

Lappeenranta University of Technology

The Faculty of Technology Management

Department of Information Technology

ELIMINATING SOFTWARE FAILURES -

A LITERATURE SURVEY

Licentiate Thesis

Supervisors: Professor Kari Smolander and D. Sc. Jouni Lampinen

Examiners: Professor Kari Smolander and D. Sc. Casper Lassenius

In Dublin, Ireland, 16 Mar, 2009

Kukka Rämö

ABSTRACT

Lappeenranta University of Technology

The Faculty of Technology Management

Information Technology

Kukka Rämö

Eliminating Software Failures – A Literature Survey

Licentiate Thesis, 2009

179 pages, 4 figures, 28 tables

Supervisors: Professor Kari Smolander and D.Sc. Jouni Lampinen

Examiners: Professor Kari Smolander and D.Sc. Casper Lassenius

Keywords:

Software error, software fault, software bug, software defect, software failure, fault

prevention, fault elimination

Software faults are expensive and cause serious damage, particularly if discovered late or not

at all. Some software faults tend to be hidden. One goal of the thesis is to figure out the

status quo in the field of software fault elimination since there are no recent surveys of the

whole area. Basis for a structural framework is proposed for this unstructured field, paying

attention to compatibility and how to find studies. Bug elimination means are surveyed,

including bug knowhow, defect prevention and prediction, analysis, testing, and fault

tolerance. The most common research issues for each area are identified and discussed,

along with issues that do not get enough attention. Recommendations are presented for

software developers, researchers, and teachers. Only the main lines of research are figured

out. The main emphasis is on technical aspects.

The survey was done by performing searches in IEEE, ACM, Elsevier, and Inspect

databases. In addition, a systematic search was done for a few well-known related journals

from recent time intervals. Some other journals, some conference proceedings and a few

books, reports, and Internet articles have been investigated, too.

The following problems were found and solutions for them discussed. Quality assurance is

testing only is a common misunderstanding, and many checks are done and some methods

applied only in the late testing phase. Many types of static review are almost forgotten even

though they reveal faults that are hard to be detected by other means. Other forgotten areas

are knowledge of bugs, knowing continuously repeated bugs, and lightweight means to

increase reliability. Compatibility between studies is not always good, which also makes

documents harder to understand. Some means, methods, and problems are considered

method- or domain-specific when they are not. The field lacks cross-field research.

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

Teknistaloudellinen tiedekunta

Tietotekniikan koulutusohjelma

Kukka Rämö

Ohjelmointivirheiden välttäminen – Kirjallisuuskatsaus

Lisensiaatintutkimus, 2009

179 sivua, 4 kuvaa, 28 taulukkoa

Ohjaajat: Professori Kari Smolander ja KTT Jouni Lampinen

Tarkastajat: Professori Kari Smolander ja TkT Casper Lassenius

Hakusanat:

Ohjelmointivirhe, ohjelmistovirhe, vika, häiriö, virheenetsintä

Ohjelmointivirheet ovat kalliita ja aiheuttavat vakavia vahinkoja, varsinkin jos ne havaitaan

myöhäisessä kehitysvaiheessa tai käytön aikana tai niitä ei havaita ollenkaan. Jotkut

virhetyypit ovat usein piileviä. Työn yhtenä tavoitteena on luoda aihealueeseen liittyvä

yleiskuva, koska alalta ei ole viime vuosina tehty kokonaisvaltaista kirjallisuuskatsausta.

Työssä luodaan perustaa alan jäsentämiselle; yhteensopivuuteen ja tutkimusten löytämiseen

kiinnitetään huomiota. Työssä tehdään kirjallisuuskatsausta seuraavilta osa-alueilta:

ohjelmointivirhetuntemus, virheiden ennaltaehkäisy ja ennustaminen, tarkastaminen ja

analyysi, testaus ja virhetilanteista selviytyvien ohjelmien laatiminen. Jokaiselta osa-

alueelta kartoitetaan yleisimmät tutkimuskohteet, ja näistä tutkimuskohteista keskustellaan.

Lisäksi työssä keskustellaan kohteista, joita ei ole tutkittu riittävästi. Lopuksi esitetään

suosituksia ohjelmistokehittäjille, tutkijoille ja opettajille. Työssä hahmotellaan ainoastaan

tutkimuksen päälinjat ja pääpaino on teknisillä näkökohdilla.

Kirjallisuuskatsaus tehtiin suorittamalla hakuja IEEE-, ACM-, Elsevier- ja Inspect-

tietokannoista. Lisäksi selattiin eräiden tunnettujen alan lehtien tiettyinä aikaväleinä

ilmestyneet numerot, lähinnä viime vuosilta. Työtä varten tutkittiin myös joitakin muita

lehtiä, konferenssijulkaisuja sekä muutamia kirjoja, raportteja ja Internet-julkaisuja.

Työssä havaittiin muun muassa seuraavia ongelmia ja keskusteltiin niiden ratkausukeinoista.

Monet tarkastukset tehdään ja monia menetelmiä sovelletaan vasta testausvaiheessa, koska

testauksen luullaan olevan ainoa laadunvalvontatapa. Monet staattiset tarkastustavat on

lähes unohdettu, vaikka niiden avulla löydetään virheitä, joita on vaikea havaita muilla

keinoilla. Muita unohtuneita alueita ovat ohjelmointivirhetuntemus, tietämys jatkuvasti

toistettavista virheistä sekä helpot luotettavuuden lisäämiskeinot. Tutkimukset ovat usein

yhteensopimattomia ja siten myös vaikeita ymmärtää. Joidenkin ongelmien, keinojen ja

menetelmien ajatellaan liittyvän ainoastaan tiettyyn menetelmään tai sovellusalueeseen,

vaikka ne ovat yleisempiä. Yhden osa-alueen tutkimuksissa ei yleensä oteta huomioon alan

muita osa-alueita.

ACKNOWLEDGEMENT

This survey has been done as part of the intermediate (licentiate) degree between MS and

PhD for Lappeenranta University of Technology. I thank my supervisos, D.Sc. Jouni

Lampinen and professor Kari Smolander, for help, suggestions, and encouragement. I also

thank Ph.D. Matti Heiliö and professor Heikki Kälviäinen for advice and encouragement.

In Dublin, Ireland, 16 Mar, 2009.

Kukka Rämö

 Table of Contents 9

TABLE OF CONTENTS

FIGURES 11

TABLES 11

1 INTRODUCTION 13

 1.1 Why Are Bugs So Bad? 13

 1.2 The Goals of the Thesis 13

 1.3 Scope and Outlines of the Thesis 14

 1.4 Surveyed Material 14

 1.5 Structure of the Thesis 15

 1.6 Basic Definitions 18

2 AVOIDING KNOWN BUGS 19

 2.1 Fault Types 19

2.1.1 Typical Faults Found in Software 19

2.1.2 Fault Classification Schemes 22

2.1.3 Temporal Development of Fault Types 24

 2.2 Faults in Specific Applications 26

2.2.1 Faults in Specific Application Domains 26

2.2.2 Typical Faults in Specific Environments 28

 2.3 Features of Faults and Failures 30

2.3.1 Features of Fault-Prone Software 31

2.3.2 Hidden Bugs 36

2.3.3 Number of Faults in a Failure Situation 38

 2.4 Faults and their Causes 40

 2.5 Summary of Avoiding Known Bugs 42

3 DEFECT PREVENTION AND PREDICTION 45

 3.1 Defect Prevention 45

3.1.1 General Methods for Defect Prevention 45

3.1.2 Relationship between Life Cycle Phases and Bug Elimination 46

 3.2 Defect Prediction 48

3.2.1 Risk Analysis 48

3.2.2 Aspects of Process Control and Defect Prediction 50

3.2.3 Defect Prediction Models 51

3.2.4 Critique of Defect Prediction 53

 3.3 Summary of Defect Prevention and Prediction 54

4 CHECKS DURING AND AFTER DEVELOPMENT 57

 4.1 Document- and Code-Based Analysis 58

4.1.1 Static and Dynamic Code-Based Analysis 58

4.1.2 Values, Sizes, and Precision 60

 4.2 Flow and Dependence Based Checking 61

4.2.1 Modeling Software Artifacts 61

4.2.2 Flow Analysis 62

 4.3 Software States 66

4.3.1 State Space Exploration and Representation 66

4.3.2 State Reduction 68

 4.4 Different Types of Logical Systems 70

4.4.1 Logical Systems 70

4.4.2 Specific Issues 73

 Table of Contents 10

 4.5 Formal Software Engineering 74

4.5.1 Software Development 74

4.5.2 Real-Time Systems 77

4.5.3 Tools 78

4.5.4 Limits of Analysis and Proving 79

 4.6 Summary of Checks during and after Development 80

5 TESTING 83

 5.1 What to Test 83

5.1.1 Items to be Tested 83

5.1.2 Coverage of Testing 87

 5.2 Test Execution and Evaluation 89

5.2.1 Testing Methods 89

5.2.2 Estimating Testing 95

5.2.3 Testing Tools 96

 5.3 Summary of Testing 97

6 FAULT TOLERANCE 99

 6.1 Introduction 99

 6.2 Fault Detection and Diagnosis 100

 6.3 N-Version Programming 102

 6.4 Failure Recovery 104

 6.5 Other Reliability Issues 106

 6.6 Summary of Fault Tolerance 107

7 DISCUSSION AND CONCLUSIONS 109

 7.1 The Contribution of the Thesis 109

 7.1.1 Figuring out Status Quo 109

 7.1.2 Proposing Basis for Structural Framework 111

 7.1.3 Research Areas of Subfields of Fault Elimination and Bug

 Knowhow 113

 7.1.4 Detecting Research Areas that Should Get More Attention 116

 7.1.5 Encouraging People for Early Elimination of Faults 117

 7.2 Pros and Cons of Different Fields of Software Fault Elimination 118

 7.3 Recommendations 119

 7.4 Problems in Doing this Thesis and Recommendations for

 Further Work 120

8 CLOSURE 123

REFERENCES 125

 Figures and Tables 11

FIGURES

Figure Page

Figure 1: Means for eliminating bugs related to the structure of this thesis 16

Figure 2: Chapters of this thesis related to the software life cycle 17

Figure 3: Temporal development of bug types 25

Figure 4: The number of condition combinations in respect to conditions 68

TABLES

Table Page

Table 1: Material for systematic searches in this thesis 15

Table 2: Examples of general and special bug types 19

Table 3: General and special bug classifications 22

Table 4: Examples of studies about bug types in different application domains 27

Table 5: Common bugs for some programming languages and environments 29

Table 6: Features of faults and effects of different factors on fault density 31

Table 7: Examples of studies about effect of measures on fault density 33

Table 8: Methods for predicting fault proness 35

Table 9: Basic blindness 37

Table 10: Studies about number of events or conditions affecting a failure 39

Table 11: Some typical wrong assumptions 40

Table 12: Typical risk analysis methods 49

Table 13: Special issues in defect prediction models 52

Table 14: Examples of research that relates logic and flow analysis 65

Table 15: Means for fighting state space explosion 69

Table 16: Logical systems 71

Table 17: Applying formal methods within specific application domains 77

Table 18: Items to be tested 83

Table 19: Sources for test cases 85

Table 20: Coverage criteria 87

Table 21: Typical testing methods 90

Table 22: Classifications of testing methods 93

Table 23: Examples of domain-specific testing 94

Table 24: Fault detection and diagnosis methods 101

Table 25: Examples of means to cause diversity 104

Table 26: Means to increase fault tolerance 106

Table 27: Evaluation of fields of fault elimination 118

Table 28: Recommendations for software developers, scientists, and teachers 119

 Figures and Tables 12

 Chapter 1. Introduction 13

1 INTRODUCTION

1.1 Why Are Bugs so Bad?

Software faults cause plenty of economic loss, particularly if they are not detected in early

stages of software development. According to Research Triangle Institute, RTI (2002), the

annual costs of software bugs are about 0.2 to 0.6 per cent of the GNP in the USA. The

estimate is assumed to be too low. The study focused on testing and use of software as

means to detect bugs.

The earlier the software fault is detected, the lower the costs are, see e.g. Boehm (1981), RTI

(2002), Westland (2002), and Leszak et al. (2002) for details. Repair costs of a software

fault are about 100-200 times higher in the maintenance phase than in the requirement

specification phase (Boehm 1981). Faults are more difficult to correct in later phases of

software life cycle than in earlier phases. For example, Naval Research Laboratory found in

one project that 21 of the 22 defects that were moderately hard or hard to correct were

discovered during the final 10% of the development life cycle (Fredericks & Basili 1998).

Some software faults lead to catastrophic consequences if detected only during the

maintenance phase; there have been accidents caused by software faults, see e.g. Leveson

(1995) and Ladkin (1994). In addition to this, some software faults are never detected, and

those hidden faults may cause damage all the time. For example, people may make

decisions based on the output of erroneous software and nobody ever detects that better

decisions could have been made.

1.2 The Goals of the Thesis

Figuring out the status quo in the field, the current situation as a whole. Some areas of

fault elimination get attention, and research is being done about them. The research is

surveyed in the thesis. In addition, general features of research in the field are being figured

out.

The field lacks up-to-date general surveys. Fault elimination is a wide topic, and partial

surveys about some subareas have been made. In the 1970‟s general surveys were made, but

the field was narrow at that time. As far as the author knows, a more general survey has not

been done yet. The goal is to make a textbook about fault elimination, partly based on the

material of this thesis. Such books probably do not exist.

Proposing some basis for structural framework for the field. Information in the field is

hard to find. For example, in the field of compiler development there is plenty of

information that could be used in bug elimination, too, but those who need information for

bug elimination barely search it from publications that are intended for planning compilers.

Also, the concepts and terms related to software faults are used inconsistently.

Surveying and increasing bug knowhow. In this work, information is collected about

characteristics of bugs, fault classifications, fault proness, fault types, their temporal

development, correlation between faults, and root causes for faults. Knowing about faults

helps eliminating them. One often repeats the same faults all the time because he/she does

not know about them. Knowledge about bugs can be used by teachers and researchers, too.

Surveying research about fault prevention, fault prediction, fault detection, and fault

tolerance. The most common research issues for each area of fault elimination are

 Chapter 1. Introduction 14

discussed in this thesis. By studying what has been done, one can figure out what each area

contains. Reviews of those areas help developers eliminate faults and teachers plan courses

about fault elimination.

Figuring out what should be studied more. Some areas of fault elimination do not get as

much attention as they should. One goal of this thesis is to reveal issues that would require

more attention. Some fault types cannot be eliminated well with current means; identifying

omitted research helps improving the situation. In addition, presentation about research

trends and forgotten areas help research people choose their topics and teachers to plan their

courses.

Encouraging for early fault elimination. According to several studies, software

developers should eliminate faults in as early a phase as possible. Fault elimination is

usually done later that it could be done. Late elimination is less efficient and more

expensive than earlier elimination. This thesis presents some means for early fault

elimination.

Presenting concrete recommendations. Recommendations are presented for software

developers to eliminate faults; for research scientists to plan their research, and to improve

usability, comparability, and understandability of results; and for teachers to choose course

material.

1.3 Scope and Outlines of the Thesis

Because the topic is wide, only main lines of the existing research can be figured out here.

Plenty of research has been done about organizational, managerial, and economical means

for software fault elimination. However, the emphasis in this work is in technical means and

in what can be done by means of software development.

Quality assurance is a wide topic. It covers, for example, efficiency and maintainability.

Articles that do not involve fault elimination have not been investigated in this survey.

1.4 Surveyed Material

The survey was made by performing different fault-related searches in IEEE, ACM,

Elsevier, and Inspect databases. In addition, a systematic search was done for material

presented in table 1. Most references in the thesis have been journals, but there have been

some conference proceedings, and a few books, technical reports, and web articles. Some

other sources have been used, too. (Peng & Wallace 1993) is a web publication that has an

overview about error analysis. Some information of the publication has been included in

different parts of this thesis. No material published after February 2009 has been

investigated in the thesis.

 Chapter 1. Introduction 15

 Table 1. Material for systematic searches in this thesis

Publication Volumes (last

issue)

Times

ACM Computer Surveys 1-41(1) 1969 – Dec 2008.

ACM Transactions on Computer Systems 1-27(1) 1983 – Feb 2009.

ACM Transactions on Software Engineering

and Methodology

 1-18(2) 1992 - Nov 2008.

Formal Aspects in Computing 10-17(2) 1998 - Aug 2005.

Formal Methods in System Design 10 – 27(1-2) Feb 1997 - Sep 2005.

Information and Software Technology 37 – 51(2) 1995 - Feb 2009.

Journal of Systems and Software 28-82(2) 1995 - Feb 2009.

Science of Computer Programming 24 – 64(3) 1995 - 1. Feb 2007.

Reliability Engineering and System Safety 83-91(1) 2004 - Jan 2006.

IEEE Transactions on Software Engineering 1-35(1) 1975 – Feb 2009.

IEEE Transactions on Reliability 41-48(4) 1992 - 1999.

1.5 Structure of the Thesis

The following classification for fault elimination means is presented in (Avižienis et al.

2004) and followed in this thesis: fault prevention, fault removal, fault tolerance, and fault

forecasting. Faults need to be detected before removal. Fault removal means are usually

dependent on the application environment, so only the fault detecting portion of fault

removal is investigated in the thesis. Bug fixes are investigated as a factor that causes new

bugs. Fault forecasting is called fault prediction in this thesis. In this thesis, the concept of

fault elimination covers fault tolerance, too.

Figure 1 describes the structure of the rest of this thesis in relation to fault prevention, fault

detection, and fault tolerance. Chapter 2 is related to fault prevention, fault detection, and

fault tolerance. In chapter 2, bug knowhow is investigated. Software bug types, bug

classifications, and temporal development of bug types are inspected; the main goal is to

make developers avoid known bugs. Features of bugs and fault prone software, correlation

of faults, and root causes for bugs are also studied. Development framework and bug

knowhow can be developed further with help of each other, and both are used in checking,

proving, and testing software.

Chapter 3 investigates software development processes, theories, risk analysis, metrics, and

defect prediction. Those means are mainly associated with defect prevention and prediction,

but they have connections with fault detection and fault tolerance. Chapter 4 is about those

means to look for faults that are not based on testing. It involves checks and analysis

methods that can be performed for software in order to prevent and detect bugs. The goal of

those checks is to make sure that everything is covered correctly in software. Rigorous

proving is discussed, too. Many of those checks can be performed before testing. Faults can

be both prevented and detected with analytic checks if the checks are done before testing. It

is recommended that checks be done as early as practical. Chapter 5 processes testing in

order to detect software bugs. Chapter 6 is about fault tolerance. Even if there is software

development framework and bug knowledge and software is thoroughly analyzed and tested,

there can be bugs. The chapter contains means to prevent harm if faults exist. Means of

fault tolerance often involve fault detection. For example, recovery can often be done after

the detection of a fault, and faults can be detected by self-checks. Chapter 7 contains

summary, conclusions, and recommendations, and Chapter 8 is a closure; those two chapters

have been omitted from figure 1.

 Chapter 1. Introduction 16

Chapter 5:

Testing

Chapter 4:

Checking, proving

Chapter 6:

Fault

tolerance

Prevention

Tolerance

Detection

Chapter 3: Process, theories,

metrics, risk analysis,

defect prediction

Chapter 2: Bug knowhow

Bug types and

classification, features of

faults, fault proness,

root causes

 Figure 1. Means for eliminating bugs related to the structure of this thesis

Figure 2 answers the question about in which phases of the software development life cycle

the topics described in chapters 2-6 of this thesis are applied. The leftmost column describes

the life cycle phases. Under each chapter column, the left pillar describes the phases where

the topics are typically applied, and the right pillar describes the phases where they should

be applied. The thickness of the pillar describes how much the topic is being applied.

The topics in the software development framework are applied in all phases, although they

should be applied to a greater extent. Typically, a little checking is performed after coding,

if at all, although checking should usually be performed most of the time during all phases of

the software development cycle. Testing is often considered a long-lasting stage after

coding, although testing should be performed during all phases most of the time, in addition

to the main testing phases after coding. Prevention methods are used all the time, but they

could be used more. For example, process maturity models and statistic process control

could be applied more. During all phases of life cycle, prediction methods like risk analysis

and metrics could be used more often than they are being used. Defect prediction models

could be applied more often, too. Bug knowledge and fault tolerance are applied randomly

if at all. They should be applied all the time when software is being developed.

 Chapter 1. Introduction 17

Chap-

ter 4

Chec-

king

Chap-

ter 5

Testing

T B

Phases before

requirement

specification

Requirement

specification

Modular

design

Coding

Architectural

design

Phases after

coding

T B T B T B T BLife cycle phase

Chap-

ter 2

Bug

knowl-

edge

Chap-

ter 3

Prevent

and

predict

Chap-

ter 6

Fault

tole-

rance

Legend:

 T typical: In what phases of the software life cycle the

 topic of the chapter is typically applied

 B better: In what phases of the software life cycle the

 topic of the chapter should be applied

 Figure 2. Chapters of this thesis related to the software life cycle

 Chapter 1. Introduction 18

1.6 Basic Definitions

Some definitions are explained below that are frequently used in software engineering.

Error is a discrepancy between the computed, observed, or measured value or condition,

and the true specified or theoretically correct value or condition (IEEE 1990). In this work,

specification errors are included. Definitions of fault, failure, and mistake are commonly

used as a definition to error, but fault tolerance discipline distinguishes between all those

definitions (IEEE 1990). In fault tolerance analysis, error is the amount by which the result

is incorrect (IEEE 1990).

Fault is an incorrect step, process, or data definition (IEEE 1990). See e.g. Abbott (1990)

about problems in defining the notion of fault.

Failure is an inability of a system or a component to perform its required function within

specified performance requirements (IEEE 1990).

Defect may mean error, fault, or failure.

Mistake is a human action that produces an incorrect result (IEEE 1990).

Safety critical software is software whose failures may have very serious consequences.

There is unanimity about that software is safety critical if its failure can cause deaths and

serious health losses. Other health issues and evident physical discomfort, too, are often

included in the definition of safety critical software. Sometimes software whose failures

cause significant damage to property is regarded as safety critical; according to IEEE

standard (IEEE 1990), critical software is software whose failure could have an impact on

safety, or cause large financial or social loss.

 Chapter 2. Avoiding Known Bugs 19

2 AVOIDING KNOWN BUGS

Knowing which bugs are common helps stop repeating them. This chapter presents some

common bug types. The chapter also involves characteristics of bugs, causes for bugs,

features of fault-prone software, and correlation of bugs. This information helps in

eliminating bugs and preventing the repetition of the same bugs. It also helps in improving

the software developing process and bug-related metrics, which are analyzed in chapter 3.

Methods for risk analysis and defect prediction can also be developed accordingly; those

methods are investigated in chapter 3. Chapters 4-5 of this thesis present different means to

detect software faults. The information in this chapter can be used in applying those means,

as well as in using fault tolerance means presented in chapter 6. General information of

different knowledge areas like mathematics, computer science, and computer engineering

(SWEBOK 2007), can be used in eliminating bugs. The information in this chapter is

specifically involving bugs and could be regarded as a branch of computer engineering.

In the first subchapter, common fault types and fault classifications are introduced. Also, the

temporal development of bugs is studied in the subchapter. In subchapter two, bugs are

presented that are typical to specific application domains and environments. In subchapter

three, features of fault prone software and characteristics of hidden bugs are presented. In

addition, reasons why bugs are hidden and correlation between bugs are investigated. In

subchapter four, causes for faults are discussed. Subchapter five is a summary of bug

knowledge surveyed in this thesis.

2.1 Fault Types

This subchapter investigates fault types. In the first part, different fault types are presented.

In the second part, fault classifications are discussed. In the last part, the question about

which bug types have been present during different decades is investigated.

2.1.1 Typical Faults Found in Software

There are numerous lists of bug types, and they originate from different decades. For

example, Foster (1980) has classified code faults, and Lutz and Woodhouse (1996) have

classified specification faults. Table 2 presents some usual bug types; the same bug may

belong to several of those bug types.

 Table 2. Examples of general and special bug types

General bug types

Constant/value/sign: Erroneous value for constant or variable, or wrong sign (Foster 1980).

Wrong padding: error in padding of a field (FS Networks 2005).

Unit: using wrong units (Peng & Wallace 1993).

Expression: fault in boolean, arithmetic, or relational expression (Foster 1980).

Associative shift: erroneous association in boolean expression (Kuhn 1999).

Operation: operator (pointers included), operand, or even special character (Foster 1980),

(Podgurski & Clarke 1990).

Negation: inverse of e.g. operator or number (Foster 1980), (Lau & Yu 2005).

Continued on next page

 Chapter 2. Avoiding Known Bugs 20

Reference: error in reference to a variable or an operator (Foster 1980).

Delimiter: wrong, extra, or missing delimiter, see e.g. (Duck 2005).

Sequence/calculation: wrong order of calculations in an expression (parenthesis in a wrong

place, precision
1
 lost due to wrong order of computations), or a wrong sequence (Foster

1980), (Howden 1980), (Darcy 2006).

Data errors: e.g. absent data, incorrect data, timing error, and undesired duplicate of data

(Lutz & Woodhouse 1996).

Structural: structural faults like missing paths (Howden 1976), or cycles where there should

not be cycles (Holmberg & Eriksson 2006).

Logical: neglecting branches, forgetting cases or steps (Schneidewind & Hoffmann 1979),

(Dupuy & Leveson 2000).

Precision: see subchapter 4.1.2, and e.g. (Darcy 2006).

Error accumulation: accumulation of error in repeated computations due to e.g. precision

limits (Goldberg 1991).

Convergence: e.g. assuming wrong convergence point. Some convergence and coherence

problems are introduced in (Bastani et al. 1988).

Conversion: converting elements from one type or format to another (Dupuy & Leveson

2000).

Type mismatch: e.g. performing inappropriate type conversions or copying incompatible

objects may cause mismatch (Spohrer & Soloway 1986a), (Sullivan & Chillarege 1991).

Overflow/underflow: A number is too large or small for the space reserved for it (Peng &

Wallace 1993).

Value out of range: e.g. value of a variable, a parameter, or an argument is too large or too

small, or is not inside the range of the function; or the divisor is zero (Peng & Wallace

1993).

Off by: e.g. incorrect processing of an extra element, or performing a loop one extra time or

one time too few, e.g. (Smidts et al. 2002).

State faults: missing state, extra state, missing transfer, extra transfer, and erroneous transfer

(Laycock 1993).

Missing statement: missing program statement (Schneidewind & Hoffmann 1979).

Statement order: wrong order of statements (van der Meulen et al. 2004).

Initialization or reset: not giving values to data elements before use; using old values when

new ones should have been given; or wrong, incomplete, or undesired initialization; e.g.

(van der Meulen et al. 2004), (Glass 1981), (Endres 1975).

Duplicate name: the same name is unintentionally used for two different objects that can be

mixed with each other (Fruth et al. 1996).

Side effects: There is a lot of research about side effects. Examples of ways to cause side

effects are evaluating a macro several times without considering side effects when there may

be side effects (Seacord 2007), or altering a global variable in one function in a way that is

unexpectable in another part of program (Fitzpatrick 2006).

Consistency: e.g. inconsistency in use of global variables, or between software states (Peng

& Wallace 1993).

Interface: faults in interaction with other system components (Lutz 1993).

Encapsulation: faults related to hiding elements from other parts of the system (Sinha &

Harrold 2000).

Exception bugs: bugs related to exceptions, e.g. (Yi 1998).

Continued on next page

1
 See subchapter 4.1.2 about precision.

 Chapter 2. Avoiding Known Bugs 21

Memory: e.g. allocation (Chou et al. 2001).

Violation of standards: e.g. violation of the standard (e.g. DO-178) that should have been

applied for the software, or violation of an internal standard in a company (Peng & Wallace

1993).

Application dependent bug types

Timing

Software is becoming more time dependent, which increases the number of timing bugs.

One instance of timing bugs is occurrence of simultaneous events when there should be only

one event. Leveson and Stolzy (1987) discuss the following time faults: a desired event does

not happen, an undesired event happens, there is wrong order for events, two incompatible

events occur simultaneously, or there is erroneous timing or duration for events. Atlee and

Gannon (1993) discuss simultaneous occurrence of events that should not occur

simultaneously. Lutz and Woodhouse (1996) also mention timing and order faults, like too

early or too late arrival of data, repeated occurrence of an event that should occur only once,

or intermittent occurrence of iterative events that should occur regularly.

Object oriented programming

There are type errors e.g. due to inheritance. Rine (1996) studies preventing unsafe sharing

of objects by stronger type structures. Peleg and Dori (2000) observe model-related faults

like faults related to aggregation, links, or assignment; cyclic model not modeled as cyclic;

or different types of confusion, e.g. between an event and a condition, or between an action

and an activity.

Neglecting differences

Differences between different computers, operating systems, and e.g. compilers often causes

software malfunction. The following list contains common differences between machines:

 Alignment and padding (Hakuta & Ohminami 1997).

 Whether fields are assigned left to right or right to left. Hakuta and Ohminami

(1997) discuss if words are stored with the most significant byte in the top byte or in

the end byte of the word.

 Storing numbers in memory (Hakuta & Ohminami 1997).

 Representation of data types, e.g. floating point numbers and negative numbers

(Hakuta & Ohminami 1997), and whether sign extensions are used for characters

(Iwata & Hanazawa 1993). In many implementations, float and double are different

types, and extra digits may be arbitrary in many implementations if a number is

converted from one type to one that has a greater number of significant digits (Darcy

2006).

 Methods for performing truncation and rounding (Cannon et al. 1990); particularly

for negative numbers, see e.g. (Seebach 2006).

 Zeros in comparison (Cannon et al. 1990).

 Order of computations and/or assignments can be left to right, right to left, or

nondeterministic; for example, C compilers re-arrange commutative and associative

operations arbitrarily (ARM 2003).

 Ranges for data types (Hakuta & Ohminami 1997).

 Limits like those of nesting levels and arguments in a function call (ARM 2003).

 Hakuta and Ohminami (1997) discuss processor architecture differences and other

portability factors, including other system environment factors.

Gerhart and Yelowitz (1976) have surveyed software errors in specifications, software, and

proven software. Typical faults in specifications were incompleteness and the situations

where something that had been intended to be unaltered had been altered in programs. There

were also other kinds of errors related to misunderstanding. Termination-related errors were

common in proven programs.

 Chapter 2. Avoiding Known Bugs 22

2.1.2 Fault Classification Schemes

There is no one single classification schema for software faults, regardless of the range of

efforts to make it and long history of related research. Developers often aim at removing the

subjectivity of the classifier and creating orthogonal components. The more choices there

are for any defect, the more accurately the developer can choose among the types, but more

choices make classification harder and more time consuming. (Kelly & Shepard 2001).

Different classifications have been developed for different purposes, e.g. for making

decisions during software development, tracking defects for process improvement, guiding

the selection of test cases, or analyzing research results (Kelly & Shepard 2001). One

application of making decisions during software development could be to realize different

bug types and knowingly avoid them in software design. IBM has had quality assurance

goals related to bug tracking and classification. One is to characterize or understand

attributes in development environment (Fredericks & Basili 1998). Another is to provide

feedback (Kelly & Shepard 2001) (Fredericks & Basili 1998). Knowing where the defect is

helps improving the process (Fredericks & Basili 1998). IBM has a knowledge base about

common defects (Fredericks & Basili 1998).

Sometimes it is hard to put a bug in one specific class. There are different ways in which the

bug can be classified (El Eman & Wieczorek 1998). Kelly and Shepard (2001) describe

situations where multiple interpretations of defects and categories are possible. The

classifications have probably not been defined perfectly (Kelly & Shepard 2001).

According to El Eman and Wieczorek (1998), different people usually put a fault in the same

class if they use the same classification schema.

Table 3 presents general and special classification criteria and examples of bug

classifications.

Table 3. General and special bug classifications

General classification criteria

Bug type Fredericks and Basili (1998) present classifications of bug types.

Breadth Lau and Yu (2005) present expression faults based on erroneous part of the

expression. For example, a literal, a term, or the whole expression may have been negated.

Qualifier Fredericks and Basili (1998), and Kelly and Shepard (2001) describe existing

classifications with keywords like missing, extra, duplicate, incorrect, incomplete, unclear,

ambiguous, changed, and better way.

Trigger Fredericks and Basili (1998) describe classifications about what triggers the failure

caused by the fault.

Source Fredericks and Basili (1998) describe classifications about the part of the system or

an environment that caused the bug to be born, i.e. the source of the misunderstanding.

Location Kelly and Shepard (2001) describe classifications about the location of the fault;

some examples are structure, expression, assignment, input, and output.

Life cycle phase when born Fredericks and Basili (1998) describe classifications about the

software development life cycle phase where the bug was born.

Legacy level when born Fredericks and Basili (1998), and Kelly and Shepard (2001)

describe classifications about the legacy level where the bug has been born. Examples are

new software, modified software, bug fix, and re-fix.

Continued on next page

 Chapter 2. Avoiding Known Bugs 23

Activity where observed Kelly and Shepard (2001) describe bugs based on the activity

that was being performed when the defect was detected, e.g. review, inspection, or testing.

Action in a failure situation Kelly and Shepard (2001) describe classifications about what

the system does in a failure situation due to the failure, i.e. consequences of the failure.

Amount of damage Fredericks and Basili (1998) discuss about attributes like damage

level, number of affected states, number of affected modules, whether the failure region

(set of inputs that cause the failure) is connected, and repair effort.

Consistency Whether the failure occurs always or only sometimes, and whether the

software behaves in the same way every time the failure occurs (Avižienis et al. 2004).

Volatility Gray (1985) classifies faults as transient faults and permanent faults.

Dependencies Jeng (1999) classifies faults as path dependent/independent, and data

dependent/independent faults.

Special criteria and classifications

Examples of classifications

Fredericks and Basili (1998) survey five famous classifications.

Chillarege et al. (1992) describe orthogonal classifications and an environment that

enables the metering of cause-effect relationships.

Avižienis et al. (2004) classify faults and failures.

Classifications in domain testing
Howden (1976) classifies faults as domain faults and computation faults. Domain faults

are either missing paths or path selection faults (ibid.). Path selection faults are either

predicate faults or assignment faults.

Harrold et al. (1997) extend the classification so that faults are classified as statement

faults and structural faults that cover more than one statement.

Classifications in HAZOP (Hazard and Operativity Analysis)

Reese and Leveson (1997) describe keywords used in HAZOP. Original keywords were:

"none", "more", "less", "as well as", "part of", "reverse", and "other than". Software

oriented extension contains component and system oriented keywords. There are hazard-

related keywords for each of those. For example, signals may drift. There are also data

flow- oriented keywords for output, its timing, and detectability of output faults. (Reese &

Leveson 1997).

Hierarchical classifications

Lau and Yu (2005) present a fault class hierarchy that relates literal, term, operator, and

expression faults and insertion, omission, reference, and negation faults. Those

components are not completely orthogonal; e.g. term operation fault is located between

literal insertion fault and literal negation fault in the study.

Nakajo and Kume (1991) have a three-level class hierarchy, see subchapter 2.4.

Okun et al. (2004) compare classes of logical faults in specification based testing and

calculate relationships between those classes.

There are numerous studies about looking for and classifying faults or failures

automatically. Execution traces are analyzed (Podgurski et al. 1999). Multivariate analysis

like clustering is sometimes used in forming classes automatically (Podgurski et al. 1999).

Dependencies between elements are sometimes used (Francis et al. 2004), and invariant

properties that cause faults or failures are sometimes searched for (Hangal & Lam 2002).

Some studies involve hierarchical methods and stratified sampling (Podgurski et al. 1999).

Francis et al. (2004) develop tree-based methods for refining failure classifications when

software is being executed.

Knowing which bugs are common and which bugs are present together helps stop repeating

them. Berglund (2005) studies communicating about bugs. There are studies about the

 Chapter 2. Avoiding Known Bugs 24

content of bug reports. Marick (1997) discusses guidelines about what a good bug report

must contain.

There are databases about common faults in order to increase bug knowledge; e.g.

Fredericks and Basili (1998) discuss IBM database; Card (1998) discusses about a fault

report database for cause and impact analysis, and for analyzing defect time and detection

time; and Clapp et al. (1992) present a method where database contains data about test runs,

test scripts, faults, repairs, and source code. Kim et al. (2006) discuss bug fix database for

building bug patterns and thus stopping repetition of the same bugs in the project. There are

public bug databases, e.g. Bugzilla database on https://bugzilla.mozilla.org/. National

Institute of Standards and Technology in the USA has developed an EFF tool for collecting

and maintaining bug databases (Wallace et al. 1997). Liu et al. (2008) study how to make it

easier to find failures caused by the same bug.

2.1.3 Temporal Development of Fault Types

Figure 3 presents a distribution of bug types for safety critical accidents found on the

Internet. Approximately four decades are covered. The figure contains aircraft, car,

elevator, nuclear power plant, train, and spacecraft accidents. The bugs processed have been

observed in safety critical software when it had already been in use; non-public bugs found

in early phases of safety critical software development have not been included in the figure.

There have usually been many more causes for the accidents; software bugs have been only

one factor. In some cases, more bugs have been found later than just those that affected the

accident. Besides known bugs, some cases like (NEAR 1999) contained malfunctions in

simulation, the reasons of which were not found.

The accidents have been collected from the following references: (Adler 1998), (Arida

1999), (Brader 1987), (Dershowitz 2007), (Finkelstein & Dowell 1996), (Ganssle 1998),

(Huckle 2005), (Jacky 1987), (JPL 2000), (Ladkin 1994), (Ladkin 1996), (Ladkin 1999),

(Leveson 1995), (MCOMIB 1999), (Modugno et al. 1997), (NASA 1999), (NASA 2003),

(NASA 2006), (NASA 2007), (NEAR 1999), (Neumann 1985), (Neumann 2007),

(Nussbacher 1992), (Reid 1995), (Rushby 1993), (Santor 2007), (Sheffield 2001), (Sogame

& Ladkin 1996), and (Strobl 2000).

The figure contains only the accidents and incidents where some details about the bug are

available. On the Internet there are numerous accident reports without those details: either a

software bug is suspected but not found, or a bug is known in more or less detail but the

report includes no details about it.

 Chapter 2. Avoiding Known Bugs 25

BugTypes

0

10

20

30

40

50

60

70

80

1960 1965 1970 1975 1980 1985 1990 1995 2000

Year

D
is

t
r
ib

u
t
io

n
 o

f
 b

u
g

 t
y
p

e
s

BULACK CALC CHAR COHER COMLACK ERRIGN EXCEPT

EXCLU INIT INPUT INTEGR INVERS MISSTA OLDDAT

OUOFME OVF OVRLD POWOU PRECIS REUSE SEQODR

SIZE TIM UI UNIT VAL

Explanations of the legend: BULACK = lack of backup, CALC = calculation, CHAR =

character fault, COHER = coherence, COMLACK = lack of communications, ERRIGN =

continuing operation when something was wrong, EXCEPT = exception fault, EXCLU =

excluding important states or features, INIT = initialization, INPUT = input, INTEGR =

integration, INVERS = inversion, MISSTA = missing state, OLDDAT = too old data,

OUOFME = out of memory, OVF = overflow, OVRLD = overload, POWOU = power out,

PRECIS = precision, REUSE = reuse, SEQODR = wrong order in sequence, SIZE = size,

TIM = time, UI = user interface, UNIT = unit, VAL = value.

Figure 3. Temporal development of bug types

Some observations can be made from the descriptions:

 There have been character faults at early times, and a few of them have been present

later.

 Calculation-, coherence-, and initializing bugs have been common all the time.

Calculation bugs may be computation errors or ignored conditions. For instance, the

orbit around the sun was ignored in one piece of Gemini V -software (Neumann

1985).

 There have been some errors involving values or units.

 Chapter 2. Avoiding Known Bugs 26

 Inversion bugs have been present from the 1970's.

 From the 1980's when software became more complicated, there have been faults

related to ordering of operations within an expression, ordering of sequences,

exception processing, overload, timing, and missing states, as well as input faults

and user interface faults.

 From the 1980's, sizing and overflow faults have started to appear.

Lack of integration between system factors combined with insufficient user interface has

been a factor in many accidents. For example, in Nagoya 1994 accident (Sogame & Ladkin

1996) there was contradictive action between different aircraft parts, and in Cali 1995

accident (Ladkin 1996) there was a mismatch between a chart value and a database value. In

both examples, the user interface, too, could have been better.

There are contradictive bug reports from the 1960's, when many bugs were character errors.

For example, there are different versions about the reason for the disaster of Mariner 1

spacecraft in the 1960's. Character-, line-, or operation-related bugs are suspected, and even

different descriptions about the same type of bug are contradictive. Jacky (1987), Brader

(1987), and Strobl (2000) discuss the problem. It is not clear how many of the reported bugs

appeared and if they were independent (Jacky 1987).

In some cases, it has been hard to decide what is being considered as a missing state. For

example, X-31 crashed because ice caused wrong input, and the computer could not

compensate it (NASA 2007). Mars Polar Lander software had value, calculation, and logic

faults, and was ignoring transient states (JPL 2000). Its backup could stop working when the

spacecraft was put into a safe mode (ibid.). When the system ignores special conditions, it is

hard to know whether those conditions have been unintentionally ignored or if a trade-off

had been made, see e.g. (Leveson 2001). For example, autopilots do not take all situations

into account, which can be a factor in aviation accidents where pilots rely too much on

autopilot or become distracted when using an autopilot; see e.g. (Sogame 1999) and (NTSB

1980), which are not included in the graph of figure 3. Sometimes there has not even been

an opportunity for manually changing the action of the computer system, see e.g. (Ladkin

1994).

Part of a temporal development is how long a bug lasts. Zelkowitz and Rus (2004) studied

defect evolution in a product line environment. Bugs were born all the way including

mission preparation, and bugs were detected all the way including the mission. Some faults

stayed for more than 10 years.

2.2 Faults in Specific Applications

In this subchapter, specific faults in different application domains and environments are

being surveyed. The first part involves faults in different application domains. The second

part investigates faults in different programming environments, and typical faults when

using different programming languages.

2.2.1 Faults in Specific Application Domains

Sometimes research related to software faults concentrates on a specific kind of systems.

For example, many studies are limited to database systems; real-time systems; or safety-

critical, large, complex, or concurrent systems. Those studies can involve one or several

phases of software life cycle. Many studies examine individual programs or many programs

belonging to the same application area. Table 4 includes only some examples of the

numerous studies that have been performed. Some of those studies contain a survey of

research about bug types found in specific application domains or environments.

 Chapter 2. Avoiding Known Bugs 27

 Table 4. Examples of studies about bug types in different application domains

Application Study Common faults and remarks

Development of

several small

programs by one

programmer in

Algol W for IMB

360/67, 173 errors

(Schneidewind

& Hoffmann

1979)

Design faults like neglecting extreme

conditions, forgetting cases or steps, and

faults in loop control; representation

faults (writing something else than

desired); syntax faults; and manual

faults. Complexity measures and errors

had correlation.

Recognized failures

of medical devices

that were recalled

due to repeated

defects during years

1983-1997, 342

failures

(Wallace &

Kuhn 2001)

Logical and calculation faults.

Long-term use of

scientific Fortran

software (N

replicas)

(Hatton &

Roberts 1994)

One-off faults.

DB2 (database),

IMS (database),

MVS (os)

(Sullivan &

Chillarege

1992)

Undefined states particularly due to

omitted logic. Some common triggers

for faults were workload, unusual

sequence (e.g. pressing cancel during a

query), bug fixes, and recoveries.

Assignment and checking faults are

assumed to dominate late phases of

database development.

Numerous

relatively small

real-time programs

(Rubey 1975) Specification-related errors, particularly

design consideration, and derivation

from specification.

Satellite software

(test)

(Dupuy &

Leveson 2000)

A conversion fault, logic faults,

omission of branches and conditions,

value faults, missing functions, and

faults in error processing procedures.

Spacecraft

controller (SPIN

used in experiment)

(Havelund et

al. 2001)

Wrong task orders, timing faults; 6

faults analyzed.

Voyager and

Galileo errors

detected during

integration and

system testing

(Lutz 1993) Interface faults were present. There

were functional faults like behavioral

faults, operational faults like omitted or

unnecessary operations, and conditional

faults like erroneous values on

conditions or limits. Omitted operations

caused inappropriate triggers (e.g.

wrong input caused recovery instead of

check of values). Conditional faults

caused risk of triggering error recovery

inappropriately or failing to trigger the

needed response.

Continued on next page

 Chapter 2. Avoiding Known Bugs 28

Spacecraft system

inspection

(Lutz 1996) Value out of range, input arrived when it should

not have arrived, delays in error response, and no

path from high-risk state to low-risk state.

7 spacecraft, 199

anomaly reports

(Lutz &

Mikulski 2004)

The most common triggering factor was data

access or delivery (e.g. function/algorithm or

assignment/limit), also recovery bugs were

common.

ATM networks (Hac & Chu

1998)

Header bit change, buffer overflow. Article

presents a method for preventing and correcting

buffer overflows.

In (Lutz & Mikulski 2003), need for new requirements for launched spacecraft systems

arose when the software had to handle rare but high-consequence events like unusual paths,

requests of data that had just become unavailable, overflows, or rare environmental

situations. Another source for new requirements was for software trying to correct hardware

failures. In another experiment, latent software requirements were revealed, and unexpected

dependencies were identified (Lutz & Mikulski 2004). According to Littlewood and Strigini

(1993), design errors, radically new systems, and discontinuous input-output-mapping are

problems in safety critical software based systems.

Research is being done about fault patterns. According to Shull et al. (2005), patterns in

defect classes have been found in classes of projects. Shull states that making hypothesis

and empirically assessing individual studies is not as good a method as a more formal one.

The article presents surveys for defects in a specific environment and/or application domain.

For example, there are studies about the relation of interface faults and all faults; different

studies have contradictive results and define interface in different ways. The study

investigates e.g. the difference between new and modified modules, and questions like

whether there are omission or commission faults, and how common cause of faults

misunderstanding of specifications is. In the study, problems of concepts are discussed;

different studies had different content for concepts, which caused problems when studies

were compared. One example is the above mentioned concept of interface.

2.2.2 Typical Faults in Specific Environments

Some research has been done about what types of bugs are presented in some specific kind

of software (see table 4), or in software made with a specific tool or methodology.

According to Takahashi et al. (1995), structural methodology is more efficient and reliable

than text-oriented design methodology. Data definition and interfaces were better

understood by using a structural methodology, but those who used a text-based methodology

understood specifications better in cases where relevant constituents were distributed over

the documents. Gorla et al. (1995) compare merits of textual, graphical, and tabular tools, in

understanding both tools themselves and process logic.

Yoo and Seong (2002) have analyzed the effect of specification languages on fault diversity.

They analyzed a black-box language, a dynamic behavior language that used graphs, and a

natural language. There were differences in fault types and density. For example, natural

languages are inexact and graphs do not always express timing or scope of variables.

 Chapter 2. Avoiding Known Bugs 29

According to Sheil (1981), some programming language features are error-prone. The

following examples are stated in the article:

 Untraditional operator precedence.

 Assignment as an operator rather than a statement.

 Semicolon as a separator rather than a termination symbol.

 Bracketing to close both compound statements and expressions.

 Inability to use named constants.

Table 5 presents typical faults for some programming languages.

 Table 5. Common bugs for some programming languages and environments

Programming Languages

Env Typical bugs Study and

possible

comments

C First and last values, initialization, newlines, command

sequence errors, calculation faults involving limit values

and termination, order of data items

(van der Meulen

et al. 2004)

Pointer bugs, buffer overruns/overflows, mixing = and

==, misusing automatic variables, errors related to

declaration and definition

Generally known

Memory faults (Xu et al. 2004),

prevention

method

C++ Allocation and deallocation bugs, buffer

overruns/overflows, mixing = and ==, misusing

automatic variables, and erroneous use of pointers

Generally known

Memory leaks (Levitt 2004),

smart pointers for

prevention

Limits (even some unusual cases like processing only the

last element), processing of special characters, duplicate

processing, unimplemented functions, timing, and

inexact documentation

(Smidts et al.

2002), C++ and

waterfall

Java Timing and synchronization bugs, pointer bugs, bugs

related to equality of objects, bugs related to inheritance

and overriding, and bugs related to exceptions,

initialization bugs, and missing or erroneous checking of

return value

(Hovemeyer &

Pugh 2004), bug

patterns and a

detection tool

LISP Shared variables and side effects Generally known

FORT

RAN

Argument passing, initialization, and overwriting of

variables

(Hatton &

Roberts 1994)

Cobol Erroneous sequences, incorrect matching of statement

groupings, missing conditions, and missing cases of input

data

(Werner 1986)

Continued on next page

 Chapter 2. Avoiding Known Bugs 30

Operating Systems

Env Typical bugs Studies and matters involved

Unix uti-

lity

prog-

rams

Pointer- and array faults (e.g. related to

range), initialization faults, faults related to

signed characters, wrong assumptions, not

defining something that resembles

something else, bad address, omissions of

checks for errors and end of file, and race

condition faults

(Miller & Fredriksen 1990),

(Miller, Koski, et al. 1995)

Non-

Stop UX

(basis

for

UNIX

V)

E.g. bugs in device drivers, pointer faults,

missing exception checks, and incorrect

algorithm or code placement

(Iyer et al. 1996)

Linux Faults related to blocking, pointers,

allocation, bounds, and interrupts

(Chou et al. 2001), average

bug age estimate based on data

1.8 years, logarithmic

distribution except Yule for

block checker

The most common effects of fault injection

in Linux kernel were reference to null

pointer, page fault, invalid operation code,

and protection fault

(Gu et al. 2003), latencies also

studied. About 10% of faults

propagate.

Tandem

QUAR-

DIAN90

OS

Neglecting unexpected situations (different

kinds, e.g. timing, racing, or state), missing

routine or operation, and the use of an

incorrect constant or variable

(Lee & Iyer 1993), (Lee & Iyer

1995), About 72 % of the

faults were recurrences

Mary-

land

Naval

Omissions, bugs related to incorrect facts,

and description table access faults

(Fredericks & Basili 1998)

Sperry

Univac

Omissions and data definition faults (Fredericks & Basili 1998)

DOS/VS

envi-

ronment

Configuration and architecture faults; faults

related to communication and dynamic

behavior, e.g. wrong command sequence, or

missing steps like opening a file; faults

related to functions offered, e.g. functions

had been changed; faults related to

calculation, logic, limits, reference,

adderssability, or initialization; omitted

commands; wrong values; and output faults

(Endres 1975)

IBM

MVS

Storage corruption particularly due to

allocation, pointer, and buffer overrun

errors; and undefined states

(Sullivan & Chillarege 1991),

boundary conditions were

common triggers

2.3 Features of Faults and Failures

This subchapter discusses about what bugs are like. The first part discusses features of fault

prone software, and methods to predict fault proness. The second part involves the question

about why so many bugs are hidden. The third part involves failure interaction, fault

regions, and the question about how many faults are usually needed to cause a failure.

 Chapter 2. Avoiding Known Bugs 31

2.3.1 Features of Fault-Prone Software

Table 6 presents research about features of faults and effect of different factors on fault

density.

 Table 6. Features of faults and effects of different factors on fault density

Fault proness of files

According to numerous studies since the study of Endres (1975), there are fault prone files in

computer systems. General research about fault-prone programs has been done. According

to Vouk and Tai (1993), fault proness may oscillate as the function of time. According to

Ostrand and Weyuker (2002), Fenton and Ohlsson (2000), and Pighin and Marzona (2003),

the same files remain fault prone from release to release. However, files containing lots of

pre-release faults do not seem to contain so many post-release faults (Ostrand & Weyuker

2002) (Fenton & Ohlsson 2000). Software systems produced in similar environments have

roughly similar fault densities (Fenton & Ohlsson 2000).

Failure intensity and number of failure indications

According to Shima et al. (1997), failure intensities can be different for different software

faults and even for faults in the same module. Intensities for some faults can be identical

(ibid.). One fault may have many failure indications (Munoz 1988).

Symptoms and detection mechanisms

Generally speaking, sequences with more operands and larger value ranges reveal more

faults than smaller sequences (Doong & Frankl 1994). Relative frequencies of add and

delete operations is also a factor (ibid.). Howden (1986) investigated the relationship

between a missing function and number of times a function is repeated. Lee and Iyer (1993)

studied faults in Tandem QUARDIAN90 operating system. Address violation was a

common detection mechanism. Most often the immediate effect when the fault was

exercised was a single non-address error, e.g. field size, or an index. Symptoms of

undefined problems were typically related to overlay or to data structures.

Effect of workload

The level and the type of workload affect failures. Several studies indicate that system

failures tend to occur during high loads. For example, Chillarege and Iyer (1985) show that

this holds for latent errors. According to Woodbury and Shin (1990), high workloads

increased the age of hidden faults. Chillarege (1994) studied software probes for self-

testing. According to the study, software faults are often partial and/or latent; in the study,

partial faults were defined as faults that do not cause a total system outrage. A Combination

of latent faults may trigger in high workload and other special situations (ibid.).

Fault injection phase

Mohri and Kikuno (1991) present a method where the development phase of a fault is found

based on location and other information. In IBM, defect types were injected in a specific

phase, e.g. assignment faults evolved during the coding phase, and algorithm faults evolved

during low level design phase (Fredericks & Basili 1998). For HP, many faults were

injected during detailed design and re-design; no formal review was performed after

redesigns (ibid.). In (Leszak et al. 2002), the majority of bugs did not originate in early

phases; functionality faults and algorithm faults frequently evolved during implementation

phase. Many defects originated in component-specific design or implementation (ibid.).

Continued on next page

 Chapter 2. Avoiding Known Bugs 32

Fault detection phase

Many IBM faults studied by Fredericks and Basili (1998) have been triggered by boundary

conditions. Process inference trees were built about bugs detected in different life cycle

phases in IBM (Fredericks & Basili 1998). For Sperry Univac, the majority of data handling

faults were discovered in unit testing, whereas most data definition faults were found in

functional testing (Fredericks & Basili 1998). Higher fault densities in function testing

correlated slightly with high fault densities in system testing in (Fenton & Ohlsson 2000).

Fault content during different life cycle phases

In Selby‟s and Basili‟s study (1991), pretty shallow phase of software development

contained the greatest relative amount of errors. In addition, faults that were between initial

states of program development and formulation of abstract data types were harder to correct

than faults at those levels. The authors assume that it is due to the fact that programmers

understand root and leaf levels better than other levels (ibid.). According to Selby (1990),

effects of multiple testing phases on fault proness depend on the application.

Age of software

New files often contain more faults than older ones (Ostrand & Weyuker 2002); see (Pighin

& Marzona 2003) for contradictive results. Eick et al. (2001) study the risk factors and

symptoms for decaying of code, and develop metrics. They also figure out reasons for

decay, like inappropriate architecture, violation of design principles, and imprecise

requirements. Hochstein and Lindvall (2005) assess how to diagnoze degeneration of code

and modify the code so that it remains in conformance with the architecture.

Effect of modifications

Modified software may have higher fault density than new software (Fredericks & Basili

1998) (Leszak et al. 2002), and the faults may be more difficult to correct (Fredericks &

Basili 1998). According to research of University of Maryland Naval Research Laboratory

(Fredericks & Basili 1998), modified or re-used modules had higher amount of incorrect or

misinterpreted functional specifications than new modules. According to Naval Research

Laboratory results, more faults were multimodular in modified than in original modules

(Fredericks & Basili 1998). According to Selby (1990), reused components are less fault-

prone than new ones, but reuse does not increase the reliability of the whole system.

According to Thomas et al. (1997), modified components contain lots of interface faults.

Size and structure of fault region

Not so many faults are multimodular (Endres 1975) (Fredericks & Basili 1998). Munoz

(1988) studied how wide spread bugs are. In the study, the scope of a defect was determined

by combinatorial testing. In (Cohen et al. 1997), a large number of faults were triggered by

several combinations of parameters. In many cases, the set of contiguous input points

tended to cause the same failure in (Dunham & Finelli 1990). According to Ammann and

Knight (1988), small perturbations in input data may change drastically the probability to

detect faults. Failure propagation is related to the width of bugs; it is investigated in

subchapter 2.3.2. In the subchapter 2.3.3, research is introduced about how many software

variables affect a software bug.

Knowing the cause of the faults helps in analyzing fault-proness. There are many studies

about looking for factors that cause fault proness, see e.g. (Jacobs et al. 2007). Factors for

fault proness are being searched with statistical methods. For example, Munson and

Khoshgoftaar (1992) have performed discrimination analysis to detect fault-prone programs.

Complex metrics of the program was data for this study.

There are some contradictive results about the correlation between fault-proness and

complexity, see e.g. table 7 and (Subramanyam & Krishnan 2003). Sometimes the

contradictions are due to different programming language (Subramanyam & Krishnan 2003).

In addition, different complexity measures have different correlations with each other and

with fault proness and other quality variables like change effort, Itzfeldt (1990) has a survey.

There are numerous different measures for software complexity, see e.g. (Peng & Wallace

 Chapter 2. Avoiding Known Bugs 33

1993) and (Itzfeldt 1990). According to Güne§ Koru and Tian (2003), high defect modules

are those that have almost but not exactly the highest complexity. According to Eaddy et al.

(2008), if a concern in software (e.g. software requirement) is scattered e.g. across multiple

classes or methods, the degree of scattering correlates with the number of defects.

Effect of metrics on fault proness has been studied. For example, Subramanyan and

Krishnan (2003) survey experiments involving CK metrics for object oriented software.

Vouk and Tai (1993) present metrics variables and discuss their ability to predict fault prone

products and problems in defect prediction. There are studies about correlation between

metrics variables, e.g. between CK variables, see e.g. (Subramanyam & Krishnan 2003).

Fault proness depends on the application and on development methodology. Some

comparative studies have been made, and there have been differences; e.g. Smidts et al.

(2002) compared waterfall and formal development of C++ code. In (Leszak et al. 2002),

different software domains had vast differences in defect attributes even within the same

project. The study also involved correlation between defect density and both process

compliance metrics and static metrics. Tian and Troster (1998) inspected tree-based defect

models that link defects to a quality indicator. Table 7 presents some metric variables and

their effect on fault proness.

 Table 7. Examples of studies about effect of measures on fault density

Metrics Effect Studies Application

/Environment

Cohesion No effect (Briand, Wüst, et al. 2000) Object oriented

programs

High module

strength

Lowers (Card et al. 1986) Functional

programs

(Selby & Basili 1991) See footnote
2

Global variables Increases (Card et al. 1986) Functional

programs

Coupling Increases (Selby & Basili 1991) See footnote
2

(Succi et al. 2003) 2 C++ projects

Generally

increases, some

measures

decrease or have

no effect

(Briand, Wüst, et al. 2000) Object oriented

programs

Depends on

language and

depth of

inheritance

(Subramanyam & Krishnan

2003)

C++, Java

Number of

descendants

Increases (Card et al. 1986) Functional

programs

Continued on next page

2
 An internal software library tool that contains several languages. The static source code metrics was

constructed from the portion written in a PL/I -like high level source language.

 Chapter 2. Avoiding Known Bugs 34

Inheritance-,

coupling-, and class-

related measures,

including depth of

inheritance and

number of

immediate

descendants

All measures

increase, some

(depth of

inheritance and

number of

immediate

descendants)

decrease in

other studies

referred

(Briand, Wüst, et al. 2000) Object oriented

programs

7 CK metrics

including

inheritance depth

and number of

immediate

descendants

Generally

increase, depth

of inheritance

may decrease

and number of

immediate

descendants

decreases

(Succi et al. 2003) 2 C++ projects

Depth of inheritance Increases,

decreases, and

then increases

again as

inheritance

deepens

(Selby & Basili 1991) See footnote
2
,

inheritance is

nesting of

processes

Usually

increases,

depends on

coupling

(Subramanyan & Krishnan

2003)

C++, Java

Number of methods

in a class

Increases (Subramanyan & Krishnan

2003)

C++

Decreases (Subramanyan & Krishnan

2003)

Java

Module size Depends on

application

(Ostrand & Weyuker 2002)

Compare

different studies

(Hatton 1996) Compare

different studies

Increases (Subramanyan & Krishnan

2003)

C++, Java

Bieman et al. (2003) studied design patterns and change proness. The change proness of

classes used in design patterns was different in different cases. For example, the class size

sometimes increased change proness. There are other studies about design patterns, too. For

instance, Vokáč (2004) analyzed the correlation between the appearance of some design

patterns and faults in C++ software. According to the study, there was a negative

correlation. Some tools can look for fault patterns. Livshits and Zimmermann (2005)

present methods and a tool for detecting new fault patterns using revision histories, and

detecting their violations.

 Chapter 2. Avoiding Known Bugs 35

Table 8 presents classification methods for predicting fault-prone modules.

 Table 8. Methods for predicting fault proness

Prediction method Authors

Association mining. E.g. (Chang et al.

2009)

Logistic regression, classification trees, and optimal set production.

The latter study also involves pattern recognition to analyze data for

software process planning.

(Briand et al. 1993)

and (Briand et al.

1992)

Finding high-risk components with optimized set reductions based on

software properties like number of global variables and nesting. The

method is compared with trees and logistic regression.

(Briand et al. 1993)

Using continuous attributes in classification trees. (Morasca 2002)

Logistic regression and rough sets are assessed as means of fault

proness measurement, and a hybrid model combining both is built.

(Morasca & Ruhe

2000)

Non-parametric discriminant analysis. (Khoshgoftaar et al.

1996)

Boolean discriminant functions. (Schneidewind 2000)

Case-based reasoning. (Khoshgoftaar et al.

1997)

Fuzzy decision trees. (Suárez & Lutsko

1999)

Hyperbox algorithms in classifying software quality. Fuzzy box and

genetic algorithms are presented.

(Pedrycz & Succi

2005)

A forest of learning decision trees. (Guo, Ma, et al.

2004)

Some computer risk identification techniques are compared. Tree-

based defect models are analyzed in identifying and characterizing

fault-prone modules.

(Tian et al. 2001)

Statistical approach for measures of Java class fault proness. A

model is presented, applying model to different software than the one

it was made for is assessed, and ability of several methods like

regression-based MARS is assessed.

(Briand et al. 2002)

Statistical dynamic bug searching for software with multiple bugs.

The method in the study is based on making clusters of predicates

that are true in bug situations.

(Zheng, Jordan, et al.

2006)

A model for finding files with largest number of faults and largest

fault densities. The predictions are based on change history and fault

parameters like file size.

(Ostrand et al. 2005)

Methods for building models for measuring fault proness for different

applications.

(Denaro et al. 2002)

A project based measure about costs of misclassification. A table of

used metrics variables is introduced.

(Khoshgoftaar et al.

2005)

An approach based on resources and events in development. The

lack of experience of the programmer, failure history, late substantial

modifications, software involved in the late design change, or

uneasiness of developers, may be indications of fault-prone routines.

(Hamlet & Taylor

1990)

The combination of principal component analysis and neural network

method to find sets of high-risk modules. It is stated that usual

correlation and factor analysis-based methods result in too much

correlation between classes.

(Neumann 2002)

 Chapter 2. Avoiding Known Bugs 36

2.3.2 Hidden Bugs

There are some classes of bugs that are hard to observe, the following list presents some

such bug types. A Bohrbug is a bug that is solid and easy to detect (Gray 1985).

 A context preclude means that some configuration or set of memory constraints

makes it impractical or impossible to use the debugging tool (Eisenstadt 1997).

 A stealth bug is a bug that consumes the evidence of itself (Eisenstadt 1997).

 Heisenbug goes away when one tries to look it (Gray 1985). For instance, it may go

off when one turns on the debugging tool (Eisenstadt 1997), or it may be caused by

a racing condition (Bourne 2004).

 Mandelbug is so complex that it is hard to predict the failure occurrence or non-

occurrence, due to the activation or propagation of fault caused by either of the

following two reasons presented by e.g. Grottke and Trivedi (2007). There may be a

delay between failure activation and failure occurrence, so it is difficult to identify

what caused the failure; repetition of the step does not necessarily cause the failure

again. Another reason is that other elements of software system (e.g. operating

system or hardware) can influence on software behaviour.

 Schroedinbug manifests itself only after unusual software use or use in a new

situation or reading a source code, when the person who did the activity notices that

the software never should have worked and it stops working for everyone until fixed

(Raymond 2003).

Kelly and Shepard (2004) present problems in testing. According to the study, multiple

symptoms may disguise the root cause of a problem. The authors also discuss the

cause/effect chasm. The cause/effect chasm means that the symptom of a problem being far

removed in space or time from the root cause (Eisenstadt 1997).

Hidden bugs may survive tests, even if the code is executed during the tests. A fault may

remain hidden for a long time; see e.g. (Sullivan & Chillarege 1991). According to Sullivan

and Chillarege (1991), executing a piece of code of a tested operating system in exceptional

environment like rare prior state, loading, or input data, may trigger field failures. In (Cai et

al. 2005), special combinations of input, noise, and failure detection process triggered

common mode failures. Testing usually does not reveal external faults, see subchapter 5.1.1

and the introduction of chapter 5. In addition, some external conditions may modify for

example heap and memory content, and this may affect test results (Whittaker 2001).

Systems do not always detect the first symptoms, and the errors may propagate (Sullivan &

Chillarege 1991). In the study, memory corruption errors corrupted only few bytes, which

made them harder to detect. In several studies, e.g. (Lee & Iyer 1993), a propagation

concept "further corruption" means that consequences of a fault are first used without the

fault being detected and later the fault is detected by a task not related to the one that

accessed the first fault for the first time.

There are many studies about error propagation. According to Michael and Jones (1996),

the errors in software code that affected data state behaved homogenously in the vast

majority of cases: either all or none of them propagated to output. The amount of code

executed after perturbation (after fault injection), the number of perturbations per location,

and the extent to which the perturbed values differ from the original ones, did not have much

effect on the homogeneity results. Voas (1992) presents a technique that contains analysis

of probabilities that a fault affects specific section of software, probabilities that the section

affects state, and probabilities that the state affects output. Also input error or data

corruption may lead to erroneous output (Voas & Miller 1995a).

Models have been developed about bug propagation. For example, Okun et al. (2004) study

propagation of logical faults. Wooff et al. (2002) describe graph models containing

 Chapter 2. Avoiding Known Bugs 37

probabilities that a fault transfers to another node. Estimation of root node probabilities is

presented and sensitivity analysis for software changes is discussed in the article.

Binkley and Harman (2004) study how many global variables and formal parameters a

typical failure depends on. Voas and Miller (1995a) studied propagation by using

information about variables that were altered by wrong input. Bishop and Bloomfield

(2003) studied execution profiles of program statements and their effect on failure rate.

There are studies where error propagation is analyzed by performing flow analysis, see

(Murrill 2008). Bug detection by reasoning about logical dependencies and assumptions is a

topic for research, see e.g. (Frankl & Weyuker 1993a). Bug detection by locations of

variables is a related issue. Murrill (2008) does not recommend static flow analysis as an

analysis method for error propagation.

Error propagation in operation systems has been studied. In (Lee & Iyer 1993), Tandem

QUARDIAN90 operating system errors that were detected quickly either were bound to be

detected on the first access, or the first error could be accessed without being detected and

the problem was detected by the task that accessed the first error for the first time. In the

study, errors with long latency were susceptible for causing further corruption. Overlay

errors (errors that corrupt memory) often propagate and corrupt data in MVS operating

system in (Sullivan & Chillarege 1991). A propagated error can often defeat the established

recovery mechanisms (ibid.).

Even if there are faults in software, the output may be coincidentally correct. According to

White and Sahay (1985), two or more inequalities may combine to impose an equality

restriction on the input domain; this is called coincidental equality. White and Cohen (1980)

presented coincidental correctness. Coincidental correctness means that there is a fault in

software and output variables coincidentally are the same as if the domain and the

computation had been correct. A good example of coincidental correctness is an equation

x+x=x*x when x=2 or x=0. Software may also contain faults that cover each other's effect,

so the result is correct (Abbott 1990).

Blindness means that an erroneous predicate may produce correct output when it is in touch

with other context. Blindness is one form of coincidental correctness. Any linear

combination of errors involving assignment and equality blindness may cause blindness

(Zeil & White 1981). Table 9 presents common forms of blindness.

 Table 9. Basic blindness

Blind-

ness

Explanation These two cannot be

distinguished

if this

holds

Source

Assign-

ment

Functions may evaluate to

zero when they are parts

of expressions (Zeil &

White 1981).

U+2*A-T>B U>B 2*A-T=0 (Zeil & White

1981)

X>0 A>0 X=A (Zeil 1983)

Equal-

ity

This type of blindness is

due to equality restrictions

(Zeil & White 1981).

C+D>1 C>0 D=1 (Zeil & White

1981)

Self An expression cannot

always be distinguished

from its multiples (White

& Sahay 1985).

X-1>0 X+A-

2>0

X=A (White &

Sahay 1985)

X+1>0 2*X+2>0 true (Zeil 1983)

There is implicit information loss when two or more parameters give the same result. There

is explicit information loss when variables are not validated; for example, if a module does

not release information that other modules could potentially use. Function type is a factor in

 Chapter 2. Avoiding Known Bugs 38

susceptibility to information hiding. For example, there is no information loss for function

f(a)=a+1, where a is an integer argument. Modulo function f(a) = a mod b has information

loss, and testability of the function decreases as b decreases. (Voas & Miller 1995b).

Voas and Miller propose specification decomposition to reduce cancellation of effects of

faults. They recommend minimizing variable reuse, and increasing the use of out-

parameters (output variables exclusively for testing). The study assumes that there is a

single fault and it is in one location. The study also discusses mutations, executions, and a

method to estimate the probability of infection. (Voas & Miller 1995b).

2.3.3 Number of Faults in a Failure Situation

Bugs may interact with each other. The amount of interaction and some reasons for it are

discussed below. The portion of code that the bug may affect is discussed too; for example,

the question about how many variables a failure is dependent on is investigated. The breadth

of a bug has an effect on propagation. Propagation was discussed in the previous

subchapter.

If random input is used, independent versions of software do not fail independently

(Littlewood & Miller 1989). Bishop (2006) surveys experiments made about intentional

diversity in design between different versions of software that all perform the same task.

According to those studies, different versions have common faults. According to Bishop, the

primary cause for common faults in final program versions has been inexact specifications.

Yoo and Seong (2002) analyzed an N-version system where different versions had different

specification languages. There were matters that tended to cause defects in several replicas

(Yoo & Seong 2002). Diversity is useful in inspection, too: research shows that people who

inspect software from different perspectives find different faults (and only few faults are

found by several inspectors who have different perspectives), see e.g. (Laitenberger &

DeBaud 1997). Correlated failures are discussed in subchapter 6.3, too. See also subchapter

5.1.2 about test coverage.

Brilliant et al. (1990) look for cases where programmers make equivalent faults. Apparently

different logical faults may yield faults that cause statistically correlated results, and faults

that seem to correlate do not necessarily correlate (ibid.). Some special cases in input space

like cases of three points where two or more of them coincide or all are parallel, are subject

to correlated faults (ibid.). Another type of correlated faults in the study was a precision

bug; for example, cosines were compared instead of angles. In (Cai et al. 2005), common

mode failures were due to e.g. initialization, computation, or precision bugs, or system

coherence faults.

Dunham and Finelli (1990) introduce studies about characteristics for real-time failures.

Typical features for real-time programs are repeated execution, fast iteration rates, and

correlated inputs (ibid.). In the studies, widely varied failure rates were observed, faults

interacted in non-intuitive ways, and some failures were caused by interaction of several

faults (ibid.).

Table 10 describes research about how many faults are needed to cause a failure. At least

some of those studies involve correlated faults.

 Chapter 2. Avoiding Known Bugs 39

 Table 10. Studies about number of events or conditions affecting a failure

Fai-

lures

Field Result Study

97942 N-version

experiment

Rare situations cause severe errors. All software

versions that failed under three rare faulty inputs

had already experienced failures under two rare

faulty inputs.

(Eckhardt

et al.

1991)

365 Browser

and server

Approximately 90 per cent of failures were

caused by three or fewer conditions. None of the

failures were caused by more than six conditions.

(Kuhn &

Reilly

2002)

109 Medical devices 106 faults were due to values of 1-2 conditions, 2

had 3 conditions, and only 1 had 4 conditions.

None of the faults had more than 4 conditions.

(Wallace

& Kuhn

2001)

329 NASA distributed

software,

development and

integration testing

1-way, 2-way, 3-way, and 4-way bugs

represented respectively 68%, 93%, 98%, and

100% of bugs.

(Kuhn et

al. 2004)

Not

stated

Dynamic fault

tree models

Modeling-feature interactions that arise only in

cases involving 15 or more events are possible.

(Coppit et

al. 2005)

Not

stated,

>100

000

Dimensionality

model to

characterize

triggers for

robustness

failures

The input arguments were used as model

parameters, each representing one dimension.

Approximately 82% of all failures were caused

by a single parameter in the study.

(Pan 1999)

Brilliant et al. (1990) studied how many faults had to be corrected to correct failures caused

by multiple faults. According to the study, some such failures could be fixed by correcting

only one of the faults, and some could be fixed by correcting two or more such faults. One

NASA study had a similar result: fixing either of two different faults could correct the same

failure (Dunham & Finelli 1990).

Some research has been done about how many software variables have effect on a specific

software failure. According to Binkley and Harman (2004), a typical predicate in C-

program studied depends on 72 % of formal parameters, and on 48 % of global variables that

can potentially be used or defined by a call to the predicate's procedure, and on 2.4 % of

global variables in the scope. The study also computed correlations involving formal

parameters and global variables visible to a predicate; both were compared to the proportion

actually used and the size of the function. There was no correlation between the number of

formal parameters and that of global variables.

There is research about what types of bugs can be detected by combinatorial testing methods

and how effective they are. See also subchapter 5.1.2 about test coverage. According to

several research documents, pairwise testing is very efficient means of finding faults, see

e.g. (Dalal et al. 1998) and (Cohen et al. 1997). Pairwise testing means that all 2-way

combinations of parameter values are tested. Smith et al. (2000) compare testing of all-pairs

(all pairwise combinations of parameter values are tested) and all values (all parameter

values are tested at least once, and only one parameter has different value than in a test case

that gives a correct result) for a remote agent planner software in Deep Space -mission.

When all pairs- and all values –methods were both used, 88% of timeouts and correctness

bugs were detected by those methods but only half of the interface and engine bugs were

detected (ibid.). All pairs -method detected only 20 % more bugs than all values- method

(ibid.). All values -method missed more timeouts than correctness bugs with respect to all

pairs (ibid.).

 Chapter 2. Avoiding Known Bugs 40

Mutation testing means that small changes (mutations) are made to the module, and results

of the original module and those of the mutated module are compared. If the results differ, it

can be said that the mutant has been killed. Mutation testing is often related to coupling of

faults. Some faults have very simple mutations and some do not (Howden 1982).

Sometimes testing elemental mutants fails but more complex mutation testing may succeed

(Howden 1982). Woodward and Halewood (1988) study an intermediate technique between

using elemental and all mutations. (Offutt 1992) supports the hypothesis that test data sets

that detect all simple faults detect large percentage of complex faults. K.S. How Tai Wah

(2003) discusses a model to study coupling and studies the effect of killing mutants with one

fault in mutation testing on mutants with more faults. Research is also being done about

orthogonality of mutants, see e.g. (Lee et al. 2004) about orthogonality of mutants in object-

oriented mutation testing. Saglietti (1990) investigates metrics of dissimilarities in input

partitions between different versions of software.

2.4 Faults and their Causes

Knowing what causes bugs helps preventing them, so more and more attention is being paid

to the causes of software faults. Possible causes of faults are investigated in this subchapter.

In addition, classifications that involve causes for bugs are surveyed.

Many bugs are due to carelessness (Maxion & Olszewski 2000), (Nakashima et al. 1999) or

lack of understanding. According to Spohrer and Soloway (1986a), many faults like type

mismatches may be due to misunderstanding the semantics of the programming language.

Some logical faults were due to erroneous reasoning (ibid.). Some other bugs may be due to

misinterpreting specifications or mixing local and global (ibid.). Chou et al. (2001) studied

causes for Linux-bugs. In the study, a common cause was that programmers do not

understand the system well and do not know what all functions do in usual and more

exceptional situations. There were copy-paste-faults probably due to ignorance or the fact

that programmers trusted each other's work. In (Cai et al. 2005), common causes for faults

were misunderstanding of specifications and lack of knowledge of application area or

programming language. Changing only parts of the code caused bugs in (Sullivan &

Chillarege 1991). Keeping track of cross references would help prevent those faults (ibid.).

Faults may be due to wrong assumptions. Table 11 introduces some types of wrong

assumptions.

Table 11. Some typical wrong assumptions

Implicit assumptions. Jacobs et al. (2005) mention implicit assumptions not communicated

to other projects. The study is about virtual teams.

People assume that other people test the software, see (Nakashima et al. 1999).

Programming environment. McKeeman (1975) studies how to prevent false assumptions

about the programming environment. The study presents examples of false assumptions

about the programming language as a cause of faults.

Evalutaion errors. Gerhart and Yelowitz (1976) found that evaluation errors were common

in proven programs. For example, the programmer might have had assumed left-to-right

ordering and the compiler may have performed computations in another or non-deterministic

order (ibid.).

Type mismatches. Bug fixes in MVS operating system often changed message format or

data structure organization, and other modules had implicit assumptions that contradicted

those changes (Sullivan & Chillarege 1991).

Continued on next page

 Chapter 2. Avoiding Known Bugs 41

Special items. Maxion and Olszewski (2000) mentioned assumptions about special items,

e.g. an assumption that there were a maximum number of rows/columns of data when there

were not.

Independency. False assumptions about independency between sections of work products

(sections can be, e.g. components, requirements, or constraints) are mentioned in (Conte de

Leon & Alves-Foss 2006); the study involves detecting dependencies.

Allowing transformations which are valid only in some parts of their domain without

recognizing those parts may cause bugs (Fateman 1990).

Some attention is being paid to the lack of understanding. IBM has had a level of experience

in its fault trigger classification (Kelly & Shepard 2001), and Kelly and Shepard (2001)

associated a level of understanding with each defect category in their bug classification.

Spohrer and Soloway (1986b) studied how novices think when they make bugs. Jiang et al.

(1999) studied what people with different orientations perceive as reasons for system

failures; reasons were related to user and developer, processes, and organizational and

technical environments.

Some design methods and programming languages support the concept of mode. Leveson et

al. (1997) discuss mode confusions and reasons for mode confusion. Bachelder and

Leveson (2001) introduce a model about a military helicopter system. By using the model,

the following mode confusion errors were identified in the system: unintended side effects,

indirect mode transitions, inconsistent behavior, ambiguous interfaces, and the lack of

appropriate feedback. Operator authority limits are mentioned as the sixth class. According

to Sullivan and Chillarege (1992), there are several causes for missing state bugs: some of

those bugs are due to ignored cases, some are due to technical software functioning like

setting state flags incorrectly, and some are due to situations where software misinterprets

events and makes faulty transactions.

More and more studies have classified both bugs and their causes. Some studies find a cause

for each bug type, and some studies classify bugs and their causes orthogonally, (Leveson

2001) is a good example of both actions. Classification methods can be based on some

specified criteria (Fredericks & Basili 1998); or on data similarity, cluster analysis

(Podgurski et al. 1999) is a good example of the latter. More and more attention is being

paid to human errors. Nakajo and Kume (1991) had classified the type of each fault as either

of three types: internal, functional, or interface fault. Cause-effect relationships of software

errors are analyzed from data of observation points in a fault tree. The observation points

form a three-level hierarchy of fault classification: fault type, human error, and process flaw

that caused the human error. Typical human errors are misunderstanding of specifications or

program function. According to the study, human errors may be due to a process flaw like

inappropriate definitions and lack of methods to record and report them.

Lutz (1993) studied and compared faults in safety critical parts and non-safety critical parts

of safety critical software. According to Lutz (1993), faults were often caused by

misunderstanding specifications, and a common root cause for this was often communication

errors between development teams. In the study, each root cause was associated with a

process flaw or inadequacy in the control of system complexity, and with process flaw in

communication or development methods used. Inadequate identification or understanding of

interfaces or requirements, and interface design during system testing, were common flaws,

particularly for safety-related faults. Other common flaws especially for safety critical

systems were imprecise, incomplete, or unsystematic specifications; missing, unknown,

undocumented, or wrong requirements; and insufficient design of requirements (Lutz 1993).

An individual mistake was the most common human root cause and the lack of system

knowledge was the second common human root cause in (Leszak et al. 2002). According to

 Chapter 2. Avoiding Known Bugs 42

Hansen et al. (1998), many failures in an air data system have been due to the insufficient

understanding of interactions between air data system, flight control laws, and redundancy

management software.

Leveson has studied common factors for software-related aircraft and spacecraft accidents.

Software faults have been only one of the many factors in those accidents. According to the

study, the vast majority of software-related spacecraft accidents involve incomplete

requirements specifications and unhandled or mishandled software states or conditions.

Leveson linked mechanic events to conditions or lacks of conditions that allowed them.

Those conditions were linked to system factors. Leveson identified striking similarity in

system factors in all those accidents. Leveson classified system factors as flaws in safety

culture, ineffective organizational structure and communication, and ineffective or

inadequate technical activities. (Leveson 2001).

Nakajo et al. (1993) studied methods for preventing the lack of communication in software

development process. Those methods had originally been developed for hardware. Bug

tracking tools help in sharing knowledge about bugs during and after software development.

There are several tools for bug tracking, e.g. Bugzilla on https://bugzilla.mozilla.org/ is a

public bug tracking tool.

2.5 Summary of Avoiding Known Bugs

Catalogues of bug types have been created. Different bug classifications are being

developed for different purposes, and automatic classification methods are being developed.

What a good bug report should contain is also being studied. There are bug databases for

increasing bug knowledge. The temporal development of bugs has not got much attention

by research people. Subchapter 2.1.3 contains a short study about the topic. Simple bug

types like character- and calculation faults have been present all the time. There have been

inversion bugs at least from 1970's. From the 1980's, software has become more complex

and bugs related to e.g. stress, order of operations, timing errors, missing states, sizes of data

elements, and user interfaces have been present. Correlation between different bug types

could be studied more. There is empirical research about how long a bug lasts, but the

problem is hard to solve empirically: there is a possibility that a bug is never detected.

Characteristics of bug types have not got much attention by researchers. Research is being

done about fault patterns. Attempt has been made to find fault patterns by comparing

different studies, but there have been problems in comparison; e.g. in Shull et al. (2005),

there was no common definition for interface bug, which has made comparison difficult.

The study is discussed in subchapter 7.1.2. Fault patterns could be looked for with other

methods, too. Some statistical and other kinds of methods to look for fault proness have

been surveyed in this chapter. How much these methods and other means help in detecting

characteristics of faults could be a topic for research. Knowing characteristics of an

individual bug type could help detect fault patterns, and vice versa.

There are studies about problems and numbers and types of faults found in different

application domains. Omissions and logical faults are common in many application areas.

What causes the need for new requirements is also studied. Safety critical systems have

some specific problems. Research is also being done about error-prone features of

programming languages and methodologies, and about frequent faults when using a specific

programming language or operating system. Different methods, programming languages,

and operating systems have different fault prone features.

There is a lot of research about fault prone files, predicting fault proness, effect of the life

cycle phase on fault content and on easiness to correct a fault, effect of age and legacy on

https://bugzilla.mozilla.org/

 Chapter 2. Avoiding Known Bugs 43

number and types of bugs, and when and where bugs are born. Size and structure of failure

region for a fault is being studied. What software features or software development features

correlate with bugs or help detect or correct bugs is being investigated. For example,

complex sequences often reveal more faults than easy ones. Bug symptoms, fault detection

mechanisms, and effect of workload on fault detection are also being studied. One bug may

have several symptoms. When faults are detected and what triggers them are also studied.

The effect of metrics on fault proness depends on the development environment and the

application domain. Some studies involve design patterns. There are also statistical

methods for looking for bugs, e.g. predicates that are true in failure situation are being

caught.

Types and classes of hidden bugs are being discussed. Some bugs are hard to observe

because they for example appear in rare situation or high workloads or give remote

symptoms or several symptoms. Those bugs may be hidden for a long time. Not all hidden

bugs appear in rare situations. There are studies about information that can be hidden from

testers. In addition, testers do not necessarily detect fault symptoms. Also, the user may

start to use the program in a new way, which may reveal hidden bugs. Research has been

done about error propagation. For example, how dependencies of variables affect error

propagation is being studied.

Software faults may also cover each other, or environment may cover bugs. Even if there

are faults in software, the output may be coincidentally correct. For example, if the software

multiplies two numbers when it should add them, the result is correct if both the numbers are

twos or both are zeros. Some forms of coincidental correctness and blindness are presented

in this thesis.

Researchers have not been emphasized that faults covering each other is an undesired

phenomenon. There may be some situations where those faults do not cover each other. In

addition, changes in software or in the environment may trigger those failures. According to

some studies, fixing one fault may eliminate a failure caused by several faults. The studies

do not critisize this approach even though it is very dangerous: the other faults still remain

hidden and may actualize in other situations. When not all the faults are corrected, the

remaining faults remain hidden and may be disastrous with other conditions (e.g. other input

or different memory content) or after code changes.

Several methods should have wider application area than what they have. For example,

more attention should be paid to the phenomenon that expressions may cover faults in other

expressions. This is considered mostly in domain testing but could be considered in other

connections, too. Blindness and coincidental correctness are investigated in connection to

domain testing; they are rarely discussed outside the field of domain testing. They should be

taken into account when investigating e.g. static analysis, risk-based testing, or fault-based

testing.

There are cases where programmers make equivalent faults. For example, many geometric

and trigonometric problems are like that. Faults may interact in non-intuitive ways.

Generally speaking, one or two rare conditions are enough to trigger a failure, but sometimes

even 15 conditions are needed. How many variables a failure depends on is also being

studied. Some studies compare the fault detection ability of several combinatory testing

methods. Types of faults found by these methods are being compared, too. Some studies

assess a testing method that may reveal a connection between parameters or fault regions.

How complex mutants need to be in mutation testing is also being studied.

As stated above, correlation between different fault types could be studied more. However,

the number of faults in a failure situation has been studied a lot. Abstract models of fault

correlation, too, have been studied quite a lot in the context of defect prediction or modelling

of configurations of components. Fault proness has been studied, too, as stated above.

 Chapter 2. Avoiding Known Bugs 44

More and more attention has been paid to the root causes of faults. Typical root causes are

carelessness, lack of knowledge, lack of communication, misunderstandings, wrong

assumptions, and insufficient specifications. What software faults cause mode confusion or

missing state is also being studied. Several classification systems classify faults and their

causes. The root causes are often the same even when software faults are of different types.

Human errors like misunderstandings may be caused by process faults.

 Chapter 3. Defect Prevention and Prediction 45

3 DEFECT PREVENTION AND PREDICTION

Chapter 2 investigated information about software bugs in general. The rest of the thesis

involves failure avoidance. In this thesis, the failure avoidance means are classified as

means for fault prevention, fault prediction, fault detection, and fault tolerance, see chapter

1. This chapter involves methods intended for preventing and predicting software faults.

The first subchapter involves means for fault prevention, although those means have

connections with other areas of failure avoidance. The main topic is the disciplined software

development process and its measurement, but some other topics are discussed briefly. The

second subchapter discusses defect prediction like risk analysis, prediction metrics, and

defect prediction models. The topics of the second subchapter, particularly risk analysis,

have connections to fault prevention, fault detection, and fault tolerance, too. The last

subchapter is a summary of this chapter.

3.1 Defect Prevention

This subchapter involves means for defect prevention. The first part discusses general

means for defect prevention, like good software engineering practices (particularly the

software development process), measuring, modelling, and reverse engineering. Some

fundamentals of software engineering are also briefly discussed. In the second part, the

relationship between bug prevention and different phases of the software life cycle is

discussed.

3.1.1. General Means for Defect Prevention

According to a study of Tervonen and Kerola (1998), different people have different ideas

about what software quality is. The study involves how to achieve co-understanding. There

are studies about how to make quality assurance more practical, see e.g. (Koono & Soga

1990). Rai et al. (1998) classify software quality assurance into the following dimensions:

technical, managerial, organizational, and economic. This thesis involves the technical

dimension. Good software has different attributes like correctness, efficiency, and

maintainabiltiy, and this thesis is about bug elimination, i.e. correctness.

Good software engineering practices like a disciplined development process and the use of

appropriate methodologies, tools, and metrics, are an efficient way to prevent bugs.

(SWEBOK 2007) contains a systematic framework for software engineering, including

processes, methodologies, and best practices. It also includes managerial and organizational

issues whereas this thesis is about technical issues.

Germain and Robillard (2005) studied effect of the process used on cognitive activities. The

aggregate variation due to process was small and limited. Process used had an impact on

control tasks like inspection and review.

There is a lot of research about process improvement. For example, measuring and

modeling process quantities helps improve the process. According to the survey and

experiment of Green et al. (2005), quality and productivity perception helps improve a

software process. See (Rainer & Hall 2003) about analysis of factors that affect software

processes. Research is being carried out about statistical process control. Statistical process

control means looking for trends, cycles, and irregularities, and improving process or

product based on those trends (Peng & Wallace 1993). Software quality metrics is discussed

in subchapter 3.2.2. There are studies about software process evaluation like validation, see

e.g. (Cook & Wolf 1999).

 Chapter 3. Defect Prevention and Prediction 46

Some studies present errors in theories that are related to software engineering. For

instance, Morris and Bunkenburg (2002) present inconsistency in theories of non-

deterministic functions. Xia (1999) investigates flaws in software engineering like in

definitions, interpretations and representations. For example, some circular definitions are

criticized, and the inconsistent interpretation of the measure of length is discussed in the

study. Inconsistencies in models cause software bugs and are a topic for research.

Medvidovic et al. (2003) study discontinuity between models. In the study, connectors

transfer or compare information between different models of the same or different artifacts.

Different views of software and software inconsistencies can be modelled, too, see e.g.

(Grundy et al. 1998) and (Liu et al. 2002). According to Grundy et al. (1998), there can be

inconsistencies between views, between developers, and between development phases.

Moynihan (2000) studies requirement uncertainty.

Some studies were found about the relationship between reverse engineering and bug

elimination. Tian (1996) searches problem areas in testing; the search is executed by tree

based analysis, where each node has a responding attribute and splitting is performed

according to values of the attribute. Taghdiri (2004) derives specifications from code and

detects errors in code by analyzing those specifications.

3.1.2 Relationship between Life Cycle Phases and Bug Elimination

The bug elimination means mentioned in subchapter 3.1.1 can be used in all phases of

software life cycle. There are many methods that are used in one or more phases of the

software development process. Ramamoorthy et al. (1986) classify methods according to

weather they are phase dependent or phase independent. For example, risk analysis can be

considered phase independent, although it may have different content in different life cycle

phases. Review and testing should be executed in every phase of the life cycle. There are

models about software development life cycle. For example, Boehm (1988) presents

waterfall model and spiral model. Those models often contain requirement engineering,

architectural design, modular design, coding, and testing.

Making goals should be the first part of software development process but requirement

specification or risk analysis is often considered the first phase of it. It is hard to achieve

goals if they have not even been specified. There are some studies about goals, and more

and more research is being done about them. See e.g. (Fredericks & Basili 1998) about

setting goals and measuring whether they are achieved. (Stallinger & Grünbacher 2001) is

one example of numerous studies on software process -related simulation; the aim of the

method in the study is to achieve convergence towards a goal. After making goals, later

phases of software life cycle can be performed. Sometimes one can return to the previous

phase or even an earlier phase than that during the development cycle, e.g. Boehm (1988)

presents a spiral model for a software life cycle.

van Lamsweerde et al. (1998) present formal generic refinement techniques for making

specifications from goals. Using this framework, conflicts between goals can be eliminated.

For example, new goals can be set or goals can be weakened. van Lamsweerde and Leiter

(2000) analyze exceptions for a single goal. All obstacles are formalized. Operations in the

study are conditional input-output relationships over objects. Techniques for elaborating

goals and generating obstacles from goal specifications and from domain properties are

presented. Methods for resolving and preventing obstacles are introduced. The study also

includes classifications of obstacles.

Requirement engineering is an important way to prevent bugs. Sommerville and Ransom

(2005) detected a correlation between increased business benefits and improved requirement

engineering process. According to the study, it is hard to know if there is a casual

 Chapter 3. Defect Prevention and Prediction 47

relationship. There is a lot of research about requirement engineering. The relationship

between bugs and requirement engineering is investigated in chapter 4, particularly in

subchapter 4.5.1.

Architectural Design Considering architectural design, safe memory allocation and

deallocation is closely related to prevention of memory bugs, see e.g. (Gay & Aiken 1998)

about memory regions and (Dhurjati et al. 2005) about memory safety. Ideal module size to

reduce faults is discussed in subchapters 3.2.2 and 2.3.1. Godfrey and Zou (2005) study the

detection of merging and splitting of functions.

Some architectural models consider failures, see e.g. (Perry & Wolf 1992) for a model that

involves erosion due to violations over time, and drift over time due to insensitivity that

leads to inadaptivity and then lack of coherence and lack of clarity of form (relationships

between weighted properties). See subchapter 4.2.1 about modelling interfaces.

Modular design and coding are often considered as phases that cause bugs even though

root causes are in earlier phases and general policies, see subchapter 2.4. However, bugs are

born in these phases, too, as described in chapter 2. How to detect those bugs is investigated

in chapter 4.

Testing could be performed during and after each phase of life cycle. Very often it is

executed only after coding. Chapter 5 is about testing.

Maintenance and configuration management are usually not included in software

development models, like V-model or spiral model. However, they are important parts of the

development process. (SWEBOK 2007) has maintenance and configuration management as

different topics in the description of phases of software life cycle. There is a lot of research

about changes made to programs. Some examples are mentioned here. Phihip (1998)

investigates issues like cohesion, proper program structure, scope of variables, and

documentation of variable names. The article is about maintenance of event-driven

software, but the same ideas help avoiding bugs in other life cycle phases, too. Elbaum and

Diep (2005) study fault-, coverage-, and invariant detection in software by profiling released

software. The study also involves improvements to profiling. There is research about

looking for dependencies before making changes, see e.g. (Robillard 2008). Change impact

analysis is also under investigation, see e.g. (Badri et al. 2005). There are lots of studies

about change proness of software, see e.g. (Bieman et al. 2003). Also, there is software

metrics that is related to maintenance, see e.g. (Peng & Wallace 1993). Cleland-Huang et al.

(2008) study how critical goals are maintained throughout the lifetime of software system.

(Rai et al. 1998) is a survey about maintenance research.

A Phase Review is recommended, at least at the end of each phase of the software

development cycle. However, not many studies have been done about phase reviews.

Dunham and Finelli (1990) present the software development process for NASA Langley

laboratory, where DO-187A -standard had been implemented. In that process, verification,

validation, and quality assurance activities were integrated in every life cycle step.

Requirement traceability matrix had been used. In design review, it was checked that

requirements had been translated correctly, no additional functionality had been added, and

design standards had been followed. The code review included checks of interface,

hierarchy, pseudo-code, and whether the coding standards had been followed. See

(Ramamoorthy & Bastani 1982) about reviews like verification after testing phase. The

article, like many others, involves metrics about testing, like number or faults remaining.

Tracing means linking different results. Tracing guarantees that goals are achieved. For

example, requirements are often traced backward by linking them to goals, risks, and

different kinds of models and documents where they originate, and forward to software

architecture. The architecture can be linked to design and code. See e.g. (Gates &

 Chapter 3. Defect Prevention and Prediction 48

Mondragon 2002) about tracing between and within life cycle phases. When tracing is used

and a fault has occurred, forward search can be performed from failure modes to effects and

backward search from hazards to contributing causes, see e.g. (Feng & Lutz 2005). Tracing

can also be done between or within artifacts created during the same phase of life cycle

(Ramesh & Edwards 1993). Gates and Mondragon (2002) survey tracing approaches and

develop methods for tracing of constraints. Some tracing tools are presented in the study.

Some studies involve how to find candidate links for requirement tracing, see (Hayes et al.

2006). Conte de Leon and Alves-Foss (2006) survey formal and other approaches to

component traceability and introduce an own method.

3.2. Defect Prediction

In this subchapter, defect prediction is investigated. The first part surveys risk analysis. In

the second part, aspects of process control and defect prediction are discussed. Measures

and factors of reliability are involved. The third part involves defect prediction models. The

fourth part discusses uncertainties in using defect prediction models.

3.2.1 Risk Analysis

Software projects sometimes fail, and they are often late. Software is often buggy, and bugs

may cause a lot of harm. Risks in software development and how to avoid them is a topic

for research. Risk analysis helps avoid known and unknown faults and their effects. There

are models that aim at early avoidance of risks.

There are several risk classifications. Risk classification is usually based on the amount and

likelihood of damage. According to IEEE standard (IEEE1540 2001) risks should be

assessed individually, in combination, and along with their interactions with system and

enterprise risks.

Pfleeger surveys risk classification grades, risk items, and common mistakes like having

false precision or using values and use characteristics instead of distributions. One should

not rely too much on science; models may be wrong. Confusing facts with values is a

common mistake, e.g. one should not conclude the degree on risk solely from what has or

has not happened before. A risk may exist even if nothing has happened before.

Conversely, the risk can be small even if harm has occurred. (Pfleeger 2000).

A USA military standard (MIL-STD 882B 1984) involves risk analysis, which is performed

in several phases of the software life cycle. User‟s views are often considered in risk

analysis. See e.g. (Fields et al. 1999) for planning human interfaces in safety critical

systems.

Accidents are often analyzed in order to stop repeating the same mistakes and to improve the

developing process. A process for choosing the best method to describe an accident has

been under research, see, for example (Munson 1999). Using a specific method has also

been a common topic for research. Accidents can be described e.g. by cause-effect diagrams

like fault-trees or event trees; see e.g. (Mulvihill 1988) for event trees. Research has been

done about improving those methods and combining several methods, see e.g. (Xu & Dugan

2004) for combining dynamic fault trees and event trees. Description methods are being

extended, see the fault tree column in table 12. Leveson (2004) criticizes event-based

methods. According to Leveson, events and initial state are often chosen subjectively and

the links between events may be subjective and biased. Usually, no root causes are looked

after (ibid.). Leveson proposes a system-theoretic model for risk analysis. Table 12 presents

that model and some other common methods of risk analysis. It was stated above that

 Chapter 3. Defect Prevention and Prediction 49

accident description methods can be combined. More generally, risk analysis methods can

be combined, see e.g. (Tekinerdogan et al. 2008).

Table 12. Typical risk analysis methods

Method Typical use and research

A system-

theoretic model

A model is introduced for accidents that emphasizes system factors and

models accidents as violations of safety constraints. The control system

can react to component malfunction, external disturbances, and

component interactions. (Leveson 2004).

HAZOP (Hazard

and Operativity

Analysis)

When using HAZOP, the faults are classified systematically (see

subchapter 2.1.2). The leader hypothesizes an abnormal condition and

asks questions to experts and determines whether and how the situation is

possible and what effects it has on the system. HAZOP emphasizes

component interactions. (Reese & Leveson 1997).

Deviation

analysis

Reese and Leveson (1997) introduce a deviation analysis method, in

which causality diagrams are built and deviation formulas of system

variables are incorporated there, and deviations are evaluated with

interval mathematics.

A method for

analyzing failure

mode

assumptions and

system

dependability

Value error, timing error, and unsolicited service are possible. When

using this method, failure mode assumptions are formalized as assertions

on the types of faults that the component may induce. (Powell 1992).

Fault trees Liu and McDermid (1996) perform safety analysis by understanding the

physical model, building a fault tree, and checking a consistency of the

fault tree. A support system is introduced in the study. In addition, fault

trees for processes are being developed, see e.g. (Malhart 1995) and

(Subramanian et al. 1995). Sohn and Seong (2004) assess testability by

calculating output failure probability and importance of statements for

output failure. Those numbers are calculated from a fault tree. See

(Bobbio et al. 2003) about parametric fault trees to remove replicas and

take only essential information into account. Fault trees that contain

stochasticity, effect, and time intervals for events are being developed

(Johnson 2003). See (Clarke & McDermid 1993) about weakest

preconditions in fault trees where external disturbances are included.

Ciarambino et al. (2002) use recursive operativity analysis as one

HAZOP method, to prevent loops in fault trees. Sullivan et al. (2004)

reverse-engineer specifications with an abstract fault tree. Coppit et al.

(2005) study dynamic fault trees with priority and gates and functional

dependence. Processing simultaneous events is discussed in the study.

See (Ou & Dugan 2000) about sensitivity analysis of modular dynamic

fault trees in respect to component failures. The fault trees in the study

may contain static and dynamic modules.

FMEA (Fault

Mode and Effect

Analysis)

This is a method for taking all risk situations into account. In many

versions of FMEA, a table is being made about all equivalence classes.

SFMEA means software fault and effect analysis. SFMEA pays

particular attention to hidden dependencies, e.g. unexpected interactions

or unstated assumptions (Lutz & Woodhouse 1996).

Continued on next page

 Chapter 3. Defect Prevention and Prediction 50

Formal and

argument- based

methods

Liu et al. (1995) survey the use of formal methods. Other safety

techniques presented in the study are fault tree analysis, FMEA, failure

propagation and transformation, and Toulmin argument form.

(Armstrong & Paynter 2006) is one instance of the studies about how to

construct and deconstruct arguments and justify them; this study involves

safety related arguments.

Methods for

requirements,

e.g. forward and

backward search

Smidts et al. (1996) present failure modes for requirements. Feng and

Lutz (2005) present a safety analysis method, based on requirements,

architecture, and scenarios. This method combines forward and

backward search of failures and enables consistency checking between

the results. The method finds missing and incorrect requirements. The

study investigates safety analysis of product lines.

Other forward

and backward

search methods

For example, many state based methods include forward and backward

searches between risk states and other states, see e.g. (Modugno et al.

1997). Tracing makes it possible to do searches between risks and other

elements like causes, goals, requirements, and code.

Architecture-

based analysis

Goseva-Popstojanova et al. (2003) study risk factors for connectors and

components in UML analysis. Khajenoori et al. (2004) discuss

knowledge-centered assessment patterns for safety concerns in software

architecture.

3.2.2 Aspects of Process Control and Defect Prediction

Defects can be predicted by using bug knowledge and by using models and metrics. Plenty

of research has been done about developing and estimating software quality metrics.

Metrics makes statistic process control possible; statistical process control is discussed in

subchapter 3.1.1. Many aspects of software quality can be measured, but this thesis

emphasizes defect control. The following list contains examples of research involving

information system metrics in general.

 Ontology of measures, e.g. units and attributes, (de los Angeles Martín & Olsina

2003).

 Axioms in metrics, see e.g. (Le Traon et al. 2003).

 Metrics problems; Munoz (1988) involves problems in correctness measurement,

and (Xia 2000) is about coupling.

 Empirical evaluation of metrics, e.g. (Le Traon et al. 2003).

 Approaches for metrics (Cant et al. 1995).

Many studies compare software to something else. Among other things, such comparison

makes it possible to understand program better or derive its characteristics. Software is

sometimes compared to thermodynamic properties. For instance, Kirk and Jenkins (2004)

investigate metrics; name-, flow-, and structural obfuscation; compression; and complexity.

The concept of entropy is often used in models of quality assessment.

There are lots of source code measures like those describing program size, complexity,

cohesion, and coupling, see e.g. (Peng & Wallace 1993) for a survey of source code

measures and software quality metrics. Size related metrics has been developed, like a

number of lines in code or metrics based on number of operations, see e.g. (Peng & Wallace

1993). (Gencel & Dermiros 2008) is a study about functional size measurement. See

(Sarkar et al. 2007) for modularization metrics. Software complexity is a topic for research,

because it has an effect on, among other things, the correctness and maintainability of

programs. See (Lew et al. 1988) about what complexity consists of. Measures for

complexity and for complexity information content are investigated in the study, for

example for data structures, modules, and the whole system. There are studies about

 Chapter 3. Defect Prevention and Prediction 51

measuring design cohesion (Bieman & Kang 1998) and code cohesion (Lung et al. 2004).

Software consistency (Murphy et al. 2001) and software process consistency (Krishnan &

Kellner 1999) are topics for research. In (Krishnan & Kellner 1999), the measurement of

consistency is discussed. According to the study, software defects can be reduced by

improving software process consistency.

Zhang and Pham (2000) present 32 software reliability factors and their correlation and

investigate ranking. (Wijnstra 2003) is an instance of studies involving design aspects like

self-test, graceful degradation, error handling, operational aspects, initializations, etc.

According to the study, quality attributes can be transferred to design aspects. Also, design

metrics has been developed, and Zhao et al. (1998) have compared it to code metrics.

Statistical analysis of non-stationary metrics is being studied (Pillai & Nair 1997), the article

is about process metrics.

Finding relevant factors for software reliability is an important topic for research. Number

of defects found early correlates with number of defects found later (Jalote et al. 2007). A

correlation between defect density and project effort is a common topic for research.

According to Selby (1990), density of fault detection as a function of testing time depends

on the application. Plenty of research has also been done about effect of source code

measures on defect density (see subchapter 2.3.1), effort (Itzfeldt 1990), and defect

prediction (Itzfeldt 1990). Results about effect of source code metrics on defect density

have been contradictive, see e.g. table 7 in subchapter 2.3.1.

Correlation between metrics and defect density is not the only criterion in choosing metrics.

For example, some metrics make the defect prediction result more accurate and thus are used

regardless of whether they correlate with faults, e.g. old defect densities can be used (Fenton

& Neil 1999). There are also defect prediction methods and models that do not use metrics

but use only e.g. faults found before, see e.g. (Briand, El Eman, et al. 2000) for capture-

recapture models. Prasad and McDermid (1999) have developed a multivariable method for

assessing whether a computer system works as the customer wishes.

There are studies about comparing methods to predict metrics. Gray and MacDonell (1997)

discuss and compare prediction methods like least square regression, regression tree, case-

based reasoning, neural networks, rule-based systems, fuzzy systems, and classification of

decision trees. They also include robust regression analysis: the method to modify the

model to correspond the data points. Hybrid neuro-fuzzy systems are also included in the

comparison.

Tian et al. (1997) survey and present tools for capturing, analysis and presentation. Defect

tracking, data collection (e.g. for measuring reliability), measurement, and modeling tools

are involved. How to choose tools and how to integrate them are also problems discussed in

the study.

3.2.3 Defect Prediction Models

Models are being developed for estimating reliability of software that has been tested with a

specific method. Lyu and Nikora (1992) survey some models. Models are usually either

steady state models or reliability growth models (Littlewood et al. 2001). Steady-state

systems containing fixed failure and repair rates for faults can be described by Markov-

models, see e.g. (Bukowski & Goble 1995). In reliability growth models, the number of

expected faults can be derived from the number of total faults. The number of expected

faults convergences towards zero or some other value (Littlewood et al. 2001). As an

example of a reliability growth model, Goel and Okumoto (1979) present a non-homogenous

Poisson process -based model for defect prediction, where failure-rate improves all the time.

 Chapter 3. Defect Prevention and Prediction 52

Research has been done about this model, see e.g. (Bai et al. 2003). Another popular

example is Musa‟s and Okumoto‟s (1984) logarithmic Poisson model, where earlier fixes

cause more failures than later ones.

In addition to steady state and reliability growth models, there are special use models.

Tian‟s study (2002) involves data clustering models, and data with different failure

intensities. According to the study, these intensities can be used as a piecewise linear model

or software reliability growth models can be fitted into these cluster models.

There are numerous defect prediction models. Distributions are being developed for faults

left or for failure rate. For example, Hou et al. (1994) assume hypergeometric distribution

for faults left. Failure rate is often assumed to be lognormal, see e.g. (Mullen 1998) for

proof for the assumption. Another group of frequently studied models is the family of

capture-recapture-models, see e.g. (Briand, El Eman, et al. 2000). Some models allow

estimation before testing, see e.g. (Graves et al. 2000). Change history (Graves et al. 2000)

and data from similar projects (Xie et al. 1999) are sometimes used in predicting defects.

Wohlin and Körner (1990) model bug spreading; the model includes probabilities that a bug

presented in a certain phase of life cycle is found during a specific phase of life cycle. In

(Chillarege et al. 1991), defect subgroups with inflected growth curves are related to

initialization defects, particularly missing initializations. There are surveys about models,

e.g. Peng and Wallace (1993) present some models. Some models can take into account one

or more of the issues presented in table 13.

 Table 13. Special issues in defect prediction models

Distortions. For example, learning may slow down failure detection, see e.g. (Hou et al.

1994).

Differences in failures, corrections, and testing, e.g. different failure rates of faults,

different severities of faults, erroneous or imperfect corrections of faults, and effect of

testing on changes of failure probabilities (Peng & Wallace 1993).

Delay in repairs. Repairing failures takes time, see (Gokhale et al. 1997)

Common mode failures. Faults that have an effect on many components, see (Littlewood et

al. 2001).

Operational profile when the software is in use, i.e. user inputs, see (Littlewood et al.

2001).

Components whose status is unknown. One does not always know if components are

working or have failures, see e.g. (Tan 2007).

Several defect reduction cycles, e.g. test and correction, (Rallis & Lansdowne 2001).

Level of correctness, see e.g. (Weiss & Weyuker 1988) about a model containing a

tolerance function for correctness.

Concentration of defects, e.g. Ostrand et al. (2005) present negative binomial distribution

model that allows fault concentration.

Besides probability theories, different kinds of known information and belief are used when

estimating reliability. Littlewood and Strigini (1993) discuss how to combine belief (based

on e.g. design principles, test results, or design process), faults occurred, similarities with

known systems, and other such factors when estimating reliability. Because the required

level of dependability is high in safety critical systems, not enough can be learned in order to

predict their quality well enough (ibid.). Pasquini et al. (1996) study reliability estimation

based on input domain. According to the study, testing may affect neighbouring input

values. See (Chang & Jeng 2005) about impartial evaluation in software reliability practice.

The study investigates using prior information and prejudgements on software quality in

connection with usage testing.

 Chapter 3. Defect Prevention and Prediction 53

Lo et al. (2005) study reliability growth assessment based on individual components and

system architecture. The study is an instance of sensitivity analysis studies; sensitivity

analysis is investigated for parameters, components, uses, transition probability interactions,

and relative error components. Some studies have also been done about calibration and

robustness of defect prediction models, see e.g. (Briand, El Eman, et al. 2000) for those of

capture-recapture-models.

There are several studies about absolute bounds or confidence intervals for reliability. For

example, Bishop (2002) studies methods to calculate bounds for reliability for a specific

execution profile of software statements and for calculating bounds regardless of execution

profiles. There are also studies about bounds for faults that a system can tolerate, see e.g.

(Santos et al. 2005).

3.2.4 Critique of Defect Prediction

Research has been done to compare different fault prediction models, see e.g. (Roper et al.

1997). Results of those studies contradict, some examples are mentioned in (Myrtveit et al.

(2005). In addition, each technique has its relative strengths and weaknesses, and absolute

and relative effectiveness depend on the nature of the process and the nature of faults (Roper

et al. 1997). It is hard to find an appropriate method for a specific system. It is

recommended that several models be combined in defect prediction (Neumann 2002). There

is a recent tendency to use learning and adaptive models for defect prediction, Kiran and

Ravi (2008) have a survey and an experiment. Neural networks are sometimes used in

defect prediction, see e.g. (Neumann 2002) about combining neural networks with other

methods. Some combined models are being built for defect prediction, see (Fenton & Neil

1999) about Bayesian networks. Menzies et al. (2007) study data mining in order to build

defect predictors. Many recent defect prediction studies, like this one, make use of Bayesian

methods. (Lessmann et al. 2008) is about benchmarking classification models for defect

prediction.

Many studies criticize software defect prediction models. Models may be based on wrong

assumptions. According to Butler and Finelli (1993), it is often assumed that different

systems fail independently, although based on former experiments, it should not be assumed.

According to Fenton and Neil, models cannot cope with the unknown relationships between

faults and failures; faults or their severities may be hidden, and it cannot always be known

which faults lead to failures. The metrics variables cannot always be interpreted in terms of

software features. Relationships between variables in models are not always known.

Sometimes only a part of the problem is modeled and even that part is misspecified. Casual

effects are often omitted. Goldilock's conjuncture of module size is investigated in the

study. Also, there are wrong assumptions of the significance of variables, distributions etc,

and data points are removed in models. Many models lack the way to integrate views

between components structural complexity and within component structural complexity.

This integration could explain why different problem or design decomposition approaches

might result in more or less defects. (Fenton & Neil 1999).

Uncertainty factor in structural models are that one does not know components or

dependability, and parameters are hard to estimate. An uncertainty factor in reliability

growth models is that the growth is not always steady even if it is assumed to be steady. In

addition, there is general uncertainty: the model and the reality are different. A stress test

may help in that respect, and a model should be as continuous as possible. Unknown

dependability between components and between consecutive inputs results in uncertainty,

particularly if a change of one part may affect other parts. Non-obvious error propagation

 Chapter 3. Defect Prevention and Prediction 54

should be avoided by e.g. isolating the path or by a safety monitor. (Littlewood & Strigini

1993).

Briand et al. (1992) present restrictions for modeling software process or its features. Also

Kitchenham et al. (1994) criticize quantitative quality assurance research. Myrtveit et al.

(2005) look for reasons why different studies have contradictive results about which fault

prediction model is the best. According to the article, many studies are made by using single

data sample and samples are often small, different accuracy indicators give different results,

and the same accuracy indicator may give different results depending on how it is used. The

authors discuss previous results about accuracy indicators not indicating what they should.

According to Dunham and Finelli (1990), models that take into account real-time

characteristics are needed. According to Rai et al. (1998), not much research is being done

about connections between different quality assurance areas. There is no framework for

selecting tools and techniques (ibid.). Technology changes should have to be taken into

account (ibid.).

The software development process has a significant effect on failure rate, see e.g. (Dunham

& Finelli 1990). According to Dunham and Finelli, the description of e.g. product and

process data is important in identifying bugs. Effectiveness and efficiency evaluations for

development process and individual tools and techniques are important since development

methods contribute to reliability (ibid.). Investigation of the fundamentals of failure process

is important (ibid.).

3.3 Summary of Defect Prevention and Prediction

Research is being done about software processes and their modeling. Some models describe

the developing process; waterfall model and spiral model are common examples. Metrics

used in improving software development processes is a topic for research.

Errors in development framework may result in software failures. Some studies present

errors in theories that are related to software engineering, and there are studies about

inconsistencies in models, and about metrics of software process consistency. Obstacles for

goals and contradictions between goals may result in software bugs, and they are being

studied.

Models of the software development life cycle often contain specification, design, coding,

and testing phases. In research material studied for this thesis, issues related to requirement

specification, coding, or testing, were more often related to bug detection than issues related

to architectural design; architectural design issues were more often related to bug prevention

than those involving other phases of life cycle. Some bug-related architectural issues were

memory allocation, deciding about module size, and planning good interfaces. The software

life cycle also contains setting of goals, maintenance and configuration, and phase reviews.

Tracing is a common way to guarantee that requirements of earlier phases are fulfilled in

later phases of life cycle. Tracing can also be used within one specific phase.

Many risk prediction methods have been developed for hardware analysis and retailed for

software risk analysis. Plenty of research has been done, for example, about modified fault

trees and failure mode and effect analysis. Some new methods have been developed for

software risk analysis, like deviation analysis. Choosing and using a description method for

risks and accidents is a topic for research. Mistakes in risk analysis are also being studied.

Risk analysis and static fault analysis can sometimes be connected; for example, risk states

can be analyzed in state based static analysis. Risk analysis methods are being improved; for

example, more and more attention is paid to root causes of failures.

 Chapter 3. Defect Prevention and Prediction 55

Plenty of research has been done about quality factors and how to understand and measure

software quality. Also, there is research about fundamentals of measuring software

attributes, about creating and evaluating measures, and about predicting metrics. There are

many quality attributes, and they are being studied. For example, research is being done

about complexity measurement and interaction between different factors of complexity.

Also, cohesion measurement is being developed. Correlation between different quality

attributes is being studied, as well as correlations between quality attributes, defect density,

defects found, and development effort. Different methods are being developed for

predicting metrics.

Models about the software development process and the software development life cycle

were discussed above. Models are used in many other areas of software development, too.

Predicting defects with models has been one common research area. Models may use

information e.g. about quality attributes and/or faults found. What information should be

used in defect prediction is a topic for research. Different applications need different

models. Defect curves for different applications have different shapes, and factors affecting

the curve shape are being studied. Some models can take into account differences between

faults, special issues, and/or different sources of uncertainty. Bounds of reliability are

studied, too. Sometimes input domains or data from known systems are being used in defect

prediction. There is also a tendency to combine defect prediction models. There is research

about mining factors that are important in defect prediction, and about prediction models that

are based on artificial intelligence.

Defect prediction decisions and deciding which copies have a correct answer in N-version

programming (see subchapter 6.3) may have a lot in common, but I have not found research

that compares those problems. More generally, there is not much research about

connections between different fields of software engineering. For example, according to Rai

et al. (1998), not much research is being done about connections between different quality

assurance areas, as discussed in subchapter 3.2.4.

Defect prediction models have been critisized. Research has been done about comparing

different defect prediction models. Those studies give contradictive results, and researchers

have found numerous reasons for these contradictions. Some researchers have mentioned

factors for uncertainty, incorrectness, and incompleteness in defect prediction models and

given means to mitigate them.

More generally, research models are incomplete and contain uncertainty. One reason for

this is that models differ from reality. Defect prediction models have been critisized of

being different from reality, but the problem is more general: models are not the same as

reality.

There are many other uncertainty factors, too. Research papers often mention lots of

uncertainty factors about the study involved. Shull et al. (2005) is a study about defect

classes, and it is discussed in chapter 2. However, Shull presents lots of uncertainty factors

of his study and studies in general.

In presenting uncertainty factors, Shull has an emphasis on uncertainty in post-hoc

comparison of studies. For example, mismatches between different studies in comparative

research make comparison more uncertain. As will be discussed in chapter 4, according to

(Miller 2000), studies about defect detection methods have been found incomparable. Miller

states that one reason for this incomparabity is the great variation among those studies; for

example, different studies cannot be compared to each other since those studies use different

methods. Another problem is that results of studies cannot always be quantified since there

are no common definitions that could be used consistently in each study; for example, Miller

states that there is no common definition of bug type.

 Chapter 3. Defect Prevention and Prediction 56

Using results is different from drawing a conclusion. According to (Shull et al. 2005), too

wide conclusions are often drawn: a study may cover only a small number of projects but

conclusion about a large number of projects are drawn anyway.

 Chapter 4. Checks during and after Development 57

4 CHECKS DURING AND AFTER DEVELOPMENT

This chapter involves means for checking, i.e. those means to look for faults that are not

based on testing. Testing means are based on executing the program and comparing the

result (e.g. output values, output frequencies, execution time, or whether the program

terminates correctly) to some reference (e.g. to a desired result or a result of execution of

another program). Some methods can be considered as checking or testing methods,

depending on how they are being performed; examples of those methods are symbolic

execution, log file analysis, constraint analysis, and cross-reference analysis. The means

investigated in this chapter can be applied during or after development, and many of those

means can be applied during both stages.

In chapter 2, features of bugs and particularly those of hidden bugs are surveyed. Chapter 3

discusses bug prediction, and bug prevention with e.g. risk analysis and a disciplined

development process. Chapter 5 involves testing. All situations cannot usually be tested,

and testing phase is usually not the best phase to eliminate bugs. Static and dynamic checks

and proofs for code and documents may reveal faults that testing does not reveal, like faults

that cause failures in rare situations or whose appearance is dependent on the test

environment.

This chapter involves analysis of specifications, architecture, design, and code. The first

subchapter investigates code and data based analysis methods, the second subchapter

involves flow or dependence oriented methods, and the third subchapter focuses on methods

primarily based on states. The fourth subchapter introduces and classifies logical systems;

the application of some of them is introduced. Partiality, iteration, and termination are

discussed, too. The fifth subchapter discusses formal methods in software engineering,

including prerequisites and limits for proving. Because proving is complex, it is not much

used even though it is an efficient way to prevent bugs. So the subchapter also discusses

about how proving could be made easier. The last subchapter is a summary about checks

during and after development.

Many analysis methods can have either code-, flow- or state oriented view. Type checking

is a good example. In addition, type checks can be static or dynamic. Compilers do static

analysis; they find many type faults. In dynamic typing, a type of a variable can be changed.

In soft typing, the static analyzer generates type checks that are performed during runtime;

see (Cartwright & Felleisen 1996). Static analysis of programs with dynamic storage and

recursive data structures is being investigated (Landi 1992).

Abstract interpretation is used in many kinds of static analysis. Abstract interpretation of

software means taking only some features into account. Accuracy consumes resources, so

taking out unnecessary details is often worthwhile. What is needed should be preserved.

Cousot and Cousot (1979) have built a general framework for abstract interpretation.

Examples of abstract interpretation in the study are approximation of assertions and

representing sets of states by lattices. Research is being done about comparing and

combining analysis frameworks. The study (Filé et al. 1996) is about unification relations

between abstract interpretations. Many abstract domains like intervals, octagon, and

ellipsoid are used in static analysis, for example in preventing rounding errors and out-of-

bound -faults (Blanchet et al. 2003). Cousot (1997) analyses types as abstract

interpretations.

Software checks may be performed manually or automatically. Some static checkers draw

upper limits for space and time usage (Ferdinand et al. 2006). Checking and proving can be

performed constructively during development to prevent bugs, or developed system can be

checked and/or proven retrospectively in order to increase understanding or directly detect

 Chapter 4. Checks during and after Development 58

bugs. In some dynamic analysis methods, probes can be used to collect information in order

to detect bugs (Boujarwah et al. 2000). Some checking methods have complete coverage,

but checking usually does not reveal external factors.

In checking, one makes assumptions, does a check, and draws a conclusion. An example of

a pretty informal check is to perform code review to make sure that all case-statements have

default-branches. During that check, one first assumes that if there are default branches, all

situations are taken into account, then checks that there are branches and default branches,

and draws a conclusion that all situations are taken into account, at the latest during the

default-branch. Checking may have several degrees of rigour. Formal proofs are extremely

strict checks. They include strict derivation of the conclusion. In proving, one creates a

theory with premises and often checks that they hold, does derivation, and draws a

conclusion. Logical methods are followed in derivation.

4.1 Document- and Code-Based Analysis

This subchapter describes checks that are based on analysis of software code. The first part

discusses some typical methods to find several kinds of bugs by studying the code. The

second part describes methods for analyzing values, ranges, and sizes of data elements, and

for analyzing precision. Those methods are usually code-based.

4.1.1 Static and Dynamic Code-Based Analysis

Some typical methods that are based on reviewing software code are discussed in this

subchapter. There has been some effort to classify those methods. According to Weinberg

and Freedman (1984), inspection contains checks for specific issues, review is performed in

the course of time, and walkthrough is a posterior design of existing code. Those terms are

not used consistently, though, and they have different definitions.

Requirement parsing is a static analysis method for requirements. An unambiguous set of

attributes is defined for each requirement. The set can contain e.g. initiator of an action,

source, action, object, and constraints. This method may reveal inconsistencies between

requirements. (Peng & Wallace 1993).

Comment analysis and making false assumptions are investigated in (Howden 1990). False

assumptions are common causes for software faults, e.g. if information that was known was

not made part of a program (Howden 1990). Comments may indicate false assumptions

about other parts of the program (ibid.). Howden discusses comment analysis tools that read

user specified facts and assumptions and check that the assumptions are based on facts.

Some tools can check code against annotations (Jackson 1995).

Discovering program invariants usually has connections with proving and is discussed in

subchapter 4.4.2. However, invariants are sometimes looked after without connections to

rigorous proving. Ernst et al. (2001) present methods for dynamically discovering likely

program invariants from execution traces. Besides more principal computation, pointer

processing is discussed in the article.

Algorithmic analysis may contain e.g. re-derivation of equations; verifying numerical

techniques; stability, truncating, rounding, and precision analysis; or timing analysis (Peng

& Wallace 1993). Algorithmic analysis has strong connection with other analysis

techniques. For example, with algorithmic analysis, incompatibility of data representation,

e.g. units, incompatibility with hardware or software resources, nontermination of structures,

or range faults may be found (Peng & Wallace 1993). For example, a trigonometric routine

may only work on the first quadrant in the coordinate system; that fault may be detected with

 Chapter 4. Checks during and after Development 59

algorithmic analysis (ibid.). Memory and time requirements may also be checked; Peng and

Wallace (1993) perform it dynamically and call it "Time and size analysis".

Code reading and walkthrough are methods to study algorithm. For example, code

reading can be used for checking interfaces, comments, and compliance of standards, and

for cross-checking of tracing analysis, and for checking that all paths are executed (Peng &

Wallace 1993). Peng and Wallace (1993) present a long list about faults that code reading

may reveal. Examples are nesting faults, erroneous predicates, missing items, array access

faults, sequencing faults, and dead code. Endres (1975) also has lists that contain e.g.

initialization and reference faults. In (Shimeall & Leveson 1991), code reading helped

detecting calculation faults, missing checks, missing branches, and overrestriction. In

walkthroughs, logic-, interface-, data-, and syntax faults are found easily (Peng & Wallace

1993).

Software inspection is often defined in standards as a static analysis method that follows a

strict process. Fagan (1986) has developed the idea of software inspection. He used a

checklist-based approach. There are other techniques, too. For example, Petersson et al.

(2004) survey capture-recapture methods and discuss other defect prediction methods in

inspection, Porter et al. (1995) study defect based approach, and Padberg et al. (2004)

investigate neural methods to estimate defect content from inspection defect data.

Laitenberger and DeBaud (2000) survey dimensions of inspection and present taxonomy.

There is interaction between fault type classification (see subchapters 2.1.1 and 2.1.2) and

inspection. Some studies compare inspection methods to each other, see e.g. (Laitenberger

et al. 2000) that involves inspection of UML design documents. Comparisons of different

inspection parameters are sometimes contradictive, and reasons for it are studied in (Porter et

al. 1998).

The following list introduces some research areas of software inspection

 Managing inspection, e.g. (Thelin et al. 2004) is about performing pre-inspection to

decide which software parts need most attention in inspection.

 Modeling inspection, e.g. (Porter et al. 1998)

 Assessing inspection parameters, e.g. team size (Bisant & Lyle 1989).

 Inspection methods, e.g. capture-recapture methods (Petersson et al. 2004) and

defect classification (Kelly & Shepard 2001).

 Kind of software to be inspected , e.g. very large software (Porter et al. 1997).

Many studies compare different defect detection methods. Miller (2000) compares defect

detection studies by metadata analysis. Defect detection methods involved are code reading,

functional testing, and structural testing, although there is uncertainty even in this respect.

The studies were not comparable, results differed, and many parameters were different in

different studies.

In (Endres 1975), about an equal number of faults of each class were detected by inspection,

testing by authors, and testing by other people. Simulation and proving did not reveal all

types of faults. Specification and algorithm choice faults had more diversity between

number of faults found by testing and inspection than implementation faults. Endres stated

that there are numerous possible prevention means, including better understanding, clearer

specifications, better specification languages and programming methods, making applicable

algorithms available, and structuring programs better. Managing technical reviews is under

investigation, e.g. Laitenberger et al. (2000) survey management of inspections.

How successful designers investigate the code that they modify is studied in (Robillard et

al. 2004). According to the study and previous studies discussed in the study, successful

designers have a plan for code reading. Also, successful changes are more scattered around

the program, whereas unsuccessful changes are more located in one place (ibid.).

 Chapter 4. Checks during and after Development 60

4.1.2 Values, Sizes, and Precision

Values, value ranges, and sizes of data elements are a factor in may software faults.

Methods are being developed for analyzing the sizes of data elements. For example,

overflows occur when values are too large in respect to the allowed size of the data item. In

addition, order of computation may have an effect on results of a series of computations

with limited sizes or precision, see e.g. (Goldberg 1991). What to do with values outside

domains is discussed in subchapter 4.4.2. Kopetz (1975) discusses input checks before each

function call. He recommends input range tests, too.

Interval arithmetic (Kulisch & Miranker 1981) and other areas of mathematics like

convergence analysis are used in analyzing values, sizes, precisions, and ranges of data

elements. Interval analysis of maximum and minimum values have been derived for

operations for different data sets and types like real numbers and matrices, when maximum

and minimum values of operands are known, see (Kulisch & Miranker 1981). There are

studies about analyzing and model-checking intervals, like time intervals from one state to

another, see e.g. (Hulgaard et al. 1995). Also, some systems based on probabilistic logic

may process probability ranges of conditional probabilities (Lukasiewicz 2001). Rowe

(1988) studied upper and lower bounds for set units and intersections; sets of variables,

values, and their frequencies were inspected. The study involved resource usage of database

queries, but the results can be utilized in size and range analysis to eliminate software faults.

Dependence between variables is often analyzed with interval arithmetic, see (Kulisch &

Miranker 1981). Some other analysis methods like sensitivity analysis and deviation

analysis are based on dependencies between variables. Sensitivity analysis can be used in

size analysis and range analysis, too. Sensitivity means effect of the change or value of one

or more variables on values of other variables. According to Bryant (1992), ordered binary

decision diagrams of boolean functions can be used in sensitivity analysis of combinatory

circuits. Sensitivity analysis can be used more generally, e.g. for intervals of values of

variables in software, but no studies were found about the topic. Reese and Leveson (1997)

present deviation analysis that contains causality diagrams for values of variables in

formulas that software contains.

Precision faults are common software bugs. Research is being done about eliminating

precision faults and improving accuracy of calculations. There are studies that relate to

implementation of floating point systems, see e.g. (Goldberg 1991). Goldberg surveys

characteristics of floating point arithmetic and eliminating related faults. According to

Goldberg, rounding and truncating cause failures. Dunham (1986) discusses methods to

improve precision in comparison, e.g. the use of gradual underflow with guard digits or

chopping. According to Kopetz (1975), precision faults may be due to, for example, the fact

that the results of the functions (e.g. trigonometric functions) may be too inaccurate for

specific acceptable input data range. The order of computations also has effect on results.

Sometimes when computing rounded or truncated numbers, the order of computation means

even when it would not be significant with exact values. This is due to the fact that field

axioms that hold for exact numbers do not hold any more when numbers are truncated or

rounded (Darcy 2006).

Error accumulation means that imprecision may accumulate if a computation is performed

repeatedly, see (Goldberg 1991). One common bug is to assume convergence to some point,

e.g. zero, when the computation converges to another point or diverges. For example

Bastani et al. (1988) study convergence problems, connected with proving termination. The

article is about fault tolerance in distributed programs.

 Chapter 4. Checks during and after Development 61

The precision of calculation is somewhat related to sizes of data elements, too. Interval

arithmetic is used in precision analysis, see (Virkkunen 1980). In numerical analysis,

precision is often calculated, see e.g. (Tropp et al. 2006). Some numerical algorithms detect

non-convergence automatically (Troscinski 2003).

4.2 Flow and Dependence Based Checking

This subchapter describes checks that are primarily based on dependence between software

artefacts, or on control or data flow of the software. The first part discussed modelling

software artefacts and finding bugs by analysing those models. The second part investigates

flow based checks. Those flow based checks are often related to dependencies between

software artefacts, particularly dependencies between variables in software.

4.2.1 Modeling Software Artifacts

Many kinds of bugs can be prevented and detected by modelling software artefacts.

Examples are interface bugs and specifications that have not been satisfied. Modeling

software in the system is a topic for research, e.g. UML (unified modeling language) is

widely studied; e.g. Jansen and Hermanns (2005) make extensions to UML statecharts and

study them empirically. Integration of models is a trend. See (Wand & Weber 1990) for

information system models; e.g. information system levels, modeling concepts, internal and

external structure, the mapping between external (what) and internal view (how),

environment, component decompositions, and system stability are involved in the study.

Regnell et al. (2000) present model transformation and model expansion as means to

integrate use case modeling with usage-based testing. Formalization principles of

information systems are being studied, see e.g. (Ter Hofstede & Proper 1998).

There is research about modelling of aspects, see e.g. (Katara & Katz 2003). de Oliveira et

al. (2004) focus on domain knowledge and define the concept of domain-oriented software

development environment. In the article, to understand tasks to be decomposed, the tasks

are described verbally, conceptually, and formally. Robillard (2008) studies topological

means to look for dependencies. There is also research about concerns. For example,

Robillard and Murphy (2007) study how to present concerns with a graph. Marin et al.

(2007) study identifying cross-cutting concerns.

Many studies involve interaction between software components. Several models and

languages have been built for this interaction, see e.g. (Liu et al. 2002). They help analyzing

correctness and completeness. Examples of inconsistencies are situations where interactions

are expected but not found and situations where unexpected interactions occur, see .e.g.

(Keck & Kuehn 1998). Hepner et al. (2006) analyze conflicts among software components.

There is research about attributes of connectors, see e.g. (Navarro et al. 2001) and (Xia

2000). See also (de Lemos 2004), which investigates failure behaviour. There are also role-

based approaches for removing unnecessary interaction, see e.g. (Colman & Han 2007).

Wahbe et al. (1993) study fault isolation when models are coupled. See (Lopes et al. 2003)

about high-order architectural connectors, which take connectors as parameters. Katz (1993)

presents another way to adapt connectors. In the study, semantic abstractions of processes

called roletypes are connected with actual parameters.

See (Bellman & Landauer 1995) about wrapping (machine-processable descriptions of

resources) and validation and verification. See also (Ceri et al. 1988) about designing and

prototyping program construction system using relational databases. In this study, relational

algebra and interface subschema are used. There is research about automatic task

 Chapter 4. Checks during and after Development 62

construction from models (Wang & Shin 2006). There are studies about process

visualization (program execution visualization), see e.g. (Moher 1988).

Static analysis can be done about software data and interfaces. Charts and models can be

built based on the analysis. For example, entity relationship models can be built for static

data analysis purposes. Research is being done about evaluating the quality of entity-

relationship models, e.g. Markowitz and Shoshani (1989) evaluate the quality of an extended

entity-relationship model. There are studies that compare different data models, e.g. Haugen

(2005) compares UML and MSC (message sequence chart -model). Data analysis can be

performed, e.g. for design (Markowitz & Shoshani 1989), verification (Haugen 2005), or

testing (Kansomkeat & Rivepiboon 2003) purposes.

4.2.2 Flow Analysis

Knowledge of control flow and data flow can be utilized in several phases of software life

cycle. In addition, the phrase "information flow" has been defined in many ways and used in

many different contexts. Peng and Wallace (1993) define information flow analysis as an

extension for data flow analysis, where data flows are compared with design intent. Many

models of software architecture are based on data flow. In data flow analysis, control flow is

analyzed focused on the use of variables (Peng & Wallace 1993). Here are some examples

about the use of flow analysis:

 Documenting and understanding software (Moonen 1997).

 Transforming text-format requirements to graphic flows (Peng & Wallace 1993).

 Extracting objects (Guo 2003).

 Testing flow coverage (Frankl & Weyuker 1993c), see also subchapter 5.1.2 about

flow based test coverage.

 Detecting flow faults like uninitialized variables, and inconsistencies in write-read-

sequences like variables being written but never read before rewrite or end of

program (Peng & Wallace 1993).

 Detecting dependency faults (Podgurski & Clarke 1990).

 Assessing effects of variables on a failure (Binkley & Harman 2004).

 Analyzing side effects (Yur et al. 1997).

 Detecting type mismatches, e.g. in call chains (Tip & Dinesh 2001).

 Analysis of live variables (Allen & Cocke 1976).

 Detecting dead code (Bergeron et al. 2001).

 Detecting buffer overflows, Murata (1989) uses PETRI-nets.

 Some tools detect race conditions (Beckman 2006).

Automatic static analysis utilizes flow, data, and interface analysis (Zheng, Williams, et al.

2006). Zheng, Williams, et al. (2006) study what kinds of faults can be found by automatic

static analysis and by manual inspection. According to the study, a significant amount of

critical null pointer faults and several other faults can be detected by automatic static

analysis.

Dependence data can be used in deciding strategies to reduce state explosion problem. Zeil

et al. (1992), and Jeng and Weyuker (1994) have made a simplifying observation: an

interpretation of a predicate depends only on paths in front of it.

 Chapter 4. Checks during and after Development 63

There are several representations for control and data flow.

Graphs are frequently used in presenting control and data flow and scopes of

software variables, see e.g. (Schmidt 1998). For example, program flow can be

presented with flow charts and computation trees (ibid.). Flow graphs are being

extended. For example, Mauborgne (2003) studies extending graphs to present

infinity and infinity relations, and infinity representations can be used in flow

graphs, too. Every flow graph that can be decomposed has a decomposition tree that

describes how the flow graph has been built by composing (sequencing and nesting)

other flow graphs, see e.g. (Canfora et al. 1998). Lano (1990) presents an N square

method for presenting connected functions. Component interconnection is related to

data flow, see e.g. (Ural & Yang 1993) for describing interprocedural data flow by

directed graphs. Binkley and Harman (2004) investigate bubble and skyline

visualizations for dependencies between predicates and formal parameters or global

variables. Flow graphs can be model-checked, see e.g. (Schmidt 1998). Forward

and backward analysis can be performed, e.g. to find out variables that affect or are

affected by a specific variable (Allen & Cocke 1976). Detecting neglected

conditions by studying dependence graphs is investigated in (Chang et al. 2008).

Graph theory can be used in improving efficiency of flow analysis, see e.g. (Hecht

& Ullman 1973).

Algorithms can e.g. check that variables have been defined when they are used

(Moonen 1997), calculate the definitions (of variables) that are valid in a specific

program part (Moonen 1997), or they can calculate values for variables (Dor et al.

2004). Sometimes algorithms find those network nodes that are needed in flow

analysis, e.g. for testing, see e.g. (Hong et al. 2003).

Flow equations and other relations are also used in describing control and data

flow. Inclusion and equality relations are often used, see e.g. (Palsberg 1998).

There are studies about the relationship between flow relations and types, e.g.

Palsberg investigates the relationship between control flow equations and recursive

types. A simple way to describe flow is a decision table, see (Lew 1982). There are

algebras for data flow, see e.g. (Fernandes & Desharnais 2007).

Reachability, dependencies between variables, and potential dependencies are essential

concepts in flow analysis. There are studies about defining the importance of each node in a

flow chart, see e.g. (Hecht & Ullman 1973) and (Kandara 2003). Loops, arrays, nesting, and

recursion within or between procedures are challenges in flow analysis. Loop paths have

been analyzed, e.g. numbers of iterations have been studied. White and Wiszniewski (1988)

investigate recursive modeling of loops and computing loop paths for all such nested and

concatenated loops where the number of iterations is known upon entry. Termination issues

are also essential in flow analysis, e.g. Hong et al. (2003) take the termination or non-

termination of paths into account in their analysis. Many studies analyze problems like

processing pointers, and finding out where pointers point or may point to, or which element

of a composite structure is being processed, see e.g. (Yur et al. 1999) and (Amme &

Zehendner 1997). (Forgács 1994) involves flow analysis with inter- and intraprocedural

recursion. Finding infeasible paths is one problem in flow analysis, see e.g. (Bergeron et al.

2001). Flow analysis methods are being developed for special systems like systems

containing communication (Boujarwah et al. 2000), those with shared variables (Boujarwah

et al. 2000), concurrent systems (Saleh et al. 2001), object oriented systems (Boujarwah et

al. 2000), and time dependent systems (Bernardeschi et al. 1998).

In the beginning, many studies were about systems that had only one entry point and one

exit point, but later there have been extensions, see e.g. (Dannenberg & Ernst 1982). Casati

et al. (2000) study flows for changing and dynamic environments that may also contain

temporary starts and stops and exceptional situations. Control flow analysis may have

 Chapter 4. Checks during and after Development 64

problems in making a difference between duration of a transfer and time to the next transfer;

see e.g. (Baresi & Pezze 1998).

Kandara (2003) investigates paths in a flow chart. Relationships among paths are studied.

For example, Kandara analyzes situations where all paths that go through one node y

traverse through some other node x. Some concepts are defined and used in flow analysis in

the study, and their application to test coverage is investigated. There are studies that

discuss problems with path approach, see e.g. (Howden 1976).

Orso et al. (2004) present classifications of data dependencies. Methods for flow analysis

are classified, too. Some examples of classifications are:

 Static/dynamic (Boujarwah et al. 2000).

 Interprocedural/intraprocedural (Ural & Yang 1993).

 Context-sensitive/context-insensitive, e.g. (Reps 2000).

 Path-sensitive/Path-insensitive (Dor et al. 2004).

 Incremental data flow techniques are often classified to elimination algorithms and

iterative algorithms, but this classification is rough, e.g. Marlowe and Ryder (1989)

present a hybrid strategy.

There are numerous studies about improving precision in flow analysis. For example,

algorithms may eliminate unreachable paths, see e.g. (Snelting et al. 2006). As another

example, methods for gathering alias information are being developed, see e.g. (Yur et al.

1999). They are needed particularly in pointer analysis, see (Yur et al. 1999). Burke and

Ryder (1990) survey means for preventing precision faults in incremental data flow analysis.

The first page of this subchapter contained a list about the use of flow analysis. Here are

some more examples about eliminating faults with flow and/or dependence analysis.

 Building path sets which form a minimal spanning set over possible entities in a

subset of a graph (Marré & Bertolino 2003). In the study, the set is built for

coverage testing.

 Cognitive study on how people search faults by reviewing entity-relationship

diagram and data flow diagram (Hungerford et al. 2004).

 Algorithm to guarantee initialization (Strom & Yellin 1993).

 Constraints for states; they can be used in pathwise decomposition of a program

(Huang 1990).

 (Olender & Osterweil 1992) is about interprocedural static analysis of sequencing

constraints; the goal is to detect incorrect sequencing of events. The study involves

flow and state analysis automation of constraint specifications.

 Detecting neglected conditions by studying dependence graphs (Chang et al. 2008).

The following list contains examples of the (Lacroix 2006) survey about memory protection

related static analysis methods. The survey is primarily intended for language features, but

those methods can also be used in other kinds of flow analysis.

 Monotonic operations for objects (e.g. variables, stacks, states), lattices of the

control flow.

 Constraints on sets of values, and constraint-based subtyping (type1 < type2).

 Concepts of set theory like successor, predecessor, input, and output.

 Constraint propagation.

 Input error propagation.

Plenty of research has been done that relates logics and flow analysis. Table 14 contains

some examples of this research.

 Chapter 4. Checks during and after Development 65

 Table 14. Examples of research that relates logic and flow analysis

Using logics in or with flow analysis, see e.g. (Hong et al. 2003) about using temporal logic

in choosing test cases based on program flow.

Transformations between graphical presentations of data flow and logic structures,

(Hong et al. 2003).

Definition of flow analysis. Schmidt (1998) defines data flow analysis as model checking.

Using constructive logic in building flow analysis algorithms and analyzing flow graphs

(Lerner et al. 2005).

Relationships between flows and set constraints. In set based analysis, dependences

between variables are abstracted as sets of values of variables; see e.g. (Heintze & Jaffar

1990).

Counters for variables (Corbett 1993): analyzing data flow near end transitions,

constrained expressions about necessary conditions of an end transition are based on data

flow, previous guards, and whether transitions occur.

Improving flow graph analysis of concurrent Java programs by supplying additional

feasibility constraints (Naumovich et al. 1999).

The connection between consequence verification of logic programs and recursively

defining flow chart computations forward or backward has been studied by Clark and van

Emden (1981).

Predicate abstractions and use of weakest preconditions/strongest postconditions e.g. in

looking for reachable states or values of variables (Flanagan & Qadeer 2002).

Reasoning about fault location based on control flow and/or data flow. Le Traon et al.

(2003) have metrics about location, e.g. the number of tested components in a path is one

variable.

Constraint propagation is analyzed in e.g. (Bessiere 2006).

Analyzing which variables share variables, and which variables are bound to other

variables. Palsberg (1998) investigates flow analysis in relationships between variables in

the abstraction and application operations in lambda calculus.

Slicing is a kind of data flow analysis. See (Weiser 1984) about program slicing:

expressions or lines that have or may have an effect on values of variables in a specific point

of software code, algorithm, or formal presentation, are the only expressions or lines that are

investigated when slicing is used. Plenty of research is done about slicing; only some

examples are presented in the next two paragraphs.

Cukic (1997) presents vertical slicing (grouping statements that affect a specific output

variable) and horizontal slicing (grouping statements that affect specific input variables).

Slicing can be static, dynamic, or hybrid (Gupta et al. 1997). There are several meanings for

the concept of dynamic slicing, see e.g. (Wong et al. 2005) for differences between them.

Harman et al. (2003) study amorphous slicing that does not necessarily preserve syntax but

preserves semantic behavior. Slicing can be used, for example, in program understanding

(Peng & Wallace 1993), reverse-engineering (Harman et al. 2003), building test cases

(Hierons et al. 2003), debugging (Peng & Walace 1993), and as a checking method (Egyed

2003).

Slicing is often associated with concepts. For example, Tonella (2003) studies using a

concept lattice of decomposition slices for program understanding and impact analysis.

Gold et al. (2005) introduce unification of program slicing and concept assignment. Term

rewriting, dependence tracking of variables, and slicing are used in locating type faults; e.g.

Tip and Dinesh (2001) implement a prototype. See (Danicic et al. 2005) about a tool that

can identify and remove a set of statements which cannot be executed when a condition of

interest holds at some point in a program. In (Egyed 2003), slicing is used in a tool that

detects new traces and conflicts and ambiguities between traces.

 Chapter 4. Checks during and after Development 66

Sneak circuit analysis is one way to analyze control and data. According to Hansen (1989),

software sneaks related to output are undesired output and undesired inhibit of output. An

undesired output by virtue of its timing in relation to mismatched input timing is a timing

sneak, and a situation where a program message does not adequately reflect the condition is

a message sneak (Hansen 1989).

Desk checking is a dynamic way to analyze code. The programmer moves step by step

through the code and tracks values of inputs (Zeil 1999). This term is used in many different

ways. For example, (IEEE 1990) uses the words “desk checking” when it means a static

review of documents or code. Many online glossaries, e.g. (Farlex 2009), define the term as

manual testing of a logic of a program.

4.3 Software States

This subchapter investigates state based checking methods. The first part investigates

representations of states, state space exploration, and state based model-checking. Software

typically has a very large number of states. The second part involves means to mitigate state

space explosion.

4.3.1 State Space Exploration and Representation

Unfortunately, state related bugs like missing states are common. Methods are being

developed for exploring the state space of software. For example, D‟Amorim et al. (2008)

have developed an efficient method for exploring state spaces of object based software.

More often, state space is explored by building some representations and analyzing them.

Describing software states helps reducing states and taking all states into account. States can

be described with graphs and with decision trees, transaction trees (see e.g. (Madria et al.

2000)), decision tables, Karnaugh maps (see e.g. (Halder 1982) for large Karnaugh maps),

and other charts. State machines are graphs that generally allow nondeterminism but not

concurrency. Many extensions to state machines allow concurrency; some extensions to

state machines are described in this subchapter. Biswas and Rajaraman (1987) study

defining feasibility of decision tables. Moret (1982) surveys decision tables, decision trees,

and other decision diagrams. Ordered binary decision diagrams can be used as symbolic

representations of state machines (Bryant 1992). Giguette and Hassell (2000) present a

relational database model of program states.

State machines help in taking into account all possible software states and all desired

transfers. They can be used in describing and planning software function in different states

and transfers (Walkinshaw et al. 2006). They are widely used in model checking

specifications, design, or code. Specifications are often presented in the form of different

sequence charts. Statecharts are stategraphs that allow hierarchy, concurrency, and

communication of states (Harel 1987). UML sequence charts can be converted to statecharts

(Latronico & Koopman 2001). In addition, elements like real numbers can be parsed with a

state machine (Baker 1991). State machines are also useful in risk analysis; for example,

risk states can be searched forward and backward with state machines and other networks

(Modugno et al. 1997). Keck and Kuehn (1998) discuss using system knowledge when

analyzing problematic states.

State machines of software must usually correspond those of specifications. Model-checking

can be performed using logical formulas that contain software functions, see e.g. (Alur,

McMillan, and Peled 2005). Atlee and Gannon (1993) present a method for state-based

model-checking of event-based requirements. According to the authors, event-based

 Chapter 4. Checks during and after Development 67

requirements may have unexpected or ignored combinations or sequences of events and

unexpected timing. Requirements may have logical constraints in the study. In many

studies, requirements are transferred to state machines, and specific properties are verified,

see e.g. (Nicollin et al. 1992). Sreemani and Atlee (1996) study converting tabular state-

based requirements to a model that they verify. Heimdahl and Czerny (2000) perform an

experiment of analyzing completeness and consistency when verifying state-based

requirements. Petrenko et al. (2004) study confirming configurations with extended state

machines. One problem involved in the study is to determine in a given state an input that

does not cause output sequence from a state belonging to a given set or at least its maximum

proper subset.

Research is being done about identifying states and transitions using state machines

(Walkinshaw et al. 2006). There are extensions for state machines. State machines can, for

example, be hierarchic (Kansomkeat & Rivepiboon 2003), stochastic (Chang et al. 1998),

timed (Nicollin et al. 1992), or recursive (Alur, Benedikt, et al. 2005). States may overlap

(Harel 1987). Alternating automata can have both deterministic and non-deterministic

transformations, see e.g. (Kupferman & Vardi 2001). State machines can be combined to

make product machines, see e.g. (Kumar & Vemuri 1992). There may be many entry and

exit points in some types of state machines (Alur, Benedikt, et al. 2005). Return transforms

can be used in failure recovery, see (Schultz & Cardenas 1987). See chapter 6 for recovery

from failures. Pitt and Shields (2002) discuss the use of local invariants in state machines.

Networks are classified according to what conditions they have for nondeterminism and

concurrency. Many complex systems can be analyzed with PETRI-nets (German et al.

1995). Different kinds of PETRI-nets are being developed. Different PETRI-nets may have

different types of distributions for firing times, see e.g. (Trivedi et al. 1995). Some methods

and tools involve transient states, too (German et al. 1995). Gerogiannis et al. (1998)

classify extension of PETRI-nets into following categories: extension of tokens or places or

arcs, modified semantics, extension of structural mechanisms, uncertain fuzzy information,

and combining PETRI-nets and other specification methods. PETRI-nets are frequently

used in analyzing complex systems. Bucci et al. (2004) study analysis of real-time systems

with special properties like dense time domain and suspensions; extended timed PETRI-nets

are used in the analysis.

 Chapter 4. Checks during and after Development 68

4.3.2 State Reduction

 Figure 4. The number of condition combinations in respect to conditions

The term "state explosion problem" means the problem that appears when there are really a

lot of states in large programs. Figure 4 presents the number of condition combinations

based on the number of conditional expressions and the number of branches in each such

expression. It is assumed that each conditional expression has the same number of branches.

The vertical scale is logarithmic.

There are surveys about reducing states. Keck and Kuehn (1998) survey interaction of

network service features and the state space explosion that follows from it. Keck and Kuehn

discuss unexpected combinations. The survey contains a classification of means to fight

state space explosion; the classification might also be adapted in other circumstances. Also,

many of the methods mentioned in the article can be applied in other contexts, too.

Table 15 presents means to fight state space explosion. Studies are separated from each

other by commas, unless stated otherwise.

Number of states

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11

Number of conditional statements

#
 p

o
ss

ib
le

 s
ta

te
s

2 branches /

statement

3 branches /

statement

 Chapter 4. Checks during and after Development 69

Table 15. Means for fighting state space explosion

Setting rules as constraints

Keck and Kuehn (1998) discuss the following methods: detecting necessary conditions for

ambiguity or for reachability, using additional states, creating rules for interaction, using

mutual exclusion, establishing priorities, and using heuristic methods. Assertions (Leveson

1991) and serialization (Flanagan & Freund 2004) can also be used in eliminating states. Ip

and Dill (1996) investigate state reduction with reversible rules. Cheung and Kramer have

developed a method for compositional reachability analysis with context constraints, see

(Cheung & Kramer 1994) and later articles of the same authors about improvements of this

method. Context constraints are behavior restrictions imposed on each process by its

neighbours.

Abstraction and reduction: processing equivalent states as one state

Symmetry (Keck & Kuehn 1998), isomorphism symmetry (Sistla et al. 2004), processing

groups of states as one state (Sistla et al. 2000), rule-based selection among equivalent states

(Keck & Kuehn 1998), partial order methods (Flanagan & Godefroid 2005), ordered binary

decision diagrams (Bryant 1992), symbolic execution (Keck & Kuehn 1998), parameters

(Bobbio et al. 2003), reduction (Klop 1992), hiding (Keck & Kuehn 1998), counter-example

based abstraction refinement (Clarke et al. 2003).

Removing states by software architecture and design

Modularization and encapsulation (Cukic 1997); using operators that preserve order, e.g.

Phillips (1992) discusses monotonicity; placing diagnosis and recovery in ways that reduce

state space, e.g. planning the depth of fault tolerant structures (Abbott 1990) and the level of

redundancy (Boland & El-Neweihi 1995).

Removing states by using properties of data structures and/or algebras

Modularity and compositionality with graphs or algebras by design or refactoring (Cheng et

al. 2003); heuristic search (Santone 2003); minimalization of representations, e.g. graphs

(Pop 2002), (Lee & Yannakakis 1996); minimal coverage (Marré & Bertolino 2003);

constructing spanning sets (Marré & Bertolino 2003); contracting formulas (Meyer 2003);

derivation of properties of unusual states from properties of algebraic sequences (van der

Schoot & Ural 1998); lattice properties and process intervals (Alagar & Venkatesan 2001).

Removing unreachable states by data flow- and/or reachability analysis

Reachability analysis (Keck & Kuehn 1998), reachability based behavioral equivalence

(Cheung & Kramer 1996), slicing (Danicic et al. 2005), eliminating deadlocks and livelocks

(Keck & Kuehn 1998), analysis of live variables (Allen & Cocke 1976), counters for

variables (Corbett 1993).

Re-using values and/or subpaths, and/or partially processing the system with other

 methods than state-based ones

 Executing simulation in model graph to some point, then generating a graph from

there to some until-point (Stuart et al. 2001).

 Prefix methods: use of a path prefix method where branch coverage is studied by

using previous input paths (Prather & Myers 1987).

 Re-use of previously selected paths (Chung & Lee 1997).

 Combining data flow analysis and state machines (Cheung & Kramer 1994).

 Fixpoint calculation (Phillips 1992), (Desharnais et al. 2000).

 Symbolic representation with Presburger arithmetic formulas and approximation for

systems with unbounded integer values (Bultan et al. 1999).

 Performing an execution trace arbitrarily and dynamically collecting information

about thread communication; this trace is analyzed to add backtracking points that

identify alternative transactions (Flanagan & Godefroid 2005).

 Chapter 4. Checks during and after Development 70

In addition, one efficient way to minimize states is to exclude undesired states. Not much

research has been done about this powerful means. Denning (1976) surveys fault tolerant

operating systems. Capability is part of the survey: a process can do only what is on a list.

4.4 Different Types of Logical Systems

This subchapter introduces methods for mathematically proving that a piece of software is

correct. In the first part, different kinds of logical systems are discussed. The second part

involves special topics like partiality, iteration, and termination. The following list contains

examples about what proving covers.

 Processing formal models and specifications with logics and algebras, see

subchapter 4.5.1.

 Constructing specifications with a formal system (Gerrard et al. 1990).

 Proving that the system satisfies specific properties, e.g. (Bravetti 2003) .

 Proving postconditions when specific preconditions hold and after a specific

sequence has been executed (Gries 1981).

 Looking for necessary conditions for a problem, e.g. looking for weakest

preconditions (Flanagan & Qadeer 2002).

 Looking for preconditions or deriving them from postconditions or other items

(Gries 1981).

4.4.1 Logical Systems

Methods for software proving, particularly logic and algebra, are being investigated and

developed all the time. There are numerous logical systems. Logical systems are being

extended, e.g. van den Brand et al. (2003) extend some term rewriting systems. Many

surveys have been done that present some logical systems. In addition, logical systems are

sometimes compared with each other. For example, Bellini et al. (2000) survey some

logical systems and compare some of them to each other. Some studies investigate general

properties of logic and characteristics of logical systems in general, see e.g. (Morris &

Wegbreit 1977) for induction and (Armstrong & Paynter 2006) for argumenting. Very

often, the goal of logical studies is to develop an appropriate logical method for a specific

application or application domain, see e.g. (Ozsoyoglu & Wang 1989) and (Whang et al.

1992) for algebra and languages that can be used in database applications. Filliâtre (2007)

investigates total correctness: a formal proof of program is derived in the study with a tool.

There are methods for proving total correctness (Babich 1979), (Pettorossi & Proietti 2004).

Dawson (2004) formalizes general correctness. Collofello and Vehathiri (2005) discuss

measuring correctness.

There is a tendency to build high order systems, where elements of simple systems may be

parameters, see e.g. (Young 1997) and (Poigné 1992). Abstraction is a trend, based on

common features of elements and relationships between elements. Abstraction can be based

on, e.g. axioms (Kohlas & Stärk 2007) or category theory (Poigné 1992). Reduction is being

studied. In some reduction methods, it is proven that the original system has a specific

property if the reduced system has, see e.g. (Lipton 1975). Bobbio et al. (2003) study

reduction in specific networks, particularly structural deduction.

Table 16 contains some types of logical systems. The same system may belong to several of

those types. Studies are separated from each other by semicolons, unless stated otherwise.

 Chapter 4. Checks during and after Development 71

 Table 16. Logical systems

General philosophies

Frege reference and sense, or concept and object (Frege 1892); logical models in

argumenting (Chesñevar et al. 2000); combining logic and linguistics (Wondergem et al.

2001); constructing and deconstructing arguments and performing justification, e.g.

(Armstrong & Paynter 2006).

Global theories

Model theory (Makowsky 1992); category theory (Poigné 1992); Galois connection, e.g.

Dawson (2004) uses Galois connection between weakest liberal precondition and strongest

postcondition; domain theory (van Breugel et al. 2005).

Logics with different definitions of connectives
Differences in connectives like implication, e.g. relevance logic, see e.g. (Goto & Cheng

2006).

Classifications based on truth values

Truth-functional logic where the truth value of the compound sentence depends only on the

truth values of the individual components (Payne 2005): 2 truth values, e.g. propositional

logic (Payne 2005) and predicate logic (Romero 2005), truth-functional logic with >2 truth

values (for elements with fuzziness, uncertainty, inconsistency, or undefined items) (Takagi

et al. 1996), (Baroni et al. 2001), (Chung 1989), (Kifer & Lozinskii 1989), continuous truth

values (Baroni et al. 2001); judgments are more complicated than such sentences, see (Jones

2007) about judgement forms; intuitionistic logic (Ferrari et al. 2005), e.g. constructive logic

(Akama 1995) and refinement calculi (Yunfeng et al. 1999).

Algebra

Tucker and Zucker (2002) present universal algebraic specifications. They study e.g.

algebraic structures like groups, rings, and fields, algebraic specification of computable

functions, abstract algebras, and universal properties common to algebraic systems. See e.g.

(Bravetti 2003) about process algebras.

Multiple conclusion logic

Logical systems with multiple conclusions, see e.g. (Miller 1994).

Deontic Logics

Reasoning about obligation, permission, and prohibition. (Cheng 2006).

Modal logics

Modal logics involve necessity and possibility (Bellini et al. 2000). Examples are temporal

logic (linear or branching time) (Bellini et al. 2000). See (Kifer & Lozinskii 1989) about

episthemic logic.

Order, amount, and monotonity

Non-monotonic logic, e.g. default logics involve beliefs that can be changed (Doyle 1979);

global partial order logic (Alur, McMillan, and Peled 2005); declarative partial order

programming systems (Parker 1989); interval logic (Ravn et al. 1993).

Probabilistic logics

Logics that contain probabilities. See e.g. (Lukasiewich 2001) for a brief survey on

probabilistic logics and reasoning about systems containing uncertainty, and for probabilistic

logic programming with conditional constraints.

Set based

Set theories, e.g. (Lubarsky 2006) ; multisets (Frankl & Weyuker 1993c); systems using set

operations (Ozsoyoglu & Wang 1989); set based analysis (Heintze & McAllester 1997).

Continued on next page

 Chapter 4. Checks during and after Development 72

Type systems
E.g. recursive types, subtyping, or polymorphic types; (Palsberg 1998), (Naumov 2006).

Constraints

Constraint logic (Dantsin et al. 1997); constraint solving, e.g. partial order and lattices

(Georget & Codognet 1998), the article is about semiring-valued constraints; Bistarelli et al.

(1997) introduce a semiring-based framework for solving constraint satisfaction and

optimization problems; set-constraints (Dovier et al. 2000); non-linear constraints and

constraints that define bounds (Hentenryck et al. 1998).

Inductive reasoning
Morris and Wegbreit (1977) examine subgoal induction. In the study, inclusion and

equivalence relationships between computational induction, subgoal induction, inductive

assertion, and structural induction are analyzed. Subgoal induction is a going backward-

approach and inductive assertion is a going forward- approach (ibid.).

Deduction
Systems with equivalences (Gries 1981), natural deduction (Maghrabi & Golshani 1992);

reduction systems (e.g. rewrite systems including term rewriting and graph rewriting) (Klop

1992); sequent calculi (Maghrabi & Golshani 1992).

Analogical systems for proving termination
Fundamentals of computability were studied a lot during 1950‟s and 1960‟s, see e.g.

(Shepherdson & Sturgis 1963). There are many analogical systems for proving termination.

Computability, lambda-calculi, Turing machine and its variations, fixed-point calculus,

PETRI-nets, etc. (Potgieter 2006), (Bouziane 1998), (Badendregt 1992), (Phillips 1992).

Combinatory logic
Lambda-calculus without abstraction, using different combinators (Meunier et al. 2005).

Non-determinism
Processing non-determinism by algebras and logics, e.g. (Desharnais et al. 2000). (Walicki

& Meldal 1997) is a survey about algebraic approaches to non-determinism.

Tabular verification
Properties, operators and relations for specifications (Sekerinski 2003); algebraic

composition of function tables (von Mohrenschildt 2000); formal semantics for tabular

expressions (Janicki & Khedri 2001), expressions are guards or values in the study.

Software-related logical systems
Studies about properties of recursive programs and how to prove recursive programs, e.g.

(Phillips 1992); object oriented calculi, see e.g. (Yunfeng et al. 1999); relation calculus for

specific static analysis methods – i.e. for static analysis methods that use over- and

underapproximation (Schmidt 2007); logical formulas for state machines, e.g. equations

about transitions (Alur, Benedikt, et al. 2005).

Properties of integers and counters

Proving with properties of counters, e.g. in (Gunter & Peled 2005), based on behavior of

program counters, paths are constructed that satisfy constraints for program variables.

Siegel and Avrunin (2000) study improving a method of creating and solving integer

equations for the existence of an execution trace that violates a specific property - if no

solution exists, there are no violations; if a solution exists, there may be violations and some

properties can be seen from the equations.

Continued on next page

 Chapter 4. Checks during and after Development 73

Languages

Algebraic languages for e.g. building models, and model-based languages like Alloy, VDM,

and Z (Jackson 2002); processing continuity in programming languages (Gupta et al. 1998);

formal languages for combining or refining specification descriptions (Feather 1989); use of

semantics of languages in proving, e.g. axiomatic semantics (Bonsangue 2001) or

denotational semantics (Desnarhais et al. 2000); abstract pseudocode (Aho et al. 1983).

Examples of abstraction

Logical frameworks for several logical systems (Guerrini et al. 1997); abstract model theory

for specifications and programming (Gougen & Burstall 1992); abstract data types (Aho et

al. 1983); high order types (Poigné 1992); abstract reduction systems (Klop 1992); axioms in

a combined algebraic structure for algebraic specifications, relational database, modules,

constraint systems, and other structures satisfying specific conditions (Kohlas & Stärk

2007); relationships about the various conceptions of unification in different fields and what

is common for them (Knight 1989).

4.4.2 Specific Issues

Some special topics in proving get a lot of attention by research people. Some important

special topics are partiality, iteration, and termination of the algorithm. Those topics are

discussed below.

Partiality

Proving something partial is often a topic for research. There are studies about problems

involved and means to perform partial proving. Some means to work with partiality are

 Limiting the domain. There are studies about processing partial functions, see e.g.

(Parnas 1993) for a simple method and its problems. See (Field et al. 1998) for

partial equations.

 Supertotal functions. See (Boute 2000) about supertotal functions that are zeros

outside their domain and problems with comparing their values.

 Many truth values and operation (Chung 1989).

 Type approaches (Poigné 1992).

Sometimes evaluation is performed partially even for total functions. For example,

sometimes only critical portions are investigated with formal methods and their safety and

liveness features are proven (Easterbrook & Callahan 1998). Moreover, evaluation is

sometimes made for systems when only parts of them have been implemented; see (Avrunin

et al. 1998). Stubs (Avrunin et al. 1998) and modular proving may help in partial

implementations. Gannon et al. (1987) present the theory of modular proving, where details

of modules can be ignored outside the modules.

Iteration

Many logical systems involve nesting and/or infinity. Plenty of research is being done about

proving loops. Loops can be proven e.g. with help of rules, deriving hypothesis about loop

function and proving loop against it, or by looking for invariants. See (Dunlop & Basili

1982) about proving loops with functional verification (loop functions). Inductive assertion

and subgoal induction are also discussed in the study. Using fixed-point arithmetic in

analyzing finite and infinite control structures is an important topic for research, see

 Chapter 4. Checks during and after Development 74

(Desharnais et al. 2000). One research target is undeterministic loops; see (Desharnais et al.

2000) about verifying semantics of a candidate abstraction.

Heuristic iterative methods are being developed for proving loops, primarily for looking for

linear loop invariants; see (Sankaranarayanan et al. 2004) for a brief survey. Invariants can

also be detected by constraint-solving. For non-linear invariants, see e.g. (Sankaranarayanan

et al. 2004); in the study, Gröbner bases and ideals are used for transferring the invariant

generation problem to a constraint solving problem. Loop invariants may be generated

automatically, see e.g. (Sankaranarayanan et al. 2004). Huang (1980) presents a stronger

postcondition than loop invariant for proving consistency in loops. Backward subgoal

induction is used in proving loops without using loop invariants; see (Morris & Wegbreit

1977).

See (Stavely 1995) about iteration over data structures, when number of items iterated and

values to be iterated are fixed on entry. In that study, the data structure is verified against

function and task. Matters like access and termination need to be proven only once for a

data structure, not for every loop (ibid.). Basili and Abd-El-Hafiz (1996) discuss problems

with different approaches for documenting loops and looking for invariants. They present a

hybrid method where loop is decomposed, knowledge based methods are used in invariant

generation, and algorithmic method is used for documentation.

Termination

One research area is computability properties of functions, and whether algorithms terminate

and whether they terminate within finite time, see e.g. (Potgieter 2006). See (Hayes 2002)

about termination of real-time repetitions. See (Negrini & Sami 1983) for loops and

termination. Computability theories with recursive functions, Turing-machines, lambda-

calculus, fixed-point operations for certain domains, and PETRI-nets are equivalent methods

for proving termination or non-termination of algorithms (Potgieter 2006), (Bouziane 1998),

(Badendregt 1992), (Phillips 1992). Bastani et al. (1988) study convergence problems in

proving termination by analyzing rate of state change.

See (Verbaeten et al. 2001) about termination proofs for logic programs – programs in the

study contain tables. Decorte et al. (1999) study constraint-based termination analysis for

logic programs. Pedreschi and Ruggieri (2003) present a framework that always results in

successful resolution for logic programs.

4.5 Formal Software Engineering

Formal methods are being applied during all phases of the software life cycle, and in many

areas of software development. This subchapter discusses the use of formal methods in

different connections. The first part discusses the use of formal methods during different

phases of the software life cycle. Some special methods like semantic analysis and use of

category theory are also discussed. Some methods like proving by contracts and processing

floating point calculations are mentioned, and some application domains are investigated.

The second part discusses real-time systems. Analysis tools are being discussed in the third

part. The fourth part involves limits for checking methods, particularly for rigorous proving.

4.5.1 Software Development

Formal methods can be applied in all phases of the software life cycle and with numerous

areas of software engineering. Both specifications and code can be produced formally, see

e.g. (Yunfeng et al. 1999). There are many studies about ambiguities in structural analysis

 Chapter 4. Checks during and after Development 75

of requirements. For example, Baresi and Pezze (1998) discuss imprecision and ambiguity

of one structural analysis method and give solutions for them. Writing requirement

specifications based on intents and refining them is assumed to reduce faults (Leveson

2000). Some systems can rewrite specifications into logical expressions. Große-Rhode

(2002) studies integrating different views of specifications with transformation systems.

Testing can be performed formally, too (Gerrard et al. 1990).

Model-checking means property verification. For example, it can be model checked that

code satisfies specifications or design requirements (Prasad 2006). Research is being done

about model-checking by using a specific logical system, e.g. verification tools have been

developed, see e.g. (He Jifeng et al. 2002). Model-checking in general is also a topic for

research; for example, new methods are being developed, see e.g. (Cheung & Kramer 1996).

There are different approaches for program semantics, and they often have connections with

static analysis or proving. Bonsangue (2001) has done a brief survey about program

semantics. In the survey, the connection between different semantics has been investigated.

The survey also analyses connection between different kinds of semantics and logic, and

between different semantics and mathematical analysis. The monogram also processes

connections with semantics and set theory, and with semantics and topology. Some other

branches of mathematics and computer science, like domain theory and semantics analysis

of types, have connections with program semantics (Fiore 1995). Concurrency, non-

determinism, recursion, and timing, and are special features that have been investigated in

semantic analysis, see (Bonsangue 2001).

Here are some examples of methods for static analysis. A static analysis method has been

developed where program semantics is presented as equations on sets of states, and the least

fixed point is solved by forward or backward deduction, see (Cousot & Cousot 1979).

Invariant assertions need to be approximated to make the system countable (ibid.). The

method can be used e.g. for proving postconditions and studying ranges for values of

variables, as presented in the study. A systematic design of program analysis frameworks is

investigated in the study. The method has been developed further in several later

publications of the authors. Desharnais et al. (2000) abstract the input-output semantics of

non-deterministic programs by elements of Kleene algebras. See (Sag & Wasow 1999)

about event-based semantic analysis.

Formal systems are being built for modeling requirements (Bravetti 2003), and for

architectural design (He et al. 2004). Logic and algebra are used in modeling, and several

problems like some multitasking problems can be prevented with them (Ostroff 1992). See

(Taibi & Taibi 2006) about a specification language for design patterns. There are logical

systems for validating timing properties (Bravetti 2003). (Johnson & Malek 1988) is a

survey of tools and models for evaluating reliability, availability, safety, and serviceability

(in the article, serviceability has to do with the aspects of system design that ease diagnosis

and repair).

Executable specifications are being developed and debated, see e.g. (Abbott 1990).

Specifications are often presented with abstract models or with axioms (Gerhart 1984).

Jones (1996) presents types of formal specification languages. Macqueen and Sannella

(1985) present completeness results for proof systems for algebraic specifications. Kramer

and Cunningham (1979) present the way to use invariants in capturing the behavior of

structure and developing formal specifications. See (Sutcliffe & Maiden 1998) about

domain theory for requirement engineering; in the study, generic models are used for

modeling and critique for new requirements. Trace specifications are based on call

sequences (Hoffman & Snodgrass 1988).

There are formal methods for proving consistency and other elements of correctness of

specifications, see e.g. (Hoffman & Snodgrass 1988). Specifications can be verified

 Chapter 4. Checks during and after Development 76

statically (Prasad 2006) or dynamically (Gerrard et al. 1990). There are prototype

languages, too (Belkhouche & Geraci 1996). Specifications are often built and verified

constructively (Gerrard et al. 1990), or logical languages may enable definitions of

consistency proofs (Hoffman & Snodgrass 1988). If specifications are being refined,

decomposition, e.g. constraint-based one, is often done before refinement, and

synchronization is often necessary after refinement (Go & Shiratori 1999).

See (Zave & Jackson 1996) about multiparadigm specifications. In the study, formal

specifications are constructed for systems that map events to commands so that the same

event can be used with many commands and vice versa. Consistency analysis for those

specifications is studied, too, in the article.

The connection between category theory and functional programming is under research, see

e.g. (Poigné 1992). Under Curry-Howard isomorphism, a proof of a formula computes a

function that witnesses the formula (Makarov (2006) investigates the method); or

propositions can be evaluated to types, and connectives can be interpreted as type

construction operators (Naumov 2006). According to category theoretic point of view,

propositions and types can be objects, and proofs and programs can be morphisms, see e.g.

(Blute & Scott 2003). Methods are being developed for applying category theory to

specification, design, and maintenance, see (Williamson & Healy 1999). More generally,

properties of for example graphs, strings, automates, and partially or totally ordered sets can

be investigated with category theory, see e.g. (Poigné 1992).

Hybrid systems contain both discrete and continuous elements (Avrunin et al. 1998). There

is research about developing and verifying hybrid systems, including sensitivity and

reachability analysis (Avrunin et al. 1998), (Barton 2000). Wang (2005) studies safety

analysis of linear hybrid systems that may contain unbound variables and continuous

variables that may change values at different rates.

The following list contains some formal methods for some areas in software engineering

 Multilayered approach to design and verification for trustworthy systems (Alves-

Foss et al. 2004).

 Using category theory in configuring components, Vickers and Hill (2001) have a

general approach.

 Bidoit et al. (1985) present a specification language and a program construction

method; both contain exception handling.

 Proving that one program simulates the other (Birman & Joyner 1976). According

to Birman and Joyner, one program could be a specification and another could be an

implementation.

 Parametric temporal logic for measuring to what extent a reactive system satisfies a

formula (Alur et al. 2001).

 Proving where contracts are preconditions, postconditions, or invariants, e.g. (Meyer

2003).

 Automatically looking for program invariants and their violations (Li & Zhou 2005).

 See e.g. (Appel 2001) about proof-carrying code. When proof-carrying code is

executed, the proof of the code is checked automatically, and the code is executed

only if the proof holds.

 Making specifications consistent with an invariant (Schewe & Thalheim 1999).

 Approximate correction checking with certifier checks (Jin et al. 1999). The

accuracy is known.

 Formulas for floating point calculations (Virkkunen 1980) and formal systems for

integer programming (Sarkar & De Sarkar1989) .

 A composite model-checker for multiple types (Bultan et al. 2000). It combines

BDD and Presburger arithmetic representation, and can be extendable for other

symbolic representations.

 Chapter 4. Checks during and after Development 77

 O-Slang combines specification algebra with specification composition via

specification-building operations, e.g. aggregation, inheritance, and communication,

which are defined with category theory (DeLoach & Hartrum 2000).

 Testing of labelled Markov processes (van Breugel et al. 2005); domain theory and

coalbegraic extension are used, and using finite branching and similarity in testing is

investigated in the study.

 Localizing errors in counterexample traces (Ball et al. 2003).

Formal methods have been developed for specific application domains. Table 17 contains

some examples.

 Table 17. Applying formal methods within specific application domains

Application domain Examples of use of appropriate formal systems and issues

Buffer consistency and

overflow elimination

Model checking against file system errors (Yang et al. 2004).

Databases Relational calculi (Ozsoyoglu & Wang 1989), languages and

graphs (Beyer et al. 2005), and algorithms for deduction of

formulas (Yang et al. 1989).

User interface Formal proving (Brestel et al. 2005).

Concurrency A chemical abstract machine (Berry & Boudol 1989); processing

non-determinism (Atlee & Gannon 1993); state-based model

checking of event-driven formalization (Atlee & Gannon 1993),

problems with using logical disjunction in presenting states and

transfers in concurrent programs – and solutions for the problems

(Atlee & Gannon 1993); finding collections of actions that can be

executed without interleaving them with actions of other threads

(Flanagan & Freund 2004); nested transaction trees that process

possible failures of sub- and supertrasactions (Madria et al. 2000).

Winskel and Nielsen (1995) have done an overview about models

for concurrency.

Communication

protocols

Finding paths for desired states (Motteler et al. 1995). Motteler et

al. (1995) present lemmas involving testing sequences. Shiratori et

al. (1991) have a small survey about protocol verification.

Safety critical systems Logics and analysis tools (Jacky 1995) , (Gargantini & Morzenti

2001).

Fault-tolerant

computing

E.g. clock issues and type checks (Owre et al. 1995).

Many methods and tools combine proving and testing. For example, formal methods are

often used when deriving test cases, see e.g. (Carver 1996), and some formal languages

support design-time checks (Gerrard et al. 1990). There are methods that combine formal

methods with less rigorous analysis like reviews, see e.g. (Traore & Aredo 2004). Some

methods combine several formal systems. For example, Beauvais et al. (2001) study

merging declarative formalism with events and imperative formalism. See (Kurshan et al.

2002) about combining software and hardware verification techniques.

4.5.2 Real-Time Systems

There are numerous logical systems for specifying and verifying real-time applications,

including logic, algebras, and graphs, see (Falk 2004) for a brief classification. Some of the

systems are extensions of non-real-time systems; for example, temporal logics are extensions

 Chapter 4. Checks during and after Development 78

of modal logics (Bellini et al. 2000). Logical systems for real-time systems often involve

sequential and parallel processing, time intervals, guarded commands, and/or order

constraints even for variables that are arbitrary close to each other (Bellini et al. 2000),

(Nicollin et al. 1992). Some logical systems contain description about what happens when

some or all processes terminate, see (Jahanian & Mok 1986). Some logical systems contain

advanced temporal requirements; e.g. Ravn et al. (1993) present interval and combination

related constraints like "at any time interval <= k, duration of (A and B) is < k2". Many

analysis methods calculate bounds for completion times (Ferdinand et al. 2006). In a real-

time system, the time domain may be dense; e.g. Fränzle (2004) studies using decidable

fragments of dense-time duration calculus for model-checking realistic real-time systems.

Mok et al. (2004) present a specification model where events are instances and composite

events and correlation can be specified. Luqi et al. (2004) present a document-driven

methodology for real-time systems.

Synchronization of parallel actions in real-time systems is being investigated, see e.g.

(Bravetti 2003). Problems with verification of embedded software are also discussed, see

e.g. (Latronico & Koopman 2001). (Kopetz 2000) is a roadmap for real-time systems. It

involves e.g. the composition of components which are as independent as possible,

constructive integration, validity and upper limits for worst-case behavior, and

implementation of generic fault tolerance. Architectures like smart sensors are also involved

in the study. Neumann (1986) presents hierarchical design of computer systems for real-

time systems.

4.5.3 Tools

Compilers usually perform different kinds of static analysis. There are other tools for static

and dynamic analysis, too. The next paragraph presents some examples of analysis tools,

and the following paragraph involves proving tools.

Hiller et al. (2002) present an environment for error propagation analysis. See (Trivedi

2002) about a defect prediction tool. Some tools assist in defect tracking and version

control, see e.g. (Sanyal et al. 1992). Some tools can reason about fault location. For

example, Korel (1988) describes a knowledge based tool that can reason about bug location

based on program structure, execution traces, and user input. Deeprasertkul et al. (2005)

present a pre-compile tool for error detection by parsing and pattern matching; the tool can

do some automatic correction. Williams and Hollingsworth (2005) study automatic mining

of source code based on change history. Dillon and Stirewalt (2003) study customizable and

integrable analyzing components that are generated with a tool. Gregoriades and Sutcliffe

(2005) present a requirement development tool that indicates problem paths and tasks and

their causes (components, input values, and calculation of input values needed for the goal),

and supports comparison of alternative requirements and designs.

Many tools can be used for example in property verification (Prasad 2006), proving

theorems (Dawson 2004), or type-checking (Tip & Dinesh 2001). Tools are being

developed for proving with pre- and postconditions and other assertions, see e.g.

(Rosenblum 1995). Assertions may involve dependencies of variables, e.g. dependencies of

function arguments on each other (Rosenblum 1995). Some tools detect conflicts between

rules, or violations of assertions (Stonebraker et al. 1988), (Rosenblum 1995). Many

proving tools are customizable; one can even generate custom verification tools with a HOL-

tool and other languages (Shepherd 1992). User may define rules, see e.g. (Young 1997),

but some tools can derive them. Li and Zhou (2005) present a general method to find

implicit rules and detect violations. Schumann (1999) surveys some automatic provers.

Young (1997) studies desired features in proving tools and problems in comparing proving

tools.

 Chapter 4. Checks during and after Development 79

4.5.4 Limits of Analysis and Proving

Many problems related to proving and testing are undecidable. There are undecidability

theorems, some essential ones are presented below:

 General theorems by Gödel, Church, Turing etc., see e.g. (Wegner & Goldin 2003)

for an overview.

 Rice theorem about undecidability of a non-trivial question, and theories about

undecidability of associativity and commutativity analysis. (Charlesworth 2002).

 (Blass & Gurevich 2001): Decidable invariants do not suffice to verify single-loop

programs even if pre- and postconditions are decidable.

 (Barber et al. 2003) and (Holzmann 1997): It cannot be model-checked that there is

no unexpected system behaviour (missing or extra paths or services).

 According to Reps (2000), in general, context-sensitive structure-transmitted data

dependence analysis is undecidable.

 Landi (1992) presents undecidability statements for static analysis.

In addition, the following things make rigorous proving to fail:

 Erroneous preconditions (e.g. misunderstandings).

 Invariants do not hold (models and reality are different; models usually have

assumptions that do not necessarily hold).

 Erroneous command sequence (i.e. what the system does differs from what is being

proven).

 Erroneous derivation (errors in performing the proving, e.g. sequence error in

derivation, logic errors, or abstracting out something that would be needed in the

proof).

 What is to be proven is outside the scope of the logical system.

 External disturbance (it is actually an instance of being outside the scope of the

logical system). In control theory, there are equations for estimating system state

when there are unknown inputs and disturbances, see e.g. (Chang et al. 1994).

Erroneous derivation usually makes rigorous proving to fail. In constructive development,

the development fails if the derivation is erroneous. For example in building specifications

constructively, derivation errors result in errors in specifications. Substitution

inconsistencies are a topic for research, too, see (Cavalcanti et al. 1999). Morris and

Bunkenburg (2002) investigate inconsistency in theories of nondeterministic functions, i.e. a

flaw in the theory. (Jones et al. 1998) is an example of studies involving prerequisites of use

of formal methods.

Gerhart and Yelowitz (1976) studied typical faults in proven programs. Logical errors,

missing computation (e.g. returning an index instead of a value), and missing final task were

frequent faults. Making wrong assumptions was also common, e.g. about the order in which

the compiler makes calculations. According to the study, proving was not deep.

It would be desired that the use of formal methods be more common (Feather 1998). The

following list presents some remedies that are under investigation:

 Partial application, e.g. proving only safety and liveness properties (Easterbrook &

Callahan 1998).

 Lightweight formal methods, e.g. (Feather 1998).

 Automatic proving, e.g. (Schumann 1999).

 Fraser et al. (1991) investigate formal and informal specification languages and

making formal languages from informal ones.

 Dijkstra (2000) introduces computation calculus for proving formalisms of intended

interpretations. From intended operational interpretations, higher level of

abstraction can be derived with the calculus.

 Chapter 4. Checks during and after Development 80

4.6 Summary of Checks during and after Development

Many analysis methods can have code-, flow-, or state oriented view. Checks can be

performed manually or automatically, and they can be performed during or after software

development. Checks may be more or less formal, rigorous proving being extremely formal.

Analysis, even code based analysis, can be static or dynamic.

Code analysis methods may be related to range, size, or precision of data elements; there is

some research about these methods. Those methods sometimes involve dependence between

variables. There are simple derivations for maximum and minimum values for some binary

operations on different interval domains, but not much research about more complex

sensitivity analysis was found. There are more general informal methods, too, like

algorithmic analysis, code review, or looking for invariants in the programs. Not much

research has been done about these methods. Some comparative studies and few other

studies have been found. Those methods are very powerful and general. There are lists of

faults that can be found with those methods. Many more types of faults can be found with

those methods than what are on the lists. In addition, faults that are often found by flow

related methods can also be found with these static methods. General methods like

algorithmic analysis and code review can also be used in looking for range, size, and

precision problems in addition to special methods like interval analysis.

Instead, a more formal general method, software inspection, gets a lot of attention among

researchers. Some comparative studies relate inspection to testing. More such studies

should be done since inspection methods and testing methods have a lot in common. For

example, choosing checklist items and choosing test cases may have common features.

However, choosing test cases is not investigated in inspection-related studies and vice versa.

In addition, inspection- related studies do not use results of research in choosing test cases,

and vice versa. There is a same kind of relationship between defect prediction in software

inspection and properties of curves in general defect prediction models. In some studies

mentioned in this thesis, one conclusion is that the field lacks cross-field research. The

observations presented in this paragraph support the conclusion.

Uncertainty in research and particularly in comparison of different studies is discussed in the

summary of chapter 3. According to Miller (2000), results of studies cannot always be

quantified due to the lack of common definitions that could be used consistently in each

study. For example, there is no common definition of bug type (ibid.). Another

terminological problem is that some terms have definitions related to information

technology, and those definitions may differ from either general definitions or definitions of

the same terms in other fields. Some of those terms are included in IT standards. The word

“inspection” has a general meaning, but in software engineering, the term has got a special

meaning. In glossaries, software inspection is usually defined as a strict process with certain

meetings, specific roles, and specific organization.

Some terms like “desk checking” have been defined in different ways in different

documents. Some terms like "inspection" and "walkthrough" are used inconsistently. As

stated above, the term “software inspection” has been defined in glossaries as a strict

process. In some papers, the word often means methods like code review, code

walkthrough, or algorithm analysis, which all are usually less formal methods. The

definitions for those less formal methods are used inconsistently, too.

Some terms have a general definition but are unnecessarily redefined in some studies. Those

redefinitions add part of the context of those studies or that of their domain to the general

definition without stating it explicitly. For example, the definition of term “confluence” in a

study about automatic generation of loop invariants using Gröbener basis (Sankaranarayanan

 Chapter 4. Checks during and after Development 81

et al. 2004)
3
 includes local context. With reduction systems, the general definition of

confluence only guarantees that different reductions from the same arbitrary object

eventually lead to a common object (Klop 1992). In term reduction, it means that different

reductions from the same arbitrary term eventually lead to a common term. The common

term need not be a normal form
4
 or lead to a normal form: there can be infinite reductions

like cycles. Hence, the general definition only guarantees that if there is a normal form,

equivalent normal forms are unique (Klop 1992); it does not guarantee that there is a normal

form. In the study, in the narrow contexts where the reduction could be shown to be

terminating, confluence of a reduction was defined as follows: “every term reduces to a

unique normal form”. This is a definition in local context - in the context where all

reductions terminate. Thus it is not a general definition and presented as such, may confuse

those who have been using the broad definition.

There are many forms of representations for software and its environment, component

interaction, data and its relationships, and for control and data flow. More and more

research is being done about aspects and concerns. Graph theory is often applied when

studying representations. There are analysis methods that use representations for finding

bugs. Integration and paying attention to inconsistencies are trends in research involving

models. Like there is research about understanding root causes of bugs and application

domain, there is research about understanding the domain of models.

Flow analysis often involves dependences between variables. Flow analysis helps

understand program and reveals several faults like type and dependency faults. Plenty of

research has been done about making flow analysis easier and more precise. There is

research involving path related problems and problems and challenges in flow analysis.

Some areas of mathematics are sometimes used in flow based analysis. Some studies

connect flow analysis and logic. How to detect bugs with flow and dependence methods is a

topic for research. Flow analysis is sometimes combined with other methods to detect bugs.

There are also studies about error propagation to output and constraint propagation.

As stated in the summary of chapter 2, different methods have different fault prone features.

For example, graphs do not always express timing or scope of variables, as discussed in

subchapter 2.2.2, see (Yoo & Seong 2002). A related problem in control flow was found in

(Baresi & Pezze 1998): control flow analysis may have problems in noting difference

between the duration of the transform and a time to the next transform.

State space exploration and state space representation methods are being developed.

Software states are often presented with tables, trees, graphs, and networks, and those

presentations are being extended. Identifying states in state machines is being studied.

Missing states are common causes for software failures. State machines are often used for

model checking or risk analysis.

The state space explosion makes state-related faults more common and model checking

harder. A lot of research has been done about how to relief the state space explosion, and

several relief methods have been developed. One means is reduction of graphs. There are

studies involving general reduction of graphs and trees. Some of those studies are about

state space explosion, and some are more general. Results of those more general studies can

be used to mitigate state space explosion. States can also be reduced from other

representations like tables.

3
 The study is discussed in subchapter 4.4.2.

4
 Normal form means a terminal: no more reductions can be performed.

 Chapter 4. Checks during and after Development 82

Lightweight methods could be used in fighting state space explosion, but not enough

attention has been paid to these methods. Examples of lightweight methods are modularity

and easy elimination of unnecessary states. Examples of the latter are easy minimalization

of graphs, and making the system go to error state if something unexpected happens.

Excluding and logging undesired states is a good means to fight explosion, but it has not got

much attention. One related study was found about processes in an operating system.

Minimalization could be performed by setting priorities, too. For example, erroneous input

is usually rejected instead of being processed. For example, new input could be asked for if

the piece of software is interactive and the user enters inappropriate input. If this is the case,

erroneous input need not be partitioned according to values of other variables if partition

testing is used. Sometimes it is hard to know if one wants the system to process unknown

states. If they are excluded, they can be put into a log file. This way, the developers get to

know that such states exist, and they may include the states if they wish.

Many studies of state space explosion involve telecommunication systems. However, state

space explosion problems are present in numerous other application domains, too, and in

systems where there is no concurrency. The results of the studies about state space

explosion in telecommunication systems should be used when studying other application

domains, too. However, people do not find those results when they could need them. As

another example of using results of studies in other fields, results of studies for developing

compilers are often related to software control and data flow. Results of these studies could

be used in improving fault analysis methods that are flow-based.

There are numerous logical systems, and they are being extended. Both logic in general and

special logical systems and application domains are being studied. Some fundamental

theories about recursion and computability have been developed in 1960‟s. Also, partiality,

iteration, and termination have been topics for research. Abstraction of logical systems is a

trend. There are some studies about connections between logical methods and developing

methodologies, e.g. between category theory and functional programming.

Formal analysis and proving methods can be applied in all phases of the software life cycle.

Different kinds of logical systems, axioms, models, and languages can be used in proving.

Some common topics of research are looking for invariants to capture the behaviour,

methods for model-checking, different approaches of program semantics, and constructive

development. Some formal methods and systems have been developed for some areas in

software engineering, e.g. for making specifications consistent with an invariant, performing

floating point calculations, or proving that one program simulates another. There is a

tendency to integrate methods. Some tools can do automatic proving or reasoning about

contradictions and failures. Some tools can correct faults.

Not much attention has been paid to prerequisites and limits of a logical method. Those

limits are reasons why formal methods are not frequently applied. The research is more

practically oriented: making formal methods easier to apply with means like lightweight or

customizable methods and automatic proving are under research. There is a slight tendency

for early validation and verification of software, but it should be stronger.

Some research is being done about how to make people apply formal proving more often.

The question should be more general since checks are an efficient way to prevent faults and

should get much more attention. Different kinds of checks have been developed, but checks

have not been used very often, nor do they get much attention by research people, compared

to testing. However, checking is very efficient method to reveal faults. For example, many

checking methods have complete coverage, including unpredicted and rare situations, and

unpredicted facts and fault types may be detected by checking.

 Chapter 5. Testing

83

5 TESTING

Testing is a very common means to detect software faults. This chapter discusses software

testing as a means to detect defects. Testing may also reveal external factors that have an

effect on software reliability, but testing does not reveal all external failures. Software may

be tested for other reasons, too. For example, efficiency or user-friendliness can be tested.

Those tests are outside of the scope of this thesis.

Plenty of research has been done about methods for choosing test cases, test coverage, and

testing methods. Due to the large amount of methods and criteria and research involving

them, it has been impossible to discuss them in detail. This chapter contains only collections

of existing methods for choosing test cases and performing the testing, and collections of

coverage criteria. The chapter also contains outlines of assessing testing methods.

The first subchapter of this chapter involves choosing test cases and estimating test

coverage. The second subchapter presents different test methods and their classifications.

Estimation of testing and some problems related to testing are also discussed, and testing

tools are presented. The summary follows as the last subchapter.

5.1 What to Test

In this subchapter, the problem about choosing test cases is discussed. The first part

involves examples about what to test. The second part investigates different types of test

coverage, and methods for assessing coverage.

5.1.1 Items to be Tested

Table 18 contains examples about items to be tested. The first part presents common items

and the second part introduces method-specific items.

 Table 18. Items to be tested

General Testing

Risks

Cases that are most prone to cause management problems or to cause timing problems

(Kaner 2004), known faults (Kaner 2004), most frequent faults (Amland 2000), or faults that

cause most damage (Amland 2000), and erroneous inputs like wrong values (Kaner 2004) or

wrong command sequences (Leveson 1995).

Special items

Missing element; missing function; blank; zero; leading zero; one; small absolute value;

empty; special character like quote; first; last; border; close to border; output on border;

discontinuity of a piecewise continuous function; discontinuity of a derivate; points where

function stops being e.g. constant, monotonic, or linear; and items outside domains.

(Redwine 1983), (Howden 1986), (Ostrand & Balcer 1988), (Wooff et al. 2002), (Clermont

& Parnas 2005), (Goodenough & Gerhart 1975).

Hierarchy

Howden (1986) proposes the following tests for arrays, but they could be executed for other

kinds of collectors, too: zero value, zero row, zero column, and a case where some values are

special and some are not.

Continued on next page

 Chapter 5. Testing

84

Predicates

Arithmetic expressions, arithmetic relations with arguments in all orders, conditional

commands, iteration commands, operation sequences, off by ones in relational expressions,

smallest possible increments and decrements, sign and value, value and sign should not be

the same in every test case, value and sign should not be the same as any other value or sign

in all test cases, and in arithmetic operations variable should have a measurable effect on

value and sign of the result; all those are in (Foster 1980).

Functions

If input variables are names of subroutines, each type of subroutine should be tested

(Howden 1980). If the number of appropriate steps is another input variable, some values

for which the function converges should be tested, and some values for which the function

does not converge should be tested (ibid.). Extreme values for calls and returns should be

tested (Foster 1980).

Code

Some command sequences and operation sequences (Foster 1980), loading (Krishnamurthy

et al. 2006), relationships between variables (Foster 1980), maximum, minimum, and

intermediate values (Howden 1980), combinations of maximum and minimum values

(Howden 1980), maximum and minimum values in an expression (Howden 1980), identical

and distinct values (Howden 1980), cases where all items have the same value (Howden

1980), cases where output values differ from input values for variables used in both input

and output (Howden 1980), output out of range (Howden 1980), same paths with several

values (Kaner 2004), repetition of a test case (Kaner 2004), all permutations for specific sets

of values for some variables (Grindal et al. 2004), different sizes of data structures (Marinov

et al. 2003), member of a family of related classes (Weyuker & Ostrand 1980), and paths

with the highest number of conditions and operations affecting the result (Foster 1980).

Special situations

File not open, read past end of file, overflow, and underflow are examples of error situations

in (Westerfield 1992). Those situations could be tested. Extra item (Smidts et al. 2002) and

wrong type (Spohrer & Soloway 1986a), (Sullivan & Chillarege 1991) are special situations,

too. There are some new studies about testing of input validation; for example, Liu et al.

(2009) have a path based approach.

Method or application specific items

Interaction

The following items should be tested: possible interactions of components (Howden 1986);

messages (Briand et al. 2003); parameters of functional unit, characteristics of each

parameter, objects in the environments whose state could affect the functional unit's

operation, and characteristics of each environmental object (Ostrand & Balcer 1988). In

object oriented testing, objects, interfaces, and pure, inherited, and overridden methods

should be tested (Alkadi & Alkadi 2001).

Mutation testing

Mutant operations have been defined for expressions. Absolute value of a variable, the

negation of the absolute value, and forcing x to zero are examples of mutants (Wong &

Mathur 1995). Effect of omitting some mutants (selective determination) has been studied

(Offutt et al. 1996). There are many other types of mutants; e.g. Emboss msbar generates

same types of mutants for strings that are generated for DNA sequences in real life, see e.g.

(Royce & Necaise 2003).

Continued on next page

 Chapter 5. Testing

85

Domain testing

A lot of attention is paid to border shifts, coincidental correctness, and missing expressions,

see e.g. (Clarke et al. 1982). Some errors related to boundaries are shifted bounds, tilted

bounds, missing bounds, extra bounds, and closure faults (Zhang & Harris 2000). Stress-

testing is related to testing boundaries for input, output, and loading, and values close to

boundaries, see table 21. Research has been done about how to choose testpoints for

different types of domains, e.g. domains with several inequations, those with linear and

different kinds of non-linear equations, discrete and continuous domains, and situations

where points exactly on the border cannot be tested, see (Jeng & Forgács 1999) for

discussion about all those problems. Some studies involve choosing testpoints for given

paths, e.g. (Jeng & Forgács 1999). White and Wiszniewski (1988) present the number of

test points needed for loop patterns. Hierons (2006) studies finding test cases to avoid

coincidental correctness in boundary value analysis.

Operational profile
See (Chen & Yu 2001) on sampling strategies where test cases are allocated approximately

in proportion to the size of subdomains; Ntafos (2001) puts it more exactly: probabilities are

used instead of sizes because each input is not always equally likely to occur. Those

sampling studies involve partition testing but the methods could be applied elsewhere, too.

Naixin and Malaiya (1994) examine how operational profile should be considered in testing

when failure probabilities and the number of test cases are known.

Research has been done about making assumptions in testing and building test cases. For

example, some methods for selective regression testing assume that if a system is faulty, all

faults are found by testing specific scope (Leung 1995). Test cases can be created formally.

For example, Zhu (2003) analyses replacement systems in algebras that can be used in

deriving test cases.

Test cases are often collected from some source. Sometimes a source is converted to another

source for test case derivation, see e.g. (Kansomkeat & Rivepiboon 2003). Seeding faults to

the source of test cases is another way to build test cases, see e.g. (Fu et al. 2005). Some

studies compare sources for test cases, e.g. Zhu et al. (2002) compare different graph

representations. Table 19 contains some sources for test cases.

 Table 19. Sources for test cases

Textual scenarios. Textual descriptions can e.g. be structured and converted to state

machines (Glinz 2000).

High level specifications. They can be of any format. Some examples are formal language,

algebra, formal model (Zhu et al. 2002). Test cases can be derived e.g. from algebraic

specifications by replacement e.g. (Zhu 2003).

Source code. See e.g. (Hierons et al. 2003) for conditional slicing.

UML diagrams. See e.g. (Kansomkeat & Rivepiboon 2003) for generating test cases from

UML statecharts.

Models. E.g. Podgurski and Clarke (1990) present semantic models about faults and

software behavior.

Graph representations. There are different types of graph representations. Methods for

building minimum spanning trees and other minimum coverage selection methods can be

used in path selection, see e.g. (Marré & Bertolino 2003). Flow graph is commonly used in

looking for test cases, see e.g. (Hong et al. 2003). Gabow et al. (1976) reduce two problems

to graph-theoretic problems. One is testing a specific set of statements. The other is finding

a path which satisfies impossible path.

Continued on next page

 Chapter 5. Testing

86

Cause-effect-graphs. Tai et al. (1993) investigate fault-based testing of cause-effect-

graphs; relation and boolean faults are looked after in the study.

Classification trees. Chen et al. (1999) propose improvements for classification trees.

Class vectors. Leung et al. (2003) present a method for generating test cases from class

vectors.

Risk or fault regions. Risk or fault regions of the software can be used as sources for test

cases, see e.g. (Amland 2000).

Information about similar systems. E.g. known problems can be used in building test

cases, see subchapters 2.2 and 2.3.1. Performance of other systems, and performance testing

benchmarks can be used in test case construction, see (Carrington et al. 2005) about

assessing performance benchmarks.

Previous succeeded and failed test cases. E.g. old test cases can be used in regression

testing, see (Rothermel et al. 2004).

Software behaviour. Bowring et al. (2004) study learning about software behaviour and

clustering it into classes. According to the article, the information can be used in making

plans about test cases.

Sampled user executions. User executions can be sampled for bug isolation (Liblit et al.

2003).

Constraints. Carver‟s study (1996) involves constraints that have been derived from an

abstract program; besides testing, constraints can also be checked against abstract program

(ibid.).

Properties of functions, or relations between functions. For example, CAVEAT tool

deduces properties of functions and graphs and information about relationships between

functions (CEA LIST 2004).

Other relations. Relations between conditional expressions are used in test case selection,

see e.g. (Chen et al. 2003).

Algebraic specifications. Zhu et al. (2002) investigate choosing test cases from formal

specifications, including algebraic specifications.

Operation sequences in a graph. Probabilities and probability distributions of operation

sequences can be used as sources for test cases (Chang et al. 1998).

Any sources for known antigoals and antirequirements. See (van Lamsweerde 2004)

about antigoals and antirequirements.

Input distribution. Input distribution is used as a basis for selecting acceptance testing

cases (Kopetz 1975).

Domain features. Sinha and Smidts (2006) present a technique for taking domain features

into account in testing. The study presents, e.g., types of system invariants and involves

language features.

No source. Random data. See e.g. (Duran & Ntafos 1984) about random testing.

Howden (1986) introduces input-output, trace, and transform oracles for specification

testing. See (Freedman 1991) about component testing, and how to make software

observable and controllable. Observability means how input affects output. Controllability

means how easily specific output follows from input.

Many failures are related to rare events. It is not likely that a specific rare event occurs in a

random test set, nor have developers always taken rare events into account. Voas et al.

(1996) do experiments and develop algorithms for making it more likely that rare events are

selected for test cases in failure-tolerance testing. See (Haraszti & Townsend 1999) about

rare-event simulation for software that has high complexity.

Software is not the only thing that should be tested. When software is run, external factors

like the operating system, API, and other files, affect memory, heap, file handles, etc. The

result of those other activities has an effect on software function, particularly on software

 Chapter 5. Testing

87

input. Files may have been corrupted, and data may be erroneous. Other users may modify

the data in files. Also bad user input causes errors in programs. Errors with external

connections may be hard to reproduce. (Whittaker 2001).

5.1.2 Coverage of Testing

Coverage of test is one factor in estimating if sufficient amount of testing has been done.

See also subchapter 2.3.3. Zhu et al. (1997) have a survey about test coverage.

Coverage criteria can be derived from several sources, e.g. from code, specification, or

constraints to be satisfied. Frankl and Weyuker (1993c) survey data flow coverage methods,

and Grindal et al. (2004) survey combinatorial methods. Table 20 presents some coverage

criteria.

 Table 20. Coverage criteria

Combinatory. All items, all n-way combinations of items, all values of some items, k-

boundary, and k-perimeter are coverage criteria mentioned in (Grindal et al. 2004).

Value based. The tested item is a value for a variable (Grindal et al. 2004). Examples of

using value based criteria are distinguishing each expression from all its strict

subexpressions (Weiser et al. 1985), and testing each subexpresion with at least two values

(ibid.).

Control based. The tested item can be e.g. node (Kansomkeat & Rivepiboon 2003) or entry

(Frankl & Weyuker 1993c). Pohjolainen (2002) mentions e.g. branch, elemental decision,

and all ways to execute a conditional decision as coverage criteria. Pohjolainen also

mentions statement coverage, i.e. that all statements are executed. Tai (1993) mentions a

method where all simple and compound subexpressions are tested with both truth values in a

compound expression.

Control and value based. For example, all combinations of values of conditions are tested

(Frankl & Weyuker 1993c).

Fixing some items and testing others. Grindal et al. (2004) mention strategies where some

parameters contain default values and other parameters are tested.

Combined method. This method requires that every possible branch be tested at least once

for each special value for each input and output variable (Howden 1986).

Orthogonal arrays and covering arrays. See (Grindal et al. 2004) and (Cohen et al. 1994)

for orthogonal arrays, and e.g. (Grindal et al. 2004) for covering arrays. Yilmaz et al. (2006)

present methods that use coverage arrays for testing different configurations and finding out

features of the configuration subspaces in which bugs manifest.

States and transfers. Each state and/or transfer is tested, see e.g. (Fujiwara et al. 1991).

Flow criteria. Data flow coverage criteria involve e.g. definitions, uses, and/or paths from

some or all definitions to some or all uses (Frankl & Weyuker 1988), (Frankl & Weyuker

1993c). k-tuple criteria involve definition-use-paths between a specific definition and use

(Frankl & Weyuker 1993c). Further, uses can be separated to predicate- and computation

uses (Frankl & Weyuker 1993c). See also (Jeng & Weyuker 1994) for more criteria. Hong

et al. (2003) survey data flow coverage criteria. Podgurski and Clarke (1990) analyze

dependence coverage.

Context. Context coverage involves paths that define variables used in a specific statement

in (Frankl & Weyuker 1993c); Information Processing Ltd (IPL) (1999) investigates object

specific context coverage (e.g. inheritance context decision coverage, or interaction coverage

of inherited methods), user specific context coverage (e.g. thread coverage), and state based

context coverage.

Continued on next page

 Chapter 5. Testing

88

Ordered context. Ordered context method requires that each ordered context be exercised

by a path that visits the definitions in the given order (Frankl & Weyuker 1993c).

Orders. Orders of ordered data elements can be tested (Ntafos 1988).

Iteration. Paths that iterate loop k or less times and paths that fail the test on loop boundary

can be tested (Ntafos 1988).

Mutation. Mutations can be tested (Frankl & Weyuker 1993c).

Specification-mutation. This is a coverage measure for mutants in a specification

(Abdurazik et al. 2000).

Operational profile. Operational profiles for input can be tested (Chen 1998).

Couplings and Interfaces. Offutt et al. (2000) study coupling based covering in integration

testing. In the study, similar measures are used for e.g. subroutine calls and use of external

devices that are used when measuring data flow coverage.

Compound. E.g. Grindal et al. (2004) discuss compound strategies.

Fault tolerance coverage. Error and fault handling coverage and fault assumption coverage

are presented in (Avižienis et al. 2004). According to the article, failure assumption

coverage can be either failure mode coverage or failure independence coverage.

Many studies compare test coverage criteria, assess specific criteria (Abdurazik et al. 2000),

or investigate methods for assessment. Relationships between coverage criteria are a

common topic for research. For example, some criteria may subsume other criteria, see e.g.

(Grindal et al. 2004). Feasibility affects the relationships (Frankl & Weyuker 1988). Frankl

and Weyuker (1993b) discuss why subsumption relation does not always mean that errors

are more likely detected. Frankl and Weyuker (2000) use failure regions and multisets of

input subdomain for building relationships between coverage criteria.

Links between coverage criteria and properties of the program under test, e.g. number of

bugs, are under research (Garg 1994). Plenty of research has been done about test adequacy

properties and relationships of those properties. Weyuker (1988) presents axioms about

adequacy properties. Parrish and Zweben (1991) have an axiomatic perspective for test data

adequacy criteria. The study examines relationships between adequacy properties for

different adequacy criteria and for different assumptions.

Chen et al. (2003) study relations among choices of test cases, e.g. embedding, and relations

among test cases. Checking consistency among test case constraints and representing

different types of those constraints is also studied in the article. Coverage metrics and

coverage measurement tools have been developed (Pohjolainen 2002). There are studies

about comparing test case allocation measures, e.g. (Leung et al. 2000). There are fault

class hierarchies, see e.g. (Lau & Yu 2005) and (Okun et al. 2004) about fault class

hierarchies in expressions. In those studies, hierarchies are presented where test cases that

detect all faults in a larger fault class detect all faults in smaller class. Okun et al. (2004)

also compare classes of logical faults in specification based testing and calculate

relationships between those classes. Sizes of test input sites of some combination testing

strategies are presented in (Grindal et al. 2004).

According to Roper (1999), the link between adequacy criteria and attributes of the program

under test is missing. Also, there is no link between two criteria unless test cases for the

more modest criterion are a subset of those of the more demanding criterion (ibid.). Frankl

and Weyuker (2000) shortly survey research containing critique of relationships between

coverage criteria. Hierons (2002) studies comparing test sets and test criteria by using test

hypotheses and fault domains.

Algorithms and heuristic methods are often used in test case selection and reduction. Chang

et al. (1991) present a strategy that uses heuristic rules to achieve branch coverage. Jeffrey

and Gupta (2007) use coverage information in their heuristic method for reducing test suite.

 Chapter 5. Testing

89

There is research about reducing test cases by graph theoretic methods. Some examples are

using previous paths (Prather & Myers 1987), looking for minimum coverage (Marré &

Bertolino 2003), or algorithms for constructing minimum spanning set (Marré & Bertolino

2003).

There are theories about if there are test sets with which testing is certainly adequate.

Adequancy problems with finite and infinite test sets, tolerance functions, etc. are under

research, see e.g. (Li et al. 2004), (Garg 1994). How many test points define a subdomain is

an important question, and it can be calculated, see (Zhu et al. 1997) for functional testing.

According to Zeil and White (1981), number of test cases needed in path testing depends on

the number of input variables and program variables. Cain and Park (1996) derive the

number of necessary test points for finite domain vector spaces in testing the equality of

functions. Chusho (1987) studies how to eliminate redundant test cases in respect to a

coverage criterion, e.g. how to avoid re-testing a branch that has already been covered by

another test case.

See (Dalal & McIntosh 1994) about stopping criteria. Large software and changing code

are also involved in that article. There are many stopping criteria based on the probability of

finding more faults. E.g. Littlewood and Wright (1997) present methods based on faults

found during the testing period. The authors propose that the testing may be continued even

if faults have been found and the test will eventually fail. According to Littlewood et al.

(2001), the test can be deterministic so that it is known that the software certainly fails.

Costs of failures are often taken into account when analyzing coverage and stopping criteria,

see e.g. (Amland 2000).

Miller et al. (1992) study the problem about how to estimate the probability of faults if

testing reveals no failures. A method is introduced that is based on prior information, and on

assumptions about the operational profile. The situations are also covered where the

assumptions about operational profile change. According to Butler and Finelli (1993),

estimating the reliability of life-critical software requires so many test cases that it is

impossible, regardless of whether the software is standard or fault-tolerant, and whether

blackbox (input to output) or reliability growth models are used. See (Littlewood & Wright

1997) about stopping rules for operational testing of safety critical software, both discrete

and continuous systems are inspected. The authors think that pessimistic rules are good, and

Bayesian models (statistical models using a priori information) should be used. Also, one

should stop after finding a fault (ibid.).

5.2 Test Execution and Evaluation

This subchapter involves methods and means for test execution and evaluation. The first

part involves testing methods. Test evaluation and some problems in testing are discussed in

the second part. The last part discusses some testing tools.

5.2.1 Testing Methods

Coverage criteria can be regarded as testing methods. About coverage criteria see

subchapter 5.1.2. There are surveys and classifications about testing methods, see e.g. (Peng

& Wallace 1993). Some of them cover other issues like fault coverage and test case selection

methods, e.g. (Adrion et al. 1982). There is research about finding theoretical foundations

for testing. For example, Hamlet (1994) has a survey about foundations of testing; it

involves e.g. coverage, models, and dependability. Table 21 presents some typical testing

methods. Studies are separated from each other by periods unless stated otherwise.

 Chapter 5. Testing

90

 Table 21. Typical testing methods

Random testing. E.g. Duran and Ntafos (1984) assess random testing.

Risk-based. Common use test cases and test cases based on many kinds of risks like

timeout in input, wrong number of input arguments, etc. may be tested (Kaner 2004).

Amland (2000) has an overview. Some test cases can be based on previous failures, and

some may be out-of-bound-cases (Kaner 2004). See also stress-testing row since matters

like strong workload can be tested in risk-based testing.

Failure-based. See e.g. (Richardson & Thompson 1993) for test data selection.

Fault-based. Stamelos (2003) investigates associative shift faults and a model to detect

those faults. (Tai 1993) is about predicate testing, including methods for detecting extra or

missing predicates and operators. (Tai 1996) is an instance of studies involving the question

about how many test cases are needed for eliminating each fault type in predicates (this

study investigates eliminating all Boolean, relation, and/or off-by arithmetic faults).

DeMillo and Offutt (1993) present experimental results about constraint-based testing,

where faulty conditions are written as constraints. See (Morell 1990) about theories of fault-

based testing, combinations of faults, and what to do if no faults exist. There are theories

about alternative test sets and when they differentiate program from its alternatives.

Equations that determine alternatives not differentiated by the test are analyzed in the article.

In the study, expressions are replaced by symbolic alternatives, and system output is an

expression in terms of input and its symbolic alternatives. In the article, those system output

expressions are equated with the output from the original program.

State-based. Paths are often represented by trees (Lee & Yannakakis 1996). Different test

methods like DS, UIOS, W, and Wp, have been developed for testing state machines

(Dorofeeva et al. 2005), (Lee & Yannakakis 1996). Lee and Yannakakis (1996) survey

problems in testing finite state machines, and several fundamental problems like state

verification or identifying unknown initial state.

Flow based. Podgurski and Clarke (1990), and Laski and Korel (1983) study control and

data dependencies and their use in testing and debugging, e.g. in detecting operator faults

and dependence faults. Test cases can be built from program slices, too, see e.g. (Hierons et

al. 2003) about conditional slicing to choose partitions in partition testing. Flow based

dependence analysis and search methods have been developed for finding input for a

specific statement, assertion, or path; see e.g. (Allen & Cocke 1976) and (Snelting et al.

2006).

Path approach. Path approach is a method where input is being iterated until a specific

path is executed (Peng & Wallace 1993). Some studies involve recursive programs

(Snelting et al. 2006); the article is about finding input for a specific path. There are other

studies, too, about finding test input for executing a specific path, branch, or statement, see

e.g. (Sy & Deville 2001). Howden (1976) studies reliability of path analysis and different

kinds of path related errors. Howden (1986) analyses properties of path faults. Ntafos and

Hakimi (1979) study path coverage problems in digraphs. Watson and McCable (1996)

describe path testing methodology based on cyclomatic complexity of the control flow

graph. Malevris (1995) presents means to restrain infeasible paths in testing all sequences

and jumps. Zeil (1983) studies finding undetectable expressions for a test path when the

class of error expressions is a vector space. There are new studies about paths in software.

See (Ngo & Tan 2008) for a heuristic method for detecting infeasible paths.

Branch based. See e.g. (Howden 1980).

Continued on next page

 Chapter 5. Testing

91

Software/hardware integrated critical path analysis. A standard (MIL-STD 882B 1984)

mentions the method but does not define the concept of critical path. According to Kundu

(1978), critical path is a path where according to some complexity measure, there is the

greatest number of e.g. statements, variables, or their dimensions. The article involves using

groups in finding optimum critical path in a directed acyclic graph that can be used for

software testing.

Class based. Plenty of research is being done about how to test object oriented software,

particularly classes. Theories of behavioral equivalence are often used (Chan et al. 2002).

There is research about object-oriented state based testing, see e.g. (Briand et al. 2004).

Porwal and Gursaran (2004) study weak branch criterion evaluation for class testing; effect

of the length of test sequences, nature of faults, and class features, on fault detection ability

was studied for C++ classes. In the weak branch criterion, a pair of labelled edges is

replaced by one unlabelled edge.

Event-oriented object testing. Event-driven nature of object based programming brings

declarative aspects on integration and system testing (Jorgensen & Erickson 1994).

Antirandom testing. Antirandom testing means choosing test cases that differ most from

each other (Malaiya 1995); Malaiya also presents metrics for this difference.

Mutation. Research is being done about choosing mutants, e.g. (Wong & Mathur 1995),

and about coupling of mutants (see subchapter 2.3.3). Budd et al. (1980) study mutation

analysis for programs, particularly programs with decision tables. Where to locate mutants

and how to test them are being studied, see e.g. (Voas 1992). See (Delamaro et al. 2001)

about interface mutation in integration testing; errors that have an effect on other functions

and output, can be seeded to functions. Woodward and Halewood (1988) present problems

in deciding whether a mutant is live or dead, and solutions for these problems.

Domain testing. When using this method, testpoints are chosen at or near the boundary.

Boundary faults may be due to, e.g. incorrect branch predicates or erroneous assignments

that affect predicate variables (Clarke et al. 1982). Research is being done about the nature

of border shifts (Clarke et al. 1982). Test strategies are being investigated, e.g. what

untested areas follow from choices of test cases is being studied, see e.g. (Clarke et al.

1982). White and Cohen (1980) inspect language features and troubles that they cause for

domain testing. Jeng and Weyuker (1994) present a method to figure out executable paths.

There are other problems, too, like loops and dynamic structures (Jeng & Forgács 1999).

Research is being done about how to make domain testing more efficient, e.g. how to

improve coverage or accuracy, or develop simpler strategies for complex situations, see e.g.

(Jeng & Forgács 1999), (White & Wiszniewski 1988).

Combinatorial testing. E.g. Cohen et al. (1997) study combinatorial design in generating

test sets. Grindal et al. (2004) survey combinatorial testing research and strategies. Many

combinatorial strategies for choosing test cases are based on some combination-based

coverage criterion (Grindal et al. 2004). Grindal et al. (2004) survey e.g. in parameter order

-methods and their extensions.

Continued on next page

 Chapter 5. Testing

92

Partition testing. Goodenough and Gerhart (1975) present fundamental theorems of testing

based on equivalences of test cases. They use decision tables in test data selection. Every

value within an equivalence class is equal in the sense of the classification. If one is able to

build homogenous classes, either all test cases in a class produce the correct state and output

in respect for the specific fault, or all test cases reveal the fault (Weyuker & Ostrand 1980).

According to Pasquini et al. (1996), an equivalence class may be scattered in many parts of

the code. Partition testing uses all information and can reveal unknown combinations,

particularly logical faults (Hamlet & Taylor 1990). It is an excellent method if partitions

with high failure rate are small (ibid.). Kaner (2004) has a collection of errors that students

make when they apply partition testing. There are studies about how to build partitions and

choose representatives of them, see e.g. (Hierons et al. 2003). Weyuker and Jeng (1991)

present strategies for considering all built partitions if partitions overlap. Ostrand and Balcer

(1988) present constraints on partitions to eliminate contradictive and impossible partitions.

Bastani‟s study (1985) involves hierarchic equivalence classes and probabilities.

Model-based. Paradkar (2005) surveys research about how to choose test cases from

models. Models can be e.g. graphs or algorithms. Pretschner et al. (2004) translate a model

into constraint logic programming code. Muccini et al. (2004) investigate testing software

against architecture. Different abstraction levels are possible with relation to a specified

view, and different implementations of architecture are possible (ibid.).

Comparing program to another program or a reference. Back to back testing is

discussed in (Peng & Wallace 1993) and (Avižienis et al. 2004).

Testing by comparison. Avižienis et al. (2004) mention testing where outputs are

compared with each other or output is compared to a reference.

Stress-testing. Stress-testing means testing factors like large sizes, large values, large and

small frequencies, or premature input; (Peng & Wallace 1993), (Clermont & Parnas 2005).

Oehlert (2005) studies fuzzing an application with unusual data, e.g. detecting buffer

overruns with large input values, or detecting wrong signs by flipping the top bit of an

integer. Krishnamurthy et al. (2006) study session-based workload generation for stress

testing.

Performance testing. Testing system performance. See (Avritzer et al. 2002) and

(Weyuker & Vokolos 2000).

Interface testing. See e.g. (Briand et al. 2003) about client-server class integration testing.

Integration testing. Integration testing can be e.g. top-down, bottom-up, or sandwiched

(Peng & Wallace 1993).

Regression testing. Research is being done about techniques for choosing a method for

regression testing, and methods have been surveyed and studied, see e.g. (Rothermel et al.

2004). The study investigates e.g. decision whether to reset some or all test cases when

software has been modified, and the granularity of test suite. Li and Wahl (1999) survey

regression testing and choosing test cases. Research is also being done about wrong and

missing changes and about what should have been changed (Leung 1995). Leung also

discusses fault detecting ability of selective regression testing.

Symbolic execution. Symbolic execution of loops has been studied (Adrion et al. 1982).

Those situations are being discussed where the number of iterations is not always known in

advance, see e.g. (Jeng & Forgács 1999). Symbolic execution trees can be used in testing

(Adrion et al. 1982).

Structural analysis. In (Peng & Wallace 1993), structural analysis means testing structures

with automatic tools.

Fault injection. See (Zeil 1983) about perturbations, and (Fu et al. 2005) about compile-

time fault injection.

Continued on next page

 Chapter 5. Testing

93

Simulation. Research is being done about randomness (L‟Ecuyer et al. (2007) mention

some studies), making rare events more likely (L‟Ecuyer et al. 2007), combining discrete,

continuous, and analytical simulation (Donzelli & Iazeolla 2001), developing abstract

simulation (Lee & Fishwik 1999), and integrating simulation with modelling (Lee &

Fishwik 1999) (Donzelli & Iazeolla 2001). Ng and Chick (2001) study reducing input

uncertainty in a way that reduces output uncertainty in simulations. McGeoch (1992) studies

analyzing algorithms and reducing variance. See (Lee & Fishwick 1999) for multimodeling

methodology for real-time simulation.

Debugging. Debugging can be e.g. event based (Lazzerini & Lopriore 1989), algorithm

based (Stumptner & Wotawa 1998), trace based (Shapiro 1983), dependence-based

(Strumptner & Wottawa 1998), or slice based (Wong et al. 2005). There are studies about

fault localization and characterization, e.g. (Lawrance et al. 2006), and about simplifying

and isolating failure-inducing input in testing (Zeller & Hilderbrandt 2002). Uchida et al.

(2002) present a model for analyzing the reading strategies that can be used in debugging.

(Stumptner & Wotawa 1998) is a survey about intelligent debugging. Nikolik (2005)

presents convergence debugging, i.e. searching for test cases close to faulty ones by

comparing how many times expressions are evaluated true and false. Debugging tools may

contain automatic tractability (Pohjolainen 2002).

Log file analysis. See (Andrews & Yingjun Zhang 2003).

Constraint analysis. Constraint analysis is mentioned in (Peng & Wallace 1993).

Cross-reference list analysis. This method is mentioned in (Peng & Wallace 1993) and

(MIL-STD 882B 1984).

Bounded exhaustive testing. In this method, all inputs are tested up to a specific

complexity or size, see (Marinov & Khurshid 2001). For example, Sullivan et al. (2004)

assess bounded exhaustive testing.

Mining. Song et al. (2006) study defect association mining and correction effort prediction.

E.g. defects in a transaction are involved in the study. Li and Zhou (2005) introduce a miner

for extracting rules and detecting their violations. Li et al. (2006) study mining copy-paste

bugs.

Evolutionary or adaptive testing. See e.g. (Bergadano & Gunetti 1996) about inductive

program learning. The study involves testing program and distinguishing it from other

possible mutant programs by learning from a finite set of input-output examples.

Table 22 contains nearly-orthogonal classifications of testing methods.

 Table 22. Classifications of testing methods

Structural testing / Functional testing. Test cases are built from design and code in

structural testing, and from external specifications in functional testing (Adrion et al. 1982).

There are other sources, too, like error logs (Andrews & Yingjun Zhang 2003).

View. Table 21 presents methods based on risks, faults, failures, coverage of elements (e.g.

paths, branches, states, or classes), structure, model, or stress. Each view is presented in

different row.

Entity. The entity that is tested can be e.g. unit, component, or integration of components

(Peng & Wallace 1993). Testing can also be system testing or acceptance testing (ibid.).

Elbaum et al. (2009) study using system test cases when choosing unit test cases.

Continued on next page

 Chapter 5. Testing

94

Life cycle phase. Testing can be performed during different phases of software life cycle

e.g. during specification-, design-, coding- or maintenance phase (Adrion et al. 1982).

Static / dynamic. See e.g. (Adrion et al. 1982). Many kinds of dynamic techniques are

discussed e.g. in (Peng & Wallace 1993), like those based on dynamic flow testing,

comparing to a reference, fault injection, or debugging. Many methods have static and

dynamic versions, for example data flow analysis can be static or dynamic (Boujarwah et al.

2000).

Time-related / no time-related. Many test methods can be performed independently of

time or old versions of software. Regression testing (see table 21) is related to time.

Stochasticity. Test cases can be selected by deterministic or probabilistic basis (Thévenod-

Fosse & Waeselynck 1993).

General / system part specific. In table 21, for example path testing is general, and

interface testing involves only interfaces.

Debug testing / operational testing / combination. In debug testing, existing faults are

located, and in operational testing, the quality of software is assessed, and many testing

methods have both goals (Frankl et al. 1998). Subcategories for debug testing are searching

for likely bugs (Frankl et al. 1998) and tracking known bugs (Adrion et al. 1982).

Incremental / cross-checking / none. Le Traon et al. (2003) use this classification for data

flow test methods.

Advance design / adaptive testing. In extensive testing, the test set that has been planned

in advance is executed, and in adaptive testing, defects are corrected in the test cases (Munoz

1988).

Directed / representative. Choosing test cases based on a specific criteria suitable for

detecting a specific class of faults is called directed testing and testing based on operational

profile is called representative testing in (Mitchell & Zeil 1996).

Using one technique / combining several techniques. For example, directed and

representative testing are combined in (Mitchell & Zeil 1996).

General / application domain specific. Table 21 presents general or widely used methods.

Table 23 presents domain-specific methods.

Table 23 contains examples of domain-specific testing.

 Table 23. Examples of domain-specific testing

Domain Examples of testing

Database Consistency, integrity, indirect access; Peng

and Wallace (1993) discuss these features in

connection with static database analysis.

Spreadsheet Fault localization, e.g. faulty cells or variables

(Lawrance et al. 2006).

Expert systems Testing rule based systems (Kiper 1992).

Continued on next page

 Chapter 5. Testing

95

Concurrent systems Graph based methods, e.g. (Taylor et al.

1992); comparing execution traces to

specifications (Brockmeyer et al. 1996);

replay of sequences (Tai et al. 1991);

reachability analysis (Cheung & Kramer

1994). Some tools look for atomicity

(Flanagan & Freund 2004).

Protocol testing Motteler et al. (1995) investigate ways in

which conformance testing may fail to catch

faults. They also briefly survey studies about

protocol testing methods.

Chu (1997) presents an evaluation framework for software testing strategies. Some studies

test empirically or assess one or several test methods, see (Miller, Roper, et al. 1995) for a

survey. One can test or assess e.g. ability to detect faults (Hamlet 1989), number of test

cases needed (Dorofeeva et al. 2005), or maximization of coverage (Hamlet 1989). Vouk

and Tai (1993) study estimating testing methods based on changes and e.g. test history.

There are comparative research methods to compare different testing methods based on their

fault detecting ability (Hamlet 1989). Many comparative studies have been done, and

Hamlet mentions some of them in the study. Empirical and analytical methods have often

been used (Hamlet 1989). Test sets and fault criteria have been studied, and relationships

between different testing methods have been constructed, see e.g. (Hamlet 1989) and

(Hierons 2002). Comparison of test methods has been criticized, see (Hamlet 1989). Some

modeling and comparing studies involve failure regions, see e.g. (Frankl & Weyuker 2000).

Some studies involve bounds or confidence intervals for defect detection, see e.g. (Hamlet

1989). The results of comparative studies of testing methods sometimes seem somewhat

contradictive, at least partly due to using different input subdomains, see (Weyuker & Jeng

1991). Miller, Roper, et al. (1995) discuss problems in evaluating test criteria. Hierons

(2002) studies how test sets or test criteria can be compared in deterministic

implementations in the presence of test hypotheses or fault criteria.

5.2.2 Estimating Testing

Marick (1997) discusses classic testing mistakes in organizational level. Sullivan et al.

(2004) discuss errors in testing methods like errors in oracle, errors in specification where

the test is generated, incompleteness, or limited focus. Kelly and Shepard (2004) present

problems in testing. For scientific software, or other software where the application domain

is complex, testing is difficult and can be inefficient, due to factors such as very long

running times, multiple symptoms disguising the root cause of a problem, the lack of

effective oracles, and the cause/effect chasm (Kelly & Shepard 2004). The cause/effect

chasm means that the symptom of a problem being far removed in space or time from the

root cause (Eisenstadt 1997). In (Clapp et al. 1992), a test generally revealed one fault; in

one test, three faults were detected. A test technique that relies solely on some code cannot

find missing-path faults (Jeng 1999).

Howden (1976) proves that no testing strategy can be constructed which is reliable for all

programs. Reliability means in this context that if faults are not found when a program is

tested, it has no faults. The prerequisites for testing being reliable are studied in the article.

 Chapter 5. Testing

96

How to supervise the quality of testing is under research. There are measures about failures,

like MTTF (mean time to failure) or number of faults found (Hamlet 1994), (Peng &

Wallace 1993). Some measures involve testing effectiveness. Cangussu et al. (2003)

investigate statistics of faults left and rate of fault reduction. Test effort, complexity, quality

of test process, and some coefficients are used as parameters. Sensitivity analysis is

performed for those parameters in the study. Capture-recapture methods have sometimes

been used in measuring testing accuracy, see e.g. (Ohba 1982), and see (Isoda 1998) for

criticism. Nikolik (2006) studies measuring diversity in control flow and data flow between

different test cases. Munoz (1988) studies product testing and discusses correctness

measurement problems. Van Rompaey et al. (2007) investigate metrics for evaluating

poorly designed tests.

Classification criteria are being presented for test quality measurement (Chen et al. 2004).

Le Traon et al. (2003) present axioms for diagnozability in testing, and develop measures for

diagnozability in flow based and design-by-contract testing. Testability indicates test effort

and efficiency. There are studies about relationships between testability and inductive

inference, e.g. (Cherniavsky & Smith 1987). Benander et al. (2000) have made a study that

supports the hypothesis that in recursive algorithms, finding and fixing bugs is more likely

and faster than in iterative algorithms.

There are measures about testability. For example, Sohn and Seong (2004) present a

measure for testability and investigate its use in fault tree analysis. The measure is based on

failure probability of a statement or a variable and entropy that describes the importance of

the variable or statement. According to Bertolino and Strigini (1996), testability is not

directly proportional to trustworthiness. The definition of testability is revisited in the

article: the incompleteness of the test oracle and the possibility of observing faults in the

absence of failures are taken into account, not only program structure and input distribution.

The Bayesian inference level is more useful than classical confidence level because a-priori

beliefs are crucial and some erroneous programs are inside confidence intervals (ibid.).

See (Wooff et al. 2002) about whether uncertainties should be quantified. The study

involves Bayesian graphical models for software testing. A probability model for failures is

introduced in the study, about probabilities that fault transfers to another node of a graph.

Estimating root node probabilities is discussed in the article. Sensitivity analysis is done in

the article for initial specifications about how changes affect pre- and post-testing reliability.

5.2.3 Testing Tools

Automatic tools have been presented for testing, proving, and estimating software properties.

For example, Jalote (1989) studies automatic testing of completeness of specifications.

There are tools for automatic generation of test cases, see e.g. (Pohjolainen 2002). Some

tools transform program to something else, e.g. build graphs, and generate test cases from

them, see e.g. (Kansomkeat & Rivepiboon 2003).

(Tian 1999) is a survey; some types of tools related to data capturing, analyzing, usage

testing, or reliability assessment, are presented in the study. Pohjolainen (2002) has made a

classification and a survey; the study contains e.g. tools for functional testing, test case

generation, complexity measurement, coverage analysis, regression, load analysis, and test

management. Many tools have several tasks (Pohjolainen 2002). There are classifications

for some specific kind of tools, e.g. Shahmehri et al. (1995) classify debuggers. Some

studies compare tools to each other, e.g. Horwath et al. (2000) compare SilkTest and

WinRunner. There are also guidelines for choosing tools, e.g. (Johnson 2007). On the

 Chapter 5. Testing

97

Internet there are collections containing hundreds of tools, for example (QADownLoads)

website contains numerous tools.

5.3 Summary of Testing

How to choose test material has always been discussed. At least since 1980's, lists have

been made about items to be tested, and coverage criteria have been developed later. Those

early lists cover e.g. data elements and their interaction, expressions, risks, unusual

situations, and loading. Those lists are sometimes detailed but it is hard to make them

complete. For example, maximum and minimum absolute values with both signs should

usually be tested, but that has not been mentioned on detailed lists. There is research about

how rare events will be taken into account in testing. There are many different sources for

test cases. In fault injection based testing like mutation testing, faults are created; research is

being done about where they should be located.

There are lots of general and special testing methods. Some methods like path and branch

testing have been studied at least from the 80‟s but some methods like performance testing

have been studied for only about ten years. What is being tested depends on the method -

maybe too much. In object based testing, object oriented features like inheritance are being

tested. In boundary value analysis, attention is paid for testing expressions, paths, and

borders. The error classification used in boundary value testing is barely used elsewhere,

although it would be useful in other contexts, too. There is a question about if more

attention should be paid to boundary errors when using other testing methods.

Constraints to limit test cases have been under investigation. When to stop testing is being

studied a lot. Deriving the minimum number of test points for a specific method and

minimalizing the number of test cases have been related to test coverage. Sometimes it is

claimed even in research papers that exhaustive testing would guarantee that there are no

faults, but that is not the case: all unexpected behaviours cannot be detected by testing. For

example, missing paths are hard to detect by testing. In addition, software may have

different environment at different times. For example, software can read from an

uninitialized memory area. If the default values of memory areas are zeros, the values are

most likely zeros during the test execution. Sometimes in run time when they are not zeros,

the hidden bug actualizes.

In the field of testing, there is a lot of research about relationships. Some studies create

relationships between coverage criteria, between test sets, between test methods, fault

classes, or between test coverage properties and software properties like number of bugs.

Some studies involve fault regions. Studies comparing coverage properties with each other

or with software properties have been criticized. Some studies compare testing methods. As

with comparative studies about defect prediction methods, results of studies that compare

testing methods have been contradictive. Reasons for this are being discussed and research

is being done about how testing methods should be compared. Frameworks, methods,

models, and metrics are being developed for test evaluation. Problems in testing are being

discussed. There are axioms involving testing. What makes testing reliable is being studied,

too. Testability has been studied and discussed. Automatic integrated tools have been

presented for static analysis, testing, proving, and estimating software properties. There are

surveys about testing tools.

There are interesting relationships that should be kept in mind. Dependence of data

elements has a relationship to the number of faults that have an effect on a failure situation.

The relationship between data element dependencies and failures is discussed in subchapter

2.3.3. This relationship could be studied further. Flow dependence is related to test

 Chapter 5. Testing

98

coverage, and dependence information is used in creating coverage criteria. Data flow

dependence is related to dynamic dependence of data elements, which should be kept in

mind in assessing test coverage.

As mentioned in the summary of the previous chapter, there is much more research about

testing than about checks. In addition, there are studies about testing of special items and

other unusual situations. However, only few studies involve paying attention to unusual

situations already during development.

In addition, many methods are used in testing only, although faults could be eliminated

earlier by using those methods during development. A lot of research has been done about

using domain theory and category partitioning in testing phase but no research was found

about applying those methods during other phases of software life cycle. As mentioned in

the summary of chapter 2, blindness and coincidental correctness are rarely investigated

outside domain testing, even though they have connections with other analysis and testing

methods, too. Also, path-, branch- and data flow analysis are often performed in testing only

even though they should have been performed during earlier phases of life cycle.

 Chapter 6. Fault Tolerance

99

6 FAULT TOLERANCE

Even if software developers use methods presented in chapters 4 and 5, there can still be

faults in software. One usually does not check everything, proving may contain errors,

application of formal methods has restrictions, and everything cannot usually be tested.

Particularly, rare situations and external factors are often omitted from testing. Often there

is a possibility of an external failure, and there are unpredicted factors; testing reveals some

of them but not all. This chapter involves preventing harm if there is a possibility of a

failure. The probability of a failure in the presence of a fault can be reduced, and the

software usually needs to have means to recover and continue when a failure occurs.

The first subchapter introduces some terms, problem areas, and general issues of fault

tolerance and of related modeling. The three following subchapters involve the most

common means for maintaining reliability. Failure diagnosis, N-version programming, and

recovery, are discussed in consecutive subchapters. Several of those methods are often

applied in the same system. For example, in N-version systems, the software may use

recovery blocks in the components or after the result of the N components has been

calculated (Torres-Pomales 2000). Also, multiversion software may perform self-checks

(Torres-Pomales 2000), which are a common diagnosis means. The fifth subchapter

involves some other reliability means, methods, tools, and development trends. The sixth

subchapter is a summary of this chapter.

6.1 Introduction

Reliability issues have been applied for hardware. They have been adapted for software, and

special features of software have been taken into account more and more. General surveys

have been done about computer system reliability for several decades; (Strigini 2004) is a

relatively recent survey.

The use of the most common terms in the field is not very consistent. Some most commonly

used definitions are presented below.

Safety: Features and procedures which ensure that the product performs normally in normal

and abnormal conditions, thereby minimizing the likelihood of an unplanned event

occurring, controlling and containing its consequences, and preventing accidental injury,

death, destruction of property, and/or damage to the environment, whether intentional or

unintentional (Herrmann & Peercy 1999). Safety means that it is guaranteed that something

bad never happens (Phillips 1992).

Reliability: The probability of failure-free operation of the software program for a specified

time under specified conditions (Herrmann & Peercy 1999). Another definition for

reliability is that it is a set of attributes that bear on the capability of software to maintain its

level of performance under stated conditions for a stated period of time (ibid.). Very often,

reliability means preventing the damage if something bad happens anyway. If there still are

faults in software, damage caused by them can be prevented by means of reliability.

Liveness: The system stays alive. Liveness means that it is guaranteed that something good

eventually happens (Phillips 1992).

Damage: Loss or detriment caused by hurt or injuries affecting estate, condition, or

circumstance (Oxford Dictionary IV 1989). Damage also means injury, harm, disadvantage,

inconvenience, trouble, matter for regret, misfortune, or a pity (Oxford Dictionary IV 1989).

 Chapter 6. Fault Tolerance

100

Harm: Evil, hurt, injury, damage, mischief, loss, grief, sorrow, pain, trouble, distress,

affection, pity, or a pity (Oxford dictionary VI 1989).

Plenty of research is being done about error detection and recovery. Different methods are

assessed and compared, see e.g. (Leveson 1991). Research is being done about how

software can efficiently detect faults and recover from them. How to use information that is

meant to be used for other purposes is being studied, see e.g. (Lomet & Salzberg 1991). One

has often been able to achieve non-intrusive checkpointing and information collecting, see

e.g. (Israel & Morris 1989). One problem is that recovery systems may have bugs see e.g.

(Torres-Pomales 2000), and they cannot always detect other faults than what they have been

planned to detect (Abbott 1990). Generally, faults are not detected either if detection and

recovery mechanisms are in wrong locations. Where to place fault tolerant structures and

checkpoints is also a topic for research, e.g. Torres-Pomales (2000) surveys the topic.

Different subsystems or modules may have independent or even different fault tolerance

techniques (Strigini 2004). Functions, modules, or some other entities, or whole systems

can be replicated; some studies compare different solutions, e.g. Boland and El-Neweihi

(1995) compare component level and system level redundancies. Defensive programming

has often been placed in different parts of software, but Kantz and Koza (1995) present a

system where defensive programming has been built as an independent subsystem.

One area of interest in research is how to fit software components together in a fault tolerant

way. Arora and Kulkarni (1998a, 1998b) study adding fault-tolerant components to increase

the level of reliability and the number of fault classes that the system can tolerate. Sinha

and Hanumantharya (2005) combine using of that method and prior use of category theory in

composition. Also the depth of fault tolerant structures has to be decided when planning

fault tolerant software (Abbott 1990).

There are studies that have mathematical analysis of fault tolerance, see e.g. (Wu et al.

1996). Some fault tolerance models include combinations of different fault tolerance

means; for example, (Wu et al. 1996) contains systems with both N-version programming

and recovery blocks. Some defect prediction models can take correlated failures and other

special matters into account. For example, they may use information about numbers of

correct programs, see e.g. (Littlewood et al. 2001). Fault tolerance models are usually used

for defect prediction, reducing development or testing effort, or finding optimal

configurations, see e.g. (Wu et al. 1996). Kim et al. (2004) present a framework-based

approach for analyzing the reliability of an embedded system based on the framework and

component reliabilities. Plugin components are possible, and separation of concerns is

applied in the study. Some experimental studies compare different recovery methods, e.g.

Bhargava et al. (1990) compare recovery with synchronous checkpoints with recovery with

independent checkpoints.

6.2 Fault Detection and Diagnosis

For many accidents, ignoring the signs about that something is wrong has been a

contributing factor, see e.g. (Leveson 2001). Doing something for those signs would have

saved the situation. The same can be true with software, which makes failure detection and

diagnosis important.

Self-checks are an important means for diagnosis. Complexity theory is used in the theory

of self-checking, see e.g. (Wasserman & Blum 1997). Wasserman and Blum study

developing good result checkers. Checkers can even be adaptive: a complex checker may

generate more detail data if it does not have enough of it (ibid.). Staknis (1993) investigates

 Chapter 6. Fault Tolerance

101

n-way dependencies and independencies of a fault on input variables, and on different

degrees of checks of those variables. Laws about relations between checks and about logical

connectives of input checks are also derived in the study; e.g. conjunction between checks

means performing all of them. Methods have been developed for testing and assessing

robustness, see e.g. (Bennani & Menascé 2004), and characteristics for robust algorithms are

discussed, see e.g. (Strigini 2004).

Nicola and van Spanje (1990) analyze models about checkpointing strategies.

Checkpointing intervals based on Poisson process, transaction load, or time intervals are

analyzed in the study. The study also investigates dependence of the recovery period on

checkpointing strategy; in the article, the dependence can be deterministic, stochastic with

distributions, or parametric. Some diagnosing methods use partitions. Preparata et al.

(1967) have theories about how many faults can be diagnozed in partitioned systems where

units can test each other, and those methods have been developed further. Jeon and Cho

(2002) present an adaptive partitioning model for system-level diagnosis. Walter et al.

(1997) investigate formal verification of on-line diagnosis. Guo, Mukhopadhyay, and Cukik

(2004) study verifying result checkers. Huebscher and McCann (2008) survey autonomic

computing, including self-checking, self-fixes, and self-healing.

Table 24 presents methods for defect detection and diagnosis, classified by view. Some

methods contain automatic recovery. Different studies are separated by semicolons unless

stated otherwise.

 Table 24. Fault detection and diagnosis methods

Data structure redundancy

Repeated dual links, other repetitions in data structures, extra rows and columns in matrices

(Strigini 2004).

Code checks during runtime

Type checks (Cartwright & Felleisen 1996); data structure consistency based on check and

repair (Demsky & Rinard 2006); consistency in data structure processing, e.g. detecting

cycles by monitoring path length (Giguette & Hassell 1999); repeating an operation and

comparing results (Tewksbury 2002); comparing values of variables with previous values,

with values of other variables, or to references or reasonable values (Torres-Pomales 2000);

reading back output (Gericota et al. 2006); backward calculation (Torres-Pomales 2000);

error correcting codes like checksums or codes for detecting transposed bits (Torres-Pomales

2000), (Gallian 1996); assertions (Leveson 1991), probes (Probert 1982); looking for

unintentional redundancies (e.g. commands) - they may indicate faults (Xie & Engler 2003);

protecting memory by checking e.g. return addresses, Chen et al. (1995) discuss protecting

memory from operation system crashes by different checks; comparing results to those of

other replicas (Torres-Pomales 2000); simulation (Lee & Fishwick 1999); analyzing log file,

see (Andrews & Yingjun Zhang 2003) for analyzing log file for testing; monitoring

performance and use of resources (Swobodova 1981), and system clock (SDL 2006).

Trace processing and partitions

Slicing (Weiser 1984); partitions (Jeon & Cho 2002); building process trace tree and

traversing it for searching for an incorrect, incomplete, or diverging sequence of procedures

(Shapiro 1983); tracking a fault that is e.g. in output (Shapiro 1983).

Continued on the next page

 Chapter 6. Fault Tolerance

102

Software intelligence

Failure states (Kumar & Vemuri 1992); self-stabilizing algorithms
5
; automatic detection of

convergence problems (Troscinski 2003); wrappers doing some checks, e.g. wrappers that

intercept unintentional calls to functions or calls to defective functions (Strigini 2004); rule-

based systems like algorithmic checks that find conflicts and other faults, see (Stumptner &

Wotawa 1998) for debugging; Martin et al. (2005) study a query language to look for

patterns related to sequences of events and objects - queries are converted to checkers that

look for rule violations; neural networks may be used in detecting both known faults (He et

al. 2000) and unknown faults up to external disturbances (Tewksbury 2002).

External checks

Information flow, incremental and cross-checking strategies (Le Traon et al. 2003);

watchdog (Torres-Pomales 2000); paying attention to symptoms like suspicious behavior or

degraded performance, recognizing faults based on common symptoms (Lee & Iyer 2000),

(Sheth et al. 2005); diagnostic messages (Hatton 1999); checks outside algorithms like

monitors for programs (Strigini 2004), or programs that check other programs (Strigini

2004), Blum and Kannan (1995) present program checkers and theorems about checkers and

checkability.

6.3 N-Version Programming

Avižienis (1995) discusses a design paradigm for N-version software, i.e. for making N

copies of the software. Chen and Bastani (1992) study partial replication of software, where

only some of the system data is stored in replicas. In the study it is assumed that the whole

process can be restored from a partial data replica unless faults prevent the restoring effort.

Control processes in systems with replicas are also under investigation, see e.g. (Bishop

2006). One problem is keeping the replicas consistent, see e.g. (Brilliant et al. 1989) and

(Bishop 2006).

Software components may work as main, backup (active), or spare (standby) components. A

great amount of research is being done about how small the copies should be, how many

copies of software there should be, should the copies be of different types, and how many

copies of each type there should be, and if some of the copies should be spare copies.

Hocenski and Martinovic (1999) examine reliability factors of a system that has a hardware

spare copy and checkpoints where data is transferred to the spare unit; they perform

experiments for both redundant and non-redundant software. If there are more than one

original components in a system that contains spare components, either there can be spare

copies for individual components or spare components can be shared, e.g. Torres-Pomales

(2000) presents both kinds of solutions. In warm standby systems, the probability for spare

component failures can be anything from zero to that of active components. If a system has

N components and still works when K or fewer of them are faulty, it is called K-out-of-N-

system (N > K). See (Behr & Camarinopoulos 1997) about methods for comparing the

reliability of incomplete K-out-of-N-systems, where not all paths are present.

5
 The word "stabile" means different things in different fields of mathematics and computer science.

It is often related to the precision of computations. Self stabilization of algorithms often means that

the system goes to a legitimate state in a finite amount of time, see (Strigini 2004). How to cope with

transient faults is also being studied, see e.g. (Mossé et al. 2003). Self-stabilizing algorithms and their

restrictions are under investigation, see e.g. (Das et al. 1996) for a self-stabilizing algorithm for

directed acyclic graphs. Self-stabilizing algorithms should work even if the data has been corrupted

(Strigini 2004).

 Chapter 6. Fault Tolerance

103

According to Brilliant et al. (1989) and Littlewood et al. (2001), there may be individual

differences in reliability: some 2-out-of-3 systems can be less reliable than some single

systems. Sometimes the maximum number of faulty units is known or may be assumed. Xu

and Randell (1997) analyze variations of deciding which units are correct if there are

comparators and there can be at most T faulty units.

Models are being developed for systems with a specific configuration, e.g. for K-out-of-N-

systems with identical components (Lai et al. 2002), or systems with non-identical or spare

components, see below. Some models can take into account gradual degradation (Shmueli

2003), reparation times (Vermeulen et al. 1998), preventive maintenance (Vermeulen et al.

1998), component-based failure rates (Vermeulen et al. 1998), common mode errors, or

uncertainty. That uncertainty often involves unavailability of spare components. She and

Pecht (1992) analyze K-out-of-N warm standby systems. See (Bunea et al. 2005) about

Bayesian models where information of other plants is used. Dai et al. (2004) present a

model for correlated failures where failure distributions are not restricted to be of a specific

type. In the model, different components may have different failure distributions, so can

different N-way combinations of components, even for the same N.

Data transfer between replicas is one topic for research. Basic ways to transfer data are

comparators and reciprocal monitoring, e.g. Torres-Pomales (2000) describes both kinds of

mechanisms. Comparators are studied a lot; there is not so much research about reciprocal

monitoring except for distributed systems. Data transfer means are often replicated, because

they also may be faulty, see e.g. (Torres-Pomales 2000). There is research about how to get

an agreement about the return value or system status. Examples of methods for estimating

results of different components are comparison, voting methods, switching, self-checks, and

acceptance tests (Littlewood et al. 2001). In voting, the results between replicas are

compared to each other, and possibly some other factors are used, like fault histories of the

replicas (Torres-Pomales 2000). Multi-stage voting and hierarchical voting are discussed,

see (Vouk et al. 1990).

In voting, majority can be wrong (Bishop 2006). Another problem is to decide about when

the results of different copies are regarded as different results (Brilliant et al. 1989),

(Brilliant et al. 1990). In addition, results can be different from each other, but all may be

correct. If the differences are due to inexact computation, this is an instance of the

consistency comparison problem (Brilliant et al. 1989). Sometimes it is not even clear to

decide whether results can be compared; for example, internal states may have an effect on

results of individual copies for a short period of time (Brilliant et al. 1989), or if the software

contains a number of related values, it is not sufficient to take a vote based on individual

values (Bishop 2006).

See (Leveson et al. 1990) about correlated failures between different software versions, and

about problems in voting and self-checks. Also, several faults that cause a failure (always or

in specific situations) may have a common cause. There are experimental studies about how

frequently common mode failures are present, see e.g. (Bishop 2006). In the vast majority

of multiple processor halts for Tandem GUARDIAN operation system, the same fault halted

primary and backup processors (Lee & Iyer 1993). Few halts were due to independent

processor faults, and few halts were not related to faults on both processors (ibid.).

Plenty of research is being done about diversity between different copies. Different demands

can be loosely coupled (Lee & Iyer 1995), or difference seeding can be used (Ammann &

Knight 1988). Bishop (2006) surveys experiments about design diversity. Littlewood et al.

(2001) discuss the question whether to choose several methods in order to cause diversity

and which methods to choose. For example, the authors discuss problems in assessing

strengths and weaknesses of different development methods on specific applications and

 Chapter 6. Fault Tolerance

104

conditions of operation. According to the authors, two methods may be equally good in

average but those methods may be good for different sets of inputs.

Table 25 contains examples of means to cause diversity.

Table 25. Examples of means to cause diversity.

Different technical and physical actions, sources of inputs, and implementation

technology for replicas of system functions (Littlewood et al. 2001). The study did not

describe different implementation technologies for software but for example, some systems

may be discrete and others may be continuous. See e.g. (Littlewood & Wright 1997) for

reliability prediction for discrete and continuous systems.

Different input data values for different copies (Ammann & Knight 1988).

Different methodologies for different versions (Littlewood & Miller 1989).

Different specification languages for different copies. Based on their experiment, Yoo and

Seong (2002) assume that a wrong description will produce unique faults with unique

specification languages.

Different programming languages for different copies (Littlewood et al. 2001).

Converting input representation between different copies (Abbott 1990).

Algorithmic changes e.g. by changing expressions, data structures, or the order of storage

allocation, or rearranging internal data (Ammann & Knight 1988).

Timing or causing external disturbances, Rushby (1993) discusses those as problems.

Action, state, and timing, e.g. different copies performing different tasks, memory state,

race, timing, or random events (Lee & Iyer 1993).

Authors. Research has been done about if several copies of the same software version

should be made by same or different people; some pieces of this research are introduced in

subchapter 2.3.3.

6.4 Failure Recovery

Some systems stop when they fail, but it is usually desired that the system be able to recover.

Recovery methods can be classified. A forward method brings the system into a new state in

order to perform a function, or updates a file using change record data (IEEE 1990). A

backward method returns the system back to an earlier state (IEEE 1990). The third fault

recovery method is to include enough redundancy to be able to mask the fault (Avižienis et

al. 2004). Avižienis et al. (2004) also classify means for preventing the failure from

occurring again: the alternative means are diagnosis i.e. finding out the cause, isolating the

fault, re-configuring the system, and re-initialization. Research is being done about these

means, e.g. about how to do restarts and if one should do periodic restarts, see e.g. (Bao et

al. 2005). One problem in recovery is that other failures, even those that are independent of

the first one, may occur during recovery, see e.g. the study of Al-Saqabi et al (1996).

An architectural means for recovery is recovery blocks, where program components check

their correctness and back up when they detect a failure. The software needs to store

information about its state for recovery. Some methods use log files.

Negrini and Sami (1983) present graph- and dependence based analysis about whether the

acceptance test in recovery block makes sense i.e. represents testing the system state. See

(Mill 1985) about building a sufficiently correct state from a state in a recovery point. See

(Wang et al. 1993) about progressive retry. There are checkpoints, and the deepness of the

recovery and the number of participating processes are increased gradually until recovery

succeeds. Method investigated in the study uses log files in recovery. Qin et al. (2005)

 Chapter 6. Fault Tolerance

105

study recovery from faults by environmental changes; some other methods are discussed

briefly in the article.

Plenty of research has been done about modeling recovery. The following list contains some

examples.

 Failure distribution models when multiple version system contains checkpoints

(Nicola & Goyal 1990).

 Validating recovery blocks by testing. The model is based on failure events (correct

and incorrect results of alternates and those of acceptance test). The relationship

between faults and fault correction is based on failure history and the amount of

testing done. The faults are repaired and the repairing time is taken into account.

(Pucci 1992).

 Including correlation between outputs of different modules (alternates) operating on

a single input, between successive inputs, and between successive acceptance test

runs on correct/incorrect module outputs, all in the same recovery block. (Tomek et

al. 1993).

 Recovery blocks with nested clusters of failure points. When in failure cluster of the

primary module, the input sequence encounters clusters of failure points belonging

to the first alternate, the second alternate is invoked. (Csenki 1993).

Research is being done and surveyed for database recovery, see e.g. (García-Muñoz et al.

2007), a survey. There is also research about how to recover when there is non-determinism,

see e.g. (Elnozahy et al. 2002). A lot of research has been done about recovery and

checkpoints for co-operating processes. There can be e.g. atomic transactions, or recovery

may be based on beginning and ending of a conversation (Romanovsky & Strigini 1995).

There is research about modeling communicating recovery blocks, see e.g. (Berman &

Kumar 1998), and about coordinating different recovery mechanisms, see e.g. (Tai et al.

2001). Al-Saqabi et al. (1996) present an algorithm that can recover a communication

protocol from multiple failures and from failures in recovery process; no content of

messages is lost but some messages are retransmitted automatically.

Recovery points and exception processing are examples of failure recovery. According to

Maxion and Olszewski (2000), special situations like special items, wrong types, overflows,

and precision errors cause exceptions. There may be situations where program analysis

method does not notice exceptions, e.g. a subprogram may encapsulate exceptions (Sinha &

Harrold 2000). Methods and models are being developed for static analysis of exception

flow (Sinha & Harrold 2000) and for detecting uncaught exceptions (Jo et al. 2003). Some

methods can analyze effect of exceptions on dependencies and control flow (Sinha &

Harrold 2000). Handling multiple exceptions is one topic for research, see e.g. (Sinha &

Harrold 2000). Maxion and Olszewski (2000) study eliminating exception handling failures

with three methods: dependability case analysis for exceptions and their reasons, N-version

programming, and collaboration. There are also studies about choosing the correct

exception handler, see e.g. (Cui & Gannon 1992). Garcia et al. (2001) survey exception

handling for different languages and present taxonomy for technical aspects of exception

handling.

 Chapter 6. Fault Tolerance

106

6.5 Other Reliability Issues

Research is being done about several other means to increase fault tolerance. Table 26

contains some of those means. Many of those means are very easy to use and do not need

extra resources.

Table 26. Means to increase fault tolerance

Isolated software

Software makes it possible to design complex solutions, but for safety reasons, they should

be simple and isolated, and evolutive development and separation of concerns help

(Littlewood & Strigini 1993). See (Alves-Foss et al. 2004) about multilayered approach for

system design and verification.

Weak replication

Replication means may also be weaker than building N versions. Kistler and

Satyanarayanan (1992) present a system where cache is utilized to guarantee continuous file

system function.

Data replication

Research is being done about how to get replicated data files consistent when changes are

made to the files, see e.g. (Lim & Hurson 2002). Taking backups (IEEE 1990) is a way to

replicate data to be used to replace or restore data in a failure or a disaster.

Averaging

Averaging can be performed to get better estimations of values and minimize the effect of a

possible faulty value. The values can be, for example, values of different copies of the same

software (Latif-Shabgahi et al. 2004) or values of a variable in the cause of time, see (Lander

& Berbari 1989) about the latter.

Fault tolerance in programming languages

Austin et al. (1994) investigate checks for spatial and temporal access faults, and state that

UNIX typically provides storage protection on segment granularity. Some programming

languages have safety features. For example, EC (Hatton 2005) and MISRA-C (Hatton

2004) are safe subsets of C. Hartel and Moreau (2001) survey research about Java safety.

See (Phillips 1984) for safe data type specifications, where equality axiom is independent of

implementations. De Florio and Blondia (2008) survey fault tolerant programming

languages and adopting customer semantics for a language.

Safety margins

Systems can sometimes be made to tolerate a more stressful environment than they are

expected to have (Littlewood & Strigini 1993). This is one form of safety margins, which are

one means of defensive programming. The possibility of the unknown should be taken into

an account.

Fault tolerance is being built only for faults that are somewhat anticipated. It is harder to

estimate the risk of the unknown. One cannot know exactly either, to what extent the

unknown can be prevented with fault tolerance.

Abbott (1990) surveys resourceful systems, systems that set goals and select alternative

plans if they are not achieved. Some system can even replace a function for another, and

some even do reactive reasoning for an error and/or a change of environment (Abbott 1990).

According to the study, real situations have uncertainties and the border between the system

and its environment is fragile. Self-checks and self-protection are involved in resourceful

systems (ibid.). Giguette and Hassell (2002) study the use of a recovery planning tree when

planning recovery methods in resourceful systems.

 Chapter 6. Fault Tolerance

107

Delgado et al. survey run-time monitoring tools. Many systems react to violations of

specifications in a particular state. Use of automata and algebra is limited in tools, but logic

and high-level language are common. Few tools can capture domain-level and design-level

properties before implementation. Some tools have automatic recovery. (Delgado et al.

2004).

Lee and Iyer (2000) study SYMPTOMS-tool for rediagnozing failures based on common

symptoms. See (Liang et al. 2004) about NT_SwiFT for Windows NT. The set of

components provides components for automatic error detection and recovery, checkpointing,

event logging and replay, and communication error recovery, and incremental data

replication. Some tools collect dependencies between components. For example, on the

webpage (Maples 2004), Windows Dependency Walker is presented. It collects information

about dependencies between modules. According to the webpage, the tool can be used in

error detection.

6.6 Summary of Fault Tolerance

There are some general problems involving reliability. Terms involving reliability are not

always used consistently. Also, terms like safety and reliability have their special meanings,

although the use of those terms is not consistent. Another general matter is that results of

studies about availability could be used when studying reliability but they are not used very

frequently.

There is research about methods and problems in recovery, fitting components together, and

placing fault tolerant structures and checkpoints. There are different architectural and code-

related solutions to achieve fault tolerance, for example self-checks, N-version systems,

recovery blocks, and exceptions. For recovery blocks, the reliability of acceptance test and

that of recovery are being studied. The reliability of different configurations of fault tolerant

solutions is being studied; the components may be of same type or different types. Some

studies involve concurrency, non-determinism, and failures during recovery of fault

tolerance solutions. Some research has been done about the breadth and depth of fault

tolerance mechanisms. Several fault tolerance means are often combined. Redundancy can

be achieved at different levels, and it can have different degrees; more research could be

done about partial or weak redundancy since it often is an easy way to increase reliability.

For example, repetition of a function or a procedure could be a cheap way to increase

reliability.

There are different methods for fault detection and diagnosis. Different types of self-checks

are easy to use and could be used more often. For example, more attention could be paid to

using multiple data structures for both increasing the reliability and making software more

efficient. Other replications like repeated calculations increase reliability, too. As another

example, robust algorithms could recognize input outside domain. What can be checked in

software, effects of checks, and making checkers are topics for research. There are metrics

and axioms for diagnozability and theorems about checks and about diagnosis. More

research could be done about assessing self checks.

Control process for N-version replicas and the consistency of replicas are being studied.

Data transfer between different copies is a topic for research. Comparators are studied a lot;

there is not so much research about reciprocal monitoring except for distributed systems.

Deciding the result of N-version computation is being investigated. Factors that cause

differences between different replicas are being discussed. Sometimes differences are due to

slight differences at the places and times when different units perform their tasks or get

information, but I have not found any discussions about this source of differences. The

possibility of correlated faults is a typical problem, too. Whether replicas should be different

 Chapter 6. Fault Tolerance

108

and ways to achieve diversity are being studied. One way to increase the difference is to

make the fundamental structure different. For example, some replicas can be discrete and

others can be continuous.

Other means for achieving reliability are isolating critical parts, weak replication, data

replication, averaging different values, safe data types, fault tolerance in programming

languages, and safety margins and other forms of defensive programming. Safety margins

may mean, e.g., accepting greater input intervals than what the software uses, and making

longer than necessary deadlines for events. Not very much research has been done about

means mentioned in this paragraph, even though they are usually easy to use.

There are models to predict or optimize reliability; some models involve repair, correlation,

nesting, communication, or other extensions, or use information of other systems. For N-

version systems, research about models is concentrated on looking for the optimal

configurations and their models. There are models about several means to achieve

reliability, and some models combine different means to achieve fault tolerance. There is a

tendency towards robustness and adaptability. Some systems have means for preventing the

fault from occurring again, and some systems can recover by changing the environment.

Some diagnozing methods contain automatic recovery. Some tools can reason about faults.

Some tools that have been done for other purposes are used in reliability, too.

 Chapter 7. Discussion and Conclusions

109

7 DISCUSSION AND CONCLUSIONS

In this chapter, the contributions of the thesis are presented in relation to the goals of the

thesis. The thesis had the following goals:

1 Figuring out the status quo in the field.

2 Proposing some basis for structural framework for the field.

3 Surveying and increasing bug knowhow.

4 Surveying research about fault prevention, fault prediction, fault detection, and fault

tolerance.

5 Figuring out what should be studied more.

6 Encouraging for early fault elimination.

7 Presenting concrete recommendations.

The contributions of this thesis are discussed in detail in the first subchapter. In addition to

those investigated in the subchapter, one more contribution is to present recommendations to

software developers, research scientists, and teachers. Recommendations are presented in

the third subchapter. Between those subchapters, in the second subchapter, different

methods for fault elimination are compared with each other. In the last subchapter, problems

with doing this thesis are discussed and recommendations are presented for future work.

Plenty of research has been done about organizational, managerial, and economical means

for software fault elimination. However, the emphasis in this work is in technical means and

in what can be done by means of software development. The thesis investigates fault

elimination only. Quality assurance contains many other areas like effectiveness and

maintainability of software.

7.1 The Contributions of the Thesis

7.1.1 Figuring out Status Quo

Types of Research

Software fault elimination is a wide topic, and plenty of research has been done about it.

Three common ways to do research have been the development of models and methods,

execution of experiments, and writing surveys. Theoretical research has been done in the

form of developing models and other formal entities. Lots of models have been developed

e.g. for software development processes. Another area where models have been developed

intensively is defect prediction. It has been widely admitted that models differ from reality,

and the fact that reality is often unknown makes the situation worse. Participants for

experimental studies have often been either companies or university students. Interviews

and surveys have also been used as methods in experimental studies. See the subchapters

7.1.3 and 7.4 for discussion about surveys of different areas of software development.

 Chapter 7. Discussion and Conclusions

110

Problems with the Difference between Research Environment and Reality

Many studies state lots of uncertainty factors. Stating them in a research document helps a

lot in assessing results. There are differences between research conditions and reality.

Controlled experiments are often done with university students, so they do not necessarily

correspond to real-world development. Also, studying models has uncertainty because

models differ from reality. For these and some other reasons, software engineering research

contains a lot of uncertainty, and research methods need to be assessed. There are some

studies that assess methods for software engineering research; some assessment studies are

general and some are related to a specific field of software engineering, e.g. testing.

Comparative research is discussed in subchapter 7.1.2.

Universal Problems are Sometimes Erroneously Connected with Only one or Few Methods

Some common types of software faults and some fault-related problems are studied only in

relation to one or few specific methods, even though those faults and problems are more

general. For example, blindness and coincidental correctness are investigated in connection

with domain testing, but studies that do not involve domain testing usually do not take them

into account. Unfortunately, software often contains blindness and coincidental correctness,

regardless of whether one uses domain testing. They can often be detected with other

methods, too, so studies that involve other test or analysis methods could take those types of

faults into account. More generally, in some fields, the research and development approach

is method-oriented, although the aspects of those studies could be taken into account in other

fields and when using other methods, too.

Results of a Specific Study Could Be Used Elsewhere

Some studies concentrate on a particular application or application group like

telecommunication system, a specific application type like real-time applications, or a

certain phase of software development cycle. Some studies concentrate on a specific

methodology like object based development, or a specific language like Java. The results of

many studies are dependent on a specific system or application environment, or few of them.

Very often those results could be used with some other systems and in some other

application environments, too. In addition, application environments change and so does the

usability of results of previous studies.

Attention should be paid to what the characteristics to the environments are where the results

of the studies hold; it makes it possible to generalize the results to some extent. For

example, many studies of state space explosion are related to telecommunication systems but

the results could be applied elsewhere, too, since state space explosion is a quite general

problem. However, people do not find those results when they could need them. People

doing research for application domains outside telecommunication systems have hard to find

the results that are only related to telecommunication systems and that do not even have

keywords about state space explosion. As another example of studies that concentrate on

particular application group, results of many studies about resource availability could be

applied in increasing reliability. How a structural framework could improve the situation is

discussed in subchapter 7.1.2.

 Chapter 7. Discussion and Conclusions

111

Lack of Cross-Field Research

More cross-field research should be recommended. For example, items for software code

inspection can often be chosen by same grounds and with same methods as test cases, and

vice versa. Not much attention has been paid to this analogy, even though taking common

features into account would help developing both fields. Also, defect prediction in software

inspection and properties of curves in modes about faults found in testing have common

features, but attention has not been paid to them. In some studies mentioned in this survey,

the conclusion is that the field of the study lacks cross-field research. In those studies, only

the area of the study is considered, but the problem is more general. On the other hand,

there is a tendency to combine different methods. For example, several defect prediction

models are being combined in assessing defects, flow analysis is often combined with other

methods, formal methods are often combined, and one system may combine several means

to increase fault tolerance. In addition, many researchers agree on the view that methods can

be applied in different areas.

7.1.2 Proposing Basis for Structural Framework

An Outline for Structural Framework

The field of eliminating software faults is unstructured. Particularly, analysis and checking

lack a position in framework. One reason for this may be that too little attention has been

paid to many areas of analysis and checking. The table of contents in this work could be

considered as a support when developing a structural framework. Some topics could be

inserted into several categories, so the table of contents is intended to be for discussion

instead of being a final classification. (SWEBOK 2007) may also be a big help when

constructing a structural framework.

If there is a structural framework, studies that contain fault elimination could use keywords

related to that framework, so the studies could be found more easily. A framework would

also help figuring out research domains whose results could be used in specific areas of fault

elimination even though their main purpose is not fault elimination. Some studies have

another purpose but produce some as-a-side-knowledge about software faults. For example,

plenty or research has been done about topics like logical programming in database design,

data flow analysis in testing compilers, and availability and optimization issues. Some of the

results could well be used in software fault elimination. Particularly, results of studies for

developing compilers are often related to software control and data flow and could be used

in improving flow-based error analysis methods. As-a-side-knowledge usually is

unstructured and consists of occasional hints about fault elimination. In this survey, some of

those hints are referred to when surveying the quality related content where they could be

applied. Those hints are hard to find if the studies do not have keywords that are related to a

structural framework of fault elimination. A structural framework would encourage the use

of keywords related to the framework.

Improving Comparability of Different Studies

Comparison of studies has been problematic. Many studies compare different software

development methods. Some studies have compared results between different comparative

studies, and those results have been found contradictive. For example, different studies

about defect prediction methods have different conclusions about which method is the best.

The same is true for studies that compare testing methods. Reasons have been looked for

those contradictions. In some fields, studies have not even been comparable. For example,

studies about defect detection methods have been found incomparable, see (Miller 2000).

 Chapter 7. Discussion and Conclusions

112

Reasons for this incomparability are discussed in the summary of chapter 3. Miller states

that one reason for this incomparability is the great variation between those studies; for

example, different studies use different methods and thus cannot be compared to each other.

Another reason is that results of studies cannot always be quantified due to the lack of

common definitions that could be used consistently in each study; for example, there is no

common definition of bug type (ibid.).

It should be considered if recommendations could be established to improve comparability.

However, compulsive standardization would hide individual differences. Those differences

should be kept in mind. There should be a possibility to divert from standards, but

diversions of standards should be explained in the documents where the diversions occur.

More Consistent Use of Terms

More consistent use of terms would make research papers, coursebooks, and software

documents more understandable. It would also make comparing studies easier. There are

some glossaries and development frameworks. For example, there are several online

glossaries, and (SWEBOK 2007) contains good explanations of terms related to software

development framework. Regardless of the existing standards and glossaries, the

terminology is not used consistently in research papers. For example, many terms are not

defined in standards and glossaries, some terms are defined differently in different

documents, and some terms are not used consistently even if they have been defined

consistently. Visser et al. (1997) define mismatches in the use of concepts, and those

mismatches can be found, particularly between term, definition, and concept to be defined.

The article also involves mismatches on classes and on relations, but the field of software

engineering does not seem to have strict classifications of its terms. When writing the thesis,

I found several matters causing confusion. Some examples of those matters are presented

below.

Multiple definitions for terms in different glossaries cause inconsistency in the use of

terms. For example, the term “desk checking“ has been defined differently in different

glossaries. Many online glossaries state that it means a manual testing of a logic of a

program. IEEE glossary (IEEE 1990) uses the term when it means a static review of

documents or code. In some documents like (Zeil 1999), the definition is more detailed than

in glossaries.

Arbitrary definitions of standard terms cause unnecessary problems since definitions in

existing standards or glossaries could be used. Some terms like "inspection" and

"walkthrough" are used inconsistently, even though at least some of them have been defined

in glossaries. In glossaries, inspection is usually defined as a strict process with certain

meetings, specific roles, and specific organization. In some papers, the word is used in the

meaning of less formal methods like code review, code walkthrough, or algorithm analysis.

The terms for those methods are not used consistently either.

Including local context in definitions sometimes causes troubles. Some terms have a

general definition but are unnecessarily redefined in some studies. Those redefinitions add

part of the context of those studies or that of their domain to the general definition without

stating it explicitly. This can be confusing for those who have used the general definitions.

For example, using the word “confluence” in a loop invariant study has been discussed in the

summary of chapter 4.

 Chapter 7. Discussion and Conclusions

113

Special IT related definitions for general terms may sometimes cause problems. On the

other hand, there may be a legitimate need for information technology (IT) related

definitions. Those definitions may differ from either general definitions or definitions of the

same terms in other fields. Some of those terms are included in IT standards. For example,

the term “inspection” usually means a strict organized process to investigate software code;

inspection often contains meetings. Also, terms like safety and reliability have their special

meanings, although those terms are not used consistently. Understandability and

comparability may be improved by referring to the special IT related definitions and

emphasizing that there are other more general definitions for the terms, too.

Arbitrary definitions of non-standard terms are often problematic. This is the case where

one needs to define terms used in a study, and there are no general definitions to use.

Results of comparative studies sometimes show that different definitions for the same terms

make comparison of different studies difficult or impossible. For example, Shull et al.

(2005) compare different studies about the presence of bugs. They observe that the content

of “interface bug” has been defined differently in different studies, so it is hard to compare

research results about interface bugs. Definitions in prior studies could be considered in

order to improve comparability and understandability. If one wants to use a different

definition than that in previous studies, it should be explained in the study.

As stated in the previous subchapter, too strict standardization may hide individual

differences. So the general rule stated in the previous subchapter can be applied here, too:

one should keep in mind individual differences and divert from general standards and

definitions, but the diversions should be explained in the research document.

7.1.3 Research Areas of Subfields of Fault Elimination and Bug
Knowhow

The main contribution of this thesis is to survey research about different fields of software

fault elimination. A short summary of research done is given below. Bug knowhow gets

special attention since it is an efficient way to eliminate bugs and not much attention is

usually paid to it. Knowing about bugs helps stop repeating common faults. This

subchapter is a summary of research that has been done in the field of fault elimination, and

the next subchapter is about areas where more research should be done.

Subfields of Fault Elimination

Software faults can be eliminated by avoiding root causes, bugs, and bug interactions that

appear frequently (chapter 2); taking fault prone features and characteristics of bugs into

account (chapter 2); establishing a good software development process and improving it

(chapter 3); performing risk analysis (chapter 3); applying appropriate methods during

different phases of software development process (chapter 3); and analyzing (chapter 4),

proving (chapter 4), and testing (chapter 5) software after each phase of software

development cycle. As long as faults cannot be totally eliminated, means of fault tolerance

are needed in order to prevent the harm (chapter 6). Plenty of research has been done about

all these main topics. Chapters 2-6 survey research being done and discuss areas that do not

get much attention. See also subchapter 7.1.4 for the most eyestriking areas that need more

attention. In the following paragraphs, some main research areas are listed about each of

those topics.

 Chapter 7. Discussion and Conclusions

114

Bug Knowhow

In this thesis, bug knowhow is regarded as one subfield of fault elimination. It is

investigated in chapter 2. There is research about characteristics of bugs, which fault types

exist, fault classifications, fault proness, failure propagation, bugs types in specific

applications and application domains, reasons for hidden bugs, number of faults in a failure

situation, and root causes for faults. This research has been surveyed in this thesis.

There are different studies about fault proness. For example, some studies investigate

factors of fault proness, e.g. features of fault prone software, fault prone features of

programming languages, or fault-prone problems. There are also studies about fault proness

of some specific language or environment, and about measuring and predicting fault-

proness. There has been some effort in comparing different studies about fault proness and

about fault types. Due to the lack on consistency in the studies, there have been problems in

comparing different studies.

Because methodologies change, some bugs become more common or less common in the

course of time. In addition, there are software bug types that have been repeated all the time.

Frequent bug types are calculation and initializing bugs. Software has become more

complex, so e.g. timing and interface faults have become more frequent. All situations

should be taken into account in software development. Methods that guarantee this are

becoming better and better. Anyway, missing software states have become a more common

bug type. One reason may be that state spaces tend to be enormous, i.e. software has a large

number of possible states. State space explosion is discussed in subchapter 7.1.4.

Some surveys have been performed about bug knowledge. There are surveys about fault

proness, metrics for fault proness, typical faults in specific environments or application

domains, number of faults in a failure situation, and precision of calculations.

Fault Prevention, Fault Prediction, Fault Detection, and Fault Tolerance

In the field of defect prevention and prediction, there is some research about

fundamentals of software engineering, and issues like control and data representation.

Graph theory is studied widely in software engineering research. There is research about

processes and about assessing and improving a software development process.

Methodologies get a lot of attention, so do models. There is research about risk analysis,

risk representation, and requirement specification. All phases of software development life

cycle get attention by research people. There is research about factors that have an effect on

quality. Defect prediction gets a lot of attention. There is plenty of research involving

metrics for development, for processes, and for defect prediction. Surveys have been done

about general development like software engineering methodologies, control and data

representation, software development processes, modelling, requirement analysis, process

and quality metrics, defect prediction, and risk analysis. Small reviews have been done

about some areas of foundations of software engineering.

In the field of checking and analysis, there is research about software inspection. There

are also studies about limit analysis and about precision, and about modeling software and

its environment. Flow analysis gets a lot of attention, usually connected with the function of

compilers or with logic programming. There are some studies about flow analysis related to

bug detection. There are studies about software states: for example, there are studies about

state machines, often connected with model checking. There is research and development

involving different logical systems for proving software, and methods for using those

systems. Connections between logical methods and developing methodologies are also

being studied to some extent. Termination of programs also gets attention. There are also

other studies involving formal methods in diverse areas of software development. Each

 Chapter 7. Discussion and Conclusions

115

phase of software development life cycle has studies about applying formal methods, and

many checks can be performed formally. Some topics for analysis surveys have been

software inspection, software state description, state space explosion, data flow analysis, and

proving methods.

In the field of testing, there are studies about choosing test cases. Early studies are more

general and later studies are primarily method specific. Coverage criteria get a lot of

attention, and test coverage in general is being studied. Relationships between coverage

criteria are also studied a lot. There are lots of studies about testing methods. Some

methods like performance testing have not got much attention before this decade. There is

research about assessment of testing. Some topics for testing surveys have been test

coverage, testing methods, and testing tools. Small surveys have been done about choosing

test cases.

In the field of fault tolerance, there is a lot of research about configurations with full

replication, and about modeling different configurations. N-version systems with full

replication have got a lot of attention, so have recovery blocks. However, I have not found

much research about reciprocal monitoring of different copies in N-version systems, but

there may be some in other sources and with other keywords than the ones I have used.

There is plenty of research about checks and diagnozing, but I have not seen so much

research about assessing checks. Examples of reliability related surveys are surveys about

fault tolerance in general, means of fault tolerance with configuration design and recovery

blocks, fault diagnosis, and self-checks.

Temporal Development in the Field

There has been temporal development in the field, too. Some development studies like

those that involve fundamentals of software development have been present during all

decades, but some issues are more dominant during specific decades than during other ones.

Here are some examples. Fundamental theorems were developed in 1960‟s, many of path

methodologies were developed from 1970‟s to early 1980‟s, and many new features and

methodologies were developed during late 1980‟s and 1990‟s. At that time, comparative

studies probably became more frequent. More and more attention has been paid to system

factors in the 2000‟s; however, there was some emphasis on them even during 1980‟s if not

earlier. More and more research is being done about software development processes. In

the 1970's if not earlier, there have been studies about controlling development process by

metrics, but more and more attention is being paid to it. More and more research is also

being done about looking for features of fault proness. More generally, there is a trend

towards statistic methods and looking for features e.g. by reverse engineering or cluster

analysis. In the 2000‟s more and more research has been done about integrating different

methods and integration of different models, and about data mining. There is a relatively

new trend towards adaptability.

Interrelationship between Fields of Fault Elimination

Fields of fault elimination are often interrelated. Integration between different fields of

fault eliminations is a trend. For example, static analysis is sometimes compared to model

checking, many tools have several tasks, and some methods and tools combine proving and

testing.

 Chapter 7. Discussion and Conclusions

116

7.1.4 Detecting Research Areas that Should Get More Attention

Each chapter of the thesis (chapters 2-6) covers a specific field of software fault elimination.

Omitted research areas are mentioned in the appropriate chapters. A few omitted areas are

briefly discussed in this subchapter.

The most eyestriking lack of research is about most software checking and analysis methods,

except proving and testing methods. Flow analysis gets a lot of attention but it is probably

due to the fact that it is used in compiler technology. It seems that studies of flow analysis

generally have the view of language analysis. It should be kept in mind that flow analysis

can also be used in bug elimination; some means to detect bugs with flow analysis are

surveyed in this thesis. Formal software inspection gets plenty of attention. Less formal

methods like time and size analysis, limit analysis, precision analysis, algorithm analysis,

core review, code walkthrough, and comment analysis, are often easier to use and very

efficient but do not get as much attention by developers or researchers as formal inspection.

Precision analysis gets some attention but the view is often related to implementation. To

some extent, the lack of research of these less formal methods may be due to the fact that

there is a myth that only testing belongs to quality assurance. However, quality assurance

also contains many other fields of bug elimination and many other areas than bug

elimination.

One area where not much research has been done is partial replication or weak replication of

software, as a lightweight method to increase fault tolerance. For example, difficult modules

could be replicated, calculations could be done in several ways, repeated data structures

could be used, or there could be redundancy inside a data structure. Instead, total replication

by N-version software has got a lot of attention. However, I have not found much research

about N-version systems with reciprocal monitoring, but there is probably research about it

in other sources like architecture-related journals, and with other keywords than the ones I

have used. Other lightweight methods to increase reliability, like safety margins, have not

got a lot of attention either. Also, one possible area for more research is the assessment of

software self-checks. This lack of lightweight method research may also be due to the fact

that one thinks that QA is testing only. Because one only thinks of testing, one pays

attention to fault tolerance only in extreme cases where there is a need for full replication.

State space explosion gets a lot of attention in relation to distributive and concurrent

systems, but the problem is much more general. Not enough attention is being paid to

lightweight methods against state space explosion, like state modularity and lightweight

elimination of unnecessary states, and in including only desired states in software, even

though lightweight methods could be easily used as a partial solution. Many states could be

eliminated in early phases of software development by making the software e.g. go to error

state in some situations. In addition, inappropriate input should be eliminated in as early a

phase as possible. For example, new input could be asked for if the piece of software is

interactive and the user input is out of range or illogical; this is an easy way to eliminate lots

of erroneous states. Means to fight state explosion problem, e.g. in graphs and state

machines, have been developed, and they are often based on abstraction. Also, simple

methods like encapsulation and modularization often help. There are surveys about state

space explosion. Some methods are being studied in detail but since the topic is wide, there

is room for more research.

Correlation of different bug types should also be studied more; knowing the correlation

helps avoiding those bugs. So more research could be done about which bug types correlate

with each other. However, abstract models of fault correlation and number of faults in a

failure situation have got plenty of attention by researchers. Plenty of attention has been

paid to fault proness in general.

 Chapter 7. Discussion and Conclusions

117

Characteristics of bug types and their temporal development have not been studied very

much. Subchapter 2.1.3 contains a small analysis about temporal development of bug types,

but the sample is small and more research could be done about the topic. Also, research

about characteristics of individual bug types would help in understanding and eliminating

them. There have been some efforts to find fault patterns by comparing different studies,

comparing them has turned out to be problematic; Shull et al. (2005) is discussed in

subchapter 7.1.2. There are other methods, too, to look for fault patterns. This thesis

surveys some statistical and other methods to look for fault proness. How much these

methods and other means help in detecting characteristics of faults could be studied. As

stated in the summary of chapter 2, knowing characteristics of an individual bug type could

help detect fault patterns, and vice versa.

7.1.5 Encouraging People for Early Elimination of Faults

In many studies and coursebooks it has been recognized that the earlier the faults be

detected, the less costly they are. Regardless of that, too little attention has been paid to

eliminating faults during development instead of testing. Different kinds of checks have

been developed; these checks would help early fault elimination. Those checks are not

performed very often, and only little research is being done about these checks compared to

research involving testing. In addition, attention is being paid to the testing of special items

and other unusual situations. However, only few studies involve paying attention to unusual

situations in development and not only during testing.

The related problem is that many methods are used in testing only, although their use in

development could result in earlier elimination of faults. A lot of research has been done

about how to apply domain theory and category partitioning in testing phase. Similar

approaches should be applied in all phases of software life cycle. For example in coding,

category tables should be done about equivalent classes of values for different variables. It

would help take all situations into account when writing software code. Now those tables

are built only when testing the code, if at all. Nor is much attention paid to reduction of state

space by ruling out impossible states before making a more detailed partition, see also the

subchapter 7.1.4. In addition, path, branch, and data flow analysis in design and coding

phases could be useful. This analysis is not performed very often. In the rare cases where it

has been performed, it has been performed only during testing of code that had already been

developed.

Methods presented in chapters 4 and 5 could be applied both during development and during

testing. They should be applied as early as practical. Testing is recommended in all phases

of software life cycle, but it is often executed only after all development work.

 Chapter 7. Discussion and Conclusions

118

7.2 Pros and Cons of Different Fields of Software Fault

 Elimination

Each field of software fault elimination is useful but none is sufficient. The benefits of using

processes, models, and methodologies have been discussed in chapter 3. Table 27 presents

some benefits and insufficiencies of the other fields of fault elimination.

 Table 27. Evaluation of fields of fault elimination

Field Benefits Why is this insufficient alone

Bug

knowhow

+ A lot of prior information available

+ Special analysis of rare situations

- Knowledge is inherently used all the

time within and besides concrete means

like those in the following rows

Analysis,

checks

(rigorous

proving

excluded)

+ Unpredicted facts and fault types

may be detected

+ Includes rare situations

+ Some methods have complete

coverage

+ Some checking methods are good

ways to counteract state space

explosion

+ Many methods are easy to use

- State space explosion problems

- External activities are usually ignored

Rigorous

proving

+ Reliable (co-incidental correctness

and coincidental equivalence are

rare)

+ Covers the whole of what is being

proved

+ All abstraction levels are possible

- Works only inside strict restrictions

(e.g. scope of the system, correct initial

conditions)

- External activities are ignored

- Takes time to use

- Takes time to learn

- Requires formalization

Testing + May reveal outside activities

+ Tester gets holistic feel of software

and its use

+ Often easy to use

- State space explosion problems

- Unusual situations hard to detect

- Covers only cases that are being tested

Building

fault

tolerance

+ Unpredicted facts are covered

+ Rare situations are usually covered

+ External factors are covered

- When using probabilities, they must be

small so that the combined probability is

small

- Common mode failures are possible

- Does not remove all combinations of

independent failures

- Heavyweight means like full

replication use resources

 Chapter 7. Discussion and Conclusions

119

7.3 Recommendations

Table 28 contains recommendations for software developers, scientists, and teachers in order

to eliminate software failures. By following these recommendations, one can understand

failure elimination better, create more consistent development framework, pay attention to

forgotten research areas, stop repeating the same bugs all the time, and use all available

methods of fault elimination in as early a phase as practical. There recommendations also

help people use information and methods outside their own research or development areas.

 Table 28. Recommendations for software developers, scientists, and teachers

For software developers

Increase your bug knowhow, use information in chapter 2.

Stop repeating the same bugs all the time; pay attention to known bug types.

Pay attention to best practices, common terms, and good methods for software

development, and if practical, be consistent with those. Use information in chapter 3.

Do not forget analysis methods like algorithm and limit analysis.

Perform analysis and proving, not only testing.

Use methods intended for analysis, testing, and proving during both development and

testing. If practical, use methods intended for testing when analyzing software. Use

information in chapters 4-5.

Use methods for eliminating state space explosion outside distributive systems, too.

Execute testing during and after each phase of software life cycle, not only as the last

phase before and during implementation.

Consider fault tolerance, use information in chapter 6. Keep in mind lightweight

methods like partial replication, repetition of data structures, repeated computations, and

safety margin. Take backup copies of your software.

For research scientists

Pay attention to best practices, common terms, and good methods for software

development, and if practical, be consistent with them. Use information in chapter 3.

Use terms consistently, so that studies are found easier and understood better.

Consider using keywords related to bug elimination.

Figure out factors about making studies more comparable.

Keep in mind uncertainty factors in studies.

Pay attention to whether your research could also have applications in other areas and

application domains, and/or be associated with other fault elimination methods or other

environments, and if it is related to other phases of life cycle.

Consider fault elimination methods, fault characteristics, problems, and the like from

other research areas and from other application domains or environments or life cycle

phases. They might affect your research area, too. If your study involves fault

elimination methods, consider fault characteristics and problems from studies of other

methods.

Consider cross-field research and common features of your method/problem with other

ones.

Continued on the next page

 Chapter 7. Discussion and Conclusions

120

Temporal development of bug types, characteristiscs of each bug type, and bug type

correlation are candidate topics for research.

Consider doing research about the effectiveness of the forgotten static analysis methods

like time, size, and precision analysis, algorithmic analysis, code reading, or code

walkthrough.

Keep in mind that state space explosion is a global problem, not only related to

distributive systems. Consider research about lightweight methods to fight state space

explosion.

Pay attention to doing analysis and proving earlier than during coding or testing phase.

Continue developing simple proving methods.

Consider research about lightweignt methods for fault tolerance like partial software

replication, safety margins, and assessing self-checks.

This survey may help in choosing research issues. For example, several lists and tables

in this thesis are candidates for surveys, and more extensive surveys could be done on

topics that have been surveyed in this thesis.

For teachers

Include bug knowhow in your courses.

Encourage students to stop repeating the same bugs all the time.

Encourage students to use best practices, common terms, and good methods for software

development. Also, encourage them to use analysis, testing, proving, and using

reliability means like partial replication in everyday life.

Encourage students to early elimination of bugs.

This survey may help in planning courses.

7.4 Problems in Doing this Thesis and Recommendations for

 Further Work

This thesis consists of a wide survey about the field of software fault elimination. Because

the review is wide, it had been impossible to do deep reviews about any subtopics. Also,

because the survey has a broad content, a high abstraction level follows.

General surveys about fault elimination have been performed several decades ago when the

field did not have many subfields, and those surveys are relatively short. Since then, the

field has extended significantly. Lots of surveys are being performed all the time about

many topics in the field, see subchapter 7.1.3. Some of those surveys are very narrow and

some involve wide area like testing methods, testing tools, or fault tolerance. There are also

topics with several small reviews, like some areas of foundations of software engineering, or

choosing test cases. There are so many surveys that it is impossible to give a collection of

them in this thesis.

One problem has been that because the topic is wide, there is plenty of research about it.

The time to do this thesis has been limited, so only a small part of existing research could

have been investigated. I have limited my research to some most well known journals and

online searches for some well known fault related terms, and on what I know based on my

previous experience. There is a risk that some common research topics have been left

outside this review since almost all research of those topics has been published in some other

documents. In addition, there may be studies that use other keywords than what I have used,

particularly when the usage of terms is inconsistent. Also, there can be subfields that are so

narrow that they easily get unnoticed. In addition, the publications that I have used usually

 Chapter 7. Discussion and Conclusions

121

do not contain studies with qualitative methods, so it would generally have been impossible

to include organizational studies in the thesis. Another risk is that some topics have

connection to fault avoidance and that connection is hard to observe and has not been

noticed.

There may be opportunities for completing this survey by adding areas where a significant

amount of research has been done but that have been omitted from this thesis. Also in the

more detailed level, there are some areas where more surveys could be done. For example,

static checks and software analysis could be surveyed in detail. Even though these fields are

not being studied a lot, they are broad and surveys could be done about them. Also, this

thesis contains short surveys and tables about several topics; these surveys and tables could

be extended with more thorough surveys. For example, this thesis surveys formal software

engineering methods and temporal development of software fault types; these surveys could

be extended. Generally speaking, there are surveys about areas where plenty of research has

been done. In subchapter 7.1.4, fields are discussed that do not get very much attention by

research people. More research could be done about those topics. The scope of this thesis

could also be widened: managerial, organizational, and economical means for failure

elimination could also be included in a general survey, like the connections between process

and projects, and managerial views of process improvement.

 Chapter 7. Discussion and Conclusions

122

 Chapter 8. Closure

123

8 CLOSURE

Plenty of research has been done about different fields of software fault elimination.

Chapters 2-6 of this thesis survey research about defect prevention and prediction, bug

knowledge, checks, testing, and fault tolerance, respectively. Each of those chapters has a

summary in the end. Subchapter 7.1.3 contains a small summary about the main research

areas.

However, there are some areas that lack research almost entirely even though they can be

efficient means to avoid bugs. The most eyestriking ones are the field of other analytical

reviews than software inspection (e.g. algorithm analysis, analyzing limits, and code

review); characteristics of different bug types; correlations between different bug types and

its avoidance; temporary development of bug types; lightweight methods for software to

increase reliability like partial replication, safety margins, and self-check assessment; and

some lightweight methods to reduce state space explosion, e.g. exclusion of unnecessary

states. More research could be done about those domains.

Some of those domains could be surveyed more, too, like those in the field of checks and

analytical reviews. This thesis contains some analysis about temporal development of bug

types, but a more thorough analysis could be done about the topic, using a larger sample and

possibly several sources. This survey contains small surveys and tables that could be

extended by performing thorough surveys. One example is formal software engineering

methods. Also, due to limited resources for this thesis, there can be research areas that exist

but have not been found. So it is possible that the survey could be completed by adding

missing research areas. Also, new research is being done all the time, so this survey could

be completed. The survey could also be broadened: for example, short surveys about

organizational, managerial, and economical means of failure improvement could be

included.

The field also lacks structural framework. The table of contents of the thesis could be

regarded as a basis for structural framework. Particularly, the field of analysis and checking

could get its position in the framework. Structural framework helps in increasing

consistency, e.g. in building glossaries of terms; consistency improves comparability and

understandability of documents. Structural framework could also help people find research

results. For example, if studies have quality assurance related keywords in addition to

keywords related to their application domains, the results can be found and used when

working with other application domains. Framework also helps in referring to those

research domains outside quality assurance where studies typically have hints about

improving software quality.

Also, there should be more definitions of terms, and they should be used more consistently.

However, one should keep in mind that sometimes there is a need to use a term in a different

way as before. More generally, it should be considered if recommendations could be

established to improve comparability of research results, since different studies have not

always been comparable. If such recommendations are established, it should be kept in

mind that situations differ and there may be occasional need for diversion from those

recommendations.

Some problems and areas of fault elimination are studied only in relation to a specific

method, although the same problems occur when one does not use those methods. Some

problems, means, and methods are studied only in connection with a specific application

domain, even though the problems, means, and methods are more general. One should

 Chapter 8. Closure

124

broaden the scope of research of those problems. Also, there should be more cross-field

research since methods in different fields are often studied separately even when they have

common features.

Very often, one associates quality assurance only with testing. One should keep in mind

other efficient means to eliminate failures: one should know about bugs to stop repeating

them, the organization often needs a development process and framework, defect prediction

should be performed, software should be analyzed and often even proven in addition to

testing, and failures could be prevented by partial or total replication of systems and

software. Unfortunately, many checks and analysis methods that could already be used in

development phases are used only in testing phase when all code has been written. One

should do analysis and testing in as early a phase of software development as possible.

So quality assurance needs to be kept in mind all the time during software development, and

the above mentioned methods should be used when possible. When doing quality assurance

related research and development, one should keep in mind that quality assurance should be

part of the development all the time. As stated above, one should also keep in mind that

quality assurance methods and research results could often be used with many more methods

and application domains than what they are used now. Where a specific method or

methodology could be used can also be a topic for research.

This thesis is intended to help everyone take into account all areas of software failure

elimination. Subchapter 7.3 contains recommendations for researchers, developers, and

teachers. I hope this thesis helps researchers in choosing their research topics, using

appropriate keywords, and keeping in mind that results of studies could be used in other

contexts, too, and research of other topics may contain elements of failure elimination.

Methods in different areas may have common features. In addition, problems in other fields

could be present in your field, and research of other fields of fault elimination could be used

in your research. Developers could use this thesis as a guide for different means for

eliminating bugs. This thesis is also intended to be a framework for teachers in choosing

course topics. Much of the information in this thesis will be used in my draft book about

software failures.

 References

125

REFERENCES

Abbott, R.J. 1990. Resourceful Systems for Fault Tolerance, Reliability, and Safety. ACM

Computing Surveys, 22(1):35-68.

Abdurazik, A. & Ammann, P. & Ding, W. & Offutt, J. 2000. Evaluation of Three Specification-Based

Testing Criteria. Proceedings of the Sixth International Conference on Engineering of Complex

Computer Systems, 11-14 Sep, 2000. Pages 179-187. DOI 10.1109/ICECCS.2000.873943.

Adler, P. 1998. Apollo 11 Program Alarms. In: Jones, E.M. & Glover, K. (eds.): Apollo 11 Lunar

Surface Journal [e-journal]. NASA.

www.hq.nasa.gov/office/pao/History/alsj/a11/a11.1201-pa.html

Web page by Gordon Roxburgh

Retrieved: 3 Nov, 2007.

Adrion, W.R. & Branstad, M.A. & Cherniavsky, J.C. 1982. Validation, Verification, and Testing of

Computer Software. ACM Computing Surveys, 14(2): 159-192.

Aho, A.V. & Hopcrpft, J.E. & Ullman, J.D. 1983. Data Structures and Algorithms. Addison-Wesley

Series in Computer Science and Information Processing. 427 pages. ISBN 0-201-00023-7.

Akama, S. 1995. Three-Valued Constructive Logic and Logic Programs. Proceedings of the 25
th

International Symposium on Multiple-Valued Logic, 23-25 May, 1995. IEEE. Pages 276-281. DOI

10.1109/ISMVL.1995.513543.

Al-Saqabi, K. & Saleh, K. & Ahmad, I. 1996. Recovery from Concurrent Failures in Communication

Protocols. Journal of Systems and Software, 35(1):55-65.

Alagar, S. & Venkatesan, S. 2001. Techniques to Tackle State Explosion in Global Predicate

Detection. IEEE Transactions on Software Engineering, 27(8):704-714.

Alkadi, I.S. & Alkadi, G.S. 2001. Algorithms that Compute Test Drivers in Object Oriented Testing.

IEEE Proceedings of Aerospace Conference, 10-17 Mar, 2001. Volume 1. Pages 115-119. DOI

10.1109/AERO.2001.931700.

Allen, F.E. & Cocke, J. 1976. A Program Data Flow Analysis Procedure. Communications of the

ACM 19(3): 137-147.

Alves-Foss, J. & Taylor, C. & Oman, P. 2004. A Multi-Layered Approach to Security in High

Assurance Systems. Proceedings of the 37
th

 Annual Hawaii International Conference on System

Sciences, Big Island, Hawaii, USA, 5-8 Jan, 2004. 10 pp. DOI 10.1109/HICSS.2004.1265709.

Alur, R. & Benedikt, M. & Etessami, K. & Godefroid, P. & Reps, T. & Yannakakis, M. 2005.

Analysis of Recursive State Machines. ACM Transactions on Programming Languages and Systems,

27(4):786-818.

Alur, R. & Etessami, K. & La Torre, S. & Peled, D. 2001. Parametric Temporal Logic for Model

Measuring. ACM Transactions on Computational Logic 2(3):388-407.

Alur, R. & McMillan, K. & Peled, D. 2005. Deciding Global Partial-Order Properties. Formal

Methods in System Design, 26(1):7-25. Springer.

Amland, S. 2000. Risk-Based Testing: Risk Analysis Fundamentals and Metrics for Software Testing

Including a Financial Application Case Study. Journal of Systems and Software 53(3):287-295.

Ammann, P.E. & Knight, J.C. 1988. Data Diversity: An Approach to Software Fault Tolerance. IEEE

Transactions on Computers, 37(4):418-425.

http://www.hq.nasa.gov/office/pao/History/alsj/a11/a11.1201-pa.html

 References

126

Amme, W. & Zehender, E. 1997. Effective Calculation of Data Dependences in Programs with

Pointers and Structures. Proceedings of the 23
rd

 EUROMICRO Conference „New Frontiers of

Information Technology‟, 1-4 Sep, 1997. IEEE. Pages 55-62. DOI 10.1109/EURMIC.1997.617216.

Andrews, J.H. & Yingjun Zhang, Y. 2003. General Test Result Checking with Log File Analysis.

IEEE Transactions on Software Engineering, 29(7):634-648.

Appel, A.W. 2001. Foundational Proof-Carrying Code. Proceedings of the 16
th

 Annual IEEE

Symposium of Logic in Computer Science, Boston, MA, USA, 6-19 Jun, 2001. Pages 247-256. DOI

10.1109/LICS.2001.932501.

Arida, M. 1999. HINTS & POINTERS for PROS users. Subject: ROSAT Status Report #178. HRI

Aspect Time Bug in SASS Processing Prior to SASS7_B. [e-message on message board]. 19 Feb,

1999. HEASARC (High Energy Astrophysics Science Archive Research Center, a partnership

between NASA Gobbard Centerin Astrophysics Divisionin and High Energy Astrophysics Division

of the Smithsonian Astrophysical Observatory (Cambridge, MA)) Mailing List Archives.

http://heasarc.gsfc.nasa.gov/mail_archive/rosnews/msg00123.html

Retrieved: 3 Nov, 2007.

ARM. 2003. RealView Compilation Tools. Version 2.0. Compiler and Libraries Guide. ARM DUI

0205B.

http://rtds.cs.tamu.edu/web_462/techdocs/ARM/swdev/DUI0205B_rvct_2_0_compiler_libraries.pdf

Retrieved: 29 Sep, 2008.

Armstrong, J.M. & Paynter, S.E. 2006. The Deconstruction of Safety Arguments through Adversarial

Counter-Argument. University of Newcastle upon Tyne, UK, School of Computing Science, CS-TR-

832. Mar, 2004.

Arora, A. & Kulkarni, S.S. 1998a. Component Based Design of Multitolerant Systems. IEEE

Transactions on Software Engineering, 24(1):63-78.

Arora, A. & Kulkarni, S.S. 1998b. Designing Masking Fault-Tolerance via Nonmasking Fault-

Tolerance. IEEE Transactions on Software Engineering, 24(6):435-450.

Atlee, J.M. & Gannon, J. 1993. State-Based Model Checking of Event-Driven System Requirements.

IEEE Transactions on Software Engineering, 19(1):24-40.

Austin, T.M. & Breach, S.E. & Sohi, G.S. 1994. Efficient detection of all pointer and array access

errors. ACM SIGPLAN Notices , Proceedings of the ACM SIGPLAN 1994 conference on

Programming language design and implementation, Orlando, FL, USA. ACM Press, New York, NY,

USA. 29(6):290-301. ISBN: 0-89791-662-X.

Avižienis, A. 1995. Dependable computing depends on structured fault tolerance. IEEE Proceedings

of Sixth International Symposium on Software Reliability Engineering, Toulouse, France, 24-27 Oct.

1995. IEEE Conference Proceedings. Pages:158 - 168. ISBN 0-8186-7131-9.

Avižienis, A. & Laprie, J.-C. & Randell, B. & Landwehr, C. 2004. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEEE Transactions on Dependable and Secure Computing,

1(1):11-33.

Avritzer, A. & Kondek, J. & Liu, D. & Weyuker, E.J. 2002. Software Performance Testing based on

Workload Characterization. ACM Proceedings of the 3rd International Workshop on Software and

Performance, Rome, Italy, 2002. SESSION: Performance Analysis in the Software Lifecycle. ACM

Press, New York USA. Pages 17-24. ISBN 1-58113-563-7.

Avrunin, G.S. & Gorbett, J.C. & Dillon, L.K. 1998. Analyzing Partially-Implemented Real-Time

Systems. IEEE Transactions on Software Engineering, 24(8):602-614.

Babich, A.F. 1979. Proving Total Correctness of Parallel Programs. IEEE Transactions on Software

Engineering, 5(6): 558-574.

 References

127

Bachelder, E. & Leveson, N. 2001. Describing and Probing Complex System Behavior: A Graphical

Approach. SAE Transactions, 110(1):263-273. American Technical Publishers LTD. ISSN 0096-

736X.

Badendregt, H.P. 1992. Lambda Calculi with Types. In: Abramsky, S. & Gabbay, D.M. & Maibaum,

T.S.E. (eds.): Handbook of logic in computer science. Vol. 2. Pages 117-309. ISBN 0198537611.

Badri, L. & Badri, M. & St-Yves, D. 2005. Supporting Predictive Change Impact Analysis: A Control

Call Graph Based Technique. 12
th

 Asia-Pacific Software Engineering Conference, 15-17 Dec, 2005.

IEEE Conference Proceedings. Pages 9-. DOI 10.1109/APSEC.2005.100.

Bai, C. & Cai, K.-Y. & Chen, T.Y. 2003. An Efficient Defect Estimation Method for Software Defect

Curves. Proceedings of the 27
th

 Annual International Computer Software and Applications

Conference, 3-6 Nov, 2003. IEEE. Pages 534-539.

Baker, H.G. 1991. Pragmatic Parsing in Common Lisp: or, Putting defmacro in Steroids. ACM

SIGPLAN Lisp Pointers, IV(2): 3-15.

Ball, T. & Naik, M. & Rajamani, S.K. 2003. From Symptoms to Cause: Localizing Errors in

Counterexample Traces. ACM Proceedings of the 30
th

 ACM AIGPLAN-SIGACT Symposium on

Principles of Programming Languages, 15-17 Jan, 2003. ACM SIGPLAN Notices, 38(1):97-105.

ISSN 036-1340.

Bao, Y. & Sun, X. & Trivedi, K.S. 2005. A Workload-Based Analysis of Software Aging, and

Rejuvenation. IEEE Transactions on Reliability, 54(3):541-548.

Barber, K.S. & Graser, T. & Holt, J. 2003. Evaluating Dynamic Correctness Properties of Domain

Reference Architectures. Journal of Systems and Software, 68(3):217-231.

Baresi, L. & Pezzè. M. 1998. Towards Formalizing Structured Analysis. ACM Transactions on

Software Engineering and Methodology 7(1):80-107.

Baroni, P. & Guida, G. & Zanella, M. 2001. GART: A Tool for Experimenting with Approximate

Reasoming Models. Expert Systems with Applications, 21(1):15-30.

Barton, P.I. 2000. Modeling, Simulation, and Sensitivity Analysis of Hybrid Systems. IEEE

International Symposium on Computer-Aided Control System Design, 25-27 Sep, 2000. Pages 117-

122. DOI 10.1109/CACSD.2000.900197.

Basili, V.R. & Abd-El-Hafiz, S.K. 1996. A Method for Documenting Code Components. Journal of

Systems and Software, 34(2):89-104.

Bastani, F.B. 1985. On the Uncertainty in the Correctness of Computer Programs. IEEE Transactions

on Software Engineering, SE-11(9):857-864.

Bastani, F.B. & Yen, I.-L. & Chen, I.-R. 1988. A Class of Inherently Fault Tolerant Distributed

Programs. IEEE Transactions on Software Engineering 14(10):1432-1442.

Beauvais, J.-R. & Rutten, E. & Gautier, T. & Houdebine, R. & Guernic, P.L. & Tang, Y.-M. 2001.

Modeling Statecharts and Activitycharts as Signal Equations. ACM Transactions on Software

Engineering and Methodology, 10(4):397-451.

Beckman, N.E. 2006. A Survey of Methods for Detecting Race Conditions.

May 10, 2006.

http://www.cs.cmu.edu/~nbeckman/papers/race_detection_survey.pdf

Retrieved: 13 Oct, 2008.

Behr, A. & Camarinopoulos, L. 1997. Two Formulas for Computing the Reliability of Incomplete k-

out-of-n:G Systems. IEEE Transactions on Reliability, 46(3):421-429.

 References

128

Belkhouche, B. & Geraci, B.J. 1996. A Formally Specified Prototyping System. Journal of Systems

and Software, 34(1): 67-81.

Bellini, P. & Mattolini, R. & Nesi, P. 2000. Temporal Logics for Real-Time System Specification.

ACM Computing Surveys, 32(1): 12-42.

Bellman, K.L. & Landauer, C. 1995. Designing Testable, Heterogeneous Software Environments.

Journal of Systems and Software, 29(3):199-217.

Benander, A.C. & Benander, B.A. & Sang, J. 2000. An Empirical Analysis of Debugging

Performance - Differences Between Iterative and Recursive Constructs. Journal of Systems and

Software, 54(1):17-28.

Bennani, M.N. & Menascé, D.A. 2004. Assessing the Robustness of Self-Managing Computer

Systems under Highly Variable Workloads. Proceedings of the International Conference on

Autonomic Computing, 17-18 May, 2004. IEEE. Pages 62-69. DOI 10.1109/ICAC.2004.1301348.

Bergadano, F. & Gunetti, D. 1996. Testing by Means of Inductive Program Learning. ACM

Transactions on Software Engineering and Methodology, 5(2):119-145.

Bergeron, J. & Debbabi, M. & Desharnais, J. & Erhioui, M.M. & Lavoie, Y. & Tawbi, N. 2001. Static

Detection of Malicious Code in Executable Programs. International Journal of Requirements

Engineering (2001):184-189.

Berglund, E. 2005. Communicating Bugs: Global Bug Knowledge Distribution. Information and

Software Technology 47(11):709-719.

Berman, O. & Kumar, U.D. 1998. Reliability Analysis of Communicating Recovery Blocks. IEEE

Transactions on Reliability 47(3): 245-254.

Bernardeschi, C. & Bondavalli, A. & Csertán, G. & Majzik, I. & Simoncini, L. 1998. Temporal

Analysis of Data Flow Control Systems. Automatica 34(2): 169-182.

Berry, G. & Boudol, G. 1989. The Chemical Abstract Machine. ACM Proceedings of the 17th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco,

California, USA, Dec 1989. ACM Press, New York, USA. Pages 81-94. ISBN: 0-89781-343-4.

Bertolino, A. & Strigini, L. 1996. On the Use of Testability Measures for Dependability Assessment.

IEEE Transactions on Software Engineering, 22(2):97-108.

Bessiere, C. 2006. Constraint Propagation. University of Montpelllier, France. National Center of

Scientific Research. Department of Information and Engineering Sciences and Technologies.

Montpellier Laboratory of Computer Science, Robotics, and Microelectronics. Technical Report

LIRMM 06020 CRNS. Mar 2006.

Link to Citeseer web page, where the pdf file can be loaded:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1676

Retrieved: 18 Jan, 2009.

In: Rossi, F. van Beek, P. & Walsh, T. (eds.). 2006. Handbook of Constraint Programming . Chapter

3. Elsevier. Amsterdam, Netherlands. 978 Pages. ISBN 0-444-52726-5. ISBN 978-0-444-52726-4.

Beyer, D. & Noack, A. & Leverentz, C. 2005. Efficient Relational Calculation for Software Analysis.

IEEE Transactions on Software Engineering, 31(2):137-149.

Bhargava, B. & Lian, S.-R. & Leu, P.-J. 1990. Experimental Evaluation of Concurrent Checkpointing

and Rollback-Recovery Algorithms. Proceedings of the sixth International Conference on Data

Engineering. 5-9 Feb, 1999. IEEE. Pages 182-189. DOI 10.1109/ICDE.1990.113468.

Bidoit, M. & Biebow, B. & Gaudel, M.-C. & Gresse, C. & Guiho, G.D. 1985. Exception Handling:

Formal Specification and Systematic Program Construction. IEEE Transactions on Software

Engineering, 11(3): 242-252.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1676

 References

129

Bieman, J.M. & Kang, B.-K. 1998. Measuring Design-Level Cohesion. IEEE Transactions on

Software Engineering, 24(2): 111-124.

Bieman, J.M. & Straw, G. & Wang, H. & Munger, P.W. & Alexander, R.T. 2003. Design Patterns

and Change Proness: An Examination of Five Evolving Systems. Proceedings of the Ninth

International Software Metrics Symposium, 3-5 Sep, 2003. IEEE Computer Society, Washington DC,

USA. Page 40. ISBN 0-7695-1987-3.

Binkley, D. & Harman, M. 2004. Analysis and Visualization of Predicate Dependence on Formal

Parameters and Global Variables. IEEE Transactions on Software Engineering, 30(11):715-735.

Birman, A. & Joyner, W.H., Jr. 1976. A Problem-Reduction Approach to Proving Simulation

Between Programs. IEEE Transactions on Software Engineering, SE-2(2):87-96

Bisant, D.B. & Lyle, J.R. 1989. A Two-Person Inspection Method to Improve Programming

Productivity. IEEE Transactions on Software Engineering, 15(10): 1294-1304.

Bishop, P.G. 2002. Rescaling Reliability Bounds for a New Operational Profile. ACM Proceedings

of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis, Rome,

Italy, 22-24 Jul. SESSION: Theory of Testing and Reliability. ACM Press, New York, USA. 27(4),

pages 180-190. ISBN ISSN 0163-5948, 1-58113-562-9.

Bishop, P.G. 2006. Review of Software Design Diversity. 1. Aug, 2006. Adelard LLP, London,

England.

In: Lyu, M. (ed.): Software Fault Tolerance. Wiley Press, New York, NY, USA. 354 pages. ISBN

0471950688.

http://www.adelard.co.uk/resources/papers/pdf/divchap.pdf

Retrieved: 9 May, 2008.

Bishop, P.G. & Bloomfield, R.E. 2003. Using a Log-Normal Failure Rate Distribution for Worst Case

Boundary Reliability Prediction. ISSRE 2003, Denver, Colorado, USA, 17-20 Nov, 2003. Pages 237-

245.

Bistarelli, S. & Montanari, U. & Rossi, F. 1997. Semiring-Based Constraint Satisfaction and

Optimization. Journal of the ACM, 44(2): 201-236.

Biswas, S. & Rajaraman, V. 1987. An Algorithm to Decide Feasibility of Linear Integer Constraints

Occurring in Decision Tables. IEEE Transactions on Software Engineering, SE-13(12):1340-1347.

Blanchet, B. & Cousot, P. & Cousot, R. & Feret, J. & Mauborgne, L. & Miné, A. & Monniaux, D. &

Rival, X. 2003. A Static Analyzer for Large Safety-Critical Software. ACM SIGPLAN Notices,

38(5): 196–207.

Blass, A. & Gurevich, Y. 2001. Inadequacy of Computable Loop Invariants. ACM Transactions on

Computational Logic, 2(1):1-11.

Blum, M. & Kannan, S. 1995. Designing Programs that Check Their Work. Journal of the ACM,

42(1):269-291.

Blute, R. & Scott, P. 2003. Category Theory for Linear Logicians. University of Ottawa, Department

of Mathematics. Ottawa, Ontario, Canada.

http://www.site.uottawa.ca/~phil/papers/catsurv.web.pdf

Retrieved: 25 Oct, 2008.

Final version in: Linear Logic in Computer Science, LMS Lecture Note Series 316, 2004, Cambridge

University Press.

Bobbio, A. & Franceschinis, G. & Gaeta, R. & Portinale, L. 2003. Parametric Fault Tree for the

Dependability Analysis of Redundant Systems and its High-Level Petri Net Semantics. IEEE

Transactions on Software Engineering 29(3):270-287.

http://www.adelard.co.uk/resources/papers/pdf/divchap.pdf
http://www.site.uottawa.ca/~phil/papers/catsurv.web.pdf

 References

130

Boehm, B. 1981. Software Engineering Economics. Advances in Computer Science and Technology.

Advances in Computing Science and Technology Series. Prentice-Hall, New Jersey. 767 pages.

ISBN-10 0138221227. ISBN-13 9780138221225.

Boehm, B.W. 1988. A Spiral Model of Software Development and Enhancement. IEEE Computer,

21(5):61-72.

Boland, P.J. & El-Neweihi, E. 1995. Component Redundancy vs System Redundancy in the Hazard

Rate Ordering. IEEE Transactions on Reliability, 44(4): 614-619.

Bonsangue, M. 2001. Introduction. Revision of the introduction of author's PhD thesis. Electronic

Notes in Theoretical Computer Science, 8: 4-13.

Boujarwah, A.S. & Saleh, K. & Al-Dallal, J. 2000. Dynamic Data Flow Analysis for Java Programs.

Information and Software Technology, 42(11): 765-775.

Bourne, S. 2004. A Conversation with Bruce Lindsay: Designing for Failure May be the Key to

Success. Interview. ACM Queue 2(2):22-23.

Boute, R. 2000. Supertotal Function Definition in Mathematics and Software Engineering. IEEE

Transactions on Software Engineering, 26(7):662-672.

Bouziane, Z. 1998. A Primitive Recursive Algorithm for the General PETRI Net Reachability

Problem. Proceedings of the 39
th

 Annual Symposium on Foundations of Computer Science, 8-11 Nov,

1998. Pages 130-136. DOI 10.1109/SFCS.1998.743436.

Bowring, J.F. & Regh, J.M. & Harrold, M.J. 2004. Active Learning for Automatic Classification of

Software Behaviour. ACM SIGSOFT Software Engineering Notes. Proceedings of the 2004 ACM

SIGSOFT International Symposium on Software Testing and Analysis, Boston, Massachusetts, USA,

11-14 Jul, 2004. Session: Program Analysis II. ACM Press, New York, USA. 29(4):195-205. ISSN

0163-5948.

Brader, M. 1987. Mariner 1. In: P.G. Neumann (Moderator). Risk Digest. Forum on Rules to Public

in Computers and Related Systems. ACM Committee on Computers and Public Policy. 5(63).

http://catless.ncl.ac.uk/Risks

Retrieved: 24 Apr, 2007.

Bravetti. M. 2003. An Integrated Approach for the Specification and Analysis of Stochastic Real-

Time Systems. Electronic Notes in Theoretical Computer Science, 68(5): 34-64.

Brestel, J. & Reghizzi, S.C. & Roussel, G. & Pietro, P.S. 2005. A Scalable Formal Method for Design

and Automatic Checking of User Interfaces. ACM Transactions on Software Engineering and

Methodology, 14(2): 124-167.

Briand, L.C. & Basili, V.R. & Hetmanski, C.J. 1993. Developing Interpretable Models with

Optimized Set Reduction for Identifying High-Risk Software Components. IEEE Transactions on

Software Engineering, 19(11):1028-1044.

Briand, L.C. & Basili, V.R. & Thomas, W.M. 1992. A Pattern Recognition Approach for Software

Engineering Data Analysis. IEEE Transactions on Software Engineering 18(11):931-942.

Briand, L.C. & Di Penta, M. & Labiche, Y. 2004. Assessing and Improving State-Based Class

Testing: A Series of Experiments. IEEE Transactions on Software Engineering, 30(11): 770-793.

Briand, L.C. & El Eman, K. & Freimut, B.G. & Laitenberger, O. 2000. Capture-Recapture Models for

Estimating Software Defect Content. IEEE Transactions on Software Engineering 26(6):518-540.

Briand, L.C. & Labiche, Y. & Wang, Y. 2003. A Comprehensive and Systematic Methodology for

Client-Server Class Integration Testing. Proceedings of the 14
th

 International Symposium on

Software Reliability Engineering, 17-20 Nov, 2003. IEEE. Pages 14-25. DOI

10.1109/ISSRE.2003.1251027.

http://catless.ncl.ac.uk/Risks

 References

131

Briand, L.C. & Melo, W.L. & Wust, J. 2002. Assessing the Applicability of Fault-Proness Models

Across Object-Oriented Software Projects. IEEE Transactions on Software Engineering, 28(7):706-

720.

Briand, L.C. & Wüst, J. & Daly, J.W. & Porter, D.V. 2000. Exploring the Relationships between

Design Measures and Software Quality in Object-Oriented Systems. Journal of Systems and Software

51(3): 245-273.

Brilliant, S.S. & Knight, J.C. & Leveson, N.G. 1989. The Consistent Comparison Problem in N-

Version Software. IEEE Transactions on Software Engineering, SE-15(11):1481-1485.

Brilliant, S.S. & Knight, J.C. & Leveson, N.G. 1990. Analysis of Faults in an N-Version Software

Experiment. IEEE Transactions on Software Engineering, SE-16(2):238-247.

Brockmeyer, M. & Jahanian, F. & Heitmeyer, C. & Labaw, B. 1996. An Approach to Monitoring and

Assertion-Checkin of Real-Time Specifications. Proceedings of the 4
th

 International Workshop on

Parallel and Distributed Systems, 15-16 Apr, 1996. Pages 236-243. DOI

10.1109/WPDRTS.1996.557687.

Bryant, R.E. 1992. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. ACM

Computing Surveys 24(3):293-318.

Bucci, G. & Fedeli, A. & Sassoli, L. & Vicario, E. 2004. Timed State Space Analysis of Real-Time

Preemptive Systems. IEEE Transactions on Software Engineering, 30(2):97-111.

Budd, T.A. & DeMillo, R.A. & Lipton, R.J. & Sayward, F.G. 1980. Theoretical and Empirical Studies

on Using Program Mutation to Test the Functional Correctness of Programs. Proceedings of the 7th

ACM SIGPLAN -SIGACT Symposium on Principles of Programming Languages, Las Vegas,

Nevada, USA, 28-30 Jan, 1980. ACM Press, New York, USA. Pages 220-233. ISBN 0-89791-011-7.

Bukowski, J.V. & Goble, W.M. 1995. Using Markov Models for Safety Analysis of Programmable

Electronic Systems. ISA Transactions 34(2): 193-198. Elsevier.

Bultan, T. & Gerber, R. & League, C. 2000. Composite Model Checking: Verification with Type-

Specific Symbolic Representations. ACM Transactions on Software Engineering and Methodology,

9(1):3-50.

Bultan, T. & Gerber, R. & Pugh, W. 1999. Model-Checking Concurrent Systems with Unbounded

Integer Variables: Symbolic Representations, Approximations, and Experimental Results. ACM

Transactions on Programming Languages and Systems, 21(4):747-789.

Bunea, C. & Charitos, T. & Cooke, R.M. & Becker, G. 2005. Two-Stage Bayesian Models -

Application to ZEDB Project. Reliability Engineering and System Safety, 90(2-3):123-130.

Burke, M.G. & Ryder, B.G. 1990. A Critical Analysis of Incremental Iterative Data Flow Analysis

Algorithms. IEEE Transactions on Software Engineering, 16(7):723-728.

Butler, R.W. & Finelli, G.B. 1993. The Infeasibility of Quantifying the Reliability of Life-Critical

Real-Time Software. IEEE Transactions on Software Engineering, 19(1):3-12.

Cai, X. & Lyu, M.R. & Vouk, M.A. 2005. An Experimental Evaluation on Reliability Features of N-

Version Programming. IEEE Proceedings on the 16th IEEE International Symposium on Software

Reliability Engineering, 8-11 Nov, 2005. IEEE Computer Society, Washington DC, USA. Pages 161-

170. ISBN ISSN 1071-9458, 0-7695-2482-6.

Cain, T. & Park, E.K. 1996. Algebraic Software Testing in Vector Spaces of Functions. Proceedings

of the 20th Conference on Computer Software and Applications, COMPSAC 1996, 19-23 Aug, 1996.

IEEE Society, Washington DC, USA. Page 234. ISSN 0730-3157.

 References

132

Canfora, G. & Cimitile, A. & De Carlini, U. & De Lucia, A. 1998. An Extensible System for Source

Code Analysis. IEEE Transactions on Software Engineering, 24(9):721-740.

Cangussu, J.W. & DeCarlo, R.A. & Mathur, A.P. 2003. Using Sensibility Analysis to Validate a State

Variable Model of the Software Test Process. IEEE Transactions on Software Engineering,

29(5):430-443.

Cannon, L.W. & Elliott, R.A. & Kirchoff, L.W. & Miller, J.H. & Milner, J.M. & Mitze, R.W. &

Schan, E.P. & Whittington, N.O. & Spencer, H. & Keppel, D. & Brader, M. 1990. Recommended C

Style and Coding Standards. Revision 6.0. 25 Jun, 1990. Converted to HTML: Selkirk, P. 10 Feb,

1995.

http://www.psgd.org/paul/docs/cstyle/cstyle.htm

Retrieved: 29 Sep, 2008.

Cant, S.N. & Jeffery, D.R. & Henderson-Sellers, B. 1995. A Conceptual Model of Cognitive

Complexity of Elements of the Programming Process. Information and Software Technology

37(7):351-362.

Card, D.N. 1998. Learning from Our Mistakes with Defect Causal Analysis. IEEE Software

15(1):56-63.

Card, D.N. & Church, V.E. & Agresti, W.W. 1986. An Empirical Study of Software Design Practices.

IEEE Transactions on Software Engineering, SE-12(2):264-271.

Carrington, L.C. & Laurenzano, M. & Snavely, A. & Campbell, R.L. & Davis, L.P. 2005. How Well

Can Simple Metrics Represent the Performance of HPC Applications? Proceedings of the ACM/IEEE

SC 2005 Conference on Supercomputing, 12-18 Nov, 2005. DOI 10.1109/SC.2005.33.

Cartwright, R. & Felleisen, M. 1996. Program Verification through Soft Typing. ACM Computing

Surveys 28(2):349-351.

Carver, R.H. 1996. Testing Abstract Distributed Programs and Their Implementations: A Constraint-

Based Approach. Journal of Systems and Software, 33(3):223-237.

Casati, F. & Castano, S. & Fugini, M. & Mirbel, I. & Pernici, B. 2000. Using Patterns to Design Rules

in Workflows. IEEE Transactions on Software Engineering, 26(8):760-785.

Cavalcanti, A. & Sampaio, A. & Woodcock, J. 1999. An Inconsistency in Procedures, Parameters,

and Substitution in Refinement Calculus. Science of Computer Programming, 33(1): 87-96.

CEA LIST 2004. The Caveat Tool. Software Reliability Laboratory. CEA. France. 1 Sep, 2004.

http://www-list.cea.fr/labos/gb/LSL/caveat/index.html

Retrieved: 22 Oct, 2008.

Ceri, S. & Crespi-Reghizzi, S. & Di Maio, A. & Lavazza, L.A. 1988. Software Prototyping by

Relational Techniques: Experiences with Program Construction Systems. IEEE Transactions on

Software Engineering, 14(11):1597-1609.

Chan, W.K. & Chen, T.Y. & Tse, T.H. 2002. An Overview of Integration Testing Techniques for

Object-Oriented Programs. Proceedings of the 2
nd

 ACIS Annual International Conference on

Computer and Information Science, International Association of Computer and Information Science,

Mt. Pleasant, MI, USA. Pages 696-701.

Chang, C.-P. & Chu, C.-P. & Yeh, Y.-F. 2009. Integrating in-Process Software Defect Prediction with

Association Mining to Discover Defect Pattern. Information and Software Technology, 51(2): 375-

384.

Chang, K.-H. & Carlisle, W.H. & Cross, II, J.H. & Brown, D. 1991. A Heuristic Approach for Test

Case Generation, Proceedings of the 19
th

 Annual Conference on Computer Science, San Antonio, TX,

USA. ACM. Pages 174-180. ISBN 0-89791-382-5.

http://www.psgd.org/paul/docs/cstyle/cstyle.htm
http://www-list.cea.fr/labos/gb/LSL/caveat/index.html

 References

133

Chang, K.H. & Liao, S.-S. & Seidman, S.B. & Chapman, R. 1998. Testing Object-Oriented Programs:

From Formal Specification to Test Scenario Generation. Journal of Systems and Software, 42(2): 141-

151.

Chang, R.-Y. & Podgurski, A. & Yang, J. 2008. Discovering Neglected Conditions in Software by

Mining Dependence Graphs. IEEE Transactions on Software Engineering, 34(5): 579-596.

Chang, S.-K. & You, W.-T. & Hsu, P.-L. 1994. General-Structured Unknown Input Observers. IEEE

Proceedings of the American Control Conference, Baltimore, MD, USA, 29 Jun - 1 Jul, 1994. IEEE.

1(29):666-670.

Chang, W.K. & Jeng, S.-L. 2005. Impartial Evaluation in Software Reliability Practice. Journal of

Systems and Software, 76(2):99-110.

Charlesworth, A. 2002. The Undecidability of Associativity and Commutativity Analysis. ACM

Transactions on Programming Languages and Systems, 24(5): 554-565.

Chen, I.-R. & Bastani, F.B. 1992. Reliability of Fully and Partially Replicated Systems. IEEE

Transactions on Reliability, 41(2):175-182.

Chen, P.M. & Aycock, C.M. & Ng, W.T. & Rajamani, G. & Sivaramakrishnan, R. 1995. Rio: Storing

Files Reliably in Memory. University of Michigan, USA, College of Engineering, Department of

Electrical Engineering and Computer Science. CSE-TR 250-95.

Chen, T.Y. & Pak-Lok Poon, P.-L. & Tse, T.H. 2003. A Choice Relation Framework for Supporting

Category-Partition Test Case Generation. IEEE Transactions on Software Engineering, 29(7):557-

593.

Chen, T.Y. & Poon, P.L. & Tse, T.H. 1999. A New Restructuring Algorithm for Classification Tree

Method. IEEE Proceedings of the Software Technology and Engineering Practice, 30 Aug – 2 Sep,

1999. Pages 105-114.

Chen, T.Y. & Yu, Y.T. 2001. On the Maximum Algorithms for Test Allocations in Partition Testing.

Information and Software Technology 43(2):97-107.

Chen, Y. 1998. Modelling Software Operational Reliability via Input Domain-Based Reliability

Growth Model. 28
th

 Annual International Symposium on Fault-Tolerant Computing, Munich,

Germany, 23-25 Jun, 1998. IEEE. Pages 314-323. ISBN 0-8186-8470-4.

Chen, Y. & Probert, R.L. & Robeson, K. 2004. Effective Test Metrics for Test Strategy Evolution.

Proceedings of the 2004 Conference of the Centre for Advanced Studies on Collaborative Research,

Markham, Ontario, Canada, 4-7 Oct, 2004. IBM Press. Pages 111-123. ISSN 1705-7345.

Cheng, J. 2006. Legal Information Systems. Proceedings of the 2006 ACM Symposium on Applied

Computing, Dijon, France, 23-27 Apr, 2006. Pages 319-320.

Cheng, Y.-P. & Young, M. & Huang, C.-L. & Pan, C.-Y. 2003. Towards Scalable Compositional

Analysis by Refactoring Design Models. Proceedings of the 9
th

 European Software Engineering

Conference Held Jointly with 11
th

 ACM SIGSOFT International Symposium on Foundations of

Software Engineering, Helsinki, Finland, 1-5 Sep, 2003. ACM. Pages 247-256.

Cherniavsky, J.C. & Smith, C.H. 1987. A Recursion Theoretic Approach to Program Testing. IEEE

Transactions on Software Engineering, SE-13(7):777-784.

Chesñevar, C.I. & Maguitman, A.G. & Loui, R.P. 2000. Logical Models of Argument. ACM

Computing Surveys, 32(4): 337-383.

Cheung, S.C. & Kramer, J. 1994. An Integrated Method for Effective Behaviour Analysis of

Distributed Systems. Proceedings of the 16th International Conference on Software Engineering,

Sorrento, Italy, 16-21 May, 1994. IEEE Computer Society Press, Los Alamitos, CA, USA. Pages 309-

320. ISBN 0-8186-5855-X.

 References

134

Cheung, S.C. & Kramer, J. 1996. Checking Subsystem Safety properties in Compositional

Reachability Analysis. Proceedings of the 18th International Conference on Software Engineering,

25-30 Mar, 1996. Pages 144-154. DOI 10.1109/ICSE.1996.493410.

Chillarege, R. 1994. Self-Testing Software Probe System For Failure Detection and Diagnosis.

Proceedings of the 1994 Conference of the IBM Centre for Advanced Studies on Collaborative

Research, Toronto, Ontario, Canada, 31Oct – 3 Nov, 1994. IBM Press. Page 10.

Chillarege, R. & Bhandari, I.S. & Chaar, J.K. & Halliday, M.J.& Moebus, D.S. & Ray, B.K. & Wong,

M.-Y. 1992. Orthogonal Defect Classification - a Concept for In-Process Measurements. IEEE

Transactions on Software Engineering, 18(11):943-956.

Chillarege, R. & Iyer, R.K. 1985. The Effect of System Workload on Error Latency. ACM

SIGMETRICS Performance Measurement Review, Proceedings of the 1985 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, Austin, Texas, USA, Aug 1985.

13(2):69-77. ISSN 0163-5999.

Chillarege, R. & Kao, W.-L. & Condit, R.G. 1991. Defect Type and its Impact on the Growth Curve.

Proceedings of the 13th International Conference on Software Engineering, Austin, Texas, USA, 13-

17 May, 1991. IEEE Computer Society Press, Los Alamitos, CA, USA. Pages 246-255. ISBN 0-

89791-391-4.

Chou, A. & Yang, J. & Chelf, B. & Hallem, S. & Engler, D. 2001. An Empirical Study of Operating

System Errors. Symposium on Operating System Principles, Banff, Alberta, Canada, 21-24 Oct,

2001. SESSION: Deconstructing the OS. ACM Press, New York, USA. Pages 73-88. ISBN 1-58113-

389-8.

Chu, H.D. 1997. An Evaluation Scheme of Software Testing Techniques. IFIP TC5 WP5.4 3rd

International Conference on Reliability, Quality and Safety of Software-Intensive Systems, Athens,

Greece, 1997. Chapman & Hall, Ltd, London, UK. Pages 259-262. ISBN 0-412-80280-5.

Chung, C.-G. & Lee, J.-G. 1997. An Enhanced Zero-One Optimal Path Set Selection Method.

Journal of Systems and Software, 39(2):145-164.

Chung, I.J. 1989. Improved Control Strategy for Parallel Logic Programming. IEEE International

Workshop on Tools for Artificial Intelligence, 1989. Architectures, Languages, and Algorithms. 23-

25 Oct, 1989. Pages 702-708. DOI 10.1109/TAI.19889.65384.

Chusho, T. 1987. Test Data Selection and Quality Estimation Based on the Concept of Essential

Branches for Path Testing. IEEE Transactions on Software Engineering, SE-13(5):509-517.

Ciarambino, I. & Contini, S. & Demichela M. & Piccinini, N. 2002. How to Avoid the Generation of

Loops in the Construction of Faulttrees. IEEE Proceedings of Annual Reliability and Maintainability

Symposium, Seattle, WA, USA, 28-31 Jan, 2002. Pages 178-185. ISBN 0-7803-7348-0.

Clapp, K.C. & Iyer, R.K. & Levendel, Y. 1992. Analysis of Large System Black-Box Test Data.

IEEE Proceedings on the third International Symposium of Software Engineering, Research Triangle

Park, NC, USA, 7-10 Oct, 1992. Pages 94-103. ISBN 0-8186-2975-4.

Clark, K.L. & van Emden, M.H. 1981. Consequence Verification of Flowcharts. IEEE Transactions

on Software Engineering, SE-7(1):52-60.

Clarke, E. & Lu, Y. & Grumberg, O. & Veith, H. & Jha, S. 2003. Counterexample-Guided

Abstraction Refinement for Symbolic Model Checking. Journal of the ACM, 50(5): 752-794.

Clarke, L.A. & Hassell, J. & Richardson, D.J. 1982. A Close Look at Domain Testing. IEEE

Transactions on Software Engineering, 8(4):380-390.

Clarke, S.J. & McDermid, J.A. 1993. Software Fault Trees and Weakest Preconditions: A

Comparison and Analysis. Software Engineering Journal 8(4):225-236.

 References

135

Cleland-Huang, J. & Marrero, W. & Berenbach, B. 2008. Goal-Centric Traceability: Using Virtual

Plumblines to Maintain Critical Systemic Qualities. IEEE Transactions on Software Engineering,

34(5): 685-699.

Clermont, M. & Parnas, D. 2005. Using Information about Functions in Selecting Test Cases. ACM

SIGSOFT Software Engineering Notes. SESSION: Advances in Model-Based Testing A-MOST 05.

ACM Press, New York, NY, USA. 30(4):1-7. ISBN 1-59593-115-5.

Cohen, D.M. & Dalal, S.R. & Fredman, M.L. & Patton, G.C. 1997.: The AETG System: An

Approach to Testing Based on Combinatorial Design. IEEE Transactions on Software Engineering,

23(7):437-444.

Cohen, D.M. & Dalal, S.R. & Kajla, A. & Patton, G.C. 1994. The Automatic Efficient Test Generator

(AETG) System. IEEE Proceedings of the fifth International Symposium on Software Reliability

Engineering, Monterey, CA, USA, 6-9 Nov, 1994. Pages 303-309. ISBN 0-8186-6665-X.

Collofello, J. & Vehathiri, K. 2005. An Environment for Training Computer Science Students on

Software Testing. Proceedings of the 35
th

 Annual Conference on Frontiers in Education, Indianapolis,

IN, USA, 19-22 Oct, 2005. ASEE/IEEE. Pages T3E - 6-10. DOI 10.1109/FIE.2005.1611937.

Colman, A. & Han, J. 2007. Using Role-Based Coordination to Achieve Software Adaptability.

Science of Computer Programming 64(2):223-245.

Conte de Leon, D. & Alves-Foss, J. 2006. Hidden Implementation Dependencies in High Assurance

and Critical Computing Systems. IEEE Transactions on Software Engineering, 32(10):790-811.

Cook, J.E. & Wolf, A.L. 1999. Software Process Validation: Quantitavely Measuring the

Correspondence of a Process to a Model. ACM Transactions on Software Engineering and

Methodology 8(12): 147-176.

Coppit, D. & Jinlin Yang & Khurshid, S. & Wei Le & Sullivan, K. 2005. Software Assurance by

Bounded Exhaustive Testing. IEEE Transactions on Software Engineering, 31(4):328-339.

Corbett, J.C. 1993. Identical Tasks and Counter Variables in an Integer Programming-Based

Approach to Verification. Proceedings of the 7th International Workshop on Software Specification

and Design, Redondo Beach, CA, USA, 6-7 Dec, 1993. SESSION: Real-time Systems. IEEE

Computer Society Press, Los Alamitos, CA, USA. Pages 100-109. ISBN ISSN 1063-6765, 0-8186-

4360-9.

Cousot, P. 1997. Types as Abstract Interpretations. Proceedings of the 24
th

 ACM SIGPLAN-SIGACT

symposium on Principles of Programming Languages. Pages 316-331.

Cousot, P. & Cousot, R. 1979. Systematic Design of Program Analysis Frameworks. Proceedings on

the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, San

Antonio, TX, USA, 29-31 Jan, 1979. ACM Press, New York, NY, USA. Pages 269-282.

Csenki, A. 1993. Reliability Analysis of Recovery Blocks with Nested Clusters of Failure Points.

IEEE Transactions on Reliability, 42(1):34-43.

Cui, Q. & Gannon, J. 1992. Data-Oriented Exception Handling. IEEE Transactions on Software

Engineering, 18(5): 393-401.

Cukic, B. 1997. Combining Testing and Correctness Verification in Software Reliability Assessment.

Proceedings of the 2nd IEEE High-Assurance Systems Engineering Workshop, Washington DC,

USA, 11-12 Aug, 1997. Pages 182-187. ISBN 0-8186-7971-9.

d‟Amorim, M. & Lauterburg, S. & Marinov, D. 2008. Delta Execution for Efficient State-Space

Exploration of Object-Oriented Programs. IEEE Transactions on Software Engineering, 34(5): 597-

613.

 References

136

Dai, Y.S. & Xie. M. & Poh, K.L. & Ng, S.H. 2004. A Model for Correlated Failures in N-version

Program. IIE Transactions on Quality and Reliability Engineering, 36(12):1183-1192.

Dalal, S.R. & Jain, A. & Karunanithi, N. & Leaton, J.M. & Lott, C.M. 1998. Model Based Testing of

a Highly Programmable System, Proceedings of the Ninth International Symposium on Software

Reliability Engineering (ISSRE), Paderborn, Germany, 4-7 Nov, 1998. IEEE Computer Society,

Washington DC, USA. Pages 174-178. ISBN 0-8186-8991-9.

Dalal, S.R. & McIntosh, A.A. 1994. When to Stop Testing for Large Software Systems with

Changing Code. IEEE Transactions on Software Engineering, 20(4):318-323.

Danicic, S. & Daoudi, M. & Fox, C. & Harman, M. & Hierons, R.M. & Howroyd, J.R. & Ourabya, L.

& Ward, M. 2005. ConSUS: a light-weight program conditioner. Journal of Systems and Software,

77(3):241-262.

Dannenberg, R.B. & Ernst, G.W. 1982. Formal Program Verification Using Symbolic Execution.

IEEE Transaction on Software Engineering, SE-8(1):43-52.

Dantsin, E. & Eiter, T. & Gottlob, G. & Voronkov, A. 1997. Complexity and Expressive Power of

Logic Programming. Proceedings of the 12
th

 Annual Conference on Computational Complexity, Ulm,

Germany, 24-27 Jun 1997. Pages 82-101.

Darcy, J.D. 2006. What Every Computer Programmer Should Know About Floating-Point Arithmetic.

[e-document]. 23. Jun, 2006. Darcy‟s webblog at SUN Microsystems, INC.

http://blogs.sun.com/darcy/resource/Wecpskafpa-StanfordIcme500.pdf

Retrieved: 24 Mar, 2007.

Das, S.K. & Datta, A.K. & Tixeuil, S. 1996. Self-Stabilizing Algorithms in DAG Structured

Networks. Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms,

and Networks, 23-25 Jun, 1999. IEEE. Pages 190-195. DOI 10.1109/ISPAN.1999.778938.

Dawson, J.E. 2004. Formalising General Correctness. Electronic Notes in Theoretical Computer

Science, 91:21-42.

De Florio, V. & Blondia, C. 2008. A Survey of Linguistic Structures for Application-Level Fault

Tolerance. ACM Computing Surveys, 40(2), article 6, 37 pages.

de Lemos, R. 2004. Analyzing Failure Behaviours in Component Interaction. Journal of Systems and

Software, 71(1-2):97-115.

de los Angeles Martín, M. & Olsina, L. 2003. Towards an Ontology for Software Metrics and

Indicators as the Foundation for a Cataloging Web System. Proceedings of the First Latin American

Web Congress, 10-12 Nov, 2003. IEEE. Pages 103-113. DOI 10.1109/LAWEB.2003.1250288.

de Oliveira, K.M. & Zlot, F. & Rocha, A.R. & Travassos, G.H. & Galotta, C. & de Menezes, C.S.

2004.: Domain-Oriented Software Development Environment. Journal of Systems and Software,

72(2):145-161.

Decorte, S. & De Schreye, D. & Vandecasteele, H. 1999. Constraint-Based Termination Analysis of

Logic Programs. ACM Transactions on Programming Languages and Systems, 21(6):1137-1195.

Deeprasertkul, P. & Bhattarakosol, P. & O'Brien, F. 2005. Automatic Detection and Correction of

Programming Faults for Sofwtare Applications. Journal of Systems and Software, 78(2):101-110.

Delamaro, M.E. & Maldonado, J.C. & Mathur, A.P. 2001. Inference Mutation: An Approach to

Integration Testing. IEEE Transactions on Software Engineering, 27(3):228-247.

Delgado, N. & Gates, A.Q. & Roach, S. 2004. A Taxonomy and Catalog of Runtime Software-Fault

Monitoring Tools. IEEE Transactions on Software Engineering, 30(12):859-872.

 References

137

DeLoach, S.A. & Hartrum, T.C. 2000. A Theory-Based Representation for Object-Oriented Domain

Models. IEEE Transactions on Software Engineering, 26(6):500-517.

DeMillo, R.A. & Offutt, A.J. 1993. Experimental Results from an Automatic Test Case Generator.

ACM Transactions on Software Engineering and Methodology, 2(2):109-127.

Demsky, B. & Rinard, M.C. 2006. Goal-Directed Reasoning for Specification-Based Data Structure

Repair. IEEE Transactions on Software Engineering, 32(12):931-951.

Denaro, G. & Morasca, S. & Pezzè, M. 2002. Deriving Models of Software Fault-Proness.

Proceedings of the 14th International Conference on Software Engineering and Knowledge

Engineering, Ischia, Italy, 15-19 Jul, 2002. SESSION: Validation and Verification. ACM

International Conference Proceeding Series, 27. ACM Press, New York, NY, USA. Pages 361-368.

ISBN 1-58113-556-4.

Denning, P.J. 1976. Fault Tolerant Operating Systems. ACM Computing Surveys, 8(4):359-389.

Dershowitz, N. 2007. Software Horror Stories. [in Researcher Dershowitz‟s webpage]. The Tel Aviv

University, Israel.

www.cs.tau.dc.il/~nachumd/horror.html

Retrieved: 24 Apr, 2007.

Desharnais, J. & Möller, B. & Tchier, F. 2000. Kleene Under a Demonic Star. The University of

Augsburg, Germany, the Institute of Computer Science, Report 2000-3.

Dhurjati, D. & Kowshik, S. & Adve, V. & Lattner, C. 2005. Memory Safety Without Garbage

Collection for Embedded Applications. ACM Transactions on Embedded Computer Systems, 4(1):

73-111.

Dijkstra, R.M. 2000. Computation Calculus Bridging a Formalization Gap. Science of Computer

Programming, 37(1-3):3-36.

Dillon, L.K. & Stirewalt, R.E.K. 2003. Inference Graphs: A Computational Structure Supporting

Generalization of Customizable and Correct Analysis Components. IEEE Transactions on Software

Engineering, 29(2):133-150.

Donzelli, P. & Iazeolla, G. 2001. A Dynamic Simulator of Software Processors to test Process

Assumptions. Journal of Systems and Software, 56(1): 81-90.

Doong, R.-K. & Frankl, P.G. 1994. The ASTOOT Approach to Testing Object-Oriented Programs.

ACM Transactions on Software Engineering and Methodology, 3(2):101-130.

Dor, N. & Adams, S. & Das. M. & Yang, Z. 2004. Software Validation via Scalable Path-Sensitive

Value Flow Analysis. ACM SIGSOFT Software Engineering Notes, 29(4):12-22.

Dorofeeva, R. & El-Fakih, K. & Maag, S. & Cavalli, A.R. & Yevtushenko, N. 2005. Experimental

Evaluation of FSM-Based Testing Methods. Proceedings of the Third International Conference on

Software Engineering and Formal Methods, 7-9 Sep, 2005. Pages 23-32. DOI

10.1109/SEFM.2005.17.

Dovier, A. & Piazza, C. & Pontelli, E. & Rossi, G. 2000. Sets and Constraint Logic Programming.

ACM Transactions on Programming Languages and Systems, 22(5):861-931.

Doyle, J. 1979. A Truth Maintenance System. Massachusetts Institute of Technology, Artificial

Intelligence Laboratory. Cambridge, MA, USA.

Duck. 2005. IMP Session Attached Delimiter Bug. Horde development mailing list.

http://lists.horde.org/archives/dev/Week-of-Mon-20050801/018349.html

Aug 6, 2005.

Retrieved: 30 Sep, 2008.

http://lists.horde.org/archives/dev/Week-of-Mon-20050801/018349.html

 References

138

Dunham, C.B. 1986. Test for (IN)equality, Subtraction, Proof of Correctness. ACM SIGNUM

Newsletter 21(3):27-30. ISSN 0163-5778.

Dunham, J.R. & Finelli, G.B. 1990. Real-Time Software Failure Characterization. Aerospace and

Electronic Systems Magazine, IEEE, 5(11):38-49.

Dunlop, D.D. & Basili, V.R. 1982. A Comparative Analysis of Functional Correctness. ACM

Computing Surveys 14(2):229-244.

Dupuy, A. & Leveson, N.G. 2000. An Empirical Evaluation of the MC/DC Coverage Criterion on the

HETE-2 Satellite Software. IEEE Proceedings of the 19th Digital Aviation System Conference,

Philadelphia, PA, USA, 7-13 Oct, 2000. ISBN 0-7803-6395-7.

Duran, J.W. & Ntafos, S.C. 1984. An Evaluation of Random Testing. IEEE Transactions on Software

Engineering, 10(4): 438-444.

Eaddy, M. & Zimmermann, T. & Sherwood, K.D. & Garg, V. & Murphy, G.C. & Nagappan, N. &

Aho, A.V. 2008. Do Crosscutting Concerns Cause Defects? IEEE Transactions on Software

Engineering, 43(4): 497-515.

Easterbrook. S. & Callahan, J. 1998. Formal Methods for Verification and Validation of Partial

Specifications: A Case Study. Journal of Systems and Software, 40(3):199-210.

Eckhardt, D.E. & Caglayan, A.K. & Knight, J.C. & Lee, L.D. & McAllister, D.F. & Vouk, A.M. &

Kelly, J.P.J. 1991. An Experimental Evaluation of Software Redundancy as a Strategy for Improving

Reliability. IEEE Transactions on Software Engineering, 17(7): 692-702.

Egyed, A. 2003. A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Transactions on

Software Engineering, 29(2):116-132.

Eick, S.G. & Graves, T.L. & Karr, A.F. & Marron, J.S. & Mockus, A. 2001. Does Code Decay?

Assessing the Evidence from Change Management Data. IEEE Transactions on Software

Engineering, 27(1):1-12.

Eisenstadt, M. 1997. My Hairiest Bug War Stories. Communications of the ACM 40(4):30-37.

El Eman, K. & Wieczorek, I. 1998. The Repeatability of Code Defect Classifications. Proceedings on

the 9th International Symposium of Software Reliability Engineering, 4-7 Nov, 1998. Pages 322-333.

ISBN 0-8186-8991-9.

Elbaum, S. & Chin,H.N. & Dwyer, M.B. & Jorde, M. 2009. Carving and Replaying Differential Unit

Test Cases from System Test Cases. IEEE Transactions on Software Engineering, 35(1): 29-45.

Elbaum, S. & Diep, M. 2005. Profiling Deployed Software: Assessing Strategies and Testing

Opportunities. IEEE Transactions on Software Engineering, 31(4):312-327.

(Mootaz) Elnozahy, E.N. & Alvisi, L. & Wang, Y.-M. & Johnson, D.B. 2002. A Survey of Rollback-

Recovery Protocols in Message Passing Systems. ACM Computing Surveys, 34(3): 375-408 and 10

pages attached.

Endres, A. 1975. An Analysis of Errors and Their Causes in System Programs. ACM SIGPLAN

Notices, 10(6):327-336.

Ernst, M.D. & Cockrell, J. & Griswold, W.G. & Notkin, D. 2001. Dynamically Discovering Likely

Program Invariants to Support Program Evolution. IEEE Transactions on Software Engineering,

27(2):99-123.

Fagan, M.E. 1986. Advances in Software Inspection. IEEE Transactions on Software Engineering,

SE-12(7):744-751.

 References

139

Falk, H. 2004. Prolog to Formal Verification of Timed Systems: A Survey and Perspective. An

Introduction to the Paper by Wang. Proceedings of the IEEE, 92(8): 1281-1282.

Farlex. 2009. The Free Dictionary by Farlex. 2009.

http://encyclopedia2.thefreedictionary.com/desk+checking

Retrieved: 11 Feb, 2009.

Fateman, R.J. 1990. Advances and Trends in the Design and Construction of Algebraic Manipulation

Systems. Proceedings of the International Symposium on Symbolic and Algebraic Computation,

Tokyo, Japan, 20-24 Aug, 1990. ACM Press, New York, NY, USA. Pages 60-67. ISBN 0-201-54892-

5.

Feather, M.S. 1989. Constructing Specifications by Combining Parallel Elaborations. IEEE

Transactions on Software Engineering, 15(2): 198-208.

Feather, M.S. 1998. Rapid Application of Ligheweight Formal Methods for Consistency Analyses.

IEEE Transactions on Software Engineering, 24(11):949-959.

Feng, Q. & Lutz, R.R. 2005. Bi-Directional Safety Analysis of Product Lines. Journal of Systems and

Software, 78(2):111-127.

Fenton, N.E. & Neil, M. 1999. A Critique of Software Defect Prediction Models. IEEE Transactions

on Software Engineering, 25(5):675-689.

Fenton, N.E. & Ohlsson, N. 2000. Quantitative Analysis of Faults and Failures in a Complex

Software System. IEEE Transactions on Software Engineering, 26(8):797-814.

Ferdinand, C. & Heckmann, R. & Wolff, H.-J. & Renz, C. & Gupta, M. & Parshin, O. 2006. Towards

an Integration of Low-Level Timing Analysis and Model-Based Code Generation. Second

International Symposium on Leveraging Applications of Formal Methods, Verification and

Validation, 15-19 Nov, 2006. Pages 220-226. DOI 10.1109/ISoLA.2006.31.

Fernandes, T. & Desharnais, J. 2007. Describing Data Flow Analysis Techniques with Kleene

Algebra. Science of Computer Programming, 65:173-194.

Ferrari, M. & Fiorentini, C. & Fiorino, G. 2005. On the Complexity of the Disjunction Property in

Intuitionistic and Modal Logics. ACM Transaction son Computational Logic, 6(3): 519-538.

Field, J. & Heering, J. & Dinesh, T.B. 1998. Equations as a Uniform Framework for Partial

Evaluation and Abstract Intepretation. ACM Computing Surveys, 30(3es), article 2.

Fields, R. & Paternò, F. & Santoro, C. & Tahmassebi, S. 1999. Comparing Design Options for

Allocating Communication Media in Cooperative Safety-Critical Contexts: A Method and a Case

Study. ACM Transactions on Computer-Human Interaction, 6(4):370-398.

Filé, G. & Giacobazzi, R. & Ranzato, F. 1996. An Unifying View of Abstract Domain Design. ACM

Computing Surveys 28(2):333-336.

Filliâtre, J.-C. 2007. Formal Proof of a Program: Find. Science of Computer Programming,

64(3):332-340.

Finkelstein, A. & Dowell, J. 1996. A Comedy of Errors: The London Ambulance Service Case Study.

Proceedings of the 8th International Workshop of Software Specification and Design, 22-23, Mar,

1996. IEEE Computer Society, Washington DC, USA. From page 2. ISBN 0-8186-7361-3.

Fiore, M.P. 1995. Axiomatic Domain Theory. In: Fiore, M.P. & Jung, A. & Moggi, E. & O‟Hearn, P.

& Riecke, J. & Rosolini, G. & Stark, I. Domains and Denotational Semantics: History,

Accomplishments, and Open Problems. The University of Birmingham. School of Computer Science.

Technical report CSR-96-02.

http://encyclopedia2.thefreedictionary.com/desk+checking

 References

140

Fitzpatrick, R. 2006. Computational Physics: an Introductory Course. Lecture Notes. The University

of Texas, Austin. 29 Mar, 2006.

http://farside.ph.utexas.edu/teaching/329/lectures/node19.html

Retrieved: 30 Sep, 2008.

Flanagan, C. & Freund, S.N. 2004. Atomizer: A Dynamic Atomicity Checker for Multithreaded

Programs (Summary). Proceedings of the 18
th

 International Parallel and Distributed Processing

Symposium, 26-30 Apr, 2004. Page 269. IEEE. DOI 10.1109/IPDPS.2004.1303345.

Flanagan, C. & Godefroid, P. 2005. Dynamic Partial-Order Reduction for Model Checking Software.

ACM SIGPLAN Notices, 40(1):110-121. ACM Press, New York, NY, USA. ISSN 0362-1340.

Flanagan, C. & Qadeer, S. 2002. Predicate Abstraction for Software Verification. ACM SIGPLAN

Notices, 37(1): 191-202.

Forgács I. 1994. Double Iterative Framework for Flow-Sensitive Interprocedural Data Flow Analysis.

ACM Transactions on Software Engineering and Methodology, 3(1): 29-55.

Foster, K.A. 1980. Error Sensitive Test Cases Analysis. IEEE Transactions on Software Engineering,

SE-6(3):258-264.

Francis, P. & Leon, D. & Minch, M. & Podgurski, A. 2004. Tree-based Methods for Classifying

Software Failures. 2004. Proceedings on the 15th International Symposium on Software Reliability

Engineering, 2-5 Nov, 2004. IEEE Computer Society, Washington DC, USA. Pages 451-462. ISBN

ISSN 1071-9458, 0-7695-2215-7.

Frankl, P.G. & Hamlet, R.G. & Littlewood, B. & Strigini, L. 1998. Evaluating Testing Methods by

Delivered Reliability. IEEE Transactions on Software Engineering, 24(8): 586-601.

Frankl, P.G. & Weyuker, E.J. 1988. An Applicable Family of Data Flow Testing Criteria. IEEE

Transactions on Software Engineering, 14(10):1483-1498.

Frankl, P.G. & Weyuker, E.J. 1993a. An Analytical Comparison of the Fault-detecting Ability of Data

Flow Testing Techniques. Proceedings of the 15
th

 International Conference on Software Engineering,

17-21 May, 1993. IEEE. Pages 415-424. DOI 10.1109/ICSE.1993.346024.

Frankl, P.G. & Weyuker, E.J. 1993b. A Formal Analysis of the Fault-Detecting Ability of Testing

Methods. IEEE Transactions on Software Engineering 19(3):202-213.

Frankl, P.G. & Weyuker, E.J. 1993c. Provable Improvements on Branch Testing. IEEE Transactions

on Software Engineering, 19(10):962-975.

Frankl, P.G. & Weyuker, E.J. 2000. Testing Software to Detect and Reduce Risk. Journal of Systems

and Software, 53(3):275-286.

Fraser, M.D. & Kumar, K. & Vaishnavi, V.K. 1991. Informal and Formal Requirements Specification

Languages: Bridging the Gap. IEEE Transactions on Software Engineering, 17(5):454-466.

Fredericks, M. & Basili, V. 1998. Using Defect Tracking and Analysis to Improve Software Quality.

A DACS State-of-the-Art Report, Contract Number SP0700-98-4000. 14 Nov, 1998. DACS (Data &

Analysis Center for Software), Rome, NY, USA.

Freedman, R.S. 1991. Testability of Software Components. IEEE Transactions on Software

Engineering, 17(6):553-564.

 References

141

Frege, G. 1892. Über Sinn und Bedeutung. Zeitschrift für Philosophie und Philosophische Kritik, NF

100: 25-50.

http://www.gavagai.de/HHP31.htm

Retrieved: 24 Oct, 2008.

On Sense and Reference. Translated by Max Black. Extracted to Wikipedia.

http://en.wikisource.org/wiki/On_Sense_and_Reference

Retrieved: 24 Oct, 2008.

Fruth, L.S. & Purtilo, J.M. & White, E.L. 1996. A pattern-based object-linking mechanism for

component-based software development environments. Journal of Systems and Software, 32(3):227-

235.

Fränzle, M. 2004. Model-Checking Dense-Time Duration Calculus. Formal Aspects of Computing,

16(2):121-139.

FS Networks. 2005. Configuration Guide for Local Traffic Management. Version 9.0. MAN-0122-

01.

http://www.scribd.com/doc/2630747/Configuration-Guide-for-Local-Traffic-Management-updated-

7252005-LTM-config-guide

Retrieved: 30 Sep, 2008.

Fu, C. & Milanova, A. & Ryder, B.G. & Wonnacott, D.G. 2005. Robustness Testing of Java Server

Applications. IEEE Transactions on Software Engineering, 31(4):292-311.

Fujiwara, S. & Bochmann, G.v. & Khendek, F. & Amalou, M. & Ghedamsi, A. 1991. Test Selection

Based on Finite State Models. IEEE Transactions on Software Engineering, 17(6):591-603.

Gabow, H.N. & Maheshwari, S.N. & Osterweil, L.J. 1976. On Two Problems in the Generation of

Program Test Paths. IEEE Transactions on Software Engineering, SE-2(3):227-231.

Gallian, J.A. 1996. Error Detection Methods. ACM Computing Survey, 28(3): 504-517.

Gannon, J.D. & Hamlet, R.G. & Mills, H.D. 1987. Theory of Modules. IEEE Transactions on

Software Engineering, 13(7):820-829.

Ganssle, J.G. 1998.: Disaster! Break Points. [e-document]. Embedded.com. Official Site of

Embedded Software Development Community.

http://embedded.com/98/9805br.htm

Retrieved: 23 Apr, 2007.

Garcia, A.F. & Rubira, C.M.F. & Romanovsky, A. & Xu, J. 2001. A Comparative Study of Exception

Handling Mechanisms for Building Dependable Object-Oriented Software. Journal of Systems and

Software, 59(2):197-222.

García-Muñoz, L.H. & Armendáriz-Íñigo, J.E. & Decker, H. & Muñoz-Escoí, F.D. 2007. Recovery

Protocols for Replicated Databases – a Survey. 21st International Conference on Advanced

Information Networking and Application Workshops, 21-23 May, 2007. IEEE. Pages 220-227. DOI

10.1109/AINAW.2007.306.

Garg, P. 1994. Investigating Coverage-Reliability Relationship and Sensitivity of Reliability to Errors

in the Operational Profile. Proceedings of the First International Conference on Software Testing,

Reliability, and Quality Assurance, 21-22 Dec, 1994. IEEE. Pages 21-35. DOI

10.1109/STRQA.1994.562380.

Gargantini, A. & Morzenti, A. 2001. Automated Deductive Requirements Analysis of Critical

Systems. ACM Transactions on Software Engineering and Methodology, 10(3): 255-307.

Gates, A.Q. & Mondragon, O. 2002. FasTLInC: A Constraint-Based Tracing Approach. Journal of

Systems and Software, 63(3):241-258.

http://www.gavagai.de/HHP31.htm
http://en.wikisource.org/wiki/On_Sense_and_Reference
http://www.scribd.com/doc/2630747/Configuration-Guide-for-Local-Traffic-Management-updated-7252005-LTM-config-guide
http://www.scribd.com/doc/2630747/Configuration-Guide-for-Local-Traffic-Management-updated-7252005-LTM-config-guide

 References

142

Gay, D. & Aiken, X. 1998. Memory Management with Explicit Regions. ACM SIGPLAN Notices,

33(5): 313-323.

Gencel, C. & Dermiros, O. 2008. Functional Size Measurement Revisited. ACM Transactions on

Software Engineering and Methodology, 17(3), article 15, 36 pages.

Georget, Y. & Codognet, P. 1998. Encoding Global Constraints in Semiring-Based Constraint

Solving. 10
th

 International IEEE Conference on Tools with Artificial Intelligence, 10-12 Nov, 1998.

Pages 400-407. DOI 10.1109/TAI.1998.744878.

Gerhart, S.L. 1984. Application of Axiomatic Methods to a Specification Analyzer. Proceedings of

the 7
th

 International Conference on Software Engineering, Ontario, FL, USA, 26-29 Mar, 1984. IEEE.

Pages 441-451.

Gerhart, S.L. & Yelowitz, L. 1976. Observations of Fallibility in Applications of Modern

Programming Methodologies. IEEE Transactions on Software Engineering, SE-2(3):195-207.

Gericota, M.G. & Lemos, L.F. & Alves, G.R. & Barbosa, M.M. & Ferreira, J.M. 2006. A Framework

for Fault Tolerant Real Time Systems Based on Reconfigurable FPGAs. IEEE Conference on

Emerging Technologies and Factory Automation, 20-22 Sep, 2006. Pages 131-138. DOI

10.1109/EFTA.2006.355409.

Germain, E. & Robillard, P.N. 2005. Engineering-Based Processes and Agile Methodologies for

Software Development: a Comparative Case Study. Journal of Systems and Software, 75(1-2):17-27.

German, R. & Logothetis, D. & Trivedi, K.S. 1995. Transient Analysis of Markov Regenerative

Stochastic Petri Nets: A Comparison of Approaches. Proceedings on the sixth International Workshop

on Petri Nets and Performance Models, 3-6 Oct, 1995. Pages 103-112. DOI

10.1109/PNPM.1995.524320.

Gerogiannis, V.C. & Kameas, A.D. & Pintelas, P.E. 1998. Comparative Study and Categorization of

High-Level PETRI Nets. Journal of Systems and Software, 43(2):133-160.

Gerrard, C.P. & Coleman, D. & Gallimore, R.M. 1990. Formal Specification and Design Time

Testing. IEEE Transactions on Software Engineering, 16(1): 1-12.

Giguette, R. & Hassell, J. 1999. Toward a Resourceful Method on Software Fault Tolerance.

Proceedings of the 37 annual South-East Regional Conference (CD-ROM, article 1) ACM-SE 37.

ACM Press, New York, NY, USA. ISBN 1-58113-128-3

Giguette, R. & Hassell, J. 2000. A Relational Database Model of Program Execution and Software

Components. Proceedings of the 38 annual South-East Regional Conference, Clemson, SC, USA,

Apr 7-8, 2000. SESSION: Software Testing and Fault Tolerance. ACM Press, New York, NY, USA.

Pages 146-155. ISBN 1-58113-250-6.

Giguette, R. & Hassell, J. 2002. Designing a Resourceful Fault-Tolerance System. Journal of systems

and software, 62(1):47-57.

Glass, R.L. 1981. Persistent Software Errors. IEEE Transactions on Software Errors, 7(2): 162-168.

Glinz, M. 2000. Improving the Quality of Requirements with Scenarios. Proceedings of the Second

World Congress for Software Quality, Yokohama, Japan, Sep, 2000. Pages 55-60.

Go, K. & Shiratori, N. 1999. A Decomposition of a Formal Specification: An Improved Constraint-

Oriented Method. IEEE Transactions on Software Engineering, 25(2): 258-273.

Godfrey, M.W. & Zou, L.: 2005. Using Origin Analysis to Detect Merging and Splitting of Source

Code Entities. IEEE Transactions on Software Engineering, 31(2):166-181.

Goel, A.L. & Okumoto, K. 1979. A Time-Dependence Error Detection Rate Model for Software

Reliability and Other Performance Measures. IEEE Transactions on Reliability, 28(3):206-211.

 References

143

Gokhale, S.S. & Marinos, P.N. & Lyu, M.R. & Trivedi, K.S. 1997. Effect of Repair Policies on

Software Reliability. Proceedings of the 12
th

 Annual Conference on Computer Assurance,

Gatheisburg, MD, USA, 16-19 Jun, 1997. IEEE. Pages 105-116. DOI

10.1109/CMPASS.1997.613262.

Gold, N.E. & Harman, M. & Binkley, D & Hierons, R.M. 2005. Unifying Program Slicing and

Concept Assignment for High-Level Executable Source Code Extraction. Software Practice &

Experience, 35(10):977-1006.

Goldberg, D. 1991. What Every Computer Scientist Should Know about Floating-Point Arithmetic.

ACM Computing Surveys, 23(1):5-48.

Goodenough, J.B. & Gerhart, S.L. 1975. Towards a Theory of Test Data Selection. IEEE Transaction

on Software Engineering, SE-1(2):156-173.

Gorla, N. & Pu, H.-C. & Rom, W.O. 1995. Evaluation of Process Tools in Systems Analysis.

Information and Software Technology, 37(2):119-126.

Goseva-Popstojanova, K. & Hassan, A. & Guedem, A. & Abdelmoez, W. & Nassar, D.E.M. &

Ammar, H. & Mili, A. 2003. Architectural-Level Risk Analysis Using UML. IEEE Transactions on

Software Engineering, 29(10):946-960.

Goto, Y. & Cheng, J. 2006. A Quantitative Analysis of Implicational Paradoxes in Classical

Mathematical Logic. Proceedings of the 2006 ACM Symposium on Applied Computing, Dijon,

France, 23-27 Apr, 2006. Pages 42-43.

Gougen, J.A. & Burstall, R.M. 1992. Institutions: Abstract Model Theory for Specifications and

Programming. Journal of the ACM 39(1):95-146.

Graves, T.L. & Karr, A.F. & Marron, J.S. & Siy, H. 2000. Predicting Fault Incidence Using Software

Change History. IEEE Transactions on Software Engineering, 26(7): 653-661.

Gray, A.R. & MacDonell, S.G. 1997. A Comparison of Techniques for Developing Predictive Models

of Software Metrics. Information and Software Technology 39(6):425-437.

Gray, J. 1985. Why do Computers Stop and What Can be Done about It? Tandem Computers.

Cupertino, Canada. Technical Report 85.7.

Green, G.C. & Hevner, A.R. & Collins, R.W. 2005. The Impacts of Quality and Productivity

Perceptions on the Use of Software Process Improvement Innovations. Information and Software

Technology 47(8):543-553.

Gregoriades, A. & Sutcliffe, A. 2005. Scenario-Based Assessment of Nonfunctional Requirements.

IEEE Transactions on Software Engineering, 31(5):392-409.

Gries, D. 1981. The Science of Programming. Springer. New York. 366 pages. ISBN 0387964800.

Grindal, M. & Offutt, J. & Andler, S.F. 2004. Combination Testing Strategies: A Survey. George

Manson University, Fairfax, FL, Department of Information and Software Engineering. GMU

Technical Report, ISE-TR-04-05. Jul, 2004.

Große-Rhode, M. 2002. Compositional Comparison of Formal Software Specifications using

Transformation Systems. Formal Aspects or Computing, 13(2):161-186.

Grottke, M. & Trivedi, K.S. 2007. Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate. IEEE

Computer, 40(2):107-109.

Grundy, J. & Hosking, J. & Mugridge, W.B. 1998. Inconsistency Management for Multiple-View

Software Development Environments. IEEE Transactions on Software Engineering, 24(11):960-981.

 References

144

Gu, W. & Kalbarczyk, Z. & Iyer, R.K. & Yang, Z. 2003. Characterization of Linux Kernel Behavior

under Errors. Proceedings of the International Conference on Dependable Systems and Networks, 22-

25 Jun, 2003. Page 459-.

Guerrini, S. & Martini, S. & Masini, A. 1997. An Analysis of (Linear) Exponentials Based on

Extended Sequents. University of Pennsylvania, Philadelphia, PA, USA. NSF Science and

Technology Center for Research in Cognitive Science. Computer Science. Technical Reports. IRCS-

97-13. 24 Jul, 1997.

Gunter, E. & Peled, D. 2005. Model Checking, Testing and Verification Working Together. Formal

Aspects in Computing, 17(2):201-221.

Guo, J. 2003. Software Reuse through Re-Engineering the Legacy Systems. Information and Software

Technology, 45(9):597-609.

Guo, L. & Ma, Y. & Cukic, B. & Singh, H. 2004. Robust Prediction of Fault-Proness by Random

Forests. 15th International Symposium on Software Reliability Engineering, 2-5 Nov 2-5, 2004.

IEEE Computer Society, Washington DC, USA. Pages 417-428. ISBN ISSN 1071-9458, 0-7695-

2215-7.

Guo, L. & Mukhopadhyay, S & Cukic, B. 2004. Does Your Result Checker Really Check?

Proceedings of the International Conference on Dependable Systems and Networks, 28 Jun – 1 Jul,

2004. IEEE Computer Society, Washington DC, USA. Pages 399-404. ISBN 0-7695-2052-9.

Gupta, R. & Soffa, M.L. & Howard, J. 1997. Hybrid Slicing: Integrating Dynamic Information with

Static Slicing. ACM Transactions on Software Engineering and Methodology, 6(4): 370-397.

Gupta, V. & Jagadeesan, R. Saraswat, V.A. 1998. Computing with Continuous Change. Science of

Computer Programming, 30(1-2): 3-49.

Güne§ Koru, A. & Tian, J. 2003. An Empirical Comparison and Characterization of High Defect and

High Complexity Modules. Journal of Systems and Software 67(3):153-163.

Hac, A. & Chu, X. 1998. A New Cell Loss Recovery Method Using Forward Error Correction in

ATM Networks. International Journal of Network Management, 8(2):87-103.

Hakuta, M. & Ohminami, M. 1997. A Study of Software Portability Evaluation. Journal of Systems

and Software, 38(2):145-154.

Halder, A.K. 1982. Karnaugh Map Extended to Six or More Variables. IEEE. Electronic Letters

18(20): 868-870.

Hamlet, D. 1994. Foundations of Software Testing. ACM SIGSOFT Software Engineering Notes,

19(5): 128-139.

Hamlet, D. & Taylor, R. 1990. Partition Testing Does Not Inspire Confidence (Program Testing).

IEEE Transactions on Software Engineering, 16(12):1402-1411.

Hamlet, R. 1989. Theoretical Comparison of Testing Methods. ACM SIGSOFT Software

Engineering Notes, 14(8):28-37. ACM Press, New York, NY, USA. ISSN 0163-5948.

Hangal, S. & Lam, M.S. 2002. Tracking Down Software Bugs Using Automatic Anomaly Detection.

Proceedings of the 24
th

 International Conference on Software Engineering, Orlando, FL, USA, 19-25

May, 2002. Pages 291-301. ISBN 1-58113-472-X.

Hansen, K.M. & Ravn, A.P. & Stavridou, V. 1998. From Safety Analysis to Software Requirements.

IEEE Transactions on Software Engineering, 24(7):573-584.

Hansen, M.D. 1989. Survey of Available Software-Safety Analysis Techniques. Proceedings of

Annual Reliability and Maintainability Symposium. Atlanta, GA, USA, 24-26 Jan, 1989.

 References

145

Haraszti, Z. & Townsend, J.K. 1999. The Theory of Direct Probability Redistribution and its

Application to Rare Event Simulation. ACM Transactions on Modeling and Computer Simulation,

9(2):105-140.

Harel, D. 1987. Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 8: 231-274.

Harman, M. & Binkley, D. & Danicic, S. 2003. Amorphous Program Slicing. Journal of Systems and

Software, 68(1):45-64.

Harrold, M.J. & Offutt, A.J. & Tewary, K. 1997. An Approach to Fault Modeling and Fault Seeding

Using the Program Dependence Graph. Journal of Systems and Software, 36(3):273-295.

Hartel, P.H. & Moreau, L. 2001. Formalizing the Safety of Java, the Java Virtual Machine, and Java

Card. ACM Computing Surveys, 33(4):517-558.

Hatton, L. 1996. Is Modularization Always a Good Idea? Information and Software Technology

38(11):719-721.

Hatton, L. 1999. Repetitive Failure, Feedback and the Lost Art of Diagnosis. Journal of Systems and

Software, 47(2-3):183-188.

Hatton, L. 2004. Safer Language Subsets: An Overview and a Case History, MISRA C. Information

and Software Technology, 46(7):465-472.

Hatton, L. 2005. EC - A Measurement-Based Safer Subset of ISO C Suitable for Embedded System

Development. Information and Software Technology 47(3):181-187.

Hatton, L. & Roberts, A. 1994. How Accurate is Scientific Software? IEEE Transactions on Software

Engineering, 20(10):785-797.

Haugen, ø. 2005. Comparing UML 2.0 Interactions and MSC-2000. Lecture Notes in Computer

Science, 3319/2005: 65-79. ISBN 978-3-540-24561-2.

Havelund, K. & Lowry, M. & Penix, J. 2001. Formal Analysis of a Space-Craft Controller Using

SPIN. IEEE Transactions on Software Engineering, 27(8):749-765.

Hayes, I. 2002. Reasoning about Real-Time Repetitions: Terminating and Non-Terminating. Science

of Computer Programming 43(2-3):161-192.

Hayes, J.H. & Dekhtyar, A. & Sundaram, S.K. 2006. IEEE Transactions on Software Engineering,

32(1): 4-19.

He, J.-Z. & Zhou, Z.-H. & Yin, X.-R. & Chen, S.-F. 2000. Using Neural Networks for Fault

Diagnosis. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks,

24-27 Jul, 2000. Vol 5. Pages 217-220. DOI 10.1109/IJCNN.2000.861460.

He Jifeng & Liu Zhiming & Li Xiaoshan. 2002. Towards a Refinement Calculus for Object Systems.

Proceedings of the first International Conference on Cognitive Automatics, 19-20 Aug, 2002. Pages

69-76. DOI 10.1109/COGINF.2002.1039284.

He, X. & Yu, H. & Shi, T. & Ding, J. & Deng, Y. 2004. Formally Analyzing Software Architectural

Specifications Using SAM. Journal of Systems and Software. 71(1-2): 11-29.

Hecht, M.S. & Ullman, J.D. 1973. Analysis of a Simple Algorithm for Global Data Flow Problems.

Proceedings of the 1
st
 annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages. P. 207-217.

Heimdahl, M.P.E. & Czerny, B.J. 2000. On the Analysis Needs When Verifying State-Based

Software Requirements: an Experience Report. Science of Computer Programming 36(1):65-96.

 References

146

Heintze, N. & Jaffar, J. 1990. A Decision Procedure for a Class of Set Constraints. Proceedings of the

5th Annual IEEE Symposium on Logic in Computer Science, Philadelphia, PA, USA, 4-7 Jun, 1990.

ISBN 0-8186-2073-0.

Heintze, N. & McAllester, D. 1997. On the Complexity of Set-Based Analysis. ACM SIGPLAN

Notices, 32(8):150-163. ACM Press, New York, NY, USA. ISBN 0-89791-918-1.

Hentenryck, P.V. & Michel, L. & Benhamou, F. 1998. Constraint Programming over Nonlinear

Constraints. Science of Computer Programming, 30(1-2): 83-118.

Hepner, M. & Gamble, R. & Kelkar, R. & Davis, L. & Flagg, D. 2006. Patterns of Conflict among

Software Components. Journal of Systems and Software, 79(4): 537-551.

Herrmann, D.S. & Peercy, D.E. 1999. Software Reliability Cases. A Bridge Between Hardware,

Software and System Safety and Reliability. Reliability and Maintainability Symposium, 1999.

Proceedings. Annual. Washington DC, USA, 18-21 Jan, 1999. Pages 396-402. ISBN 0-7803-5143-6.

Hierons, R.M. 2002. Comparing Test Sets and Criteria in the Presence of Test Hypotheses and Fault

Domains. ACM Transactions on Software Engineering and Methodology, 11(4):427-448.

Hierons, R.M. 2006. Avoiding Coincidental Correctness in Boundary Value Analysis. ACM

Transactions on Software Engineering and Methodology, 15(3):227-241.

Hierons, R. & Harman, M. & Fox, C. & Ouarbya, L. & Daoudi, M. 2003. Conditioned Slicing

Supports Partition Testing. Software Testing, Verification, and Reliability 2002, 12(1): 23-28.

Hiller, M. & Jhumka, A. & Suri, N. 2002. PROPANE: An Environment for Examining the

Propagation of Errors in Software. Proceedings of the 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis, 27(4): 81-85.

Hocenski, Z. & Martinovic, G. 1999. Influence of Software on Fault-Tolerant Microprocessor Control

System Dependability. Proceedings of the IEEE International Symposium on Industrial Electronics,

volume 3. 12-16 Jul, 1999. Pages 1193-1197. DOI 10.1109/ISIE.1999.796866.

Hochstein, L. & Lindvall, M. 2005. Combating Architectural Degeneration: a Survey. Information

and Software Technology 47(10):643-656.

Hoffman, D. & Snodgrass, R. 1988. Trace Specifications: Methodology and Models. IEEE

Transactions on Software Engineering, 14(9):1243-1252.

Holmberg, A. & Eriksson, P.-E.. 2006. Decision Support System for Fault Isolation of JAS 39 Gripen.

Development and Implementation. Master Thesis. Department of Electrical Engineering. The

University of Linköping. LiTH-ISY-EX--06/3839--SE.

Holzmann, G.J. 1997. The Model Checker SPIN. IEEE Transactions on Software Engineering, 23(5):

279-295.

Hong, H.S. & Cha, S.D. & Lee, I. & Sokolsky, O & Ural, H. 2003. Data Flow Testing as Model

Checking. Proceedings of the 25th International Conference on Software Engineering, Portland, OR,

USA, 3-10 May, 2003. SESSION: Technical Papers: Testing II: IEEE Computer Society, Washington

DC, USA. Pages 232-242. ISBN ISSN 0270-5257, 0-7695-1877-X.

Horwath, T, & Green , J. Lawler, T. 2000. SilkTest and WinRunner Feature Descriptions.

www.infotest.by/documents/SilkWrFeatures.pdf

Retrieved: 20 Oct, 2008.

Hou, R.-H. & Kuo, S.-Y. & Chang, Y.-P. 1994. Applying Various Learning Curves to Hyper-

Geometric Distribution Software Reliability Growth Model. Proceedings of the 5
th

 International

Symposium on Software Reliability Engineering, 6-9 Nov, 1994. IEEE. Pages 8-17. DOI

10.1109/ISSRE.1994.341342

http://www.infotest.by/documents/SilkWrFeatures.pdf

 References

147

Hovemeyer, D. & Pugh, W. 2004. Onward!: Finding Bugs is Easy. Companion to the 19th Annual

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and

Applications, Vancouver, BC, Canada, 24-28 Oct, 2004. ACM Press, New York, NY, USA. Pages

132-136. ISBN 1-58113-833-4.

Howden, W.E. 1976. Reliability of the Path Analysis Testing Strategy. IEEE Transactions on

Software Engineering, SE-2(3):208-215.

Howden, W.E. 1980. Functional Program Testing. IEEE Transactions on Software Engineering SE-

6(2):162-169.

Howden, W.E. 1982. Weak Mutation Testing and Completeness of Test Sets. IEEE Transactions on

Software Engineering, SE-8(4):371-379.

Howden, W.E. 1986. A Functional Approach to Program Testing and Analysis. IEEE Transactions

on Software Engineering, SE-12(10):997-1005.

Howden, W.E. 1990. Comment Analysis and Programming Errors. IEEE Transactions on Software

Engineering, 16(1):72-81.

Huang, J.C. 1980. A New Verification Rule and Its Applications. IEEE Transactions on Software

Engineering, SE-6(5):480-484.

Huang, J.C. 1990. State Constraints and Pathwise Decomposition of Programs. IEEE Transactions on

Software Engineering, 16(8):880-896.

Huckle, T. 2005. Collection of Software Bugs. [Professor Huckle‟s webpage]. The University of

Munich, Germany.

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

Retrieved: 28 Apr, 2007.

Huebscher, M.C. & McCann, J.A. 2008. A Survey of Autonomic Computing – Degrees, Models, and

Applications. ACM Computing Surveys, 40(3), article 7, 28 pages.

Hulgaard, H. & Burns, S.M. & Amon, T. & Borriello, G. 1995. An Algorithm for Exact Bounds on

the Time Separation of Events in Concurrent Systems. IEEE Transactions on Computers, 44(11):

1306-1317.

Hungerford, B.C. & Hevner, A.R. & Collins, R.W. 2004. Reviewing Software Diagrams: A Cognitive

Study. IEEE Transactions on Software Engineering, 30(2):82-96.

IEEE: 1990. IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology.

IEEE (The Institute of Electrical and Electronics Engineers) Standards Association, 1990.

IEEE1540: 2001. IEEE Std 1540-2001: IEEE Standard for Software Life Cycle Processes - Risk

Management. IEEE Software Engineering Standards Committee, 2001.

Ip, C.N. & Dill, D.L. 1996. State Reduction Using Reversible Rules. Proceedings of the 33rd Annual

Conference on Design Automation, Las Vegas, NV, USA, 3-7 Jun, 1996. ACM Press, New York,

NY, USA. Pages 564-567. ISBN 0-89791-779-0.

IPL Information Processing Ltd. 1999. Advanced Coverage Metrics for Object-Oriented Software.

Last Update 28 Oct, 1999. Bath, UK.

http://www.ipl.com/pdf/p0833.pdf

Retrieved: 14 Mar, 2007.

Isoda, S. 1998. A Critisism on the Capture-and-Recapture Method for Software Reliability Assurance.

Journal of Systems and Software 43(1):3-10.

 References

148

Israel, S. & Morris, D.1989. A Non-Intrusive Checkpointing Strategy. The Eight Annual International

Phoenix Conference on Computers and Communications, 22-24 Mar, 1989. IEEE. Pages 413-421.

DOI 10.1109/PCCC.1989.37424.

Itzfeldt, W.D. 1990. Quality Metrics for Software Management and Engineering. Proceedings on the

Conference on Managing Complexity in Software Engineering, 13 Apr, 1990. IET Conference

Proceedings. IEE Computing Series 17. Series editors: Carré, B. & Jacobs, D.A.H. & Sommerville, I.

Pages 127-152.

Iwata, N. & Hanazawa, M. 1993. Porting Classes and Coding Rules for C Programs on CTRON. The

10
th

 TRON Project International Symposium. IEEE. 1-2 Dec, 1993. Pages 144-155. DOI

10.1109/TRON.1993.589181.

Iyer, R.K. & Hsueh, M.-C. & Lee, I. 1996. Fault/Failure Analysis of the Tandem NonStop-UX

Operating System. 15th AIAA/IEEE Digital Avionics Systems Conference, Atlanta, GA, USA, 27-31

Oct, 1996. Pages 491-497. ISBN 0-7803-3385-3.

Jackson, D. 1995. Detecting Bugs with Abstract Dependencies. ACM Transactions on Software

Engineering and Methodology, 4(2): 109-145.

Jackson, D. 2002. Alloy: A Lightweight Object Modelling Notation. ACM Transactions on Software

Engineering and Methodology, 11(2): 256-290.

Jacky, J. 1987. Mariner I and Computer Folklore. In: P.G. Neumann (Moderator). Risk Digest.

Forum on Rules to Public in Computers and Related Systems. ACM Committee on Computers and

Public Policy. 5(65).

http://catless.ncl.ac.uk/Risks

Retrieved: 24 Apr, 2007.

Jacky, J. 1995. Specifying a Safety-Critical Control System in Z. IEEE Transactions on Software

Engineering, 21(2): 99-106.

Jacobs, J. & Moll, J.v. & Krause, P. & Kusters, R. & Trienekens, J. & Brombacher, A. 2005.

Exploring Defect Causes in Products Developed by Virtual Teams. Information and Software

Technology 47(6):399-410.

Jacobs, J. & Moll, J.v. & Kusters, R. & Trienekens, J. & Brombacher, A. 2007. Identification of

Factors that Influence Defect Injection and Detection in Development of Software Intensive Products.

Information and Software Technology 49(7):774-789.

Jahanian, F. & Mok, A K. L. 1986. Safety Analysis of Timing in Real-Time Systems. IEEE

Transactions on Software Engineering, 12(9): 890-904.

Jalote, P. 1989. Testing the Completeness of Specifications. IEEE Transactions on Software

Engineering, 15(5):526-531.

Jalote, P. & Munshi, R. & Probsting, T. 2007. The When – Who – How Analysis of Defects for

Improving the Quality of Control Process. Journal of Systems and Software, 80(4): 584-589.

Janicki, R. & Khedri, R. 2001. On Formal Semantics of Tabular Expressions. Science of Computer

Programming 39(2-3):189-213.

Jansen, D.N. & Hermanns, H. 2005. QoS Modelling and Analysis with UML Statecharts: The

StoCharts Approach. ACM SIGMETRICS Performance Evaluation Review, 32(4): 28-33

Jeffrey, D. & Gupta, N. 2007. Improving Fault Detection Capability by Selectively Retaining Test

Cases during Test Suite Reduction. IEEE Transactions on Software Engineering, 33(2): 108-123.

Jeng, B. 1999. Toward an Integration of Data Flow and Domain Testing. Journal of Systems and

Software, 45(1):19-30.

http://catless.ncl.ac.uk/Risks

 References

149

Jeng, B. & Forgács, I. 1999. An Automatic Approach of Domain Test Data Generation. Journal of

Systems and Software, 49(1):97-112.

Jeng, B. & Weyuker, E.J. 1994. A Simplified Domain-Testing Strategy. ACM Transactions on

Software Engineering and Methodology, 3(3):254-270.

Jeon, G. & Cho, Y. 2002. A Partitioning Method for Efficient System-Level Diagnosis. Journal of

Systems and Software, 63(1):1-16.

Jiang, J.J. & Klein, G. & Balloun, J.L. & Crampton, S.M. 1999. System Analysts' Orientations and

Perceptions of System Failure. Information and Software Technology 41(2):101-106.

Hongxia Jin & Sullivan, G.F. & Masson, G.M. 1999. Approximate Correctness-Checking of

Computational Results. IEEE Transactions on Reliability, 48(4):338-350.

Jo, J.-W. & Chang, B.-M. & Yi, K. & Choe, K.-M. 2003. An Uncaught Exception Analysis for Java.

Journal of Systems and Software 72(1):59-69.

Johnson, A.M. & Malek, M. 1988. Survey of Software Tools for Evaluating Reliability, Availability,

and Serviceability. ACM Computing Surveys, 20(4): 227-269.

Johnson, C.W. 2003. Failure in Safety-Critical Systems: A Handbook of Accident and Incident

Reporting. University of Glasgow Press, Glasgow, Scotland, Oct 2003. ISBN 0-85261-784-4.

Available in electronic form: http://www.dcs.gla.ac.uk/~johnson/book

Johnson, D.W. 2007. Software Quality Tips. Software Testing. How to Evaluate Testing Software and

Tools. 13 Mar, 2007. Searchsoftwarequality. Techtarget.

http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1247269,00.html

Retrieved: 21 Oct, 2008.

Jones, R.B. 1996. Formal Specification Languages. Essays in Sceptical Philosophy. Factasia. [Jones‟

web pages]. 9. Sep, 1996.

http://www.rbjones.com/rbjpub/cs/csfm02.htm

Retrieved: 28 Apr, 2007.

Jones, R.B. 2007. Judgement Forms. Essays in Sceptical Philosophy. Factasia. [Jones‟ web pages].

http://www.rbjones.com/rbjpub/logic/log004.htm

Retrieved: 28 Apr, 2007.

Jones, S. & Till, D. & Wrightson, A.M. 1998. Formal Methods and Requirements Engineering:

Challenges and Synergies. Journal of Systems and Software, 40(3):263-273.

JPL. 2000. Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions. JPL Special

Review Board Report JPL-D-18709. NASA Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, USA. E.g. pages 13 and 111-123.

Jorgensen, P.C. & Erickson, C. 1994. Object-Oriented Integration Testing. Communications of the

ACM, 37(9): 30-38.

Kandara, O. 2003. Level of Essentialness of a Node in Flowchart and its Application to Program

Testing. Dissertation. Dec 2003. Louisiana State University, Agricultural and Mechanical College.

Kaner, C. 2004. Teaching Domain Testing: A Status Report. Proceedings of the 17th Conference on

Software Engineering Education and Training. IEEE, 1-3 Mar, 2004.

Kansomkeat, S. & Rivepiboon, W. 2003. Automated-Generating Test Case Using UML Statechart

Diagrams. Proceedings of the 2003 Annual Research Conference on the South African Institute of

Computer Scientists and Information Technologists on Enablement through Technology, 17-19 Sep,

2003. ACM International Conference Proceeding Series, 47: 296-300.

http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1247269,00.html

 References

150

Kantz, H. & Koza, C. 1995. The ELECTRA Railway Signalling-System: Field Experience with an

Actively Replicated System with Diversity. 25th International Symposium on Fault-Tolerant

Computing, Pasadena, CA, USA, 27-30 Jun, 1995. FTCS-25. Pages 453-458. ISBN 0-8186-7079-7.

Katara, M. & Katz, S. 2003. Architectural Views of Aspects. Proceedings of the 2nd International

Conference on Aspect Oriented Software Development, Boston, MA, USA, 17-21 Mar, 2003. ISBN

1-58113-660-9.

Katz, S. 1993. A Superimposition Control Construct for Distributed Systems. ACM Transactions on

Programming Languages and Systems, 15(2):337-356.

Keck, D.O. & Kuehn, P.J. 1998. The Feature and Service Interaction Problem in Telecommunications

Systems: A Survey. IEEE Transactions on Software Engineering, 24(10):779-796.

Kelly, D. & Shepard, T. 2001. A case study in the use of defect classification in inspections.

Proceedings of the 2001 conference of the Centre for Advanced Studies on Collaborative Research,

Toronto, ON, CA, 5-7 Nov, 2001. IBM Press. Page 7.

Kelly, D. & Shepard, T. 2004. Task-Related Software Inspection. Journal of Systems and Software,

73(2):361-368.

Khajenoori, S. & Prem, L. & Stevens, K. & Keng, B.S. & Kameli, N. 2004. Knowledge Centered

Assessment Pattern: An Effective Tool for Assessing Safety Concerns in Software Architecture.

Journal of Systems and Software, 73(2):313-322.

Khoshgoftaar, T.M. & Allen, E.B. & Kalaichelvan, K.S. & Goel, N. 1996. Early Quality Prediction:

A Case Study in Telecommunications. IEEE Software, 13(1):65-71.

Khoshgoftaar, T.M. & Ganesan, K. & Allen, E.B. & Ross, F.D. & Munikoti, R. & Goel, N. & Nadhi,

A. 1997. Predicting Fault-Prone Modules with Case-Based Reasoning. Proceedings of the Eight

International Symposium on Software Reliability Engineering, 2-5 Nov, 1997. IEEE. From page 27.

ISBN 0-8186-8120-9.

Khoshgoftaar, T.M. & Seliya, N. & Herzberg, A. 2005. Resource-Oriented Software Quality

Classification Models. Journal of Systems and Software, 76(2):111-126.

Kifer, M. & Lozinskii, E.L. 1989. RI: A Logic for Reasoning with Inconsistency. Proceedings of the

Fourth Annual Symposium on Logic in Computer Science, 5-8 Jun, 1989. Pages 253-262. DOI

10.1109/LICS.1989.39180.

Sun Kim & Bastani, F.-B. & I-Ling Yen & Chen, I.-R. 2004. Systematic Reliability Analysis of a

Class of Application-Specific Embedded Software Frameworks. IEEE Transactions on Software

Engineering, 30(4):218-230.

Kim, S. & Pan, K. & Whitehead, Jr, E.E.J. 2006. Memories of Bug Fixes. Proceedings of the 14th

ACM SIGSOFT International Symposium of Foundations of Foundations of Software Engineering,

Portland, OR, USA, 5-11 Nov, 2006. SESSION: Mining Failures and Bugs. ACM Press, New York,

NY, USA. Pages 35-45. ISBN 1-59593-468-5.

Kiper, J.D. 1992. Structural Testing of Rule-Based Expert Systems. ACM Transactions on Software

Engineering and Methodology, 1(2): 168-187.

Kiran, N.R. & Ravi, V. 2008. Software Reliability Prediction by Soft Computing Techniques. Journal

of Systems and Software, 81(4): 576-583.

Kirk, S.R. & Jenkins, S. 2004. Information Theory-Based Software Metrics and Obfuscation. Journal

of Systems and Software, 72(2):179-186.

Kistler J.J. & Satyanarayanan, M. 1992. Disconnected Operation in the CODA File System. ACM

Transactions on Computer Systems 10(1):3-25.

 References

151

Kitchenham, B.A. & Linkman, S.G. & Law, D.T. 1994. Critical Review of Quantitative Assessment.

IEEE Software Engineering Journal 9(2):43-53.

Klop, J.W. .1992. Term Rewriting Systems. In: Abramsky, S. & Gabbay, D.M. & Maibaum, T.S.E.

(eds.): Handbook of logic in computer science. Vol. 2: Background : Computational Structures.

Oxford: Clarendon Press. 582 pages. Pages 1-116. ISBN 0198537611.

Knight, K. 1989. Unification: A Multidisciplinary Survey. ACM Computing Surveys 21(1):93-124.

Kohlas, J. & Stärk, R.F. 2007. Information Algebras and Consequence Operators. Logica

Universalis, 1(1):139-165.

Koono, Z. & Soga, M. 1990. Structural Way of Thinking as Applied to Quality Assurance

Management. IEEE Journal on Selected Areas in Communications, 8(2): 291-300.

Kopetz, H. 1975. On the Connections Between Range of Variables and Control Structure Testing.

ACM SIGPLAN Notices, 10(6):511-517. ACM Press, New York, NY, USA.

Kopetz, H. 2000. Software Engineering for Real Time: A Roadmap. Proceedings of the Conference

on the Future Software Engineering. Limerick, Ireland, 4-11 Jun, 2000. ACM Press, New York, NY,

USA. Pages 201-211. ISBN 1-58113-253-0.

Korel, L. 1988. PELAS - Program Error-Locating Assistance System. IEEE Trans. on Software

Engineering, 14(9):1253-1260.

Kramer, J. & Cunningham, R.J. 1979. Invariants for Specifications. Proceedings of fourth

International Conference on Software Engineering. Munich, Germany, 17-19 Sep, 1979. IEEE Press,

Piscataway, NJ, USA. Pages 183-193.

Krishnamurthy, D. & Rolia, J.A. & Majumdar, S. 2006. A Synthetic Workload Generation Technique

for Stress Testing Session-Based Systems IEEE Transactions on Software Engineering 32(11):868-

882.

Krishnan, M.S. & Kellner, M.I. 1999. Measuring Process Consistency: Implications for Reducing

Software Defects. IEEE Transactions on Software Engineering, 25(6):800-815.

K.S. How Tai Wah. 2003. An Analysis of Coupling Effect: I: Single Test Data. Science of Computer

Programming 48(2-3):119-161.

Kuhn, D.R. 1999. Fault Classes and Error Detecting Capacity of Specification-Based Testing. ATM

Transactions on Software Engineering and Methodology 8(4):411-424.

Kuhn, D.R. & Reilly, M.J. 2002. An Investigation of the Applicability of Design of Experiments to

Software Testing. Proceedings of 27th Annual NASA Gobbard Software Engineering Workshop. 5-6

Dec, 2002. IEEE Computer Society, Washington DC, USA. From page 91. ISBN 0-7695-1855-9.

Kuhn, D.R. & Wallace, D.R. & Gallo, A.M., Jr. 2004. Software Fault Interactions and Implications

for Software Testing. IEEE Transactions on Software Engineering, 30(6):418-421.

Kulisch, U.W. & Miranker, W.L. 1981. Computer Arithmetic in Theory and Practice. Computer

Science and Applied Methods. Academic Press. New York 1981. 249 pages. ISBN 012428650X.

Kumar, N. & Vemuri, R. 1992. Finite State Machine Verification on MIMD Machines. European

Design Automation Conference EURO-VHDL ‟92 EURO-DAC „92, 7-10 Sep, 1992. IEEE. Pages

514-520. DOI 10.1109/EURDAC.1992.246312.

Kundu, S. 1978. Note on a Constrained-Path Problem in Program Testing. IEEE Transactions on

Software Engineering, SE-4(1):75-76.

Kupferman, O. & Vardi, M.Y. 2001. Weak Alternating Automata Are Not That Weak. ACM

Transactions on Computational Logic, 2(3): 408-429.

 References

152

Kurshan, R.P. & Levin, V. & Minea, M. & Peled, D. & Yenigün, H. 2002. Combining Software and

Hardware Verification Techniques. Formal Methods in System Design, 21(3):251-280.

Lacroix, P. 2006. RTL-CHECK: A Practical Static Analysis Framework to Verify Memory Safety and

More. Master Thesis. Laval University, Quebec.

Ladkin, P. (prepared for the WWW). 1994. Main Commission Aircraft Accident Investigation

Warsaw: Report on the Accident to Airbus A320-211 Aircraft in Warsaw, on 14 September 1993.

University of Bielefeld, research group of Prof. P. Ladkin, Mar, 1994.

http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-

report.html

Retrieved: 6 May, 2008.

Ladkin, P. (prepared for the WWW). 1996. AA965 Cali Accident Report. Near Buga, Colombia, Dec

20, 1995. Original report title: Aircraft accident report. Controlled flight into terrain, American

Airlines flight 965, Boeing 757-223, n651aa, near Cali, Colombia, December 20, 1995. Aeronautica

Civil of the Republic of Columbia, Bogota, Columbia. University of Bielefeld, research group of Prof.

P. Ladkin, Nov, 1996.

sunnyday.mit.edu/accidents/calirep.html

Retrieved: 6 May, 2008.

Ladkin, P. (prepared for the WWW). 1999. UK Air Accident Investigation Board. AAIB Bulletin No

3:95. Ref:EW/C94/9/2. Category: 1.1. 1999. University of Bielefeld, research group of Prof. P.

Ladkin.

http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/Institution/AAIB/AAIB-3-95.html

Retrieved: 6 May, 2008.

Lai, C.D. & Xie, M. & Poh, K.L. & Dai, Y.S. & Yang, P. 2002. A Model for Availability Analysis of

Distributed Software/Hardware Systems. Information and Software Technology, 44(6): 343-350.

Laitenberger, O. & Atkinson, C. & Schlich, M. & El Eman, K. 2000. An Experimental Comparison of

Reading Techniques for Defect Detection in UML Design Documents. Journal of Systems and

Software, 53(2):183-204.

Laitenberger, O. & DeBaud, J.-M. 1997. Perspective-Based Reading of Code Documents at Robert

Bosch GMBH. Information and Software Technology 39(11):781-791.

Laitenberger, O. & DeBaud, J.-M. 2000. An Encompassing Life Cycle Centric Survey of Software

Inspection. Journal of Systems and Software 50(1):5-31.

Lander, P. & Berbari, E.J. 1989. Optimizing Signal Averaging Methods. 11
th

 Annual International

Conference on IEEE Engineering on Medicine and Biological Society. 9-12 Nov, 1989. Pages 19-20.

DOI 10.1109/EMBS.1989.95550.

Landi, W. 1992. Undecidability of Static Analysis. ACM Letters on Programming Languages and

Systems, 1(4): 323-337.

Lano, J.R. 1990. The N2 Chart. In: Thayer, R.H. & Dorfman, M. (eds.): System and Software

Requirements Engineering. Los Alamitos: IEEE Computer Society Press. Pages 244-271. 719 pages.

ISBN 0-8186-8921-8. Original: The N2 Chart. TRW Inc. 1977.

Laski, J.W. & Korel, B. 1983. A Data Flow Oriented Program Testing Strategy. IEEE Transactions

on Software Engineering, SE-9(3):347-354.

Latif-Shabgahi, G. & Bass, J.M. & Bennett, S. 2004. A Taxonomy for Software Voting Algorithms

Used in Safety-Critical Systems. IEEE Transactions on Reliability, 35(3):319-328.

http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-report.html
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-report.html
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/Institution/AAIB/AAIB-3-95.html

 References

153

Latronico, E. & Koopman, P. 2001. Representing Embedded System Sequence Diagrams as a Formal

Language. Lecture Notes in Computer Science, 2185:302-316. ISBN 3-540-42667-1. Proceedings of

the 4
th

 International Conference on the Unified Modeling Language, Modeling Languages, Concepts,

and Tools, Toronto, Ontario, Canada, 3-5 Oct, 2001.

Lau, M.F. & Yu, Y.T. 2005. An Extended Fault Class Hierarchy for Specification-Based Testing.

ACM Transactions on Software Engineering and Methodology, 14(3):247-276.

Lawrance, J. & Abraham, R. & Burnett, M. & Erwig, M. 2006. Sharing Reasoning about Faults in

Spreadsheets: An Empirical Study. IEEE Symposium on Visual Languages and Human-Centric

Computing, 4-8 Sep, 2006. Pages 35-42. DOI 10.1109/VLHCC.2006.43.

Laycock, G. T. 1993. The Theory and Practice of Specification Based Software Testing. University

of Sheffield. Departure of Computer Science. PhD Thesis. Apr, 1993.

Retrieved: 1 Oct, 2008.

Lazzerini, B. & Lopriore, L. 1989. Abstraction Mechanisms for Event-Control in Program

Debugging. IEEE Transactions on Software Engineering, 15(7): 890-901.

Le Traon, Y. & Ouabdesselam, F. & Robach, C. & Baudry, B. 2003. From Diagnosis to

Diagnosability: axiomatization, measurement and application. Journal of Systems and Software,

65(1):31-50.

L‟Ecuyer, P. & Demers, V. & Tuffin, B. 2007. Rare Events, Splitting, and Quasi-Monte Carlo. ACM

Transactions on Modeling and Computer Simulation, 17(2): article 9.

Lee, D. & Yannakakis, M. 1996. Principles and Methods of Testing Finite State Machines - A Survey.

AT&T Bell Laboratories. Proceedings of the IEEE, 84(8):1090-1123.

Lee, H.-J. & Ma, Y.-S. & Know, Y.-R. 2004. Empirical Evaluation of Orthogonality of Class

Mutation Operators. 11th Asian-Pacific Software Engineering Conference, 30 Nov – 3 Dec, 2004.

IEEE computer Society, Washington DC, USA. Pages 512-518. ISBN ISSN 1530-1362, 0-7695-

2245-9.

Lee, I. & Iyer, R.K. 1993. Faults, Symptoms, and Software Fault Tolerance in the Tandem

GUARDIAN90 Operating System. 23th International Symposium on Fault-Tolerant Computing,

FTCS-23, Toulouse, France, 22-24 Jun, 1993. ISBN 0-8186-3680-7.

Inhwan Lee & Iyer, R.K. 1995. Software Dependability in the Tandem GUARDIAN System. IEEE

Transactions on Software Engineering, 21(5):455-467.

Lee, I. & Iyer, R.K. 2000. Diagnosing Rediscovered Software Problems Using SYMPTOMS. IEEE

Transactions on Software Engineering, 26(2):113-127.

Lee, K. & Fishwick, P.A. 1999. OOPM/RT: A Multimodeling Methodology for Real-Time

Simulation. ACM Transactions on Modeling and Computer Simulation, 9(2):141-170.

Lerner, S. & Millstein, T. & Rice, E. & Chambers, C. 2005. Automated Soundness Proofs for

Dataflow Analyses and Transformations via Local Rules. ACM SIGPLAN Notices, 40(1): 364-377.

Lessmann, S. & Baesens, B. & Mues, C. & Pietsch, S. 2008. Benchmarking Classification Models for

Software Defect Prediction. IEEE Transactions on Software Engineering, 34(4):485-496.

Leszak, M. & Perry, D.E. & Stoll, D. 2002. Classification and Evaluation of Defects in a Project

Retrospective. Journal of Systems and Software, 61(3):173-187.

Leung, H.K.N. 1995. Selective Regression Testing – Assumptions and Fault Detecting Ability.

Information and Software Technology, 37(10): 531-537.

Leung, H. & Tse, T.H. & Chan, F.T. & Chen, T.Y. 2000. Test Case Selection with and without

Replacement. Information Science, 129(1-4): 81-103.

 References

154

Leung, K. R. P. H. & Wong, W. & Kee-Yin NG, J. 2003. Generating Test Cases from Class Vectors.

Journal of Systems and Software, 66(1):35-46.

Leveson, N.G. 1991. An Empirical Comparison of Software Fault Tolerance and Fault Elimination.

IEEE Transactions on Software Engineering, 17(2):173-182.

Levenson, N.G. 1995. Medical Devices: The Therac-25. University of Washington.

From: Leveson, N.: Safeware: System Safety and Computers. Addison Wesley, 1995. 704 Pages.

ISBN 9780201119725.

http://sunnyday.mit.edu/papers/therac.pdf

Leveson, N.G. 2000. Intent Specifications: An Approach to Building Human-Centered Specifications.

IEEE Transactions on Software Engineering, 26(1):15-35.

Leveson, N. 2001. Evaluating Accident Models Using Recent Aerospace Accidents. Part I: Event-

Based Models. [e-document]. 28 Jun, 2001. Software Engineering Research Laboratory, MIT,

Aeronautics and Astrophysics Department, Massachusetts.

http://sunnyday.mit.edu/accidents/nasa-report.pdf

Retrieved: 27 Mar, 2007.

Leveson, N.G. 2004. A New Accident Model for Engineering Safety Systems. Safety Science,

42(2):237-270.

Leveson, N.G. & Cha, S.S. & Knight, J.G. & Shimeall, T.J. 1990. The Use of Self Checks and Voting

Software Error Detection: An Empirical Study. IEEE Transactions on Software Engineering,

16(4):432-443.

Leveson, N.G. & Pinnel, L.D. & Sandys, S.D. & Koga, S. & Reese, J.D. 1997. Analyzing Software

Specifications for Mode Confusion Potential. Workshop on Human Errors and Systems

Development, Glasgow, Mar, 1997.

Leveson, N.G. & Stolzy, J.L. 1987. Safety Analysis Using PETRI Nets. IEEE Transactions on

Software Engineering, SE-13(3):386-397.

Levitt, S.P. 2004. C++: An Evolving Language. Seventh AFRICON Conference in Africa, Sep 15-

17, 2004. 2:1197-1202. ISBN 0-7803-8605-1.

Lew, A. 1982. On the Emulation of Flowcharts by Decision Tables. Communications of the ACM,

52(12): 895-905.

Lew, K.S. & Dillon, T.S. & Forward, K.E. 1988. Software Complexity and Its Impact on Software

Reliability. IEEE Transactions on Software Engineering, 14(11):1645-1655.

Li, H. & Jin. M. & Liu, C. & Gao, Z. 2004. Test Criteria for Context-Free Grammars. Proceedings of

the 28
th

 Annual International Computer Software and Applications Conference, 28-30 Sep. 2004.

Volume 1. IEEE. Pages 300-305. DOI 10.1109/CMPSAC.2004. 1342847.

Li, Y. & Wahl, N.J. 1999. An Overview of Regression Testing. ACM SIGSOFT Software

Engineering Notes, 24(1): 69-73.

Li, Z. & Lu, S. & Myagmar, S. & Zhou, Y. 2006. CP-Miner: Finding Copy-Paste and Related Bugs in

Large-Scale Software Code. IEEE Transactions on Software Engineering, 32(3):176-192.

Li, Z & Zhou, Y. 2005. Bug Localization: PR-Miner: Automatically Extracting Implicit Programming

Rules and Detecting Violations in Large Software Code. ACM SIGSOFT Software Engineering

Notes, 30(5):306-315. SESSION: ESEC/FSE 2005. ISBN 1-59593-014-0.

Liang, D. & Chung, P.E. & Huang, Y. & Kintala, C. & Lee, W.-J. & Tsai, T. K. & Wang, C.-Y. 2004.

NT_SwiFT: Software Implemented Fault Tolerance on Windows NT. Journal of Systems and

Software, 71(1-2):127-141.

 References

155

Liblit, B. & Aiken, A. & Zheng, A.X. & Jordan, M.I. 2003. Sampled User Executions for Bug

Isolation. ICSE First International Workshop on Remote Analysis and Measurement of Software

Systems, 26 Sep, 2003.

Lim, J.B. & Hurson, A.R. 2002. Transaction Processing in Mobile, Heterogeneous Database Systems.

IEEE Transactions on Knowledge and Data Engineering, 14(6):1330-1346.

Lipton, R.J. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Communications

of the ACM, 18(12):717-721.

Littlewood, B. & Miller, D.R. 1989. Conceptual Modeling of Coincident Failures in Multiversion

Software. IEEE Transactions on Software Engineering, 15(12):1596-1614.

Littlewood, B. & Popov, P. & Strigini, L. 2001. Modeling Software Design Diversity - a Review.

ACM Computing Surveys, 33(2):177-208.

Littlewood, B. & Strigini, L. 1993. Validation of Ultrahigh Dependability for Software-Based

Systems. Communications of the ACM, 36(11):69-80.

Littlewood, B. & Wright, D. 1997. Some conservative stopping rules for the operational testing of

safety-critical software. IEEE Transactions on Software Engineering, 23(11):673-683.

Liu, C. & Zhang, X. & Han, J. 2008. A Systematic Study of Failure Proximity. IEEE Transactions on

Software Engineering, 43(6): 826-843.

Liu, H. & Tan, H.B.K. 2009. Covering Code Behavior on Input Validation in Functional Testing.

Information and Software Technology, 51(2): 546-553.

Liu, S. & McDermid, J.A. 1996. A Model-Oriented Approach to Safety Analysis using Fault Trees

and a Support System. Journal of Systems and Software, 35(2):151-164.

Liu, S. & Stavridou, V. & Dutertre, B. 1995. The Practice of Formal Methods in Safety-Critical

Systems. Journal of Systems and Software, 28(1):77-87.

Liu, W. & Easterbrook, S. & Mylopoulos, J. 2002. Fifth International Conference on the Unified

Modeling Language, Dresden, Germany, 1 Oct, 2002. Rule-Based Detection of Inconsistency in UML

Models. Workshop on Consistency Problems in UML-Based Software Development.

http://www.cs.toronto.edu/~sme/papers/2002/uml02wl.18.pdf

Retrieved: 13 Oct, 2008.

Livshits, B. & Zimmermann, T. 2005. Bug Localization: DynaMine: Finding Common Error Patterns

by Mining Software Revision Histories. ACM SIGSOFT Software Engineering Notes, 30(5):296-

305. SESSION: ESEC/FSE 2005. ISSN 0163-5948.

Lo, J.-H. & Huang, C.-Y. & Chen, I.-Y. & Kuo, S.-Y. & Lyu, M.R. 2005. Reliability Assessment and

Sensitivity Analysis of Software Reliability Growth Modeling Based on Software Module Structure.

Journal of Systems and Software, 76(1):3-13

Lomet, D. & Salzberg, B. 1991. Versioned Backups and Index Concurrency Results of Work-in-

Progress. International Workshop on High Performance Transaction Systems, Pacific Grove, CA,

USA, Sep, 1991.

Lopes, A. & Wermelinger, M. & Fiadeiro, J.L. 2003. High-Order Architectural Connectors. ACM

Transactions on Software Engineering and Methodology, 12(1):64-104.

Lubarsky, R.S. 2006. CZF and Second Order Arithmetic. Annals of Pure and Applied Logic, 141(1-

2): 29-34.

Lukasiewicz, T. 2001. Probabilistic Logic Programming with Conditional Constraints. ACM

Transactions on Computational Logic, 2(3): 289-339.

http://www.cs.toronto.edu/~sme/papers/2002/uml02wl.18.pdf

 References

156

Lung, C.-H. & Zaman, M. & Nandi, A. 2004. Applications of Clustering Techniques to Software

Partitioning, Recovery and Restructuring. Journal of Systems and Software, 73(2):227-244.

Luqi & Zhang, L. & Berzins, V. & Qiao, Y. 2004. Documentation Driven Development for Complex

Real-Time Systems. IEEE Transactions on Software Engineering, 30(12):936-952.

Lutz, R.R. 1993. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems.

Proceedings of the IEEE International Symposium on Requirements Engineering, Jan 4-6, 1993.

Lutz, R.R. 1996. Targeting Safety-Related Errors during Software Requirements Analysis. Journal of

Systems and Software, 34(3), 1996:223-320.

Lutz, R.R. & Mikulski, I.C. 2003. Operational Anomalies as a Cause of Safety-Critical Requirements

Evolution. Journal of Systems and Software, 65(2):155-161.

Lutz, R.R. & Mikulski, I.C. 2004. Empirical Analysis of Safety-Critical Anomalies during

Operations. IEEE Transactions on Software Engineering, 30(3):172-180.

Lutz, R.R. & Woodhouse, R.M. 1996. Contributions of SFMEA to Requirements Analysis.

Proceedings of the Second International Conference on Requirements Engineering, Colorado Springs,

CO, USA, 15-18 Apr, 1996. Pages 44-51. ISBN 0-8186-7252-8.

Lyu, M.R. & Nikora, A. 1992. Applying Reliability Models More Effectively. IEEE Software, 9(4):

43-52.

Macqueen, D.B. & Sannella, D.T. 1985. Completeness of Proof Systems for Equational

Specifications. IEEE Transactions on Software Engineering, SE-11(5):454-461.

Madria, S.K. & Maheshwari, S.H. & Chandra, B. & Bhargava, B. 2000. An Open and Safe Nested

Transaction Model: Concurrency and recovery. Journal of Systems and Software 55:151-165.

Maghrabi, T. & Golshani, F. 1992. Automatic Program Generation Using Sequent Calculus.

Proceedings of the 1992 ACM Annual Conference on Communications, Kansas City, MO, USA, 3-5

Mar, 1992. Pages 73-82. ISBN 0-89791-472-4.

Makarov, Y. 2006. Practical Program Extraction from Classical Proofs. Electronic Notes in Theoretic

Computer Science, 155:521-542.

Makowsky, J.A. 1992. Model Theory and Computer Science: An Appetizer. In: Abramsky, S. &

Gabbay, D.M. & Maibaum, T.S.E. (eds.): Handbook of logic in computer science. Vol. 1 :

Background : Mathematical Structures. Oxford: Clarendon Press. 840 pages. Pages 763-814. ISBN

0198537352.

Malaiya, Y.K. 1995. Antirandon Testing: Getting the Most out of Black-Box Testing. IEEE

Proceedings on the 6th International Symposium on Software Reliability Engineering, Toulouse,

France, 24-27 Oct, 1995. Pages 86-95. ISBN 0-8186-7131-9.

Malevris, N. 1995. A Path Generation Method for Testing LCSAJs That Restrains Infeasible Paths.

Information and Software Technology 37(8):435-441.

Malhart, B.E. 1995. Software Fault Tree Analysis for Requirements System Model. Proceedings of

the 1995 International Symposium and Workshop on Systems Engineering of Computer Based

Systems, Tuscon, AZ, USA, 6-9 Mar, 1995. Pages 133-140. ISBN 0-7803-2531-1.

 References

157

Maples, W. (last modified). 2004. Admin Tips >> Windows Server 2008/2003/2000/XP/NT

Administration Knowledge Base >> Windows NT >> Admin Tips >> Utilities >> Windows Freeware

exe, dll, ocx, sys Dependency Walker. Windowsnetworking.com. Copyright TechGenix Ltd. Last

modified: 20 Apr, 2004.

http://www.windowsnetworking.com/kbase/WindowsTips/WindowsNT/AdminTips/Utilities/Window

sFreewareexedllocxsysDependencyWalker.html

Retrieved: 7 Oct, 2008.

Marick, B. 1997. Classic testing Mistakes. [e-document]. Testing Foundations.

http://www.testing.com/writings/classic/mistakes.pdf

Retrieved: 22 Mar, 2007.

Marin, M. & Deursen, A.V. & Moonen, L. 2007. Identifying Crosscutting Concerns Using Fan-In

Analysis. ACM Transactions on Software Engineering and Methodology, 17(1), article 3, 17 pages.

Marinov, D. & Andoni, A. & Daniliuc, D. & Khurshid, S. & Rinard, M. 2003. An Evaluation of

Exhaustive Testing for Data Structures. MIT Computer Science and Artificial Intelligence

Laboratory, Cambridge, MA, USA. Technical Report, MIT-LCS-TR-92. Sep, 2003.

Marinov, D. & Khurshid, S. 2001. TestEra: A Novel Framework for Automated Testing of Java

Programs. Proceedings of the 16
th

 Annual International Conference on Automated Software

Engineering, 26-29 Nov, 2001. IEEE. Pages 22-31.

Markowitz, V. & Shoshani, A. 1989. On the Correctness of Representing Extended Entity-

Relationship Structures in the Relational Model. ACM SIGMOD Record, 18(2): 430-439.

Marlowe, T.J. & Ryder B.G. 1989. An Efficient Hybrid Algorithm for Incremental Data Flow

Analysis. Proceedings of the 17
th

 ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. Pages 184-196. ISBN 0-89791-343-4.

Marré, M. & Bertolino, A. 2003. Using Spanning Sets for Coverage Testing. IEEE Transactions on

Software Engineering 29(11): 974-984.

Martin, M. & Livshits, B. & Lam, M.S. 2005. Finding Application Errors and Security Flaws Using

PQL: A Program Query Language. ACM SIGPLAN Notices. Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and Applications,

40(10):365-383. SESSION: Tracing traces. ISSN 0362-1340.

Mauborgne, L. 2003. Infinity Relations and Their Representation. Science of Computer

Programming, 47(2-3):121-144.

Maxion, R.A. & Olszewski, R.T. 2000. Eliminating Exception Handling Errors with Dependability

Cases: A Comparative, Empirical Study. IEEE Transactions on Software Engineering, 26(9):888-

906.

McGeoch, C. 1992. Analyzing Algorithms by Simulation: Variance Reduction Techniques and

Simulation Speedways. ACM Computing Surveys, 24(2):195-212.

McKeeman, W.M. 1975. On Preventing Programming Language from Interfering with Programming.

IEEE Transactions on Software Engineering, 1(1):19-26.

MCOMIB. 1999. Mars Climate Orbiter Mishap Investigation Board: Phase 1 report. 10 Nov, 1999.

NASA MCO Mission Failure Mishap Investigation Board.

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

www.space.com/media/mco_report.pdf

Retrieved: 9 May, 2008.

Medvidovic, N. & Grünbacher, P. & Egyed, A. & Boehm, B.W. 2003. Bridging Models Across the

Software Lifecycle. Journal of Systems and Software, 68(3):199-215.

http://www.windowsnetworking.com/kbase/WindowsTips/WindowsNT/AdminTips/Utilities/WindowsFreewareexedllocxsysDependencyWalker.html
http://www.windowsnetworking.com/kbase/WindowsTips/WindowsNT/AdminTips/Utilities/WindowsFreewareexedllocxsysDependencyWalker.html
http://www.space.com/media/mco_report.pdf

 References

158

Menzies, T. & Greenwald, J. & Frank, A. 2007. Data Mining Static Code Attributes to Learn Defect

Predictors. IEEE Transactions on Software Engineering, 33(1): 2-13.

Meunier, J.G, & Biskri, I. & Forest, D. 2005. A Model for Computer Analysis and Reading of Text

(CARAT): The SATIM Approach. TEXT Technology. The Journal of Computer TEXT Processing,

14(2). The Society of Digital Humanities, Canada. Pages 123-152.

http://texttechnology.mcmaster.ca/pdf/vol14_2/meunier14-2.pdf

Retrieved: 23 Oct, 2008.

Meyer, B. 2003. A Framework for Proving Contract-Equipped Classes. Abstract State Machines.

Lecture Notes in Computer Science. Springer-Verlag. Pages 108-125. ISBN 978-3-540-00624-4.

Michael, C.C. & Jones, R.C. 1996. On the Uniformity of Error Propagation in Software. RST

Corporation, Sterling, VA, USA. Technical Report RSTR-96-003-4. 5. Nov, 1996.

MIL-STD 882B. 1984. System Safety Program Requirements. Military Standard, 30 Mar, 1984.

AMSC number F3329 FSC SAFT. Department of Defence, Washington DC, USA.

Mill, A. 1985. Towards a Theory of Forward Error Recovery. IEEE Transactions on Software

Engineering, SE-11(8):735-748.

Miller, B.P. & Fredriksen, L. & So, B. 1990. An empirical study of the reliability of UNIX utilities.

Communications of the ACM, 33(12):32-44.

Miller, B.P. & Koski, D. & Lee, C.P. & Maganty, V. & Murthy, R. & Matarajan, A. & Steidl, J.

1995. Fuzz Revisited: A Re-Examination of the Reliability of UNIX Utilities and Services. The

University of Wisconsin, USA, Computer Science Department, CS-TR-1995-1268.

Miller, D. 1994. A Multiple-Conclusion Meta Logic. Proceedings of the 1994 Symposium on Logic

in Computer Science, Paris, France, 4-7 Jul, 1994. IEEE. Pages 272-281. DOI

10.1109/LICS.1994.316062.

Miller, J. 2000. Applying Meta-Analytical Procedures to Software Engineering Experiments. Journal

of Systems and Software, 54(1):29-39.

Miller, J. & Roper, M. & Wood, M. & Brooks, A. 1995. Towards a Benchmark for the Evaluation of

Software Testing Techniques. Information and Software Technology 37(1):5-13.

Miller, K.W. & Morell, L.J. & Noonan, R.E. & Park, S.K. & Nicol, D.M. & Murrill, B.W. & Voas,

M. 1992. Estimating the Probability of Failure When Testing Reveals No Failures. IEEE

Transactions on Software Engineering, 18(1):33-43.

Mitchell, B. & Zeil, S.J. 1996. A Reliability Model Combining Representative and Directed Testing.

Proceedings of the 18th International Conference on Software Engineering. 25-30 Mar, 1996. IEEE.

DOI 10.1109/ICSE.1996.493445.

Modugno, F. & Leveson, N.G. & Reese, J.D. & Partridge, K. & Sandys, S.D. 1997. Integrated Safety

Analysis of Requirements Specifications. Proceedings of the 3rd International Symposium on

Requirements Engineering, Annapolis, MD, USA, 6-10 Jan, 1997. Pages 148-159. ISBN 0-8186-

7740-6.

Moher, T.G. 1988. PROVIDE: A Process Visualization and Debugging Environment. IEEE

Transactions on Software Engineering, 14(6): 849-857.

Mohri, Y. & Kikuno, T. 1991. Fault Analysis Based on Fault Reporting in JSP Software

Development. Proceedings of the 15th Annual International Computer Software and Applications

Conference COMPSAC 1991, Tokyo, Japan, 11-13 Sep, 1991. Pages 591-596. ISBN 0-8186-2152-4.

Mok, A.K. & Konana, P. & Guangtian Liu & Chan-Gun Lee & Honguk Woo. 2004. Specifying

Timing Constraints and Composite Events: An Application in the Design of Electronic Brokerages.

IEEE Transactions on Software Engineering, 30(12):841-858.

http://texttechnology.mcmaster.ca/pdf/vol14_2/meunier14-2.pdf

 References

159

Moonen, L. 1997. A Generic Architecture for Data Flow Analysis to Support Reverse Engineering.

2
nd

 International Workshop on the Theory and Practice of Algebraic Specifications, Amsterdam,

Holland, 25-26 Sep, 1997. Springer. ISBN 3-540-76228-0.

Morasca, S. 2002. A Proposal for Using Continuous Attributes in Classification Trees. Proceedings

of the 14th International Conference on Software Engineering and Knowledge Engineering, Aschia,

Italy, Jul 15-19, 2002. SESSION: Measurement and Empirical Software Engineering. ACM

International Conference Proceeding Series, 27:417-424. ACM Press, New York, NY, USA. ISBN 1-

58113-556-4.

Morasca, S. & Ruhe, G. 2000. A Hybrid Approach to Analyze Empirical Software Engineering Data

and its Application to Predict Module Fault-Proness in Maintenance. Journal of Systems and

Software, 53(3):225-237.

Morell, L.J. 1990. A Theory of Fault-Based Testing. IEEE Transactions on Software Engineering,

16(8):844-857.

Moret, B.M.E. 1982. Decision Trees and Diagrams. ACM Computing Surveys 14(4):593-623.

Morris Jr., J.H. & Wegbreit, B. 1977. Subgoal Induction. Communications of the ACM 20(4):209-

222.

Morris, J.M. & Bunkenburg, A. 2002. A Source of Inconsistency in Theories of Nondeterministic

Functions. Science of Computer Programming 43(1):77-89.

Mossé, D. & Melhem, R. & Sunondo Ghosh. 2003. A Nonpreemptive Real-Time Scheduler with

Recovery from Transient Faults and Its Implementation. IEEE Transactions on Software

Engineering, 29(8): 752-767.

Motteler, H. & Chung, A. & Sidhu, D. 1995. Undetected Faults in Protocol Testing. IEEE

Transactions on Communications, 43(8):2289-2297.

Moynihan, T. 2000.: Coping with 'requirements-uncertainty': the theories-of-action of experienced

IS/software project managers. Journal of Systems and Software, 53(2):99-109.

Muccini, H. & Bertolino, A. & Inverardi, P. 2004. Using Software Architecture for Code Testing.

IEEE Transactions on Software Engineering, 30(3):160-171.

Mullen, R.E. 1998. The Lognormal Distribution of Software Failure Rates: Origin and Evidence. The

Ninth International Symposium on Software Reliability Engineering, 4-7 Nov, 1998. IEEE. Pages

124-133.

Mulvihill, R.J. 1988. Design-Safety Enhancement Through the Use of Hazard and Risk Analysis.

IEEE Transactions on Reliability, 37(2):149-158.

Munoz, C.U. 1988. An Approach to Software Product Testing. IEEE Transactions on Software

Engineering, 14(11):1589-1596.

Munson, J.C. & Khoshgoftaar, T.M. 1992. The Detection of Fault-Prone Programs. IEEE

Transactions on Software Engineering, 18(5):423-433.

Munson, S. 1999. Assessment of Accident Investigation Methods for Wildland Firefighting Incidents

by Case Study Method. Thesis. University of Montana.

http://www.iprr.org/3PROJ/Munpaper.html

Retrieved: 24 Mar, 2007.

Murata, T. 1989. Petri Nets: Properties, Analysis, and Applications. Proceedings of the IEEE, 77(4):

541-580.

http://www.iprr.org/3PROJ/Munpaper.html

 References

160

Murphy, G.C. & Notkin, D. & Sullivan, K.J. 2001. Software Reflexion Models: Bridging the Gap

Between Design and Implementation. IEEE Transactions on Software Engineering, 27(4):364-380.

Murrill, B.W. 2008. An Empirical Path-oriented Approach to Software Analysis and Testing. Journal

of Systems and Software 81(2): 249-261.

Musa, J.D. & Okumoto, K. 1984. A Logarithmic Poisson Execution Time Model for Software

Reliability Measurement. IEEE Proceedings of the 7th International Conference on Software

Engineering, Orlando, Florida, USA, 26-29 Mar, 1984. IEEE Press, Piscataway, NJ, USA. Pages 230-

238. ISBN ISSN 0270-5257, 0-8186-0528-6.

Myrtveit, I. & Stensrud, E. & Shepperd, M. 2005. Reliability and Validity in Comparative Studies of

Software Prediction Models. IEEE Transactions on Software Engineering, 31(5):380-391.

Naixin, L. & Malaiya, Y.K. 1994. On Input Profile Selection for Software Testing. Proceedings of

the 5th International. Symposium on Software Reliability Engineering, Monterey, CA, USA, 6-9 Nov,

1994. Pages 196-205. ISBN 0-8186-6665-X.

Nakajo, T. & Azuma, I. & Tada, M. 1993. A Case History Development of a Foolproofing Interface

Documentation System. IEEE Transactions on Software Engineering, 19(8):765-773.

Nakajo, T. & Kume, H. 1991. A Case History Analysis of Software Error Cause-Effect Relationships.

IEEE Transactions on Software Engineering, 17(8):830-838.

Nakashima, T. & Oyama, M. & Hisada, H. & Ishii, N. 1999. Analysis of Software Bug Causes and its

Prevention. Information and Software Technology, 41(15):1059-1068.

NASA (National Aeronautics and Space Administration). 1999. MISR Multi-Angle Imaging

SpectroRadiometer. Status 27 Dec, 1999. By Diner, D. NASA Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA, USA.

http://www-misr.jpl.nasa.gov/news/1999/news122799.html

Retrieved: 9 May, 2008.

NASA. 2003. Space Shuttle Launch Archive. Space Shuttle Launch Archive last modified 1 Feb,

2003. Web page author: Dumoulin, J. Kennedy Space Center, Cape Canaveral, FL, USA.

http://science.ksc.nasa.gov/shuttle/missions/sts-missions-flown-01.txt

Retrieved: 9 May, 2008.

NASA. 2006. The ROSAT Mission (1990-1999). ROSAT Guest Observer Facility. Last modified: 7

Sep, 2006. Heasarc (High Energy Astrophysics Science Archive Research Center). Astrophysics

Science Division at the NASA Gobbard Space Flight Center; and at the High Energy Astrophysics

Division of the Smithsonian Astrophysical Observatory, Cambridge, MA.

http://heasarc.gsfc.nasa.gov/docs/rosat/rosgof.html

Retrieved: 9 May, 2008.

NASA. 2007. Almost perfect. System Failure Case Studies 1(3). [case study report on-line]. Jan,

2007. Process Based Mission Assurance Knowledge Management System.

pbma.hq.nasa.gov/pbma_main_cid_582

Retrieved: 5 May, 2008.

Naumov, P. 2006. Logic of Subtyping. Theoretical Computer Science, 357: 167-185.

Naumovich, G. & Avrunim, G.S. & Clarke, L.A. 1999. Data Flow Analysis for Checking Properties

of Concurrent Java Programs. Proceedings of the 21st International Conference on Software

Engineering, Los Angeles, CA, USA, 16-22 May, 1999. IEEE Computer Society, Los Alamitos, CA,

USA. Pages 399-410. ISBN 1-58113-074-0.

Navarro, I. & Leveson, N.G. & Lundqvist, K. 2001. Reducing the Effects of System Changes through

System Design. MIT SERL Technical Report. Massachusetts Institute of Technology, USA.

http://www-misr.jpl.nasa.gov/news/1999/news122799.html
http://science.ksc.nasa.gov/shuttle/missions/sts-missions-flown-01.txt
http://heasarc.gsfc.nasa.gov/docs/rosat/rosgof.html

 References

161

NEAR Anomaly Rendezvous Board. 1999. The NEAR Rendezvous Burn Anomaly of December

1998. Final Report of the NEAR (Near Earth Asteroid Rendezvous) Anomaly Review Board. The

Johns Hopkins University Applied Physics Laboratory. Nov 1999.

http://near.jhuapl.edu/anom/Hoffman.pdf

Retrieved: 9 May, 2008.

Negrini, R.M. & Sami, M. 1983. Some Properties Derived From Structural Analysis of Program

Graph Models. IEEE Transactions on Software Engineering, SE-9(2):172-178.

Neumann, D.E. 2002. An Enhanced Neural Network Technique for Software Risk Analysis. IEEE

Transactions on Software Engineering, 28(9):904-912.

Neumann, P.G. 1985. Computer-Related Incidents Illustrating Risks to the Public. In: P.G. Neumann

(Moderator). Risk Digest. Forum on Rules to Public in Computers and Related Systems. ACM

Committee on Computers and Public Policy. 1(1).

http://catless.ncl.ac.uk/Risks

Retrieved: 24 Apr, 2007.

Neumann, P.G. 1986. On Hierarchical Design of Computer Systems for Critical Applications. IEEE

Transactions on Software Engineering, SE-12(9):905-920.

Neumann, P.G. 2007. Illustrative Risks to the Public in the Use of Computer Systems and Related

Technology. [e-document]. Computer Science Laboratory. SRI International, Menlo Park, CA, USA.

http://www.csl.sri.com/users/neumann/illustrative.html#6

Retrieved: 24 Mar, 2007.

Ng, S.H. & Chick, S.E. 2001. Analysis Methodology: Reducing Input Parameter Uncertainty for

Simulations. Proceedings of the 33th International Conference on Winter Simulation. Arlington,

Virginia, USA, 9-12 Dec, 2001. SESSION: Analysis Methodology. IEEE Computer Society,

Washington DC, USA. Pages 364-371. ISBN 0-7803-7309-X.

Ngo, M.N. & Tan, H.B.K. 2008. Heuristic-Based Infeasible Path Detection for Dynamic Test Data

Generation. Information and Software Technology, 50(7-8): 641-655.

Nicola, V.F. & Goyal, A. 1990. Modeling of Correlated Failures and Community Error Recovery in

Multiversion Software. IEEE Transactions on Software Engineering, 16(3): 350-359.

Nicola, V.F. & van Spanje, J.M. 1990. Comparative Analysis of Different Models of Checkpointing

and Recovery. IEEE Transactions on Software Engineering, 16(8):807-821.

Nicollin, X. & Sifakis, J. & Yovine, S. 1992. Compiling Real-Time Specifications into Extended

Automata. IEEE Transactions on Software Engineering, 18(9): 794-804.

Nikolik, B. 2005. Convergence Debugging. ACM Proceedings of the Sixth International Symposium

on Automatic Analysis-Driven Debugging, Monterey, CA, USA, 19-21 Sep, 2005. ACM Press, New

York, NY, USA. Pages 89-98. ISBN 1-59593-050-7.

Nikolik, B. 2006. Test Diversity. Information and Software Technology, 48(11):1083-1094.

Ntafos, S.C. 1988. A Comparison of Some Structural Testing Strategies. IEEE Transactions on

Software Engineering, 14(6):868-874.

Ntafos, S.C. 2001. On Comparisons of Random, Partition, and Proportional Partition. IEEE

Transactions on Software Engineering, 27(10):949-960.

Ntafos, S.C. & Hakimi, S.L. 1979. On Path Cover Problems in Digraphs and Applications to Program

Testing. IEEE Transactions on Software Engineering, SE-5(5):520-529.

http://near.jhuapl.edu/anom/Hoffman.pdf
http://catless.ncl.ac.uk/Risks

 References

162

NTSB. 1980. Aircraft Incident Report. AEROMEXICO DC-10-30, XA-DUH Over Luxembourg,

Europe, Nov 11, 1979. NTSB-AAR-80-10. Washington DC, USA. Nov, 1980.

http://www.airdisaster.com/reports/ntsb/AAR80-10.pdf

Retrieved: 9 May, 2008.

Nussbacher, H. 1992. SEN "Horror Stories". [e-message on discussion board]. 16. Mar, 1992. Last

changed: 31 Jul, 1993. Bar-Ilan University Computing Center, Israel. Contains ACM SEN VMshare

material, contributors: Calender, D. & Corp, A. Web page maintained by Lamb, D.A., Queens

University, Kingston, Ontario, Canada.

http://www.cs.queensu.ca/Software-Engineering/archive/horror

Retrieved: 24 Mar, 2007.

Oehlert, P. 2005. Violating Assumptions with Fuzzing. IEEE Security and Privacy 3(2): 58-62.

Offutt, A.J. 1992. Investigations of the Software Testing Coupling Effect. ACM Transactions on

Software Engineering and Methodology, 1(1):5-20.

Offutt, A.J. & Abdurazik, A. & Alexander, R.T. 2000. An Analysis Tool for Coupling-Based

Integration Testing. Proceedings of the sixth IEEE International Conference on Engineering of

Complex Computer Systems, 11-14 Sep, 2000. IEEE. Pages172-178. DOI

10.1109/ICECCS.2000.873942.

Offutt, A.J. & Lee, A. & Rothermel, G. & Untch, R.H. & Zapf, C. 1996. An Experimental

Determination of Sufficient Mutant Operators. ACM Transactions on Software Engineering and

Methodology, 5(2): 99-118.

Ohba, M. 1982. Software Quality = Test Accuracy x Test Coverage. Proceedings of the 6th

International Conference on Software Engineering, Tokyo, Japan, 13-16 Sep, 1982. IEEE Computer

Society Press, Los Alamitos, CA, USA. P. 287-293. ISSN 0270-5257.

Okun, V.. & Black, P.E. & Yesha, Y. 2004. Comparison of Fault Classes in Specification-Based

Testing. Information and Software Technology 46(8):525-533.

Olender, K.M. & Osterweil, L.J. 1992. Interprocedural Static Analysis of Sequencing Constraints.

ACM Transactions on Software Engineering and Methodology, 1(1):21-52.

Orso, A. & Sinha, S. & Harrold, M.J. 2004. Classifying Data Dependences in the Presence of Pointers

for Program Comprehension, Testing, and Debugging. ACM Transactions on Software Engineering

and Methodology, 13(2):199-239.

Ostrand, T.J. & Balcer, M.J. 1988. The Category-Partition Method for Specifying and Generating

Functional Tests. Communications of the ACM 31(6):676-686.

Ostrand, T.J. & Weyuker, E.J. 2002. The Distribution of Faults in a Large Industrial Software System.

ACM SIGSOFT Software Engineering Notes, Proc 2002 ACM SIGSOFT international symposium on

Software testing and analysis, 27(4), Jul Roma, Italy, 22-24 Jul, 2002. SESSION: Faults and Failure

Analysis. ACM Press, New York, USA. Pages 55-64. ISBN ISSN 0163-5948, 1-58113-562-9.

Ostrand, T.J. & Weyuker, E.J. & Bell, R.M. 2005. Predicting the Location and Number of Faults in

Large Software Systems. IEEE Transactions on Software Engineering, 31(4):340-355.

Ostroff, J.S. 1992. Formal Methods for the Specification and Design of Real-Time Safety Critical

Systems. Journal of Systems and Software, 18(1):33-60.

Ou, Y. & Dugan, J.B. 2000. Sensitivity Analysis of Modular Dynamic Fault Trees. Proceedings on

IEEE International Computer Performance and Dependability Symposium, IPDS, 27-30 Mar, 2000.

IEEE Computer Society, Washington DC, USA. Pages 35-43. ISBN 0-7695-0553-8.

Owre, S. & Rushby, J. & Snahkar, N. & von Henke, F. 1995. Formal Verification for Fault-Tolerant

Architectures: Prolegomena to the Design of PVS. IEEE Transactions on Software Engineering,

21(2): 107-125.

http://www.airdisaster.com/reports/ntsb/AAR80-10.pdf

 References

163

Oxford English Dictionary IV. 1989. Oxford English Dictionary. Simpson, J.A. & Weiner, E.S.C.

(preparers). Second edition, vol. IV. Cladenron Press. Oxford 1989.

ISBN 0-19-861216-2. Set ISBN: 0-19-861186-2.

Oxford English Dictionary VI. 1989. Oxford English Dictionary. Simpson, J.A. & Weiner, E.S.C.

(preparers). Second edition, vol. VI. Cladenron Press. Oxford 1989.

ISBN 0-19-861218-4. Set ISBN: 0-19-861186-2.

Ozsoyoglu, G. & Wang, H. 1989. A Relational Calculus with Set Operations, Its Safety, and

Equivalent Graphical Languages. IEEE Transactions on Software Engineering, 15(9): 1038-1052.

Padberg, F. & Ragg, T. & Schoknecht R. 2004. Using Machine Learning for Estimating the Defect

Content After an Inspection. IEEE Transactions on Software Engineering, 30(1):17-28.

Palsberg, J. 1998. Equality-Based Flow Analysis Versus Recursive Types. ACM Transactions on

Programming Languages and Systems, 20(6):1251-1264.

Pan, J. 1999. The Dimensionality of Failures - A Fault Model for Characterizing Software

Robustness. Proceedings of the Fault Tolerant Computer Symposium, Madison, WI, USA, 15-18 Jun,

1999.

Paradkar, A. 2005. Case Studies on Fault Detection Effectiveness of Model Based Test Generation

Techniques. ACM SIGSOFT Software Engineering Notes. SESSION: Advances in Model-Based

Testing (A-MOST 2005). 30(4):1-7. ISBN 1-59593-115-5.

Parker, D.S. 1989. Partial Order Programming (Extended Abstract). Proceedings of the 16
th

 ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages: 260-266.

Parnas, D.L. 1993. Predicate Logic for Software Engineering. IEEE Transactions on Software

Engineering, 19(9):856-862.

Parrish, A. & Zweben, S.H. 1991. Analysis and Refinement of Software Test Data Adequacy

Properties. IEEE Transactions on Software Engineering, 17(6):565-581.

Pasquini, A. & De Agostino, E. & Di Marco, G.D. 1996. An Input-Domain Based Method to Estimate

Software Reliability. IEEE Transactions on Reliability, 45(1):95-105.

Payne, J. 2005. University of Edinburgh Logic 1 - Tutorial Handout 1. Connectives, Formulae, and

Scope.

http://homepages.ed.ac.uk/s0344154/teaching/logic/guides/handout1.pdf

Retrieved: 24 Oct, 2008.

Pedreschi, D. & Ruggieri, S. 2003. On Logic Programs that Always Succeed. Science of Computer

Programming, 48(2-3):163-196.

Pedrycz, W. & Succi, G. 2005. Genetic Granular Classifiers in Modeling Software Quality. Journal

of Systems and Software, 76(3):277-285.

Peleg, M. & Dori, D. 2000. The Model Multiplicity Problem: Experimenting with Real-Time

Specification Methods. IEEE Transactions on Software Engineering, 26(8):742-759.

Peng, W.W. & Wallace, D.R. 1993. Software Error Analysis. U.S. Department of Commerce.

Technology Administration. National Institute of Standards and Technology. Computer Laboratory.

Gaithersburg, MD, USA. NIST Special Publication 500-209. Mar, 1993.

Perry, D.E. & Wolf, A.L. 1992. Foundations for the Study of Software Architecture. ACM SIGSOFT

Software Engineering Notes, 17(4):40-52. ACM Press, New York, NY, USA. ISSN 0163-5948.

 References

164

Petersson, H. & Thelin, T. & Runeson, P. & Wohlin, C. 2004. Capture-Recapture in Software

Inspection after 10 Years Research - Theory, Evaluation and Application. Journal of Systems and

Software, 72(2):249-264.

Petrenko, A. & Boroday, S. & Groz, R. 2004. Confirming Configurations in EFSM Testing. IEEE

Transactions on Software Engineering, 30(1):29-42.

Pettorossi, A. & Proietti, M. 2004. A Theory of Totally Correct Logic Program Transformations.

Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based

Program Manipulation, Verona, Italy, 24-25 Aug, 2004. Pages 159-168.

Pfleeger, S.L. 2000. Risky Business: What we Have Yet to Learn About Risk Management. Journal

of Systems and Software, 53(3):265-273.

Phillips, I.C.C. 1992. Recursion Theory. In: Abramsky, S. & Gabbay, D.M. & Maibaum, T.S.E.

(eds.): Handbook of logic in computer science. Vol. 1 : Background : Mathematical Structures.

Oxford: Clarendon Press. 840 pages. Pages 763-814. ISBN 0198537352.

Phillips, N.C.K. 1984. Safe Data Type Specifications. IEEE Transactions on Software Engineering,

10(3):285-289.

Pighin, M. & Marzona, A. 2003. An Empirical Analysis of Fault Persistence through Software

Releases. Proceedings on the 2003 International Symposium on Empirical Software Engineering, 30

Sep – 1 Oct, 2003. IEEE Computer Society, Washington DC, USA. P. 206-212. ISBN 0-7695-2002-2.

Pillai, K. & Nair, V.S.S. 1997. Statistical Analysis of Nonstationary Software Metrics. Information

and Software Technology, 39(5): 363-373.

Pitt, D.H. & Shields, M. 2002. Local Invariance. Formal Aspects of Computing, 14(1):35-54.

Podgurski, A. & Clarke, L.A. 1990. A Formal Model of Program Dependences and its Implications

for Software Testing, Debugging, and Maintenance. IEEE Transactions on Software Engineering,

16(9):965-979.

Podgurski, A. & Masri,W. & Mccleese, Y. & Wolff, F.G. & Yang, C. 1999. Estimation of Software

Reliability by Stratified Sampling. ACM Transactions on Software Engineering and Methodology,

8(3): 263-283.

Pohjolainen, P. 2002. Software Testing Tools. The University of Kuopio.

http://www.cs.uku.fi/research/Teho/SoftwareTestingTools.pdf

Retrieved: 9 May, 2008.

Poigné, A. 1992. Basic Category Theory. In: Abramsky, S. & Gabbay, D.M. & Maibaum, T.S.E.

(eds.): Handbook of logic in computer science. Vol 1. Pages 416-640. ISBN 0198537352.

Pop, P.C. 2002. The Generalized Minimum Spanning Tree Problem. PhD Thesis. University of

Twente. Twente University Press, Enschede, Netherlands. ISBN 9036517850.

http://www.ub.utwente.nl/webdocs/tw/1/t0000021.pdf

Retrieved: 14 Oct, 2008.

Porter, A. & Siy, H. & Mockus, A. & Votta, L. 1998. Understanding the Sources of Variation in

Software Inspections. ACM Transactions on Software Engineering and Methodology 7(1): 41-79.

Porter, A.A. & Siy, H.P. & Toman, C.A. & Votta, L.G. 1997. An Experiment to Assess the Cost-

Benefits of Code Inspections in Large Scale Software Development. IEEE Transactions on Software

Engineering, 23(6): 329-346.

Porter, A.A. & Votta, L.G., Jr. & Basili, V.R. 1995. Comparing Detection Methods for Software

Requirements Inspections: A Replicated Experiment. IEEE Transactions on Software Engineering,

21(6):563-575.

 References

165

Porwal, R. & Gursaran. 2004. An Experimental Evaluation of Weak-Branch Criterion for Class

Testing. Journal of Systems and Software, 70(1-2):209-224.

Potgieter, P.H. 2006. Zeno Machines and Hypercomputation. Theoretical Computer Science,

358(1):23-33.

Powell, D. 1992. Failure Mode Assumptions and Assumption Coverage. 22nd International

Symposium on Fault Tolerant Computing, Boston, MA, USA, 8-10 Jul, 1992. IEEE Computer

Society. Pages 386-395. ISBN 0-8186-2875-8.

Prasad, D. 2006. SLAM and BLAST. Model Checking Tools. In: Strunk, E.A. & Aiello, A. & Knight,

J.C. (eds.): A Survey of Tools for Model Checking and Model-Based Development. Department of

Computer Science. University of Virginia. Technical Report CS-2006-17. Pages 5-19.

Prasad D. & McDermid, J. 1999. Dependability Evaluation using a Multi- Criteria Decision Analysis

Procedure. Proceedings of the Conference on Dependable Computing for Critical Applications, 6-8

Jan, 1999. IEEE Computer Society, Washington DC, USA. Pages 339-358. ISBN 0-7695-0248-9.

Prather, R.E. & Myers, J.P., Jr. 1987. The Path Prefix Software Testing Strategy. IEEE Transactions

on Software Engineering, SE-13(7):761-766.

Preparata, F.P. & Metze, G. & Chien, R.T. 1967. On the Connection Assignment Problem of

Diagnosable Systems. IEEE Transactions on Electronic Computers EC-16(6):848-854.

Pretschner, A. & Lötzbeyer, H. & Philipps, J. 2004. Model Based Testing in Incremental System

Development. Journal of Systems and Software, 70(3):315-329.

Probert, R.L. 1982. Optimal Insertion of Software Probes in Well-Delimited Programs. IEEE

Transactions on Software Engineering, SE-8(1):34-42.

Pucci, G. 1992. A New Approach to the Modeling of Recovery Block Structures. IEEE Transactions

on Software Engineering, 18(2):159-167.

QADownLoads

Quality Assurance and Software Testing Downloads.

http://www.qadownloads.com/Tools/

Qin, F. & Tucek, J. & Sundaresan, J. & Zhou, Y. 2005.

Rx: Treating Bugs as Allergies---A Safe Method to Survive Software Failures. ACM SIGOPS

Operating Systems Review, Proceedings of the 20th ACM Symposium on operating systems

principles, Brighton, UK, 2005. SESSION. bugs. ACM Press, New York, NY, USA. 39(5):235-248.

ISSN 0163-5980.

Rai, A. & Song, H. & Troutt, M. 1998. Software Quality Assurance: An Analytical Survey and

Research Prioritization. Journal of Systems and Software, 40(1):67-83.

Rainer, A. & Hall, T. 2003. A Quantitative and Qualitative Analysis of Factors Affecting Software

Processes. Journal of Systems and Software, 66(1):7-21.

Rallis, N.E. & Lansdowne, Z.F. 2001. Reliability Estimation for a Software System with Sequential

Independent Reviews. IEEE Transactions on Software Engineering, 27(12):1057-1061.

Ramamoorthy, C.V. & Bastani, F.B. 1982. Software Reliability - Status and Perspective. IEEE

Transcations on Software Engineering, SE-8(4):354-371.

Ramamoorthy, C.V. & Garg, V.K. & Prakash, A. 1986. Programming in the Large. IEEE

Transactions on Software Engineering, 12(7):769-783.

Ramesh, B. & Edwards, M. 1993. Issues in the Development of a Requirements Traceability Model.

Proceedings of the IEEE International Symposium on Requirements Engineering, San Diego, CA,

USA, 4-6 Jan, 1993. Pages 256-259. ISBN 0-8186-3120-1.

 References

166

Raymond, E.S. 2003. The Jargon File, version 4.4.7. Schroedingbug. 29 Dec, 2003.

http://catb.org/jargon/html/S/schroedinbug.html

Retrieved: 28 Oct, 2008.

Ravn, A.P. & Rischel, H. & Hansen, K.M. 1993. Specifying and Verifying Requirements of Real-

Time Systems. IEEE Transactions on Software Engineering, 19(1):41-55.

Redwine, S.T., Jr. 1983. An Engineering Approach to Software Test Data Design. IEEE Transactions

on Software Engineering, SE-9(2):191-200.

Reese, J.D. & Leveson, N.G. 1997. Software Deviation Analysis. International Conference on

Software Engineering, Boston, MA, 17-13 May, 1997.

http://sunnyday.mit.edu/papers/sda.pdf

Retrieved: 9 May, 2008.

Regnell, B. & Runeson, P. & Wohlin, C. 2000. Towards Integration of Use Case Modelling and

Usage-Based Testing. Journal of Systems and Software, 50(2):117-130.

Reid, W.S. 1995. Tales from the Crucible Secrets of a High Tech Expert. [Professor Huckle‟s

webpage]. University of Munich, Germany.

http://www5.in.tum.de/~huckle/trenches.htm

Retrieved: 24 Mar, 2007.

Reps, T. 2000. Undecidability of Context-Sensitive Data-Independence Analysis. ACM Transactions

on Programming Languages and Systems, 22(1):162-186.

Richardson, D.J. & Thompson, M.C. 1993. An Analysis of Test Data Selection Criteria Using the

RELAY Model of Fault Detection. IEEE Transactions on Software Engineering, 19(6):533-553.

Rine, D. 1996. Sharing Objects as Structural Defects in Object-Oriented Programming without Safe

Typing. Information and Software Technology 38(7):451-453.

Robillard, M.P. 2008. Topology Analysis of Software Dependencies. ACM Transactions on Software

Engineering and Methodology, 17(4), article 8, 36 pages.

Robillard, M.P. & Coelho, W. & Murphy, G.C. 2004. How Effective Developers Investigate Source

Code: An Exploratory Study. IEEE Transactions on Software Engineering, 30(12):889-903.

Robillard, M.P. & Murhpy, G.C. 2007. Representing Concerns in Source Code. ACM Transactions

on Software Engineering and Methodology, 16(1), article 3, 38 pages.

Romanovsky, A. & Strigini, L. 1995. Backward Error Recovery via Conversations in Ada. IEEE

Software Engineering Journal, 10(6): 219-232.

Romero. M. 2005. Introduction to Predicate Logic. 24 Feb, 2005. The University of Pennsylvania.

The Department of Linguistics.

http://babel.ling.upenn.edu/courses/ling255/PredicateLogic.pdf

Retrieved: 24 Oct, 2008.

Roper, M. 1999. Software Testing - Searching for the Missing Link. Information and Software

Technology, 41(14):991-994.

Roper, M. & Wood, M. & Miller, J. 1997. An Empirical Evaluation of Defect Detection Techniques.

Information and Software Technology 39(11):763-775.

Rosenblum, D.S. 1995. A Practical Approach to Programming with Assertions. IEEE Transactions

on Software Engineering, 21(1): 19-31.

http://catb.org/jargon/html/S/schroedinbug.html
http://www5.in.tum.de/~huckle/trenches.htm
http://babel.ling.upenn.edu/courses/ling255/PredicateLogic.pdf

 References

167

Rothermel, G. & Elbaum, S. & Malishevsky, A.G. & Kallakuri, P. & Qiu, X. 2004. On Test Suite

Composition and Cost-Effective Regression Testing. ACM Transactions on Software Engineering

and Methodology, 13(3): 277-331.

Rowe, N.C. 1988. Absolute Bounds on Set Intersection and Union Sizes from Distribution

Information. IEEE Transactions on Software Engineering, 14(7):1033-1048.

Royce, T. & Necaise, R. 2003. A Parallel Algorithm for DNA Alignment. Crossroads. The ACM

Student Magazine. Interdisciplinary Computer Science, issue 9.3. Pages 10-15.

RTI. Research Triangle Institute. 2002. The Economic Impacts of Inadequate Infrastructure for

Software Testing. Planning Report 02-3. Health, Social, and Economics Research. RTI Project

Number 7007.011. NIST 2002.

Rubey, R.J. 1975. Quantitative Aspects of Software Validation. ACM SIGPLAN Software

Engineering Notices, 10(6):246-251.

Rushby, J. 1993. Anomalies in Digital Flight Control Systems. [e-document]. Notes excerpted from:

Formal Methods and the Certification of digital Systems, SRI-CSL-93-07. Nov, 1993. SRI

International, Menlo Park, CA, USA. Computer Science Laboratory.

www.csl.sri.com/users/rushby/anomalies.html

Sag, I.A. & Wasow, T. 1999. Syntactic Theory: A Formal Introduction. Center for the Study of

Language and Information. The University of Malta, Msida, Malta. 20 Jan, 1999.

http://staff.um.edu.mt/mros1/ftp/download/sw99.pdf

Retrieved: 25 Oct, 2008.

Saglietti, F. 1990. Software Diversity Metrics Quantifying Dissimilarity in the Input Partition. IEEE

Software Engineering Journal, 5(1): 59-63.

Saleh, K. & Boujarwah, A.A. & Al-Dallal, J. 2001. Anomaly Detection in Concurrent Java Programs

Using Dynamic Data Flow Analysis. Information and Software Technology, 43(15):973-981.

Sankaranarayanan, S. & Sipma, H.B. & Manna, Z. 2004. Non-Linear Loop Invariant Generation

Using Gröbner Bases. Proceedings of the 31
st
 ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Venice, Italy, 14-16 Jan, 2004. Pages 318-329. ISBN-X 1-58113-729-X.

Santone, A. 2003. Heuristic Search + Local Model Checking in Selective mu-Calculus. IEEE

Transactions on Software Engineering, 29(6): 510-523.

Santor, G. 2007. [Webpage of Professor Santor]. Fanshawe College, London, Ontario, Canada.

http://infotech.fanshawec.ca/gsantor/Computing/FamousBugs.htm

Retrieved: 24 Apr, 2007.

Santos, R.M. & Santos, J. & Orozco, J.D. 2005. A Least Upper Bound on the Fault Tolerance of Real-

Time Systems. Journal of Systems and Software, 78(1):47-55.

Sanyal, S. & Aida, K. & Gaitanos, K. & Wowk, G. & Lahiri, S. 1992. Defect Tracking and Reliability

Modeling for a New Product Release. Proceedings of the 1992 Conference on the Centre for

Advanced Studies on Collaborative Research 1(1). IBM Canada Limited Laboratory, North York,

Ontario, Canada.

Sarkar, D. & De Sarkar, S.C. 1989. A Set of Inference Rules for Quantified Formula Handling and

Array Handling in Verification of Programs Over Integers. IEEE Transactions on Software

Engineering, 15(11): 1368-1381.

Sarkar, S. & Rama, G.M. & Kak, A.C. 2007. API-Based and Information-Theoretic Metrics for

Measuring the Quality of Software Modularization. IEEE Transactions on Software Engineering,

33(1): 14-32.

http://staff.um.edu.mt/mros1/ftp/download/sw99.pdf
http://infotech.fanshawec.ca/gsantor/Computing/FamousBugs.htm

 References

168

Schewe, K.-D. & Thalheim, B. 1999. Towards a Theory of Consistency Enforcement. Acta

Informatica 36:97-141.

Schmidt, D.A. 1998. Data Flow Analysis is Model Checking of Abstract Interpretations. Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San

Diego, CA, USA, 19-21 Jan, 1998. ACM Press, New York, NY, USA. Pages 38-48. ISBN 0-89791-

979-3.

Schmidt, D.A. 2007. A Calculus of Logical Relations for Over- and Underapproximating Static

Analyses. Science of Computer Programming, 64(1):29-53.

Schneidewind, N.F. 2000. Software Quality Control and Prediction Model for Maintenance. Annals

of Software Engineering, 9(1-4):79-101. J.C. Baltzer AG, Science Publishers, Red Bank, NJ, USA.

ISSN 1022-7091.

Schneidewind, N.F. & Hoffmann, H.-M. 1979. An Experiment in Software Error Data Collection and

Analysis. IEEE Transactions on Software Engineering. SE-5(3):276-286.

Schultz, R.D. & Cardenas, A.F. 1987. An Approach and Mechanism for Auditable and Testable

Advanced Transaction Processing Systems. IEEE Transactions on Software Engineering 13(6): 666-

676.

Schumann, J. 1999. Automated Theorem Proving in High-Quality Software Design.

Applied Logic Series, Vol. 19. Intellectics and Computational Logic (To Wolfgang Bibel on the

Occasion of his 60
th

 Birthday),: 295-312. ISBN 9-7923-6261-6.

http://ti.arc.nasa.gov/m/pub/archive/1999-0153.pdf

Retrieved: 14 Oct, 2008.

SDL Software Development Laboratories. 2006. ClockMon. A Free Windows Real Time Clock

Monitoring and Synchronizing Utility. Version 2.3.0.291. 19 Oct, 2006.

http://www.softdevlabs.com/ClockMon/ClockMon.html

Retrieved: 10 Oct, 2006.

Seacord, R. 2007. PRE31-C. Never Invoke an Unsafe Macro with Arguments Containing

Assignment, Increment, Decrement, Volatile Access, or Function Call. CERT

27 May, 2007. Modified by Swoboda, D., Sep 2008.

https://www.securecoding.cert.org/confluence/display/seccode/PRE31-

C.+Never+invoke+an+unsafe+macro+with+arguments+containing+assignment,+increment,+decreme

nt,+volatile+access,+or+function+call

Retrieved: 30 Sep, 2008.

Seebach, P. 2006. Everything You Ever Wanted to Know about C Types, Part 4: Portability and

Pitfalls.

http://www.ibm.com/developerworks/power/library/pa-ctypes4/index.html

Retrieved: 29 Sep, 2008.

Sekerinski, E. 2003. Exploring Tabular Verification and Refinement. Formal Aspects in Computing,

15(2-3):215-236.

Selby, R.W. 1990. Empirically Based Analysis of Failures in Software Systems. IEEE Transactions

on Reliability, 39(4):444-454.

Selby, R.W. & Basili, V.R. 1991. Analyzing Error-Prone System Structure. IEEE Transactions on

Software Engineering, 17(2):141-152.

Shahmehri, N. & Kamkar, M, & Fritzson, P. 1995. Usability Criteria for Automated Debugging

Systems. Journal of Systems and Software, 31(1): 55-70.

Shapiro, E.Y. 1983. Algorithmic Program Debugging. The MIT Press Classics Series, The MIT Press,

Cambridge, MA, USA. 248 pages. ISBN 0-262-69307-0.

https://www.securecoding.cert.org/confluence/display/seccode/PRE31-C.+Never+invoke+an+unsafe+macro+with+arguments+containing+assignment,+increment,+decrement,+volatile+access,+or+function+call
https://www.securecoding.cert.org/confluence/display/seccode/PRE31-C.+Never+invoke+an+unsafe+macro+with+arguments+containing+assignment,+increment,+decrement,+volatile+access,+or+function+call
https://www.securecoding.cert.org/confluence/display/seccode/PRE31-C.+Never+invoke+an+unsafe+macro+with+arguments+containing+assignment,+increment,+decrement,+volatile+access,+or+function+call
http://www.ibm.com/developerworks/power/library/pa-ctypes4/index.html

 References

169

She, J. & Pecht, M.G. 1992. Reliability of a k-out-of-n Warm-Standby System. IEEE Transactions on

Reliability, 41(1):72-75.

Sheffield. 2001. Northern General Hospital NHS Trust. Report of the Inquiry Committee into the

Computer Software Error in Downs Syndrome Screening. Sheffield. Sep, 2001.

http://www.sheffield.nhs.uk/nhssheffield/resources/downs-report.pdf

Retrieved: 24 Mar, 2007.

Sheil, B.A. 1981. The Psychological Study of Programming. ACM Computing Surveys, 13(1):101-

120.

Shepherd, D. 1992. Using HOL to Produce Custom Verification Tools. International Workshop on

HOL Theorem Proving System and its Applications, 28-30 Aug, 1991. IEEE. Pages 162-169.

Shepherdson, J.C. & Sturgis, H.E. 1963. Computability of Recursive Functions. Journal of the ACM

10(2):217-255.

Sheth, A. & Hartung, C. & Han, R. 2005. A Decentralized Fault Diagnosis System for Wireless

Sensor Networks. IEEE International Conference on, Mobile Adhoc and Sensor Systems Conference,

7-10 Nov, 2005. 3 pages. DOI 10.1109/MAHSS.2005.1542799.

Shima, K. & Takada, S. & Matsumoto, K. & Torii, K. 1997. A Study on the Failure Intensity of

Different Software Faults. Proc 19th international conference on Software Engineering, Boston, MA,

USA, 17-23 May, 1997. ACM Press, New York, USA. Pages 86-94. ISBN 0-89791-914-9.

Shimeall, T.J. & Leveson, N.G. 1991. An Empirical Comparison of Software Fault Tolerance and

Fault Elimination. IEEE Transactions on Software Engineering, 17(2):173-182.

Shiratori, N. & Zhang, Y.-X. & Takahashi, K. & Noguchi, S. 1991. A User Friendly Software

Environment for Protocol Synthesis. IEEE Transactions on Computers, 40(4): 477-486.

Shmueli, G. 2003. Computing Consecutive-Type Reliabilities Non-Recursively. IEEE Transactions

on Reliability, 52(3): 367-372.

Shull, F. & Cruzes, D & Basili, V & Mendonça, M. 2005. Simulating Families of Studies to Build

Confidence in Defect Hypotheses. Information and Software Technology, 47(15):1019-1032.

Siegel, S.F. & Avrunin, G.S. 2000. Improving the Precision of INCA by Preventing Spurious Cycles.

ACM SIGSOFT Software Engineering Notes, 25(5):191-200. ISBN 1-58113-266-2.

Sinha, A. & Smidts, C. 2006.: HotTest: a Model-Based Test Design Technique for Enhanced Testing

of Domain Specific Applications. ACM Transactions on Software Engineering and Methodology

15(3):242-278.

Sinha, P. & Hanumantharya, A. 2005. A Novel Approach for Component-Based Fault-Tolerant

Software Development. Information and Software Technology 47(6):365-382.

Sinha, S. & Harrold, M.J. 2000. Analysis and Testing of Programs with Exception Handling

Constructs. IEEE Transactions on Software Engineering, 26(9):849-871.

Sistla, A.P. 2004. Employing Symmetry Reductions in Model Checking. Computer Languages,

Systems & Structures, 30(3-4):99-137.

Smidts, C. & Huang, X. & Widmaier, J.C. 2002. Producing Reliable Software: An Experiment.

Journal of Systems and Software, 61(3):213-224.

Smidts, C. & Stoddard, R.W. & Stutzke, M. 1996. Software Reliability Models: An Approach to

Early Reliability Prediction. Proceedings of the 7th International Symposium on Software Reliability

Engineering, 30 Oct – 2 Nov, 1996. IEEE Computer Society, Washington DC, USA. From page 132.

ISBN 0-8186-7707-4.

 References

170

Smith, B. & Feather, M.S. & Muscettola, N. 2000. Challenges and Methods in Testing a Remote

Agent Planner. Chien, S. & Kambhampati, S. & Knoblock, C.A. (eds.). Proceedings of the fifth

International Conference on Artificial Intelligence Planning Systems, Breckenridge, CO, USA, 14-17

Apr, 2000. Pages 254-263. ISBN 1-57735-111-8.

Snelting, G. & Robschink, T. & Krinke, J. 2006. Efficient Path Conditions in Dependence Graphs for

Software Safety Analysis. ACM Transactions on Software Engineering and Methodology, 15(4): 410-

457.

Sogame, H. (prepared for the WWW). 1999. China Airlines Boeing 747-SP Accident Report.

NTSB/AAR-86/03. NTSB, Washington DC, USA.

www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/ChinaAir/AAR8603.html

Retrieved: 6 May, 2008.

Sogame, H. & Ladkin, P. (prepared for the WWW). 1996. Aircraft Accident Investigation Report 96-

5. China Airlines. Airbus Industrie A300B4-622R. B1816, Nagoya Airport, April 26, 1994. Aircraft

Accident Investigation Commission. Ministry of Transport, Japan.

Prepared for Internet 1996.

www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Nagoya/nagoyarep/nagoya-

top.html

Retrieved: 6 May, 2008.

Sohn, SD. & Seong, PH. 2004. Quantitative Evaluation of Safety Critical Software Testability Based

on Fault Tree Analysis and Entropy. Journal of Systems and Software, 73(2):351-360.

Sommerville, I. & Ransom, J. 2005. An Empirical Study of Industrial Requirements Engineering

Process Assessment and Improvement. ACM Transactions on Software Engineering and

Methodology, 14(1):85-117.

Qinbao Song & Shepperd, M. & Cartwright, M. & Mair, C. 2006. Software Defect Association

Mining and Defect Correction Effort Prediction. IEEE Transactions on Software Engineering,

32(02):69-82.

Spohrer, J.C. & Soloway, E. 1986a. Alternatives to Construct-Based Program Misconceptions.

Proceedings of ACM SIGCHI conference on human factors in computing systems, Boston, MA,

USA, 13-17 Apr, 1986. ACM Press, New York, NY, USA. Pages 183-191. ISBN 0-89791-180-6.

Spohrer, J.C. & Soloway, E. 1986b. Novice Mistakes: Are the Folk Wisdoms Correct?

Communication of the ACM, 29(7):624-632.

Sreemani, T. & Atlee, J.M.. 1996. Feasibility of Model Checking Software Requirements: A Case

Study. Proceedings of the 11th Conference on Computer Assurance, Gaithersburg, MD, USA, 17-21

Jun, 1996. Pages 77-88.

Staknis, M.E. 1993. A Formal Investigation of Checking the Input to Critical Systems. IEEE

Transactions on Reliability 42(4):588-595.

Stallinger, F. & Grünbacher, P. 2001. System Dynamics Modelling and Simulation of Collaborative

Requirements Engineering. Journal of Systems and Software, 59(3):311-321.

Stamelos, I. 2003. Detecting associative shift faults in predicate testing. Journal of Systems and

Software, 66(1):57-63.

Stavely, A.M. 1995. Verifying Definite Iteration over Data Structures. IEEE Transactions on

Software Engineering, 21(6):506-514.

Stonebraker, M. & Hanson, E.N. & Potamianos, S. 1988. The POSTGRES Rule Manager. IEEE

Transactions on Software Engineering, 14(7): 897-907.

http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/ChinaAir/AAR8603.html
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Nagoya/nagoyarep/nagoya-top.html
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Nagoya/nagoyarep/nagoya-top.html

 References

171

Strigini, L. 2004. "Fault Tolerance Against Design Faults", in Diab, H.B. & Zomaya, A.Y. (eds.)

"Dependable Computing Systems: Paradigms, Performance Issues, and Applications", J. Wiley &

Sons, 2004. 638 pages. ISBN 9780471674221.

Strobl, W. 2000. [Zope] Risks. Was ZopeLDAP 1.0b4 Breaks the Root Directory Security Tab. [e-

message on discussion board]. 16 Nov, 2000. Users of Z Object Publishing Environment.

http://mail.zope.org/pipermail/zope/2000-November/120719.html

Retrieved: 24 Mar, 2007.

Strom, R.E. & Yellin, D.M. 1993. Extending Typestate Checking Using Conditional Liveness

Analysis. IEEE Transactions on Software Engineering, 19(5):478-485.

Stuart, D.A. & Brockmeyer, M. & Mok, A.K. & Jahanian, F. 2001. Simulation-Verification: Biting at

the State Explosion Problem. IEEE Transactions on Software Engineering, 27(7):599-617.

Stumptner, M. & Wotawa, F. 1998. A Survey of Intelligent Debugging. AI Communications, 11(1):

35-51.

Suárez, A. & Lutsko, J.F. 1999. Globally Optimal Fuzzy Decision Trees for Classification and

Regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12):1297-1311.

Subramanyam, R. & Krishnan, M.S. 2003. Empirical Analysis of CK Metrics for Object-Oriented

Design Complexity: Implications for Software Defects. IEEE Transactions on Software Engineering,

29(4):297-310.

Subramanian, S. & Vishnuvajjala, R.V. & Mojdehbakhsh, R. & Tsai, W.T. & Elliott, L. 1995. A

framework for designing safe software systems. Proceedings of the Nineteenth Annual International

Computer Software and Applications Conference, COMPSAC 95, Dallas, TX, USA, 9-11 Aug, 1995.

IEEE Computer Society, Washington DC, USA. Pages 409-414. ISBN 0-8186-7119-X.

Succi, G. & Pedrycz, W. & Stefanovic, M. & Miller, J. 2003. Practical Assessment of the Models for

Identification of Defect-Prone Classes in Object-Oriented Commercial Systems Using Design

Metrics. Journal of Systems and Software, 65(1):1-12.

Sullivan, K. & Yang, J. & Coppit, D. & Khurshid, S. & Jackson, D. 2004. Software Assurance by

Bounded Exhaustive Testing. ACM SIGSOFT Software Engineering Notes, 29(4):133-142. Session

II: Testing. ISSN 0163-5948.

Sullivan, M. & Chillarege, R. 1991. Software Defects and their Impact on System Availability - A

Study of Field Failures in Operating Systems. Twenty-First International Symposium on Fault-

Tolerant Computing, Digest of Papers, Montreal, Quebec Canada, 25-27 Jun, 1991. Pages 2-9. ISBN

0-8186-2150-8.

Sullivan, M. & Chillarege, R. 1992. A Comparison of Software Defects in Database Management

Systems and Operating Systems. Proceedings on the Twenty-Second International Symposium of

Fault-Tolerant Computing, Boston, MA, USA, 8-10 Jul, 1992. IEEE Computer Society, Washington

DC, USA. Pages 475-484. ISBN 0-8186-2875-8.

Sutcliffe, A. & Maiden, N. 1998. The Domain Theory for Requirements Engineering. IEEE

Transactions on Software Engineering, 24(3):174-196.

SWEBOK. 2007. The Guide to Software Engineering Body of Knowledge. Software Engineering

Research Laboratory. 12 Jan, 2007.

http://www.swebok.org/

Retrieved: 31 Oct, 2008.

Swobodova, L. 1981. Performance Monitoring in Computer Systems: A Structured Approach. ACM

SIGOPS Operating Systems Review, 15(3): 39-50.

http://www.swebok.org/

 References

172

Sy, N.T. & Deville, Y. 2001. Automatic Test Data Generation for Programs with Integer and Float

Variables. Proceedings of the 16
th

 Annual International Conference on Automated Software

Engineering, 26-29 Nov, 2001. IEEE. Pages 13-21.

Taghdiri, M. 2004. Inferring Specifications to Detect Errors in Code. Proceedings of the 19th

International Conference on Automated Software Engineering (ASE), Linz, Austria, 20-24 Sep, 2004.

Pages 144-153. ISBN ISSN 1068-3062, 0-7695-2131-2.

Tai, A.T. & Tso, K.S. & Alkalai, L. & Chau, S.N. & Sanders, W.H. 2001. Synergistic Coordination

between Software and Hardware Fault Tolerance Techniques. International Conference on

Dependable Systems and Networks, 1-4 Jul, 2001. IEEE. Pages 369-378. DOI

10.1109/DSN.2001.941421.

Tai, K.C. 1993. Predicate-Based Test Generation for Computer Programs. Proceedings of the 15
th

International Conference on Software Engineering, 17-21 May, 1993. IEEE. Pages 267-276. DOI

10.1109/ICSE.1993.346037.

Kuo-Chung Tai. 1996. Theory of Fault-Based Predicate Testing for Computer Programs. IEEE

Transactions on Software Engineering, 22(8):552-562.

Tai, K.-C. & Carver, R.H. & Obaid, E.E. 1991. Debugging Concurrent ADA Programs by

Deterministic Execution. IEEE Transactions on Software Engineering, 17(1): 45-63.

Tai, K.-C. & Paradkar, A. & Su, H.-K. & Vouk, M.A. 1993. Testing and Debugging: Fault-Based

Test Generation for Cause-Effect Graphs. Proceedings of the 1993 Conference of the Centre for

Advanced Studies on Collaborative Research: Software Engineering, Toronto, Ontario, Canada, 24-28

Oct, 1993. IBM Press(1):495-504.

Taibi, T. & Taibi, F. 2006. Formal Specification of Design Patterns and Their Instances. IEEE

International Conference on Computer Systems and Applications, 8 Mar, 2006. Pages 33-36.

Takagi, N. & Nakashima, K. & Mukaidono, M. 1996. A Necessary and Sufficient Condition for

Lukasiewicz Logic Functions. Proceedings of the 26
th

 International Symposium on Multiple-Valued

Logic, 29-31 May, 1996. Pages 37-42. DOI 10.1109/ISMVL.1996.508333.

Takahashi, K. & Oka, A. & Yamamoto, S. & Isoda, S. 1995. A Comparative Study of Structural and

Text-Oriented Analysis and Design Methodologies. Journal of Systems and Software, 28(1):69-75.

Tan, Z. 2007. Estimation of Exponential Component Reliability from Uncertain Life Data in Series

and Parallel Systems. Reliability Engineering and System Safety 92(2): 223-230.

Taylor, R.N. & Levine, D.L. & Kelly, C.D. 1992. Structural Testing on Concurrent Programs. IEEE

Transactions on Software Engineering, 18(3): 206-215.

Tekinerdogan, B. & Sozer, H. & Aksit, M. 2008. Software Architecture Reliability Analysis using

Failure Scenarios. Journal of Systems and Software, 81(4):558-575.

Ter Hofstede, A.H.M. & Proper, H.A. 1998. How to Formalize it? Formalization Principles for

Information System Development Methods. Information and Software Technology, 40(10):519-540.

Tervonen, I. & Kerola, P. 1998. Towards Deeper Co-Understanding of Software Quality. Information

and Software Technology, 39(14-15):995-1003.

Tewksbury, S. 2002. Information Warfare: Possible Research Themes. Jan 7, 2002.

http://stewks.ece.stevens-tech.edu/Personal/Reports/Security/infowarfare.pdf

Retrieved: 11 Oct, 2008.

Thelin, T. & Petersson, H. & Runeson, P. & Wohlin, C. 2004. Applying Sampling to Improve

Software Inspections. Journal of Systems and Software, 73(2): 257-269.

 References

173

Thévenod-Fosse, P. & Waeselynck, H. 1993. STATEMATE Applied to Statistical Software Testing.

ACM SIGSOFT Software Engineering Notes, 18(3): 99-109.

Thomas, W.M. & Delis, A. & Basili, V.R. 1997. An Analysis of Errors in a Reuse-Oriented

Development Environment. Journal of Systems and Software, 38(3):211-224.

Tian, J. 1996. An Integrated Approach to Test Tracking and Analysis. Journal of Systems and

Software, 35(2):127-140.

Tian, J. 1999. Measurement and continuous improvement of software reliability throughout software

life-cycle. Journal of Systems and Software, 47(2-3):189-195.

Tian, J. 2002. Better Reliability Assessment and Prediction through Data Clustering. IEEE

Transactions on Software Engineering, 28(10):997-1007.

Tian, J. & Nguyen, A. & Allen, C. & Appan, R. 2001: Experience with Identifying and Characterizing

Problem-Prone Modules in Telecommunication Software Systems. Journal of Systems and Software,

57(3):207-215.

Tian, J. & Troster, J. 1998. A Comparison of Measurement and Defect Characteristics of New and

Legacy Software Systems. Journal of Systems and Software, 44(2):135-146.

Tian, J. & Troster, J. & Palma, J. 1997. Tool Support for Software Measurement, Analysis and

Improvement. Journal of Systems and Software, 39(2):165-178.

Tip, F. & Dinesh, T.B. 2001. A Slicing-Based Approach for Locating Type Errors. ACM

Transactions on Software Engineering and Methodology, 10(1):5-55.

Tomek, L.A. & Muppala, J.K. & Trivedi, K.S. 1993. Modeling Correlation in Software Recovery

Blocks. IEEE Transactions on Software Engineering, 19(11):1071-1086.

Tonella, P. 2003. Using a Concept Lattice of Decomposition Slices for Program Understanding and

Impact Analysis. IEEE Transactions on Software Engineering, 29(6):495-509.

Torres-Pomales, W. 2000. Software Fault Tolerance: A Tutorial. NASA Langley Research Center,

Hampton, VA, USA. NASA/TM-2000-210616.

Traore, I. & Aredo, D.B. 2004. Enhancing Structured Review with Model-Based Verification. IEEE

Transcations on Software Engineering, 30(11): 736-753.

Trivedi, K.S. 2002. SREPT: A Tool for Software Reliability Estimation and Prediction. Proceedings

of the International Conference on Dependable Systems and Networks, 23-26 Jun, 2002. IEEE. Page

546. DOI 10.1109/DSN.2002.1028977.

Trivedi, K.S. & Bobbio, A. & Ciardo, G & German, R. & Puliafito, A. & Telek, M. 1995. Non-

Markovian Petri Nets. ACM SIGMETRICS Performance Evaluation Review 23(1): 263-264.

Tropp, J.A. & Gilbert, A.C. & Strauss, M.J. 2006. Algorithms for Simultaneous Sparse

Approximation. Part 1: Greedy Pursuit. Signal Processing 86(3): 572-588.

Troscinski, M. 2003. ANSYS/Multiphysics FSI with Applications. 20 Mar, 2003.

www.fe-

net.org/downloads/FENet_Meetings/Barcelona_Spain_Feb_2003/FENET_Barcelona_Feb2003_MPA

_Ellis.pdf

Retrieved: 9 Oct, 2008.

Tucker, J.V. & Zucker, J.I. 2002. Abstract Computability and Algebraic Specification. ACM

Transactions on Computational Logic, 3(2): 279-333.

 References

174

Uchida, S. & Monden, A & Iida, H. & Matsumoto, K-i & Kudo, H. 2002. A Multiple-View Analysis

Method for Debugging Processes. Proceedings of the 2002 International Symposium on Empirical

Software Engineering, 3-4 Oct, 2002. IEEE. Pages 139-147. DOI 10.1109/ISESE.2002.1166933.

Ural, H. & Yang, B. 1993. Modeling Software for Accurate Data Flow Representation. Proceedings

of the 15
th

 International Conference on Software Engineering, Baltimore, MD, USA, 17-21 May,

1993. IEEE. Pages 277-286. ISBN: 0-89791-588-7.

van Breugel, F. & Mislove, M. & Ouaknine, J. & Worrell, J. 2005. Domain Theory, Testing and

Simulation for Labelled Markov Processes. Theoretical Computer Science 333(1-2):171-197.

van den Brand, M.G.J. & Klint, P. & Vinju, J.V. 2003. Term Rewriting with Traversal Functions.

ACM Transactions on Software Engineering and Methodology, 12(2): 152-190.

van der Meulen, M.J.P. & Bishop, P.G. & Revilla, M. 2004. An Exploration of Software Faults and

Failure Behaviour in a Large Population of Programs. 15th IEEE International Symposium on

Software Reliability Engineering, 2-5 Nov, 2004. ISSRE 2004. IEEE Computer Society, Washington

DC, USA. Pages: 101-112. ISBN ISSN 1071-9458, 0-7695-2215-7.

van der Schoot, H. & Ural, H. 1998. On Improving Reachability Analysis for Verifying Process

Properties of Networks of CFSMs. Proceedings of the 18th International Conference on Distributed

Computing Systems, Amsterdam, Netherlands, 26-29 May, 1998. Pages 130-137. ISBN 0-8186-8292-

2.

van Lamsweerde, A. 2004. Elaborating Security Requirements by Construction of Intentional Anti-

Models. Proceedings of the 26
th

 International Conference on Software Engineering, 23-28 May,

2004. IEEE. Pages 148-157.

van Lamsweerde, A. & Darimot, R. & Leiter, E. 1998. Managing Conflicts in Goal-Driven

Requirements Engineering. IEEE Transactions on Software Engineering, 24(11):908-926.

van Lamsweerde, A. & Leiter, E. 2000. Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Transactions on Software Engineering, 26(10):978-1005.

Van Rompaey, B. & Bois, B.D. & Demeyer, S. & Rieger, M. 2007. On the Detection of Test Smells:

A Metrics-Based Approach for General Fixture and Eager Test. IEEE Transactions on Software

Engineering, 33(12): 800-817.

Verbaeten, S. & Sagonas, K. & De Schreye, D. 2001. Termination Proofs for Logic Programs with

Tabling. ACM Transactions on Computational Logic 2(1):57-92.

Vermeulen, S.T.J.A. & Rijanto, H. & van der Duyn Schouten, F.A. 1998. Modelling the Influence of

Preventive Maintenance on Protection System Reliability Performance. IEEE Transactions on Power

Delivery, 13(4): 1027-1032.

Vickers, S. & Hill, G. 2001. Presheaves as Configured Specifications. Formal Aspects of Computing,

13(1):32-49.

Virkkunen, V.-E. J. 1980. A Unified Approach to Floating-point Rounding with Applications to

Multiple-precision Summation. Dissertation. The University of Helsinki, the Department of

Computer Science. ISBN 951-45-1948-5.

Visser, P.R.S. & Jones, D.M. & Bench-Capon, T.J.M. & Shave, M.J.R. 1997. An Analysis of

Ontology Mismatches; Heterogeneity versus Interoperability. AAA1 1997 Spring Symposium on

Ontological Engineering, Stanford, USA. Kraft.

Also appeared as: Farquhar, A. & Grunninger, M, (eds.). AAA1 Technical Report, SS-97-06.

Voas, J.M. 1992. PIE: A Dynamic Failure-Based Technique. IEEE Transactions on Software

Engineering, 18(8):717-727.

 References

175

Voas, J. & Charron, F. & Miller, K. 1996. Investigating Rare-Event Failure Tolerance: Reductions in

Future Uncertainty. Proceedings of IEEE High-Assurance System Engineering Workshop HASE 96,

In Conjunction with the 15th Symposium on Reliable Distributed Systems, Niagara-on-the-Lake,

Canada, 22 Oct, 1996. IEEE Computer Society, Washington DC, USA. From page 78. ISBN 0-8186-

7629-9.

Voas, J.M. & Miller, K.W. 1995a. Examining Fault-Tolerance Using Unlikely Inputs - Turning the

Test Distribution Up-Side Down. Proceedings of the tenth Annual Conference on System Integrity,

Softawre Safety, and Process Security. Computer Assurance, Gaithersburg, MD, USA, 25-29 Jun,

1995. IEEE Computer Society, Washington DC, USA. Pages 3-11.

Voas, J.M. & Miller, K.W. 1995b. Software Testability: The New Verification. IEEE Software

12(3):17-28.

Vokáč, M. 2004. Defect Frequency and Design Patterns: An Empirical Study of Industrial Code.

IEEE Transactions on Software Engineering, 30(12):904-917.

von Mohrenschildt, M. 2000. Algebraic Composition of Function Tables. Formal Aspects of

Computing 12(1):41-51.

Vouk, M.A. & Padakar, A.M. & McAllister, D.F. 1990. Modeling Execution Time of Muli-Stage N-

Version Fault-Tolerant Software. Proveedings of the Fourteenth Annual International Computer

Software and Applications Conrefenre, 31 Oct – 2 Nov, 1990. IEEE. Pages 505-511. DOI

10.1109/CMPSAC.1990.139422.

Vouk, M.A. & Tai, K.C. 1993. Some Issues in Multi-Phase Software Reliability Modeling.

Proceedings of the 1993 Conference of the Centre for Advanced Studies on Collaborative Research:

Software Engineering, Toronto, Ontario, Canada, 24-28 Oct, 1993. SESSION: Testing and

Debugging. Volume 1. Pages 513-523. IBM Press.

Wahbe, R. & Lucco, S. & Anderson, T.E. & Graham, S.L. 1993. Efficient Software-Based Fault

Isolation. ACM SIGOPS Operation Systems Review, 27(5):203-216. ACM Press, New York, NY,

USA. ISBN 0-89791-632-8.

Walicki, M. & Meldal, S. 1997. Algebraic Approaches to Nondeterminism: An Overview. ACM

Computing Surveys, 29(1): 30-81.

Walkinshaw, N. & Bogdanov, K. & Holcombe, M. 2006. Identifying State Transitions and their

Functions in Source Code. Proceedings of Testing: Academic and Industrial Conference – Practice

and Research Techniques. IEEE. Pages 49-58. DOI 10.1109/TAIC-PART.2006.12.

Wallace, D.R. & Ippolito, L.M. & Hecht, H. 1997. Error, Fault, and Failure Data Collection and

Analysis. National Institute of Standards and Technology, Gaithersburg, MD, USA.

http://hissa.nist.gov/eff/qweff.html

Retrieved: 27 Oct, 2008.

Wallace, D.R. & Kuhn, D.R. 2001. Failure Modes in Medical Devices Software: an Analysis of 15

Years of Recall Data. International Journal of Reliability, Quality and Safety Engineering, 8(4):351-

371.

Walter, C.J. & Lincoln, P. & Suri, N. 1997. Formally Verifying On-Line Diagnosis. IEEE

Transactions on Software Engineering, 23(11):684-721.

Wand, Y. & Weber, R. 1990. An Ontological Model of an Information System. IEEE Transactions

on Software Engineering, 16(11):1282-1292.

Farn Wang. 2005. Symbolic Parametric Safety Analysis of Linear Hybrid Systems with BDD-Like

Data-Structures. IEEE Transactions on Software Engineering, 31(1):38-51.

Wang, S. & Shin, K.G. 2006. Task Construction for Model-Based Design of Embedded Control

Software. IEEE Transactions on Software Engineering, 32(4):254-264.

http://hissa.nist.gov/eff/qweff.html

 References

176

Wang, Y.-M. & Huang, Y. & Fuchs, W.K. 1993. Progressive Retry for Software Error Recovery in

Distributed Systems. Digest of Papers, Twenty-Third International Symposium on Fault-Tolerant

Computing, FTCS-23, Toulouse, France, 22-24 Jun, 1993. Pages 138-144. ISBN 0-8186-3680-7.

Wasserman, H. & Blum, M. 1997. Software Reliability via Run-Time Result-Checking. Journal of

the ACM, 44(6):826-849.

Watson, A.H. & McCable, T.J. 1996. Structured Testing: A Testing Methodology Using the

Cyclomatic Complexity Metric. NIST Special Publication 500-235. U.S. Department of Commerce.

Technology Administration. National Institute of Standards and Technology. Computer Laboratory.

Gaithersburg, MD, USA.

Wegner, P. & Goldin. D. 2003. Computation Beyond Turing Machines. Communications of the

ACM, 46(4):100-102.

Weinberg, G.M. & Freedman, D.P. 1984. Reviews, Walkthroughs, and Inspections. IEEE

Transactions on Software Engineering, 10(1):68-72.

Weiser, M. 1984. Program Slicing. IEEE Transactions on Software Engineering, SE-10(4):352-357.

Weiser, M.D. & Gannon, J.D. & McMullin, P.R. 1985. Comparison of Structural Test Coverage

Metrics. IEEE Software, 2(2) : 80-85.

Weiss, S.N. & Weyuker, E.J. 1988. An Extended Domain-Based Model of Software Reliability.

IEEE Transactions on Software Engineering, 14(10):1512-1524.

Werner, L.L. 1986. A Study of 'Hard to Find' Data Processing Errors. ACM 14th Annual Conference

on Computer Science, Cincinnati, OH, USA. Page 410. ISBN 0-89791-177-6.

Westerfield, M. 1992. ORCA/C 2.0
TM

 A C Compiler and Development System for the Apple IIGS.

Byte Works Inc, Albuquerque, NM, USA.

http://www.byteworks.org/resume/samples/c.pdf

Retrieved: 22 Oct, 2008.

Westland, J.C. 2002. The Cost of Errors in Software Development: Evidence from Industry. Journal

of systems and software, 62(1):1-9.

Weyuker, E.J. 1988. The Evaluation of Program-Based Software Test Data Adequacy Criteria.

Communications of the ACM, 31(6) : 668-675.

Weyuker, E.J. & Jeng, B. 1991. Analyzing Partition Testing Strategies. IEEE Transactions on

Software Engineering, 17(7):703-711.

Weyuker, E.J. & Ostrand, T.J. 1980. Theories of Program Testing and the Application of Revealing

Subdomains. IEEE Transactions on Software Engineering, SE-6(3):236-246.

Weyuker, E.J. & Vokolos, F.I. 2000. Experience with Performance Testing of Software Systems:

Issues, an Approach, and Case Study. IEEE Transactions on Software Engineering, 26(12):1147-

1156.

Whang, K.-Y. & Malhotra, A. & Sockut, G.H. & Bruns, L. & Choi, K.-S. 1992. Two-Dimensional

Specification of Universal Quantification in a Graphical Database Query Language. IEEE

Transactions on Software Engineering, 18(3): 216-224.

White, L.J. & Cohen, E.I. 1980. A Domain Strategy for Computer Program Testing. IEEE

Transactions on Software Engineering, SE-6(3):247-257.

http://www.byteworks.org/resume/samples/c.pdf

 References

177

White, L.J. & Sahay, P.N. 1985. Experiments Determining Best Paths for Testing Computer Program

Predicates. Proceedings of the 8th International Conference on Software Engineering, London, UK,

28-30 Aug, 1985. IEEE Computer Society, Los Alamitos, CA, USA. Pages 238-243. ISBN 0-8186-

0620-7.

White, L.J. & Wiszniewski, B. 1988. Complexity of Testing Iterated Borders for Structured Programs.

IEEE Proceedings of the Second Workshop on Software Testing, Verification, and Analysis, Banff,

Alta., Canada, 19-21 Jul, 1988. Pages 231-237. ISBN 0-8186-0868-4.

Whittaker, J.A. 2001. Software's Invisible Users. IEEE Software 18(3):84-88.

Wijnstra, J.G. 2003. From Problem to Solution with Quality Attributes and Design Aspects. Journal

of Systems and Software, 66(3):199-211.

Williams, C.C. & Hollingsworth, J.K. 2005. Automatic Mining of Source Code Repositories to

Improve Bug Finding Techniques. IEEE Transactions on Software Engineering, 31(6):466-480.

Williamson, K. & Healy, M. 1999. Industrial Applications of Software Synthesis via Category

Theory. Proceedings of the 14
th

 International Conference on Automated Software Engineering, 12-15

Oct, 1999. IEEE. Pages 35-43. DOI 10.1109/ASE.1999.802090.

Winskel, Y. & Nielsen, M. 1995. Models for Concurrency. In: Abramsky, S. & Gabbay, D.M. &

Maibaum, T.S.E. (eds.): Handbook of logic in computer science. Vol. 4. Oxford: Clarendon Press.

672 pages. Pages 1-148. ISBN 0198537808.

Wohlin, C. & Körner, U. 1990. Software Faults: Spreading, Detection and Costs. IEEE Software

Engineering Journal 5(1):33-42.

Wondergem, B.C.M. & van Bommel, P. & van der Weide, Th.P. 2001. Combining Boolean Logic

and Linguistic Structure. Information and Software Technology, 43(1):53-59.

Wong, W.E. & Mathur, A.P. 1995. Reducing the Cost of Mutation Testing: An Empirical Study.

Journal of Systems and Software, 31(3):185-196.

Wong, W.E. & Sugeta, T. & Qi, Y. & Maldonado, J. C. 2005. Smart Debugging Software

Acrhitectural Design in SDL. Journal of Systems and Software, 76(1):15-28.

Woodbury, M.H. & Shin, K.G. 1990. Measurement and Analysis of Workload Effects on Fault

Latency in Real-Time Systems. IEEE Transactions on Software Engineering, 16(2):212-216.

Woodward, M.R. & Halewood, K. 1988. From Weak to Strong, Dead or Alive? An Analysis of some

Mutation Testing Issues. Proceedings of the 2nd Workshop on Software Testing, Verification and

Analysis, Banff, Alta., Canada, 19-21 Jul, 1988. Pages 152-158. ISBN 0-8186-0868-4.

Wooff, D.A. & Coldstein, M. & Cohen, F.P.A. 2002. Bayesian Graphical Models for Software

Testing. IEEE Transactions on Software Engineering, 28(5):510-525.

Wu, J. & Fernandez, E.B. & Zhang, M. 1996. Design and Modeling of Hybrid Fault-Tolerant

Software With Cost Constraints. Journal of Systems and Software 35(2):141-149.

Xia, F. 1999. Look Before You Leap: On Some Fundamental Issues in Software Engineering

Research. Information and Software Technology 41(10):661-672.

Xia, F. 2000. On the Concept of Coupling, its Modeling and Measurement. Journal of Systems and

Software, 50(1):75-84.

Xie, M. & Hong, G.Y. & Wohlin, C. 1999. Software Reliability Prediction Incorporating Information

from Similar Project. Journal of Systems and Software 49(1):43-48.

Xie, Y. & Engler, D. 2003. Using Redundancies to Find Errors. IEEE Transactions on Software

Engineering, 29(10):915-928.

 References

178

Xu, H. & Dugan, J.B. 2004. Combining Dynamic Fault Trees and Event Trees for Probabilistic Risk

Assessment. Annual Symposium on Reliability and Maintainability, 26-29 Jan, 2004. Pages 214-219.

DOI 10.1109/RAMS.2004.1285450.

Xu, J. & Randell, B. 1997. Software fault tolerance: t/(n-1)-variant programming. IEEE Transactions

on Reliability, 46(1):60-68.

Xu, W. & DuVarney, D.C. & Sekar, R. 2004. An Efficient and Backwards-Compatible Transform to

Ensure Memory Safety in C Programs. ACM SIGSOFT Software Engineering Notes, 29(6):117-126.

SESSION: Safety and Security. ACM Press, New York, NY, USA. ISSN 0163-5948.

Yang, C.-C. & Chen, J. J.-Y. & Chau, H.L. 1989. Algorithms for Constructing Minimal Deduction

Graphs. IEEE Transactions on Software Engineering, 15(6):760-770.

Yang, J. & Twohey, P. & Engler, D. & Musuvathi, M. 2004. Using Model Checking to Find Serious

File System Errors. Proceedings of the 6
th

 Symposium on Operating Systems Design and

Implementation, San Francisco, CA, USA, 6-8 Dec, 2004. USENIX and ACM SIGOPS.

Yi, K. 1998. An Abstract Interpretation for Estimating Uncaught Exceptions in Standard ML

Programs. Scientific Computer Programming 31(1):147-173.

Yilmaz, C. & Cohen, M.B. & Porter, A.A. 2006. Covering Arrays for Efficient Fault Characterization

in Complex Configuration Spaces. IEEE Transactions on Software Engineering, 32(1):20-34.

Yoo, C.S. & Seong, P.H. 2002. Experimental analysis of specification language diversity impact on

NPP software diversity. Journal of Systems and Software, 62(2):111-122.

Young, W.D. 1997. Comparing Verification Systems: Interactive Consistency in ACL2. IEEE

Transactions on Software Engineering, 23(4):214-223.

Yunfeng, W. & Bixin, L. & Jun, P. & Ming, Z. Guoliang, Z. 1999. A Formal Software Development

Approach Based on COOZ and Refinement Calculus. Proceedings of the 31th Conference on

Technology of Object-Oriented Languages and Systems, 22-25 Sep, 1999. IEEE. Pages 261-266. DOI

10.1109/TOOLS.1999.796492.

Yur, J.-s. & Ryder, B.G. & Landi, W.A. 1999. An Incremental Flow- and Context-sensitive Pointer

Aliasing Analysis. Proceedings of the 1999 International Conference on Software Engineering, 16-22

May, 1999. IEEE. Pages 442-451. DOI 10.1109/ECSE.1999.841034.

Yur, J.-S. & Ryder, B.G. & Landi, W.A. & Stocks, P. 1997. Incremental Analysis of Side Effects for

C Software Systems. Proceedings of the 1997 International Conference on Software Engineering, 17-

23 May, 1997. IEEE. Pages 422-432.

Zave, P. & Jackson, M. 1996. Where do Operations Come from? A Multiparadigm Specification

Technique. IEEE Transactions on Software Engineering, 22(7):508-528.

Zeil, S.J. 1983. Testing for Perturbations of Program Statements. IEEE Transactions on Software

Engineering, SE-9(3):335-346.

Zeil, S.J. 1999. Verification and Validation. CS 451/551. Old Dominion University, Norfolk, VA,

USA.

ftp://ftp.cs.odu.edu/pub/zeil/cs451/Lectures/03vandv/vandv.pdf

Retrieved: 25 Oct, 2008.

Zeil, S.J. & Afifi, F.H. & White, L.J. 1992. Detection of Linear Errors via Domain Testing. ACM

Transactions on Software Engineering and Methodology, 1(4):422-451.

Zeil, S.J. & White, L.J. 1981. Sufficient Test Sets for Path Analysis Testing Strategies. Proceedings

on the 5th International Conference on Software Engineering, San Diego, CA, USA, 9-12 Mar, 1981.

IEEE Press, Piscataway, NJ, USA. Pages 184-191. ISBN 0-89791-146-6.

 References

179

Zelkowitz, M.V. & Rus, I. 2004. Defect Evolution in a Product Line Environment. Journal of

Systems and Software, 70(1-2):143-154.

Zeller, A. & Hildebrandt, R. 2002. Simplifying and Isolating Failure-Inducing Input. IEEE

Transactions on Software Engineering, 27(2): 183-200.

Zhang, Q. & Harris, I.G. 2000. A Domain Coverage Metric for the Validation of Behavioral VHDL

Descriptions. Proceedings of the 2000 International Test Conference, 3-5 Oct, 2000. Pages 302-308.

DOI 10.1109/TEST.2000.894218.

Zhang, X. & Pham, H. 2000. An Analysis of Factors Affecting Software Reliability. Journal of

Systems and Software, 50(1):43-56.

Zhao, M. & Wohlin, C. & Ohlsson, N. & Xie, M. 1998. A Comparison Between Software Design and

Code Metrics for the Prediction of Software Fault Content. Information and Software Technology,

40(14):801-809.

Zheng, A.X. & Jordan, M.I. & Liblit, B. & Naik, M. & Aiken, A. 2006. Statistical Debugging:

Simultaneous Identification of Multiple Bugs. Proceedings of the 23rd International Conference on

Machine Learning ICML '06, Pittsburgh, PA, USA, 25-29 Jun, 2006. Pages 1105-1112.

Zheng, J. & Williams, L. & Nagappan, N. & Snipes, W. & Hudepohl, J.P. & Vouk, M.A. 2006. On

the Value of Static Analysis for Fault Detection in Software. IEEE Transactions on Software

Engineering, 32(4):240-253.

Zhu, H. 2003. A Note on Test Oracles and Semantics of Algebraic Specifications. Proceedings of the

third International Conference on Software Quality, 6-7 Nov, 2003. Pages 91-98. DOI

10.1109/QSIC.2003.1319090.

Zhu, H. & Hall, P.A.V. & May, J.H.R. 1997. Software Unit Test Coverage and Adequacy. ACM

Computing Surveys, 29(4):366-427.

Zhu, H. & Jin, L. & Diaper, D. & Bai, G. 2002. Software Requirements Validation via Task Analysis.

Journal of Systems and Software, 61(2): 145-169.

