Digital copy produced with permission of the author.

Julkaisu digitoitu tekijan luvalla.

Lappeenrannan teknillinen korkeakoulu
Lappeenranta University of Technology

Asko Rouvinen

USE OF NEURAL NETWORKS IN ROBOT POSITIONING
OF LARGE FLEXIBLE REDUNDANT MANIPULATORS

Acta Universitatis
Lappeenrantaensis 88

ISBN 978-952-214-877-3 (PDF)

Lappeenrannan teknillinen korkeakoulu

Lappeenranta University of Technology

Asko Rouvinen

USE OF NEURAL NETWORKS IN ROBOT POSITIONING OF
LARGE FLEXIBLE REDUNDANT MANIPULATORS

Acta Universitatis

Lappeenrantaensis

88

Thesis for the degree of Doctor of Technology
to be presented with due permission for public
examination and criticism in the Auditorium
of the Student House of the Student Union at
Lappeenranta University of Technology,
Lappeenranta, Finland on the 6th of October,
1999, at 12 noon

ISBN 951-764-368-3
ISSN 14564491
Lappeenrannan teknillinen korkeakoulu

Monistamo 1999

Asko Rouvinen Use of neural networks in robot positioning of large flexible

redundant manipulators
UDK 681.532.1 : 004.032.26 : 621.865.8

Key words: hydraulic manipulator, neural networks, deflection compensation,
robot positioning, inverse kinematics

ABSTRACT

Deflection compensation of flexible boom structures in robot positioning is usually done using
tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid
structure. The number of table values increases greatly if the working area of the boom is large and
the required positioning accuracy is high. The inverse kinematics problems are very nonlinear,
and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural
flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve
using analytical methods.

Neural networks offer a possibility to approximate any linear or nonlinear function. This study
presents four different methods of using neural networks in the static deflection compensation and
inverse kinematics solution of a flexible hydraulically driven manipulator. The training informa-
tion required for training neural networks is obtained by employing a simulation model that in-

cludes elasticity characteristics.

The functionality of the presented methods is tested based on the simulated and measured results
of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate
points. For each point, the positioning is tested with five different mass loads. The mean position-
ing error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy
enables the use of flexible manipulators in the positioning of larger objects. The measured posi-
tioning accuracy is tested in 9 separate points using three different mass loads. The mean position-
ing error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.

PREFACE

This study was carried out at the Laboratory of Machine Automation at Lappeenranta University
of Technology as a part of the Boom-2000 research project. The project belongs to the Advanced
Heavy Machinery technology program funded by the Finnish Technology Development Center
(TEKES).

I am indebted to Professor Heikki Handroos who supervised my work. I would also like to thank
Professor Aki Mikkola whose always optimistic attitude has been very important, Professor Jouko
Lampinen and Professor Heikki Kilvidinen for their help in the neural networks part of the study,
the members of the Laboratory of Machine Automation for their help, my family and my
motorcycling friends, especially at MC~Club of Kitee, for keeping me motivated.

I also like to thank the Lahja and Lauri Hotinen Foundation, the Foundation of Technology in
Finland and the Rector of Lappeenranta University of Technology for their financial support.

Special thanks to Maikki.

Asko Rouvinen

September 1999
Lappeenranta, Finland

CONTENTS

3

Introduction
1.1 General
1.2
1.3
1.4

Theoretical background

2.1

Theoretical aspects of the kinematics of multibody systems

2.1.2 Kinematics of rigid multibody system

2.1.3 Kinematic constraints

2.2
23
24

24.1
2.4.2
243
244
245
24.6

3.1
3.2
33

Structural flexibility in multibody systems
Static analysis of multibody systems
Theoretical aspects of neural networks

Basic types of neural networks
Multi—Layer Perceptron
Back —propagation learning algorithm
Levenberg—Marquardt learning algorithm
Determining the correct size of MLP
Solution of inverse MLP

Studied structure and simulation model

Studied structure . .

Simulation model of the logcrane
Using the simulation model in the calculation of

training information

wn Ut -

10
11
12
14
20
20
21
27
29
30
32

34

34
35

36

Use of neural networks in robot positioning of a large flexible

manipulatoro i i e
4.1 Compensation by using a combined analytical
kinematics solution and a neural network
4.2 Direct kinematics and inverse neural network
4.3 Compensation by using modular neural networks
4.4 Inverse kinematics solution
4.5 Simulatedresults
4.6 Experimentalresults
Conclusionscoiiiiiiiiiiiinnnnnnnn.,
5.1 Future for robot positioning of flexible manipulators .

40

43
47
49
53
55
57

65

NOMENCLATURE

Ai
Al
By;

Area of the beam

Rotation matrix of body i

Homogeneous transformation matrix of body i

Mapping from independent coordinates to generalized coordinate
Kinematic constraints of multibody system

Structural damping matrix of body i

Jacobian of kinematic constraints

Jacobian of independent kinematic constraints

Jacobian of dependent kinematic constraints

Mapping from independent coordinates to dependent coordinates
Output of the combined neural networks

Desired output value of neuron i

Desired output value of neuron j

Desired output value of neuron j, related to input—output pair p
Vector of network errors

Young’s modulus

Sum squared output error calculated in batch mode

Sum squared output error calculated in patch mode

Sum squared output error

Activation function of a neuron

Output of hidden neuron j

Hessian matrix

Unit vectors along fixed global axis

Unit vectors along axis of body i

Area moment of inertia

Identity matrix

Denotes the p—dimensional unit hypercube

Jacobian matrix of the network errors

All neurons in layers above neuron j

Stiffness matrix of multibody system

qi
qd
qj

Qi

QJ

i
£

Q.
O

r 3

ry

Ri

Stiffness matrix of flexible body i

Mass of node point

Number of neurons in hidden layer

Mass matrix of body /

Number of generalized coordinates of multibody system
Number of bodies of multibody system

The total number of output neurons

Size of input layer

Number of neurons in hidden layer

Size of output layer

Size of training data set

Total number of synaptic weights

Total number of input—output pairs or number of input nodes
Force per unit length

Total vector of generalized coordinates of multibody system
Generalized coordinates of body i

Set of independent generalized coordinates

Set of dependent generalized coordinates

Generalized coordinates of multibody system

Vector of generalized forces

Generalized forces associated with the generalized coordinates of
the body i

Generalized forces of multibody system

Externally applied forces in body i

Quadratic velocity vector of body i

Externally applied forces of multibody system
Quadratic velocity vector of multibody system

Position vector of point P! in global reference
Components of vector r

Position vector of point Pi in global reference using 4x4
transformation

Position of origin of local coordinate system 7 in global reference

R, Vector including external and stiffness forces of multibody system

R Residual force vector

S1 Lift cylinder stroke

52 Jib cylinder stroke

S3 Extension cylinder stroke
Time

T Total kinetic energy of multibody system

Tt Kinetic energy of body i

u! Position of point P! in global reference

uly 3 Components of vector u' in global reference

u' Position of point P! in body reference

uly 3 Components of vector ' in body reference

u'y Position vector of point P! in body reference using 4x4
transformation

w Weight matrix

Wwp Bending displacement of a beam

wi , Neuron weights

wj Weight of input neuron j or hidden neuron i

wllly Weight of neuron j for input value k

wi Work of externally applied forces acting on body i

Wi Work of forces cause by stiffness element on body i

X;.3 Fixed global axis

X4 3 Body axis of body i

x Input vector

Xp Position along x-axis of the beam

X Output value of neuron i or an input

X Output value of neuron j

X Input value of neuron &

¥ Output value of a perceptron

¥y Actual output value of neuron /

¥j Actual output value of neuron j

Ypj Actual output value of neuron j, related to input—output pair p

Null vector

Moment term

Angular acceleration vector of point P! in body reference
Components of vector a’

Coefficient constant

Learning rate

Error term for neuron j

Error term for hidden neuron j

Error term for output neuron i

Fraction of errors permitted in test

Function

Gain term

Lagrange multiplier

Scalar value

Mass density of a beam

Bias value of a neuron

Set of rotational coordinates

Bias value of input neuron j or hidden neuron i
Angular velocity vector of point P! in body reference
Components of vector o'

Vector of Newton differences

1 Introduction

1.1 General

In robot positioning the robot controller calculates reference values for the joint angles or actuator
strokes of the robot. These values are calculated using a mapping from the Cartesian space to the
joint or actuator space so that for a certain coordinate point in the Cartesian space there is
responding joint angle combination that accomplishes the positioning of the end—effector to the
point. The mapping is called inverse kinematics. The inverse kinematics problem can usually be
solved if the manipulator structure is assumed to be rigid.

The flexibility of the manipulator structure not only causes difficulties in inverse kinematics but
also decreases the positioning accuracy. Due to the demand for structural stiffness, the effective
mass load of a manipulator, payload, is very small compared to the dead load. If the compensation
of the deflection caused by structural flexibility is carried out, the efficiency of manipulators can
be increased and lighter structures can be used as manipulators. Deflection compensation can be
carried out using tables, which include correction terms for coordinate points.

Desired point

Achieved points

Figure 1.1 Effect of redundancy and deflection.

The correction term is added to the desired coordinate value and the required actuator strokes or
joint angles are calculated by using inverse kinematics of a rigid structure. Redundant and large
structures demand very large tables because deflection depends on the positions of the
manipulator links. Separate links have different elasticity characteristics, and if a certain
coordinate point can be achieved with several link position combinations, the magnitude of the
deflection varies. In figure 1.1 the desired coordinate point is theoretically achieved with two
separéte link position combinations and the dotted lines show schematically how different
elasticity characteristics affect the magnitude of deflection.

Since the achieved coordinate point varies depending on the link position combination used in the
positioning, the magnitude of the deflection must be declared depending on the actuator strokes
or the joint angles and the amount of the mass load of the manipulator.

One solution to the problem is to solve the inverse kinematics of a flexible manipulator.
Unfortunately the flexibility causes big problems in direct and inverse kinematics calculations.
The modelling of structural flexibility is quite a complicated process and in the solution the
knowledge of the affecting forces is required. The dynamic analysis of manipulators can solve the
problem but the required computational capacity for real-time applications is great.

1.2 Problem statement and work definition

The deflection and the inverse kinematics of robots are typically highly nonlinear problems.
Analytical handling of the inverse kinematics of a redundant mechanism can result in either
multiple solutions, degeneration [48], or possibly in no solution at all [5]. The main problem in the
degeneration of inverse kinematics is the interdependency of joint angles. If one joint angle can be
specified the rest can be defined as functions of that angle, which can lead to several joint angle
combinations that accomplish the same position of the end—effector. The analytical solution
methods can be divided to two classes: algebraic and geometric methods. The algebraic solution
methods are based on link parameters and transformation matrices while geometric solutions try
to decompose the spatial geometry of the manipulator into several plane geometry problems [5].

Numerical or optimization methods are often used for solving the inverse kinematics problem but
some problems may arise because of the demand of computation time [5], [48]. In [3] several
traditional optimization methods are used in solving inverse kinematics of redundant and
nonredundant robots. Genetic algorithm is utilized to solve the inverse kinematics of a
nonredundant boom structure in [41]. In [36] obstacle avoidance using modified genetic
algorithm is considered.

The deflection of a beam can be calculated from a partial differential equation of the deflection

curve
2 2w, (x,, 1) i
f;‘z‘l:EI(xb)—-—-—gizb] +p(xb)wb(xb,t) = pb(‘xb’ f) (])
b b

where El(x) is the bending rigidity of the cross section of the beam, p(xp) is the linear mass density
of the beam, wy(xp,t) is the bending displacement of the beam, and Pp{xp.t) is the force per unit
length. Solving the deflection in its closed form can be difficult because every term in the equation
is a variable of the arm length or position. The arms of boom structures may include complicated
geometry that affects the bending rigidity of the cross section and the mass density. The force per
unit length depends on the position of the arm and the amount and location of mass load.

In [49] is presented a trajectory planning algorithm for large flexible manipulators which takes
deflection into account as a correction term in joint positions. The method is based on a nonlinear
kinematics model, which involves second order deformation terms. It gives good results but
requires lots of computation power in real-time applications. An iterative method based on the use
of elasticity matrices is presented in [51]. In [8] an iterative scheme for the end—effector regulation
of a flexible robot is presented. The amount of deflection due to gravity is measured using an
optical sensor. A method based on the algebra of rotations for motion planning of a flexible
manipulator is presented in [53]. The method divides the motion of the robot end—effector to two
parts: the motion of the arm that retains the initial deflection and the variation in the deflection due
to the change in manipulator configuration. Hiller [16], [44] has studied the modelling, simulation
and control of large redundant manipulators with structural flexibility utilizing kinetostatic
transmission elements describing mechanical components. The method also includes the coupling
with hydraulic actuators.

The use of neural networks offers a possibility to approximate any linear or nonlinear mapping
[11], [1]. The use of neural networks in the solution of inverse kinematics of rigid non-redundant
manipulators has been considered in [50], [23] and [24]. In these studies the structure under
investigation has been a two-link manipulator and either the task space or joint angles have been
limited. In [50] neural networks are used to map the manipulator end coordinates from the
Cartesian space to joint space. In [23] and [24] neural networks are used for solving the relations of
both the positions and velocities from the Cartesian space to the joint space. The functionality of
the used methods has been tested using circular test trajectory. Zurada [55] considers the use of
neurocontrollers in the forward and inverse kinematics of a rigid two degree of freedom
manipulator and the comparison between four different neural network architectures is also
presented in the case of forward kinematics. The use of neural networks in the solution of inverse
kinematics and trajectory planning of rigid redundant manipulators is studied in [17]. The solution
of inverse kinematics of a redundant robot using global regularization is studied in [9]. The
structure under investigation in both [9] and [17] has been a three—link plane manipulator. The
method presented in [52] uses recurrent neural network in the calculation of the pseudoinverse of
the Jacobian matrix. In [17] a Hopfield network is used for solving the inverse kinematics and to
optimize the trajectory planning. A sub-neurocontroller is also designed to track the trajectory.
The use of neural network in robot positioning by solving the inverse kinematics directly based on
the machine vision information is studied in [43] and [47]. The more general use of different types
of neural networks as learning controllers for industrial robots is studied in [2]. The use of
self—organizing maps in robot positioning utilizing machine vision system and in robot navigation
is discussed in [20). The references show that neural networks are capable of solving the inverse
kinematics of rigid manipulators in many different ways accurately enough to be used in robot
positioning control,

This thesis shows how neural networks can be utilized in the inverse kinematics solution and
deflection compensation of a large redundant flexible manipulator in a static robot positioning
situation. The training information for neural networks is obtained using commercial and
generally available software as is done in the training and use of neural networks. By using neural
networks it is possible to approximate mappings with less computational efficiency than by using
the exact solution. The methods presented in this thesis are more suitable for control applications
than for‘solving the deflection as a function. This thesis considers only one particular boom
structure because the aim of the work is to clarify the functionality of different neural network
architectures.

1.3 Overview of the dissertation

This thesis observes the theoretical background of statics of multibody systems and the theory of
neural networks. The first part of chapter 2 presents the basics of the kinematics of rigid systems. A
short introduction to frames and transformations needed in kinematics is presented. Generalized
coordinates and the kinematic constraint required in the statics of a rigid body are shown.
Modelling the structural flexibility using the lumped mass approach is studied. The statics of nigid
multibody system are presented. The second part of chapter 2 is dedicated to neural networks. The
basic types of neural networks are presented. The most popular neural network, the multi -layer
perceptron and the closely related leaming algorithms, back-propagation and
Levenberg-Marquardt, are presented. Choosing the correct size of a neural network is also
considered as well as the solution of the inverse function of a neural network.

Chapter 3 presents the log crane under investigation and the used simulation model of the crane.
The use of the model in the calculation of needed training and testing information is discussed.

Simulated results using different methods are shown in chapter 4. It also includes the results
measured from an existing structure. Chapter 4 also presents the use of neural networks in the
studied methods.

Conclusions about the suitability of different methods in robot positioning of flexible
manipulators are drawn in chapter 5. Some discussion about the future research is also included.

1.4 Contribution of the dissertation

The solution to the presented problem is searched by combining existing technologies. The use of
simulation models in generation of training information for neural networks is a general method.
Neural networks have been used to solve direct and inverse kinematics of robot structures. Most
solutions for deflection and inverse kinematics problems have been based on analytical techniques
or iterative methods but they demand great computational efficiency.

The original contributions developed in this dissertation are:

1. A method of using a neural network in deflection compensation of large redundant flexible
manipulators in robot positioning. The neural network is used together with an existing robot
controller system to produce correction terms in order to avoid the effects of deflection due to
payload.

2. Methods of using neural networks in the inverse kinematics solution of large redundant flexible

manipulators. The methods use neural networks:

a) to model the direct kinematics of the flexible manipulator, and the inverse kinematics

are solved by computing the inverse function of the trained network

b) to model the inverse kinematics of a flexible manipulator.

2 Theoretical background

2.1 Theoretical aspects of the kinematics of multibody systems

Kinematics is the study of motion, quite apart from the forces that produce the motion. More
particularly, kinematics is the study of position, velocity and accelerations in a system of bodies
that make up a mechanism [37]. Multibody systems, figure 2.1, consist of deformable components
that are interconnected to each other. The components can be described as rigid or deformable
depending on the required modelling accuracy. The connections are done using different types of
joints that kinematically constrain the motions of the components with respect to each others.

Body n

Figure 2.1 Multibody system.

In a rigid body the distance between two of its particles remains constant so there is no difference
between the kinematics of the body and the kinematics of its reference coordinate system. The
motion of a rigid body in space can be described completely using six coordinates, three
translational and three rotational ones [37]. On the other hand two particles on a deformable body
can move relative to each other. Consequently one reference coordinate system is not capable of
describing the kinematics of a deformable body [46]. The following chapters present the
kinematics of rigid multibody systems. The static analysis of a multibody system is also
introduced. A short introduction to frames and transformations needed in kinematics modelling is

given first, however.

2.1.1 Frames and transformations

The kinematics of a multibody system can be described by using part positions and orientations
and their derivatives. These are vector quantities and have to be considered in the proper reference
frame or coordinate system. A frame can be described by using three orthogonal axes, which are
fixedly connected to the origin point of a reference. There are two types of frames: one that is fixed
in time is called global or inertial frame of reference. The other type is called local or body
reference and it is attached to each component of the multibody system. In figure 2.2 a body
reference and global frame of reference are presented.

Figure 2.2 Body reference and global frame of reference.
Position vector of the point P!, can be defined in the body reference as:
= Wiy + Wiy + Wi} @

where i, i and i%; are unit vectors along body axes X%, X’ and X%, and 1%, u’ and u’; are the
components of the vector u!in the local frame.

In the global reference the same vector can be defined as:

ut = uliy + ubiy + uliy 3)

where i}, i and i3 are unit vectors along fixed global axes X;. X, and X3, and u’;, ub and u’; are the
components of the vector ! in the global frame.

Hence there are two separate representations for a single point, one in the local reference and the
other in the global frame. Because the definition of a point is usually easier to do in local reference
and we are mostly interested in positions and orientations in the global frame there is a need to
combine these representations. This combination is called mapping [5] and in the case of pure
rotation it can be defined as [5], [29], [46]:

u' = A'n @)
where Afis the 3x3 rotation matrix.

The rotation matrix A’ can be defined using several different approaches. The most common are
the four Euler parameters that depend on each other, or the Euler angles that describe the rotations
relative to the moving system. The Bryant angles [37] consider rotations about axes other than
those for the Euler angles, the Rodrigues parameters and the direction cosines that consist of three
independent variables [46). The use of Euler angles, Bryant angles, or Rodrigues parameters may
cause singularities at certain body orientations [46]. The singularities are caused by denominators
of parameters approaching zero or parameters approaching infinite. Using Euler angles the
rotation matrix can have twelve different forms depending on the order and the axis of rotations in
the right-hand coordinate system [5].

In the case of rotation and translation the position of the point P! can be defined as:

r'=R + AW ©)
where R' is the position of the origin of the local coordinate system in the global frame, figure 2.2.
Using a 4x4-transformation matrix, which includes both rotation and translation, the mapping is:
i

ry = fzﬂfz (©)

where r%; is [r') 2 13 1)T, u is [u') u'> u's 1]T and the homogeneous transformation matrix A’ is
[29], [46]:

. |ATR
A= [03 ’}] %)

where 03 is the null vector [0 0 0]. The homogenous transformation matrix is frequently used in
describing the kinematics of robot systems.

2.1.2 Kinematics of rigid multibody system

The motion of a rigid body in space can be completely described using three Cartesian and three
rotational coordinates and their derivatives. In the case of moving body the vectors rf and R are
time—variant components, which have to be defined as function of time. Differentiating equation 5
with respect to time and remembering that the components of the position vector of the point in the
local coordinate system are constant as a function of time yields:

F=R+AW (8)
where # is the absolute velocity vector of point P and Ri is the absolute velocity of the origin of the
local coordinate system and
AT = Al@ x) 9)

where ! is the angular velocity vector [@; w% @] defined in the local coordinate system.
Equation 8 can now be rewritten as:

=R+ Al x 7 (10)
Differentiating equation 10 with respect to time leads to the acceleration of a rigid body:

Wo=R+ A’ x @' x @) + Al@ x @) (1)

where L'lJ =0 and 17’ =() are used. The term Ri is the absolute acceleration of the origin of the local

coordinate system and a’ is the angular acceleration vector [a; a% a's] defined in the local

coordinate system. The second and third terms are respectively the normal and the tangential
components of the acceleration vector [46].

2.1.3 Kinematic constraints

The joints between the separate bodies of a multibody system impose certain conditions on the
relative motions between the bodies. From the mathematical point of view mechanical joints
require constraint equations which can be written in vector form [37], [46]:

where q is the set of generalized coordinates defined as:
q=1q"4% ..q" (13)

where np, is the number of the bodies of a multibody system and
qi — [RiT eiT]T (14)

where R is a set of Cartesian coordinates that define the location of the body reference of body i
and 6 s a set of rotational coordinates that define the orientation of the body reference of body i
[37], [46]).

The generalized coordinates, which must satisfy the constraint equations of the joints, are said to
be dependent. Similarly, coordinates that are free to vary arbitrarily are said to be independent.
The constraints reduce the number of degrees of freedom in a system. If the set of constraints is
dependent on coordinates and time, the constraints are said to be holonomic constraints. If the set
of constraints contains inequalities or relations between velocity components that can not be
integrated in a closed form, they are said to be nonholonomic constraints [37]. If the time does not
appear explicitly, the system is said to be scleronomic [46].

22 Structural flexibility in multibody systems

Although it is difficult to provide a generally applicable approach to assigning elastic behavior to a
body in the model, it can be said that one body of the mechanism is always elastic. Selecting which
bodies of the mechanism are to be assigned flexibility and how many degrees of freedom the
mechanism should be assigned to achieve satisfactory results is more or less a question of
engineering skill. A flexible body must be modelled using a specific approximation method that
reduces the partial differential equation that defines the structural deformation into a set of
ordinary differential equations. Finite element [4), [30] and assumed modes [6], [30] are the most
commonly used approximation methods [31].

The assumed modes method produces a generalized parameter model of a continuous system that
approximates the behavior of the flexible system. The approximation is done using one or more
functions of spatial variables and time to describe the deformation of the system. These functions
are called admissable functions or shape functions [6].

In the finite element method the deformable body is discretized by dividing it into small regions
called elements. The admissable functions are not defined for the entire system but for elements
which allows the use of very simple functions [30]. The elements are interconnected by node
points. The lumped mass or consistent mass formulation can be used to define the mass of the
deformable body.

This study used the lumped mass approach where the total mass of the deformable body is
distributed on the node points, which can thus be treated as mass points. The relative motion of the
body, the deformation of the body, in respect to its reference motion is defined by the elasticity of
the interconnecting elements. The stiffnesses of these elements are defined by matrices, which are
described locally. The global stiffness matrix is not needed when using reference coordinate
systems which move with the mass points. Figure 2.3 highlights the idealization of the deformable
body while using the lumped mass approach.

12

Original deformable body

pg), Alx), 1(q)

r_i‘.ta
Idealized deformable body

mass points

m, m, \ 7 m,

Stiffness elements

Figure 2.3 The idealization of the deformable body using the lumped mass approach
[31].

The response of a deformable body can be determined by solving the dynamics for each mass
point. The rigid body equations of motion can be used in the mass points. In this case the forces
acting within the stiffness elements need to be taken into account as external forces acting on the
mass points. The virtual work of the forces caused by the stiffness elements can be obtained as:

WL = — ¢'TKisq! (15)
where K'is the stiffness matrix of the elements to which a mass point is connected. Similarly the

damping of a flexible body can be taken into account. The total virtual work of external forces
acting on a mass point can be written as:

OW' = — §"Coq' ~ ¢TK'q’ + Qlog' (16)

where Q' is the vector of the external forces applied on the rigid body and C'is the structural
damping matrix of an element. Equation 16 can also be expressed in form:

W' = Q'Toq’ (17

where Q' is the vector of generalized forces associated with the generalized coordinates of the
body i

Q'= -Kq' -Cq + 0l (18)

In order to achieve a decent computational accuracy a flexible body must be divided to several
separate rigid bodies which leads to a large number of generalized coordinates and, unavoidably,
to large matrices. For this reason, the computing capacity required for applying this method is
large.

23 Static analysis of multibody systems

Static equilibrium analysis is used for assigning correct values to the coordinates that describe the
state of static equilibrium of the system. This is often used for initializing the positions of the
bodies of a system for dynamic analysis. In this study several thousands of static analyses of a rigid
multibody system with idealized stiffness properties were used to determine the positions of the
flexible bodies of the structure in the static robot positioning situation. The static equilibrium
analysis is a special case of the dynamics of a multibody system. The dynamics of a multibody
system can be described using, for example, the Lagrangian method, which is an energy-based
approach. The use of D’ Alembert’s principle, virtual work, generalized force and generalized
coordinates leads to Lagrangian equation:

d:(aqj) 3, =0, J=L2,....n (19)

where (J is the component of the generalized force associated with the coordinate gj> n is the
number of generalized coordinates and T is the total kinetic energy of the system:

"[, nb . . N
T = Z Ti= Z%q’TM'q’ (20)

=1 =1

where M' is the mass matrix of body i and q'is the vector of generalized coordinates of that body.
The potential energy of the system, caused by gravitation, is included into the generalized forces
vector Q/. The substitution of the kinetic energy into Lagrangian equation leads to:

dipigh — 3T = o
M = 3= 21

Differentiating the first term of equation 21 with respect to time we obtain the equation of
unconstrained motion of a rigid body:

Mig' + Miq'"a—T =g (22)
6qj

Using notation

L= - Mg+ 23

where Q% is the quadratic velocity vector. Taking into account the kinematic constraints by
utilizing the Lagrange multipliers in the equation 22 the constrained motion of a rigid body can be
expressed in compact matrix form:

M+ CA=0+0Q, (24)
where 4 is the vector of Lagrange multipliers and Cy is the constraint Jacobian matrix:

C, = % (25)

Taking into account equation 18, the equation 24 can be written as:

Mg+ Cq+Kq+Clh=0,+0, (26)

In a general case, the mass matrix M of body i contains elements, the value of which is not zero,
outside the diagonal. The non-diagonal elements define the inertial coupling between the
translation and rotation of the body and are functions of time. However, the non—diagonal

elements of the mass matrix become zero if the body reference is attached to the body center of
mass as a consequence of which a simplified system of the equations of the motion can be
obtained. The location of the body reference has also another influence. The quadratic velocity
vector includes the centrifugal effect caused by the rotation of the body into the body coordinate
system. If the body reference and the body center of mass are in the same point the centrifugal
forces do not exist and the quadratic velocity vector is zero which also simplifies the equations of
the mbtion of the system.

In the static equilibrium the velocities and accelerations of a rigid body are zero. Using notation
Re=Q.— Kq 27

where R, is a vector including the forces acting in stiffness elements and the external forces, the

equation 26 for static analysis can be rewritten as:

CA-R =0 (28)

For the virtual change in the generalized coordinates of the system, the equation 28 leads to:
(CAA — R)T0g = 0 (29)
The constraint equation 12 for static analysis depends only on the vector of generalized
coordinates:
g =0 (30)

The vector of generalized coordinates can be written in partitioned form using independent and
dependent coordinates:

q=1lq] 4j)" 31

The independent coordinates are coordinates, the values of which can be integrated from an
associated set of differential equations. The dependent coordinates relate to the independent
coordinates by kinematic constraints and can be determined using the kinematic relations [46].

Utilizing virtual work and coordinate partitioning in the constraint equation, the virtual change in
the dependent system coordinates in terms of the virtual change of the independent system
coordinates is:

0q4 = Cydq; (32)

where Cy; is the matrix

Csi= — qu"Cq, 33)

C

where Ca. and C4. relate to dependent and independent constraint Jacobian matrix respectively.

The vector of virtual change dq can now be written as:
6qi II
0 = 1sq,1 = c, |29 = Buddi (34)

where I is the identity matrix. By substituting the equation 34 into equation 29, the virtual change
in the generalized coordinates of the system can now be written as:

(CIA — R)'BOg; = 0 (35)

The components of the generalized coordinate vector are linearly independent, which yields to:
(CRA = R)B;; =0 (36)
If generalized coordinates are estimated correctly in the static equilibrium, the equation 36 is

satisfied. However, in large multibody systems it is difficult to estimate the coordinates correctly
and it can be expected that the equation 36 is violated:

(C - R)'B, =R (37)

It can be shown that the matrix CyBa; is a null matrix so the equation 37 becomes:

-RB, =R (38)

where R is called the vector of residual forces, which is related to the independent generalized
coordinates. If the static equilibrium in equation 37 is satisfied the value of vector R is zero. The
roots of the system determine the static equilibrium position of a multibody system. The roots can
be solved numerically using, for example, Newton~Raphson method, in which the iterative
solution for the following system is sought [46]:

R - .7
aTinql' = -k (39

where the vector 4¢; is the vector of Newton differences.

In figure 2.4 is presented a computational algorithm to solve numerically the Newton differences.
The first step is to evaluate the constraint Jacobian matrix, equation 25, using an estimate for the
static equilibrium state. Independent and dependent coordinates, equation 31, are identified. In the
second step the dependent coordinates are adjusted by solving equation 30 using for example
Newton-Raphson algorithm. The third step is to compute the constraint Jacobian matrix and the
force vector R, from equation 27. In the fourth step the residual force vector, equation 38, is
solved. The fifth step includes the evaluation of the coefficient matrix, equation 39. Finally the
Newton differences are solved from equation 39 and independent coordinates are updated:

q; = q; + dq; (40)
If the convergence criteria is satisfied, the dependent coordinates are updated and the new set of

generalized coordinates defines the static equilibrium state of the system. Otherwise the algorithm
is repeated.

START
Y

Read input data + estimate

for static equilibrium

Evaluate constraint Jacobian matrix, i 2
identify dependent and independent coordinat

Y

Iterate dependent coordinates to
satisfy constraint equations

v

Compute constraint Jacobian matrix
and generalized forces

Y
Solve residual force vector
AY/
Evaluate coefficient matrix

Y __

Solve Newton differences and
update independent coordinates

uqiiaaaaagﬁ.>,

AVJ
STOP

Figure 2.4 Computational algorithm for the static analysis [46].

19

2.4 Theoretical aspects of neural networks

In computing, a neural network refers to a class of models which simulate learning. Neural
networks can be used for assisting in detecting information, predicting outcomes, and making
decisions. Neural networks offer great computing power due to their parallel structure and the
ability to learn and generalize. Neural networks store the learned information with distributed
encoding [22]. Typical properties for neural networks are nonlinearity, input—output mapping by
leamning, adaptivity and the possibility to on— or off-line training [15], [38], [54]. Nonlinearity is
an important feature in modelling nonlinear mechanisms [15], [54]. Leaming input—output
relationships makes it possible to solve classification, prediction, control and diagnosis problems
[38]. Adaptivity enables easier retraining of the neural network in the case of changes in the
surrounding environment [15]. Computer models and off-line training can be used in modelling
large systems which need more training time. The main application fields of neural networks are
pattern recognition and diagnostics, inference, modelling and decision support, control and
identification of nonlinear systems, optimization and associative memory. The following chapters
give an overview to different types of neural networks. The most common neural network,
multi-layer perceptron and the closely related back—propagation learning algorithm [15], [28],
[38], [42], [54] are introduced. The basic element of a multi-layer perceptron, the perceptron [15],
[28], [38] is presented as well as choosing the correct size of a neural network. Finally the solution
of the inverse function of a neural network is discussed.

24.1 Basic types of neural networks

Neural network models can be divided to three basic types [38]:

® Signal transfer (feedforward) networks
® Competitive learning networks

L Dynamic state transfer (feedback) networks

20

The Multi-Layer Perceptron (MLP) [15], [28], [38], [54], Radial Basis Function (RBF) network
[15], (28], [38], [54] and Principal Component Analysis (PCA) networks [15], [38] are signal
transfer networks. The Kohonen Self-Organizing Map (SOM) [18], [38] and Learning Vector
Quantizer (LVQ) [15], [19] present the competitive learning network type. The Hopfield network
[15], (28], [38] and Boltzmann machine [15], which is a generalization of the Hopfield network,

are examples of dynamic state transfer networks.

In supervised learning of for example MLP, each input—output relation is known. The distance
between the actual and desired response is utilized as error measurement and is used for adjusting
the values of the network parameters. In unsupervised learning of for example SOM, the desired
response is not known and explicit error information cannot be used for adjusting the network
behavior. The unsupervised learning algorithms must discover the existing patterns, regularities,

separating properties, etc. by themselves [22], [55].

The signal transfer networks are often used in classification, modelling complex black box
systems and in control and signal processing applications. Hence the MLP is the most popular
neural network structure used [21], [38]. Competitive learning networks are suitable for the
clustering of input data and for automated feature extraction [38]. Dynamic state transfer

networks can be used as associative memories and in solving optimization problems [15], [38].

242 Multi—Layer Perceptron

The Multi-Layer Perceptron (MLP) network was chosen to be used in modelling the deflection
and inverse kinematics of the boom in this study because they can be seen as complicated black
box systems. The calculation of the correction term as well as the calculation of the actuator
strokes for positioning are clearly control applications. The used input values are continuous and

the training information gives a possibility to use supervised learning.

The MLP network consists of layers of parallel perceptrons and hence it is a generalization of the
perceptron. The perceptron is the simplest form of a layered feedforward neuron. The input layer

21

of a perceptron is connected only to the unit on the secondary layer where the output can be read. A
single perceptron can learn to separate linearly an N-dimensional input space to two half-spaces
[38]. It does this by positioning a decision surface in the form of a hyperplane between the two
classes. A single-layer perceptron consists of a single neuron with adjustable synaptlc weights and
a threshold. From figure 2.5 can be seen that the output value of a perceptron depends on the
act1vat10n function, threshold value and the weighted input value [15].

X3 —— ’ f() -y
2 W
xn/

Figure 2.5 A perceptron [15].

Generally the output value v of a single perceptron is [15]:
n
v = £ xiw; — 0) @1
i=1

where f{.) is the activation function of a perceptron, 8 is the bias value or offset and w is the weight
vector

w=lwgwy el “2)
and x is the input vector

x=[x; x, + x))7 (43)

Since the perceptron has the capability to separate the input space to half-spaces it is often used as
a classifier. By using more than one neuron in the output layer it is possible to form a cléssiﬁer with
more than two classes. For proper action of the perceptron the classes have to be linearly separable,
however. A single perceptron can also be used for performing basic logic operations NOT, OR and
AND. Figure 2.6 shows two general, discrete activation functions used in classification problems

22

and in logic operations and the linear activation function, which is used with continuous
perceptrons. The linear activation function enables better control over the training procedure and
the computation of the error gradient [55].

Ay
1 . - .
""""" Belete tat-rain v 3f = e L.inear activation function
====== Hard limiting activation function
0 '
/ wk_9 ===+ Threshold activation function

L Y L o B

Figure 2.6 Some activation functions.

The output value of a single linear perceptron is:

y = wix — 9 (44)

The correct values of the weights and the bias for a given problem can be found by training if the
solution exists.

By combining different amounts of different types of perceptrons, as figure 2.7 shows, it is
possible to achieve desired mapping between the input and output layers of an MLP. The MLP
network exhibits a high degree of connectivity. Generally the network structure is fully connected,
which means that every perceptron on a certain layer is connected to all perceptrons on the
preceding layer. Anyhow, if the designer has background knowledge about the inexpediencies of
the parameters of a certain problem, it is possible to include this knowledge into a network by
eliminating some connections [54] or constraining the values of weights in certain connections
[26], [45]. An MLP network is called feedforward network if it contains no closed loops between
neurons. The feedback network has closed loops between neurons or feedback pathways [22].

Hidden layer

Figure 2.7 A fully connected feedforward Multi-Layer Perceptron network with one
hidden layer.

The number of perceptron layers and the number of perceptrons in one layer depends on the
complexity of the desired representation_ A more complicated representation needs more layers
and more perceptrons. The number of hidden layers and the number of perceptrons in one layer
can freely be selected by the designer. However, the numbers must match the complexity of the
problem and the amount of training information. The size of the input layer depends on the number
of input parameters. Similarly the number of perceptrons in the output layer depends on the
number of output parameters [38].

The activation functions of the perceptrons of an MLP network include nonlinear functions. The
important point to emphasize is that the activation function must be differentiable everywhere.
The nonlinearity of the activation functions makes the MLP networks differ from a single
perceptron. If the MLP network has only linear activation functions its function can be reduced to
a single layer perceptron [15].

There are several different kinds of nonlinear activation functions for the perceptron. The most
generally used ones are a hyperbolic tangent and a logarithmic activation function, presented in
figure 2.8. Also a linear activation function, figure 2.6, is used especially in the perceptrons of the
output layer [15].

24

: .
__________ 0537
L * asese boli . . fu -
— . yperbolic activation function
0 & 0 w-0
ol : === Logarithmic activation function
....... SRS P N

Figure 2.8 Nonlinear activation functions.

The output value of a single perceptron with the hyperbolic tangent activation function is:

v = tanh(wTx —) ‘ (45)

The output value of a single perceptron with the logarithmic or sigmoidal activation function is:

y=—1
’ 1+ e~ Wx=6)

(46)
Besides nonlinearity, hidden layers and connectivity, the ability to learn the desired relations from
given information through training enables the high computational capacity of an MLP network.
The operation of the MLP network is separation of the number of weights in the network and the
effective number of parameters in the network. In the beginning of the training the values of the
weights are small and decrease near zero, which produces nearly linear mapping. The linear
mapping has only small number of degrees of freedom independently of the complexity of the
network. During the learning the values of the weights grow and the operation points of nonlinear
perceptrons move to increasingly nonlinear parts of the activation functions. This increases the
number of effective parameters in the MLP network [25], [35].

The capability of feedforward multilayer neural networks in approximation of continuous
mappings has been studied in [11]. The universal approximation theorem that can directly be
applied to multilayer perceptrons is stated as follows [111,[15]:

25

Let ®(.) be a nonconstant, bounded and monotone—increasing continuous function. Let Ip denote
the p—dimensional unit hypercube [0,1]P. The space of continuous functions on Ip is denoted by
C(lp). Then given any function f € C(lp) and ¢ > 0, there exists an integer M and sets of real
constants a;, 6; and wy;, where i=1,..,M and j=1,...,p such that approximate realization of function
fi.) can be defined as

M p
Fxy, e Xp) = D ap(> wix, — 6) @n
i=1 j=1
and
lF(xl,...,xp) —f(xl,...,xp)l < € (48)

for all {xy,xp} € Ip.

The logarithmic activation function is a nonconstant, bounded and monotone-increasing
function, so it satisfies the criteria for the function ®(.). The equation 47 represents the output of a
multilayer perceptron described as:

® The network has p input nodes and a single hidden layer with M neurons

® The inputs of the network are xy, ... Xp

° Hidden neuron i has weights w;, ... »Wip and threshold 6;

® The network output is a linear combination of the outputs of the hidden neurons

® @, .., define the coefficients of the combination

This theorem states that a single hidden layer is sufficient for a multilayer perceptron to compute a
uniform ¢ approximation to a given training set of inputs Xy, ... Xp and desired outputs f(xj, ... ,xp)
[15].

26

243 Back-propagation learning algorithm

The use of neural networks includes two phases: the learning phase in which the weight and bias
values are estimated and the actual use phase in which the neural network is used for the desired
representation. In the learning phase the weight and bias values of neurons are estimated on the
basis of training information. The learning phase usually demands large calculation capacity due
to a great amount of iterations. There are several different supervised learning algorithms. The
most common ones used with MLP networks are the back—propagation algorithm which is based
on the gradient method and the Levenberg—Marquardt algorithm [10] that is based on the
gradient- and Gauss—Newton—methods. The Levenberg—Marquardt algorithm is more efficient
but requires more computer memory. In both algorithms the goal is to minimize the error between
training information and the result computed by the neural network.

The back—propagation learning algorithm is a gradient descent method that tries to minimize the
error function. The error function is the sum of squared errors between actual and desired output
values. In patch or stepwise mode the value of error function E, is calculated after each
input—output pair:

N,
E, = %Z(dpj =y’ (49)
=1

where dp; is the desired output of neuron j, considering input—output pair D, ¥p;j is the actual output
of neuron j using input—output pair p and n,, is the total number of output neurons. In batch mode
the value of error function E}, is calculated as:

E,= > Ep (50)
14

where p is all the input—output pairs.

The back—propagation method requires that the activation function of the perceptrons is
continuously derivative [15], [28). The first step in the method is to set all weight and bias values to
small random values. In the next step the output values of the neural network are calculated using

all learning values. Then weights and bias values are adjusted to minimize the error according to

27

equations 51-54. The new weight and bias values from hidden neuron i or from an input to neuron
J are calculated as [28]:

Ot + 1) = 6,41) + 19, 6D

where 11 is the gain term, ; is the error term for neuron j and x; is either the output of neuron i or an
input. If neuron j is an output neuron, then the error term is calculated as [28]:

where y; is the actual output of neuron j and d; is the desired output of neuron j. If neuron Jisan
internal hidden neuron, then the error term is calculated as [28]:

8= xf1 = x) > S (53)
k

where k is all the neurons in the layers above neuron J and x; is the output of neuron j. Sometimes
the system converges faster if a moment term is added to equation 51. New weight and bias values
are then calculated as equation 54 shows [28]

wilt + 1) = wilt) + néjx,- + a(wilr) — wikt — 1))
Ot + 1) = 6,(1) + 00, + alB(r) — 6,4¢ — 1)) 54)

where o is the moment term and 0 < ¢t < 1.

The updating of the weight and bias values can be done in two basic ways depending on the
processing of the training set. In the pattern or stepwise mode the updating is done after each
input—output pair and in batch mode the updating is done after the presentation of all the training
values. The batch mode enables more accurate estimate for the gradient vector. If the training
samples are given in random order in the pattern mode it decreases the probability of trapping to a
local minimum {15].

In general, the back-propagation algorithm cannot be shown to converge. Neither is there a

well—defined criterion for stopping the training operation. In [15] there are four different criteria
presented for the convergence of the back-propagation learning;

28

® The Euclidean norm of the gradient vector reaches a sufficiently small gradient
threshold

L The absolute rate of change in the average squared error is sufficiently small

® The maximum value of the average squared error is equal or less than a sufficiently
small error energy threshold or the Euclidean norm of the gradient vector is equal or
less than a sufficiently small gradient threshold

® The generalization properties of the network are discovered to be adequate or the
generalization performance of the network has peaked

In the latest method the generalization properties of a network are tested by using an independent
data set that has not been included in the training set of the concerned iteration round. The test data
set can be a random sequence of all training data or a separate data set used only in the performance
testing. In [39] an overview of advanced supervised learning methods as well as some benchmark
results of studied algorithms can be found.

244 Levenberg-Marquardt learning algorithm

In Levenberg-Marquardt learning algorithm the main advantage is that it gives second order
training speed without computing the Hessian matrix. In the case of error function that has the
form of the sum of squares, as in equation 49, the Hessian matrix can be approximated as [10]:

H=J1J (55)
where J is the Jacobian matrix. The Jacobian matrix contains the first derivatives of the network

errors with respect to weights and bias values. The Jacobian matrix can be computed using
standard back—propagation technique. The updated values are calculated as [10]:

wit + 1) = w(t) — [JTT + ul)) = UTe (56)

where e is the vector of network errors and J; is the identity matrix. The scalar 4 defines the type of
the method. If 4 is zero the update method is the Gauss~Newton method, if the value of M is large

29

the update method approximates the gradient descent method with small step size. The
Gauss—-Newton method is faster and more accurate near an error minimum. The objective is to
reduce the value of 4 and shift towards the Gauss-Newton method as quickly as possible [10].

245 Determining the correct size of MLP

Choosing the number of neuron layers and neurons in one layer of MLP correctly for a current
problem is a problem itself. It has been shown that a multi-layer neural network with at least one
hidden layer whose activation functions are sigmoid functions can approximate any continuous
mapping [11], [1]. In classification an advantage can be achieved by using several hidden layers
[13], [28]. The operation of an MLP network depends on a large number of free parameters, which
are the neuron weights and bias values, offered parameters, and the number of used parameters,
chapter 2.4.2. Oja [38] states that the number of neurons in the hidden layer should be
approximately

Nr

Mo = s+ Wy

(57)

where Nt is the size of training set, N; is the size of input layer and Ny is the size of output layer. In
reference {15] the relation between the number of hidden neurons Ny and the size of training set Ny
is presented as:

32N 32N

where Ny is the total number of synaptic weights in the network and is the fraction of errors
permitted in the test. An MLP network with too few neurons is not capable of approximating the
mapping in the desired way as shown in figure 2.9. This situation is called underfitting [10] or
underdetermination [38). If the MLP network includes too many neurons the mapping might look
correct considering the training information. If independent test data not included in the training
information are given as input the output is heavily inaccurate as figure 2.10 presents. This
situation is called overfitting [10], [15] or overtraining [38].

30

0.8 "
06 *
0.4

02
0

-0.2
04

, Target; +

put:

£ 06
C s
-1

1 080604202 0 02 04 08 08 1
Input Vector P

Figure 2.9 Underfitting [10].

-1277 080604 02 0 02 04 06 08 1
Input Vector P

Figure 2.10 Overfitting [10].

The correct size of the MLP network for each problem can be determined by using several
different sizes of networks. When the number of neurons is increased the error calculated using the
training information decreases. When independent test information is used the error first
decreases as well as the underfitting decreases. In some point the error starts to increase because of
overfitting. The correct size of the MLP network is in the point where the error calculated using the
test information is minimized. In this study that method was employed to determine the correct
sizes of neural networks.

3

In [25] an overview of advanced methods used for determining the correct size for MLP networks
can be found. In [35] is presented an analysis of the expected test set error for nonlinear learning
systems.

2.4.6 Solution of inverse MLP

The inverse function of MLP is needed when the direct kinematics of the boom structure are
modelled using MLP. The inverse kinematics solution of the boom can be achieved by solving the
inverse function of MLP, which is calculated using the gradient descent method.

8 i
4t i
. 2} 1
oL . . .
|— path
. |0 targst
—2r < result
* Inlt
o A o sample
—4L . . Y .

0 2 4 5 8

Figure 2.11 Statevector from initial state to desired state.

The selected MLP structure consists of one hidden layer with the sigmoidal activation function,
equation 46, and linear function output layer, equation 44. The problem is similar to the learning of
the network by the back—propagation algorithm. In this case the weights and bias values are fixed
and the input must be changed. Changing the input value is done in several steps. The result is a

32

series of statevectors that describe the change from the initial state to the desired state. This is

illustrated in figure 2.11. The statevectors are calculated as the following equations present [27].

The sum squared output error E; between the desired and the actual output is defined as:

Es= %Z I = x| (59
i :

where d; is the desired and y; is the actual output of neuron 7. The partial derivatives of output error
with respect to the inputs is:

oE; _ _ (s
ax, ijk % (60)
j

where x; is the input value and wjk(“ is the weight of neuron j for input value k. The deltas of the
hidden layer are:

(ly —_ _ 12 (2)5(2)
oM =1 hj)Zw,,j 8! 1)
!

where (I—hjz) is the derivative of the hyperbolic tangent activation function and hj is the output of
hidden neuron j. The deltas of the linear output layer are:

0P =d;—y (62)
A simple gradient descent would then produce a series of statevectors as follows:

dE
Xt + 1) = x (1) — ya;’ (63)

where y is the learning rate and 1 is the time step.

In the calculation of the inverse function of the network some input parameters can be constants
during the iteration process. If the mapping has redundant degrees of freedom the convergence to
the desired state must be ensured.

33

3 Studied structure and simulation model

3.1 Studied structure

The structure under investigation is the PATU 655 log crane manufactured by the Finnish
company Kesla OY. The mechanical flexibility of the construction is significant, and so the
deflection caused by mass load can clearly be noticed. The lift arm and pillar have a varying profile
but the jib arm and extension have constant profiles. The log crane and its functional dimensions
are shown in figure 3.1.

8480

4850

Jib actuator

Lift actuator

1y b4y

Slewing actuator

i

Figure 3.1 Studied log crane,

The crane is moved with lift, jib, slew and extension actuators. The motion of jib cylinder is
transmitted to the jib arm via a four bar linkage. The maximum load of the crane is 500 kg with the
extension fully out. In the laboratory assembly the hydraulic lift and jib cylinders were replaced
using servo actuators manufactured by Mekarita KY. These actuators enable better positioning
accuracy and repeatability in robot positioning. The actuators were controlled with a PC. The

kinematic dimensions of the crane as well as the kinematic model are presented in appendix A.

34

32 Simulation model of the log crane

The complete simulation model was constructed in ADAMS by connecting the flexible and rigid
mechanism parts to each other by joints. The equations describing the hydraulics were added using
the mathematical properties of ADAMS [40)].

Figure 3.2 Simulation model of the log crane.

Four mechanism members, pillar, lift arm, jib arm and extension were modelled flexible using the
lumped mass approach, figure 3.2. The ground connection of the boom was also modelled as
flexible using a torque spring. The four bar linkage and the actuators were modelled as rigid parts.
The flexible members of the mechanism were modelled in the ANSYS finite element program.

.Due to the simplicity of the flexible members’ cross section the modelling was performed by
linear 6-DOF beam elements. The pillar was modelled using three elements, the lift arm using six
elements, the jib arm using five elements and the extension using four elements. The separate
FE-models were imported to ADAMS using condensed stiffness and mass matrices. The
correctness of the condensation was checked by comparing the eigenfrequencies of the
condensated and non—condensated models.

The original hydraulic circuit of the boom was modelled utilizing the semi~empirical approach
[14]. The equations describing the hydraulics are presented in [33] ,[14] and [40].

35

The following assumptions and simplifications were made in order to decrease the required
computation time to a reasonable level. The assumptions and simplifications are discussed in
detail in [31].

® Joint clearances were not modelled. Clearance can cause a loss of contact between
the tin and the bearing, which causes impact forces. Analyzing the impact forces re-
quires a large amount of computing capacity and can fundamentally be limited [7].

® The joints of the boom were modelled with no friction forces. In [32] the effect of
joint friction in a one degree of freedom boom system is studied. The results show
that the friction force has minor effects on the dynamics of the system.

® The linear properties of the material. The model assumes that plastic deformation
only takes place in a small region in such a way that local yielding does not affect the
global behavior of the crane [31].

® Distortion, warping and other deformation forms of the out-of-beam theory. These
phenomena are not taken into account in the model of the crane. The model assumes
that these phenomena have only minor effects on the flexibility of the structure [31].

The reliability of the model was verified by comparing the calculated results with the results
measured from an existing structure. The verification of the simulation model is presented in
detail in [33].

3.3 Using the simulation model in the calculation of training
information

The training information for neural networks consisted of actuator strokes and coordinates of the
boom end—effector in Cartesian space using different mass loads. Furthermore, for separate
deflection compensation, information of change in the end—effector coordinates between flexible
and rigid structures with different actuator strokes and mass loads was needed. Measuring the

36

needed training information from existing structure would have been very slow and time
consuming due to the accuracy needed. Measuring the change in end—effector coordinates caused
by mass load is almost impossible. The problem was solved by using the simulation model in the
generation of training information.

In the simulation model the control circuit of motions was assumed to be optimal, and thus
hydraulic flexibility would not affect the positioning of actuators. Therefore it was possible to
remove the hydraulic circuits from the simulation model and use motions instead of actuator
forces to move the boom arms. This modification enabled faster analysis so that more information
could be calculated. The training information was calculated in static equilibrium state, which also
justifies the use of motions instead of actuator forces.

Calculation of the analysis was made automatically, figure 3.3, by a FORTRAN-language
program that changed the actuator strokes and mass load values to the ADAMS-Solver input file.
After the changes the program started the ADAMS-Solver that calculated static equilibrium
analysis and wrote the end—effector coordinates to the result file. The results, actuator strokes and
the amount of mass load were then collected to the final result file as one training vector.

Each vector included actuator strokes, mass load and depending on the method being trained either
boom end—effector coordinates or amount of deflection due to mass load. The interval in actuator
strokes and mass load between two analyses can be seen in table 4.1.

Table 4.1 Training information calculation intervals

St [m] S2[m] S3 [m] mass (kg]
Minimum 0.0 0.0 0.0 50
Maximum 0.535 0.78 1.6 500
Increment 0.066875 0.0975 0.4 50
No. of values 9 9 5 10

By these numbers the number of training vectors is 4050. Anyhow, some vectors are infeasible due
to mechanical constraints. The results include positions where X—coordinate was less than zero or

two boom links were inside each other. When these vectors were removed the number of training

37

vectors decreased to 3670. The settling of the training points to the operation area is shown in
figure 3.4.

START
AV4
Select new position and
mass load values
-V
Read the original
input file
V4

Write new position and
mass load values

AV2
Write new
input file
AV4

Run ADAMS Solver
static analysis

V4

/ Read results file /

-\

Write results to '
collection file

Wiz [
L=

\.
STOP

Figure 3.3 Training information calculation algorithm.

38

(Y-coordinate [m]

<
[o4

X-coordinate ?m]

Figure 3.4 Training points in operation area.

The training information covers the operation area of the boom quite well. Furthermore the end
~effector of the boom has been positioned to several points with different actuator stroke
combinations. The influence of deflection to the position accuracy of the end—effector can be seen
in figure 3.4. The deflection can be seen as a slight inaccuracy in the Xs that describe the

coordinate points of boom end—effector as there are several coordinate points close to each other,
The thickness of the Xs is directly relative to deflection.

CPU-times used in the computation of the training information are at a reasonable level; the

computation of 4000 vectors took less than 25 minutes CPU-time using a DEC Alpha 600
computer.

4 Use of neural networks in robot positioning of a large
flexible manipulator

There are several different methods that utilize neural networks in robot positioning. In some
methods, neural networks are used for modeling the Jacobian matrices of a manipulator {23], [24]
and [52]. The use of Jacobian matrices demands more mathematical background of the problem,
but in dynamic control problems it is important that position, velocity and acceleration are taken
into account [24]. Generally neural networks can be used in system identification as figure 4.1
presents.

u P Plant r-

Neural Network y
Model

A
Training
Algorithm

L

NS Y

Figure 4.1 Neural network for system identification [54].

In this study, four different neural network methods were used in the robot positioning of a large
flexible manipulator in static robot positioning situation. In the first method a neural network was
used for modelling the magnitude of the deflection. The second method employed a neural
network to model the direct kinematics of the manipulator with elasticity characteristics. The
inverse kinematics solution was carried out by computing the inverse function of the neural
network [27]. In the third method two neural networks, one for the direct rigid kinematics of the
manipulator and the other for the deflection of the manipulator, were used for modelling the direct
kinematics of the manipulator with elasticity characteristics. The inverse kinematics was achieved

40

by computing the inverse function of the combined network [27]. In the fourth method, neural
networks were used for modelling the inverse kinematics of the manipulator with elasticity
characteristics.

The suitability of the different methods was tested by simulating the positioning of the studied
boom structure at 25 separate coordinate points shown in figure 4.2.

Test points

8 T T Y
x 1 x 2
l-3 X4 x5

@)}

F~S

x 6 x 7 x 8

x

x9 x 10

(=]

Y-coordinate [m]
()

14 *15 *16 *17 %18

2319 %20 *21 X220 %33
4 N 24, AR

! 2 choordin%te [m] 3 6

Figure 4.2 Test points in working area.

The test points were not included in the training information. The positioning of each point was
tested using five different mass loads, namely 30, 120, 260, 310 and 470 kg, which were neither
included in the training information. The results were simulated using the same simulation model
as in the computation of the training information.

YA Achieved coordinate
X/
AR
AY
b
~
/ X

Desired coordinate

Figure 4.3 The specification of positioning errors.

41

In the simulation it was assumed that the controller functions optimally so that the desired actuator
strokes were achieved with absolute accuracy. The results were computed as static analyses when
the velocities and accelerations of the boom were zero. Figure 4.3 shows how the errors were
specified. The value of position error was calculated by subtracting the achieved value from the
desired value.

Inltial positions, points 1,4,7,10,13,16,19.22,28 Inkiat poshions, pointe 2,6,0,11.14,17.20,23
Py o
3 / 8 / / /
-t
4 / 3) 5 ﬁ L /
E E '
. 2 Z -
g 2 % S———
o o "
Fo 3o P e
> > \
. \ \ 2
4 : 4
[1] s 4 s [] 1 2 Il 4 [']
X-coordinate [mf X-eoordinare {mf

inNiai poshtions, points 5,8,8,12,18,18.21 04

g;Z/L .
jo 1 / .

4] 4
X-coordinam [m)

Figure 4.4 Initial positions for test points.

Because of the redundancy of the studied manipulator, each coordinate point can be achieved us-
ing several different manipulator link position combinations. To ensure that all methods studied

42

use the same combination in each point and thus make the results comparable, a certain initial posi-
tion was given to each point, figure 4 4.

The initial positions were calculated by choosing the extension cylinder stroke using the heuristic
method, presented in appendix B, to reduce the degrees of freedom to a non-redundant level and
then using the analytical model of the rigid manipulator. The actuator strokes were then rounded to
the nearest full centimeter in order to create some noise to the position information.

4.1 Compensation by using a combined analytical kinematics solution
and a neural network

Using a neural network in the modelling of the position error of a redundant manipulator requires
that the position error is known as a function of the actuator strokes or joint angles and mass load.
Employing a simulation model of the flexible manipulator in several different actuator strokes and
with several different mass loads, the corresponding coordinates of the end—effector of the
manipulator are computed. Comparison coordinates are computed using the same actuator strokes
with a kinematics model of the rigid structure. A change of mass is not necessary because the

amount of the mass has no effect on the kinematics of the rigid structure.

The used learning information is normalized between —1 and 1. The normalized sequences of the
used actuator strokes and mass load are presented in figure 4.5.

Lift straka Jib stroke

1
0.8 0.8
0.6} o6k
0.4+ 0.4k
0.2r 0.2+
Dl '
500 1000 1500 2000 2500 3000 3500 ;
: 100 200 . 300 400
Lol acieyne; Training vector no:
Extenslon stroka Maek load
1 1 T .
0.8} H 0.8 = 4
08f 1 osf — 1
0.4 i 0.4} i
o.2r XSS 1
° . L ! ! !
0 10 20 30 49 50 0 . . . ;
Tralning vector no: o 2 4 [8 10

Training vector no:
Figure 4.5 Sequences of normalized actuator strokes and mass load.

The difference in the achieved end—effector coordinates between the kinematics model of the rigid
structure and the model with structural flexibility was used for finding out the position error,
figure 4.6. A neural network was employed to model the error as a function of actuator strokes and
mass load. By using this value as a correction term in control values, it was possible to compensate
the deflection due to structural flexibility.

Diferance of rigld and olastie madal Diffaronca of rigid and olastie modal

s 20.3
g g
3 K]
5 3
§ 30.6
» >
& £
2 304
- Q.
5 5 |
£ $
iR So.2
|1
-‘.”] . ;.
0 500 1000 {500 2000 2500 3000 3500 0 500 {000 1BOO 2000 2500 3000 3500
Tralning vactor no: 3 Training vector no:

Figure 4.6 Normalized difference in achieved end-effector coordinates.

The actuator strokes to be used as initial values for the neural network were calculated using an
analytical kinematics model of the rigid structure. The analytical model used genetic algorithm
[12] for solving the required actuator values. The genetic algorithm was used in order to study it’s
capabilities in solving the inverse kinematics problem. The fimess function of the genetic
algorithm was the magnitude of the position error. When the error was minimized the theoretical
actuator strokes for the given end—effector coordinate point were achieved. To ensure that the
genetic algorithm selects the desired combination from numerous possible combinations, two
individuals of the initial population of the genetic algorithm were given so that they corresponded
to the current actuator strokes. The thirteen other individuals of the initial population were
randomly selected values so that the probability to achieve the new coordinate values nearby the
existing solution and with minimum change in actuator strokes, is obvious when considering
small changes in required coordinates. The solution was accepted if the position error was less than
five millimeters. The maximum number of the populations was restricted to 1000 in order to keep
the computation time at a reasonable level. The convergence of the genetic algorithm is studied
furthermore in [41].

The analytical model was firstly used for calculating theoretical actuator strokes for the desired
coordinate point (X,Y). The actuator strokes and the mass load were used as input values for the
neural network, which computed the magnitude of the positioning error of the end—effector in both
the X- and Y-coordinates. The magnitudes of the errors were added to the desired values, and the
results were then used in the analytical model that was used for calculating the required actuator

45

strokes S1, S2, S3 as shown in figure 4.7. The selected network structure had 14 sigmoidal neurons
in the hidden layer and two linear neurons in the output layer. The network structure was fully
connected. The training method used was the Levenberg—Marquardt algorithm but the
back-propagation algorithm was also tested.

Neural Network
X S
™ Analytical |Tg oatvical T S
Model LELVANS > S2
Y T S Model
~— 73

Figure 4.7 Neural network combined with analytical model.

Figure 4.8 presents the positioning error of the end-effector in test points with combined
analytical model and the neural network.

Poeltion srror In X-coordinate Poslton arror In Y-coordinato
0.08 . 0.14 . . :
: 0.2
004 |4 |
0.
E 0oy E gosf
8 g
g 5 408
[c
3 2
[} L3
H 3 0.04f
0 o
.02k
‘]
I :
1
.0.08 L. - i I L -0.02 i 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Test point no: Test point no:
black=compensated, grey=no compensation black=compensated, grey=no compensation

Figure 4.8 Positioning error using combined analytical model and neural network,

46

It can clearly be seen that the compensation reduces the amount of positioning error in both
coordinates. The mean position error using this method was 4.14 mm. The maximum error was
9.21 mm in the coordinate point (2,~4) and the amount of mass load was 30 kg.

When the compensated position error is compared more accurately to the non-compensated
result, it can be seen that the compensated case gives better results in all but two coordinate points,
These points are point (1,6), where the error is 2.5 mm bigger using 30 kg mass load and 3.1 mm
bigger using 120 kg mass load than without compensation, and point (2,2), where the error is 0.74
mm bigger using 30 kg mass load. In these points the positioning error without compensation is
less than 6 mm. The point (2,2) does not have training information related closely to it, as can be
seen in figure 3.4. Furthermore the smallest payload used in the training information was 50 kg, so
the error might be smaller if the training information included smaller payloads. The method still
works in most cases outside the training information, which proves that it is useful and stable. The
result can partly be explained by remembering that the role of the neural network in positioning is
only the correction of deflection. More detailed comparison of the results using different methods
can be found in table 4.1, page 55.

4.2 Direct kinematics and inverse neural network

Using neural networks in robot positioning requires information of actuator strokes or joint
angles, mass load and corresponding coordinates of the boom end-effector. There are two possible
methods for using neural networks to model this kinematic relation. One is to use the neural
network directly in the modelling of the inverse kinematics of a manipulator. The other is to use the
neural network in modelling direct kinematics and then calculate the inverse function of the neural
network, as shown in figure 4.9. The inverse function of the plant model neural network is used for
calculating the required actuator strokes for the desired coordinate point in given mass load. The

inverse function is calculated with gradient descent [27].

During the iteration process the value of the mass load is kept constant. The initial values for the
actuator strokes in the practical application are the current values measured from actuators. The

network has only to be iterated a few times and the probability that the combination of the actuator

47

positions to be chosen is near the existing one increases, when small changes in the coordinates are
considered . In the testing the values presented in figure 4.4 were used as initial values.

w7 Plant — ¥

-
Controller

— Y

Mass

-P-lantoutput
error

o+
B
@]
(o)
o
—h
1

Plan

Figure 4.9 Structure used in describing the direct kinematics of the manipulator and in

the calculation of the inverse function of neural network [34].

| P
Positlen arrorin X-coordinate LU GRS TR

0.08

=]

=

=
T

Positlen arror fm]
=
o
B

Poaitlon arror [m}

=]

=

2
T

=

0.02
0 5 10 15 20 25 0 5 10 15 20 25
Test point no: Test point no:
black=compensated, grey=no compensation black=compensated, grey=no compensation

Figure 4.10 Positioning error using direct kinematics and inverse neural network.

Figure 4.10 presents the positioning error in test points using neural network with 18 sigmoidal

neurons in the hidden layer and three linear neurons in the output layer for modelling the direct

48

kinematics of the boom. The network structure was fully connected. The used training method was
the Levenberg—Marquardt algorithm.

Using this method the mean positioning error was 16.53 mm, and the maximum error was 49 83
mm. When the results are considered more accurately, the greatest positioning errors can be found
in the coordinate points (1,7) and (2,7). The training information around these points, especially
the point (2,7), is quite scarce, as figure 3.4 presents. The results might be better if the learning
information covered the working area better. If these two points were not included, the maximum
position error would be 33.93 mm, and the mean error 14.70 mm.

This method is also quite sensitive for the error tolerance used in the iteration of the inverse
function of the network. By decreasing the error tolerance from le-5 to le-7, the mean
positioning error diminished 43 percents. The change of error tolerance from le-7 to le—8
improved the results only 3 percents. The results presented here are computed using error
tolerance le-7. The mean amount of iterations using this tolerance value was 129 and the
maximum amount of iterations was 232. Using tolerance value le—5 the values were 114 and 155
respectively. The error tolerance value le-8 increased the mean amount of iterations to 132 and
the maximum amount to 250.

4.3 Compensation by using modular neural networks

Modular networks can be used for solving large and complex problems by dividing the problem
into a set of smaller sub—problems [25]. In [54] modular networks are used for modelling the direct
dynamics and inverse Jacobian of a robot. Modular and hierarchical networks are also employed
in the control and navigation of mobile robots in [54].

The use of two modular networks in the modelling inverse kinematics of the manipulator with
elasticity characteristics was achieved by dividing the kinematics of the flexible manipulator to

the direct kinematics of the rigid manipulator and to the positioning error as shown in figure 4.11.

49

Figure 4.11 Used modular neural nerwork structure.

X.coordinate, rigid modael Y.coordinate, rigld model

" [2 . . L L : L .
500 100D 1500 2000 2500 3000 3500 0 500 100D 1500 2000 2500 3000 3500
Training veetor no: Training vacter no:

Figure 4.12 Normalized X~ and Y~-coordinates using a rigid model.

50

Diltarance of natwork and modael Ditfaranco of network and modof

a.02

g oo 8
E oM é [}
2 :
8 g
] >
5 5
L] 0 ¥ @-0.01
Q Q
13 13
2 2
£ £
o o

-0.01 -0.02

. .

L : ‘. . . . L n + .
6800 1000 1800 2000 2800 dooo asoo0 600 1000 1600 2000 2800 5000 as0a
Training voctor no: Training vector no:

Figure 4.13 Normalized difference of the trained neural network model and the simulation
model with structural flexibility.

Firstly one neural network (w1 by, w2 by2) was trained to model the direct kinematics of the
rigid structure. Figure 4.12 presents the used normalized X- and Y-coordinate learning
information. The used normalized actnator strokes are presented in figure 4.5. Next, a second
neural network (wy1,ba1,wpp boo) was trained for modelling the difference between the rigid
neural network model and the ADAMS model with structural flexibility, figure 4.13. Therefore,
the second neural network compensates also the error of the rigid neural network model. The both
networks consisted of 15 sigmoidal neurons in the hidden layer and two linear neurons in the
output layer. Also in this case the used training method was the Levenberg—Marquardt algorithm.

For the case of a linear activation function the combination of the two separate neural networks

(W11.811,W12,012) and (w21 021,w27822) is calculated as:
d=wpXh +0;,+wy, Xh,+ 6,

hy

= vy wal X [|+ @1y + 03 (64)

5t

where d is the output of combined networks, w;; and wy, are weight matrices, 4; and hy are output

vectors of hidden layers, and 6;; and 0, are bias vectors. Output vectors /; and hy are calculated
as:

hy = flxy X wyy + 0yp) ©

where wy; and wy; are weight matrices, x; and x, are input vectors of neural networks, 6;; and 65;
are bias vectors and f{.) is the activation function. The combined modular networks model the
direct kinematics of a manipulator with elasticity characteristics. The inverse kinematics can be
solved by calculating the inverse function of a combined network [27]. Figure 4.14 presents the
positioning error in the test points using modular neural networks.

This method had the mean position error of 13.20 mm, and the maximum error of 34.65 mm. The
greatest positioning errors can be found in the coordinate points (1,6) and (1,-2). If these two
points were not considered, the maximum position error would be 32.82 mm, and the mean error

12.09 mm. The position error is smaller than when using a single neural network as was expected.

Posltion arror in X-coordinate Pozl(tion strot [n Y -coordlnate

=
=3
o

Posltion error [m}]
Poslktlon error fm}]
=
=
n

0.02
-0.06 |) ¢ L i]
0 5 10 15 20 25 0 5 10 15 20 25
Test point no: Test point no:
black=compensated, grey=no compensation black=compensated, grey=no compensation

Figure 4.14 Positioning ervor using modular neural networks.

52

The change in the error tolerance had even bigger effects as the previous method: increase of the
tolerance from le-7 to le-5 doubled the mean positioning error. The results presented here are
computed using error tolerance le—7. The mean amount of iterations using higher tolerance value
was 127 and the maximum amount of iterations was 163. Using tolerance value 1e—5 the values
were 114 and 155 respectively. The number of iterations using higher tolerance is a bit smaller than
in the previous method but the number of perceptrons is doubled so the required computing power
is greatér utilizing modular networks.

4.4 Inverse kinematics solution

The use of neural networks in modelling the inverse kinematics of a manipulator has been studied
quite extensively. In dynamical control better accuracy can be achieved by using also the
derivatives of position in trajectory planning {50], [23]. In this paper, only static positioning is
considered, and thus only the inverse function of the boom end-effector position is taken into
account. The inverse input— output relations are shown in figure 4.15. In the case of the redundant
structure this relation is not a function, however. A certain coordinate point can be achieved using
several actuator stroke combinations and there is no way to predict which combination is the

output of a neural network. This can also cause some problems in the training of the network.

O
77 "\
SO

OF |

Figure 4.15 Neural network for modelling inverse kinematics.

Figure 4.16 shows the neural network structure which enables the prescribing of the desired

combination by reducing the degrees of freedom using the extension actuator stroke as input value

and thus converting the function of the neural network to an unambiguous function. The extension
actuator stroke is computed using heuristic method presented in appendix B.

X

A\
>

77
Y > L AHNPO * s1
Mass X200 » 52
s3>) ’

Figure 4.16 Neural network for modelling inverse kinematics with restriction.

The input vector includes the X— and Y- values of the desired coordinate point, figure 4.17, and
the amount of mass load and the extension actuator stroke; the output vector consists of the
required jib and lift actuator strokes, figure 4.5.

Figure 4.18 presents the positioning error in test points using a neural network for modelling the
inverse kinematics of the flexible boom. The used neural network had 19 sigmoidal neurons in the
hidden layer and was trained using the Levenberg—Marquardt algorithm..

X-coardInate, slastic modal

Y-coardinate, slastlec modal

500 1000 1500 2060 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Tralning vector no: Tralning vactoer no:

Figure 4.17 Normalized X and Y-coordinates using a model with structural Hexibility.

54

Posltlon arror [n X-coordinate Poslton srror In Y-coardinate

‘ 0.1

£ E g8
8 2
B 3
£ - 13
K3)
3 5 0
o o
o o

g | J -008

-0.38 t : . . .] -0.1

0 5 10 15 20 25
Test point no; Test point no:
black=compensated, grey=no compensation black=compensated, grey=no compensation

Figure 4.18 Positioning error using neural networks in modelling inverse kinematics.

Positioning using a neural network for the representation of the inverse kinematics of a flexible
structure did not seem to work very well, figure 4.18. The maximum error was more than 30 cm.
The main reason for this is the huge amplification of the mechanism. The change of one millimeter
in actuator strokes can cause a positioning error of several centimeters in the boom end—effector.
In the other methods the same problem does not exist, one method describes the amount of
deflection as a function of actuator strokes and the two other methods use a very strict error
tolerance in the calculation of the inverse function. The main advantage in this method is that it is
computationally efficient. The computing of the actuator strokes for one coordinate point took
395 floating—point operations using MATLAB.

4.5 Simulated results

The simulated maximum and mean positioning errors without compensation and using different
neural network architectures are presented in table 4.1.

55

Table 4.1. Simulated positioning errors

No com- Combined Direct kine- |Combina- Inverse ki-
pensation analytical matics and [tion of two | nematics
model and inverse func- |neural net-
neural net- tion of neural {works
work network
A Xax [mm] [57.4300 7.5500 45.3800 30.8700 324.7700
A Ymax [mm] }127.3400 8.3700 33.6600 31.8200 135.5000
A Ry Imm] {129.6755 9.2058 49.8279 34.6512 338.3428
A Xmean[mm] | 14.7157 2.6136 11.8616 8.3611 69.9901
A Y peanimm] | 25.5415 2.7380 9.8299 8.2357 45.4265
A Rpyjean/mm] [31.9331 4.1405 16.5295 13.2036 89.5450

The comparison of the results computed utilizing separate methods show that the best results are
achieved using the analytical kinematics model of a rigid structure together with the neural
network that describes the magnitude of the deflection. The mean positioning error of 4.1 mm
enables the use of a large manipulator, for example, in loading or tunnel drilling applications. The
methods that include the calculation of the inverse function of the neural network gave also quite
good mean positioning accuracy. Especially by using combined modular networks even the
maximum positioning error stayed at a reasonable level. The main advantage in these methods is
that there is no need for any kind of kinematics model of the structure. The maximum error values
can be diminished by distributing the training information more evenly to the working area of the
manipulator. The modelling of the inverse kinematics of a flexible structure using neural network
was an unsuccessful method. The main reason for that was the amplification of the studied
structure. If the structure had smaller dimensions the method might work a bit better.

56

4.6 Experimental results

The functionality of the compensation using the combined analytical kinematics solution and

neural network was tested by measuring an existing boom structure, figure 4.19.

Figure 4.19 The measured boom structure.

The position of the boom end—effector was measured using a plywood grid and laser light. The
plywood grid was positioned parallel with the boom so that the center of the grid was in the
coordinates 3.0, 0.95. The measurements were done in nine separate points, figure 4.20, using

three payloads: 0, 86 and 172 kg. Figure 4.20 also shows the used boom arm combinations.

57

The measured working area is chosen so that the direction of the force changes in the jib cylinder
and the direction of the deflection changes in the jib arm. The selected area also covers the mostly
used working area of the log crane quite well.

Monauresd polnh

FUEREL B « 4
Vs

E
2
b -
[gomt <2 <5
3
a8 73 " 6 * 9]
z2 s 3.8
X-coordinate [m]
ol i o
R 2
ok 0 {f}{; 5
o - .o P i
H 4 A
b :

Figure 4.20 Measured test points in working area.

58

The laser transmitter was attached to the boom end so that the laser beam pointed the position of
the boom end—effector to the plywood grid, figure 4.21. The achieved points were marked to the

plywood with round stickers and the position of the stickers was measured in order to solve the

posttioning accuracy.

Figure 4.21 The laser transmitter and the plywood grid.

Figure 4.22 presents the measured positioning error in the X— and Y~coordinates. The error was
measured from theoretical target points. Figure 4.23 presents the measured positioning error in the
X~ and Y-coordinates, where the error was measured using the point achieved with O kg pay load
and compensation as a reference point. This was done in order to avoid errors caused by the
inaccuracy in the kinematics model and the joint free play. The positioning accuracy in each point
was measured using three mass loads: 0, 86 and 172 kg so that the leftmost bar of each point
represents the error measured with 0 kg, the middle bar with 86 kg, and the rightmost bar with 172
kg mass load.

59

Pos!tion error In X-coordinate Posltion error In Y-coordinate

20 T " T T T 18
151 i . 1oy
10f B 5 H
z B - nll M
8 56 ERRl
50 I - £ -
5 U] £ .10 1
- h
g s .
[o-18
0 b . LI
10 0l
A8 28t -
] L
'20 L 1 1) i 40 L i i 1 L
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
Test point no: Test point no:
black=compensated, grey=no compensation black=compensated, grey=no compensation

Figure 4.22 Measured positioning error from theoretical target point.

Rolative pealtion error In X-coordinate Rolative pos!tion error In ¥-coordinate
18 T . - Y : 20 . : . .
16+ .
28-
14+ .
El2r 1 Eeof i
E ~H E [
é 10 - k 'g'
9 - o 16} 1
[r c F
6 8F s EEE o
= N = r
- -
& of M & 10} = M
‘ - S| W
s
L] il] |
. JO LR, NN ; : . LT
I 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
Test point no: Test point no:
black=compensated, grey=no compensation black=compensated, grey=no compensation

Figure 4.23 Measured positioning error from achieved reference point.

The measured maximum and mean errors are shown in tables 4.2 and 4.3. Table 4.2 presents the
positioning errors measured from a theoretical target point, figure 4.22, and table 4.3 presents the
errors measured using the point achieved with 0 kg pay load and compensation as a reference
point, figure 4.23. The main reason for this presentation is to avoid positioning errors caused by
joint free play, joint misalignment and inaccuracy in the kinematics model. The estimated
measuring accuracy is 0.5 mm.

Table 4.2. Measured positioning errors

Okgno |Okg 86kg |86kg |172kg |172kg [Allno [All

com- lcom- |no com- |no com- |com- [com-
pensa- |pen- com- |pen- com- |pen- pensa- |pen-
tion sated }pensa- |sated pensa- |sated |[tion sated
tion tion
A Xmax [mm] |17 14 16 16 12 12 17 16
A Yax [mm] |17 12 19 14 27 12 27 14

ARpm (mm] |184 |144 |192 [16.6 [289 [156 [288 [16.6
A Xpmean (mm] | 7.4 8.2 8.1 8.2 8.2 79 79 8.1
A Y mean (mm] 8.7 5.6 106 |52 164 6.3 119 |57
A Rpean [mm] | 128|109 |145 (107 [193 [106 [155 [10.7

The results show that the maximum positioning error decreases from 28.8 mm to 16.6 mm when
compensation is used. The mean error decreases from 15.5 mm to 10.7 mm. It can also be noticed
that increase in payload does not have a significant effect on the positioning accuracy when
compensation is used. When the reference point is changed to the point achieved with 0 kg mass
load and with compensation on, the maximum error decreases even more, from 27.5 mm to 11.0
mm and the mean value decreases from 10.6 mum to 4.7 mm. The better accuracy is clearly due to
better results in Y—direction accuracy.

Figures 4.22 and 4.23 show that positioning accuracy in test points 2 and 3 is better without
compensation. As can be seen from figure 4.20 the position of the jib arm in these two points is on
the other side of the vertical line compared to the other measured points. This causes the direction
of the cylinder force to change from pulling to pushing and this changes the effect of joint free
plays.

61

Table 4.3. Measured positioning errors using the achieved reference point

Okgno [Okg 86kg |86kg |172kg |172kg |Allno |All

com- |com- [no com- |no com- |com- |com-
pensa- |pen- com- |pen- com- |pen- pensa- |pen-
tion sated |pensa- [sated pensa- |sated tion sated
: tion tion
A Xmax [mm] |6 11 8 18 11 18 11
A Yo [mm] 12 17 7 26 10 26 10

ARpay [mm] | 12.4
A Xmean [mm] | 2.1
A Y mean [mm] 5.8
A Ruean [mm] | 6.5

18.8 9.2 27.5 11.0 27.5 11.0
4.6 4.9 5.6 59 4.1 3.6
8.1 39 14.0 32 9.3 24
9.7 6.7 15.7 7.5 10.6 4.7

O O O] O O O

No.compensation

NSRRI () kg
& £

Figure 4.24 Achieved coordinates in point (3.8, 0.15).

Figures 4.24 and 4.25 present the achieved coordinates in points (3.8, 0.15) and (3.8, 0.95). These
figures show the effect of compensation clearly. The effect of payload in deflection can be seen as a
decrease of the Y-coordinate value when increasing the payload. Compensation keeps the points
near each other. Especially the points using 86 kg and 172 kg payloads are very near to each other,

62

Figure 4.25 Achieved coordinates in point (3.8, 0.95).

63

5 Conclusions

The use of neural networks in the robot positioning of a large, redundant, flexible manipulator was
studied. A three—degree of freedom log crane was used as an example. The study was done for a
plane mechanism so the studied structure had redundant degrees of freedom. Training
information, required by neural networks, for deflection compensation and for kinematics is
almost impossible to measure accurately, but it could be easily computed utilizing a simulation
model that includes structural flexibility. The verified simulation model was used for computing
4000 static analyses with different actuator strokes and using different amounts of mass load. A
simulation model that describes the kinematics of a log crane was used for computing
corresponding information for the rigid structure. Four different neural network architectures
were trained and tested.

The first neural network architecture was used for determining the magnitude of deflection as a
function of actuator strokes and mass load. The trained network was used together with an direct
kinematics model of a rigid manipulator and genetic algorithm which were used for solving the
inverse Kinematic of a rigid manipulator structure. Firstly the analytical model was used for
computing the theoretical actuator strokes for the desired coordinate point, the neural network
then computed compensation values for both X- and Y- coordinates. These values were added to
the desired point and the analytical model was applied again. The achieved actuator strokes were
used as reference values in robot positioning for the desired coordinate point. The second neural
network architecture was used for modelling the direct kinematics of a flexible manipulator. The
network computed the coordinates of the end—effector of the manipulator for a given actuator
stroke and mass load combination. The inverse kinematics solution was achieved using the inverse
function of the network. The inverse function of the trained network was computed utilizing the
gradient descent method. Because of the redundancy of the studied structure it was necessary to
ensure that the network converged to the desired solution. This was done by keeping the value of
mass load constant during the iteration and giving the initial values for the actuator strokes nearby
the desired ones. The third network architecture consisted of two separate networks that were
combined in order to model the direct kinematics of the flexible manipulator structure. One
network was trained to model the direct kinematics of the rigid structure and the other network was
used for modelling the difference between the network modelling the rigid structure and the

simulation model including structural flexibility. The inverse kinematics of a flexible structure
was determined by the inverse function of the combined networks computed utilizing the gradient
descent method. The convergence to the desired solution was ensured as in the previous method.
The fourth neural network architecture was used for modelling the inverse kinematics of a flexible
structure. In order to avoid the problems caused by the redundancy of the studied structure, one
actuator stroke was used as an input value besides the end—effector coordinates and mass load. The
value of the actuator stroke was calculated using a heuristic rule based on circles describing the
working area of the manipulator.

The functionality of the selected architectures was tested by a simulation model and measuring the
existing log crane. The robot positioning was simulated in 25 separate test points. The positioning
accuracy in each test point was simulated with five different payloads. Neither the test points nor
the amounts of payload were included to the training information. The functionality of the best
method based on simulation results was tested by measuring the existing log crane. Measurements

were done in nine separate test points using three different payloads in each point.

The simulated and measured results show that by using neural networks in robot positioning of a
redundant, flexible manipulator it is possible to reduce position error due to deflection caused by
payload. Neural networks are also capable of solving the inverse kinematics of a flexible robot
structure. Different neural network architectures can be used in different types of applications,
depending on the available computing power and required accuracy. Adding the compensation
loop to an existing robot controller is also possible but the computing time used for calculation one
coordinate point is doubled due to required iteration procedure. The results also show that verified
simulation models with structural properties can be used in collecting training information for
neural networks. Especially data, such as the boom end—effector position in space, that is difficult,
slow or impossible to measure from a real structure can be achieved accurately and quickly.

5.1 Future for robot positioning of flexible manipulators

The increase of computational power will enable the use of model based controllers in robot
applications. These controllers will be capable of modelling the dynamical behavior of the robot in

65

real-time. The structural flexibility will anyhow cause problems because it increases the number
of degrees of freedom in the model and demands more computational power. One possible
solution might be the combination of neural network models together with analytical models.

Certain deformation behavior of each robot link could be added to a rigid kinematics model.

The advantages in sensor technology might give a possibility to measure the position of the robot
end-effector in space and that way enable the use of direct control of the position in Cartesian
space. However, the mapping from Cartesian space to joint or actuator space is required but the
exact knowledge about the controlled variable makes the control much easier. Machine vision
offers also possibilities to determine the position of a desired point in space. The placement of the
required cameras and the need for large computational power restrict the use of vision systems
nowadays. The goal of the study of structurally flexible robots is to increase the relation of payload
to the manipulator’s own weight and that way make robots more efficient. The other advantage is
that by using intelligent control systems it is possible to use more rough mechanisms in robot
applications.

References

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12)

(13]

Baldi Pierre, Hornik Kurt, Neural Networks and Principal Component Analysis:
Learning from Examples Without Local Minima, Neural Networks, Vol. 2, 1989. pp.
53-58.

_ Baroglio, C., Giordana, A., Kaiser, M., Nuttin, M., Piola, R., Learning Controllers for

Industrial Robots, Machine Learning-The Journal, Vol. 23, 1996,

Bestaoui Yasmina, An Unconstrained Optimization approach to the Resolution of the
Inverse Kinematic Problem of Redundant and Nonredundant Robot Manipulators,
Robotics and Autonomous Systems Vol. 7, 1991, pp. 37-45.

Bricout, J.N_, Debus, J.C. & Micheau, P., A Finite element model for the dynamics of
flexible manipulators, Mechanism and Machine Theory, Vol. 25, No. 1, 1990, PP-
119-128.

Craig, 1.J., Introduction to Robotics: Mechanics and Control, 2nd ed., Addison-Wesley
Publishing Company, Inc. 1989.

Craig, R.R., Structural dynamics: An introduction to computer methods, John Wiley &
Sons, 1981.

Deck, J.F,, Dubowsky, S., On the limitations of predictions of the dynamic response of
machines with clearense connections, Journal of Mechanical Design, Vol. 116, 1994,
pp-833-841.

De Luca Alessandro, Panzieri Stefano, End-effector Regulation of Robots with Elastic
Elements by an Iterative Scheme, International Journal of Adaptive Control and Signal
Processing, Vol. 10, 1996, pp. 379-393.

DeMers David and Kreutz-Delgado Kenneth, Global Regularization of Inverse
Kinematics for Redundant Manipulators, Advances in Neural Information Processing
Systems, Vol. 5, 1993, pp. 255-262.

- Demnuth Howard, Beale Mark, Neural Network Toolbox User’s Guide Version 3.0, The

Math Works, Inc. 1998.

Funahashi Ken-Ichi, On the Approximate Realization of Continuous Mappings by
Neural Networks, Neural Networks, Vol. 2, 1989, pp. 183-192,

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Publishing Company, Inc., 1989.

Gonzalez, R.C., Woods, R.E., Digital Image Processing, Addison-Wesley Publishing
Company, Inc., 1993.

67

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

Handroos, H.M.. A Method for Postulating Flexible Models for Individual Components
for the Fluid Power Circuit Simulation, ASME, FLUCOM'91, San Francisco, August
29-31, 1991.

Haykin Simon, Neural networks: a comprehensive foundation, Macmillan College
Publishing Co., New York, 1994.

Hiller Manfred. Modelling, simulation and control design for large and heavy
manipulators, Robotics and Autonomous Systems, Vol. 19, 1996, pp. 167-177.

Jin, B., Guez, A., The Trajectory Planning and Tracking of Redundant
Manipulators by a Hierarchical Neurocontroller, Proceedings - IEEE
International Conference on Robotics and Automation 1995. Vol. 3, pp.
2460-2495.

Kohonen Teuvo, Hynninen Jussi, Kangas Jari, Laaksonen Jorma. SOM_PAK: The
Self-Organizing Map Program Package, Technical Report A31, Helsinki University of
Technology, Finland, 1996.

Kohonen Teuvo, Hynninen Jussi, Kangas Jari, Laaksonen Jorma, Torkkola Kari.
LVQ_PAK: The Learning Vector Quantization Program Package, Technical Report A30,
Helsinki University of Technology, Finland, 1996.

Kohonen Teuvo, Oja Erkki, Simula Olli, Visa Ari and Kangas Jari, Engineering
Applications of the Self-organizing Map, Proceedings of the IEEE, Vol. 84, No. 10,
October 1996.

Koikkalainen Pasi (ed.). Neuraalilaskennan mahdollisuudet, TEKES julkaisu 43/94,
Helsinki, Finland, 1994.

Kosko B., Neural networks and fuzzy systems: a dynamical systems approach to
machine intelligence, Englewood Cliffs (NJ) Prentice—Hall cop. 1992.

Kuroe, Y., Nakai, Y., Mori, T., A New Neural Network Learning of Inverse
Kinematics of Robot Manipulator, The IEEE 1994 International Conference on
Neural Networks, pp. 2819-2824.

Kuroe, Y., Nakai, Y., Mori, T., A Neural Network Learning of Nonlinear
Mappings with Considering Their Smoothness and Its Application to Inverse
Kinematics, Proceedings of IECON '94 : Twentieth Annual International
Conference on Industrial Electronics, Control and Instrumentation 1994. Pp.
1381-1386.

68

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

Lampinen J., Advances in Neural Network Modeling, Proc. TOOLMET’97, Tool
Environments and Development Methods for Intelligent Systems, April 1718, 1997,
Ouly, Finland, pp. 28-36.

Lampinen J. and Selonen A., Using Background Knowledge in Multilayer Perceptron
Learning, Proc. of The 10th Scandinavian Conference on Image Analysis, Vol. 2, 1997,
pp- 545-549.

‘Lampinen Jouko, Taipale Ossi, Optimization and Simulation of Quality Properties in

Paper Machine with Neural Networks, Proc. IEEE World Congress on Computational
Intelligence, Orlando, Florida, June 28 — July 2, 1994, pp. 3812-3815.

Lippmann Richard, An Introduction to Computing with Neural Nets, IEEE ASSP
Magazine, April 1987, pp. 4-22.

McKerrow, P.J., Introduction to robotics, Addison-Wesley Publishing Company, Inc.
1991.

Meirovitch, L., Computational methods in structural dynamics, Sijthoff & Noordhoff,
1980.

Mikkola Aki, Studies on fatigue damage in a hydraulically driven boom system using
virtual prototype simulations, Ph.D. Thesis, Lappeenranta University of Technology
Research Papers No. 61, Lappeenranta, 1997.

Mikkola Aki, Hydraulikdyttdisen puomin dynaamiset rasitukset, MSc. Thesis.
Lappeenranta University of Technology 1994.

Mikkola, A., Handroos, H., Modelling and Simulation of a Flexible Hydraulically
Driven Log Crane, Proceedings of TheNinth Bath International Fluid Power Workshop —
Fluid Power Systems, University of Bath, Great Britain, 9 — 11 September, 1996, pp.
431-443.

Miller, TW., Sutton, R.S., Werbos, PJ., (editors), Neural Networks for Control,
Cambridge (MA) MIT Press corp., 1990.

Moody, 1LE., The Effective Number of Parameters: An Analysis of Generalization and
Regularization in Nonlinear Learning Systems, Advances in Neural Information
Processing Systems 4, Morgan Kaufman Publishers, 1992, pp- 847-854.

Nearchou Andreas, Solving the Inverse Kinematics Problem of Redundant Robots
Operating in Complex Environments via a Modified Genetic Algorithm, Mechanism
and Machine Theory, Vol. 33, No. 3, 1998, pp. 273-292.

Nikravesh, E.P., Computer—Aided Analysis of Mechanical Systems, Prentice—Hall, Inc.,
1988.

69

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

Oja, E., Neural Networks and Pattern Recognition, Course 595, CEI - Europe Courses in
Advanced Technology, November 13 ~ 15, 1995, Cambridge.

Riedmiller Martin, Advanced Supervised Learning in Multi~layer Perceptrons —~ From
Backpropagation to Adaptive Learning Algorithms, International Journal of Computer
Standards and Interfaces, Special Issue on Neural Networks (5), 1994,

Rouvinen Asko, Hydraulijirjestelmien mallintaminen ADAMS-ohjelmistossa, MSc.
Thesis. Lappeenranta University of Technology 1995.

Rouvinen Asko, Handroos Heikki. Robot Positioning of a Flexible Hydraulic
Manipulator Utilizing Genetic Algorithm and Neural Networks, Proceedings of Fourth
Annual Conference on Mechatronics and Machine Vision in Practice, Toowoomba,
Australia, September 23-25, 1997, pp. 182-187.

Rumelhart, D.E., McClelland, J.L. and the PDP Research Group, Parallel Distributed
Processing, Vol. 1, MIT Press corp., 1986.

Salama Ramari, Owens Robyn, Evolving Neural Controllers for Robot Manipulators,
Proceedings of 4th Int. Conf. on Genetic Algorithms and Neural Networks, East Anglia,
April 1997.

Schneider Martin, Hiller Manfred, Modelling, Simulation and Control of a Large
Hydraulically Driven Redundant Manipulator with Flexible Links, Proceedings of the
9th World Congress on Machines and Mechanisms, 1995. Pp. 3038-3043.

Selonen A., Lampinen J. and Ikonen L., Using Background Knowledge in Neural
Network Learning, Proc. SPIE on Intelligent Robots and Computer Vision XV:
Algorithms, Techniques, Active Vision, and Materials Handling, Vol. 2904, 1996, pp.
239-249,

Shabana, A.A., Dynamics of multibody systems, John Wiley & Sons, 1989.

Smagt, PP. van der, Krose, B.J.A., A Real-Time Learning Neural Robot Controller,
Proceedings of the 1991 International Conference on Artificial Neural Networks, ppP-
351356, North—Holland/Elsevier Science Publishers, June 1991,

Snyder W.E., Industrial robots: computer interface and control, Prentice—Hall, Inc.,
1985.

Surdilovic, D., Vukobratovic, M., Deflection Compensation for Large Flexible
Manipulators, Mechanism and Machine Theory, Vol. 31, No. 3, 1996, pp- 317-329.

Watanabe, E., Shimizu, H., A Study on Generalization Ability of Neural Network
for Manipulator Inverse Kinematics, Proceedings of the 17th International
Conference on Industrial Electronics, Control and Instrumentation ~ IECON '91,
pp. 957-962.

70

(51]

(52]

(53]

(54]

(551

Williams, D.W., Turcic, D.A., An Inverse Kinematic Analysis Procedure for Flexible
Open-Loop Mechanisms, Mechanism and Machine Theory, Vol. 27, No. 6, 1992, pp-
701-714.

Wu, G., Wang, J,, A Recurrent Neural Network for Manipulator Inverse
Kinematics Computation, The IEEE 1994 International Conference on Neural
Networks, pp. 2715-2720.

XiFE, Fenton R.G., A Quasi-Static Motion Planner for Flexible Manipulators Using the
Algebra of Rotations, Proceedings of the 1991 IEEE International Conference on
Robotics and Automation, Sacramento, California — April 1991.

Zalzala, AM.S., Morris, A.S., Neural networks for robotic control: theory and
applications, Ellis Horwood Limited, 1996.

Zurada, J.M., Introduction to artificial neural systems, West Publishing Company, 1992.

71

Kinematics of the crane

Appendix A

The kinematic dimensions of the crane can be found in the following table. The dimensions are
in Cartesian coordinates. Used subscriptions are shown in the figure below.

Vector length (m) Vector length (m)
ABy 0.09 BDy 1.04
ABy 1.115 BDy 0.3025
BGy 2.88 EFy 0.203
BGy 0.024 EFy 1.4165
Gl 0.095 FGy 0.015
Gly 0.24 FGy 0.19
Uy 2.141 FH 0.45
1y 0.008 HI 0.48
ACy 0.26 CDg 0.8
ACy 0.105 EHg 1.037

Appendix A

Kinemati el of t}

The local coordinate system used in the solution of the rigid kinematics of the crane is shown
below. The comresponding transformation matrices are also presented.

10 0 —0.09
ro]00—1 1115
o=lor 0o o

00 0 1

[cos(0,) —'sin(6)) 00

72 = 0 0 10
L7 | —sin(@)) —cos(6;) 00
| 0 0 01
(10 0 288
= 00 -1 —0024
27]01 0 0
00 0 1

Appendix A

[cos(0;) — sin(@,) 0 0
M| 0 0 10
37 | = sin(6,) — cos(6,) 00
| o 0 01
10 0 —0.095
rs_[00-1 024
a=lo1 0o 0
00 0 1
100 2141
010 0
T3=1001 —0.008
000 1
10 05,
_10 0 10
Ts=lo-100
0 0 01

The MATLAB code of rigid kinematic model of the boom is presented below.

function [x,y]=mitpatu(s1,s2,s3)

% mitpatu(sl,s2,s3)

%

% Mitpatu draws the position of Patu 655 log crane and retumns the x— and y—coordinates
% of the boom end, input values are the actuator strokes

where s1 = Lift cylinder stroke (0.. 0.535)
s2 = Jib cylinder stroke (0.. 0.75)
s3 = Extension cylinder stroke (0.. 1.6)

Written by Asko Rouvinen 1997

FRAR|EAR

TO1=[100-0.09;00-~11.1150100;000 1];
T23=[100288,00-1-.024;,0100:0001];
T45=[100-0.095;00-1.24;,0100;000 1];
T56=[1002.141;0100;001-0.008;:000 1];
T67=[1005s3;,0010,0-100;0001];

all=.260;
b11=1.040;
al2=.10s;
b12=.3025;

a21=0.203;
b21=1.4165;

a23=0.015;
b23=0.19;

N1=0.45;
N3=0.48;
N4=0.2581;

N1l=sqrt(al142+b1142);
N12=sqrt(al272+b12/2);
epsil=atan(all/bll);
epsi2=atan(al2/b12);

N5=sqrt(a2142+b2122);
N2=sqrt(a23/2+b2342);
epsi3=atan(a21/b21);
epsi8=atan(a23/b23);
epsid=atan(.095/.24);

nisku=s1+.8:
tisku=s2+1.037;

nkulma=acos((nisku*2-N1142-N122)/(-=2*N11*N | 2))+epsil+epsi2—pi/2;

Appendix A

T12=[cos(nkulma) —sin(nkulma) 0 0;0 0 1 0;-sin(nkulma) ~cos(nkulma) 0 0;0 00 1];

epsi6 = acos((tisku®2-N522-N142)/(=2*N5*N 1));

beta = pi-epsi3—epsi6b~epsi§;
xxx=sqri(N142+N2/2-2*N1*N2*cos(beta));

epsi7 = acos((N1/2-xxx*2-N242)/(-2*xxx*N2)):

Appendix A

epsid = acos((NIN2-xxx 2-N4r2)/(-2*xxx*N4));
tkulma = (-pi/2—epsi8+epsi7+epsiS+epsid);

T34=[cos(~tkulma) -sin(~tkulma) 0 0;0 0 1 0;-sin(~tkulma) —cos(~tkulma) 0 0;0 0
01J;

pl=TO1*T12*T23;
p2=TOI*T12*T23*T34*T45;
p3=TOI*T12*T23*T34*T45*T56;
p4=TOI*TI12*¥T23*T34*T45*T56*T67;

x=p4(1,4);
y=p4(2,4);

tulx=[0 TOI(1,4) p1(1,4) p2(1,4) p3(1,4) p4(1,4)];
tuly=[0 TO1(2,4) p1(2,4) p2(2,4) p3(2,4) p4(2,4)];

plot(tulx,tuly,’ g’ y;axis([~.1 7 -2 7]);grid
hold on
plot(p1(1,4),p1(2,4),’10",p2(1,4),p2(2,4),’ 20", p4(1,4),p4(2,4),’y0’)

grid on
hold off

Appendix B

The method used for reducing the degrees of freedom of the manipulator was based on the idea
that the extension cylinder should always be as little extended as possible. The working area of
the manipulator, where the extension cylinder stroke is zero, can be described using three circles
as shown in the figure below.

Working area without axtension

7

N G s D

Y-coerdinate [m]

o
L

1
-

N
= a
]
7
-2 e 2 ——y /

E

o 1 4]

2 3
X-goordinate [m]

The working area which can not be achieved without extension can be recognized using the
equation of the circle

- xo)2 + (y — yO)2 = (r2 + s32)

where x; and y, are the coordinates of the centerpoint of the circle, x and y are the desired
coordinates, r is the base circle and s3 is the extension, and heuristic limits that can be found out
by studying the maximum and minimum coordinates of each circle. For circles no: 1 and 3 the
centerpoint is the coordinate point of the joint of the lift arm. For circle no: 2 the centerpoint is
the coordinate point of the joint of the jib arm in the position where the lift actuator has the
minimum stroke.

For example the geometric and heuristic rules for the area outside circle no: 1 in the figure above
can be expressed as:

if (sqrt((x+0.09)**2+(y-1.115)**2) is less than 0.829
and
x is less than 0.829-0.09

The value 0.829 is the distance from the centerpoint of the circle to the end-effector of the boom
when the jib cylinder is fully extended and the stroke of the extension cylinder is zero.

Appendix B

When the part of the working area is recognized, it is possible to solve the required magnitude
of the extension

3= o= x)? + ¢ =y -

In the case of the area outside circle no:1, the stroke of the extension cylinder is:

§3=-(sqrt((x+0.09y**2+(y—1.115)**2)-0.829)

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

§7.

58.

59.

60.

61.

62.

63.

LAPPEENRANNAN TEKNILLINEN KORKEAKOULU. TIETEELLISIA JULKAISUJA
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY. RESEARCH PAPERS

Third Intemational Seminar on Horizontal Steam Generators October 18-20, 1994,
Lappeenranta, Finland. 1995. 413 s,

AHOLA, JYRKI. Yrityksen strategiaprosessi: nikokohtia strategisen johtamisen kehittdmiseksi
konsemiorganisaatiossa. 1995. 235 s., liitt. Viitdsk.

RANTANEN, HANNU. The effects of productivity on profitability: a case study at firm level using
an activity-based costing approach. 1995. 169 s., liitt. Diss.

Optics in Engineering: First Finnish-Japanese meeting Lappeenranta, 12-14th, June 1995 / ed.
by P. Silfsten. 1995. 102 s.

HAAPALEHTO, TIMO. Validation studies of thermal-hydraulic code for safety analysis of
nuclear power plants. 1995. U.s. Diss.

KYLAHEIKO, KALEVI. Coping with technology: a study on economic methodology and strategic
management of technology. 1995. 283 s. Diss.

HYVARINEN, LIISA. Essays on innovativeness and its evaluation in small and medium-sized
enterpnises. 1995. U.s. Diss.

TOIVANEN, PEKKA. New distance transforms for gray-level image compression. 1996. U s.
Diss.

EHSANI, NEDA. A study on fractionation and ultrafiltration of proteins with characterized
modified and unmodified membranes. 1986. U.s. Diss.

SOININEN, RAIMO. Fracture behaviour and assessment of design requirements against
fracture in welded steel structures made of cold formed rectangular hollow sections. 1996.
238 s. Diss.

OJA, MARJA. Pressure filtration of mineral slurries: modelling and particle shape
characterization. 1996. 148 s. Diss.

MARTTILA, ESA. limanvaihdon [Amm&nsiirtimien teknillinen ja taloudellinen mitoitus. 1996,
57 s. Vditosk.

TALONPOIKA, TIMO. Dynamic model of small once-through boiler. 1996. 86 s. Diss.

BACKMAN, JARI. On the reversed Brayton cycle with high speed machinery. 1996. 103 s.
Diss.

ILME, JARNO. Estimating plate efficiencies in simulation of industrial scale distillation columns.
1997. U.s. Diss.

NUORTILA-JOKINEN, JUTTA. Choice of optimal membrane processes for economical
treatment of paper machine clear filtrate. 1997. U.s. Diss.

KUHMONEN, MIKA. The effect of operational disturbances on reliability and operation time
distribution of NC-machine tools in FMS. 1997. 133 s., liitt. Diss.

HALME, JARKKO. Utilization of genetic algorithm in online tuning of fluid power servos.
1897. 91 s. Diss.

MIKKOLA, AKI. Studies on fatigue damage in a hydraulically driven boom system using virtual
prototype simulations. 1997. 80 s., liitt. Diss.

TUUNILA, RITVA. Ultrafine grinding of FGD and phosphogypsum with an attrition bead milt
and a jet mill: optimisation and modelling of grinding and mill comparison. 1997. 122 s. Diss.

PIRTTILA, ANNELI. Competitor information and competitive knowledge management in a large,
industrial organization. 1997. 175 s, liitt. Diss.

MEURONEN, VESA. Ash particle erosion on steam boiler convective section. 1997. 149 s,
Diss.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

MALINEN, HEIKKI. Forecasting energy demand and CO, -emissions from energy production in
the forest industry. 1997. 86 s. Diss.

SALMINEN, RISTO T. Role of references in intemational industrial marketing - a theory-building
case study about supplier’s processes of utilizing references. 1997. 375 s. Diss.

Fourth International Seminar on Horizontal Steam Generators 11-13 March 1997, Lappeenranta,
Finland. 1997. 285s.

KAIKKO, JUHA. Performance prediction of gas turbines by solving a system of non-linear
equations. 1998. 91 s. Diss.

LEHMUSVAARA, ANTTI. Improving the potentials of logistics processes: identification and
solutions. 1998. U.s. Diss.

PIHLAJAMAKI, ARTO. Electrochemical characterisation of filter media properties and their
exploitation in enhanced fiitration. 1998. U.s. Diss.

VIROLAINEN, VELI-MATTI. Motives, circumstances, and success factors in partnership
sourcing. 1998. 232 s. Diss.

PORRAS, JARI. Developing a distributed simulation environment on a cluster of workstations.
1998. U.s. Diss.

LAURONEN, JARI. Spare part management of an electricity distribution network. 1998. 130 s.
Diss.

PYRHONEN, OLLI. Analysis and control of excitation, field weakening and stability in direct
torgue controlled electrically excited synchronous motor drives. 1998. 109 s. Diss.

Sarjan uusi nimi: ACTA UNIVERSITATIS LAPPEENRANTAENSIS

75.

76.

77.

78.

79.

80.

81.

82.

83.

84,

85.

SAARNIO, ANTTI. Choice of strategic technology investment - case of pulp production
technology. 1999. 225s. Diss.

MATTILA, HEIKKI. Merchandising strategies and retail performance for seasonal fashion
products. 1999. 219 s. Diss.

KAUKONEN, JUKKA. Salient pole synchronous machine modelling in an industrial direct torque
controlled drive application. 1999. 138 s. Diss.

MANTTARI, MIKA. Fouling management and retention in nanofiltration of integrated paper mill
effluents. 1999. U.s. Diss.

NIEMELA, MARKKU. Position sensorless electrically excited synchronous motor dnive for
industrial use based on direct flux linkage and torque control. 1999. 142 s. Diss.

LEPPAJARVI, SEPPO. Image segmentation and analysis for automatic color correction.
1999. U.s. Diss.

HAUTA-KASARI, MARKKU. Computational techniques for spectral image analysis.
1999, U.s. Diss.

FRYDRYCH, MICHAEL. Color vision system based on bacteriorhodopsin. 1999. 87 s.
Diss.

MAKKONEN, MATTI. Size effect and notch size effect in metal fatigue. 1999. 93 s., liitt.
Diss.

7" NOLAMP Conference. 7 Nordic Conference in Laser Processing of Materials. Ed. by
Veli Kujanpd4 and John lon. Vol. I-ll. 1999. 559 s.

Welding Conference LUT JOIN"99. International Conference on Efficient Welding in Industrial
Applications (ICEWIA). Ed. by Jukka Martikainen and Harri Eskelinen. 1999. 418s.

	Asko Rouvinen_etusivu.pdf
	Asko Rouvinen_ilman etusivua.PDF

