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Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the
UV-visible spectral region of solar light. The advantages of this technique includes a good vertical
resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb
scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are
currently several satellite instruments continuously scanning the atmosphere and measuring the UV-
visible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS)
launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroM-
eter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat
also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also
measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur
during daytime occultation measurements.

The global coverage of the satellite measurements is far better than any other ozone measurement
technique, but still the measurements are sparse in the spatial domain. Measurements are also re-
peated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes
dynamically. Assimilation methods are therefore needed in order to combine the information of the
measurements with the atmospheric model.

In recent years, the focus of assimilation algorithm research has turned towards filtering methods.
The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty
of the measurements, but also the uncertainty of the evolution model of the system. However, the
computational cost of full blown EKF increases rapidly as the number of the model parameters
increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimi-
lation problem.

The work in this thesis is devoted to the development of inversion methods for satellite instruments
and the development of assimilation methods used with atmospheric models.



Keywords: Bayesian inversion, assimilation, remote sensing, large-scale optimization, varia-
tional methods, nonlinear dynamics
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CHAPTER I

List of the original articles and the author’s contribution

This thesis consist of an introductory part and four original refereed articles in scientific journals.
The articles and the author’s contributions in this thesis are summarized below.

I Auvinen, H., L. Oikarinen, and E. Kyrölä, Inversion algorithms for recovering minor
species densities from limb scatter measurements at UV-visible wavelengths, J. Geophys.
Res., 107 (D13), 4172, doi:10.1029/2001JD000407, 2002.

II Tukiainen, S., S. Hassinen, A. Seppälä, H. Auvinen, E. Kyrölä, J. Tamminen, C. S.
Haley, N. Lloyd, and P. T. Verronen, Description and validation of a limb scatter retrieval
method for Odin/OSIRIS, J. Geophys. Res., 113, D04308, doi:10.1029/2007JD008591,
2008.

III H. Auvinen, J. M. Bardsley, H. Haario and T. Kauranne, The variational Kalman fil-
ter and an efficient implementation using limited memory BFGS, International Journal on
Numerical methods in Fluids, doi:10.1002/fld.2153, 2009.

IV Auvinen H., Bardsley J. M., Haario H., Kauranne T., Large-scale Kalman filtering using
the limited memory BFGS method. Electronics Transactions on Numerical Analysis, Vol.
35, pp. 217-233, 2009.

H. Auvinen is the principal author of the articles I and III. The author has developed together with
L. Oikarinen and E. Kyrölä the concept of the Modified Onion Peeling (MOP) inversion method
for limb scatter measurements, introduced in article I. Furthermore, the author has implemented
and optimized the forward model of the method used in articles I and II, excluding the multiple
scattering database. The author has developed the concept of the variational Kalman filter (VKF)
method in company with H. Haario, T. Kauranne and J. M. Bardsley, (article III). Furthermore, the
author has implemented the VKF method together with J. M. Bardsley. The author has computed
all of the results presented in articles I and III, and most of the results presented in article IV. The
author has translated the Lorenz’95 code, used in articles III and IV.

13



14 1. List of the original articles and the author’s contribution

The overview of the thesis is organized as follows. Chapter 2 introduces the research field, the ob-
jectives and the scientific contribution of the thesis. The inversion method of the OSIRIS instrument
and the retrieval results are introduced in Chapter 3, which summarizes the publications (I and II).
In Chapter 4, the assimilation methods, namely the variational Kalman filter, variational Kalman
smoother and LBFGS-KF are introduced (publications III and IV). The conclusions of this work
are presented in Chapter 5.



CHAPTER II

Introduction

Acquiring accurate information on the concentrations of various atmospheric constituents is one
of the key objectives of atmospheric research. Ozone is one of the crucial components in the at-
mosphere, since stratospheric ozone provides a shield against solar ultraviolet (UV) radiation. UV
light is electromagnetic radiation with a wavelength range from 200 nm to 400 nm. UV exposure
causes DNA damage, and therefore, it is an environmental human carcinogen. The toxic effects of
UV light motivates atmospheric scientists to measure the amount of ozone variations and to detect
ozone holes. Furthermore, information about the trend of the total amount of ozone has played an
important role in political decisions that aim to conserve the Earth’s atmosphere.

G. M. B. Dobson (1889 − 1976) is one of the pioneers in a field of ozone research. One Dobson
unit (DU), which is named after him, is defined to be a 0.01 mm thick layer of ozone at standard
temperature and pressure (STP). An average amount of ozone over a certain area at STP would form
a layer with a thickness of approximately 3 mm, which corresponds to 300 DU. Dobson developed
the Dobson spectrophotometer to measure the amount of ozone in the atmosphere from the ground.
The instrument measures the intensity of the solar electromagnetic radiation at four wavelengths,
two of which are contributed by ozone.

The first empirical indications of ozone loss were documented in the 1980’s, when scientists found
a large ozone hole over Antarctica. The drop in stratospheric ozone was locally very dramatic:
roughly a one-third loss compared to the average of the 1960’s. At first, scientists thought that
there was a problem with their instruments and the findings were even omitted as faulty data. It
was measurements from the satellite instrument Solar Backscatter Ultraviolet/Total Ozone Mapping
Spectrometer (SBUV/TOMS) onboard NASA’s Nimbus-7 that confirmed the existence of the ozone
hole [Farman et. al., 1985].

The production and reduction reactions of ozone in the upper atmosphere are mainly caused by UV
radiation, together with several other mechanisms (see [Chapman S., 1930]). The anthropogenic
release of CFC gases is involved in the excessive destruction of stratospheric ozone. The process is
roughly the following. First, UV-radiation hv at wavelength λ < 230 nm disintegrates the chloro-
fluoro-carbons (CFC) molecules and releases chlorine atoms:

CF2Cl2 + hv → CF2Cl + Cl (2.1)
CFCl3 + hv → CFCl2 + Cl. (2.2)

15



16 2. Introduction

The reaction of chlorine atoms with ozone molecules produces chlorine monoxide and oxygen,
which leads furthermore to O3 depletion reactions

Cl + O3 → ClO + O2 (2.3)
ClO + O3 → Cl + 2O2 (2.4)
ClO + O → Cl + O2. (2.5)

At the end, the chlorine atom is free to start the process all over again. This process continues
until chlorine atoms react with methane or nitrogen dioxide, which form inactive molecules. It is
estimated that a single chlorine atom is able to react with 100, 000 ozone molecules. The ozone-
destroying chemical process, from which only the rudiments are described above, requires cold
conditions that lead to heterogeneous reactions on ice particles. It is therefore natural that the first
ozone hole appeared over the Antarctica. The first publication that indicated the kinetics above was
published in [Crutzen, P. J., 1974], roughly 10 years before the empirical confirmation.

During the most recent decades, several remote sensing techniques have been demonstrated to be
suitable for measuring atmospheric ozone. These methods use UV, visible, infrared (IR), submil-
limeter and microwave regions of the electromagnetic spectrum from different sources. This work
concentrates on a limb scatter technique at the UV-visible spectral region of solar light. In addition
to ozone, the UV-visible limb scatter measurements contain information about NO2, NO3, OClO,
BrO and aerosols. Typically, many of these constituents are measured simultaneously by using a
suitable data processing algorithm.

In Finland, the Finnish Meteorological Institute (FMI) has contributed significantly to several projects
that aim to measure particularly stratospheric ozone. The work started in the late 1980’s with the
Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument program and continued
a few years later with the Optical Spectrograph and Infrared Imager System (OSIRIS) instrument
project. GOMOS is onboard the European Space Agency’s (ESA) Envisat satellite, launched in
March 2002. OSIRIS was launched in February 2001 onboard the Odin satellite. In addition, FMI
manages several other satellite programs, such as ESA’s Ozone Measuring Instrument (OMI) pro-
gram.

The global coverage of satellite measurements is naturally far better than any other ozone measure-
ment technique, but still the measurements are sparse in the spatial domain. Measurements are also
repeated relatively rarely over a certain area. The ozone remote sensing task is, in principle, a to-
mography problem. However, the composition of the Earth’s atmosphere changes dynamically, so
assimilation methods are needed in order to combine the information of the measurements and the
atmospheric model.

In recent years, the focus of assimilation algorithm research has turned towards the use of filtering
methods. The traditional Extended Kalman filter (EKF) method provides the estimate of forecast
error covariance and takes into account not only the uncertainty of the measurements, but also the
uncertainty of the evolution model of the system. However, the computational cost of full-blown
EKF increases rapidly as the number of the model parameters increases. Therefore, the EKF method
cannot be applied directly to the assimilation problem of stratospheric ozone.

The aim of this work is to present inversion methods for satellite instruments, as well as methods to
assimilate the measurement results in global dynamic chemistry models of the atmosphere.
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2.1 Remote sensing techniques of the Earth’s atmosphere

There are various important criteria for ozone measurement methods, such as the vertical resolution,
long-term stability and coverage of the measurements. Basically, there are three different classes of
ozone related UV-visible satellite instruments, cathegorized by the measurement geometry:

i. Occultation instruments measure the transmission of the sun/moon/stellar light through the
atmosphere.

ii. Limb-viewing instruments measure transmitted and scattered sunlight through the atmosphere,
Figure (2.1). This geometry occurs also during daytime occultations, since the sun illuminates
the atmosphere.

iii. Nadir viewing instruments measure transmitted and backscattered sunlight from the Earth’s
surface, with a relatively wide viewing angle.

Figure 2.1: The limb scatter measurement geometry. Measured solar light contains single and
multiple scattered effects. The latter part may include contributions from reflection at the Earth’s
surface and/or clouds.

For occultation instruments, the measurement geometry, at least during nighttime, is simple, since
the multiple scattering component illustrated in Figure (2.1) vanishes. The remaining transmission
of the stellar light along the line-of-sight (LOS) can be modelled by Beer’s law as follows:

T (ρ, λ, `) =
Iobs
I0

= exp
{
−

J∑
j=1

αj(λ)

∫
`

ρj(s)ds
}
, (2.6)

where αj(λ) is the so-called cross section at wavelength λ, which is known and typical for each
constituent, and

∫
`
ρj(s)ds is the integrated line density over ray path ` for constituent j. The

contribution of different constituents is summed over J . The reference spectrum I0 is measured
above the atmosphere with the same instrument.
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The inverse problem for occultation instruments is to estimate the densities ρ in (2.6) of the atmo-
sphere locally in space and time, with given measurements at different tangent altitudes.

A simplified approximation for limb scatter measurements is the single scattering scenario

ISS(ρ, λ, `†) = ISun(λ)

∫
`†
T ps(ρ, λ, s)T op(ρ, λ, s)P [λ, r(s), θ(s)]ks[λ, r(s)]ds. (2.7)

Here s is a distance along the LOS of the detector, measured from the detector. The line-of-sight `†

is specified by both the detector position and its viewing direction. T ps(ρ, λ, s) is the transmittance
of the ray path from the Sun to the scattering point r(s) at wavelength λ, and similarly T op(ρ, λ, s)
is the transmittance along the line-of-sight `† from the scattering point to the detector, computed as
in (2.6). The solar irradiance incident on the atmosphere is denoted by ISun(λ). It arrives at the
LOS at angle θ(s). Due to refraction, the scattering angle θ(s) varies slightly along the LOS.

The scattering phase function P (λ, r, θ) is a weighted sum of phase functions for molecular and
particle scattering:

P (λ, r, θ) = Pm(λ, r, θ)
km(λ, r)

ks(λ, r)
+ P a(λ, r, θ)

ka(λ, r)

ks(λ, r)
. (2.8)

Function km(λ, r) is the coefficient for scattering from molecules. It is equal to the product of
the spectral scattering cross section and the local density, km(λ, r) = σm(λ, r)ρm(λ, r). Similarly,
ka(λ, r) is the coefficient for scattering from aerosols. The total scattering coefficient ks(λ, r) at
wavelength λ and point r is ks(λ, r) = km(λ, r) + ka(λ, r). The phase function for molecular
scattering can be taken to be independent of r, and it depends on the scattering angle θ as

Pm(θ) =
3

16π
(1 + cos2 θ), (2.9)

where we have ignored the depolarization of Rayleigh scattering (which makes Pm also independent
on λ). The aerosol scattering phase function can be simulated by the Henyey-Greenstein phase
function

P a(λ, r, θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
. (2.10)

Parameter g is the asymmetry parameter of the phase function. It generally depends on both λ and
r. A representative value for background stratospheric aerosols is g = 0.75.

However, the single scattering model is not very accurate at wavelengths longer than approximately
310 nm. The amount of multiple scattering depends on the wavelength, the reflectivity of the un-
derlaying surface of the Earth, and amount of aerosols along the measurement. A heavy aerosol
load in the stratosphere, or a strongly reflecting lower surface, can increase the multiple scatter-
ing effect significantly. The amount of multiple scattering also depends on the solar angels of the
measurement. Especially the relative amount of multiple scattering decreases as the solar zenith
angle increases. In the OSIRIS measurement geometry, multiple scattering constitutes 10−40% of
the total intensity at visible wavelengths [Oikarinen et al., 1999]. Figure 2.2 shows the UV-visible
spectrum of limb radiance at tangent altitudes 10, 15, 20, and 30 km. The spectra were simulated
by the Monte Carlo model Siro [Oikarinen et al., 1999] using the U.S. Standard Atmosphere 1976
neutral density profile, the U.S. Standard ozone concentration profile, the MODTRAN background
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stratospheric aerosol model [Berk et al., 1989], and the surface albedo of A = 0.3. The solar zenith
angle at the LOS tangent point was 80 deg and the azimuth angle was 90 deg.

A key issue for constituent retrieval from limb scattering measurements is the demonstration of the
ability to retrieve with acceptable accuracy the vertical profile of ozone and possibly other gases.
The main obstacle is to understand how to handle the multiple scattering component of the signal
[Oikarinen et al., 1999].

The simulation of limb scatter measurements is complicated, since it requires solving the radiative
transfer equation with multiple scattering in a spherical atmosphere. Some radiative transfer mod-
els (RTMs) that can be applied to limb-viewing have been developed. The model introduced by
Herman et. al. [1994] uses a Gauss-Seidel iteration scheme to solve the RTM in a spherical atmo-
sphere. A pseudo-spherical model for limb-viewing geometry (LIMBTRAN) has been developed
by Griffioen and Oikarinen [2000], which makes use of a plane-parallel finite-difference or matrix
operator doubling and adding model. A spherical RTM called "Combining Differential-Integral ap-
proach involving the Picard Iterative approximation" (CDIPI) has been introduced by Rozanov et.
al. [2000]. In addition, Monte Carlo radiative transfer models have been used to simulate limb
radiance [Collins et. al., 1972; Marchuk et. al., 1980; Oikarinen et al., 1999].

Although the models listed above have been developed with computational efficiency especially
in mind, solving the RTM at each wavelength and tangent altitude at each iteration step of data
inversion is very time consuming.
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Figure 2.2: Measured limb radiance spectrums of the OSIRIS instrument at tangent altitudes
10, 15, 20 and 30 km. The contribution of the ozone is visible at the UV-region and at the
Chappuis-band. Note that OSIRIS does not record the spectra between 470 and 530 nm, and the
wavelengths beyond 680 nm are not used in the data inversion process.

The advantage of nadir viewing instruments is a good global coverage, but vertical profiles of the
constituents are difficult to retrieve. Occultation measurements, on the other hand, provide a good
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vertical resolution, but the global coverage is uneven. Continuous limb scanning measurements
combine both good global coverage and good vertical resolution.

The first spaceborne UV-visible limb scatter measurements were made by instruments onboard the
Solar Mesospheric Explorer (SME) [Rusch et al., 1984]. The retrieval of stratospheric ozone pro-
files with this technique has been demonstrated by the Shuttle Ozone Limb Sounding Experiment
(SOLSE) and the Limb Ozone Retrieval Experiment (LORE) instruments on the Space Shuttle flight
STS-87 in 1997 [McPeters et al., 2000; Flittner et al., 2000].

Figure 2.3: OSIRIS, GOMOS and OMI instruments. Courtesy of Seppo Hassinen, Finnish
Meteorological Institute, Swedish Space Corporation, ESA and NASA.

At present, there are several limb-scanning satellite instruments using the UV-visible region of the
spectrum, e.g. the Optical Spectrograph and Infrared Imager System (OSIRIS) [Llewellyn et al.,
1997] launched on the Odin satellite in February 2001 and the Scanning Imaging Absorption Spec-
troMeter for Atmospheric CartograpHY (SCIAMACHY) [Bovensmann et. al., 1999] launched on
Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars
(GOMOS) instrument [Bertaux et. al., 1991], which measures also limb-scattered sunlight under
bright limb occultation conditions. These conditions occur during daytime occultation measure-
ments.
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The Finnish Meteorological Institute (FMI) has been involved in the GOMOS project from the
very begining. The work started at FMI with forward model simulations already during the year
1988 and continued with the GOMOS instrument proposal one year later (1989). Furthermore, FMI
has contributed significantly to the development of the inverse methods for GOMOS and OSIRIS
instruments. The work with the OSIRIS instrument started in the mid 90’s. The present thesis
research is a part of this program; in collaboration with FMI, the author has developed the concept
of the Modified Onion Peeling (MOP) method, as will be described more in detail in Chapter 3.

The orbit of Odin is sun-synchronous, with the ascending node at 18.00, with an altitude of about
600 km and a period of 96 min. During 24 h there are about 15 orbits. OSIRIS scans the limb
either in a continuous or in a stepwise manner with tangent altitudes of the measurements 7−60 km
(alternatively 7−120 km). For Odin’s aeronomic mode the instrument nominally scans in the orbit
plane, but it is possible to scan off-track by up to ±32 deg. Each scan takes about 70−150 s, giving
about 40−60 scans per orbit. The restituted pointing accuracy in the aeronomy mode is 1.2 arc-
minutes, which is equivalent to 1 km uncertainty in the vertical at the tangent point. As OSIRIS
scans the limb, the tangent point moves 0.75 km/s in the vertical direction. During measurements in
the orbit plane the tangent point moves horizontally 1.7 km/s towards or away from the spacecraft
depending on the scanning direction (upward or downward scan). The satellite itself moves at
7.6 km/s relative to Earth’s surface. This leads to a net movement of 400−1300 km during one scan.

The OSIRIS instrument has a UV-visible spectrograph, covering the wavelength ranges of 280−
470 and 530−800 nm, and 3 fixed 30 nm wide IR channels centered to 1260 nm, 1270 nm, and
1560 nm. The spectrograph has a charge-coupled device (CCD) matrix detector. The slit of the
OSIRIS spectrograph is oriented along the Earth limb. The instrument has a telescope of aperture
10 cm2. Spectral resolution of OSIRIS is 1 nm in the UV-visible. The spectrograph field of view
(FOV) is 0.02 deg × 0.75 deg leading to a vertical coverage of 1 km and a horizontal coverage of
40 km across the line-of-sight. The detector integration time can be varied, typically values between
0.1 s and 5 s are used.

The orbit of Envisat, the platform of SCIAMACHY and GOMOS, is also a Sun synchronous polar
orbit but with an ascending node at 10.00. The orbital altitude is around 800 km and the orbit period
is 101 min. During 24 h there are about 15 orbits.

The GOMOS instrument has a UV-visible range spanning 250−675 nm and there are also two
infrared channels at 756−773 nm and at 926−952 nm. All channels have CCD detectors. The slit of
GOMOS is oriented perpendicular to the Earth limb. Spectral resolution of the instrument is 1.2 nm
in the UV-visible and 0.2 nm in the IR. GOMOS looks at setting stars during night and day. During
day time measurements the CCDs record not only the star signal but also solar light scattered at the
limb of the atmosphere just below and above the star. The spectral resolution of the limb scatter
signal is ∼ 5 nm, which is worse than the resolution of the stellar spectrum due to relatively large
slit of the GOMOS spectrometer. The vertical coverage of one exposure is about 2 km and the
horizontal coverage is 35 km. The stars can be occulted in the azimuth limits −10 deg to 90 deg
with respect to the anti-velocity vector. The occultations in the orbit plane cover the altitude region
15−120 km and the vertical slice during the integration time of 0.5 s is 1.7 km. Occultations off the
orbital plane take more time and the vertical resolution is better. The tangent point movement in the
orbital plane occultations is ∼ 10 km in latitudinal direction and ∼ 30 km in longitudinal direction.
In the side occultations lasting 175 s it is ∼ 1300 km and ∼ 800 km, respectively.

In the limb mode SCIAMACHY will scan the atmosphere from the ground to about 100 km in
the direction of the velocity vector of the satellite. SCIAMACHY has 8 one-dimensional Reticon
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array detectors. These cover the spectral region 240−2380 nm (a few gaps included) at a spectral
resolution varying from 0.22 nm to 1.48 nm. The detecctor integration time is 1 s. The vertical
resolution of SCIAMACHY is 3 km and the horizontal resolution is 100 km.

The OMI instrument onboard the EOS-Aura satellite measures the backscattered solar radiation
from the Earth’s surface through the atmosphere in nadir geometry. The instrument contains an
imaging spectrograph with a wavelength range of 270−500 nm. The spectral resolution of the
instrument is about 0.5 nm. The viewing angle of the telescope is 144 deg, which corresponds to
a 2600 km wide sweep of the Earth’s surface. This geometry enables measurements with a daily
global coverage. The depolarization of the instrument is taken care using a scrambler. Afterwards,
the signal is split into two channels. The UV-channel covers 270−380 nm and the VIS channel
covers with overlap 350−500 nm.

2.2 Scientific contribution of the thesis

This thesis concentrates on two primary objectives: to develop inversion methods for limb scatter
measurements and assimilation methods for large scale problems. The motivation of this work was
originally to develop an inversion method for the data processing of the Optical Spectrograph and
Infrared Imager System (OSIRIS) satellite instrument. The inversion method developed can also be
applied to GOMOS (Global Ozone Monitoring by Occultation of Stars) bright limb measurements.
The final aim is to assimilate the measurements with atmospheric models in order to estimate global
distributions of the constituent concentrations. Since the atmospheric models are extremely high
dimensional, the traditional assimilation methods, such as the Kalman filter, cannot be directly ap-
plied. This motivates to develop assimilation methods, which are suitable for large scale problems.

The thesis consist of four original publications (I-IV). Papers I and II concentrate on the inversion
method of the OSIRIS instrument while papers III and IV describe assimilation methods for large
scale problems. The more detailed scientific contributions of the individual papers are as follows.
Publ. I introduces the Modified Onion Peeling (MOP) inversion method for the OSIRIS data pro-
cessing. The paper includes a description of the forward model of the inversion method, which
uses a priori information of the neutral density of the atmosphere. The results of the paper have
been created with simulated data, since the work was done prior to the launch of the satellite. Publ.
II describes necessary updates of the method after the launch of the satellite. The presented in-
version and validation results are produced using real measurements of the OSIRIS and GOMOS
instruments. Publ. IV introduces optimization based assimilation methods, which approximate the
standard Kalman filter (KF) and the Extended Kalman filter (EKF) by replacing matrix inversions
with a limited memory Broyden-Flether-Goldfarb-Shanno (LBFGS) optimizations. This reduces
the computational cost significantly compared to the Kalman filter. The effectiveness of the method
is demonstrated in linear and non-linear test cases. Publ. III introduces the variational Kalman filter
(VKF) method, which also approximates KF and EKF. The derivation of the method is based on the
Bayesian approach, and the traditional computation of the Kalman gain and the matrix inversions
are avoided. The state estimate produced by the filter is computed iteratively using the limited mem-
ory BFGS optimization method. The effectiveness of the VKF method is tested again with linear
and non-linear test cases. The convergence of BFGS/LBFGS methods is demonstrated and tested
numerically.



CHAPTER III

An inversion method for the OSIRIS satellite instrument

Instruments measuring transmitted and/or scattered sunlight in the UV-visible wavelength range
have the advantage that molecules responding at this region are insensitive to the atmospheric
temperature and pressure. Furthermore, the need of absolute knowledge of the external source
of light can be avoided by using the relative measurement principle. The absolute knowledge can be
archived by directly measuring, for example, the solar irradiance spectrum, but it is difficult to make
these measurements with the required stability, [e.g. World Meterological Organization, 1988]. The
relative measurement principle is a very natural approach for occultation measurements. Solar oc-
cultation measurements have good signal-to-noise ratios, but their global coverage is poor and the
termination geometry is an additional source of uncertainty for diurnally varying species.

The UV-visible wavelength band of the OSIRIS instrument carries information of several atmo-
spheric constituents, including ozone (O3), nitrogen dioxide (NO2), nitrogen trioxide (NO3), chlo-
rine dioxide (OClO) and bromine monoxide (BrO). These constituents leave their absorption fin-
gerprints in the solar spectrum, which are scattered by the neutral molecules of the atmosphere.
Stratospheric aerosols also contribute to the shape of the observed spectrum.

As the measurement principle of the remote sensing instruments is indirect, data inversion methods
are needed to extract the information from the physical measurements. Several inversion methods
have been developed to invert the density of the quantities from the OSIRIS measurements. One
of those is the Triplet method, developed by Flittner et. al. [2000] and McPeters et. al. [2000].
The method is adapted to the OSIRIS limb scatter measurements in [Von Savigny et al., 2003]. The
Triplet method uses wavelength triplets in the Chappuis absorption band near 600 nm to retrieve
stratospheric ozone. According to Petelina et. al. [2004], the validated altitude range for the
OSIRIS triplet ozone is 15−32 km.

The DOAS (Differential Optical Absorption Spectroscopy) method is a widely used approach to
retrieve several different atmospherical constituents. The basic DOAS approach was proposed by
Platt [1994] and the method was applied to simulated limb scatter measurements by McDade et.
al. [2002] and Strong et. al. [2002]. According to Haley et. al. [2003], the DOAS technique was
applied to retrieve ozone from OSIRIS data and found good agreement with the Triplet method.

The DOAS method has also been used to retrieve stratospheric NO2 from the OSIRIS data. Ha-
ley et. al. [2004] and Sioris et. al. [2003] used slightly different DOAS variants and obtained
quite consistent results. They also performed preliminary validation against sonde and POAM III
measurements, proving that the method is feasible.

23



24 3. An inversion method for the OSIRIS satellite instrument

3.1 Modified Onion Peeling inversion method

The general idea of the so-called onion peeling inversion methods is to divide the atmosphere into
separate layers. Within each layer, the densities of the different constituents are assumed to be con-
stant. In a standard onion peeling approach applied, for example, to occultation data, one assumes
that a measurement depends only on constituent densities in and above the layer which contains the
tangent altitude of the measurement. The previous assumption is quite natural for nighttime occul-
tations, since the measurement contains mainly the transmission through the atmosphere, and the
multiple scattering component of the signal can be neglected. At first, the densities in the uppermost
layer are inverted using the data from the uppermost measurement. Then the densities are inverted
layer by layer from the top of the atmosphere downwards using the already inverted densities for
the layers above. In this way, we can construct the vertical profiles of trace constituents of the
atmosphere.

In the scattered sunlight case, where the measured signal includes contributions from the lower
atmosphere, we cannot, in principle, use the onion peeling method. However, it is possible to use
the onion peeling approach in an iterative manner. In every iteration of the peeling process, we
obtain a new better approximation for the lower atmosphere. Usually 2−3 iterations of the peeling
is enough to receive accurate results.

The theoretical basis of the Modified Onion Peeling (MOP) inversion method, introduced in Publ.
I, is a Bayesian approach. Using a flat a priori distribution and assuming Gaussian measurement
noise, the solution reduces to a simple weighted least-squares fit to the data, see e.g. Rodgers [2000].
Non-linear problems, such as the one related to OSIRIS, require an iterative fitting procedure.

It is advantageous not to use directly measured radiances but the ratio

Robs(λ, j) =
Iobs(λ, j)

Iref
obs(λ)

, (3.1)

where Iobs(λ, j) are measured radiances at tangent heights j and Iref
obs(λ) is a reference measurement

from the same scan at a high tangent altitude. The radiance is a function of the wavelength λ. We
have chosen to use the first measurement below 50 km as the reference. It would be possible to try
other tangent heights, as well, but the values around 50 km seem to yield the best results in prac-
tice. It is already high enough to exclude spectral fingerprints from minor trace gases (such as NO2,
OClO, and BrO), making the reference spectrum easier to model. Furthermore, straylight contami-
nation in OSIRIS increases as a function of tangent height, making high altitude measurements less
unreliable to use [Llewellyn et al., 2004].

The use of the so-called transfer spectrum (3.1) is useful because it diminishes systematic errors due
to surface albedo, clouds, and polarization [Flittner et al., 2000; Oikarinen, 2001]. It also reduces
errors due to imperfect instrument calibration.

The modelled transfer spectrum is defined as

Rmod(λ, j,ρ) =
Imod(λ, j,ρ)

Iref
mod(λ,ρref)

, (3.2)

where Imod(λ, j,ρ) are modeled radiances and Iref
mod(λ,ρref) is a model reference spectrum. The gas

density profiles ρ are adjusted iteratively, and after every iteration a new and better agreement is
obtained between (3.1) and (3.2).
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A typical background atmosphere is assumed when we calculate the model reference spectrum.
Obviously, even the best estimate differs from the true state of the atmosphere and typically produces
a systematic bias to the retrieved profiles. This effect is studied in more detail in [I - II].

3.2 Multiple scattering correction of the forward model

Taking account of the multiple scattering effects is a crucial part of limb scatter retrieval methods. In
the limb scatter geometry, multiple scattering can constitute 10−50% of the observed radiance at vis-
ible wavelengths [Oikarinen et al., 1999]. Its proportion of the total radiance is strongly dependent
on the wavelength, as the ratio of multiple to total scattering increases steeply at wavelengths greater
than 310 nm [Oikarinen et al., 1999]. In addition, the multiple scattering contribution depends on
the tangent height, surface albedo, solar angles, and composition of the atmosphere itself. For these
reasons, a mere single scattering radiative transfer model is not generally satisfactory to describe
scattering and absorption effects in limb scatter problems. However, taking the multiple scattering
effects into account complicates limb scatter problems significantly and certainly increases com-
putational costs, which leads to some kind of compromise between the modeling accuracy and the
available computation time.

During the fitting procedure in each layer, we have to use a few (usually 3−10) iterations, and as
many forward model calls, before a suitable optimization algorithm finds good enough agreement
between the model and the measurement. A full 3-D radiative transfer model operating in a multiple
scattering mode would be too slow to use, and hence, we must seek faster solutions. One way
would be to reduce the total number of wavelengths used (from around 300 to only a few) in the
first peeling loop. This solution would not exploit the whole bandwidth of the OSIRIS instrument,
and the altitude range of the ozone retrieval would shrink.

A practical approach, included in the original publication [I], is to use a single scattering forward
model during the fitting iterations and include multiple scattering effects using precalculated look-
up tables. The single scattering forward model built into the MOP inversion module solves the
radiative transfer by numerical integration and is computationally efficient to run.

The look-up tables used in the MOP inversion contain modeled (single and multiple scattered)
radiances calculated as a function of tangent height, solar angles, season, albedo, and latitude. The
look-up tables are produced using the LIMBTRAN [Griffioen and Oikarinen, 2000] forward model.

In order to take advantage of the precalculated look-up tables, we divide the modeled transfer spectra
(3.2) into two parts:

Rmod(λ, j,ρ) =
Imod(λ, j,ρ)

Iref
mod(λ, j,ρref)

=
Iss
mod(λ, j,ρ)

Iref
mod(λ,ρref)

M(λ, j), (3.3)

where Iss
mod(λ, j,ρ) is the dynamic single scattering term (2.7) which is adjusted iteratively during

the fitting procedure. The model reference radiance Iref
mod(λ,ρref) in the denominator of (3.3) is also

calculated with LIMBTRAN (including multiple scattering). The second term on the right side,
M(λ, j), is the static part which comes from the look-up tables and is kept fixed during the iterations.
This correction term is defined as the modeled multiple scattering radiance (total radiance) divided
by the corresponding single scattering radiance:

M(λ, j) =
Ims(λ, j,ρprior)

Iss(λ, j,ρprior)
, (3.4)
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where ρprior are the constituent densities of the standard atmosphere used in the LIMBTRAN radi-
ance simulations.

3.3 Spectral fitting between the measurements and the forward model

At every layer, assuming that the measured transfer spectra (3.1) are independent, the sum of squared
residuals is defined as

χ2
j(ρ) = (Rmod(λ, j,ρ)−Robs(λ, j))

TC−1(Rmod(λ, j,ρ)−Robs(λ, j)), (3.5)

where C is a covariance matrix, which includes contributions from the measurement and modeling
errors. The errors at different wavelengths are assumed to be uncorrelated, which leads to a diagonal
covariance matrix. The modeling error describes our inability to model limb scatter observations
perfectly, mainly due to multiple scattering in the atmosphere. The modeling error is estimated as a
function of wavelength and altitude using the Monte Carlo radiative transfer model Siro [Oikarinen
et al., 1999].

The fitting problem (3.5) is solved using an initial guess for the densities and the Levenberg-
Marquardt algorithm [Levenberg, 1944; Marquardt, 1963; Gill et al., 1981] to find the best fit. The
Levenberg-Marquardt algorithm is commonly used in non-linear curve fitting problems. It finds
the minimum of (3.5) by combining techniques of gradient descent and the inverse-Hessian opti-
mization. The algorithm also provides error estimates for the fitted parameter values. A posteriori
distributions of the MOP method and the correlation between individual constituents has been stud-
ied with the Monte Carlo Markov chain (MCMC) method by Auvinen et. al. [1999]. The MCMC
studies provide useful information for algorithm development research, but the computational cost
is much larger compared to the operational inversion algorithm.

The residuals of the fit increase at lower altitudes, but generally, a good consistency can be found
between the model and the measurement; see [II]. Completely flawless agreement is very difficult
to achieve because the wavelength band used is relatively wide (over 400 nm) and the radiance is
governed by numerous wavelength-dependent phenomena.

Limb scatter measurements include relatively low noise, but the model is unable to describe obser-
vations perfectly. Because the modelling of the atmosphere is a very complex problem indeed, it is
even evident that the forward model lacks some processes, or that they have been taken into account
in a too simplified way. These factors can be, for example, a missing constituent, incorrect crosssec-
tions (e.g. an uncertain temperature profile), too simplified an aerosol model, or an incorrect albedo
model. Furthermore, insufficient modelling of the diurnal effects and errors due to geometry sim-
plifications may contribute to the inversion results. The (current) forward model presents our best
understanding of the physics behind the observations. The clear structures in the residuals indicate
that there is still work to do in order to improve the model in the future.
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3.4 Improved NO2 retrieval of the original MOP method

The original idea, introduced in Publ. [I], was to use the whole spectral range of OSIRIS and
retrieve all of the desired trace gas densities simultaneously. However, this approach seemed to
work only with simulated data. When inverting real OSIRIS data, the NO2 retrievals were usually
of poor quality although the inverted ozone profiles were proper. The original inversion method
often produced a bias of several hundred percent to the NO2 profiles below 30 km compared with
the results from the other OSIRIS retrieval algorithms or NO2 measurements by other instruments
[Tukiainen, 2006].

Using the whole spectrum for the fit has both advantages and disadvantages. When a large wave-
length band is used, the information content can naturally be maximized, but on the other hand the
modelling issues become more critical. Since ozone is a strong absorber, minor modeling uncer-
tainties are not as crucial for ozone retrieval as they are for minor absorbers such as NO2. As there
are uncertainties in the OSIRIS modeling, we noticed that the NO2 retrieval benefits from using a
shorter wavelength band where the signal to noise ratio is more optimal for the NO2 retrieval. Also
the band should be short enough that the wavelength dependent modeling errors are not dominating
the retrieval.

In the present version of MOP, described in Publ. [II], the retrieval of major absorbers and scatterers
(ozone, air, aerosols) is separated from the retrieval of minor ones (NO2, and others). For NO2, the
wavelength band of 430−450 nm is selected due to a strong NO2 absorption fingerprint in this
region. Furthermore, ozone as well as other species absorb weakly in this band, and the region is
also free of strong Fraunhofer lines. In theory, the Fraunhofer lines should be canceled out when
we apply Eq. (3.1), but a small residual may still remain. This is the tilt effect recognized by Sioris
et. al. [2003]. It basically arises from the different spectral slopes of the radiances at different
tangent heights and from the finite spectral resolution of the instrument. Thus it is safest to avoid
strong Fraunhofer lines where the effect is largest. In this wavelength band, all of the 50 available
wavelengths were used in the spectral fitting.

Because of the distinct fitting windows for the strong and weak absorbers, we have to run two
separate peeling loops. During the first peeling loop, we retrieve only ozone, aerosol, and neutral
air. The NO2 profile is summoned from a climatology (U.S. Standard Atmosphere, 1976). During
the second loop, we retrieve NO2. The ozone profile, retrieved from the first peeling loop, is now
fixed, but aerosols and neutral air are again allowed to vary freely to obtain a good NO2 fit.

This kind of iterative solving of the parameters is justified, because the use of the fixed NO2 profile
in the first peeling loop has little effect on the outcomes. Nevertheless, it is not totally insignificant.
The use of the NO2 climatology in the first peeling loop seems to result in roughly a 2% bias
at the ozone peak. It is possible to remove this bias by adding a third peeling loop and retrieve
ozone, neutral air, and aerosols again with the retrieved NO2 profile, but this would double the
required computing time. The third peeling loop is possible to implement later in the future, if more
computing resources are provided to the operative OSIRIS processing.
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3.5 Inversion results of the stratospheric ozone

The comparison between GOMOS instrument nighttime and OSIRIS daytime ozone profiles indi-
cates a very good agreement, as reported in Publ. [II]. This demostrates that both measurement
techniques and inversion approaches are valid and strengthen each other, since the instruments to-
gether provide daytime and nighttime measurements. Figure 3.1 illustrates comparison results of the
measurements during the year 2003 over the northern hemisphere between the latitudes 30− 60 N.
The coincidence criterion for the individual matches in time was less than 24 h, in the latitude
direction less than 1◦, and in the longitude direction less than 2◦.
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Figure 3.1: Comparison of retrieved ozone profiles of the GOMOS and OSIRIS measure-
ments. The blue and red curves on the left panel present the medians of 72 coincidences. The
blue solid curve on the right panel is the median of the individual relative differences defined
as 100%(OSIRIS-GOMOS)/GOMOS. The blue dashed lines in right panel around the median
present the semi-interquartile deviation (SID), where the area between the±1 SID lines includes
50% of the data points. Courtesy of Simo Tukiainen, the principal author of the article II, FMI.

Figure 3.2 contains two individual samples of retrieved ozone concentrations as a function of the lat-
itude and altitude from different locations and times. The upper panel illustrates an inverted ozone
distribution along the flight path of OSIRIS on the 26th of October, 2001. This sample of results
contains 20 scans. The measurements are analyzed with the original version of the MOP method,
introduced in [I]. The ozone hole is located over the Antarctica between lat −47 and lat −82. The
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values below 15 km are less reliable, since the uncertainty of the model increases rapidly after this
limit. This is also indicated by the error estimates of the MOP method. The lower panel shows typi-
cal variation of the ozone layer altitude as a function of latitude. This set of measurements contains
24 scans. The measurements are made on the 29th of January, 2009, under normal conditions of
stratospheric ozone. At mid latitudes, the peak values of the ozone layer are around 25 km; when
moving towards the south, the altitude of the peak decreases. The measurements are processed with
the updated version of the MOP method [II]. The OSIRIS instrument onboard the Odin satellite
continues measuring the atmosphere after eight successful years.

Figure 3.2: The upper panel illustrates inverted ozone distribution using OSIRIS measurements
on the 26th of October, 2001, over the Antarctica. The ozone hole is located between lat −47
and lat −82. The lower panel shows typical variation of the ozone layer altitude as a function of
latitude. The measurements are made on the 29th of January, 2009, under normal conditions of
stratospheric ozone.
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CHAPTER IV

New assimilation methods: VKF, VKS and LBFGS-KF

In the field of state space estimation and data assimilation, the Kalman filter (KF) and the extended
Kalman filter (EKF) are among the most reliable methods used. However, KF and EKF require the
storage of, and operations with, matrices of the size n × n, where n is the dimension of the state
space. Furthermore, both methods include inversion operations for m × m matrices, where m is
the dimension of the observation space. Due to this fact, there are several interesting application
areas, such as ozone satellite data assimilation, where the standard formulation of KF or EKF is
impractical to implement.

Various versions of KF and EKF have been proposed to reduce their computational complexity for
large-dimensional problems. The Reduced Rank Kalman filter or Reduced Order extended Kalman
filter [see e.g. Dee D.P., 1990, Cane et. al., 1996, Voutilainen et. al., 2007, Fisher M., 1998,
Gejadze et. al., 2008, Tian et. al., 2008, Veersé et al., 2000] project the dynamical state vector of
the model onto a low dimensional subspace. The success of the approach depends on a judicious
choice of the reduction operator. Moreover, since the reduction operator is typically fixed in time,
the dynamics of the system may not be correctly captured; for more details, see [Michael Fisher
and Erik Andersson, 2001].

There exist various Ensemble Kalman filter (EnKF) algorithms—first proposed by Evensen [1994]—
that are widely used in the field of data assimilation. The idea behind these methods is to form an
ensemble of state vectors that represent the state estimate covariance. Each of the members of the
ensemble is then propagated forward in time by the full nonlinear evolution model in order to ap-
proximate component-wise covariances of the prediction error. EnKF can be used in large-scale
data assimilation problems because it is highly parallelizable.

In Publ. IV, we have shown how high dimensional KF and EKF may be carried out approximatively
using the limited memory Broyden-Flether-Goldfarb-Shanno (LBFGS) optimization algorithm. The
resulting methods are effective and exhibit low storage and computational cost characteristics. In
Publ. III, we introduced an alternative approximation, the variational Kalman filter (VKF), for KF
and EKF. Furthermore in Publ. III, we introduced a variational Kalman smoother (VKS) method
to approximate the fixed-lag Kalman smoother (FLKS) method. In the variational approach, we
solve an equivalent maximum a posteriori optimization problem using LBFGS, which replaces
the explicit computation and use of the Kalman gain matrix in order to obtain state estimates and
covariance approximations.

31
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The idea of using the LBFGS method in variational data assimilation is not new, see e.g. [Yang
et. al, 1996, Michael Fisher and Philippe Courtier, 1995, Veersé, F., 1999a, Veersé, F., 1999b,
Veersé et al., 2000, Gejadze et. al., 2008, Tian et. al., 2008]. In many of these references, the
LBFGS Hessian or inverse Hessian is used as a preconditioner, and even as an approximate error
covariance matrix for the background term in variational data assimilation. However, in the VKF
method presented here, the LBFGS method is further used in order to propagate effectively the state
estimate covariance information forward in time.

4.1 The Kalman filter

Consider the following coupled system of discrete, linear, stochastic difference equations

xk = Mkxk−1 + εpk, (4.1)
yk = Kkxk + εok. (4.2)

In the first equation, xk denotes the n × 1 state vector of the system at time k; Mk is the n × n
linear evolution operator; and εpk is an n× 1 random vector representing the prediction error and is
assumed to characterize errors in the model and in the corresponding numerical approximations. In
the second equation, yk denotes the m× 1 observed data vector; Kk is the m×n linear observation
operator; and εok is an m× 1 random vector representing the observation error. The error terms are
assumed to be independent and normally distributed with a zero mean and with covariance matrices
Cεp

k
and Cεo

k
, respectively.

The task is to estimate xk and its error covariance Ck at time point k given yk, Kk, εok, Mk, εpk and
estimates xestk−1 and Cest

k−1 of the state and covariance at time point k − 1. The Kalman filter is the
standard approach for such problems. It has the form

The Kalman filter algorithm

Step 0: Select initial guess xest0 and covariance Cest
0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
(i) Compute xpk = Mkx

est
k−1;

(ii) Compute Cp
k = MkC

est
k−1M

T
k + Cεp

k
.

Step 2: Compute Kalman filter estimate and covariance:
(i) Compute the Kalman Gain Gk = Cp

kK
T
k (KkC

p
kK

T
k + Cεo

k
)−1;

(ii) Compute the Kalman filter estimate xestk = xpk + Gk(yk −Kkx
p
k);

(iii) Compute the estimate covariance Cest
k = Cp

k −GkKkC
p
k.

Step 3: Update k := k + 1 and return to Step 1.

A nonlinear extension of KF, known as the extended Kalman filter (EKF), is obtained when (4.1),
(4.2) are replaced by

xk = M(xk−1) + εpk, (4.3)
yk = K(xk) + εok, (4.4)

whereM and K are possibly nonlinear functions. EKF is obtained by the following modification
of the KF algorithm: in Step 1, (i) use the nonlinear model xpk =M(xestk ) to compute the prior, but
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employ the linearized approximations,

Mk =
∂M(xestk−1)

∂x
and Kk =

∂K(xpk)

∂x
, (4.5)

for the covariance calculations, and otherwise employ the same formulae as above.

We note that Mk and Kk can be computed or estimated in a number of ways. For example, the
numerical scheme that is used in the solution of either the evolution or the observation model de-
fines a tangent linear code (see, e.g., [F.-X. LeDimet and O. Talagrand, 1986]), which can be used
to compute (4.5). A common, but also more computationally expensive approach is to use finite
differences to approximate (4.5).

The Kalman filter is expensive to implement due to the fact that it is necessary to store n×nmatrices
and invert m × m matrices at each step. Our task is to overcome these limitations. We make the
assumptions that multiplications by the evolution and observation matrices Mk and Kk and by the
covariance matrices Cεp

k
and Cεo

k
are efficient, both in terms of storage and CPU time. Additional

computational challenges arise for a sufficiently large n due to the storage requirements for Cest
k ,

which becomes a full matrix as the filter proceeds in time. The same is also true for Cp
k. However,

given that

Cp
k = MkC

est
k MT

k + Cεp
k
, (4.6)

storage issues are restricted to those for Cest
k ; typically the matrix Cεp

k
is assumed to be diagonal.

4.2 The limited memory BFGS Kalman filter (LBFGS-KF) method

It is well known that the BFGS algorithm provides an approximation for both the Hessian and the
inverse Hessian of a cost function. We use this fact to approximate matrix operations needed in
KF/EKF.

A quadratic optimization problem can be formulated as:

arg min
u

1

2
〈Au,u〉 − 〈b,u〉, (4.7)

where the given variables are matrix A and vector b.

First we apply limited memory Broyden-Flether-Goldfarb-Shanno (LBFGS) to make the Kalman
filter more efficient and describe LBFGS-KF method. The idea is to follow Kalman formulas, but
replace the matrix inversion operations with artificial optimization problems.

A low storage approximation of Cest
k can be obtained by applying the LBFGS algorithm to the

problem of minimizing (4.7) with A = Cest
k and b = 0. The LBFGS matrix B−1

ν is then a low
storage approximation of (Cest

k )−1 and formulas for Cest
k from [Byrd et. al., 1994] can be used.

Additionally, when m is sufficiently large, the computation of (KkC
p
kK

T
k + Cεo

k
)−1(yk − Kkx

p
k)

that is required in Step 2, (ii) of the Kalman filter iteration will be prohibitively expensive. For the
approximation of (KkC

p
kK

T
k+Cεo

k
)−1(yk−Kkx

p
k), we set A = KkC

p
kK

T
k+Cεo

k
and b = yk−Kkx

p
k

in (4.7) and apply the LBFGS algorithm to the problem of minimizing (4.7).
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The LBFGS Kalman filter method can now be presented as the following algorithm:

The LBFGS Kalman filter (LBFGS-KF)

Step 0: Select initial guess xest0 and covariance B# = Cest
0 , and set k = 0.

Step 1: Compute the evolution model estimate and covariance:
(i) Compute xpk = Mkx

est
k ;

(ii) Define Cp
k = MkB#MT

k + Cεp
k
.

Step 2: Compute the Kalman filter estimate and covariance:
(i) Define A = (KkC

p
kK

T
k +Cεo

k
) and b = yk−Kkx

p
k in (4.7) and compute

the LBFGS approximations B∗ of A−1 and u∗ of A−1b.
(ii) Compute the LBFGS-KF estimate xestk+1 = xpk + Cp

kK
T
ku∗;

(iii) Define A = Cp
k−Cp

kK
T
kB∗KkC

p
k(≈ Cest

k+1) and b = 0 in (4.7) and compute
the LBFGS approximation B# of Cest

k+1.
Step 3: Update k := k + 1 and return to Step 1.

All operations with the Cest
k and A−1 are done using the LBFGS formulas. As a result, LBFGS-

KF is much less memory and computationally intensive than KF making its use on large-scale
problems more feasible. Specifically, the storage requirements for the LBFGS estimate of Cest

k are
on the order of 2n` + 4n, where ` is the number of stored vectors in LBFGS (typically 10−50),
rather than n2 + 4n [Jorge Nocedal and Stephen Wright, 1999], and the computational cost for both
obtaining and using this estimate is the order n. Furthermore, the inversion of the m × m matrix
KkC

p
kK

T
k+Cεo

k
is carried out in order m operations and its storage requirements are on the order of

2m`+ 4m rather than m2 + 4m [Jorge Nocedal and Stephen Wright, 1999].

In the first example considered in the Publ. IV, LBFGS-KF and KF are compared and it is noted
that LBFGS-KF is roughly 10 times faster, in terms of CPU time, than KF when applied to the same
problem. Moreover, using our MATLAB implementation, LBFGS-KF can be used on significantly
larger-scale problems.

As we have mentioned, in our implementations of KF and LBFGS-KF, the covariance matrices Cεp
k

and Cεo
k

are taken to be diagonal. This is not a necessary requirement. More structured covariances
can be used, containing important a priori information [Lorenc A. C., 2003]. However, in order to
maintain the computational efficiency and low storage requirements of LBFGS-KF, Cεp

k
and Cεo

k

must be comparable to Mk, B# and Kk, B∗, respectively, in terms storage requirements and the
computational cost required for their multiplication.

4.3 The variational Kalman filter method

Bayes’ Theorem can be used to formulate the Kalman filter as a sequential maximum a posteriori
estimation. To see this, we recall Bayes’ formula

px|y(x|y) =
py|x(y|x)px(x)

py(y)
, (4.8)

where x is the vector of unknowns, y the measurements, px denotes the prior density, and py|x is
the density of the likelihood function. The maximum a posteriori (MAP) estimate is obtained by
maximizing (4.8). Equivalently, one can minimize

`(x|y) := − log py|x(y|x)− log px(x). (4.9)



4.3 The variational Kalman filter method 35

For the linear model (4.2) at time k, the function ` assumes the form

`(x|yk) =
1

2
(yk −Kkx)TC−1

εo
k
(yk −Kkx) +

1

2
(x− xpk)

T(Cp
k)
−1(x− xpk), (4.10)

where Cεo
k

and Cp
k are the covariance matrices of the measurement noise εok and of the prior xpk,

respectively. The Kalman filter estimate and its covariance xestk and Cest
k are precisely the minimizer

and inverse Hessian of `(x|yk), respectively.

The advantage of the variational Kalman filter is that it uses the use of an optimization algorithm to
minimize `(x|yk) in (4.10), together with computing the inverse of a priori covariance for the next
time step. For large-scale problems, this can be very advantageous.

In particular, we advocate using the limited memory BFGS algorithm (LBFGS) for the minimiza-
tion problem (4.9). Given specific choices for initial guess, stopping criteria, and number of stored
vectors, LBFGS will yield estimates of both xestk and Cest

k . The storage requirement for the covari-
ance approximation—which we denote by B#

k —is 2rn, where r is the number of stored LBFGS
vectors (typically on the order of 10), and multiplication by Bk is order n. So LBFGS provides the
minimum and the inverse Hessian of `(x|yk) in (4.10).

However, it is (Cp
k)
−1 that is needed in the optimization problem in the next VKF iteration (see

(4.10)). This problem is solved by using the same approximation CP
k = MkC

est
k−1M

T
k + Cεp

k
as in

EKF, but (Cp
k)
−1 is computed directly by LBFGS. For this purpose we apply LBFGS a second time

to an auxiliary optimization problem (4.7), where A = MkB
#
k−1M

T
k +Cεp

k
and b is the zero vector.

This gives an approximation B∗k of (Cp
k)
−1.

The variational Kalman filter algorithm is summarized as follows:

The variational Kalman filter algorithm

Step 0: Select initial guess x#
0 and covariance B#

0 = Cest
0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
(i) Compute xpk = Mkx

#
k−1;

(ii) Define Cp
k = MkB

#
k−1M

T
k + Cεp

k
;

(iii) Compute LBFGS approximation B∗k of (Cp
k)
−1;

Step 2: Compute variational Kalman filter and covariance estimates:
(i) Minimize `(x|yk) = (yk−Kkx)T(Cεo

k
)−1(yk−Kkx)+(x−xpk)

TB∗k(x−xpk)

using LBFGS, and define x#
k and B#

k to be the LBFGS minimizer and
inverse Hessian approximations;

Step 3: Update k := k + 1 and return to Step 1.

Note that in Step 1, (ii) and Step 2, (i) the optimizations are quadratic and therefore only quadratic
LBFGS is needed. For practical applications, a judicious choice of the initial inverse Hessian is
needed in order to obtain accurate results efficiently. In the numerical examples of this work, we
have used B−1

0 = βI with β chosen so that βI approximates the diagonal of the covariance matrix
of interest. For more discussion on the choice of B−1

0 (the preconditioner) see [Jorge Nocedal and
Stephen Wright, 1999, Veersé et al., 2000].
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4.4 The nonlinear variational Kalman filter method

As in the case of EKF, we need a linearization to propagate the covariance information from one
observation time to the next. However, the direct linearization as in EKF is impractical for large
dimensions. Rather, in the case of a non-linear evolution model we should use the adjoint operator,
if available, in Step 1, (ii) of VKF. Furthermore, if the adjoint operator is coded in an implicit form,
i.e. in the software of the model, we get full benefit from a limited memory presentation of Cest

k .
This is the situation in many operational codes for weather forecasting.

Supposing that the linearization Mk of Mk is available, then Step 2, (i) can written in the VKF
algorithm as:

Step 2: Compute the variational Kalman filter estimate and covariance:
(i) Minimize `(x|yk) = (yk−K(x))T(Cεo

k
)−1(yk−K(x)) + (x−xpk)

TB∗k(x−xpk)

using LBFGS, and define x#
k and B#

k to be the LBFGS minimizer and
inverse Hessian approximations;

Especially, if the tangent linear Mtl
k and corresponding adjoint code M∗

k [F.-X. LeDimet and O.
Talagrand, 1986] are available for the evolution modelM, Step 1, (ii) can be written as:

Step 1: Compute the evolution model estimate and covariance:
(ii) Define Cp

k = Mtl
kB

#
k−1M

∗
k + Cεp

k
;

This feature of the method is one of the major advantages compared to EKF, since the time consum-
ing linearization of the evolution model can be avoided. The computational cost of a single tangent
linear and adjoint evaluations are both roughly double the cost of a single nonlinear evolution model
evaluation. Inside VKF the inversion of the above Cp

k matrix requires around 15−60 tangent linear
and adjoint code evaluations. So, for large n, the total cost is a fraction of the traditional finite
difference evaluation that requires n model evaluations.

Similar possibilities exist for use the tangent linear code Ktl
k of the observation model K in Step 2,

(i):

Step 2: Compute the evolution model estimate and covariance:
(i) Minimize `(x|yk) = (yk−Ktl

kx)T(Cεo
k
)−1(yk−Ktl

kx) + (x−xpk)
TB∗k(x−xpk)

using LBFGS, and define x#
k and B#

k to be the LBFGS minimizer and
inverse Hessian approximations;

In EKF the computational advantage of using Ktl
k instead is lost, since the Kalman gain is typically

a full matrix.
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4.5 The variational Kalman smoother method

Next we introduce a variational Kalman smoother (VKS) method, which can be used afterwards
to smooth the results of the variational Kalman filter. The idea is to simulate a fixed-lag Kalman
smoother (FLKS) method and take full benefit from the limited memory covariance approximation
form of the VKF method. In general, such post-processing improves the quality of the VKF results.

The VKF method provides an estimate xestk and a corresponding limited memory approximation of
the covariance matrix Cest

k after each time step k. In VKS, we use these results from the previous
[k0, k0 +1, ..., k] time steps, where the parameter k0 = k− lag determines the length of the time
interval. In case of linear evolution model Mk, we couple the results together by using the following
cost function:

J(xk0) =
k∑

t=k0

(Mtxk0 − xestt )T(Cest
t )−1(Mtxk0 − xestt ), (4.11)

where Mtxk0 is a model trajectory from xk0 . The minimization of the cost function is done by using
the 4d-Var method (see [Derber J., 1989; F.-X. LeDimet and O. Talagrand, 1986]), using LBFGS.

In the nonlinear case, the evolution modelMt is used instead of Mt in the cost function formulation
(4.11). Furthermore, the gradient of (4.11) can be computed efficiently by using the adjoint of the
evolution model, but in principle, the linearization of Mt can be used again as well. Since the
smoothing process improves the accuracy of the estimate at time k0, it is possible to outperform
EKF in retrospective analysis.

During VKF iterations, the inverse Hessian limited memory BFGS formula is used to represent
Cest
k . In the VKS cost function (4.11) we instead need the inverse of Cest

t . In practice this detail is
handled by using the direct Hessian limited memory BFGS formula (see, e.g., [Jorge Nocedal and
Stephen Wright, 1999]). The direct Hessian limited memory BFGS formula provides the (Cest

t )−1

required.

4.6 Monitoring the quality of the BFGS approximation

The quality of approximations produced by Quasi-Newton methods to Hessian matrices, such as the
covariance matrices in our case, has been studied at least since 1970 [Greenstadt J., 1970]. Typically
this is carried out by monitoring the matrix norm of the difference between an approximation and a
known Hessian matrix.

As discussed above, the Kalman filter is basically a statistical procedure, that repeatedly applies the
Bayes rule to create the distribution of the state vector. Therefore it is justified to employ the chi-
square test to monitor the goodness of the LBFGS updates as approximations of the covariances of
known distributions. The chi–square distribution provides a scalar valued test for multinormality: if
x is an n–dimensional Gaussian random vector with zero mean and covariance C, then xTC−1x ∼
χ2
n. The idea is to monitor how well the approximative covariances fulfill this test, when a sample

of vectors x has been generated using a ’true’ covariance matrix.

The true covariance Ctrue is adopted from the EKF process of the Lorenz95 case (for more de-
tails, see [Lorenz E. N., 1996]), with 100 variables. Then we sample sample a set of vectors xi
from N(0,Ctrue), i = 1, ...,m. Next, we compute the approximations C−1

iter of the inverse of the
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covariance using the LBFGS optimization with an increasing number of iterations, and calculate
qtest(i) := xT

i C
−1
iterxi, for every i. These values are compared with the chi-square significance

values at, e.g., the 0.5, 0.75 and 0.95 levels, to see which percentage of the vectors sampled from
the true distribution lie inside those confidence regions of the respective approximative multinormal
distributions. It is known that for a linear-quadratic problem the BFGS algorithm forms an exact
inverse Hessian with full n updates, so the test values are expected to reach the true limits with n
iterations. The test are perfomed with both the limited memory BFGS and full BFGS, but with the
LBFGS method we stop at the convergence limit, when the stopping criterion has been chosen to be
close to machine precision. The full BFGS runs are performed with the LBFGS code, by keeping
all search directions in the memory. During LBFGS runs we keep all other search directions in
memory except the first one.

In the test examples, we use m = 1000 samples and repeat the procedure 10 times to get the mean
values of the results.
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Figure 4.1: Plot of the chi-square test confidence limit estimates of the and BFGS (-) and
LBFGS (- -) as a function of the iteration count.

In the above test we allow the BFGS optimization method to continue iteration beyond the normal
stopping point. If the typical stopping criteria are used, the LBFGS method will terminate after
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about 45 iterations in these cases, with 100 variables. We also perform a true limited memory
chi-square test with LBFGS, where we stop the optimization process at the convergence limit.

The results for the test are given in Figure 4.1. With too few updates, the calculated values are
below the chi-square test values, so the approximate covariance gives a too narrow distribution.
With increasing updates, the test values are first exceeded, then we can see how the correct values
are reached with full updates. The choice of the initial inverse matrix B0 naturally has an impact on
the process. To demonstrate this, we use slightly different B0 values: B0 = 8.5I, with BFGS and
B0 = 8.0I, with LBFGS.
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CHAPTER V

Conclusions

The Modified Onion Peeling (MOP) inversion method for OSIRIS limb scatter measurements is
introduced and validated in Publ. [I-II]. The advantages of the MOP method includes efficient
use of measured data, since the whole spectral range of the instrument is utilized to invert the
vertical profiles of ozone, air and aerosol densities. In fact, the MOP method is the first proposed
inversion method for UV-visible limb scatter measurements that uses a large number of data points
simultaneously. Therefore, the retrievals of these constituents may be estimated up to 70 km in
altitude. Above this limit, the straylight contamination of the OSIRIS measurements causes bias for
the inversion/retrieval results. Without the straylight contamination of the OSIRIS measurements,
it could be possible to invert the constituent densities even at higher altitudes.

However, for NO2 retrieval, it is crucial to use a narrow wavelength band. In principle, this approach
can be easily expanded to retrieve other minor trace gases, such as BrO and OClO, by selecting
another wavelength window and adding an extra peeling iteration. The underlying challenge is
that the concentrations of BrO and OClO are an order of magnitude smaller than that of NO2 and
the absorption fingerprints are more easily masked by noise. In the MOP method, the measured
limb scatter signal, containing the multiple scattering effect, is modeled efficiently using a single
scattering model with a pre-calculated look-up-table database. The forward model used for the
inversion must yield fast solutions. However, in order to perform some case specific studies, it is
also possible to use a more time consuming forward model, such as the Siro.

Validation against other satellite instruments demonstrated the capability of the MOP inversion
method in practice. Good agreement was found between OSIRIS daytime and GOMOS nighttime
ozone profiles [Publ. II]. The median of the relative individual differences is less than 5% between
21 and 45 km. Above 45 km, the diurnal variation of ozone prevented comparisons between instru-
ments.

In order to combine the information from satellite measurements with an atmospheric model, two
new assimilation methods are proposed to approximate the Kalman filter and extended Kalman
filter.

The standard implementations of KF and EKF become exceedingly time and memory consuming
as the dimension of the underlying state space increases. Several variants of KF and EKF have been
proposed to reduce the dimension of the system, thus making implementation in high dimensions
possible. The Reduced Rank Kalman filter or Reduced Order extended Kalman filter project the dy-

41



42 5. Conclusions

namical state vector of the model onto a lower dimensional subspace. The success of this approach
depends on the choice of the reduction operator. Moreover, since the reduction operator is typically
fixed in time, they may exhibit "covariance leaks". This is natural, since a nonlinear system does
not generally leave any fixed linear subspace invariant.

The assimilation methods developed in this thesis use the limited memory Broyden-Flether-Goldfarb-
Shanno (LBFGS) minimization method in order to circumvent the computational and memory is-
sues of standard KF and EKF. For KF, we simply employ the limited memory optimization tech-
niques for matrix operations, but otherwise use the standard KF formulae. In the VKF variant of
EKF, the idea is to seek the minimum of the underlying objective function directly, whiteout ex-
plicit use or computation of the Kalman formulae. The variational Kalman filter uses the LBFGS
method to compute the state estimate and the corresponding covariance matrix much in the same
way as is done in the well known 3D-Var assimilation method. The innovation of VKF is in how
we compute the inverse of the a priori covariance for the next time step of the filter. This is done by
applying LBFGS again to the very same matrix expression as is used in EKF. However, the explicit
matrices are never created, but all the operations are carried out by the approximative low memory
representations produced by LBFGS. This allows us to carry out filtering in very high dimensional
problems. For large-scale problems, such as the assimilation of ozone satellite data, this can be very
advantageous.

But nothing comes without a price. There are two main features that might limit the use of VKF. The
first is the possible inaccuracy of the limited memory approximation of the inverse covariance ma-
trix. Our results in Publ. III show that for typical test cases, good results can be achieved, provided
a preconditioning of the LBFGS iterations is implemented. We believe that this will be the situa-
tion with real assimilation problems, as well. The second point concerns the use of the linearized
EKF formula of the covariance for truly high dimensional situations; in practice, it requires that the
linearization is performed using the tangent linear and adjoint codes. These have to be tailor-made,
which is often a formidable task. However, in many important application fields, notably in numer-
ical weather forecasting, these codes are already available and can be directly combined with the
VKF filtering approach.
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[1] In this paper we present the Modified Onion Peeling (MOP) inversion method, which
is for the first time used to retrieve vertical profiles of stratospheric trace gases from
Odin/OSIRIS limb scatter measurements. Since the original publication of the method in
2002, the method has undergone major modifications discussed here. The MOP method
now uses a spectral microwindow for the NO2 retrieval, instead of the wide UV-visible
band used for the ozone, air, and aerosol retrievals. We give a brief description of the
algorithm itself and show its performance with both simulated and real data. Retrieved
ozone and NO2 profiles from the OSIRIS measurements were compared with data from
the GOMOS and HALOE instruments. No more than 5% difference was found between
OSIRIS daytime and GOMOS nighttime ozone profiles between 21 and 45 km. The
difference between OSIRIS and HALOE sunset NO2 mixing ratio profiles was at most
25% between 20 and 40 km. The neutral air density was compared with the ECMWF
analyzed data and around 5% difference was found at altitudes from 20 to 55 km.
However, OSIRIS observations yield as much as 80% greater aerosols number density
than GOMOS observations between 15 and 35 km. These validation results indicate that
the quality of MOP ozone, NO2, and neutral air is good. The new version of the method
introduced here is also easily expanded to retrieve additional species of interest.

Citation: Tukiainen, S., S. Hassinen, A. Seppälä, H. Auvinen, E. Kyrölä, J. Tamminen, C. S. Haley, N. Lloyd, and P. T. Verronen

(2008), Description and validation of a limb scatter retrieval method for Odin/OSIRIS, J. Geophys. Res., 113, D04308,

doi:10.1029/2007JD008591.

1. Introduction

[2] OSIRIS (Optical Spectrograph and Infrared Imager
System) is one of the two instruments on board the Swedish
Odin satellite, launched in February 2001 Llewellyn et al.
[2004]. The spectrograph part of the instrument measures
limb-scattered solar light (radiance) in the wavelength
region of 280–800 nm with around 1 nm spectral resolu-
tion. Odin scans toward the Earth’s limb from 7 to 110 km
through a controlled nodding motion. The effective Field of
View (FOV) is 1–2 km due to motion of the 1 km
Instantaneous Field of View (IFOV) during the integration
period. In turn, the FOV is sampled discretely with 1–3 km
vertical spacing. OSIRIS is the first dedicated satellite
instrument to measure continuously the vertical composi-
tion of the atmosphere using the limb scatter technique and
by recording the full spectrum from UV to visible wave-
lengths with a good spectral resolution.

[3] The UV-visible wavelength band of OSIRIS carries
information of several atmospheric trace gases including
ozone (O3), nitrogen dioxide (NO2), nitrogen trioxide
(NO3), chlorine dioxide (OClO), and bromine monoxide
(BrO). Trace gases leave their absorption fingerprints in the
solar spectrum, which is scattered by the neutral molecules
of the atmosphere. Stratospheric aerosol loading and direct
emissions from excited molecules also contribute to the
shape of the observed spectrum.
[4] In addition to OSIRIS, several other spaceborne

instruments have been deployed in recent decades to ob-
serve chemical composition of the middle atmosphere.
Occultation and limb-viewing instruments have been used
to measure vertical profiles, while nadir instruments provide
mainly total column abundances of the compounds. The
first spaceborne UV-visible limb scatter measurements were
done by instruments on board SME (Solar Mesospheric
Explorer) in the beginning of the 1980s [Rusch et al., 1983,
1984]. The SOLSE and LORE instruments on the Space
Shuttle flight STS-87 further proved the limb scatter tech-
nique to be feasible [McPeters et al., 2000; Flittner et al.,
2000]. Examples of more recent space instruments, capable
of doing UV-visible limb scatter measurements, are SCIA-
MACHY [Bovensmann et al., 1999], GOMOS [Kyrölä et
al., 2004], and SAGE III [Rault, 2005]. As the measurement
principle of remote sensing instruments is always indirect,
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data inversion methods are needed to extract information
from the physical measurements.
[5] Several inversion methods have been developed to

retrieve trace gas densities from the OSIRIS measurements.
The so-called Triplet method was developed by Flittner et
al. [2000] andMcPeters et al. [2000] and was adapted to the
OSIRIS limb scatter measurements by von Savigny et al.
[2003]. The Triplet method uses wavelength triplets in the
Chappuis absorption band near 600 nm to retrieve strato-
spheric ozone. According to Petelina et al. [2004], the
validated altitude range for the OSIRIS triplet ozone is
15–32 km.
[6] The DOAS (Differential Optical Absorption Spectros-

copy) method is one widely used approach for the retrieval
of several different species. The basic DOAS approach was
proposed by Platt [1994] and the method was applied to
simulated limb scatter measurements by McDade et al.
[2002] and Strong et al. [2002]. Haley et al. [2003] applied
the DOAS technique to retrieve ozone from OSIRIS data
and found good agreement with the Triplet method.
[7] The DOAS method has been also used to retrieve

stratospheric NO2 from the OSIRIS data. Haley et al. [2004]
and Sioris et al. [2003] used slightly different DOAS
variants and obtained quite consistent results. They also
made preliminary validation against sonde and POAM III
measurements proving the method feasible.
[8] The Triplet method and the various DOAS algorithms

exploit only a small fraction of the available UV-visible
spectrum. There have also been efforts to analyze the limb
scatter spectra without reduction to differential structures.
For example, Kaiser et al. [2004] used this principle to
retrieve satellite pointing from limb scatter measurements.
In addition, Rohen et al. [2005] retrieved mesospheric
ozone using the Hartley band in �240–310 nm.
[9] The method used in this study is the Modified Onion

Peeling (MOP) method. It was originally developed by
Auvinen et al. [2002], but the method has later undergone
significant modifications discussed in Section 2. In partic-
ular, the NO2 retrieval part has been revised since the
original publication of the method. The MOP method
should offer at least one advantage compared with the other
retrieval techniques: The advantage of the MOP method,
compared with the other retrieval techniques, is that using
information from the whole spectral band of the OSIRIS
instrument, we are able to retrieve ozone by one method
between 15 and 70 km.
[10] After the original MOP method was modified, we

tested the sensitivity of the new version using simulated
data (Section 3). Finally, we validated the outcome of the
MOP method using real OSIRIS data. Inverted vertical
profiles were compared with data from other instruments
measuring the middle atmosphere (Section 4).

2. MOP Inversion Method

[11] The general idea of onion peeling inversion methods
is to divide the atmosphere into separate layers and solve the
inversion problem layer by layer from top of the atmosphere
downward. This way we can construct the vertical profiles
of different trace gases. In the MOP method, as described
by Auvinen et al. [2002], we can use any number of

available wavelengths and try to retrieve various species
simultaneously.
[12] The theoretical basis of the MOP inversion method is

a Bayesian approach. However, using a flat a priori distri-
bution and assuming Gaussian noise, the solution reduces to
a simple weighted least squares fit to the data [e.g., Rodgers,
2000]. Non-linear problems, such as the one related to
OSIRIS, require an iterative fitting procedure.
[13] Following Auvinen et al. [2002], it is advantageous

not to use directly measured radiances but the ratio

Robs l; jð Þ ¼ Iobs l; jð Þ
I refobs lð Þ

; ð1Þ

where Iobs(l, j) are measured radiances at tangent heights j
and Iobs

ref (l) is a reference measurement from the same scan
at high tangent altitude. Radiance is a function of
wavelength l. We have chosen to use the first measurement
below 50 km as the reference. It would be possible to try
other tangent heights as well, but that around 50 km seems
to yield the best results in practice. It is already high enough
to exclude spectral fingerprints from minor trace gases (such
as NO2, OClO, and BrO) making it easier to model.
Furthermore, straylight contamination in OSIRIS increases
as a function of tangent height making high altitude
measurements less unreliable to use [Llewellyn et al., 2004].
[14] The use of the so-called transfer spectrum (1) is

useful because it diminishes systematic errors due to surface
albedo, clouds, and polarization [Flittner et al., 2000;
Oikarinen, 2001]. It also reduces errors due to imperfect
instrument calibration.
[15] The modeled transfer spectrum is defined as

Rmod l; jð Þ ¼ Imod l; j;rð Þ
I refmod l;rrefð Þ

; ð2Þ

where Imod(l, j, r) are modeled radiances and Imod
ref (l, rref)

is a model reference spectrum. The gas density profiles r
are adjusted iteratively, and after every iteration a new and
better agreement is obtained between (1) and (2).
[16] A typical background atmosphere is assumed when

we calculate the model reference spectrum. Obviously, even
the best estimate differs from the true state of the atmo-
sphere and typically produces systematic bias to the re-
trieved profiles. This effect is studied later in Section 3.

2.1. Spectral Fitting

[17] At every layer, assuming that the measured transfer
spectra (1) are independent, the sum of squared residuals is
defined as

c2 ¼ Rmod � Robsð ÞTC�1 Rmod � Robsð Þ; ð3Þ

where C is a covariance matrix. The covariance matrix
includes contributions from the measurement and modeling
errors. The errors at different wavelengths are assumed to be
uncorrelated, which leads to a diagonal covariance matrix.
The modeling error describes our inability to model limb
scatter observations perfectly, mainly because of multiple
scattering of the atmosphere (see Section 2.3). The
modeling error is estimated as a function of wavelength
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and altitude using the Monte Carlo radiative transfer model
Siro [Oikarinen et al., 1999].
[18] The fitting problem (3) is solved using an initial

guess for the densities and the Levenberg-Marquardt algo-
rithm [Levenberg, 1944; Marquardt, 1963; Gill et al., 1981]
to find the best fit. The Levenberg-Marquardt algorithm is
commonly used in non-linear curve fitting problems. It finds
the minimum of (3) by combining techniques of gradient
descent and the inverse-Hessian optimization. The algo-
rithm also provides error estimates for the fitted parameter
values.
[19] Figure 1 presents examples of the spectral fits after

the first peeling loop. The relative differences increase at
lower altitudes, but generally a good consistency can be
found between the model and the measurement. Completely
flawless agreement is very difficult to achieve because the
wavelength band used is relatively wide (over 400 nm) and
the radiance is governed by numerous wavelength-dependent
phenomena.
[20] Limb scatter measurements include relatively small

noise, but the model is unable to describe observations
perfectly. Because the modeling of the atmosphere is a very
complex problem indeed, it is possible (or even evident)
that the model lacks some processes, or that they have been
taken account in too simplified way. These factors can be,

for example, a missing gas, incorrect cross sections (e.g., an
uncertain temperature profile), too simplified aerosol model,
or incorrect albedo model. Furthermore, an insufficient
modeling of the diurnal effects and errors due to geometry
simplifications may contribute. The (current) model
presents our best understanding of the physics behind the
observations. The clear structures in the residuals indicate
that there is still work to do in order to improve the model in
the future.
[21] In addition, the measurement data contain errors and

therefore the model is not able to describe observations
exactly. The spectral fit to the OSIRIS data shown in
Figure 1 was done with a model including an accurate
single scattering model and an approximate multiple scat-
tering correction. The model will be described more exten-
sively in Section 2.3.

2.2. Improved NO2 Retrieval

[22] The original idea by Auvinen et al. [2002] was to use
the whole spectral range of OSIRIS and retrieve all the
desired trace gas densities simultaneously. However, this
approach seemed to work only with simulated data. When
inverting real OSIRIS data, the NO2 retrievals were usually
of poor quality although the inverted ozone profiles were
proper. The old retrieval often produced a bias of several

Figure 1. OSIRIS spectral fits in the UV-visible region after the first peeling loop (upper panel) and the
corresponding residuals (lower panel). The NO2 profile is kept fixed during the iterations while ozone, air
density, and aerosols are allowed to vary. Note that OSIRIS does not record the spectra between 470 and
530 nm and the wavelengths beyond 680 nm are not used in the fitting.
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hundreds of percent to the NO2 profiles below 30 km
compared with the results from the other OSIRIS retrieval
algorithms or NO2 measurements by other instruments
[Tukiainen, 2006].
[23] Using the whole spectrum for the fit has both

advantages and disadvantages. When a large wavelength
band is used, the information content can naturally be
maximized, but on the other hand the modeling issues
become more critical. Since ozone is a strong absorber,
minor modeling uncertainties are not as crucial for the
ozone retrieval as they are for minor absorbers like NO2.
As there are uncertainties in the OSIRIS modeling, we
noticed that the NO2 retrieval benefits from using a shorter
wavelength band where the signal-to-noise ratio is more
optimal for the NO2 retrieval. Also the band should be short
enough that the wavelength dependent modeling errors are
not dominating the retrieval.
[24] In the present version of MOP, the retrieval of major

absorbers and scatterers (ozone, air, aerosols) is separated
from the retrieval of minor ones (NO2, and others). For
NO2, the wavelength band of 430–450 nm is selected due
to strong NO2 absorption fingerprint in this region. Further-
more, ozone as well as other species absorb weakly in this
band and it is also free of strong Fraunhofer lines. In theory,

the Fraunhofer lines should cancel out when we apply
equation (1), but a small residual may still be left over.
This is the tilt effect recognized by Sioris et al. [2003]. It
basically arises from the different spectral slopes of the
radiances at different tangent heights and from the finite
spectral resolution of the instrument. Thus it is safest to
avoid strong Fraunhofer lines where the effect is largest. In
this wavelength band, all of the 50 available wavelengths
were used in the spectral fitting.
[25] Because of the distinct fitting windows for the strong

and weak absorbers, we have to run two separate peeling
loops. During the first peeling loop, we retrieve only ozone,
aerosol, and neutral air. The NO2 profile is summoned from
a climatology (U.S. Standard Atmosphere 1976). During the
second loop, we retrieve NO2. The ozone profile, retrieved
from the first peeling loop, is now fixed, but aerosols and
neutral air are again allowed to vary freely to obtain a good
NO2 fit. Figure 2 shows NO2 fits from a single scan at three
different tangent heights.
[26] This kind of iterative solving of the parameters is

justified, because the use of the fixed NO2 profile in the first
peeling loop has little effect on the outcomes. Nevertheless,
it is not totally insignificant. The use of the NO2 climatol-
ogy in the first peeling loop seems to result in roughly 2%

Figure 2. Fits in the NO2 retrieval band after the second peeling loop (upper panel) and the
corresponding residuals (lower panel). The 30 km and 40 km spectra are scaled to fit in the figure with
the 20.5 km spectra. The ozone profile (retrieved from the first peeling loop) is kept fixed during the
iterations while NO2, air density and aerosols are allowed to vary.
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bias at the ozone peak. This bias is possible to eliminate by
adding a third peeling loop and retrieve ozone, neutral air,
and aerosols again with the retrieved NO2 profile, but this
would double the required computing time. With just two
peeling loops, it already takes a couple of minutes to invert
one scan (AMD Athlon 1800+ CPU). This means that we
need around six months to process the current OSIRIS data
set (2001–2007) with the present computing facilities for
OSIRIS at Finnish Meteorological Institute. The third peel-
ing loop is possible to implement later in the future, if more
computing resources are provided to the operative OSIRIS
processing.

2.3. Multiple Scattering Correction

[27] Taking account the multiple scattering effects is a
crucial part of limb scatter retrieval methods. Therefore the
multiple scattering correction of the MOP method is given
here, though the correction method has remained the same
since the previous paper by Auvinen et al. [2002].
[28] In the limb scatter geometry, multiple scattering can

constitute 10–50% of the observed radiance at visible
wavelengths [Oikarinen et al., 1999]. Its proportion of the
total radiance is strongly dependent on wavelength as the
ratio of multiple to total scattering increases steeply at
wavelengths greater than 310 nm [Oikarinen et al., 1999].
In addition, the multiple scattering contribution depends on
the tangent height, surface albedo, solar angles, and com-
position of the atmosphere itself. For these reasons, a mere
single scattering radiative transfer model is not generally
satisfactory to describe scattering and absorption effects in
limb scatter problems. However, taking the multiple scat-
tering effects into account complicates limb scatter prob-
lems significantly and certainly increases computational
costs, which leads to some kind of compromise between
the modeling accuracy and the available computation time.
[29] During the fitting procedure in each layer, we have to

use a few (usually 2–10) iterations, and as many forward
model calls, before the Levenberg-Marquard algorithm
finds good enough agreement between the model and the
measurement. A full 3-D radiative transfer model operating
in multiple scattering mode would be too slow to use and
hence we must seek faster solutions. One way would be to
reduce the total number of wavelengths used (from around
300 to only a few) in the first peeling loop. This solution
would not exploit the whole bandwidth of the OSIRIS
instrument and the altitude range of the ozone retrieval
would shrink.
[30] A practical approach, discussed in the original pub-

lication by Auvinen et al. [2002], is to use a single scattering
forward model during the fitting iterations and include
multiple scattering effects using precalculated look-up
tables. The single scattering forward model built into the
MOP-inversion module solves the radiative transfer by
numerical integration and is computationally efficient to
run.
[31] The look-up tables used in the MOP inversion

contain modeled (single- and multiple scattered) radiances
calculated as a function of tangent height, solar angles,
season, albedo, and latitude. The look-up tables are pro-
duced using the LIMBTRAN [Griffioen and Oikarinen,
2000] forward model.

[32] In order to take advantage of the precalculated look-
up tables, we divide the modeled transfer spectra (2) into
two parts:

Rmod ¼
Imod

Imod

ref

¼ I ssmod l; j;rð Þ
I refmod l;rrefð Þ

M l; jð Þ; ð4Þ

where Imod
ss (l, j, r) is the dynamic single scattering term

which is adjusted iteratively during the fitting procedure.
The model reference radiance Imod

ref (l, rref) in the denomi-
nator of (4) is also calculated with LIMBTRAN (including
multiple scattering). The second term on the right side,
M(l, j), is the static part which comes from the look-up
tables and is kept fixed during the iterations. This correction
term is defined as the modeled multiple scattering radiance
(total radiance) divided by the corresponding single
scattering radiance:

M l; jð Þ ¼
Ims l; j;rprior

� �

Iss l; j;rprior

� � : ð5Þ

where rprior are the gas densities for the standard atmosphere
used in the LIMBTRAN radiance simulations.

3. Sensitivity Study

[33] The calculation of the model reference spectrum
Imod
ref (l, rref) requires at least ozone and neutral air profiles
up to the upper limit of the LIMBTRAN atmosphere (90 km).
Other species can be ignored as they have a negligible impact
on the radiance at �50 km. The effect of possibly incorrect
ozone and neutral air profiles in the model reference was
studied using single scattering simulations and a 50 km
reference tangent height.
[34] Radiances were first simulated using the internal

single scattering kernel of the MOP algorithm for a given
atmospheric composition. These simulated radiances were
then used as an input, and the MOP algorithm was run to
resolve the original number densities. The model reference
spectrum was also simulated with the single scattering
model, but with slightly modified ozone and air profiles
to study the effect on the outcomes.
[35] The results from the simulations are shown in

Figure 3 and Figure 4. We clearly see how the modified
ozone density profile in the model reference creates biased
ozone profiles after inversion at the upper layers (Figure 3).
This bias diminishes rapidly, and is already negligible below
the 45 km altitude. The effect on the NO2, air, and aerosol
profiles is not as large. Instead, if the neutral air profile of
the reference differs from truth, it creates a roughly equal
difference in the inverted air product (Figure 4). The aerosol
product is also affected considerably, but NO2 and ozone
errors are only a few percent at most. It should be noticed
from Figure 4 that the MOP neutral air and aerosols are
anticorrelated.
[36] As a summary, if the ozone estimate in the reference

calculation is wrong, it will produce a bias in the retrieved
ozone profile, but the effect is large only at the few
uppermost layers. An incorrect air density estimate, on the
other hand, creates a corresponding bias in the retrieved air
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density and can also affect the retrieved aerosol profile by
tens of percent.
[37] A faulty ozone or air density profile in the model

reference calculation is not the only uncertainty in the

retrieval. There are several other possible sources of error
such as incorrect albedo or aerosol model, imprecise satel-
lite pointing, and polarization sensitivity. The impact of
these on the limb scatter ozone retrievals has been studied

Figure 3. Effect of ozone density in the model reference calculation. The plots present the relative
difference between the true and the inverted profiles. Ozone densities in the model reference were
modified by �10% (red), �5% (blue), �1% (green), +1% (green dashed), +5% (blue dashed), and +10%
(red dashed) compared with the true state of the atmosphere. The simulation was run with single
scattering and using 50 km as the reference altitude.

Figure 4. Same as Figure 3 but for the effect of air densities in the model reference.
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comprehensively by Loughman et al. [2005], von Savigny et
al. [2005], and Oikarinen [2001].

4. Validation of Profiles

[38] A preliminary validation of ozone, NO2, neutral air,
and aerosol profiles was carried out using OSIRIS data from
the year 2003. The NO2 profiles are now much more
reasonable than with the earlier version of the MOP method.
The ozone, air, and aerosol profiles also seem to be realistic.

4.1. Ozone

[39] The diurnal variation of stratospheric ozone is insig-
nificant below around 45 km [Brasseur and Solomon,
2005]. Thus we can compare day and nighttime profiles
with similar geolocation if the time difference of measure-
ments is on the order of days. Ozone is also generally more
stable at low and midlatitudes than in polar regions.
[40] OSIRIS ozone profiles inverted using the MOP

method were compared with the GOMOS (Global Ozone
Monitoring by Occultation of Stars) nighttime profiles
between 20 and 45 km. GOMOS is a stellar occultation
instrument on board the ESA’s Envisat satellite, launched in
February 2002 [Kyrölä et al., 2004]. The vertical sampling
resolution of GOMOS is 0.5–1.7 km and the vertical
resolution of GOMOS ozone profiles is 2–3 km depending
on the altitude. According to Meijer et al. [2004], there is

less than 5% bias in the GOMOS nighttime ozone profiles.
GOMOS nighttime measurements are very accurate and
there is less than 5% bias in the ozone profiles.
[41] Coincidences were selected from the year 2003 using

a latitude band from 35�S to 35�N. The latitude and
longitude difference of the 121 matches was less than 1�,
and the time difference less than one day. The local time of
the OSIRIS coincidences is close to either 6 am or 6 pm.
[42] Figure 5 shows the result of the comparison. Median

profiles of both distributions are plotted with the
corresponding standard deviations. The green solid curve
on the right panel shows the median of the individual
relative differences. The individual differences were defined
as (OSIRIS-GOMOS)/GOMOS100%. The green dashed
lines around the median present the semi-interquartile
deviation (SID):

SID ¼ jQ3 � Q1j
2

; ð6Þ

where Q1 and Q3 are the 25th and 75th percentiles. The area
between the ±1 SID lines includes 50% of the data points.
The blue dashed lines around the median present the relative
semi-interquartile deviation of the retrieved OSIRIS profiles
(i.e., the natural variability of the atmosphere). See also the
upper panels of Figure 6 for examples of typical individual
comparisons between OSIRIS and GOMOS ozone profiles.

Figure 5. Comparison of GOMOS nighttime and OSIRIS daytime ozone profiles in the stratosphere
between latitudes 35�S and 35�N. The coincidence criteria for the individual matches in time was less
than one day, in latitude less than 1�, and in longitude less than 1�. The blue and red curves on the left
present the medians of 121 coincidences and the dashed curves are the corresponding standard
deviations. The green solid curve is the median of the individual relative differences defined as
Comparison of OSIRIS and GOMOS aerosols between latitudes 35�S and 35�N. Coincidence limits for
the individual matches are the same than in Figure 5. The blue and red curves present the medians of 110
coincidences and the dashed curves are the corresponding standard deviations. The green solid curve is
the median of the individual relative differences defined as (OSIRIS-GOMOS)/GOMOS100%. The green
dashed curves around the median show the semi-interquartile deviation of the differences. The blue and
red dashed curves around the median show the corresponding deviations of the OSIRIS and GOMOS
profiles.
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[43] The mean could be also used instead of the median,
but more attention should be paid to flag abnormal data
points. In practice, there was no significant difference
between the two (mean or median). The median of the
individual relative differences was less than 5% between 21
and 45 km proving that the two different instruments
provide very consistent observations of stratospheric ozone.
The median difference increases up to 15% at the lowest
layer (OSIRIS measuring less ozone than GOMOS).

4.2. Nitrogen Dioxide

[44] The behavior of stratospheric NO2 is characterized by
strong diurnal variation. The NO2 concentration decreases
rapidly in themorning as the sun rises. A similar, but positive,
change happens when the sun sets in the evening. Thus if we
compare NO2 measurements with the solar zenith angles
close to 90�, the difference from the diurnal cycle should be
minimized as well as possible.
[45] OSIRIS NO2 measurements were compared with the

sunset measurements of the HALOE (The Halogen Occul-
tation Experiment) instrument [Russell et al., 1993].
HALOE was a solar occultation instrument launched in
1991 and it was operational until November 2005. The

HALOE retrieval gives the NO2 volume mixing ratio while
the outcomes of the MOP method are number densities.
Therefore OSIRIS NO2 densities were converted into mix-
ing ratios using retrieved neutral air profiles. The vertical
resolution of HALOE NO2 profiles is about 2–3 km, which
is similar to the resolution of OSIRIS profiles inverted with
the MOP method.
[46] The coincidence criteria for a comparable OSIRIS

and HALOE measurement in time was less than 30 min, in
latitude less than 2�, and in longitude less than 3�. The solar
zenith angles of the OSIRIS measurements were chosen to
be between 85� and 90�. With this kind of differences in
time and space, we found 28 OSIRIS and HALOE matches.
Thus we get reasonable statistics for the validation and the
profiles still describe roughly the same air mass. The
coincidences were found between latitudes 15�S and 50�N
from the year 2003. In all these cases, the OSIRIS mea-
surement comes first in the time domain. The local times of
the OSIRIS coincidences are between 5.30 pm and 6.15 pm.
[47] As we compare NO2 profiles from solar occultation

and limb scatter instruments, we are forced to accept a small
difference in the solar zenith angles. This will inevitably
produce some difference to the results, but the effect should

Figure 6. Upper panels: typical individual ozone profile comparisons between OSIRIS (solid) and
GOMOS (dashed). Lower panels: typical individual NO2 profile comparisons between OSIRIS (solid)
and HALOE (dashed).
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be only small because the solar zenith angles of the OSIRIS
profiles used in this study are close to 90�. The other source
of error is the impact of the lack of horizontal homogeneity
on limb scatter retrievals [McLinden et al., 2006]. The solar
zenith angle may vary along the line of sight causing
species with diurnal cycle to vary as well, and the horizontal
homogeneity assumption fails. This effect is generally
largest during twilight and below 25 km. The diurnal effects
due to changing solar zenith angle along the line of sight are
not taken account in the MOP retrieval. For occultation
instruments, the problem is less complicated and the
HALOE retrieval does account for it. This may explain
some of the differences between OSIRIS and HALOE NO2

below 25 km, but the total effect is rather hard to quantify.
[48] Figure 7 shows the comparison of the 28 OSIRIS and

HALOE NO2 profiles between 20 and 40 km. The obser-
vations of the instruments are quite consistent and there is
no particular bias between the instruments. The median
difference of the individual profiles is usually less than
20%, which is a quite good agreement. OSIRIS seems to
measure more NO2 than HALOE at the peak and less than
HALOE at the lower stratosphere. The lower panels of
Figure 6 show typical individual comparisons between
OSIRIS and HALOE NO2 profiles.

4.3. Air

[49] Scattering from the neutral molecules of the atmo-
sphere follows Rayleigh theory with approximately l�4

dependency. This basically determines the signal level of
the observed radiative transfer spectrum. Air density pro-
files retrieved with the MOP method were compared with

the analysis data from European Center for Medium-Range
Weather Forecast (ECMWF). The MOP air profiles are from
the first peeling loop, inverted together with ozone and
aerosols. The profiles were selected randomly covering all
latitudes from the year 2003.
[50] Figure 8 shows results of the neutral air comparison.

The profiles were compared for altitudes between 20 and
65 km. The median of the relative individual differences is
around 5% at almost all altitudes. OSIRIS appears to be
biased low compared with the ECMWF data. The compar-
ison result indicates that the neutral air retrieval of the MOP
method is also quite accurate.

4.4. Aerosols

[51] Stratospheric aerosols contribute to radiance through
scattering and absorption. The aerosol modeling in the MOP
method is done using l�1 scattering cross section and well-
known Henyey-Greenstein phase function. This is the
classical, but not very sophisticated, way to model strato-
spheric aerosols.
[52] Figure 9 shows the comparison of GOMOS and

OSIRIS aerosol number density profiles. The MOP aerosol
profiles are from the first peeling loop. OSIRIS seems to
observe as much as 80% more aerosols than GOMOS. The
shapes of the median profiles are rather similar but the
reason for the bias has yet to be worked out.
[53] These results indicate (partly expected) difficulties in

the validation of the MOP aerosol product. As noticed
earlier, the outcome of the MOP aerosol retrieval is sensitive
to the model reference spectrum. It should also be noted that
the GOMOS retrieval method uses a second-order polyno-

Figure 7. Comparison of HALOE sunset measurements and OSIRIS NO2 profiles in the stratosphere.
The coincidence criteria for the individual matches was in time less than 30 min, in latitude less than 2�,
and in longitude less than 3�. The blue and red curves on the left present the medians of 28 coincidences
and the dashed curves are the corresponding standard deviations. The green solid curve is the median of
the individual relative differences defined as (OSIRIS-HALOE)/HALOE100%. The green dashed curves
around the median show the semi-interquartile deviation of the differences. The blue and red dashed
curves around the median show the corresponding deviations of the OSIRIS and HALOE profiles.
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mial aerosol model instead of the l�1 form used here. This
polynomial model could be also tried with OSIRIS as it
might explain some of the differences. For more informa-

tion about GOMOS aerosols, see Vanhellemont et al.
[2005a, 2005b].
[54] However, the underlying difficulty is the unknown

(aerosol) particle shape and size distribution in the atmo-

Figure 8. Comparison of OSIRIS neutral air density and ECMWF analysis data. The blue and red
curves on the left present the medians of 412 coincidences and the dashed curves are the corresponding
standard deviations. The green solid curve is the median of the individual relative differences defined as
(OSIRIS-ECMWF)/ECMWF100%. The green dashed curves around the median show the semi-
interquartile deviation of the differences. The blue and red dashed curves around the median show the
corresponding deviations of the OSIRIS and ECMWF profiles.

Figure 9. Comparison of OSIRIS and GOMOS aerosols between latitudes 35�S and 35�N. Coincidence
limits for the individual matches are the same than in Figure 5. The blue and red curves present the
medians of 110 coincidences and the dashed curves are the corresponding standard deviations. The green
solid curve is the median of the individual relative differences defined as (OSIRIS-GOMOS)/
GOMOS100%. The green dashed curves around the median show the semi-interquartile deviation of the
differences. The blue and red dashed curves around the median show the corresponding deviations of the
OSIRIS and GOMOS profiles.
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sphere, which makes the problem notoriously difficult. We
are forced to do simplifications in the retrieval, and in the
end we still lack a reliable reference for the basis of the
validation. The aerosol model selection itself is a difficult
decision. One promising idea is to apply Bayesian model
selection by using a Markov chain Monte Carlo technique
as proposed by Laine et al. [2007].

5. Conclusions

[55] In this study, the MOP inversion method was used to
retrieve ozone, NO2, neutral air, and aerosol densities from
the OSIRIS limb scatter measurements. Compared with the
other limb scatter retrieval methods, there are a few unique
aspects in MOP. The MOP method uses a wide spectral
band and several hundreds wavelengths to retrieve ozone,
air, and aerosol number densities. Thus the maximum
amount of information from the data is used, while the
use of a priori information is minimized. The same method
is also used for the whole altitude range of the retrievals.
[56] A sensitivity study with the simulated data showed

that the upper part of the retrieved ozone profile becomes
biased if the ozone estimate in the model reference spectrum
is incorrect. The aerosol retrieval is quite sensitive to a
faulty neutral air estimate in the reference calculation and
this can lead to errors up to tens of percents. Roughly equal
error in the retrieved neutral air is also produced at all
altitudes. However, errors in the NO2 profile due to incor-
rect model reference are always insignificant.
[57] Validation against other satellite instruments demon-

strated the strength of the MOP method in practice. A good
agreement was found between OSIRIS daytime and
GOMOS nighttime ozone profiles. The median of the
relative individual differences is less than 5% between 21
and 45 km. Above 45 km the diurnal variation of ozone
prevented comparisons between the instruments. The qual-
ity of this mesospheric part of the ozone retrieval should be
confirmed in the future.
[58] OSIRIS NO2 profiles between 20 and 40 km were

consistent with the HALOE profiles despite the challenging
twilight conditions for OSIRIS. The comparison between
solar occultation and limb viewing instruments is always
difficult because the NO2 concentration experiences a large
transition near sunrise and sunset.
[59] The MOP neutral air retrieval seems to result in

roughly 5% negative bias compared with the ECMWF
analysis data. On the other hand, there is a 20–80% positive
bias in the MOP aerosol number densities compared with
the GOMOS aerosols. The anticorrelation between neutral
air and aerosols, which is apparent from the sensitivity
study in Section 3 (see, e.g., Figure 4), could explain most
of the observed differences. Thus it could be possible to get
better aerosol results by fixing the MOP neutral air density
to the ECMWF data, or by setting some interval for the
MOP air density values to vary around the ECMWF values.
This issue remains to be solved in the future studies.
[60] Ozone, neutral air, and aerosols are retrieved using

the whole spectral range of the instrument, so the retrievals
may go up to 70 km altitude (corresponding to the upper
limit of most OSIRIS scans). For the NO2 retrieval, it was
crucial to use a narrow wavelength band. This approach is

easily expanded to retrieve also other trace gases such as
BrO and OClO by selecting another wavelength window
and adding an extra peeling iteration loop. The retrieved
ozone and NO2 profiles may then be used in this iteration.
The underlying challenge is that the concentrations of BrO
and OClO are an order of magnitude smaller than that of
NO2 and the absorption fingerprint is easily masked by
noise. However, Krecl et al. [2006] have shown that the
retrieval of OClO should be possible.
[61] It should also be noted that with the current Level 1

data we do not find any altitude shift between OSIRIS and
GOMOS ozone profiles. GOMOS uses a star tracker to
achieve a pointing accuracy of some tens of meters. Thus it
provides a good reference to validate the pointing perfor-
mance of Odin/OSIRIS.

[62] Acknowledgments. The authors wish to thank the OSIRIS team
at the University of Saskatchewan for the Level 1 data, Sodankylä Data
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mann, and J. P. Burrows (2005), Ozone deflection during the solar proton
events of October/November 2003 as seen by SCIAMACHY, J. Geophys.
Res., 110, A09S39, doi:10.1029/2004JA010984.

Rusch, D. W., G. H. Mount, J. M. Zawodny, C. A. Barth, G. J. Rottman,
R. J. Thomas, G. E. Thomas, R. W. Sanders, and G. W. Lawrence (1983),
Temperature measurements in the earth’s stratosphere using a limb scan-
ning visible light spectrometer, Geophys. Res. Lett., 10, 261–264.

Rusch, D. W., G. H. Mount, C. A. Barth, R. J. Thomas, and M. T. Callan
(1984), Solar Mesosphere Explorer ultraviolet spectrometer: Measure-

ments of ozone in the 1.0 – 0.1 mbar region, J. Geophys. Res., 89,
11,677–11,678.

Russell, J. M., L. L. Gordley, J. H. Park, S. R. Drayson, W. D. Hesketh,
R. J. Cicerone, A. F. Tuck, J. E. Frederick, J. E. Harries, and P. J. Crutzen
(1993), The halogen occultation experiment, J. Geophys. Res., 98(D6),
10,777–10,797, doi:10.1029/93JD00799.

Sioris, C. E., C. S. Haley, C. A. McLinden, and et al. (2003), Stratospheric
profiles of nitrogen dioxide observed by optical spectrograph and infrared
imager system on the Odin satellite, J. Geophys. Res., 108(D7), 4215,
doi:10.1029/2002JD002672.

Strong, K., B. M. Joseph, R. Dosanjh, I. C. McDade, C. A. McLinden, J. C.
S. J. McConnell, D. P. Murtagh, and E. J. Llewellyn (2002), Retrieval of
vertical concentration profiles from OSIRIS UV-visible limb spectra,
Can. J. Phys., 80, 409–434.

Tukiainen, S. (2006), Development and Validation of the OSIRIS inversion
module, Master’s Thesis at the Helsinki University of Technology, La-
boratory of Space Technology.

Vanhellemont, F., et al. (2005a), A first comparison of GOMOS aerosol
extinction retrievals with other measurements, aisr, 36, 894 – 898,
doi:10.1016/j.asr.2005.04.094.

Vanhellemont, F., et al. (2005b), A 2003 stratospheric aerosol extinction
and PSC climatology from GOMOS measurements on Envisat, Atmos.
Chem. Phys., 5, 2413–2417.

von Savigny, C., et al. (2003), Stratospheric ozone profiles retrieved from
limb scattered sunlight radiance spectra measured by the OSIRIS instru-
ment on the Odin satellite,Geophys. Res. Lett., 30(14), 1755, doi:10.1029/
2002GL016401.

von Savigny, C., I. C. McDade, E. Griffioen, C. S. Haley, C. E. Sioris, and
E. J. Llewellyn (2005), Sensitivity studies and first validation of strato-
spheric ozone profile retrievals from Odin/OSIRIS observations of
limb-scattered solar radiation, Can. J. Phys., 83, 957–972, doi:10.1139/
P05-041.

�����������������������
H. Auvinen, Lappeenranta University of Technology, P.O. Box 20, FI-

53851, Lappeenranta, Finland.
C. S. Haley, Centre for Research in Earth and Space Science (CRESS),

York University, Toronto, ON M3J 1P3, Canada.
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SUMMARY

In the field of state space estimation and data assimilation, the Kalman filter (KF) and the extended
Kalman filter (EKF) are among the most reliable methods used. However, KF and EKF require the
storage of, and operations with, matrices of size n×n, where n is the size of the state space. Furthermore,
both methods include inversion operations for m×m matrices, where m is the size of the observation
space. Thus, KF methods become impractical as the dimension of the system increases. In this paper, we
introduce a variational Kalman filter (VKF) method to provide a low storage, and computationally efficient,
approximation of the KF and EKF methods. Furthermore, we introduce a variational Kalman smoother
(VKS) method to approximate the fixed-lag Kalman smoother (FLKS) method. Instead of using the KF
formulae, we solve the underlying maximum a posteriori optimization problem using the limited memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) method. Moreover, the LBFGS optimization method is
used to obtain a low storage approximation of state estimate covariances and prediction error covariances.
A detailed description of the VKF and VKS methods with LBFGS is given. The methodology is tested on
linear and nonlinear test examples. The simulated results of the VKF method are presented and compared
with KF and EKF, respectively. The convergence of BFGS/LBFGS methods is tested and demonstrated
numerically. Copyright q 2009 John Wiley & Sons, Ltd.
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H. AUVINEN ET AL.

1. INTRODUCTION

Several variants of the Kalman filter (KF), (see [1]), and the extended Kalman filter (EKF) have
been proposed to reduce their computational complexity for large-dimensional problems. The
reduced rank KF or reduced-order EKF (see, e.g. [2–8]) project the dynamical state vector of
the model onto a low-dimensional subspace. The success of the approach depends on a judicious
choice of the reduction operator. Moreover, since the reduction operator is typically fixed in time,
the dynamics of the system may not be correctly captured; see [9] for more details.

There exist various Ensemble Kalman Filter (EnKF) algorithms—first proposed in [10]—that
are widely used in the field of data assimilation. The idea behind these methods is to form an
ensemble of state vectors that represent the state estimate covariance. Each of the members of
the ensemble is then propagated forward in time by the full nonlinear evolution model in order
to approximate componentwise covariances of prediction error. EnKF can be used on large-scale
data assimilation problems because it is highly parallelizable.

In [11], we have shown how high-dimensional KF and EKF may be carried out approximatively
using the limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimization algorithm.
The resulting methods were effective and exhibited low storage and computational cost characteris-
tics. In this paper, we introduce an alternative approximation, the variational Kalman filter (VKF),
for KF and EKF. Furthermore, we introduce a variational Kalman smoother (VKS) method to
approximate the fixed-lag Kalman smoother (FLKS) method. In the variational approach, we solve
an equivalent maximum a posteriori (MAP) optimization problem using LBFGS, which replaces
the explicit computation and use of the Kalman gain matrix, in order to obtain state estimates and
covariance approximations.

The idea of using the LBFGS method in variational data assimilation is not new (see e.g.
[6–8, 12–15]). In many of these references, the LBFGS Hessian or inverse Hessian is used as a
preconditioner, and even as an approximate error covariance matrix for the background term in
variational data assimilation. However, in the VKF method presented here, the LBFGS method is
further used for matrix inversion, in order to propagate effectively the state estimate covariance
information forward in time.

The paper is organized as follows. We introduce the notations used in this paper in Section 2,
with discussion of the KF. In Section 3, we present our methods for approximating the KF
and FLKS. The convergence of LBFGS/BFGS methods is studied numerically in Section 4.
To test and compare these methods, we present results from a number of numerical exper-
iments in Section 5, and we end with discussion and conclusions in Sections 6 and 7,
respectively.

2. THE KALMAN FILTER

Consider the following coupled system of discrete, linear, stochastic difference equations:

xk =Mkxk−1+epk (1)

yk =Kkxk+eok (2)

In the first equation, xk denotes the n×1 state vector of the system at time k; Mk is the n×n
linear evolution operator; and epk is an n×1 random vector representing the prediction error and is
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assumed to characterize errors in the model and in the corresponding numerical approximations.
In the second equation, yk denotes them×1 observed data vector;Kk is them×n linear observation
operator; and eok is an m×1 random vector representing the observation error. The error terms are
assumed to be independent and normally distributed, with zero mean and with covariance matrixes
Cepk and Ceok , respectively.

The task is to estimate xk and its error covariance Ck at time point k given yk, Kk, eok, Mk, e
p
k

and estimates xestk−1 and C
est
k−1 of the state and covariance at time point k−1. The KF is the standard

approach taken for such problems. It has the form:

The Kalman filter algorithm

Step 0: Select initial guess xest0 and covariance Cest
0 , and set k=1.

Step 1: Compute the evolution model estimate and covariance:

(i) Compute xpk =Mkxestk−1.
(ii) Compute Cp

k =MkCest
k−1M

T
k +Cepk .

Step 2: Compute KF estimate and covariance:

(i) Compute the Kalman gain Gk =Cp
kK

T
k (KkC

p
kK

T
k +Ceok )

−1.

(ii) Compute the KF estimate xestk =xpk +Gk(yk−Kkx
p
k ).

(iii) Compute the estimate covariance Cest
k =Cp

k −GkKkC
p
k .

Step 3: Update k :=k+1 and return to Step 1.

A nonlinear extension of KF, known as the EKF, is obtained when (1), (2) are replaced by

xk =M(xk−1)+epk (3)

yk =K(xk)+eok (4)

where M and K are possibly nonlinear functions. EKF is obtained by the following modification
of the KF algorithm: in Step 1 (i) use the nonlinear model xpk =M(xestk ) to compute the prior, but
employ the linearized approximations,

Mk = �M(xestk−1)

�x
and Kk = �K(xpk )

�x
(5)

for the covariance calculations, and otherwise employ the same formulae as above.
We note that Mk and Kk can be computed or estimated in a number of ways. For example,

the numerical scheme that is used in the solution of either the evolution or the observation model
defines a tangent linear code (see, e.g. [16]), which can be used to compute (5). A common, but
also more computationally expensive, approach is to use finite differences to approximate (5).

The KF is expensive to implement due to the fact that it is necessary to store n×n matrices
and invert m×m matrices at each step. Our task is to overcome these limitations. For this we will
need a variational formulation of the KF that is set forth in the following section. We make the
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(reasonable) assumptions that multiplication by the evolution and observation matrices Mk and Kk
and by the covariance matrices Cepk and Ceok is efficient, both in terms of storage and CPU time.

3. THE VKF METHOD

In a general assimilation problem, where n is the size of state space and m is the size of the
observation space, the standard formulation of the KF and the EKF requires the storage and
multiplication of n×n matrices and the inversion of m×m matrices. Thus, the computational cost
of KF/EKF increases rapidly as the size of the problem becomes large. Owing to this fact there
are several interesting assimilation problems, where the standard formulation of KF or EKF is
impractical to implement.

Bayes’ Theorem can be used to formulate the KF as a sequential MAP iteration. To see this,
we recall Bayes’ formula

px|y(x)= py|x(y|x)px(x)
py(y)

(6)

where x is the vector of unknowns, y the measurements, px denotes the prior density, and py|x
is the density of y given x the likelihood function. The MAP estimate is obtained by maximizing
(6). Equivalently, one can minimize

�(x|y) :=− log py|x(y|x)− log px(x) (7)

For the linear model (2) at time k, the function � assumes the form

�(x|yk)= 1
2 (yk−Kkx)TC

−1
eok

(yk−Kkx)+ 1
2(x−xpk )T(Cp

k )−1(x−xpk ) (8)

where Ceok and Cp
k are the covariance matrices of the measurement noise eok and of the prior xpk ,

respectively. The KF estimate and its covariance xestk and Cest
k are precisely the minimizer and

inverse Hessian of �(x|yk), respectively.
The advantage of the variational formulation of the KF is that it suggests the use of an opti-

mization algorithm for computing estimates of xestk and Cest
k . For large-scale problems, this can be

very advantageous, [17].
In particular, we advocate using the limited memory BFGS algorithm (LBFGS) for the mini-

mization problem (7). Given specific choices of initial guess, stopping criteria, and number of
stored vectors, LBFGS will yield estimates of both xestk and Cest

k . The storage requirement for the
covariance approximation—which we denote B#

k—is 2rn, where r is the number of stored LBFGS
vectors (typically on the order of 10), and multiplication by Bk is order n. See the Appendix for
the details of the LBFGS algorithm for a quadratic cost function, as well as the limited memory
formulas for B#

k and (B#
k )

−1.
However, it is (Cp

k )−1 that is needed in the optimization problem in the next VKF iteration
(see (8)). Thus, we apply LBFGS a second time to an auxiliary optimization problem

argmin
u

1
2 〈Au,u〉−〈b,u〉 (9)

where A=MkB#
k−1M

T
k +Cepk and b is the zero vector. This gives an approximation B∗

k of (Cp
k )−1.
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We summarize the VKF algorithm as follows:

The VKF algorithm

Step 0: Select initial guess x#0 and covariance B#
0 =Cest

0 , and set k=1.
Step 1: Compute the evolution model estimate and covariance:

(i) Compute xpk =Mkx#k−1.
(ii) Define Cp

k =MkB#
k−1M

T
k +Cepk .

(iii) Compute LBFGS approximation B∗
k of (Cp

k )−1.

Step 2: Compute VKF and covariance estimates:

(i) Minimize �(x|yk)= (yk−Kkx)T(Ceok )
−1(yk−Kkx)+(x−xpk )TB∗

k(x−xpk ) using LBFGS, and

define x#k and B#
k to be the LBFGS minimizer and inverse Hessian approximations;

Step 3: Update k :=k+1 and return to Step 1.

Note that in Step 1 (ii) and Step 2 (i) the optimizations are quadratic and therefore only quadratic
LBFGS is needed, (see the Appendix for details). For practical applications, a judicious choice of
the initial inverse Hessian is needed in order to obtain accurate results efficiently. In the numerical
examples of this work, we have used B−1

0 =�I with � chosen so that �I approximates the diagonal
of the covariance matrix of interest. For more discussion on the choice of B−1

0 (the precondi-
tioner) see [8, 18].

3.1. The nonlinear VKF method

As in the case of EKF, we need a linearization to propagate the covariance information from one
observation time to the next. However, the direct linearization as in EKF is impractical for large
dimensions. Rather, in the case of a non-linear evolution model we should use the adjoint operator,
if available, in Step 1 (ii) of VKF. Furthermore, if the adjoint operator is coded in an implicit
form, that is, in the software of the model, we get full benefit from a limited memory presentation
of Cest

k . This, indeed, is the situation in many operational codes for weather forecasting.
Supposing that the linearization Mk of Mk is available, then Step 2 (i) can written in the VKF

algorithm as:

Step 2: Compute the VKF estimate and covariance:

(i) Minimize �(x|yk)= (yk−K(x))T(Ceok )
−1(yk−K(x))+(x−xpk )TB∗

k(x−xpk ) using LBFGS,

and define x#k and B#
k to be the LBFGS minimizer and inverse Hessian approximations;

Especially, if the tangent linear Mtl
k and corresponding adjoint code M∗

k [16] are available for
the evolution model M, Step 1 (ii) can be written as:

Step 1: Compute the evolution model estimate and covariance:

(ii) Define Cp
k =Mtl

kB
#
k−1M

∗
k +Cepk ;

This feature of the method is one of the major advantages compared with EKF, since the
time-consuming linearization of the evolution model can be avoided. The traditional linearization

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2009)
DOI: 10.1002/fld



H. AUVINEN ET AL.

requires n evolution model function calls, but inside VKF the required number of tangent linear
and adjoint code evaluations is around 15–60, which is far less than n in large-scale problems.

Similar possibilities exist for using the tangent linear code Ktl
k of the observation model K in

Step 2 (i):

Step 2: Compute the evolution model estimate and covariance:

(i) Minimize �(x|yk)= (yk−Ktl
kx)

T(Ceok )
−1(yk−Ktl

kx)+(x−xpk )TB∗
k(x−xpk ) using LBFGS, and

define x#k and B#
k to be the LBFGS minimizer and inverse Hessian approximations;

In EKF the computational advantage of using Ktl
k instead is lost, since the Kalman gain is typically

a full matrix.

3.2. The VKS method

Next we introduce a VKS method, which can be used afterwards to smooth the results of the VKF.
The idea is to simulate an FLKS method and take full benefit from the limited memory covariance
approximation form of the VKF method. In general, such post-processing improves the quality of
the VKF results.

The VKF method provides an estimate xestk and a corresponding limited memory approximation
of the covariance matrix Cest

k after each time step k. In VKS, we use these results from the previous
[k0,k0+1, . . .,k] time steps, where the parameter k0=k−lag determines the length of the time
interval. In case of linear evolution modelMk , we couple the results together by using the following
cost function:

J (xk0)=
k∑

t=k0

(Mtxk0 −xestt )T(Cest
t )−1(Mtxk0 −xestt ) (10)

where Mtxk0 is a model trajectory from xk0 . The minimization of the cost function is done by
using the 4d-Var method (see [16, 19]), using LBFGS.

In the nonlinear case, the evolution model Mt is used instead of Mt in the cost function
formulation (10). Furthermore, the gradient of (10) can be computed efficiently by using the adjoint
of the evolution model, but in principle, the linearization of Mt can be used again as well. As the
smoothing process improves the accuracy of the estimate at time k0, it is possible to outperform
EKF in retrospective analysis.

During VKF iterations, the inverse Hessian limited memory BFGS formula is used to represent
Cest
k . In the VKS cost function (10) we instead need the inverse of Cest

t . In practice this detail
is handled by using the direct Hessian limited memory BFGS formula (see, e.g. [18] and the
Appendix). The direct Hessian limited memory BFGS formula provides the (Cest

t )−1 required.

4. MONITORING THE QUALITY OF THE BFGS APPROXIMATION

The quality of approximations produced by quasi-Newton methods of Hessian matrices, such as
the covariance matrices in our case, has been studied at least since 1970 [20]. Normally this is
carried out by monitoring the matrix norm of the difference between an approximation and a
known Hessian matrix.
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As discussed above, the KF is a statistical procedure, that repeatedly applies the Bayes rule to
create the distribution of the state vector. We will therefore employ the chi-square test to monitor
the goodness of the LBFGS updates as approximations of the covariances of known distributions.
The chi-square distribution provides a scalar valued test for multinormality: if x is an n-dimensional
Gaussian random vector with zero mean and covariance C, then xTC−1x∼�2n . We monitor how
well the approximative covariances fulfill this test, when a sample of vectors x has been generated
using a ‘true’ covariance matrix.

We start with a covariance Ctrue and sample a set of vectors xi from N(0,Ctrue), i =1, . . .,m.
Next, we compute the approximations C−1

iter of the inverse of the covariance using the LBFGS
optimization with an increasing number of iterations, and calculate qtest(i) :=xTi C

−1
iterxi , for every

i . These values are compared with the chi-square significance values at, for example, the 0.5,0.75,
and 0.95 levels, to see which percentage of the vectors sampled from the true distribution lies
inside those confidence regions of the respective approximative multinormal distributions. It is
known that for a linear-quadratic problem the BFGS algorithm forms an exact inverse Hessian
with full n updates; hence, the test values are expected to reach the true limits with n iterations.
Accordingly, we perform tests with both the limited memory BFGS and full BFGS, but with the
LBFGS method we stop at the convergence limit, when the stopping criterion has been chosen to be
close to machine precision. The full BFGS runs are performed with the LBFGS code, by keeping
all search directions in the memory. During LBFGS runs we keep all other search directions in
memory except the first one.

In the test examples, we use m=1000 samples and repeat the procedure 10 times to get the
mean values of the results.

We consider two different cases: in the first example, the true covariance Ctrue
i ∈Rm×m is

defined with singular values proportional to 1/k, where k=4,5, . . .,m+4. In the second test, the
covariance is adopted from the EKF process of the Lorenz95 case (for more details, see the next
Section), with 100 variables.

In the above tests we allow the BFGS optimization method to continue iteration beyond the
normal stopping point. If the typical stopping criteria are used, the LBFGS method will terminate
after about 45 iterations in these cases, with 100 variables. We also perform a true limited memory
chi-square test with LBFGS, where we stop the optimization process at the convergence limit.

The results for the first test case are given in Figure 1. With too few updates, the calculated
values are below the chi-square test values, hence, the approximate covariance gives a too narrow
distribution. With increasing updates, the test values are first exceeded, then we can see how the
correct values are reached with full updates. The choice of the initial inverse matrix B0 naturally
has an impact on the process. To demonstrate this, we use slightly different B0 values: B0=1.8I,
with BFGS and B0=1.55I, with LBFGS.

Next we adopt the covariance Cest from the EKF process in the Lorenz’95 case, with 100
variables. Then we perform the chi-square test over the VKF Step 1 (ii) where we approximate
(Cp)−1= (MCestMT+Cε)

−1 by using BFGS and LBFGS methods. The corresponding results for
the second test example, the Lorenz95 case, are plotted in Figure 2. The initial inverse Hessian
B0=8.5I, with BFGS and B0=8.0I, with LBFGS.
We can see that BFGS method relative quickly finds the right confidence limits, with a suitable

initial inverse Hessian. After the normal stopping point of the optimization process BFGS exceeds
its designated confidence limits, but afterwards converges to the right values as the iteration count
reaches the dimension of the problem. We note, that for practical applications the most important
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Figure 1. Plot of the chi-square test confidence limit estimates of the BFGS (-) and LBFGS (- -)
as a function of the iteration count.
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Figure 2. Plot of the chi-square test confidence limit estimates of the BFGS (-) and LBFGS (- -)
as a function of the iteration count.
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Figure 3. Plot of the chi-square test confidence limit estimates for LBFGS (-) over the VKF steps. The
LBFGS estimates are plotted as a function of the iteration count.

values are located near the normal stopping point of the optimization process, where the method
seems to provide reasonably accurate results.

Next, we study the accuracy of the covariance approximation over one full VKF time step,
that is, both Step 1 and Step 2. For simplicity, we use the same number of iterations during both
steps. Again, we take the covariance Cest and also xp from the EKF process in the Lorenz’95
case, with 100 variables. First we perform VKF Step 1 (ii) where we approximate (Cp)−1=
(MCestMT+Cε)

−1 by using LBFGS method. Then we use this approximation in VKF Step 2 (i) to
compute the VKF covariance approximation with the LBFGS method using initial inverse Hessian
B0=0.12I. In order to analyze the accuracy of the approximated covariance C−1

iter, we compute the
corresponding operations with the EKF method, namely EKF Steps 1 (ii), Step 2 (i) and Step 2
(iii) to obtain Ctrue. Finally, we perform similar chi-square tests for these covariances as earlier.
The results are shown in Figure 3. They indicate that the LBFGS method provides reasonably
accurate approximations after 40 iterations already. Please see the Appendix for analytical result
about the convergence rate of LBFGS.

5. NUMERICAL EXPERIMENTS

In this section, we test the VKF on two examples.
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5.1. An example with a large-scale linear evolution model

The first example is intended to test a large dimensional situation. We consider the following
forced heat equation model

�x
�t

=−�2x
�u2

− �2x
�v2

+�exp

[
− (u−2/9)2+(v−2/9)2

�2

]
(11)

where x is a function of u and v over the domain �={(u,v)|0�u,v�1} and ��0. We generate
synthetic data using (11) with �>0 and assume that the evolution model is given by (11) with
�=0, which gives a model bias. The problem can be made arbitrarily large scale via a sufficiently
fine spatial discretization. However, the well-behaved nature of solutions of (11) calls for further
experiments with a different test case.

We discretize the model (11) using a uniform N×N computational grid and the standard finite
difference schemes of both the time and spatial derivatives. This gives the time-stepping equation
xk+1=Mxk+f, where M= I−�tL. Here L is given by the standard finite difference discretization
of the two-dimensional Laplacian operator with homogeneous Dirichlet boundary conditions, �t
is chosen to guarantee stability, and f is the constant vector determined by the evaluation of the
forcing term in (11) at each of the points of the computational grid. We define Kk =K for all k in
(2), where K is the full weighting matrix, which has the following grid representation

1

16

⎡
⎢⎣
1 2 1

2 4 2

1 2 1

⎤
⎥⎦

Such an observation matrix could model, for example, an array of square heat sensors on the
bottom of a metal plate that have dimension 2/N×2/N with the edges aligned with the grid lines
and equally spaced at n2/64 locations.

We first generate synthetic data using the stochastic equations

xk+1=Mxk+f+N(0, (0.5�ev)2I) (12)

yk+1=Kxk+1+N(0, (0.8�obs)2I) (13)

with �= 3
4 in (11) and where �2

ev and �2obs are chosen so that the signal to noise ratios, defined by
‖x0‖2/n2�2ev and ‖Kx0‖2/n2�2obs, respectively, are both 50. The initial condition used for the data
generation is

[x0]i j =exp[−((ui −1/2)2+(v j −1/2)2)]
where (ui ,v j ) is the i j th grid point.

For the implementation of KF, we used the biased models

xk+1=Mxk+N(0,�2evI)

yk+1=Kxk+1+N(0,�2obsI)

with initial conditions x0=0 and Cest
0 =0.001I in Step 0 of the filter. We compare the results

obtained with VKF and KF, where n=2 j with j taken to be the largest positive integer so that
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Figure 4. Relative error curves for KF (∗) and VKF (o). The horizontal axis
represents the time of the observations.

memory issues do not arise in the MATLAB implementation for the standard KF. For the computer
on which the simulations were done (a laptop with 2G RAM memory and a 2.13GHz processor)
the largest such j was 5, making N =32. We note that in our implementation of the LBFGS
method, we have chosen to take only 10 LBFGS iterations with 9 saved vectors.

In our first test, the goal is only to show that the results obtained with VKF are comparable to
those obtained with KF. For this purpose, we present a plot in Figure 4 of the relative error vector,
which has kth component

[relative error]k := ‖xestk −xk‖
‖xk‖

for both VKF and the standard KF. We see that results obtained using the two approaches yield
quite similar relative error curves. Inside the VKF method, the initial inverse Hessian parameters
during approximation of Cest

k and (Cp
k )−1 were B−1

0 = I and B−1
0 =4000I, respectively for all k.

At the beginning of the filtering period KF provides more accurate results, but later the difference
decreases. Both curves eventually begin to increase once the forcing term, which is not used in the
state space model in KF, has a prominent effect on the data; in early iterations, it is overwhelmed
by the diffused initial temperature. We also mention that in the large number of test runs we did
using this model, our implementation of the VKF was on average about 10 times faster than the
standard KF.

For more comparisons, we perform similar tests using different values for �2ev and �2obs, namely,
so that the signal to noise ratios mentioned above are both 10. The same initial inverse Hessian
parameters were used inside the VKF method as in the previous test. The relative error curves are
exhibited in Figure 5. In this case, VKF provides better results at the beginning of the filtering
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Figure 5. Relative error curves for KF (∗) and VKF (o). The horizontal
axis represents the observation time.

period. This might be due to a regularization effect, implicitly implemented via the use of a
truncated LBFGS algorithm.

Lastly, we define �2ev and �2obs to be as in the original experiment, but take �=2. This has the
effect that the state space model used within VKF and KF is less accurate. In this case the initial
inverse Hessian parameters were B−1

0 = I for Cest
k and B−1

0 =2000I for (Cp
k )−1. We now obtain

the solution curves appearing in Figure 6. It seems that as the underlying evolution becomes less
accurate, while the noise level remains moderately low, KF provides better results.

Satisfactory results can also be obtained for much larger-scale problems. To show this, we take
j=8 which gives N =256, n=65536. Hence, the number of unknowns in this problem is then
65 536. Otherwise, we fix the parameter values to be the same as above. However, the stability
condition of the time-stepping scheme requires a much smaller step now. The respective error plot
is given in Figure 7. We cannot include any error curve for the standard KF because memory
issues prevent it on our computer for both N =128(n=16384) or N =256(n=65536). However,
in this case we compare results with the LBFGS-KF method [11]. We note that the results here
for VKF are rather similar to those presented for LBFGS-KF in [11].

5.2. An example with a small-scale, nonlinear evolution model

Our second example produces chaotic, unpredictable behavior. We consider the non-linear
Lorenz’95 model introduced and analyzed in [21, 22], given by

�xi

�t
= (xi+1−xi−2)xi−1−xi +8, i =1,2, . . .,40 (14)
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Figure 6. Relative error curves for KF (∗) and VKF (o). The horizontal
axis represents the observation time.
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Figure 7. Relative error curves for LBFGS-KF (∗) and VKF (o). The horizontal
axis represents the observation time.
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with periodic state space variables, that is, x−1= xn−1, x0= xn and xn+1= x1. In the present tests
we use the dimension n=40. The model shares many characteristics with realistic atmospheric
models (cf. [22]), and is often used as a test case for various weather forecasting schemes.

Next, we apply EKF, VKF, and VKS to the problem of estimating the state variables from
data generated using the nonlinear, chaotic evolution model (14). The data were generated by
integrating the model using a fourth-order Runge–Kutta (RK4) method with time step �t=0.025.
The discussion in [22] suggests that when using (14) as a test example for weather forecasting
algorithms, the characteristic time scale is such that the above �t corresponds to 3 h. The ‘truth’
was generated by taking 42920 time steps of the RK4 method, that is, 5365 days. The initial state
for the data generation was x20=8+0.008 and xi =8 for all i �=20.

The observed data are then computed using these true data. In particular, after a 365 day long
initial period, the true data is observed at every other time step and at the last 3 grid points in each
set of 5; that is, the observation matrix is m×n, with nonzero entries

[K]rs =
{
1, (r,s)∈{(3 j+i,5 j+i+2)|i =1,2,3, j=0,1, . . .,7}
0 otherwise

The observation error is simulated using Gaussian noise N(0, (0.15�clim)2I) where �clim is a
standard deviation of the model state used in climatological simulations, �clim :=3.6414723. The
data generation codes were written in MATLAB and were transcribed by us from the scilab
codes written by the author of [23].

For the application of EKF and VKF, we employ the coupled system

xk+1=M(xk)+N(0, (0.05�clim)2I) (15)

yk+1=Kxk+1+N(0, (0.15�clim)2I) (16)

where M(xk) is obtained by taking two steps of the RK4 method applied to (14) from xk with
time step 0.025. We note that this coincides with the data generation scheme, if the noise term is
removed and the above initial condition is used. Owing to the fact that M is a nonlinear function,
EKF must be used (see Equations (3) and (4). As K :=K in (4) is linear, Kk =K for all k in (5).
However, a linearization of the nonlinear evolution function M is required. The computation of
Mk in (5) is performed by a routine in one of the scilab codes mentioned above, adopted for
our use in MATLAB.

The initial condition is defined by [xt0]i =[xtruet0 ]i +N(0, (0.3�clim)2) for all i , and the initial
covariance was taken to be Cest

0 = (0.13�clim)2I. In our implementation of the LBFGS method
within VKF, we computed 15 iterations with 14 saved vectors and the initial inverse Hessian
parameters were B−1

0 =0.15I for Cest
k and B−1

0 =10I for (Cp
k )−1.

To present the accuracy of the state estimates xestk obtained by EKF, VKF, and VKS we plot the
vector with components

[rms]k =
√

1
40‖xestk −xtruek ‖2 (17)

in Figure 8. We observe that all the three methods yield comparable results.
In order to compare the forecasting abilities of the two approaches, we compute the following

forecast statistics at every 8th observation. Take j ∈I :={8i |i=1,2, . . .,100} and define

[forcast error j ]i = 1
40‖M4i (xestj )−xtruej+4i‖2, i =1, . . .,20 (18)
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Figure 8. Plot of residual mean-square error for VKF (o), EKF (∗) and VKS (	) applied to (14).

whereMn denotes a forward integration of the model by n time steps with the RK4 method. Thus,
this vector gives a measure of forecast accuracy given by the respective filter estimate up to 80
time steps, or 10 days out. We may define the forecast skill vector

[forecast skill]i = 1

�clim

√
1

100

∑
j∈I

[forecast error j ]i , i =1, . . .,20 (19)

plotted in Figure 9. The results show that the forecasting skills of EKF and VKF are quite similar.
This suggests that the quality of the VKF estimates is as high as those obtained using EKF. The
forecast of VKS method is computed lag=5 observation times afterwards and therefore it actually
is not a forecast, but it demonstrates the improvement of the accuracy of retrospective analysis.
Figure 9 also illustrates the fact that the Lorenz95 model (14) is truly chaotic.

In our test cases a linear or linearized model matrix Mk has been available. This may not true
in many important examples. But in numerical weather forecasting, for example, a tangent linear
code often is available, providing an efficient way to compute the matrix vector product Mkx.

6. DISCUSSION

Fisher and Courtier [13] adopt several low-rank corrections derived from a 3D-Var minimization
with LBFGS to approximate background and forecast error covariances, and also use them for
preconditioning the minimizations. They observe that such methods perform reasonably well,
but that in a 2D weather model, even 52 leading singular vectors fail to capture most of the
difference between the variances of background and analysis error. Veersé et al. [8] adopt diagonal
Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2009)
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Figure 9. Plot of forecast skill vector for VKF (o) and EKF (∗) applied to (14). This plot also contains a
retrospective forecast skill of the VKS (	) method.

preconditioning based on LBFGS, too, and also apply it to the inverse Hessian approximation.
They do not involve the Kalman formulas that would propagate the covariance in time.

VKF is related in many ways to various reduced rank KFs, see [2], [5], or reduced-order KFs
and proper orthogonal decomposition (POD) filters, see [7]. Like these methods, VKF uses a
low-dimensional subspace to approximate the forecast and analysis error covariance matrices.

Dee [2] and Fisher [5] select a suitable subspace for the low-rank correction beforehand and
keep it over the assimilation window. Tian et al. [7] use a POD of an ensemble for spanning
the four-dimensional search basis of an ensemble method and save considerably in the dimension
of the control space. They are able to carry out a minimization over a set of entire 4D model
trajectories, but they keep the same ensemble for the entire assimilation window, unlike VKF.

A popular alternative to variational data assimilation is the family of many different EnKF
algorithms, first proposed in [10]. EnKFs avoid the need to use tangent linear and adjoint codes,
and rely instead on generating an ensemble of state vectors that are then propagated with the full
nonlinear evolution model forward in time.

Ensemble methods are relatively simple to implement, although many advanced versions use
sophisticated manipulation to glean information about error covariance from the ensemble. Gejadze
et al. [6] have implemented an ensemble method with a BFGS search direction and gradient basis.
Their formulation of the problem is control theoretic, just like in 4D-Var, which renders the control
problem to an initial state control, unlike the final state control formulation adopted by VKF and
EKF alike. Their method is capable of handling strong nonlinearities in the model and produce very
good approximate analysis error covariance matrices. VKF is even more similar to the Maximum
Likelihood Ensemble Filter MLEF of Zupanski [24] in its principle of maximizing the likelihood
in Step 2 (i) of VKF. MLEF, like VKF, follows the mode of the set of search directions, rather than
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the mean. However, unlike VKF, it uses a fixed set of search directions throughout the assimilation
window.

EnKFs like many Reduced Rank KFs tend to suffer from covariance leaks. This means that if
the size of the sample, or the dimension of the reduced basis, is small compared with the dimension
of the state vector, progressively less and less of true model error covariance stays in the subspace
spanned by the ensemble, or the low-rank subspace, see [9]. The reasons to this phenomenon are
not fully understood but it seems plausible that non-linear system dynamics simply do not leave
any low-dimensional sub-space invariant, even if a basis of that subspace is transformed with the
nonlinear model. VKF, on the other hand, compensates for this defect by discontinuously updating
its subspace by picking up new 3D-Var and 4D-Var minimization directions every time there are
new observations to process, or at any pre-defined time intervals.

The computational complexity of VKF closely parallels that of 4D-Var, and even that of EnKFs.
In its Step 1 (i) VKF simply computes a short forecast with the full nonlinear model. In Step 1
(ii) an artificial 4D-Var minimization is carried out with fixed tangent linear and adjoint models.
This is otherwise similar to the inner minimization loop of an incremental formulation of 4D-
Var, see [25], except that the minimization is formulated as a final state control problem. It can
therefore be expected to converge in some 50 iterations in an operational weather model. Since
the approximate error covariance matrix is assembled using the LBFGS update formula in the
course of the minimization, there is no extra cost compared with incremental 4D-Var, apart from
conducting the minimization with the LBFGS method, as opposed to the method of Conjugate
Gradients, which requires that a set of search directions and gradients is stored and manipulated.

In Step 2, the essence of VKF involves just a single 3D-Var minimization in Step 2 (i) again
using LBFGS. We can therefore conclude that the computational complexity of VKF is similar to
the classical 4D-Var method, see [16], where there is only a single minimization loop that uses
LBFGS minimization, instead of the nested loop structure of incremental 4D-Var.

VKF also mimics the algorithmic structure of 4D-Var rather faithfully. It involves a 4D-Var-type
sequence of steps, including computing the tangent linear and adjoint models during every forecast
step. Linearization does not need to be repeated, since the time-dependent minimization is carried
out with the linearized model by definition in Step 1 (ii). Repeated linearizations may be needed
in Step 2 (i), but this will involve only the observation operator, as this step mimics 3D-Var and
the forecast model is not involved. If the tangent linear and adjoint models are available because
of a previously adopted 4D-Var, VKF will be relatively straightforward to implement.

Parallelization is an issue not discussed in the current paper, but please see [26] for some analysis.
The formulation of VKF used here is a serial algorithm because of the sequential minimizations
involved, although the forecast model can obviously be run in parallel, just as in current operational
practice. In this respect, too, VKF is a close relative to current implementations of 4D-Var.
However, it is possible to replace Step 1 (ii) by propagating 3D-Var minimization directions
only forward in time, as described in [26]. Another possibility is to adopt an Ensemble version
of VKF.

Some recent Ensemble Kalman methods have adopted a hybrid approach, where an EnKF
is used to produce a dynamic error covariance matrix, while the state is transported with a
4D-Var method to retain its smoothness [27]. An earlier hybrid method combines a 3D-Var
minimization with an EnKF [28]. In hybrid methods, the error covariance matrix is a weighted
combination of an EnKF error covariance matrix and a static background error covariance matrix.
In such a case, the ensemble can be computed in parallel, but the variational assimilation remains
sequential.
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VKF can be seen as a hybrid method, too, but a deterministic one. It possesses characteristics very
similar to hybrid EnKF methods, and the parallel version discussed in [26] behaves computationally
in a manner very close to the hybrid method of [27].

Hybrid methods involving 4D-Var will need a tangent linear and adjoint model, just like VKF.
As to operational implementation, we feel that VKF is well worth implementing if the NWP
model used has already been provided with a tangent linear and an adjoint code. In this case,
the modifications needed to the analysis suite are mostly just some matrix and vector algebra.
If 4D-Var has not been implemented, and the tangent linear and adjoint codes have not been
produced, EnKFs will definitely be easier to implement and may better meet the needs of such NWP
centers.

7. CONCLUSIONS

The standard implementations of KF and EKF become exceedingly time and memory consuming
as the dimension of the underlying state space increases. Several variants of KF and EKF have been
proposed to reduce the dimension of the system, thus making implementation in high dimensions
possible. The reduced rank KF or reduced order EKF (see, e.g. [2–8, 14, 15]) project the dynamical
state vector of the model onto a lower-dimensional subspace. The success of this approach depends
on a judicious choice of the reduction operator. Moreover, since the reduction operator is typically
fixed in time, they can suffer from ‘covariance leaks’ [9]. A typical cause to this is that a nonlinear
system does not generally leave any fixed linear subspace invariant.

In this paper, we propose the use of the limited memory BFGS (LBFGS) minimization method
in order to circumvent the computational complexity and memory issues of standard KF and EKF.
In particular, we replace the n×n, where n is the dimension of the state space, covariance matrices
within KF and EKF with low storage approximations obtained using LBFGS. The large-scale
matrix inversions required in KF and EKF implementations are also approximated using LBFGS.
We call the resulting method the VKF. In order to test these methods, we consider two test cases:
a large-scale linear and a small-scale nonlinear one. The VKF is applied in the large-scale linear
case and is shown to be effective. In fact, our method exceeds the speed of standard KF by an order
of magnitude, and yields comparable results when both methods can be applied. Furthermore, it
can be used on much larger-scale problems. In the nonlinear, small scale case, VKF and VKS are
implemented and are also shown to give results that are comparable to those obtained using standard
EKF. We believe that these results suggest that our approach deserves further consideration for
large-scale linear and non-linear data assimilation problems. We note that in truly high-dimensional
non-linear cases we need a tangent linear and corresponding adjoint code of the evolution model
in order to get full benefits of the VKF method. In many important application fields, for example,
in numerical weather forecasting, such codes are already available both for the evolution model
and for the observation model.

APPENDIX A

For completeness, we present the LBFGS method for a quadratic minimization and the limited
memory formulations for the Hessian and inverse Hessian matrices. The LBFGS Minimization
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Algorithm for q(u)= 1
2 〈Au,u〉−〈b,u〉 reads as

� :=0;
u0 := initial guess;
B−1
0 := initial inverse Hessian approximation;

begin quasi-Newton iterations
g� :=∇q(u�)=Au�−b;
B−1

� := LBFGS approximation to A−1;
v� =B−1

� g�;
�� =〈g�,v�〉/〈v�,Av�〉;
u�+1 :=u�−��v�;

end quasi-Newton iterations

A.1. The limited memory approximation for A−1

The BFGS matrix B−1
� is computed using recursion

B−1
�+1=VT

�B
−1
� V�+��s�s

T
�

where

s� := u�+1−u�

d� := ∇q(u�+1)−∇q(u�)

�� := 1/dT� s�

V� := I−��d�sT�

However, for large-scale problems the storage of the full matrix B−1
� is infeasible, which moti-

vates the limited storage version of the algorithm. At iteration �, suppose that the j vector pairs
{si ,di}�−1

i=�− j are stored. Then the LBFGS approximation of the inverse Hessian is given by

B−1
� = (VT

�−1 . . .VT
�− j )B

−1
0 (V�− j . . .V�−1)

+��− j (V
T
�−1 . . .VT

�− j+1)s�− jsT�− j (V�− j+1 . . .V�−1)

+��− j+1(V
T
�−1 . . .VT

�− j+2)s�− j+1sT�− j+1(V�− j+2 . . .V�−1)

+ ...

+��−1s�−1sT�−1 (A1)

Assuming exact arithmetic and that j=n, we have that u� converges to the unique minimizer of
q in at most n iterations, and if n iterations are performed B−1

n+1=A−1 [18]. In the implementation
in this paper, however, j�n and LBFGS iterations are stopped once a prespecified maximum
number of iterations or gradient norm stopping tolerance is reached.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2009)
DOI: 10.1002/fld



H. AUVINEN ET AL.

It is proven in [29] that for quadratic minimization problems and exact line searches, LBFGS is
equivalent to preconditioned conjugate gradient with fixed preconditioner B0. Thus, its convergence
rate is given by [18]

‖uk−u∗‖2
Ã
�

(
	N−k−	1
	N−k+	1

)2

‖u0−u∗‖2
Ã

where u∗ =A−1b, Ã=B1/2
0 AB1/2

0 is N×N with eigenvalues 	1�	2� · · ·�	N , and ‖v‖Ã=vT Ãv.

A.2. A low storage approximation of A

The required formulas are given in [30], and take the following form. Let

S� =[s�− j , . . .,s�−1], D� =[d�− j , . . .,d�−1]
then

B� =
�I−[
�S� D�]
[


�S
T
�S� L�

LT
� −D�

]−1[

�S

T
�

DT

]
(A2)

where L� and D� are the j× j matrices

(L�)i, j =
{
sT�− j−1+id�− j−1+ j if i > j

0 otherwise

and

D� =diag(sT�− jd�− j , . . .,sT�−1d�−1)

We note that when 
� =1 for all � in (A2), we have an exact equality between B� in (A2) and (A1).
However, we have found that a more accurate Hessian approximation is obtained if, following
[18], we use the scaling 
� =dT�−1d�−1/sT�−1d�−1 instead.

We note that the middle matrix in (A2) has size 2 j×2 j , which is of reasonable size provided
j is not too large, and its inversion can be carried out efficiently using a Cholesky factorization
that exploits the structure of the matrix (for details see [30]).
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LARGE-SCALE KALMAN FILTERING USING
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Abstract. The standard formulations of the Kalman filter (KF) and extended Kalman filter (EKF) require the
storage and multiplication of matrices of sizen × n, wheren is the size of the state space, and the inversion
of matrices of sizem × m, wherem is the size of the observation space. Thus when bothm andn are large,
implementation issues arise. In this paper, we advocate theuse of the limited memory BFGS method (LBFGS) to
address these issues. A detailed description of how to use LBFGS within both the KF and EKF methods is given.
The methodology is then tested on two examples: the first is large-scale and linear, and the second is small scale and
nonlinear. Our results indicate that the resulting methods, which we will denote LBFGS-KF and LBFGS-EKF, yield
results that are comparable with those obtained using KF andEKF, respectively, and can be used on much larger
scale problems.
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1. Introduction. The Kalman filter (KF) for linear dynamical systems and the extended
Kalman filter (EKF) for nonlinear but smoothly evolving dynamical systems are popular
methods for use on state space estimation problems. As the dimension of the state space
becomes very large, as is the case, for example, in numericalweather forecasting, the stan-
dard formulations of KF and EKF become computationally intractable due to matrix storage
and inversion requirements.

Computationally efficient variants of KF and EKF have been proposed for use on such
large-scale problems. The Reduced Rank Kalman Filter or Reduced Order extended Kalman
filter (see, e.g., [4, 7, 30]) project the dynamical state vector of the model onto a lower di-
mensional subspace. The success of the approach depends upon a judicious choice of the
reduction operator. Moreover, since the reduction operator is typically fixed in time, the
dynamics of the system may not be correctly captured; see [9] for more details.

In the context of numerical weather forecasting, a great deal of attention has been given
to the filtering problem. The current state of the art is 4D-Var (see, e.g., [9, 23]), which uti-
lizes a variational formulation of an initial value estimation problem [11, 14, 17]. 4D-Var has
been shown to be identical to a Kalman smoother when the modelis assumed to be perfect
[16]. The resulting quadratic minimization problem is very large-scale (104-107 unknowns)
and so efficient numerical optimization methods are needed.Similar to the methods in the
previous paragraph, the partial orthogonal decompositionis used in [5] to reduce the dimen-
sionality of the 4D-Var minimization problem. A more standard approach is to implement
a preconditioned conjugate gradient method [8, 12, 22, 26]. In this context, a number of
different preconditioners have been tested.

In this paper, we take a different approach. In particular, we focus our attention on the
Kalman filter itself, using the limited memory BFGS (LBFGS) [22] iterative method for the
required large-scale matrix storage and inversion within KF and EKF. More specifically, sup-
poseAx = b is a system, with symmetric positive definite matrixA, that requires solution,
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and or a low storage approximation ofA−1 is needed, within the KF or the EKF algorithms.
In such cases, LBFGS is a natural choice, since it generates both a sequence of approxima-
tions ofA−1b, and a sequence of symmetric positive definite matrices{B−1

k } approximating
A−1. This choice is further supported by the result thatA−1b is reached within a finite num-
ber of LBFGS iterations (assuming exact arithmetic) [20, 21], and that ifk and full memory
BFGS is usedB−1

n+1 = A−1 [22, Chapter 8]. A result regarding the accuracy of the LBFGS
Hessian approximations toA−1 is also given in [21]; it depends upon the eigenvalues of
A1/2BkA1/2; see AppendixA. The use of LBFGS and its success in the examples that we
consider can be motivated by the fact that the covariance matrices being approximated are
approximately low rank. In applications of interest [6], covariance information is contained
in slowly varying, low dimensional subspaces, making accurate low-rank approximations
possible.

The idea of using the LBFGS method in variational data assimilation is not new; see,
e.g., [10, 13, 17, 25, 27, 28, 29, 31]. In many of these references, the LBFGS Hessian or
inverse Hessian is used as a preconditioner for conjugate gradient iterations, and even as an
approximate error covariance matrix for the background term in 3D- and 4D-Var variational
data assimilation. However, in the method presented here, the LBFGS method is further used
for matrix inversion, in order to propagate effectively thestate estimate covariance informa-
tion forward in time. Moreover, we apply our methodology to the Kalman filter itself, not
to the variation formulation used by the 3D- and 4D-Var methods [17]. LBFGS can also be
incorporated in a fully variational formulation of the Kalman filter; see [2].

As has been stated, the approach presented here uses the LBFGS algorithm directly
within the context of the Kalman filter. The equivalence of LBFGS and a certain precon-
ditioned conjugate gradient method (see [21] and AppendixA) suggests that our approach
and those cited above are similar. One advantage of the citedapproaches, however, is that
they can be incorporated into existing 3D- and 4D-Var codes used in practice.

An application of a similar methodology that could be used inconjunction with 3D-
and 4D-Var is presented in [1, 2]. The aim of the current paper is to demonstrate the use of
LBFGS within the standard (non-variational) formulation of the linear or extended Kalman
filter.

The paper is organized as follows. We present KF and EKF in Section 2, and then in
Section3 we present LBFGS-KF and LBFGS-EKF. We test these methods with two numer-
ical experiments in Section4. Conclusions are then given in Section5, and implementation
details of the LBFGS algorithm are contained in AppendixA.

2. The Kalman filter. We consider the coupled system of discrete, linear stochastic
difference equations given by

xk = Mkxk−1 + εp
k,(2.1)

yk = Kkxk + εo
k.(2.2)

In the first equation,xk denotes then×1 state of the system at timek; Mk is then×n linear
evolution operator; andεp

k is a n × 1 random vector known as the prediction error and is
assumed to characterize errors in the model and corresponding numerical approximations. In
the second equation,yk denotes them×1 observed data;Kk is them×n linear observation
operator; andεo

k is anm×1 random vector known as the observation error. The prediction er-
ror εp

k and observation errorεo
k are assumed to be independent and normally distributed, with

zero means and symmetric positive definite covariance matricesCεp
k

andCεo
k
, respectively.

We assume, in addition, that we have in hand estimates of boththe statexest
k−1 and its

positive definite covariance matrixCest
k−1 at timek − 1. Moreover, we assume thatxest

k−1, εp
k,
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andεo
k are independent random vectors. The goal is to then estimatexest

k and its covariance
Cest

k . In Bayesian terms, equation (2.2) provides the likelihood function in the estimation
step, while (2.1) gives the prior. By the assumptions onεp

k andεo
k, the prior mean and the

prior covariance matrix are directly obtained from (2.1),

xp
k = Mkxest

k−1,

Cp
k = MkCest

k−1M
T
k + Cεp

k
.

The full negative-log posterior density given (up to an additive constant) by Bayes’ theorem,
takes the form

ℓ(x|yk) =
1
2
(yk −Kkx)T C−1

εo
k
(yk −Kkx) +

1
2
(x− xp

k)T (Cp
k)−1(x− xp

k),

and hence, we have

xest
k = arg min

x
ℓ(x|yk),(2.3)

Cest
k = ∇2ℓ(x|yk)−1.(2.4)

Equations (2.3) and (2.4) motivate the variational Kalman filter, which is the subject of [1].
However, they can also be used to derive the Kalman filter. In particular, noting that (2.3) and
(2.4) can be alternatively written (see [24] for detail)

xest
k = xp

k + Gk(yk −Kkx
p
k),

Cest
k = Cp

k −GkKkC
p
k,

where

Gk = Cp
kK

T
k (KkC

p
kK

T
k + Cεo

k
)−1,

we have the following standard formulation of the Kalman filter.

The Kalman Filter
Step 0:Select initial guessxest

0 and covarianceCest
0 , and setk = 0.

Step 1:Compute the evolution model estimate and covariance:
(i) Computexp

k = Mkxest
k−1;

(ii) ComputeCp
k = MkCest

k−1M
T
k + Cεp

k
.

Step 2:Compute the Kalman filter estimate and covariance:
(i) Compute the Kalman GainGk = Cp

kK
T
k (KkC

p
kK

T
k + Cεo

k
)−1;

(ii) Compute the Kalman filter estimatexest
k = xp

k + Gk(yk −Kkx
p
k);

(iii) Compute the estimate covarianceCest
k = Cp

k −GkKkC
p
k.

Step 3:Updatek := k + 1 and return to Step 1.
Note that it is typical to take the initial covarianceCest

k to be diagonal.

The extended Kalman filter (EKF) is the extension of KF when (2.1), (2.2) are replaced by

xk = M(xk−1) + εp
k,(2.5)

yk = K(xk) + εo
k,(2.6)

whereM andK are (possibly) nonlinear functions. EKF is obtained by the following simple
modification of the above algorithm: in Step 1 (i), use instead xp = M(xest

k ), and define

(2.7) Mk =
∂M(xest

k−1)
∂x

, and Kk =
∂K(xp)

∂x
.
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We note thatMk andKk can be computed or estimated in a number of ways. For example,
the numerical scheme that is used in the solution of either the evolution or the observation
model defines a tangent linear code, which can be used to compute (2.7); see, e.g., [12, 15].
However, a more common, but also more computationally expensive, approach is to use finite
differences to approximate (2.7).

3. Using LBFGS for large-scale Kalman filtering. When the model sizen is large,
the Kalman filter is known to be prohibitively expensive to implement. This motivates sev-
eral alternative approaches—most notably the 4D-Var method—used in large-scale appli-
cations such as numerical weather forecasting [8, 9, 11, 12, 17, 23, 26] and oceanography
[4]. We instead focus our attention on the Kalman filter itself,using the limited memory
BFGS (LBFGS) [22] iterative method for the required large-scale matrix storage and inver-
sion within KF and EKF.

First, we give a general description of the LBFGS method for minimizing

(3.1) q(u) =
1
2
〈Au,u〉 − 〈b,u〉,

whereA is ann× n symmetric positive definite matrix andb is ann× 1 vector. It is given
by

The LBFGS method for quadratic minimization
ν := 0;
u0 := initial guess;
B−1

0 := initial inverse Hessian approximation;
begin quasi-Newton iterations

gν := ∇q(uν) = Auν − b;
vν = B−1

ν gν ;
τν = 〈gν ,vν〉/〈vν ,Avν〉;
uν+1 := uν − τνvν ;
B−1

ν := LBFGS approximation toA−1;
end quasi-Newton iterations

In all of the examples considered in this paper,B0 was taken to be the identity matrix.
The limited memory formulations forB−1

ν , and corresponding formulas forBν , are found in
Appendix append1. The stopping criteria for the LBFGS iterations is discussed in Section4.

Some insight into the convergence properties of the LBFGS method can be obtained
by an appeal to its connection with the well-known conjugategradient (CG) method, which
described in detail in [20, 21, 22, Section 9.1]. In particular, CG can be formulated as amem-
orylessBFGS method. Moreover, in the presence of exact arithmetic,LBFGS and iterates
from a certain preconditioned CG iteration are identical [21], and hence finite convergence is
guaranteed. Thus it seems reasonable to suspect that LBFGS will have convergenceproperties
similar to that of CG, which are well-known and have been extensively studied. In particu-
lar, the early convergence of CG iterates within the dominant subspaces corresponding to the
largest eigenvalues of the coefficient matrix is likely shared by LBFGS iterates.

Next, we describe how LBFGS was used to make the Kalman filter more efficient. We
make the reasonable assumption that multiplication by the evolution and observation matrices
Mk andKk, and by the covariance matricesCεp

k
andCεo

k
, is efficient, both in terms of

storage and CPU time. Additional computational challengesarise for sufficiently largen due
to the storage requirements forCest

k , which becomes a full matrix as the iterations proceed.
The same is also true forCp

k. However, given that

(3.2) Cp
k = MkCest

k MT
k + Cεp

k
,
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storage issues are restricted to those forCest
k ; typically the matrixCεp

k
is assumed to be

diagonal.
A low storage approximation ofCest

k can be obtained by applying the LBFGS algorithm
to the problem of minimizing (3.1) with A = Cest

k andb = 0. The LBFGS matrixB−1
ν

is then a low storage approximation of(Cest
k )−1 and formulas forCest

k from [3]—and also
found in AppendixA.2—can be used.

Additionally, whenm is sufficiently large the computation of(KkC
p
kK

T
k +Cεo

k
)−1(yk−

Kkx
p
k) that is required in Step 2, (ii) of the Kalman filter iterationwill be prohibitively ex-

pensive.
For the approximation of(KkC

p
kK

T
k +Cεo

k
)−1(yk −Kkx

p
k), we setA = KkC

p
kK

T
k +

Cεo
k

andb = yk −Kkx
p
k in (3.1) and apply LBFGS to the problem of minimizing (3.1).

The LBFGS Kalman filter method can now be presented.

The LBFGS Kalman Filter (LBFGS-KF)
Step 0:Select initial guessxest

0 and covarianceB# = Cest
0 , and setk = 0.

Step 1:Compute the evolution model estimate and covariance:
(i) Computexp

k = Mkxest
k ;

(ii) DefineCp
k = MkB#MT

k + Cεp
k
.

Step 2:Compute the Kalman filter estimate and covariance:
(i) DefineA = (KkC

p
kK

T
k +Cεo

k
) andb = yk−Kkx

p
k in (3.1) and compute

the LBFGS approximationsB∗ of A−1 andu∗ of A−1b.
(ii) Compute the LBFGS-KF estimatexest

k+1 = xp
k + Cp

kK
T
k u∗;

(iii) Define A = Cp
k−Cp

kK
T
k B∗KkC

p
k(≈ Cest

k+1) andb = 0 in (3.1) and compute
the LBFGS approximationB# of Cest

k+1 using (A.2).
Step 3:Updatek := k + 1 and return to Step 1.

All operations with theCest
k andA−1 are done using the LBFGS formulas; see Ap-

pendixA. As a result, LBFGS-KF is much less memory and computationally intensive than
KF making its use on large-scale problems more feasible. Specifically, the storage require-
ments for the LBFGS estimate ofCest

k are on the order of2nℓ + 4n, whereℓ is the number
of stored vectors in LBFGS (typically 10-20), rather thann2 + 4n [22, Section 9.1], and the
computational cost for both obtaining and using this estimate is ordern. Furthermore, the
inversion of them× m matrixKkC

p
kK

T
k +Cεo

k
is carried out in orderm operations and its

storage requirements are on the order of2mℓ + 4m rather thanm2 + 4m [22].
The accuracy of the LBFGS covariance approximations is an important question. An

analysis addressing this question in the similar variational setting is performed in [2]. We
believe that the results of that analysis should be similar for LBFGS-KF. Thus, we choose not
to repeat it here.

In the first example considered in the numerical experiments, LBFGS-KF and KF are
compared and it is noted that LBFGS-KF is roughly 10 times faster, in terms of CPU time,
than KF when applied to the same problem. Moreover, using ourMATLAB implementation,
LBFGS-KF can be used on significantly larger-scale problems.

As we have mentioned, in our implementations of KF and LBFGS-KF, the covariance
matricesCεp

k
andCεo

k
are taken to be diagonal. This is not a necessary requirement. More

structured covariances can be used, containing important prior information [17], however in
order to maintain the computational efficiency and low storage requirements of LBFGS-KF,
Cεp

k
andCεo

k
must be comparable toMk, B# andKk, B∗, respectively, in terms storage

requirements and the computational cost required for theirmultiplication.
In the next section, we test the algorithm on two examples. The first is large-scale and

linear, while the second is small-scale and nonlinear. The purpose of these experiments is
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to demonstrate that LBFGS-KF and LBFGS-EKF are effective algorithms. We leave their
comparison with other state of the art methods for approximate Kalman filtering [5, 8, 9, 11,
12, 14, 17, 23, 26] for a later paper.

4. Numerical experiments. In this section, we present numerical results that justify
the use of LBFGS-KF. In particular, we apply the method to twoexamples. The first is
sufficiently large-scale that the use of LBFGS-KF is justified. In particular, we assume the
following forced heat equation evolution model

(4.1)
∂x

∂t
= −∂2x

∂u2
− ∂2x

∂v2
+ α exp

[
− (u− 2/9)2 + (v − 2/9)2

σ2

]
,

wherex is a function ofu andv over the domainΩ = {(u, v) | 0 ≤ u, v ≤ 1} andα ≥ 0. In
our experiment, we will generate synthetic data using (4.1) with α > 0 and assume that the
evolution model is given by (4.1) with α = 0, which gives a model bias. The problem can
be made as large-scale as one wants via the choice of a sufficiently fine discretization of the
domainΩ.

However, the well-behaved nature of solutions of (4.1)—in particular the fact that its so-
lutions tend to a steady state—makes further experiments with a different test case a necessity.
For this reason, we also test our method on a second example, which contains chaotic solu-
tions, and hence has unpredictable behavior. In particular, we consider the simple non-linear
model introduced and analyzed in [18, 19] and which is given by

(4.2)
∂xi

∂t
= (xi+1 − xi−2)xi−1 − xi + 8, i = 1, 2, . . . , 40,

with periodic state space variables, i.e.,x−1 = xn−1, x0 = xn andxn+1 = x1, n = 40.
Then (4.2) is a chaotic dynamical system (cf. [19]), which is desirable for testing purposes.
As the model is computationally light and shares many characteristics with realistic atmo-
spheric models (cf. [19]), it is commonly used for testing different data analysis schemes for
weather forecasting.

4.1. An example with a large-scale linear evolution model.We perform our first ex-
periments using model (4.1) using a uniformN × N computational grid and the standard
finite difference discretization of both the time and spatial derivatives, which yields the fol-
lowing time stepping equationxk+1 = Mxk + f , whereM = I−∆tL. HereL is given by
the standard finite difference discretization of the two-dimensional Laplacian operator with
homogeneous Dirichlet boundary conditions,∆t is chosen to guarantee stability, andf is the
constant vector determined by the evaluation of the forcingterm in (4.1) at each of the points
of the computational grid.

We defineKk = K for all k in (2.2), whereK is a matrix modeling an array of square
sensors on the computational grid. Assuming that each sensor collects a weighted average
of the state values in a3 × 3 pixel region centered at every8th pixel in both thex andy
directions,K will have dimension(n/64)×n. We assume, further, that the weighted average
in the3× 3 region is defined by

1
16

 1 2 1
2 4 2
1 2 1

 .

In our first test, we generate synthetic data using the linearstochastic equations

xk+1 = Mxk + f + N(0, (0.5σev)2I),
yk+1 = Kxk+1 + N(0, (0.8σobs)2I),
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with α = 3/4 in (4.1) and whereσ2
ev andσ2

obs are chosen so that the signal to noise ratios,
defined by‖x0‖2/n2σ2

ev and‖Kx0‖2/n2σ2
obs respectively, are both 50. The initial condition

used for the data generation was

[x0]ij = exp[−((ui − 1/2)2 + (vj − 1/2)2)],

where(ui, vj) is theijth grid point.
In our implementation of KF, we used the biased models

xk+1 = Mxk + N(0, σ2
evI),(4.3)

yk+1 = Kxk+1 + N(0, σ2
obsI),(4.4)

with initial conditionsx0 = 0 andCest
0 = 0.001I in Step 0 of the filter. We compare the

results obtained with the LBFGS-KF and KF, whereN = 2j with j taken to be the largest
positive integer so that memory issues do not arise in the MATLAB implementation for the
standard KF. For the computer on which the simulations were done (a laptop with 2G RAM
memory and a 1.8 GHz Core 2 Duo processor) the largest suchj was 5, makingN = 32 and
n = 1024. We note that in our implementation of the LBFGS method within LBFGS-KF, we
have chosen to take only 10 LBFGS iterations with 9 saved vectors. These choices may seem
crude at first, however, more stringent stopping tolerancesand/or a larger number of stored
vectors did not appreciably affect the results for the examples that we considered.

The purpose of this test is to show that the results obtained with LBFGS-KF are compa-
rable results with those obtained with KF. To do this, we present a plot in Figure4.1 of the
relative error vector, which haskth component

[relative error]k :=
‖xest

k − xk‖
‖xk‖ ,

for both the LBFGS Kalman Filter and for the standard Kalman Filter. We see that results
obtained using the two approaches yield similar, though notidentical, relative error curves.
Both curves eventually begin to increase once the forcing term, which is not used in the state
space model in KF, has a prominent effect on the data; in earlyiterations, it is overwhelmed
by the diffused initial temperature. We also mention that inthe large number of test runs that
we did using this large-scale model, our implementation of the LBFGS-KF was on average
about 10 times faster than was the standard KF.

Additionally, in Figure4.2, we present the filter estimates obtained from both KF and
LBFGS-KF together with the true state values at time points 35 and 70. Note that in the
early iterations of the filter, represented by time point 35,the filter does not detect the source
because it is overwhelmed by the initial temperature and is not contained in the model (4.3),
(4.4). However, the source is detected once the initial temperature has sufficiently dissipated.

For a thorough comparison, we perform the same test using values forσ2
ev andσ2

obs that
yield signal-to-noise ratios of 10. The relative error curves in Figure4.3 result. Interest-
ingly, LBFGS-KF provides better results at the beginning ofthe filtering period than does
KF. This can be explained, we believe, by the fact that a regularization of sorts is implicitly
implemented via the use of a truncated LBFGS algorithm.

Finally, we chooseσ2
ev andσ2

obs as in the original experiment, but takeα = 2, which
has the effect of making the state space model that is used within LBFGS-KF and KF less
accurate. When this is done, we obtain the solution curves appearing in Figure4.4. Thus
it seems that as the underlying evolution model becomes lessaccurate and the noise level
remains moderately low KF provides better results
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FIG. 4.1.Relative error curves for KF (∗) and LBFGS-KF (o). The horizontal axis represents the observation time.

In order to show that satisfactory results can also be obtained for much larger scale prob-
lems, we takej = 8 which givesN = 256 andn = 65536. We take all other parameter
values to be those of the original experiment. Note, however, that the stability condition of
the time stepping scheme requires a much smaller time step for this problem. A relative error
plot similar to those in the previous example is given in Figure 4.5. We do not include an
error curve for the Kalman filter because memory issues prevent its implementation on our
computer for eitherN = 128 (n = 16384) or N = 256 (n = 65536).

The previous large-scale example remains orders of magnitude smaller than the typical
size of systems considered in practical weather models. We stopped atN = 256 because
our experiments were performed on a laptop that could not handle a larger-scale problem.
However, the discussion of computational cost and storage in the paragraph following the
description of the LBFGS-KF algorithm suggests that it scales well with problem size. Thus
the use of LBFGS-KF on much larger-scale problems should be feasible. Efficiency can be
further improved if several time steps are allowed in the forward model for each Kalman filter
iteration, much as is done in 4D-Var implementations. In addition, to the degree that LBFGS
is parallelizable, LBFGS-KF will also be parallelizable.

4.2. An example with a small-scale, nonlinear evolution model. In our next example,
we apply EKF and LBFGS-EKF to the problem of estimating the state variables from data
generated using the nonlinear, chaotic evolution model (4.2). To generate the data, a time
integration of the model was first performed using a fourth order Runge-Kutta (RK4) method
with time-step∆t = 0.025. Analysis in [19] suggests that when (4.2) is used as a test example
for weather forecasting data assimilation algorithms, thecharacteristic time scale is such that
the above∆t corresponds to 3 hours, which we will use in what follows. It is also noted in
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FIG. 4.2.The top plots are of the true state at time points 35 and 70. Themiddle plots are of the Kalman filter
estimates at time points 35 and 70. The bottom plots are of theLBFGS Kalman filter estimates at time points 35
and 70.

[19] that for ∆t ≤ 0.5, the RK4 method is stable. The “true data” was generated by taking
42920 time steps of the RK4 method, which corresponds to5365 days. The initial state at the
beginning of the data generation wasx20 = 8 + 0.008 andxi = 8 for all i 6= 20.

The observed data is then computed using this true data. In particular, after a365 day
long initial period, the true data is observed at every othertime step and at the last 3 grid
points in each set of 5; that is, the observation matrix ism× n with nonzero entries

[K]rs =
{

1 (r, s) ∈ {(3j + i, 5j + i + 2) | i = 1, 2, 3, j = 0, 1, . . . , 7},
0 otherwise.

The observation error is simulated using the Gaussian random vectorN(0, (0.15 σclim)2I)
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FIG. 4.3.Relative error curves for KF (∗) and LBFGS-KF (o). The horizontal axis represents the observation time.
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FIG. 4.4.Relative error curves for KF (∗) and LBFGS-KF (o). The horizontal axis represents the observation time.
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FIG. 4.5.Relative error curves for LBFGS-KF. The horizontal axis represents the observation time.

whereσclim is a standard deviation of the model state used in climatological simulations,
σclim := 3.6414723. The data generation codes were written in MATLAB and were tran-
scribed by us from thescilab codes written by the author of [15].

In our application of EKF and LFBGS-EKF, we assume the coupled stochastic system

xk+1 = M(xk) + N(0, (0.05 σclim)2I),(4.5)

yk+1 = Kxk+1 + N(0, (0.15 σclim)2I),(4.6)

whereM(xk) is obtained by taking two steps of the RK4 method applied to (4.2) with initial
conditionxk with time-step0.025. We note that if the noise term is removed from (4.5) and
the above initial condition is used, our data generation scheme results.

Due to the fact thatM is a nonlinear function, EKF must be used; see (2.5) and (2.6).
SinceK := K in (2.6) is linear,Kk = K for all k in (2.7). However, a linearization of
the nonlinear evolution functionM is required. Fortunately, the computation ofMk in (2.7)
is performed by a routine in one of thescilab codes mentioned above and that we have
adapted for our use in MATLAB.

The initial condition used in implementation of both the EKFand LBFGS-EKF is defined
by [xt0]i = [xtrue

t0 ]i + N(0, (0.3 σclim)2) for all i, and the initial covariance was taken to be
Cest

0 = (0.13 σclim)2I. In our implementation of the LBFGS method within LBFGS-EKF,
we computed 10 iterations with 9 saved vectors.

In order to analyze the accuracy of the state estimatesxest
k obtained by both EKF and

LBFGS-EKF we plot the vector with components

[rms]k =

√
1
40
‖xest

k − xtrue
k ‖2(4.7)
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FIG. 4.6.Plot of residual mean square error for LBFGS-EKF (o) and EKF (∗) applied to (4.2).

in Figure4.6. We can see that the two methods yield comparable results.
In order to compare the forecasting abilities of the two approaches, we compute the

following forecast statistics at every 8th observation. Take j ∈ I := {8i | i = 1, 2, . . . , 100}
and define

[forcast errorj ]i =
1
40
‖M4i(xest

j )− xtrue
j+4i‖2, i = 1, . . . , 20,(4.8)

whereMn denotes a forward integration of the model byn time steps with the RK4 method.
Thus this vector gives a measure of forecast accuracy given by the respective filter estimate
up to 80 time steps, or 10 days out. This allows us to define the forecast skill vector

(4.9) [forecast skill]i =
1

σclim

√
1

100

∑
j∈I

[forecast errorj ]i, i = 1, . . . , 20,

which is plotted in Figure4.7. The results show that the forecasting skill of the two methods
is very similar, which suggests that on the whole, the quality of the LBFGS-EKF estimates
is as high as those obtained using EKF. Figure4.7also illustrates the fact that the Lorenz 95
model (4.2) is truly chaotic.

In the test cases considered here, a linear or linearized model matrixMk has been avail-
able. This is not true in important examples such as in numerical weather forecasting, where,
on the other hand, a tangent linear code [14] is available that provides a means of computing
the matrix vector productMkx.

5. Conclusions. The standard implementations of KF and EKF become exceedingly
time and memory intensive as the dimension of the underlyingstate space increases. Several
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FIG. 4.7.Plot of forecast skill vector for LBFGS-EKF (o) and EKF (∗) applied to (4.2).

variants of KF and EKF have been proposed to reduce the dimension of the system, thus
making implementation in high dimensions possible. The Reduced Rank Kalman Filter or
Reduced Order extended Kalman filter (see, e.g., [4, 7, 30]) project the dynamical state vector
of the model onto a lower dimensional subspace. The success of this approach depends on a
judicious choice of the reduction operator. Moreover, since the reduction operator is typically
fixed in time, they can suffer from “covariance leaks” [9]. A typical cause of this is that
nonlinear systems do not generally leave any fixed linear subspace invariant.

In this paper, we propose the use of the limited memory BFGS (LBFGS) minimization
method in order to circumvent the computational complexityand memory issues of standard
KF and EKF. In particular, we replace then × n, wheren is the dimension of the state
space, covariance matrices within KF and EKF with low storage approximations obtain using
LBFGS. The large-scale matrix inversions required in KF andEKF implementations are also
approximated using LBFGS. The resulting methods are denoted LBFGS-KF and LBFGS-
EKF, respectively.

In order to test these methods, we consider two test cases: large-scale linear and small
scale nonlinear. LBFGS-KF is applied in the large-scale linear case and is shown to be ef-
fective. In fact, our method exceeds the speed of standard KFby an order of magnitude, and
yields comparable results when both methods can be applied.Furthermore, it can be used on
much larger scale problems. In the nonlinear, small scale case, LBFGS-EKF is implemented
and is also shown to give results that are comparable to thoseobtained using standard EKF.
We believe that these results suggest that our approach deserves further consideration.

The symmetric rank one (SR1) quasi-Newton method for minimizing (3.1) could be
another attractive method for use within KF and EKF, since italso yields estimates of both
the minimizer and inverse Hessian. The main drawback of using SR1, however, is that the
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inverse Hessian approximations are not guaranteed to be positive definite.

Appendix A. In this appendix, we give a general description of the LBFGS method for
minimizing

q(u) =
1
2
〈Au,u〉 − 〈b,u〉,

whereA is ann× n symmetric positive definite matrix andb is ann× 1 vector. It is given
by.

The LBFGS method for quadratic minimization
ν := 0;
u0 := initial guess;
B−1

0 := initial inverse Hessian approximation;
begin quasi-Newton iterations

gν := ∇q(uν) = Auν − b;
vν = B−1

ν gν ;
τν = 〈gν ,vν〉/〈vν ,Avν〉;
uν+1 := uν − τνvν ;
B−1

ν := LBFGS approximation toA−1;
end quasi-Newton iterations

A.1. The limited memory approximation for A−1. The BFGS matrixB−1
ν is com-

puted using recursion

B−1
ν+1 = VT

ν B−1
ν Vν + ρνsνsT

ν ,

where

sν := uν+1 − uν ,

dν := ∇q(uν+1)−∇q(uν),
ρν := 1/dT

ν sν ,

Vν := I− ρνdνsT
ν .

However, for large-scale problems the storage of the full matrix B−1
ν is infeasible, which

motivates the limited storage version of the algorithm. At iterationν, suppose that thej
vector pairs{si,di}ν−1

i=ν−j are stored. Then we the LBFGS approximation of the inverse
Hessian is given by

B−1
ν = (VT

ν−1 · · ·VT
ν−j)(Vν−j · · ·Vν−1)

+ ρν−j(VT
ν−1 · · ·VT

ν−j+1)sν−jsT
ν−j(Vν−j+1 · · ·Vν−1)

+ ρν−j+1(VT
ν−1 · · ·VT

ν−j+2)sν−j+1sT
ν−j+1(Vν−j+2 · · ·Vν−1)

+
...

+ ρν−1sν−1sT
ν−1.(A.1)

Assuming exact arithmetic and thatj, we have thatuν converges to the unique minimizer
of q in at mostn iterations, and ifn iterations are performedB−1

n+1 = A−1 [22]. In the
implementation in this paper, however,j << n and LBFGS iterations are truncated before
convergence is obtained.
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It is proven in [21] that for quadratic minimization problems and exact line searches
LBFGS is equivalent to preconditioned conjugate gradient with fixed preconditionerB0.
Thus its convergence rate is given by [22]

‖uk − u∗‖2
Ã
≤

(
λN−k − λ1

λN−k + λ1

)2

‖u0 − u∗‖2
Ã

,

whereu∗ = A−1b, Ã = B1/2
0 AB1/2

0 is N ×N with eigenvaluesλ1 ≤ λ2 ≤ · · · ≤ λN and
‖v‖Ã = vT Ãv.

A.2. A low storage approximation ofA. The required formulas are given in [3] and
take the following form. Let

Sν = [sν−j, . . . , sν−1], Dν = [dν−j , . . . ,dν−1],

then

(A.2) Bν = ξνI− [ξνSν Dν ]
[

ξνST
ν Sν Lν

LT
ν −Dν

]−1 [
ξνST

ν

DT

]
,

whereLν andDν are thej × j matrices

(Lν)i,j =
{

sT
ν−j−1+idν−j−1+j , if i > j,

0, otherwise.

and

Dν = diag(sT
ν−jdν−j , . . . , sT

ν−1dν−1).

We note that whenξν = 1 for all ν in (A.2), we have an exact equality betweenBν in (A.2)
and (A.1). However, we have found that a more accurate Hessian approximation is obtained
if, following [ 22], we use the scalingξν = dT

ν−1dν−1/sT
ν−1dν−1 instead.

We note that the middle matrix in (A.2) has size2j × 2j, which is of reasonable size
providedj is not too large, and its inversion can be carried out efficiently using a Cholesky
factorization that exploits the structure of the matrix; see [3] for details.
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[28] F. VEERŚE, Variable-storage quasi-Newton operators for modeling error covariances, in Proceedings
of the Third WMO International Symposium on Assimilation ofObservations in Meteorology and
Oceanography, 1999, Quebec City, Canada, World Meteorological Organization, Geneva.
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