domains to be analysed: the spectral domain and the spatial
domain. In this study, we use a two-phase process to analyse multi-spectral texture images.
First we quantise the spectral domain by the use of the Self-Organising Map (SOM) of Koho-
nen [23]. Next we label the spectral domain according to the quantised spectra. In the spatial
domain, a widely used grey level texture representation, a grey level cooccurrence matrix by
Haralick, Shanmugan and Dinstein [24], is used for the labelled image to analyse the spatial
domain. In our proposed method, the cooccurrence matrix describes the spatial dependency of
the quantised spectral domain, and therefore we call it as a spectral cooccurrence matrix. The
multi-spectral texture features are constructed by calculating five Haralick features from the
cooccurrence matrices. Furthermore we use the spectral cooccurrence matrices themselves as
a feature vector [25]. Chang and Wang [26] used the colour cooccurrence matrix-based
method to analyse three-dimensional colour textures. They first quantised the colours in an
image, labelled the colour domain according to the quantised colours, and then used the col-
our cooccurrence matrix-based method for the labelled image.

We made experiments with the natural multi-spectral images measured by Parraga et al [27].
In our experiments, we segmented the natural multi-spectral textures by the use of the k-
nearest neighbour (k-NN) classifier and the multilayer perceptron (MLP) neural network. The
segmentation method described in this paper is region-based, and the experimental results of
the natural multi-spectral texture segmentations show that the proposed method can be used to
analyse multi-spectral texture images. The results are compared with the segmentation results
of the RGB colour textures.

The paper is organised as follows. Section 2 gives a description of quantising the spectral do-
main. The spectral cooccurrence matrix is described in Section 3, and the segmentation
method in Section 4. The experimental results are presented in Section 5. Finally, discussion
is given in Section 6.



2. QUANTISATION OF THE SPECTRAL DOMAIN

The spectra of the multi-spectral images are vectors in a high-dimensional pattern space. In
our method, we first quantise the spectra into fewer spectra using the SOM [23]. The Self-
Organising Maps are based on unsupervised competitive learning, which can be used to clus-
ter the input data. We quantise the spectral domain by training a one-dimensional map, where
each weight vector contains a spectrum representing the spectral cluster in the spectral do-
main. The unsupervised learning can be described as follows. At each learning iteration the
winner m,_ is a weight vector, which has the closest Euclidean distance to the input vector x:

fx=m = minffe - m ]}, 0

where i is the index of the weight vectors. The winner m, is also called a best-matching unit
for the input vector x. Next the winner m_ and its topological neighbourhood N, are updated
as follows

m (1) +a(@)x(0)-m,(1)] .ifieN.(r)

m, (1) ,otherwise,

m(t+1)= { (2)
where ¢ is the iteration parameter and a(z) is a learning rate, 0 < () < 1. The input data is
first normalised to unit norm, and the map is initialised by the centre vector of the input data.
In each learning iteration, the training sample is taken randomly from the input data and the
learning rate decreases exponentially. The size of the neighbourhood N, also decreases during

learning.

The result of the self-organising process is a map, where the weight vectors m are adapted to-
wards to the characteristic vectors of the spectral clusters in the spectral domain. After learn-
ing, the spectral domain is classified using the self-organised map by finding the best-
matching unit from the map for each spectrum in the spectral domain.

3. A SPECTRAL COOCCURRENCE MATRIX

The grey level cooccurrence matrix is defined as a joint distribution of the grey levels of two
pixels separated by a given displacement [24]. In cartesian coordinates, the displacement of
the cooccurrence can be chosen as a vector (Ax,Ay). The grey level cooccurrence matrix P is
defined as

P(i, j)= {#pair(i, )l image(x, y) = i A image(x + Ax, y+Ay) = j} , 3)

where i and j are grey levels. Usually, the cooccurrences are based on the natural lightness-
based order of the grey levels. In the multi-spectral images, the pixel values are measured
spectra, i.e. vectors, and there is no natural order for them. Rosenfeld, Wang and Wu [28]
have proposed a multi-spectral texture analysis method, which is based on two-band features
for the textures with vector-valued pixels. Recently, Oja and Valkealahti [29] used multi-
dimensional cooccurrence histograms to classify three-dimensional colour textures.



In this paper, the spectral domain of the multi-spectral images is quantised into fewer spectra
by the SOM, and then the spectral domain is labelled according to the quantised spectra. In the
labeling process, each spectrum in the multi-spectral image is classified to the spectral cluster.
As aresult, we have an image where each pixel is a scalar value describing the number of the
spectral class. The order of the spectral classes is defined as the index number of the weight
vectors in the one-dimensional SOM from left to right.

From the labelled image a spectral cooccurrence matrix can be computed. The element (i j) is
now the number of pixel pairs of spectra belonging to spectral class i and j, with a displace-
ment (Ax,Ay):

PG, j) = {# pair(p,g)! p(x,y) € i n g(x + Ax,y+Ay)€ j }, (4)

where p and g are spectra associated with the pixels at spatial locations (x,y) and (x+Ax,y+Ay).
The spectral cooccurrence matrix contains information on the spatial dependency of the spec-
tral classes in the multi-spectral image. In this study, the unsymmetric spectral cooccurrence
matrices are used.

The size of the cooccurrence matrix P is G x G, where G denotes the number of grey levels or
spectral classes. To avoid large cooccurrence matrices, the number of grey levels is usually
compressed. Typical values for G in grey level texture analysis are from 4 to 32. The number
of spectral classes depends upon the quantisation degree, which can be chosen according to
the accuracy needed for each application. Haralick, Shanmugam and Dinstein {24} described
14 features extracted from the grey level cooccurrence matrix P. In this study, we use the fol-
lowing five of them:

Energy = 3 3 P*(i, j),
i
Entropy = - ZZP(i,j) log P(I‘,jA),
i

Contrast = ¥ ¥ (i- j)'P(i, ), (5)

Correlation = chlc (i—u,)(j—uy)f’(i,j),
i J =y

Homogeneity = Z Zl—%,

[
where y , u , 0, and ¢ are the means and the standard deviations of the rows and col-

umns of P, respectively. The cooccurrence matrices can be computed with different dis-
placements, and the features of these matrices can be combined for the classification process.

The features described in Eq. (5) have been defined to represent the grey level cooccurrence
matrix. In the case of the spectral cooccurrence matrix, the meaning of some features in Eq.
(5) 1s different. The most critical features are contrast, correlation and homogeneity, where the
feature calculation depends upon the ordering of indices i and j. Grey levels have natural
lightness based ordering, but there is no natural ordering for the measured spectra. However,



the order of the spectral clusters produced by the SOM is self-organised, and it may be a
promising method for ordering the spectral type data.

The cooccurrence matrix itself can be used as a feature vector by stacking it row by row into a
vector [25]. This feature vector represents the second-order statistics of the texture, and there
is only a little loss of information when going from raw image data to the texture representa-
tion. In the case of a stacked spectral cooccurrence matrix, the ordering of the spectral classes
does not have so critical a meaning when compared to the feature calculation in Eq. (5).

4. MULTI-SPECTRAL TEXTURE SEGMENTATION

In our experiments, the texture features extracted from the spectral cooccurrence matrix are
classified by the k-nearest neighbour (k-NN) classifier, and by the multilayer perceptron
(MLP) neural network. Raghu, Poongodi and Yednanarayana [30] have used the MLP to clas-
sify Gabor features in the grey level texture segmentation. The MLP used in our study consists
of an input layer, one hidden layer and an output layer. Input vectors are texture feature vec-
tors and outputs are desired classes. The network training is done by the backpropagation al-
gorithm [31]. In feature classification, the aim is to divide the input feature space into regions.
We use the MLP to classify the input feature space, and therefore the use of one hidden layer
was chosen. In the hidden layer and in the output layer, the logistic sigmoidal activation func-
tions were used. The number of neurons in the hidden layer was decided by analysing the
number of training samples versus the number of free parameters in the MLP.

Generalisation is an important property of MLP which depends upon the number of training
epochs and the number of neurons in the hidden layer. Usually, it is easy to get a low error rate
for a training set when the training process is continued. However, this can lead to overtrain-
ing, i.e. the test set error may actually start to increase after a certain number of training steps.
To avoid overtraining, we approximate the early stopping of the training process by the cross-
validation method [32].

The training process is performed as follows. First, the training set is created by randomly
taking image windows from each multi-spectral texture used in our experiments. Then the
spectral domain is quantised by the SOM, the spectra is classified to spectral clusters, and the
spectral domain is labelled. Next the feature vectors are calculated from the spectral cooccur-
rence matrices, which are constructed for each training image window. The MLP is trained
with these feature vectors with known classification.

At the beginning of the multi-spectral texture segmentation, the spectral domain of the test
image is labelled according to the spectral quantisation, which was performed in the training
phase. Next, the test image is segmented by gliding an image window from the left upper cor-
ner to the right lower corner, and in each window position the spectral cooccurrence matrix is
computed, and the feature vector is calculated and classified by the MLP. Each pixel inside
an image window is marked to belong to the same class.



The training process based on the stacked spectral cooccurrence matrix includes the training
set extraction and the spectral domain quantisation of the multi-spectral texture, which are
done as before. The texture feature vectors are now constructed by stacking the spectral cooc-
currence matrix of each training texture row by row into a vector. The segmentation phase is
done as before, except that the stacked spectral cooccurrence matrices are used as multi-
spectral texture features.

5. EXPERIMENTS

S.1. Natural Multi-spectral Images

We experimented with the natural multi-spectral image database measured by Parraga et al
[27]. The database consists of 29 multi-spectral images measured by a hyperspectral camera
system from the natural scenes including plants, flowers, trunks, branches, grass, leaves, trees,
bushes, rocks and sky. The multi-spectral images are measured using 31 narrow-band interfer-
ence filters, which cover the visible wavelength range from 400-700 nm at 10nm intervals.
Each multi-spectral image contains a total of 31 monochrome 256 x 256 pixel images, where
the spectral reflectances are stored as 8 bits/pixel format. The database also contains the same
natural images as RGB colour images. A detailed description of the hyperspectral database
can be found elsewhere [27].

From the database we extracted four 128 x 128 pixel multi-spectral images, which contained
textured regions of green grass, trunk, rock and green grass with yellow leaves. We combined
these parts into one 256 x 256 multi-spectral texture mosaic, which is shown as an RGB-
image in Fig. |. Every pixel in the multi-spectral texture mosaic contains a 31-component
colour spectrum in the wavelength range from 400-700nm at 10nm intervals. The segmenta-
tion problem is to divide the multi-spectral texture mosaic into four regions.

Fig. 1. Multi-spectral texture mosaic as a RGB image.



5.2. Segmentation

A. Training Data

From each of the 128 x 128 pixel multi-spectral images that were used to make the multi-
spectral texture mosaic, 30 randomly located 16 x 16 multi-spectral texture windows were
taken as training data. The window size of 16 x 16 pixels was decided empirically according
to the appearance of the texture in the images. It is possible to extract 64 non-overlapping 16 x
16 windows from the 128 x 128 pixel image, but because we extract the training data from the
same images that will be segmented, the locations were chosen randomly to avoid a strong
correlation between the training and test data. The number of windows was chosen as 30 to
avoid serious overlapping of the randomly selected windows.

B. Spectral Domain Quantisation

These multi-spectral texture windows contained a total of 30,720 spectra of 31 components in
each spectrum. The 30,720 spectra were normalised to unit norm, and quantised by the one-
dimensional SOM. In the SOM we used 10 units, which means that the spectral domain is
quantised into 10 levels. The size of the SOM was decided to be small enough to avoid large
spectral cooccurrence matrices. We used 40,000 iterations to train the Self-Organising Map.
The learning rate was decreasing exponentially from the initial value of 1 towards 0. Also, the
size of the topological neighbourhood of the best-matching unit was decreasing exponentially
from a value of 9 so that after 4000 iterations it was 1. In the series of experiments, we no-
ticed that the map was approximately organised after 20,000 iterations, but we fine-tuned the
map until 40,000 iterations to obtain the final map organisation.

After unsupervised learning, the weight vectors of the SOM are the characteristic vectors for
the spectral clusters. Next, the spectral domain of the training samples was classified into the
spectral clusters by the use of the self-organised map by finding the best-matching unit from
the map for each spectrum in the spectral domain. The spectral domain was labelled according
to the index numbers of the best-matching units in SOM. The spectral domain of the multi-
spectral texture mosaic was classified and labelled in the same way. Figure 2 (a) shows the
result of the spectral domain quantisation as a grey level image with 10 grey levels. We also
compared the results with the RGB colour-based quantisation results. The same textures were
loaded as RGB colour images, and the training data was extracted at the same locations as be-
fore. Then a total of 30,720 RGB colour coordinates were quantised into a one-dimensional
SOM, and the colour domain of the RGB texture mosaic was classified and labelled. Figure 2
(b) shows the result of the colour domain quantisation of the RGB texture mosaic as a grey
level image with 10 grey levels.



Fig. 2. Quantisation results of the spectral domain. (a) Multi-spectral texture mosaic

]

(b) RGB texture mosaic.

C. Feature Extraction and Segmentation

Next the 10 x 10 spectral cooccurrence matrices were calculated from each of 120 multi-
spectral textures used in the training data. Several displacements of the spectral cooccurrence
matrix were tested, and the right neighbour in the horizontal direction was selected. The fea-
ture vectors for each spectral cooccurrence matrix were constructed by calculating five
Haralick features described in Eq. (5). The feature vectors were normalised to unit norm. Then
the multi-spectral texture mosaic was segmented by gliding the 16 x 16 window over the im-
age at 4 pixel intervals. In each window position, the 10 x 10 spectral cooccurrence matrix
was computed, five Haralick features were calculated, and the feature vector was normalised
to unit norm. The feature vector was classified by the use of the k-nearest neighbour (k-NN)
classifier. We found that the feature classes were chain-shaped in the feature space, and there-
fore the value of k = 1 was used. Figure 3 (a) shows the k-NN classifier based segmentation

result of the multi-spectral texture mosaic. The percentage of the correctly classified pixels is
62.6 %.

The same was done for the RGB colour textures. The training textures were the same as be-
fore, and the features were calculated from the colour cooccurrence matrices, which are de-
fined as a joint distribution of the quantised RGB colour clusters of two pixels separated by a
given displacement. Also in this experiment, the image was segmented by gliding the 16 x 16
pixel segmentation window over the image at 4 pixel intervals. Figure 3 (b) shows the k&-NN
classifier-based segmentation result of the RGB texture mosaic. The percentage of the cor-
rectly classified pixels is 66.0 %.
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Fig. 3. Segmentation results by the use of a 1-NN classifier. (a) Multi-spectral texture mosaic,

{b) RGB texture mosaic.

Then we segmented the multi-spectral and RGB texture mosaics using MLP. The MLP was
trained with the same training data that was used in the previous experiment. The MLP had
five inputs, seven hidden neurons and four outputs (four classes). The number of free pa-
rameters in the MLP is now 74, and the number of equations (training samples) is 120. 1t is
possible that more hidden neurons can give better results, but when the number of free pa-
rameters in the MLP is increased, it can lead to overtraining. The MLP was trained by the
backpropagation algorithm, where the number of suitable training iterations was analysed by
the cross-validation method. In the cross-validation we divided the training data randomly into
a training set and a cross-validation set. The training set, which contained 80 samples, was
trained by the MLP, and in each iteration step the neural network was tested by the cross-
validation set, which contained 40 samples. The error for the cross-validation set started to
grow after 1500 iterations, while the error of the training set was still decreasing. This means
that the neural network was overlearning after 1500 iterations, and this iteration value was
used to stop the training of the MLP.

The multi-spectral texture mosaic was segmented by gliding the 16 x 16 window over the im-
age at 4 pixel intervals. In each window position, the 10 x 10 spectral cooccurrence matrix
was computed, five Haralick features were calculated, and the feature vectors were normalised
to unit norm. The feature vector was classified by the MLP, and each pixel inside an image
window was marked as belonging to the same class. Figure 4 (a) shows the segmentation re-
sult of the multi-spectral texture mosaic. The percentage of correctly classified pixels is 67.1
%. Next, the same MLP was trained for the RGB data, and the RGB texture mosaic was seg-
mented by gliding the 16 x 16 pixels window over the image at 4 pixel intervals. The number
of iterations used in the training was analysed by cross-validation, and the value of 6500 it-
erations was used. Figure 4 (b) shows the MLP based segmentation result of the RGB texture
mosaic. The percentage of correctly classified pixels is 69.0 %.
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Fig. 4. Segmentation results by the use of the MLP. (a) Multi-spectral texture mosaic,

(b) RGB texture mosaic.

Finally, we carried out experiments by using the spectral cooccurrence matrix itself as a fea-
ture. The training textures were the same as in the previous experiments. The segmentations
were done as in the previous tests, except that the 10 x 10 spectral cooccurrence matrices were
stacked row by row into a 100 x 1 vector, and these were normalised to unit norm. Figure 5
(a) shows the 1-NN-based segmentation result of the multi-spectral texture mosaic, when the
spectral cooccurrence matrix itself was used as a feature. In this result, the percentage of cor-
rectly classified pixels is 92.9 %.The same was done for the RGB textures. Now the 10 x 10
colour cooccurrence matrices were stacked row by row into a 100 x 1 vector, and the seg-
mentation was done by the [-NN classifier. Figure 5 (b) shows the result of the 1-NN-based
segmentation of the RGB texture mosaic. The percentage of the correctly classified pixels is
91.6 %.

We collected the results of the experiments in Table 1. It shows the percentages of the cor-
rectly classified pixels in each experiment. A discussion on the results is given in the next
section.
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Fig. 5. Segmentation results by the use of a 1-NN classifier, stacked cooccurrence matrices
were used. (a) Multi-spectral texture mosaic, (b) RGB texture mosaic.

Table 1. Percentages of correctly classified pixels in the RGB colour texture segmentation and
in the multi-spectral texture segmentation.

Method RGB colour texture Multi-spectral texture
[-NN, Haralick features 66.0 % 62.6 %
MLP, Haralick features 69.0 % 67.1 %
1-NN, stacked cooccurrence matrices 91.6 % 929 %
6. DISCUSSION

We have proposed a method for multi-spectral texture segmentation which is based on the
spectral cooceurrence matrix. This matrix contains information about the spectral and spatial
domains, and it can be used to analyse textures with vector valued pixels. The use of this
method in colour image processing and in remote sensing is straightforward.

The grey level cooccurrence matrix of a grey level image captures the second order statistics
of the original pixels based on their grey values. According to the approach of this paper, the
grey values can be seen as spectral classes of the multi-spectral image. The spectral cooccur-



rence matrix has been expanded to represent the high-dimensional spectral data. Between the
grey levels and the quantised spectral classes there is a clear difference. The grey levels have a
natural order, but in the case of the spectral classes, the order is not so clear. In the proposed
method we used the Self-Organising Map to quantise the spectral domain. The order of the
weight vectors in SOM is self-organised, and therefore it may be a promising method to ap-
proximate the natural order of the spectral type data.

After quantisation of the spectra, which were normalised to unit norm, the image was labelled
according to the quantised spectra. The labelled images are shown in Fig. 2, where the labels
of the spectral classes are shown as grey levels. From the spectral domain quantisation results
shown in Fig. 2, an interesting phenomenon can be seen. The quantised spectral domain of the
multi-spectral texture mosaic in Fig. 2 (a) shows some objects which are difficult to recognise
from the original colour image shown in Fig. 1. For example, the branches lying on a grass
field in the left upper texture can be seen clearly from the quantised image. Also, the right up-
per texture of a trunk seems to be histogram equalised. In the original colour image shown in
Fig. 1, the left part of the trunk is much brighter than the right part, but the quantised image
has a smooth variance over the image. From the RGB colour texture mosaic quantisation re-
sults shown in Fig. 2 (b) the same phenomenon cannot be seen.

The multi-spectral texture features were constructed by calculating five Haralick features, and
also the cooccurrence matrix itself was used as a feature. The disadvantage of our Haralick
feature-based texture segmentation is that the classification is performed in the feature space
constructed by energy, entropy, contrast, correlation and homogeneity features. Some of these
location-dependent features have a different meaning in the case of the spectral cooccurrence
matrix, because of the non-uniquely defined ordering of the spectral clusters. If the spectral
cooccurrence matrix itself is used as a feature vector, without calculating the Haralick fea-
tures, then the feature space contains more information about the spatial dependency of the
spectral clusters. In this case, the order of the spectral clusters does not have as critical a
meaning as in the case of Haralick’s features. Especially in the segmentation problem, if the
cooccurrence matrix has to be computed from a small texture window, and also if the dimen-
sion of the cooccurrence matrix is small, then the sparse cooccurrence matrix itself has more
information than the five Haralick features computed from the cooccurrence matrix. However,
when the dimension of the cooccurrence matrix is large, it is more suitable to use Haralick’s
features, because the dimension of the stacked cooccurrence matrix can be too large for the
computationally effective segmentation process.

We compared the texture segmentations with the k-NN and MLP-based methods. Both of
them were suitable for our method. The segmentation results between the RGB colour tex-
tures and multi-spectral textures were similar. The results were improved by using the spectral
cooccurrence matrix itself as a feature, without calculating the Haralick features. The seg-
mentation window was moved by 4 pixel intervals, which was chosen empirically. In general,
if the curved edges between the regions in an image are needed, then the segmentation win-
dow must be moved by a few pixel intervals, while in the case of horizontal and vertical
edges, the segmentation window can be moved by larger steps. Figure 2 shows that the spec-
tral image contains more information than the RGB image. This advantage of accurate colour
information seems to be partly lost in spatial analysis by the cooccurrence matrix in our test



images. In the images that are similar to each other, the difference between the methods is ex-
pected to be larger. The quantised multi-spectral image shows very detailed regions of the
spectral image, but in the texture analysis we cannot say anything about one single pixel; a
larger region is always needed for the appearance of the texture.

The real-time performance of the proposed method is important in industrial tasks. Our
method can be partly implemented optically: after training the SOM, the spectral domain
quantisation can be calculated optically using a Liquid Crystal Spatial Light Modulator
(LCSLM) [33]. Recently, Allam, Adel and Refregier [34] proposed a fast implementation to
discriminate textures by the use of an orthonormal decomposition of the cooccurrence matrix.

From our investigations, we conclude that in the natural colour textures used in this study, the
appearance of the texture was not strongly dependent upon the accuracy of the colour repre-
sentation used. However, in the pure colour analysis, the clear advantage of the spectral in-
formation can be seen from Fig. 2 (a). There are still unanswered questions in this paper
which need further study: experiments with a larger set of multi-spectral textures and with
possible metameric textures should be done. Also, the spectral cooccurrence matrices could be
computed with different displacements, and their features could be combined for the classifi-
cation process. The choice of the correct number of colour classes and the segmentation win-
dow size, which both have an effect on the cooccurrence matrix statistics, should also be in-
vestigated more carefully. In this study, we used multi-spectral images in the visible range so
that the segmentation results can be compared with RGB images. In the future research, the
images measured outside the visible light area will be experimented on. The main results of
the proposed spectral cooccurrence matrix based method compared to the three-dimensional
colour texture analysis methods are that the proposed method can be used to recognise meta-
meric. colour textures and multi-spectral textured images, which are measured outside the
visible part of the electromagnetic spectrum,
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Abstract: We present a statistical technique to characterize
the global color distribution in an image. The result can be
used for color correction of a single image and for com-
parison of different images. It is assumed that the object
colors are similar to those in a set of colors for which
spectral reflectances are available (in our experiments we
use spectral measurements of the Munsell and NCS color
chips). The logarithm of the spectra can be approximated by
finite linear combinations of a small number of basis vec-
tors. We characterize the distributions of the expansion
coefficients in an image by their modes (the most probable
values). This description does not require the assumption of
a special class of probability distributions and it is insen-
sitive to outliers and other perturbations of the distribu-
tions. A change of illumination results in a global shift of the
expansion coefficients and, thus, also their modes. The
recovery of the illuminant is thus reduced to estimating
these shift parameters. The calculated light distribution is
only an estimate of the true spectral distribution of the
illuminant. Direct inverse filtering for normalization may
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lead to undesirable results, since these processes are often
ill-defined. Therefore, we apply regularization techniques in
applications (such as automatic color correction) where
visual appearance is important. We also demonstrate how
to use this characterization of the global color distribution
in an image as a tool in color-based search in image
databases. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 98111,
1999

Key words: color correction; color constancy, principal
components, robust statistics

INTRODUCTION

A color image is always the result of a complex interaction
between three different components: the optical properties
of the scene, the illumination sources, and the sensors.
Estimating the influence of these three factors on the mea-
sured signals is one of the main goals of color image
analysis. The influence of the sensors is usually known, and
the remaining problem is to separate the effects of the scene
properties and the influence of the illumination. The human
visual system can approximately solve this problem, a phe-
nomenon known as color constancy (see Ref. I for an
introduction and references). The problem is also actively
pursued in computer vision and image processing, but a
satisfactory solution for real world conditions is yet to be
found.2-1¢

In this article, we describe the overall color distribution in
an image (or an image-patchj as follows. First the color of
a single point in an image is defined by the logarithm of its
spectrum. This log-spectrum is then approximated by the
first few terms in a series expansion. The coefficients are
computed for all points under consideration and for each

COLOR research and application



TABLE 1. The relative mean approximation error.

Error log
coordinates

Order N Error &, Ey
1 28.7639 34.5235
2 13.5956 15.9981
3 6.6864 7.9114
4 4.7054 6.3125
5 3.4572 5.2342
6 2.9545 4.4786
7 2.4831 3.6910
8 2.1312 3.3019
9 1.6335 3.0091
10 1.2080 2.3878
11 0.9910 2.2866
12 0.7835 1.6729
13 0.6565 1.6152
14 0.5690 1.5403
15 0.4471 0.9986

coefficient the statistical distribution is characterized by its
mode, i.e., its most probable value, The properties and the
performance of the description will be demonstrated with
some examples, where we apply it to color image normal-
ization and color texture characterization.

In our image formation model, we assume that the spec-
tral distribution M(A, x), measured at location x in the
image can be written as M(A, x) = R(A, x) » L(A), where
R(A, x) is the reflectance function at that location and L(A)
the spectrum of the light-source. Using the logarithm, a
linear relation, m(A, x) = r(A, x) + [(A), is obtained. Note
that the lighting is assumed to be uniform across the inves-
tigated part of the image. Here we do not model more
complicated interactions between the scene, the illumina-
tion, and the sensors such as body-reflection or fluores-
cence.'%2¢ Expressing the functions m, r and !/ in the same
coordinate system spanned by functions b.(A), we obtain
the following series expansions:

m(A, x) = 2 i (X)b(A),

rh 1) = 2 pd0b(A), I = X ab(A). (1)

k k

Thus, for a given k we obtain

el x) = pilx) + ay (2)

Le., the effect of the illuminant on the k-th expansion
coefficient of the log-reflectance function is a location in-
dependent, constant shift. The coordinate system used in
this article is based on an eigenvector expansion and will be
described later.

In our applications, we will not use Eq. (2) pointwise, i.e.,
for individual positions x, but we will use the fact that the
probability distributions of the coefficients u,(x) and p,(x)
are related by the shift coefficient «;. The value of «, can,
thus, be estimated by comparing the two probability distri-
butions or parameters derived from them. In this article, we
choose to describe probability distributions by their modes,
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i.e., their most probable value. The use of the mode is
motivated by the need for a robust location estimator. We
want to extract the “center” of the distribution for each
coefficient. Using maximum likelihood would implicitly
assume that the underlying distribution is normal, which is
probably not the case for real data. The mode is insensitive
to both skew and more, importantly, long tails (outliers) of
the distribution. Note that the median (another robust loca-
tion estimator) will be biased for a skewed or long tailed
distribution. Modeling such distributions as a mixture of
Gaussians makes the analysis cumbersome. The mode, on
the other hand, can be computed by a simple algorithm,
essentially a window sliding over the data. It can be shown
that for unimodal distributions the result remains correct
even when almost half the data is distributed along one of
the tails. The mode is a maximum a posteriori (MAP)
estimator, since it corresponds to the maximum of the p.d.f.
of the given data.

Among the possible applications of Eq. (2) we mention
the following:

® Color constancy: If the modes of the distributions of the
coefficients w, and p, are known, then the value of «,
and, thus, an estimation of the light source spectrum L(A)
can be computed. The modes of the p, distributions might
be known from previous experience or, in the case of a
dynamically changing illumination, they could be known
from an estimation computed from a previous image.
® Image normalization: A desired global color impression
of a color-corrected image can be obtained through a
definition of the modes of p,.
® Color description: In image database searches, it is often
useful to find images with a given overall color impres-
sion. In this case, the modes of the p, distributions are
_used as origin and the values of «, characterize the color
distribution in the image. We will later introduce the

FIG. 1. Ermor functlon of the approximation order.
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TABLE Il. Modes from database and gray world as-
sumption.

Eigenvector Mode Coefficiant
numbaer database gray world
1 -9.1353 -9.7295

2 1.3931 1.0771

3 -0.5151 ~0.2446

4 -0.0130 -0.1857

5 -0.1320 -0.0849

6 -0.1106 -0.0093

7 -0.2579 -0.0509

8 0.1048 0.0767

9 0.1099 0.0799

10 -0.2045 -0.1047

11 -0.0394 -0.0105
12 0.1370 0.0806
13 0.0134 0.0096
14 -0.0439 -0.0110
15 0.1156 0.0508

concept of a relative illuminant and describe how to use
it for color image retrieval.

The rest of the article is organized as follows: In Section
2, we describe how the basis functions b,(A) are computed
and we investigate the properties of the resulting coordinate
system. In almost all applications, the spectral description of
the color at a point in an image is not available. A conver-
sion from the given color system to the spectral description
is, therefore, necessary before the basic algorithm can be
applied. In Section 3, we discuss this conversion for the case
where the pixels are RGB-vectors. Section 4 describes the
estimation of the illumination light spectrum, and Section 5
its application in the restoration or compensation of the
color shift. Section 6 discusses some useful postprocessing
techniques, and the last section illustrates the results of
some experiments.

BASIC ALGORITHM

Since human color perception is based on three different
receptor types in the retina, the traditional approach towards
color is to use three-dimensional coordinate systems. Each
of these systems was designed for a certain type of appli-
cation, and a substantial part of color science deals with the
study of their properties and the conversion procedures
among them. Examples are color monitors (RGB), color
printing (CMY), computer vision and computer graphics
(IHS), and the colorimetry (CIE-systems} such as Lab, Luv,
etc. For exact definitions and descriptions see Refs. 21 and
22. None of the systems is especially suited for investigation
of color constancy algorithms, because a change in the
spectral charactenistics of the illumination source often
leads to complicated transformations in the 3-D coordinate
space.

Our approach is based on the assumption that the space of
electro-magnetic spectra, which is relevant for human color
vision, can be described by a set of the order of a few
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FIG. 2. Modes computed from the database and the "gray

world” hypothesis.

thousand representative colors.?* The representative colors
are chosen based on perceptual cnitena, i.e., they incorpo-
rate the subjectiveness of human color perception. The most
well-known color-appearance systems are the Munsell sys-
tem?4 and the Natural Color System (NCS).?
High-resolution measurements of the spectra of color
chips for these representative colors are now available.* For
each of the 1269 chips of the Munsell System, their spectra
was measured from 380-800 nm at |-nm steps, while the
1513 samples from the NCS system were measured from
380-780 nm at 5-nm intervals. These measurements were

* The Munsell spectra are available from the Information Technology
Dept., Lappeenranta University of Technology, Lappeenranta, Finland,
The NCS spectra were obtained from the Scandinavian Color Institute in
Stockholm courtesy of B. Kruse.
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FIG.3. Spectra computed from the database and the "gray
world™ hypothesis.
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combined in one set consisting of 2782 spectra (usually
sampled in 5-nm steps from 400-750 nm). In the following
we refer to this set of spectra as the spectral database.
These spectra are, of course, the spectra of the pigments
used in the production of the color chips, they are not
spectra of real world objects. The usage of these spectra is,
however, necessary, because (to our knowledge) no equally
comprehensible, representative set of natural spectra is
available. Furthermore, we are only interested in some
statistical properties of larger collections of colors, and the
assumption that these properties are very similar for the
color chips and the natural colors seems to be reasonable.
Most approaches to computational color constancy are based
on the assumption that the reflectance spectra can be described by
a low-dimensional model. 8- Usually, the coefficients in the
eigenvector expansion of the spectra are used as variables. In this
article, we do not approximate the spectra themselves by linear
combinations of eigenvectors, but we use an expansion in loga-
rithmic coordinates instead. We compute first the eigenvectors of
the logarithmic spectra in the spectral database. Then we approx-
imate the logarithm of a given spectrum by a linear combination

Volume 24, Number 2, Aprit 1999

(d) (log,log)

FIG. 4. Chromaticity coordinates of the database spectra.

of the first few eigenvectors. From this the original spectrum can
be recovered by exponentiation. This expansion has always a
higher minimum-mean-squared-error than the eigenvector expan-
sion, but we found that the differences for approximation orders
higher than two are small.

If S(A) is a positive function of the wavelength variable A,
then s(A) = In(S(A)) is the logarithm of this function. Lower-
case letters always denote the logarithm of the capital symbols.
By b,(A), we denote the eigenvectors computed from the
original spectral database, and b,(A) is the n-th eigenvector
computed from the logarithm of the spectra in the same spec-
tral database. The number of eigenvectors used in the approx-
imation is N. The N-term approximation of the vector S(A) in
the 5,(A) system is given by Sy, and the corresponding ap-
proximation in the b,(A) system by Sy

N
Sy= 2 abyand S, = eZthb 3

k=]

The mean approximation errors are computed as
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FIG, 6. Estimated spectrum as a function of the intensity
threshold.

In Table [ and Fig. [, these errors are summarized. In our
image formation model |, we will always use the eigenvec-
tors computed from the log-spectra.

In most applications, only a few measurements derived
from the spectrum M(A, x) (such as the tristimulus values)
will be available. In this case, the spectrum has to be
estimated from the measurements. One way this can be done
is described in the next section. Even when the whole
spectrum is known, we see from Eq. (2) that only the
distributions of the coefficients u (x) are available,
whereas the distributions of the reflection coefficients p,(x)
and the constants a, are unknown.

In such a case, we have to make some assumptions about
the distributions of the coefficients r, or e, or both. This is
similar to the Bayesian framework used by Brainard and
Freeman.? In our calculations, these assumptions will, how-
ever, enter only as the values of the modes of the distribu-
tions of the coefficients. We do not need to specify the
complete distribution as in the Bayesian approach. Statisti-
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FIG. 7. The mean- A(A) (a) and vaniance-function B3(A} (b) computed from the database.
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cal properties of the set of possible illumination spectra (like
the daylight spectra??) can also be incorporated, but they
will not be used in the following.

One hypothesis that we will often use is the assumption
that the distribution of the reflection coefficients p, has the
same modes as the coefficients computed from the spectral
database. This is certainly not the case in reality, since the
spectra in the database appear with different probabilities in
real scenes. Better estimates of the modes of the p, distri-
butions can be obtained by incorporating further knowledge
about the image formation process. A simple way to com-
pensate the different probabilities of the colors is by count-
ing each color only once.

Another guess about the values of the modes of the
distributions of the p, coefficients can be obtained via the
“gray world hypothesis™ (see Ref. 2, p. 512). This assump-
tion states that the mean over all reflectance functions is
independent of A:

mean, r{x,A) = y. (5

In our experiments, we select A in the range from 400750
nm and choose the value of the constant y such that the

(b)

FIG. 8. The multiplicative (a) and additive (b) restoration functions a,(\) and b,(A) for various regularization levels.

norm of the resulting constant vector has norm equal to the
mean norm of the vectors in the spectral database. The
logarithm of this function is approximated by the eigenvec-
tor expansion, and the coefficients in this expansion are
listed in the second column of Table II. The first column of
Table II contains the modes of the distributions of the
expansion coefficients computed from the log-spectra in the
database. Figure 2 shows these values in a diagram, and Fig.
3 shows the corresponding spectra computed from the
modes of the first four coefficients (the upper and lower
spectra are the spectra from the database, which have the
highest and lowest norm, respectively). Apart from a small
deviation in the shorter wavelength region, the two assump-
tions lead to nearly identical spectra,

From the modes of the distributions of the measurement
coefficients u, and the modes computed from the spectral
database (column one in Table II or the expansion coeffi-
cients in the second column of Table II), the values of the
shift parameters «, can be computed. From these a,, a
spectrum can be derived by exponentiation of the linear
combination of the log-eigenspectra. This spectrum will be
called a relative illuminant. In the case where the hypothesis

e et P i

(a) LTS

FIG. 9. Error distributions for two different images and A-source.
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FIG. 10. A-source spectrum and its estimators.

about the statistical properties of the coefficients is true, the
relative illuminant is an approximation of the true illumi-
nant. For images in general, we can interpret the shift
parameters a, as a characterization of the global color
distribution of the image. The parameter vector (a,) has
then the role of a coordinate vector, which can be used in
color-image retrieval applications.

RGB TO SPECTRUM CONVERSION

True multispectral imaging is today only used in a few
application areas such as remote sensing. The vast majority
of color images is, however, stored in one of the three-
dimensional color systems such as RGB, or CIE-related
systems like Lab.!.72.3¢

A conversion from these descriptions to the spectral
domain is needed before the algorithm can be applied. This
is an ill-defined problem, since many different spectra will
be mapped to the same coordinate vector in a three-dimen-
sional coordinate system, an effect known as metamerism.

In the following, we assume that we are given a digital
color image in RGB-format. Given the RGB vector at
position x in an image, we have to estimate which spectral
vector m(A, x) corresponds to this RGB-vector. The sim-
plest estimation computes the RGB-coordinates for all ele-
ments in the spectral database and defines the spectrum
m(A, x) as the nearest neighbor in RGB-space. This is
unreliable due to the noneuclidean structure of the RGB-
space. In the experiments described below, we first separate
the intensity and the chromaticity properties of the RGB-
vector and then we find the database spectrum with the best
matching chromaticity values.

One motivation for this separation lies in the different
ways that these values are obtained. The range of the RGB
values (usually 0. .. 255) is given by the hardware require-
ments of the digital image processing hardware, whereas the
scaling of the spectral measurements in the database is
determined by the physics of the measurement process.

Which spectrum is selected for a given RGB-vector de-
pends on the coordinate system used in the chromaticity
space. We experimented with the four different systems as
follows: a given RGB-vector is first converted to XVZ-
coordinates using the linear transformation specified by the
CIE- 1931 RGB- and XYZ-systems (Ref. 1, p. 139). For the
spectra in the database, the XYZ-coordinates are computed
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using the CIE primary stimuli X, Y, and Z.' From the (X, Y,
Z) vector, the chromaticity vector (x, v, ) is computed as

(X,v,2)

X+VY+2Z) ®)

(x, v, 2) =
In the following, denote the chromaticity vectors of the
image RGB-vector and the database spectrum by C; = (X,,
Y. Z) and C(X,, Y, Z,), respectively. The following
methods to compute the distance between C, and C, were
used:
(x, ¥): The distance between C, and C, is the /' norm of the
(x, y)-part, i.e.;

d‘lS(w(C“ C:) = 'x1 - xr' + 'yz - y;" (7)

(u, v): This metric is the /' norm in the coordinates: u =

4 X/(X + 15+«Y + 3xZ)yand v = FxY/(X +
15 * + 3 » Z) resulting in
dist, (C,, C.) = Ju, = u) + |, — vl. ®

(a, b): The chromaticity coordinates are defined as: a =
500 % (X' ~ ¥Y'), b = 200 « (¥Y'? - 2'?) and

dist,(C,, C,) = |a, —a + b, - b). (&)

(This is essentially the La¥b* system, where reference

white has (X, Y, Z) coordinates (1, I, ) and large enough
intensity values.)
(log, log): Since we would like to use a table-lookup
based conversion, we want the converted chromaticity
vectors of the database spectra to fill a rectangle as
evenly as possible. Therefore, we introduced the follow-
ing conversion of the (X, ¥, Z) vectors: First we compute:
(& m) = (log(X) = log(Y), log(¥) — log(2)), which is
similar to the Lab conversion. Then we shift and scale
them as ((¢ — E(£)YS(E), (n — E(m)/S(m) (where E and §
denote the expectation and the standard deviation), and
finally a 45° rotation is applied. The chromatic distance
between C, and C, is now the /' norm of the difference in
these new coordinates.

For each element in the spectral database, we computed
its coordinates in each of the four coordinate systems de-
scribed above. In Fig. 4, the distnibutions of the resulting
position vectors are shown for the four coordinate systems.

ESTIMATING THE ILLUMINATION
LIGHT SPECTRUM

Using the table lookup described in the previous section
gives, for each selected RGB-vector in the image, the spec-
trum in the database with the most similar chromaticity
properties. The norm of this spectrum vector is then multi-
plied with a normalizing factor, which compensates the
intensity differences between the image RGB-vector and the
database spectrum. Expanding the loganithm of this spec-
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(a)
FIG. 11.

trum in eigenvectors of the set of log-database spectra
results in the values w,(x) introduced in Eq. (1).

The distribution of the expansion coefficients can be very
diverse. This can be seen in Fig. 5, which shows the distri-
bution of the first four components p,, k¥ = 1 ...3 com-
puted from the spectral database.

To estimate the mode (the most probable value) for

! Lo -
VALLE DE BRAVO - M.

(b)

Postcard image: (a) indoor illumination; (b) blue light.

each coefficient, a robust mode estimator has to be em-
ployed. In a Bayesian framework, the mode is a MAP
estimator, which minimizes the uniform error cost func-
tion [Ref. 31, p. 210]. In robust statistics several mode
estimators were developed. We used the least trimmed
squares (LTS) and the least median of squares (LMedS)
estimators.32 The same mode estimator is used to find the

(a)

(b)

FIG. 12. Spectral normalization intensity threshold using (a) 37.46% vs. (b) 99.93% of the pixels.

(a)

FIG. 13. Spectral normalization based on 99.93% of the pixels: (a) with and (b) without histogram equalization.
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(a)

FIG. 14.

most probable value of the measurement coefficients
(x) and the database coefficients p,(x). The value of the
shift parameter « is given by the difference between the
two modes.

In our experiments, we also found that, in the computa-
tion of the estimated relative illumination spectrum, one

(c)

P e
2 =
| VALLE DE BRAV!

(b)

(a) Spectral normalization vs. (b) RGB normalization.

should take into account the intensity values at various
positions. We include only the pixels with gray values
above a given threshold in the estimation process. Figure 6
shows how the estimated spectrum depends on this thresh-
old. (The numbers show the percentage of all pixels that
were incorporated into the estimation.)

(b)

(@)

FIG. 15. Regularization: (a) threshold 2, regularization 0; (b) threshold 2, regularization 60; (c) threshold 5, regularization 0;

(d) threshold 5, regularization 60.
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(a)
FIG. 16.

CORRECTION

In the case where the image formation model M = R« L is
correct and the estimated light source L is equal to the true
source L, the reflection function can be computed as R =
M/L. In reality, the spectrum L computed from the image is
only an estimation of the true illumination characteristic.
This is a typical ill-posed problem in which small estimation
errors may lead to large errors in the final result. Regular-
ization is a standard technique to avoid these effects. We
applied it as follows.

In the original model: M(A, x) = R(A, x) * L(A) the
reflectance R(A, x) is regarded as a random variable with
mean A(A) and variance B>(\). The values of A and B> are
estimated from the database spectra.

The differences between the real imaging process and its
simplified model are collected in the random variable € with
mean zero and variance v*. This leads to M(A, x) = L(A) -
R(A, x) + e.

(b)

Image of the same scene captured with (a) normal lens and (b) telephoto lens.

The best linear estimator of the centered variable R(A, x)
— A(A) is [Ref. 33, Section 4.4.2]

L(A) B (M) (M(\,x) = A(N))
L*(\) B*(\) + v?

(10)

For the original variable R, this leads after some algebraic
manipulations to the estimator
L(A) B*(A) M(A,x)
L*(\) B*(\) + v?
([L*(N) — L] BX ) + ) A(A)
L*(\) B*(A) + v*

R(A,x) =

an

=M\, x) - a,A) + b,(A).

This is the restoration formula used in the implementation.
The values of A and B are estimated from the database, and
the value of »? is a free parameter that describes the confi-

pre— R ———

FIG. 18. Result of spectral-based normalization experiments
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FIG. 19. Estimated illumination spectra from street images:
(solid) normal lens; (dashed) telephoto lens.

dence in the estimate. (Note that ¥ is global, while A and B
depend on the wavelength.)

The distribution of the variance B*(A) as computed from
the spectral database is shown in Fig. 7. It shows that for
short wavelengths A the restored value of R(A, x) mainly
depends on the average value A(A), whereas the measured
value M(A) is dominating for the Jong wavelength region.
Examples of the form of the functions @ ,(A) and b (A) for
various values of the regularization parameter v are shown
in Fig. 8.

In many correction problems, an input RGB-image has to
be converted into an output RGB-image. For such applica-
tions it is often unnecessary to compute the nonlinear spec-
trai-based correction pixel-by-pixel. A computationaily
more attractive approach is to replace the noniinear estima-
tion [iike the one described in Eq. (11)] by the linear
approximation

re=A:r,+b, (12)

where r. is the corrected output RGB-vector, r, is the
original RGB-vector, A isa 3 X 3 matrix, and b is a vector.
For the zero vector b, this is one of the most often used
methods for color correction (see Ref, 8 and Section 5,12 in
Ref, 22).

One general method to find a suitable matrix A and a
vector b for a given relative illuminant spectrum L is the
following. In the first step, it is assumed that the estimated
illuminant L is correct, and the spectra in the database are
muitiplied with the iljuminant L to find a representative
collection of reflected spectra. These spectra are then con-
verted to RGB coordinates. The result is a matrix F con-
taining the RGB-vectors of the spectra under the assumed
illumination. In the second step, the desired inversion pro-
cedure (as in Ref. 8) is applied to these simulated illumi-
nated object reflectance spectra given the corrected spectra.
These corrected spectra are also converted to RGB resuiting
in a matrix G of RGB-vectors. Now the matrix A and the
vector b are computed as solutions of the matrix equation
A+ F + b = G. This equation can then be solved by
familiar methods like the least-squares or total-least-
squares. In our experiments, these two methods always
produced comparabie resuits, and the resuiting RGB-images
were visually more or less identical to the images obtained
by the spectral-based correction images.
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POSTPROCESSING

Using the spectrai-based normalization method results in a
restored spectrum R(A, x), which is an estimation of the
reflectance properties of the object. It can, therefore, be used
to compute the appearance of the object under any other
illumination, simply by pointwise multiplication of the es-
timated spectrum and the spectrum of the light source.

For a conversion from the spectral domain to a three-
dimensional coordinate system, like RGB. to be meaningful,
the spectrum must lie in the gamut of the output device. This
is not automatically the case, if we restore the spectrum with
the procedure described above. In practice it is, therefore,
oftent necessary to apply some postprocessing to the esti-
mated spectra. In our current implementation, we first con-
vert the spectra to RGB vectors and then we apply intensity-
based postprocessing methods. Usually we truncate
negative RGB values and we apply a gray-value based
histogram-equalization to the corrected image. This is usu-
ally necessary, since the raw-restoration usuaily leads to a
greatly reduced contrast in the image.

EXPERIMENTS

In the first series of experiments, we simulated the estima-
tion of a known light source as follows. First, the RGB input
image is converted to a multispectrai image. Then pointwise
multiplication with a known light source gives the simulated
multispectral measurement image. The input to the algo-
rithm is this RGB-converted multispectral image. From this
RGB image, the iljumination spectrum is estimated and
compared with the true spectrum.

In the series of experiments we investigated the role of
several factors:

. 4 different input images

-6 eigenvectors to approximate the jog-spectra
. LTS and LMedS mode detectors

. Pour CIE light sources A, B, C, and D65

. (x, y) and (log, Jog) chromaticity metric

L T

W U, oyt e

(a) (b)

FIG. 20. Chromaticity distributions of normal and telephoto
Images: {a) original images; (b) after normalization,
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valley..000J09

Flowers, 000005 Leaves.0006.09

Flowers.0000.j0%
vorcmaa

Valley..001.j09

Misc 0001509

FIG. 21.

The main conclusions from these experiments is that the
LMedS and the LTS estimators nearly always gave identical
results. The (log, log) metric was always slightly better than
the (x, y) metric, only in one case [Fig. 9(a), solid line
based on (log, log) and dashed line based on (.x, y)] was this
difference significantly higher. Using three eigenvectors to
approximate the log-spectrum usually gave the lowest error.
The error distribution for one of the images illuminated by
the A-source (which has the strongest effect on the image
colors) is shown in Fig. 9(b). The spectrum of the A-source
and the estimated spectral distributions computed from the
same image as in Fig. 9(b) is shown in Fig. 10. Here three
eigenvectors and the LMedS and LTS-estimators were used.

The next experiment used more realistic conditions. A
simple scene was captured under two different illumina-
tions. In Fig. 11(a), normal indoor light conditions were
used, whereas in Fig. 11(b) the light box 2412 of the Aristo
Grid Lamp Products, Inc. provided a mostly blue illumina-

Color-based search in image database.

tion. In Figs. 12-15 some of the results with these images
are summarized.

Figure 12 shows the result of the direct spectral normal-
ization procedure [regularization parameter v = 0 in Eq.
(11)] based on the spectra estimated from 37.46% and
99.93% of the input pixels (see Fig. 6 for the estimated
spectra).

Figure 13 illustrates the effect of the gray-value based
histogram equalization on the final image. Figure 14
compares the result of the normalization in the spectral
domain with the normalization based on the RGB-to-
RGB conversion method described in Eq. (12). Both
normalization procedures are combined with the gray-
value histogram-equalization. The resulting images are
more or less identical.

The images in Fig. 15 finally show the effect of the
regularization parameter v in Eq. (11). In the upper row
[images (a) and (b)], 37.46% of the pixels were used in

Fabric.0018.p9
o

LRSSk
Fabric.0018.p3

Fabric.0015.j09

F0od.0002.1p9
e

Crasst..006 jpg

Grassl..006./pa

FIG. 22. Color-based search in image database.

L2aves. 000409

Terrain0002p9. Leaves.0003.jpg
s

CrassP._008.jpg
R

FIG. 23. Color-based search in image database.
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the estimation, whereas 66.39% entered in the computa-
tion of the images in the lower row {(¢) and (d)]. In the
computation of the images in the left column [(a) and (¢))
no regularization is used, whereas for the right images
{(b) and (d)} the regularization value 60 was used. (See
Fig. 8 for the form of the multiplicative and additive
restoration functions a, and b,.)

Beside the well-known dependence on the spectral com-
position of the illuminant (e.g., the recorded colors change
significantly when the illumination changes from daylight to
indoor incandescent light), an image can also appear signif-
icantly different when recorded in differently calibrated
systems (photographic and/or electronic).

In Fig. 16, two color images of the same scene are shown,
scanned in from Ref. 34, pp. 90-91. The image in Fig. 16(a)
was taken from 50 m, while the image in Figure 16(b) was
taken with a telephoto lens from 1000 m. In the latter, all the
colors appear less saturated and the gray tones dominate.
Note that the final result of the scanning process is not a
photometrically correct description of the scanned image,
since commercial scanners usually apply color transforma-
tions to produce visually more pleasing results.

We then investigated the normalization of the street im-
ages in Fig. 16. First, the illuminants relative to the com-
plete Munsell/NCS system were computed. This informa-
tion characterizes the chromatic properties of the images
and can be used for indexing into a database. They are
shown in Fig. 19. Note that the less saturated telephoto
image leads to a flatter estimated spectrum.

For each of the two images, its estimated relative illumi-
nant was then used to adjust the global color distribution of
the image to the distribution of the Munsell/NCS system.
Using both the spectral- and the RGB-normalization proce-
dures we obtained two normalized images. The results of
these experiments are shown in Fig. 17 for the RGB-based
normalization and in Fig. 18 for the spectral based normal-
ization.

The top row shows the original images as in Fig. 16. In
the middle row are the results from the RGB-normalization,
and in the bottom row the results for the spectral normal-
ization.

A more quantitative description of the normalization ef-
fects can also be obtained. In Fig. 20, the chromaticity
distributions (in CIE-xy space) of the two images (a) before
and (b) after normalization are shown. The distributions are
based on the chromaticity vectors of the same, 1000 ran-
domly selected pixels. The points originating in the normal
lens images (original and processed) are marked with a +,
while the points from the telephoto images with a 0. For all
four images it was assumed that the images are viewed
under D65 daylight and the chromaticity coordinates were
computed accordingly.

The directions of the two eigenvectors of each chroma-
ticity distribution were then computed, and are shown with
solid lines for the normal lens images and dashed lines for
the telephoto images. The centers of these eigenvector co-
ordinate systems are Jocated at the means of the chromatic-
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ity distributions. They are shown with the solid line cursor
for the normal lens images, and with the dashed cursor for
the telephoto images. The effect of the normalization is
clearly revealed.

In the last experiment, we use the relative illuminant to
locate images in a database. The database used consisted of
the 473 color texture images in the VISTEX database.* For
each of the images in the database we compute first the
relative illuminant as described before. In the experiments
below, we used 6 eigenvectors and we estimated the relative
illuminant from 5000 randomly selected pixels in each
image. Once these spectra are computed, they can be used to
search in the database for images that have a certain global
color distribution. In Figs. 21-23, we illustrate some of the
results. In these experiments, we select first one image in the
database as a prototype image and then we find those
images in the database with the most similar color distribu-
tion. For this we normalize first all relative illuminant spec-
tra to norm one to eliminate the influence of intensity
variations, and then we use the scalar product of the two
normalized relative illuminants as similarity measure for the
global color distributions of these two images. Intensity
properties of the images are ignored, because only normal-
ized spectra enter the similarity computations. Figures
21-23 show the prototype image in the upper-left corner of
the image. The other nine images are the most similar
images found in the database (where the images are sorted
from left to right, top to bottom with falling similarity
values). Note that the database contains several images of
the same texture at different resolutions and, therefore, the
same texture may appear more than once.

Figures 21 and 22 show that the matching results are
reasonable for homogeneous textures, whereas the results
are less intuitive for images with different textures such as
Fig. 23.

DISCUSSION AND CONCLUSIONS

We have shown that the log-eigenvector expansion of color
spectra defines a coordinate system that allows an efficient
solution to problems related to color constancy. Combining
the log-spectral space with color-appearance systems
(which are based on human color vision) allows a reliable
estimation of the global color characteristics of a color
image. The conversion procedures between this and other
color systems however, need, further study.

The interpolation procedures used to convert RGB-vec-
tors to spectra were sufficient in our application, because
only statistical properties of a large number of spectra were
needed. More difficult was the conversion from the spectral
representation to quantized three-dimensional color repre-
sentations like RGB. Here we found that a number of
practical problems influenced the final results in a funda-

* hilp/fwww-white.media.mit.edu/vismod/imagery/VisionTexture/
vistex.htmi.
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mental way. Problems that had to be considered included:
the handling of spectra that are outside the gamut of the
chosen output device, and quantization methods that use the
available number of colors efficiently and that at the same
time preserve the structure in the spectral space.
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Abstract. We present a new method for producing color filters with
positive coefficients to represent color reflectance spectra. The subspace
method which is based on the KL-expansion can be used to define a basis
to describe the spectral data accurately. However, due the orthogonality
of the eigenvectors, the corresponding color filters usually contain nega-
tive coeflicients and cannot be used in optical components directly. Our
method finds the set of vectors which span a very similar color space as
the subspace method does. These color filters contain only positive coef-
ficients and can be directly used in optical implementations. We used an
unsupervised competitive neural network (Instar) to find a set of positive
color filters. The experiments with the Munsell spectra show that the fil-
ters produced by the neural network span a color space very similar to
the color space spanned by the eigenvectors of the subspace method.

1 Introduction

Color is an important factor in many computer vision-, pattern recognition-,
and industrial quality control applications. Usually the color analysis is based
on three-dimensional color coordinate systems, like CIE xyY-, Lab- and Luv-
color spaces. These three-dimensional color spaces are related to human color
vision system, in which there are three different types of photoreceptors [1, 2].

The color of an object is a sensation, which is produced in the brain [1] and
it i3 thus hard to define color. Color can however be defined indirectly through
the cause of the sensation. This is called color spectrum, which can be measured
physically: the electromagnetic spectrum in the wavelength range from 380 nm
to 780 nm. Using the spectrum itself as color representation avoids problems
such as metamerism (3], where several spectra have the same three-dimensional
color coordinates.

In the subspace method the color coordinates are projections, i.e. the values
of inner products between the color spectrum and the basis. This avoids the
problem of metamerism and the accuracy is high [4,5]. The Munsell [6] color
spectra database can be described by a few basis vectors, and this basis can be
also used for describing natural colors [5]. Usui et al. [7] described a multilayer
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perceptron based system where the weights in the hidden layer were used to
reconstruct Munsell data from the three-dimensional color space representation.

The optical implementation of the subspace method gives the possibility of
faster calculation, which is needed in many industrial applications. The basis
produced by the subspace method is orthogonal and therefore usually contains
negative coefficients. These cannot be directly implemented in optical compo-
nents. For example, the liquid crystal spatial light modulator (LCSLM), which
has been used to calculate the optical inner product {8, 9}, takes only filters with
positive coefficients. In Refs. {8, 9], the basis vector set produced by the subspace
method was biased and multiplied to make suitable filters for LCSLM. It is also
possible to divide the basis vectors to the positive and negative parts, and handle
these parts separately, but this leads to more complicated optical systems. The
aim of this study is to produce a vector set with positive coefficients, which can
be directly used in optical pattern recognition. This problem was also addressed
in [10]. There the positive color filters are found by optimizing an energy function
based on second- and fourth-order statistical moments {11].

In this paper we present an unsupervised neural network based method to
find filters with positive coefficients. The competitive neural network finds the
centers of color clusters in the color space. After learning, the weight vectors of
the neural network are used as filters, which span a color space very similar to
the color space spanned by the eigenvectors of the subspace. Our experiments
show that the Munsell color spectra can be described very accurately by these
filters. The obtained filter systems are compared with the results reported in [10].

2 Subspace Method

In [4,5] it is shown that the color space for the color spectra can be described ac-
curately by the subspace method. A measured spectrum s(A) can be represented
as a column vector s(A) = [s(A}), s(A2),...,5(A,)]T, where X is the wavelength
and T denotes the transpose. Next we compute the eigenvectors of the correla-
tion matrix R = Zil si(A)s;(A\)T, where the index i indicates the ith spectrum
in the set of V measured spectra. The eigenvectors ¢ are the solutions of the
equation R¢ = g¢, where ¢ is an eigenvalue of R. The first n eigenvectors form a
basis for the subspace. The subspaces can be designed for several different color
regions in parallel [12]. In this study we formed only one subspace representing
the whole Munsell color space.

The information content, i.e. the fidelity value k of the first n eigenvectors can
be defined as k = 5.7, 0/ I\, 04, where k is ratio of the information on the
first n largest eigenvalues over the information on all N eigenvalues. In Ref. [4],
eight basis vectors were needed for describing the Munsell database accurately.

The basis vector set for the Munsell spectra is orthogonal and the vectors
contain negative coefficients. For optical pattern recognition, a small vector set
with only positive coefficients spanning the color space as accurately as possible
should be found. Since the subspace method produces systems with minimal
squared error, it can be used as a reference.
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3 Unsupervised Neural Network

Color filters suitable for optical pattern recognition should fulfill the following
requirements: 1) the filters should contain only positive coefficients, 2) the filters
should span the color space as accurately as possible, 3) the filters should be sep-
arated from each other. To fulfill these conditions, we investigated the clustering
properties of competitive learning and self-organization methods {13-15]. The
main problem was if it is possible to cluster the input color spectra and use
the centers of these clusters for a representation of the whole color space. The
method we decided to use is based on competitive learning, which clusters the
input data without any knowledge of the right cluster distributions.

In our experiments we used an unsupervised competitive neural network with
a learning algorithm based on the Instar-algorithm by Grossberg [13]. We also
incorporated Kohonen'’s {14] self-organizing map with a winner take all layer
(WTA). The competitive neural network clusters the input data so that the
weight vectors are the centers of these clusters [15]. In our study the input
data are the measured color spectra containing only positive coefficients. Thus
the weight vectors, i.e. the color filters are also positive. These weight vectors
should span the color space like the eigenvectors of the subspace method. In the
competitive neural network only the winner neuron learns during each learning
cycle, which means that the filters are separated from each other.

The winner w, is the weight vector, which has the closest euclidean distance
to the input vector z. Next, the updating process of the weight vectors is defined
as follows

aicen={Z ORI e

where ¢ is the iteration parameter and a(t) is a learning rate. The learning rate
is decreasing exponentially during the learning. In each cycle of the learning
process the training sample is taken randomly from the input data. The weights
are initialized by the average vector (> 0) of the input data. Equation 1 can be
written as w;(t + 1) = w;(¢)[1 — a(t)] + a(t)z(t), where 0 < a(t) < 1, w;(t) >0,
z(t) > 0 and therefore the weights w are always positive. A detailed description
of the competitive learning and self-organization can be found in Ref. [14].

4 Filtering the Spectral Database

To measure the accuracy of the produced color filters we reconstructed the Mun-
sell database and compared the results to the subspace method. The reconstruc-
tion procedure is as follows:

If the basis vector set is orthonormal, the reconstructed spectrum s can be
calculated from the equation s = BBTs, where s is the original spectrum and
B is the basis vector set.

In the nonorthonormal case, as in the case of filters with positive coefficients,
the reconstruction is obtained by the generalized inverse matrix:
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s = W(WTW)~1WTs, where W is the filter set. In the optical implementation
W(WTW)~! is known and W7s is determined experimentally.

We calculate the relative error as the norm of spectrum’s reconstruction error
divided by the norm of original spectrum: error = 100 x ||s — s||/|ls|| (%).

5 Experiments

In our experiments the Munsell database was used. It consists of 1269 color
spectra measured by a spectrophotometer from the Munsell Book of Color [6].
We used the wavelength range from 400 nm to 700 nm, at 5nm intervals, i.e. each
spectrum contained 61 components. Fig. 1 shows the first eight basis vectors of
the subspace method. The fidelity value for the first eight eigenvalues is 99.99%.

Eigasemctor No 8

Fig. 1. Eigenvectors of the subspace method a) No.1-4, b) No.5-8.

5.1 Filter Design

The input data, i.e. the whole Munsell data was processed by the competitive
neural network, with an included WTA-layer. The number of neurons was 8
and the total number of learning cycles was 50000. The learning data was first
normalized to unit norm, the weights were initialized by the average vector of
the input data and the learning rate was decreasing exponentially from 0.9 to-
wards 0 during learning. The learned filter functions are shown in Fig. 2. The
filters produced by the competitive neural network are the centers of color clus-
ters in the color space. Fig. 2 shows that they represent regularly the spectral
range from 400 nm to 700 nm. Fig. 3 visualizes the Munsell data and the fil-
ters in two-dimensional CIE 1931 xy-diagram. CIE 1931 xy-coordinates were
calculated under daylight illumination D65. The xy-coordinates are only used
for visualization, but not used in the experiments. Fig. 3 a) shows the xy-color
coordinates of Munsell data and Fig. 3 b) shows the xy-coordinates of filters.
The numbers in Fig. 3 b) correspond to the filter numbers shown in Fig. 2. It can
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Fig. 2. Learned filter functions a) No.1-4, b) No.5-8.

be seen that the CIE xy-coordinates of the filter set have approximately equal
distances between each other. These filters are the centers of eight color clusters
of the Munsell database. The CIE 1931 xy-diagram shows that two filters, no.2
and no.8 are near the xy-values z = 0.33, ¥ = 0.33. This is the area of Munsell
colors with high value- and low chroma-components, near white. Each color page
in Munsell book has this color and therefore it is natural that the competitive
learning represents this highly populated area by two filters.

Fig. 3,CIE 1931 xy-diagram of a) Munsell-data, b) filters.

Next the learned filter set was orthogonalized by the singular value decom-
position (SVD) method. The orthogonalized filters are highly correlated to the
basis vectors of the subspace method shown in Fig. 1. The numerical correla-
tions between the eigenvectors of subspace method and orthogonalized filters are
0.999, —0.974, —0.966, 0.984, —0.901, —0.551, —0.361, and —0.096, respectively.
The anticorrelation in the 2nd, 3rd and 5th correlation values is not problem,
since if ¢ is an eigenvector of R then also —¢ is an eigenvector of R [4]. In the
orthogonalized filter set, the last three filters are less correlated to the eigenvec-
tors and they also contained some noise. The information content of these last
three vectors is very small, since the fidelity value for the first five eigenvalues
is 99.93%. The orthogonalized filter set was only used for showing the similarity
to the eigenvectors of the subspace method and it was not used in filtering.
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5.2 Filtering the Munsell Database

To obtain a detailed error analysis the Munsell database was first reconstructed
by the subspace method using the basis vectors shown in Fig. 1. The reconstruc-
tion error of each Munsell spectrum is shown in Fig. 4 a). Next the database
was reconstructed by the learned filters shown in Fig. 2. The reconstruction was
done using generalized inverse matrix method and Fig. 4 b) shows the recon-
struction error obtained. In Table 1, the correspondence between sample number
and Munsell color category is tabulated.

a) b)

Fig. 4. The Munsell database reconstruction errors, using a) subspace method, b)
learned filters.

Table 1. Correspondence between sample number and Munsell color category.

Sample number range{Munsell color category
1-139 Red (R)

140-261 Yellow-Red (YR)
262-404 Yellow (Y)

405-531 Green-Yellow (GY)
532-646 Green (G)

647-752 Blue-Green (BG)
753-864 Blue (B)

865-1001 Purple-Blue (PB)
1002-1132 Purple (P)
1133-1269 Red-Purple (RF)

The largest error for the learned filters (16.0%), (sample 853, blue (B), Hue
10, Value 2.5, Chroma 4), is lower than for the subspace method (17.3%), (sample
1058, purple (P), Hue 5, Value 2.5, Chroma 6). The average reconstruction error
for the subspace method is 1.9% and for the learned filters 2.3%.

Fig. 4 shows that the high error peaks are repeated after every 10-20 samples.
We found that the corresponding spectra had low intensity information. The
learned filters don’t have enough information for these low intensity spectra. In
the Munsell book, every color page has this kind of spectrum and because of
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the sampling order in the measurement the error peaks are repeated after every
10-20 samples. Fig. 5 a) and b) shows the spectra with the largest reconstruction
errors. Fig. 5 ¢) shows the typical spectrum for the average reconstruction error
using learned filters (sample 465, Green-Yellow (GY), Hue 5, Value 8, Chroma 8).

a) b) <)

Fig. 5. Spectra with the largest errors, reconstructed by a) subspace method (plate 5P
V2.5 C6), b) learned filters (plate 10B V2.5 C4). In c) is the typical spectrum with
average reconstruction error using learned filters (plate 5GY V8 C8).

Finally we made a numerical comparison with the filters in Ref. [10]. To be
comparable, we used the Munsell data at the wavelength area from 381 nm to
776 nm, at 5 nm intervals. We trained 6 filters and reconstructed the whole
Munsell database with them. The Munsell database was also reconstructed by
the filters produced in [10]. The average percentage error for our filters was 4.6%
and for the filters in Ref. [10] the error was 6.1%.

6 Conclusions

In this study we presented a new unsupervised method to produce color filters for
optical pattern recognition. The competitive neural network found the centers
of color clusters in color space. The weight vectors from the neural network were
used as color filters. '

The experimental part of this paper showed that the learned filters are com-
parable to the basis vectors of the subspace method. Both of them span similar
color spaces and the reconstruction errors with the Munsell data were small. It
can be seen that the largest reconstruction errors in Fig. 4 are in the sample
range 800-1269. The subspace method has largest errors in sample range 800-
1050, containing the purple-blue (PB) and purple (P) colors in the Munsell color
category. For the learned filters the largest errors are in the sample range 1050-
1269, i.e. purple (P) and red-purple (RP) colors in the Munsell color category.
Purple color spectra have usually a very flat region in the wavelength range 500-
600nm and then a narrow peak or peaks in blue and red region. Both methods
have problems to recover flat spectra in the range 500-600nm, as can be seen
in Fig. 5. The reason is that both the basis vectors and learned filters vary in
the wavelength range 500-600nm and therefore they cannot represent this flat
region accurately.
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For a smaller spectral region than the Munsell colors the number of filters can
be decreased. In this case the number of learning cycles needed in the learning
phase can also be decreased. In this study we produced filters for the Munsell
spectra. The strategy of our method is general and can be used for special
applications in which the filters have to be designed for a special class of spectra.

The learned filters with positive coefficients can be directly used in optical
components, like in liquid crystal spatial light modulators. The optical imple-
mentation of these filters is under investigation.
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Abstract

In this study we present a spectral vision sys-
tem, which can be used to measure a color spec-
trum and two-dimensional spectral images. First,
the low-dimensional color filter set was designed by
an unsupervised neural network. Then the com-
pact size optical setup for the spectral synthesizer
was constructed to synthesize the light which cor-
responds to the spectral characteristics of the color
filter. In the optical setup a liquid crystal spatial
light modulator (LCSLM) was used to implement
color filters. The sample was illuminated by syn-
thesized lights and the intensity images which cor-
respond to the inner products between the color fil-
ter and the sample were detected by CCD-camera.
From the detected inner products the sample’s
color spectra were reconstructed using a pseudoin-
verse matrix. Experimental results of measuring
a single color spectrum and spectral images are
presented.

1 Introduction

Multispectral imaging has received a great deal of at-
tention recently. Spectral measurements are used, for
example, in the field of remote sensing [1], computer
vision and industrial applications [2). Because of the
high accuracy of spectral information, it has become an
important quality factor in many industrial processes.
In color research, the color is usually represented us-
ing three-dimensional color coordinate systems like CIE
zyY, CIELAB, CIELUV, and RGB colorspaces. In the
human color vision system there are three different types
of photoreceptors [3, 4] and for this reason these three-

dimensional color coordinate systems are usually used
as a color representation. These models are compu-
tationally effective and suffice for many purposes, but
they have problems such as metamerism [5], where the
same three-dimensional color coordinate corresponds to
several different spectra. If the measured color spec-
trum covering the visible spectral region from 380nm to
780nm itself is used as the color representation, then
metamerism is avoided and accuracy is high. When the
spectral imaging system is tuned to measure the visible
light, then the acquired image represents a high quality
color image, where every pixel contains a color spec-
trum.

To measure a color spectrum, devices such as a
monochromator, a radiometer, or a spectrophotometer
are usually used. Spectral images can be measured, for
example, by CCD-camera with narrow band interfer-
ence filters [6], by acousto-optical tunable filter [7] or
by Fourier transform based methods [8). These devices
are usually expensive and a large amount of image data
must be processed and stored. The spectra are gener-
ally measured from Inm to 10nm intervals, and there-
fore, for example, the spectral image measured in the
wavelength range from 400nm to 700nm contains from
301 to 31 component images, respectively. Transmission
of the spectral image obtained using these conventional
methods is difficult, because of the large amount of data
to be transmitted.

it has been shown that low-dimensional representa-
tion of spectra can reproduce the original spectrum ac-
curately. One approach used to compress spectra is to
have the measured spectra and compress them by soft-
ware {9, 10]. Another approach is to design the low-



dimensional multispectral imaging system so, that we
already acquire optimal component images for spectral
reconstruction.

Recently, low-dimensional multispectral imaging sys-
tems have been the focus of growing interest. Tomi-
naga [11) proposed a multichannel vision system based
on the use of a CCD-camera and six color filters. The
system was used to reconstruct the surface-spectral
reflectance and illuminant spectral-power distribution
from the image data. Baronti et al [12] used a multi-
spectral imaging system with 29 filters to analyze works
of art in a wavelength range from 420nm to 1550nm.
Haneishi et al. [13] designed five color filters for archiv-
ing spectral images of artworks. Lenz et ol [14] de-
signed low-dimensional color filter sets for color spectra
by optimizing an energy function based on second- and
fourth-order statistical moments.

Spectra of natural color samples are smooth and cor-
relate highly with each other. Parkkinen et al. (9]
showed that a spectral database containing 1257 sam-
ples measured from the Munsell book of color [15] can
be represented accurately by a few basis vectors pro-
duced using a subspace method. These basis vectors
can also be used to describe natural color spectra [16]).
Jaaskelainen et al (17) implemented the learning sub-
space method optically. They used a liquid crystal spa-
tial light modulator (LCSLM) to implement the color
filters corresponding to the basis vectors. Hayasaka et
al. (18] developed the system described in (17] to analyze
two-dimensional microscopic images.

In our previous study [19] we designed a low-
dimensional color filter set by an unsupervised neu-
ral network for 1269 color spectra measured from the
Munsell book of color. In this paper we propose a
low-dimensional filtering method which can be used to
measure a color spectrum and two-dimensional spectral
color images. The proposed method is fast and the
amount of data obtained from the filtering process is
small and, therefore, convenient for storing and trans-
mitting the spectral image.

The paper is organized as follows. In Section 2 we
briefly review the color filter design from our previous
study. Then in Section 3 we introduce the optical setup
for the spectral synthesizer. In Section 4 we show the
experimental results of our measurements and in Sec-
tion 5 we give a discussion,

2 Color Filter Design

The subspace method {20], which is based on the
Karhunen-Loéve expansion, can be used to define a basis
to describe the spectral data accurately. The color spec-
tra measured from the Munsell book of color can accu-
rately be represented from 3 to 8 basis vectors produced
by the subspace method [9]. The basis vector set for the

Munsell color spectra is orthogonal and contains nega-
tive coefficients, which cannot be directly implemented
optically. In Refs. [17, 18] the basis vector set was biased
and multiplied to make it suitable for optical implemen-
tation. In Ref. [19] we designed, using an unsupervised
neural network, a low-dimensional color filter set with a
constraint of positive spectral values for the 1269 Mun-
sell spectra. The competitive learning algorithm was
based on the Instar-algorithm by Grossberg [21], which
was incorporated by Kohonen'’s [22] self-organizing map
with the winner take all (WTA) layer. The neural net-
work clusters the color spectra, and after learning, the
centers of the clusters are used as color filters. A detailed
description of competitive learning and self-organization
can be found in Refs. [21, 22, 23]. In [19]) we showed that
the Munsell spectral database was reconstructed by the
designed color filters with sufficient accuracy and the re-
construction accuracy was comparable to the subspace
method.

The designed color filter set is non-orthogonal and
to use it to reconstruct a spectrum s, a pseudoinverse
matrix can be used:

s =WWwTw) 'wTs, (1)

where W is the filter set. In the optical implementation,
W(WTW)~! is known and the inner products, WTs,
between the filter set W and the sample’s spectrum s
are determined experimentally. The filter effect on the
sample can be produced either by filtering a reflecting
or transmitting light of the sample, or by illuminating
the sample by the synthesized light with the spectral
characteristics of the filter.

3 Optical Setup

The inner products, W7s in Equation 1, between a
broad band color filter set W and a sample s can be
calculated optically using a liquid crystal panel (17, 18].
If the sample is illuminated by synthesized light which
has the spectral characteristics of the color filter W;,
then the detected intensity of the sample corresponds
to the inner product W's.

3.1 Spectral Synthesizer

To synthesize the light corresponding to the color filter,
the optical setup shown in Figure 1 was constructed.
The white light source is a halogen lamp pair with two
150W lamps. The light is introduced to a 2mm slit by
a fiber light guide, which is omitted in Figure 1, then
reflected by a mirror and incident on a concave grating
{size 40mm x 40mm, horizontal focus 136mm). The
collimated light is dispersed on the focal plane of the
concave grating. On the dispersion plane there are a
rectangular window with 11mm height, a cylindrical lens



(size 30mm x 50mm, focus 70mm), and a liquid crystal
(LC) panel (screen size 19.8mm x 26.4mm). The trans-
mittance of the LC-panel along the wavelength axis is
controlled by a computer through a monochrome image
board and a LC-driver. The light passing through the
LC-panel is finally mixed by the second concave grating
(size 40mm x 40mm, horizontal focus 136mm). The
function of the cylindrical lens in the dispersion plane is
to gather light energy effectively to the second grating,
in order to prove good mixing and to make the light loss
as small as possible. Mixed light from the second grat-
ing is directed to the measuring plane by a mirror. The
real size of the optical setup for the spectral synthesizer
is 30cm x 15cm, with the height of 7cm.

Concave grating Concave grating

= Sutput light

Lighl source

Figure 1: Optical setup for the spectral synthesizer.

3.2 Liquid Crystal Panel

The transmittance of the LC-panel, which is a compo-
nent of the commercial SHARP XV-NV1 projector, is
controlled by computer through a monochrome image
board having 512 x 640 pixels and the LC-driver. The
digital signal corresponding to the transmittance pat-
tern containing the input levels between 0 and 255 is
transferred from the computer’s image board to the LC-
driver, which sends the video output to the LC-panel.
The screen size of the LC-panel is 19.8mm x 26.4mm
containing 624 x 832 pixels. Figure 2 shows a schematic
drawing of controlling the LC-panel. The LC-panel is
an active matrix type with thin film transistors (TFT).
This type of LC-panel is known to be free from crosstalk
phenomena, which means that the transmittance of a
single pixel is not affected by the transmittance of the
surrounding pixels. We also confirmed this experimen-
tally.

4 Experiments

4.1

In this experiment we checked the accuracy of the syn-
thesized light. We designed a color filter set of 4 filters
using the unsupervised neural network. The choice of
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Figure 2: Schematic drawing of controlling the LC-
panel.

the best dimension for the filter set is discussed later, in
subsection 4.2, where we show that 4 filters is the op-
timal number of filters in our present system. Figure 3
shows the learned filters.

R
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|

Figure 3: Filter set of 4 learned filters used in proposed
spectral vision system.

We prepared the transmittance patterns for the LC-
panel and measured the output spectra using a CCD-
camera (SONY XC-73) with 31 narrow band interfer-
ence filters. Figure 4 shows the results of the measure-
ments, where the solid lines are the designed filter set
multiplied by the light source spectrum and the dashed
lines are measured output spectra when this light source
is used. It can be seen that the system can synthesize
the illumination corresponding to each color filter with
sufficient accuracy. Filter No. 4 shows some error, which
15 caused by a low signal to noise ratio.

4.2 Dimension Estimation

Next we investigated experimentally the optimal dimen-
sion for our model, i.e. how many filters should be used.
In this experiment we used transparent color samples,
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Figure 4: Optically measured results of filtered illumina-
tor. Solid lines are the designed filters multiplied by the
light source spectrum and the dashed lines are measured
results.

which were prepared by taking positive slides of Mun-
sell color chips [17). A transparent color sample was
placed in front of the second mirror (see Fig. 1), it was
illuminated by the synthesized lights, and the intensity
data which correspond to the inner product between the
color filters and sample’s color spectrum were detected
by the CCD-camera. The intensities were detected as
average intensities inside the 10 x 10 pixels image win-
dow. The sample’s spectrum was then reconstructed us-
ing the pseudoinverse matrix in Equation 1. The spectra
of the samples were measured in advance by a Shimadzu
UV-VIS 2500PC spectrophotometer to compare the re-
sults. In these experiments the spectra were sampled at
2nm intervals from 400nm to 700nm.

Figure 5 shows an example of the transparent sam-
ple’s spectrum which was measured by the spectropho-
tometer and by our spectral vision system using different
number of filters. It can be seen that the reconstruction
using 5 filters approximated the peak of the spectrum
from 450nm to 550nm with two peaks. In the series
of experiments with transparent color samples the same
phenomenon happened. When we added more filters to
our system, the reconstruction errors highly increased.
We investigated carefully this phenomenon and found
out that the inverse matrix in Equation 1 was sometimes
near singular and then a small error between the opti-
cally calculated inner product and theoretic inner prod-
uct caused large reconstruction errors. In those cases we
used a regularization technique based on the truncated
singular value decomposition (SVD) to eliminate the ef-
fect of near singularity in the spectrum reconstruction.
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Figure 5: The spectrum of a transparent sample mea-
sured by the spectrophotometer (solid line) and the
spectra measured by the spectral vision system using
3, 4 and 5 filters.

We calculated the CIE zy- and CIE L*a*b*-errors
for 6 transparent color samples used in our experi-
ments. The averaged CIE zy- and CIE L*a*b*-errors
for the filter sets of 3, 4, 5 and 6 filters are tabu-
lated in Table 1, where the AE*-value is defined as
AE* = /AL*? + Aa*? + Ab*2. It can be seen that the
AE*-error between the filter sets of 4, 5 and 6 filters is
lower than 1, and therefore we decided to use the filter
set of them with the lowest dimension, i.e. the filter set
of 4 filters. Figure 6 a) shows the sample with biggest
AE*-error and the sample with smallest AE*-error is
shown in Figure 6 b) when the filter set of 4 filters was
used.

Table 1: The averaged CIE zy- and CIE L*a*b*-errors
over 6 transparent color samples between the spectra
measured by the spectrophotometer and the spectra
measured by the spectral vision system using 3, 4, 5
and 6 filters,

Number of | Averaged | Averaged
filters (Az,Ay) AE*
3 0.0691 25.30
4 0.0324 10.13
5 0.0396 10.68
6 0.0350 10.90




Figure 6: The spectra of two transparent samples mea-
sured by the spectrophotometer (solid lines) and the
spectra measured by the spectral vision system using
4 filters (dashed lines).

4.3 Spectral Image

Finally we acquired a spectral image from a real world
object using the spectral vision system shown in Fig-
ure 7. A setup of a strawberry and a mandarin lying
on a table in front of a colored panel was used as the
real world scene. In this experiment we measured the
sample’s reflectance spectra. The distance between the
second mirror in the spectral synthesizer and the sample
was 40cm and the distance between the sample and the
CCD-camera was 40cm. The angle between the synthe-
sized light and the CCD-camera was 42°. The size of
the synthesized light area in the measuring plane was
8cm x Scm.

Figure 7: Spectral vision system.

The sample used is shown as a real size gray level
image in Figure 8. The image was taken when the LC-
panel was set to an input level of 255. The size of the
sample is 397 x 290 pixels. The background of the sam-
ple are color sheets which are, from left to right: painted
blue, painted green, glossy yellow and glossy red.

Figure 8: Sample as a real size gray level image, illumi-
nated by the halogen lamp.

We illuminated the sample by 4 synthesized lights cor-
responding to the color filters shown in Figure 3 anc
the reflected intensity images were detected by CCD-
camera. The shutter speed was 2 seconds. Figure ¢
shows the detected intensity images.

No. 1 No. 2

Figure 9: Detected intensity images of the sample, wher
the sample was illuminated by the synthesized lights
“which correspond to 4 color filters.

From the detected intensities, we reconstructed th:
spectral image on the wavelength range from 400nm t«
700nm at 10nm intervals using a pseudoinverse matrix
Figure 10 a) shows the wavelength bands from 430nm t«
650nm at 20nm intervals of the spectral image acquirec
by the spectral vision system using 4 filters.



To compare the results, we measured the same spec-
tral image by CCD-camera with 31 narrow band inter-
ference filters covering the wavelength range from 400nm
to 700nm at 10nm intervals. Light passing through a
narrow band filter is highly absorbed and therefore we
used a shutter speed of 8 seconds to make the measured
images brighter. Figure 10 b) shows the measured re-
sults at the wavelength range from 430 to 650nm at
20nm intervals.

430 nm 450 nm 470 nm 480 nm

530 nm 550 nm 570 nm

580 nm 610 nm 630 nm 650 nm

430 nm 450 nm

580 nm

b)

Figure 10: a) Spectral image neasured by the spectral
vision system using 4 filters. b) Spectral image mea-
sured by the CCD-camera with 31 narrow band inter-
ference filters.

Figure 11 shows two examples of spectra at differ-
ent locations of the spectral image. The spectrum in
Figure 11 a) is the spectrum of the glossy yellow color

shieet and the spectrum of the strawberry is shown in
Figure 11 b).

Pixel (16,217)

o
o

Nommnalized value
s 2
R B

0.5

400 450 500 550 600 650 700
Wavelength (nm)
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Pixet (174,27)

Nomalized value
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Figure 11: Spectra at two different locations of the spec-
tral image. Solid lines correspond to the spectral image
measured by CCD-camera with 31 narrow band flters
and dashed lines correspond to the spectral image mea-
sured by the spectral vision system using 4 filters.

5 Discussion

We presented a spectral vision system which can be used
to measure a color spectrum and two-dimensional spec-
tral images. First we designed the low-dimensional color
filter set using an unsupervised neural network. Then
we constructed a compact size optical setup to synthe-
size the light corresponding to the color filter. This



spectral synthesizer can be also used in other appli-
cations where a certain illumination must be synthe-
sized. We illuminated the sample with synthesized light
and therefore our present system is limited to indoor-
measurements. In the outdoor use a more powerful il-
luminator is needed. In addition, a frequent calibration
procedure needs to be designed due to temporal illumi-
nation change.

We implemented the color filters optically using a LC-
panel. The thin-film-transistor (TFT) type LC-panel is
free from crosstalk phenomena and therefore it is easy to
control. We used a halogen lamp pair as a light source.
It has a low light energy in blue and red areas, but the
shape of its spectrum is smooth and suitable for filtering
on the dispersion plane. Another possible light source
is, for example, the Xenon lamp, which has more light
energy in blue and red areas, but also some sharp peaks
in the visible light area, which can cause problems when
filtering it on the dispersion plane. In the present sys-
tem the energy of the synthesized output light was suit-
able for detection by CCD-camera when the sample was
located at a distance of 40cm from the spectral synthe-
sizer. The area of light in the measuring plane was 8cm
x 5cm. To make the distance between the spectral syn-
thesizer and the sample longer and the light area bigger,
a light source of higher light energy or a high sensitivity
camera should be used.

We decided experimentally the optimal dimension for
the color filter set used in the spectral vision system. In
theory, if the dimension of the filter set W in Equation 1
increases, then the estimation error between the sam-
ple’s true spectrum s and the reconstructed spectrum
5" decreases. In the experiments, however, we noticed
that when using more than 4 filters, the estimation error
started to highly grow. Tominaga [11] has also shown
that the appropriate linear model dimension depends
on the properties of the illuminants and on the proper-
ties of the measurement instrument. Furthermore, the
dimension of the linear model may be limited, for exam-
ple, by the possible noise in the optical system and by
the spectral sensitivity of the CCD-camera. In the ex-
periments, we measured the spectra of the transparent
color sheets using different number of filters and we con-
cluded that 4 filters was the optimal number of filters
in our present system. We also noticed that when the
inverse matrix in Equation 1 was near singular, then a
very small error between optically calculated inner prod-
uct and theoretic inner product caused big errors in the
spectrum reconstruction. In order to avoid the prob-
lem of near singularity, we used a truncated singular
value decomposition method. The filter set designed by
the unsupervised neural network contains uncorrelated
color filters, but inside the light source spectrum of the
halogen lamp the independency becomes weaker.

In our final experiment we acquired the spectral im-

age by our spectral vision system using 4 filters. This
was compared to the spectral image measured by CCD-
camera with 31 narrow band filters. The spectra mea-
sured by the both methods correlated well.

Many of the present spectral imaging systems are
based on line scanning [2]. In these systems the spectrz
are measured with arbitrary accuracy. The acquisitior
time complexity for each line is O(1) and for the whole
image O(N}), where N is the number of lines in image
Extra care should be taken for acquisition of equilatera
pixels when either the object or the camera is moving
In the proposed spectral vision system, the spatial reso-
lution of the image is defined by the CCD-array and one
can obtain a two-dimensional image directly. The dif-
ferent spectral components are, however, acquired sep-
arately. In this case the time complexity for acquiring a
component image is O(1) and for the whole spectral im-
age the time complexity is O(L), where L is the number
of spectral components and L << N. Qur belief is that
the proposed system is easier to use and a better choice
for static objects. For moving objects, the number of
spectral components and the speed of image acquisition
set limits of use. The most critical part is the set-up
time of the LCSLM.

We showed that our spectral vision system can be
used to measure spectral images. The data obtained
from the filtering process is only 4 monochrome images,
which can be used to reconstruct the spectral image by
a pseudoinverse matrix. The acquired data is conve-
nient for storing and transmitting the spectral image.
The optical system is used to calculate the optical in-
ner product, and therefore this system can be used in
various optical pattern recognition tasks, for example in
classifiers, where the classification criteria contains the
inner product calculation. There are still some open
questions in our system, for example, the choice of color
filter set, possible system noise, near singularity of the
inverse matrix and the size of the light area to be illu-
minated. The main result of this paper is a prototype
of the spectral vision system, which can be developed
further to be more accurate in its color representation.
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