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Software faults are expensive and cause serious damage, particularly if discovered late or not 

at all.  Some software faults tend to be hidden.  One goal of the thesis is to figure out the 

status quo in the field of software fault elimination since there are no recent surveys of the 

whole area.  Basis for a structural framework is proposed for this unstructured field, paying 

attention to compatibility and how to find studies.  Bug elimination means are surveyed, 

including bug knowhow, defect prevention and prediction, analysis, testing, and fault 

tolerance.  The most common research issues for each area are identified and discussed, 

along with issues that do not get enough attention.  Recommendations are presented for 

software developers, researchers, and teachers.  Only the main lines of research are figured 

out.  The main emphasis is on technical aspects. 

 

The survey was done by performing searches in IEEE, ACM, Elsevier, and Inspect 

databases.  In addition, a systematic search was done for a few well-known related journals 

from recent time intervals.  Some other journals, some conference proceedings and a few 

books, reports, and Internet articles have been investigated, too. 

 

The following problems were found and solutions for them discussed.  Quality assurance is 

testing only is a common misunderstanding, and many checks are done and some methods 

applied only in the late testing phase.  Many types of static review are almost forgotten even 

though they reveal faults that are hard to be detected by other means.  Other forgotten areas 

are knowledge of bugs, knowing continuously repeated bugs, and lightweight means to 

increase reliability.  Compatibility between studies is not always good, which also makes 

documents harder to understand.  Some means, methods, and problems are considered 

method- or domain-specific when they are not.  The field lacks cross-field research. 
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Ohjelmointivirheet ovat kalliita ja aiheuttavat vakavia vahinkoja, varsinkin jos ne havaitaan 

myöhäisessä kehitysvaiheessa tai käytön aikana tai niitä ei havaita ollenkaan.  Jotkut 

virhetyypit ovat usein piileviä.  Työn yhtenä tavoitteena on luoda aihealueeseen liittyvä 

yleiskuva, koska alalta ei ole viime vuosina tehty kokonaisvaltaista kirjallisuuskatsausta.  

Työssä luodaan perustaa alan jäsentämiselle; yhteensopivuuteen ja tutkimusten löytämiseen 

kiinnitetään huomiota.  Työssä tehdään kirjallisuuskatsausta seuraavilta osa-alueilta: 

ohjelmointivirhetuntemus, virheiden ennaltaehkäisy ja ennustaminen, tarkastaminen ja 

analyysi, testaus ja virhetilanteista selviytyvien ohjelmien laatiminen.  Jokaiselta osa-

alueelta kartoitetaan yleisimmät tutkimuskohteet, ja näistä tutkimuskohteista keskustellaan.  

Lisäksi työssä keskustellaan kohteista, joita ei ole tutkittu riittävästi.  Lopuksi esitetään 

suosituksia ohjelmistokehittäjille, tutkijoille ja opettajille.  Työssä hahmotellaan ainoastaan 

tutkimuksen päälinjat ja pääpaino on teknisillä näkökohdilla. 

  

Kirjallisuuskatsaus tehtiin suorittamalla hakuja IEEE-, ACM-, Elsevier- ja Inspect- 

tietokannoista.  Lisäksi selattiin eräiden tunnettujen alan lehtien tiettyinä aikaväleinä 

ilmestyneet numerot,  lähinnä viime vuosilta.  Työtä varten tutkittiin myös joitakin muita 

lehtiä, konferenssijulkaisuja sekä muutamia kirjoja, raportteja ja Internet-julkaisuja. 

 

Työssä havaittiin muun muassa seuraavia ongelmia ja keskusteltiin niiden ratkausukeinoista.  

Monet tarkastukset tehdään ja monia menetelmiä sovelletaan vasta testausvaiheessa, koska 

testauksen luullaan olevan ainoa laadunvalvontatapa.  Monet staattiset tarkastustavat on 

lähes unohdettu, vaikka niiden avulla löydetään virheitä, joita on vaikea havaita muilla 

keinoilla.  Muita unohtuneita alueita ovat ohjelmointivirhetuntemus, tietämys jatkuvasti 

toistettavista virheistä sekä helpot luotettavuuden lisäämiskeinot.  Tutkimukset ovat usein 

yhteensopimattomia ja siten myös vaikeita ymmärtää.  Joidenkin ongelmien, keinojen ja 

menetelmien ajatellaan liittyvän ainoastaan tiettyyn menetelmään tai sovellusalueeseen, 

vaikka ne ovat yleisempiä.  Yhden osa-alueen tutkimuksissa ei yleensä oteta huomioon alan 

muita osa-alueita. 
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1 INTRODUCTION 

1.1 Why Are Bugs so Bad? 
 

Software faults cause plenty of economic loss, particularly if they are not detected in early 

stages of software development.  According to Research Triangle Institute, RTI (2002), the 

annual costs of software bugs are about 0.2 to 0.6 per cent of the GNP in the USA.  The 

estimate is assumed to be too low.  The study focused on testing and use of software as 

means to detect bugs. 

 

The earlier the software fault is detected, the lower the costs are, see e.g. Boehm (1981), RTI 

(2002), Westland (2002), and Leszak et al. (2002) for details.  Repair costs of a software 

fault are about 100-200 times higher in the maintenance phase than in the requirement 

specification phase (Boehm 1981).  Faults are more difficult to correct in later phases of 

software life cycle than in earlier phases.  For example, Naval Research Laboratory found in 

one project that 21 of the 22 defects that were moderately hard or hard to correct were 

discovered during the final 10% of the development life cycle (Fredericks & Basili 1998). 

 

Some software faults lead to catastrophic consequences if detected only during the 

maintenance phase; there have been accidents caused by software faults, see e.g. Leveson 

(1995) and Ladkin (1994).  In addition to this, some software faults are never detected, and 

those hidden faults may cause damage all the time.  For example, people may make 

decisions based on the output of erroneous software and nobody ever detects that better 

decisions could have been made. 

 

1.2 The Goals of the Thesis 
 

Figuring out the status quo in the field, the current situation as a whole.  Some areas of 

fault elimination get attention, and research is being done about them.  The research is 

surveyed in the thesis.  In addition, general features of research in the field are being figured 

out. 

 

The field lacks up-to-date general surveys.  Fault elimination is a wide topic, and partial 

surveys about some subareas have been made.  In the 1970‟s general surveys were made, but 

the field was narrow at that time.  As far as the author knows, a more general survey has not 

been done yet.  The goal is to make a textbook about fault elimination, partly based on the 

material of this thesis.  Such books probably do not exist. 

 

Proposing some basis for structural framework for the field.  Information in the field is 

hard to find.  For example, in the field of compiler development there is plenty of 

information that could be used in bug elimination, too, but those who need information for 

bug elimination barely search it from publications that are intended for planning compilers.  

Also, the concepts and terms related to software faults are used inconsistently. 

 

Surveying and increasing bug knowhow.  In this work, information is collected about 

characteristics of bugs, fault classifications, fault proness, fault types, their temporal 

development, correlation between faults, and root causes for faults.  Knowing about faults 

helps eliminating them.  One often repeats the same faults all the time because he/she does 

not know about them.  Knowledge about bugs can be used by teachers and researchers, too. 

 

Surveying research about fault prevention, fault prediction, fault detection, and fault 

tolerance.  The most common research issues for each area of fault elimination are 
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discussed in this thesis.  By studying what has been done, one can figure out what each area 

contains.  Reviews of those areas help developers eliminate faults and teachers plan courses 

about fault elimination. 

 

Figuring out what should be studied more.  Some areas of fault elimination do not get as 

much attention as they should.  One goal of this thesis is to reveal issues that would require 

more attention.  Some fault types cannot be eliminated well with current means; identifying 

omitted research helps improving the situation.  In addition, presentation about research 

trends and forgotten areas help research people choose their topics and teachers to plan their 

courses. 

 

Encouraging for early fault elimination.  According to several studies, software 

developers should eliminate faults in as early a phase as possible.  Fault elimination is 

usually done later that it could be done.  Late elimination is less efficient and more 

expensive than earlier elimination.  This thesis presents some means for early fault 

elimination. 

 

Presenting concrete recommendations.  Recommendations are presented for software 

developers to eliminate faults; for research scientists to plan their research, and to improve 

usability, comparability, and understandability of results; and for teachers to choose course 

material. 

 

1.3 Scope and Outlines of the Thesis 
 

Because the topic is wide, only main lines of the existing research can be figured out here.  

Plenty of research has been done about organizational, managerial, and economical means 

for software fault elimination.  However, the emphasis in this work is in technical means and 

in what can be done by means of software development. 

 

Quality assurance is a wide topic.  It covers, for example, efficiency and maintainability.  

Articles that do not involve fault elimination have not been investigated in this survey. 

 

1.4 Surveyed Material 
 

The survey was made by performing different fault-related searches in IEEE, ACM, 

Elsevier, and Inspect databases.  In addition, a systematic search was done for material 

presented in table 1.  Most references in the thesis have been journals, but there have been 

some conference proceedings, and a few books, technical reports, and web articles.  Some 

other sources have been used, too.  (Peng & Wallace 1993) is a web publication that has an 

overview about error analysis.  Some information of the publication has been included in 

different parts of this thesis.  No material published after February 2009 has been 

investigated in the thesis. 
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    Table 1.  Material for systematic searches in this thesis 

 

Publication Volumes (last 

issue) 

Times 

ACM Computer Surveys  1-41(1)  1969 – Dec 2008. 

ACM Transactions on Computer Systems  1-27(1)  1983 – Feb 2009. 

ACM Transactions on Software Engineering 

and Methodology 

 1-18(2)  1992 - Nov 2008. 

Formal Aspects in Computing  10-17(2)  1998 - Aug 2005. 

Formal Methods in System Design  10 – 27(1-2)  Feb 1997 - Sep 2005. 

Information and Software Technology  37 – 51(2)  1995 - Feb 2009. 

Journal of Systems and Software  28-82(2)  1995 - Feb 2009. 

Science of Computer Programming  24 – 64(3)  1995 - 1. Feb 2007. 

Reliability Engineering and System Safety  83-91(1)   2004 - Jan 2006. 

IEEE Transactions on Software Engineering  1-35(1)  1975 – Feb 2009. 

IEEE Transactions on Reliability  41-48(4)  1992 - 1999. 

 

 

1.5 Structure of the Thesis 
 

 

The following classification for fault elimination means is presented in (Avižienis et al. 

2004) and followed in this thesis: fault prevention, fault removal, fault tolerance, and fault 

forecasting.  Faults need to be detected before removal.  Fault removal means are usually 

dependent on the application environment, so only the fault detecting portion of fault 

removal is investigated in the thesis.  Bug fixes are investigated as a factor that causes new 

bugs.  Fault forecasting is called fault prediction in this thesis.  In this thesis, the concept of 

fault elimination covers fault tolerance, too. 

 

Figure 1 describes the structure of the rest of this thesis in relation to fault prevention, fault 

detection, and fault tolerance.  Chapter 2 is related to fault prevention, fault detection, and 

fault tolerance.  In chapter 2, bug knowhow is investigated.  Software bug types, bug 

classifications, and temporal development of bug types are inspected; the main goal is to 

make developers avoid known bugs.  Features of bugs and fault prone software, correlation 

of faults, and root causes for bugs are also studied.  Development framework and bug 

knowhow can be developed further with help of each other, and both are used in checking, 

proving, and testing software. 

 

Chapter 3 investigates software development processes, theories, risk analysis, metrics, and 

defect prediction.  Those means are mainly associated with defect prevention and prediction, 

but they have connections with fault detection and fault tolerance.  Chapter 4 is about those 

means to look for faults that are not based on testing.  It involves checks and analysis 

methods that can be performed for software in order to prevent and detect bugs.  The goal of 

those checks is to make sure that everything is covered correctly in software.  Rigorous 

proving is discussed, too.  Many of those checks can be performed before testing.  Faults can 

be both prevented and detected with analytic checks if the checks are done before testing.  It 

is recommended that checks be done as early as practical.  Chapter 5 processes testing in 

order to detect software bugs.  Chapter 6 is about fault tolerance.  Even if there is software 

development framework and bug knowledge and software is thoroughly analyzed and tested, 

there can be bugs.  The chapter contains means to prevent harm if faults exist.  Means of 

fault tolerance often involve fault detection.  For example, recovery can often be done after 

the detection of a fault, and faults can be detected by self-checks.  Chapter 7 contains 

summary, conclusions, and recommendations, and Chapter 8 is a closure; those two chapters 

have been omitted from figure 1. 
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                Figure 1.  Means for eliminating bugs related to the structure of this thesis 

 

Figure 2 answers the question about in which phases of the software development life cycle 

the topics described in chapters 2-6 of this thesis are applied.  The leftmost column describes 

the life cycle phases.  Under each chapter column, the left pillar describes the phases where 

the topics are typically applied, and the right pillar describes the phases where they should 

be applied. The thickness of the pillar describes how much the topic is being applied. 

 

The topics in the software development framework are applied in all phases, although they 

should be applied to a greater extent.  Typically, a little checking is performed after coding, 

if at all, although checking should usually be performed most of the time during all phases of 

the software development cycle.  Testing is often considered a long-lasting stage after 

coding, although testing should be performed during all phases most of the time, in addition 

to the main testing phases after coding.  Prevention methods are used all the time, but they 

could be used more.  For example, process maturity models and statistic process control 

could be applied more.  During all phases of life cycle, prediction methods like risk analysis 

and metrics could be used more often than they are being used.  Defect prediction models 

could be applied more often, too.  Bug knowledge and fault tolerance are applied randomly 

if at all.  They should be applied all the time when software is being developed. 
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 T   typical: In what phases of the software life cycle the  

      topic of the chapter is typically applied 

 

              B   better:  In what phases of the software life cycle the 

      topic of the chapter should be applied 

 
 

                 Figure 2.  Chapters of this thesis related to the software life cycle 
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1.6 Basic Definitions 
 

Some definitions are explained below that are frequently used in software engineering. 

 

Error is a discrepancy between the computed, observed, or measured value or condition, 

and the true specified or theoretically correct value or condition (IEEE 1990).  In this work, 

specification errors are included.  Definitions of fault, failure, and mistake are commonly 

used as a definition to error, but fault tolerance discipline distinguishes between all those 

definitions (IEEE 1990).  In fault tolerance analysis, error is the amount by which the result 

is incorrect (IEEE 1990). 

 

Fault is an incorrect step, process, or data definition (IEEE 1990).  See e.g. Abbott (1990) 

about problems in defining the notion of fault. 

 

Failure is an inability of a system or a component to perform its required function within 

specified performance requirements (IEEE 1990). 

 

Defect may mean error, fault, or failure. 

 

Mistake is a human action that produces an incorrect result (IEEE 1990). 

 

Safety critical software is software whose failures may have very serious consequences.  

There is unanimity about that software is safety critical if its failure can cause deaths and 

serious health losses.  Other health issues and evident physical discomfort, too, are often 

included in the definition of safety critical software.  Sometimes software whose failures 

cause significant damage to property is regarded as safety critical; according to IEEE 

standard (IEEE 1990), critical software is software whose failure could have an impact on 

safety, or cause large financial or social loss. 
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2 AVOIDING KNOWN BUGS 
 

Knowing which bugs are common helps stop repeating them.  This chapter presents some 

common bug types.  The chapter also involves characteristics of bugs, causes for bugs, 

features of fault-prone software, and correlation of bugs.  This information helps in 

eliminating bugs and preventing the repetition of the same bugs.   It also helps in improving 

the software developing process and bug-related metrics, which are analyzed in chapter 3.  

Methods for risk analysis and defect prediction can also be developed accordingly; those 

methods are investigated in chapter 3.  Chapters 4-5 of this thesis present different means to 

detect software faults.  The information in this chapter can be used in applying those means, 

as well as in using fault tolerance means presented in chapter 6.  General information of 

different knowledge areas like mathematics, computer science, and computer engineering 

(SWEBOK 2007), can be used in eliminating bugs.  The information in this chapter is 

specifically involving bugs and could be regarded as a branch of computer engineering. 

 

In the first subchapter, common fault types and fault classifications are introduced.  Also, the 

temporal development of bugs is studied in the subchapter.  In subchapter two, bugs are 

presented that are typical to specific application domains and environments.  In subchapter 

three, features of fault prone software and characteristics of hidden bugs are presented.  In 

addition, reasons why bugs are hidden and correlation between bugs are investigated.  In 

subchapter four, causes for faults are discussed.  Subchapter five is a summary of bug 

knowledge surveyed in this thesis. 

 

2.1 Fault Types 

 
This subchapter investigates fault types.  In the first part, different fault types are presented.  

In the second part, fault classifications are discussed.  In the last part, the question about 

which bug types have been present during different decades is investigated. 

 

2.1.1 Typical Faults Found in Software 

 

There are numerous lists of bug types, and they originate from different decades.  For 

example, Foster (1980) has classified code faults, and Lutz and Woodhouse (1996) have 

classified specification faults.  Table 2 presents some usual bug types; the same bug may 

belong to several of those bug types. 

 

               Table 2.  Examples of general and special bug types 

 

General bug types 

Constant/value/sign: Erroneous value for constant or variable, or wrong sign (Foster 1980). 

Wrong padding: error in padding of a field (FS Networks 2005). 

Unit: using wrong units (Peng & Wallace 1993). 

Expression: fault in boolean, arithmetic, or relational expression (Foster 1980). 

Associative shift: erroneous association in boolean expression (Kuhn 1999). 

Operation: operator (pointers included), operand, or even special character (Foster 1980), 

(Podgurski & Clarke 1990). 

Negation: inverse of e.g. operator or number (Foster 1980), (Lau & Yu 2005). 

 
Continued on next page 
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Reference: error in reference to a variable or an operator (Foster 1980). 

Delimiter: wrong, extra, or missing delimiter, see e.g. (Duck 2005). 

Sequence/calculation: wrong order of calculations in an expression (parenthesis in a wrong 

place, precision
1
 lost due to wrong order of computations), or a wrong sequence (Foster 

1980), (Howden 1980), (Darcy 2006). 

Data errors: e.g. absent data, incorrect data, timing error, and undesired duplicate of data 

(Lutz & Woodhouse 1996). 

Structural: structural faults like missing paths (Howden 1976), or cycles where there should 

not be cycles (Holmberg & Eriksson 2006). 

Logical: neglecting branches, forgetting cases or steps (Schneidewind & Hoffmann 1979), 

(Dupuy & Leveson 2000). 

Precision: see subchapter 4.1.2, and e.g. (Darcy 2006). 

Error accumulation: accumulation of error in repeated computations due to e.g. precision 

limits (Goldberg 1991). 

Convergence: e.g. assuming wrong convergence point.  Some convergence and coherence 

problems are introduced in (Bastani et al. 1988). 

Conversion: converting elements from one type or format to another (Dupuy & Leveson 

2000). 

Type mismatch: e.g. performing inappropriate type conversions or copying incompatible 

objects may cause mismatch (Spohrer & Soloway 1986a), (Sullivan & Chillarege 1991). 

Overflow/underflow: A number is too large or small for the space reserved for it (Peng & 

Wallace 1993). 

Value out of range: e.g. value of a variable, a parameter, or an argument is too large or too 

small, or is not inside the range of the function; or the divisor is zero (Peng & Wallace 

1993). 

Off by: e.g. incorrect processing of an extra element, or performing a loop one extra time or 

one time too few, e.g. (Smidts et al. 2002). 

State faults: missing state, extra state, missing transfer, extra transfer, and erroneous transfer 

(Laycock 1993). 

Missing statement: missing program statement (Schneidewind & Hoffmann 1979). 

Statement order: wrong order of statements (van der Meulen et al. 2004). 

Initialization or reset: not giving values to data elements before use; using old values when 

new ones should have been given; or wrong, incomplete, or undesired initialization; e.g. 

(van der Meulen et al. 2004), (Glass 1981), (Endres 1975). 

Duplicate name: the same name is unintentionally used for two different objects that can be 

mixed with each other (Fruth et al. 1996). 

Side effects: There is a lot of research about side effects.  Examples of ways to cause side 

effects are evaluating a macro several times without considering side effects when there may 

be side effects (Seacord 2007), or altering a global variable in one function in a way that is 

unexpectable in another part of program (Fitzpatrick 2006). 

Consistency: e.g. inconsistency in use of global variables, or between software states (Peng 

& Wallace 1993). 

Interface: faults in interaction with other system components (Lutz 1993). 

Encapsulation: faults related to hiding elements from other parts of the system (Sinha & 

Harrold 2000). 

Exception bugs: bugs related to exceptions, e.g. (Yi 1998). 

 
Continued on next page 

                                                 
1
 See subchapter 4.1.2 about precision. 
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Memory: e.g. allocation (Chou et al. 2001). 

Violation of standards: e.g. violation of the standard (e.g. DO-178) that should have been 

applied for the software, or violation of an internal standard in a company (Peng & Wallace 

1993). 

Application dependent bug types 

Timing 

Software is becoming more time dependent, which increases the number of timing bugs.  

One instance of timing bugs is occurrence of simultaneous events when there should be only 

one event.  Leveson and Stolzy (1987) discuss the following time faults: a desired event does 

not happen, an undesired event happens, there is wrong order for events, two incompatible 

events occur simultaneously, or there is erroneous timing or duration for events.  Atlee and 

Gannon (1993) discuss simultaneous occurrence of events that should not occur 

simultaneously.  Lutz and Woodhouse (1996) also mention timing and order faults, like too 

early or too late arrival of data, repeated occurrence of an event that should occur only once, 

or intermittent occurrence of iterative events that should occur regularly. 

Object oriented programming 

There are type errors e.g. due to inheritance.  Rine (1996) studies preventing unsafe sharing 

of objects by stronger type structures.  Peleg and Dori (2000) observe model-related faults 

like faults related to aggregation, links, or assignment; cyclic model not modeled as cyclic; 

or different types of confusion, e.g. between an event and a condition, or between an action 

and an activity. 

Neglecting differences 

Differences between different computers, operating systems, and e.g. compilers often causes 

software malfunction.  The following list contains common differences between machines: 

 Alignment and padding (Hakuta & Ohminami 1997). 

 Whether fields are assigned left to right or right to left.  Hakuta and Ohminami 

(1997) discuss if words are stored with the most significant byte in the top byte or in 

the end byte of the word. 

 Storing numbers in memory (Hakuta & Ohminami 1997). 

 Representation of data types, e.g. floating point numbers and negative numbers 

(Hakuta & Ohminami 1997), and whether sign extensions are used for characters 

(Iwata & Hanazawa 1993).  In many implementations, float and double are different 

types, and extra digits may be arbitrary in many implementations if a number is 

converted from one type to one that has a greater number of significant digits (Darcy 

2006). 

 Methods for performing truncation and rounding (Cannon et al. 1990); particularly 

for negative numbers, see e.g. (Seebach 2006). 

 Zeros in comparison (Cannon et al. 1990). 

 Order of computations and/or assignments can be left to right, right to left, or 

nondeterministic; for example, C compilers re-arrange commutative and associative 

operations arbitrarily (ARM 2003). 

 Ranges for data types (Hakuta & Ohminami 1997). 

 Limits like those of nesting levels and arguments in a function call (ARM 2003). 

 Hakuta and Ohminami (1997) discuss processor architecture differences and other 

portability factors, including other system environment factors. 

 

Gerhart and Yelowitz (1976) have surveyed software errors in specifications, software, and 

proven software.  Typical faults in specifications were incompleteness and the situations 

where something that had been intended to be unaltered had been altered in programs.  There 

were also other kinds of errors related to misunderstanding.  Termination-related errors were 

common in proven programs. 
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2.1.2 Fault Classification Schemes 

 

There is no one single classification schema for software faults, regardless of the range of 

efforts to make it and long history of related research.  Developers often aim at removing the 

subjectivity of the classifier and creating orthogonal components.  The more choices there 

are for any defect, the more accurately the developer can choose among the types, but more 

choices make classification harder and more time consuming.  (Kelly & Shepard 2001). 

 

Different classifications have been developed for different purposes, e.g. for making 

decisions during software development, tracking defects for process improvement, guiding 

the selection of test cases, or analyzing research results (Kelly & Shepard 2001).  One 

application of making decisions during software development could be to realize different 

bug types and knowingly avoid them in software design.  IBM has had quality assurance 

goals related to bug tracking and classification. One is to characterize or understand 

attributes in development environment (Fredericks & Basili 1998).  Another is to provide 

feedback (Kelly & Shepard 2001) (Fredericks & Basili 1998).  Knowing where the defect is 

helps improving the process (Fredericks & Basili 1998).  IBM has a knowledge base about 

common defects (Fredericks & Basili 1998). 

 

Sometimes it is hard to put a bug in one specific class.  There are different ways in which the 

bug can be classified (El Eman & Wieczorek 1998).  Kelly and Shepard (2001) describe 

situations where multiple interpretations of defects and categories are possible.  The 

classifications  have probably not been defined perfectly (Kelly & Shepard 2001).  

According to El Eman and Wieczorek (1998), different people usually put a fault in the same 

class if they use the same classification schema. 

 

Table 3 presents general and special classification criteria and examples of bug 

classifications. 

 

Table 3.  General and special bug classifications 

 

General classification criteria 

 

Bug type Fredericks and Basili (1998) present classifications of bug types. 

Breadth Lau and Yu (2005) present expression faults based on erroneous part of the 

expression.  For example, a literal, a term, or the whole expression may have been negated. 

Qualifier Fredericks and Basili (1998), and Kelly and Shepard (2001) describe existing 

classifications with keywords like missing, extra, duplicate, incorrect, incomplete, unclear, 

ambiguous, changed, and better way.  

Trigger Fredericks and Basili (1998) describe classifications about what triggers the failure 

caused by the fault. 

Source Fredericks and Basili (1998) describe classifications about the part of the system or 

an environment that caused the bug to be born, i.e. the source of the misunderstanding. 

Location Kelly and Shepard (2001) describe classifications about the location of the fault; 

some examples are structure, expression, assignment, input, and output. 

Life cycle phase when born Fredericks and Basili (1998) describe classifications about the 

software development life cycle phase where the bug was born. 

Legacy level when born Fredericks and Basili (1998), and Kelly and Shepard (2001) 

describe classifications about the legacy level where the bug has been born.  Examples are 

new software, modified software, bug fix, and re-fix. 

 
Continued on next page 
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Activity where observed Kelly and Shepard (2001) describe bugs based on the activity 

that was being performed when the defect was detected, e.g. review, inspection, or testing. 

Action in a failure situation Kelly and Shepard (2001) describe classifications about what 

the system does in a failure situation due to the failure, i.e. consequences of the failure. 

Amount of damage Fredericks and Basili (1998) discuss about attributes like damage 

level, number of affected states, number of affected modules, whether the failure region 

(set of inputs that cause the failure) is connected, and repair effort. 

Consistency Whether the failure occurs always or only sometimes, and whether the 

software behaves in the same way every time the failure occurs (Avižienis et al. 2004). 

Volatility Gray (1985) classifies faults as transient faults and permanent faults. 

Dependencies Jeng (1999) classifies faults as path dependent/independent, and data 

dependent/independent faults. 

Special criteria and classifications 

 

Examples of classifications 

Fredericks and Basili (1998) survey five famous classifications. 

Chillarege et al. (1992) describe orthogonal classifications and an environment that 

enables the metering of cause-effect relationships. 

Avižienis et al. (2004) classify faults and failures. 

Classifications in domain testing 
Howden (1976) classifies faults as domain faults and computation faults.  Domain faults 

are either missing paths or path selection faults (ibid.).  Path selection faults are either 

predicate faults or assignment faults. 

Harrold et al. (1997) extend the classification so that faults are classified as statement 

faults and structural faults that cover more than one statement. 

Classifications in HAZOP (Hazard and Operativity Analysis) 

Reese and Leveson (1997) describe keywords used in HAZOP.  Original keywords were: 

"none", "more", "less", "as well as", "part of", "reverse", and "other than".  Software 

oriented extension contains component and system oriented keywords.  There are hazard-

related keywords for each of those.  For example, signals may drift.  There are also data 

flow- oriented keywords for output, its timing, and detectability of output faults.  (Reese & 

Leveson 1997). 

Hierarchical classifications 

Lau and Yu (2005) present a fault class hierarchy that relates literal, term, operator, and 

expression faults and insertion, omission, reference, and negation faults.  Those 

components are not completely orthogonal; e.g. term operation fault is located between 

literal insertion fault and literal negation fault in the study. 

Nakajo and Kume (1991) have a three-level class hierarchy, see subchapter 2.4. 

Okun et al. (2004) compare classes of logical faults in specification based testing and 

calculate relationships between those classes. 

 

 

There are numerous studies about looking for and classifying faults or failures 

automatically.  Execution traces are analyzed (Podgurski et al. 1999). Multivariate analysis 

like clustering is sometimes used in forming classes automatically (Podgurski et al. 1999).  

Dependencies between elements are sometimes used (Francis et al. 2004), and invariant 

properties that cause faults or failures are sometimes searched for (Hangal & Lam 2002).  

Some studies involve hierarchical methods and stratified sampling (Podgurski et al. 1999).  

Francis et al. (2004) develop tree-based methods for refining failure classifications when 

software is being executed. 

 

Knowing which bugs are common and which bugs are present together helps stop repeating 

them.  Berglund (2005) studies communicating about bugs.  There are studies about the 
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content of bug reports.  Marick (1997) discusses guidelines about what a good bug report 

must contain. 

 

There are databases about common faults in order to increase bug knowledge; e.g. 

Fredericks and Basili (1998) discuss IBM database; Card (1998) discusses about a fault 

report database for cause and impact analysis, and for analyzing defect time and detection 

time; and Clapp et al. (1992) present a method where database contains data about test runs, 

test scripts, faults, repairs, and source code.  Kim et al. (2006) discuss bug fix database for 

building bug patterns and thus stopping repetition of the same bugs in the project.  There are 

public bug databases, e.g. Bugzilla database on https://bugzilla.mozilla.org/.  National 

Institute of Standards and Technology in the USA has developed an EFF tool for collecting 

and maintaining bug databases (Wallace et al. 1997).  Liu et al. (2008) study how to make it 

easier to find failures caused by the same bug. 

 

 

2.1.3 Temporal Development of Fault Types 

 

Figure 3 presents a distribution of bug types for safety critical accidents found on the 

Internet.  Approximately four decades are covered.  The figure contains aircraft, car, 

elevator, nuclear power plant, train, and spacecraft accidents.  The bugs processed have been 

observed in safety critical software when it had already been in use; non-public bugs found 

in early phases of safety critical software development have not been included in the figure.  

There have usually been many more causes for the accidents; software bugs have been only 

one factor.  In some cases, more bugs have been found later than just those that affected the 

accident.  Besides known bugs, some cases like (NEAR 1999) contained malfunctions in 

simulation, the reasons of which were not found. 

 

The accidents have been collected from the following references: (Adler 1998), (Arida 

1999), (Brader 1987), (Dershowitz 2007), (Finkelstein & Dowell 1996), (Ganssle 1998), 

(Huckle 2005), (Jacky 1987), (JPL 2000), (Ladkin 1994), (Ladkin 1996), (Ladkin 1999), 

(Leveson 1995), (MCOMIB 1999), (Modugno et al. 1997), (NASA 1999), (NASA 2003), 

(NASA 2006), (NASA 2007), (NEAR 1999), (Neumann 1985), (Neumann 2007), 

(Nussbacher 1992), (Reid 1995), (Rushby 1993), (Santor 2007), (Sheffield 2001), (Sogame 

& Ladkin 1996), and (Strobl 2000). 

 

The figure contains only the accidents and incidents where some details about the bug are 

available.  On the Internet there are numerous accident reports without those details: either a 

software bug is suspected but not found, or a bug is known in more or less detail but the 

report includes no details about it. 
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Explanations of the legend:  BULACK = lack of backup, CALC = calculation, CHAR = 

character fault, COHER = coherence, COMLACK = lack of communications, ERRIGN = 

continuing operation when something was wrong, EXCEPT = exception fault, EXCLU = 

excluding important states or features, INIT = initialization, INPUT = input, INTEGR = 

integration, INVERS = inversion, MISSTA = missing state, OLDDAT = too old data, 

OUOFME = out of memory, OVF = overflow, OVRLD = overload, POWOU = power out, 

PRECIS = precision, REUSE = reuse, SEQODR = wrong order in sequence, SIZE = size, 

TIM = time, UI = user interface, UNIT = unit, VAL = value. 

 

Figure 3.  Temporal development of bug types 

 

Some observations can be made from the descriptions: 

 There have been character faults at early times, and a few of them have been present 

later. 

 Calculation-, coherence-, and initializing bugs have been common all the time.  

Calculation bugs may be computation errors or ignored conditions.  For instance, the 

orbit around the sun was ignored in one piece of Gemini V -software (Neumann 

1985). 

 There have been some errors involving values or units. 
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 Inversion bugs have been present from the 1970's. 

 From the 1980's when software became more complicated, there have been faults 

related to ordering of operations within an expression, ordering of sequences, 

exception processing, overload, timing, and missing states, as well as input faults 

and user interface faults. 

 From the 1980's, sizing and overflow faults have started to appear. 

 

Lack of integration between system factors combined with insufficient user interface has 

been a factor in many accidents.  For example, in Nagoya 1994 accident (Sogame & Ladkin 

1996) there was contradictive action between different aircraft parts, and in Cali 1995 

accident (Ladkin 1996) there was a mismatch between a chart value and a database value.  In 

both examples, the user interface, too, could have been better. 

 

There are contradictive bug reports from the 1960's, when many bugs were character errors.  

For example, there are different versions about the reason for the disaster of Mariner 1 

spacecraft in the 1960's.   Character-, line-, or operation-related bugs are suspected, and even 

different descriptions about the same type of bug are contradictive.  Jacky (1987), Brader 

(1987), and Strobl (2000) discuss the problem.  It is not clear how many of the reported bugs 

appeared and if they were independent (Jacky 1987). 

 

In some cases, it has been hard to decide what is being considered as a missing state.  For 

example, X-31 crashed because ice caused wrong input, and the computer could not 

compensate it (NASA 2007).  Mars Polar Lander software had value, calculation, and logic 

faults, and was ignoring transient states (JPL 2000).  Its backup could stop working when the 

spacecraft was put into a safe mode (ibid.).  When the system ignores special conditions, it is 

hard to know whether those conditions have been unintentionally ignored or if a trade-off 

had been made, see e.g. (Leveson 2001).  For example, autopilots do not take all situations 

into account, which can be a factor in aviation accidents where pilots rely too much on 

autopilot or become distracted when using an autopilot; see e.g. (Sogame 1999) and (NTSB 

1980), which are not included in the graph of figure 3.  Sometimes there has not even been 

an opportunity for manually changing the action of the computer system, see e.g. (Ladkin 

1994). 

 

Part of a temporal development is how long a bug lasts.  Zelkowitz and Rus (2004) studied 

defect evolution in a product line environment.  Bugs were born all the way including 

mission preparation, and bugs were detected all the way including the mission.  Some faults 

stayed for more than 10 years. 

 

2.2 Faults in Specific Applications 

 
In this subchapter, specific faults in different application domains and environments are 

being surveyed.  The first part involves faults in different application domains.  The second 

part investigates faults in different programming environments, and typical faults when 

using different programming languages. 

2.2.1 Faults in Specific Application Domains 

 

Sometimes research related to software faults concentrates on a specific kind of systems.  

For example, many studies are limited to database systems; real-time systems; or safety-

critical, large, complex, or concurrent systems.  Those studies can involve one or several 

phases of software life cycle.  Many studies examine individual programs or many programs 

belonging to the same application area.  Table 4 includes only some examples of the 

numerous studies that have been performed.  Some of those studies contain a survey of 

research about bug types found in specific application domains or environments. 
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   Table 4.  Examples of studies about bug types in different application domains 

 

Application Study Common faults and remarks 

Development of 

several small 

programs by one 

programmer in 

Algol W for IMB 

360/67, 173 errors 

(Schneidewind 

& Hoffmann 

1979) 

Design faults like neglecting extreme 

conditions, forgetting cases or steps, and 

faults in loop control; representation 

faults (writing something else than 

desired); syntax faults; and manual 

faults.  Complexity measures and errors 

had correlation. 

Recognized failures 

of medical devices 

that were recalled 

due to repeated 

defects during years 

1983-1997, 342 

failures 

(Wallace & 

Kuhn 2001) 

Logical and calculation faults. 

Long-term use of 

scientific Fortran 

software (N 

replicas) 

(Hatton & 

Roberts 1994) 

One-off faults. 

DB2 (database), 

IMS (database), 

MVS (os) 

(Sullivan & 

Chillarege 

1992) 

Undefined states particularly due to 

omitted logic.  Some common triggers 

for faults were workload, unusual 

sequence (e.g. pressing cancel during a 

query), bug fixes, and recoveries.  

Assignment and checking faults are 

assumed to dominate late phases of 

database development. 

Numerous 

relatively small 

real-time programs 

(Rubey 1975) Specification-related errors, particularly 

design consideration, and derivation 

from specification. 

Satellite software 

(test) 

(Dupuy & 

Leveson 2000) 

A conversion fault, logic faults, 

omission of branches and conditions, 

value faults, missing functions, and 

faults in error processing procedures. 

Spacecraft 

controller (SPIN 

used in experiment) 

(Havelund et 

al. 2001) 

Wrong task orders, timing faults; 6 

faults analyzed. 

Voyager and 

Galileo errors 

detected during 

integration and 

system testing 

(Lutz 1993) Interface faults were present.  There 

were functional faults like behavioral 

faults, operational faults like omitted or 

unnecessary operations, and conditional 

faults like erroneous values on 

conditions or limits.  Omitted operations 

caused inappropriate triggers (e.g. 

wrong input caused recovery instead of 

check of values).  Conditional faults 

caused risk of triggering error recovery 

inappropriately or failing to trigger the 

needed response. 

 
Continued on next page
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Spacecraft system 

inspection 

(Lutz 1996) Value out of range, input arrived when it should 

not have arrived, delays in error response, and no 

path from high-risk state to low-risk state. 

7 spacecraft, 199 

anomaly reports 

(Lutz & 

Mikulski 2004) 

The most common triggering factor was data 

access or delivery (e.g. function/algorithm or 

assignment/limit), also recovery bugs were 

common.  

ATM networks (Hac & Chu 

1998) 

Header bit change, buffer overflow.  Article 

presents a method for preventing and correcting 

buffer overflows. 

 

In (Lutz & Mikulski 2003), need for new requirements for launched spacecraft systems 

arose when the software had to handle rare but high-consequence events like unusual paths, 

requests of data that had just become unavailable, overflows, or rare environmental 

situations.  Another source for new requirements was for software trying to correct hardware 

failures.  In another experiment, latent software requirements were revealed, and unexpected 

dependencies were identified (Lutz & Mikulski 2004).  According to Littlewood and Strigini 

(1993), design errors, radically new systems, and discontinuous input-output-mapping are 

problems in safety critical software based systems. 

 

Research is being done about fault patterns.  According to Shull et al. (2005), patterns in 

defect classes have been found in classes of projects.  Shull states that making hypothesis 

and empirically assessing individual studies is not as good a method as a more formal one.  

The article presents surveys for defects in a specific environment and/or application domain.  

For example, there are studies about the relation of interface faults and all faults; different 

studies have contradictive results and define interface in different ways.  The study 

investigates e.g. the difference between new and modified modules, and questions like 

whether there are omission or commission faults, and how common cause of faults 

misunderstanding of specifications is.  In the study, problems of concepts are discussed; 

different studies had different content for concepts, which caused problems when studies 

were compared.  One example is the above mentioned concept of interface. 

2.2.2 Typical Faults in Specific Environments 

 

Some research has been done about what types of bugs are presented in some specific kind 

of software (see table 4), or in software made with a specific tool or methodology.  

According to Takahashi et al. (1995), structural methodology is more efficient and reliable 

than text-oriented design methodology.  Data definition and interfaces were better 

understood by using a structural methodology, but those who used a text-based methodology 

understood specifications better in cases where relevant constituents were distributed over 

the documents.  Gorla et al. (1995) compare merits of textual, graphical, and tabular tools, in 

understanding both tools themselves and process logic. 

 

Yoo and Seong (2002) have analyzed the effect of specification languages on fault diversity.  

They analyzed a black-box language, a dynamic behavior language that used graphs, and a 

natural language.  There were differences in fault types and density.  For example, natural 

languages are inexact and graphs do not always express timing or scope of variables. 
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According to Sheil (1981), some programming language features are error-prone.  The 

following examples are stated in the article: 

 Untraditional operator precedence. 

 Assignment as an operator rather than a statement. 

 Semicolon as a separator rather than a termination symbol. 

 Bracketing to close both compound statements and expressions. 

 Inability to use named constants. 

Table 5 presents typical faults for some programming languages. 

 

     Table 5.  Common bugs for some programming languages and environments 

 

Programming Languages 

Env Typical bugs Study and 

possible 

comments 

C First and last values, initialization, newlines, command 

sequence errors, calculation faults involving limit values 

and termination, order of data items 

(van der Meulen 

et al. 2004) 

Pointer bugs, buffer overruns/overflows, mixing = and 

==, misusing automatic variables, errors related to 

declaration and definition 

Generally known 

Memory faults (Xu et al. 2004), 

prevention 

method 

C++ Allocation and deallocation bugs, buffer 

overruns/overflows, mixing = and ==, misusing 

automatic variables, and erroneous use of pointers 

Generally known 

Memory leaks (Levitt 2004), 

smart pointers for 

prevention  

Limits (even some unusual cases like processing only the 

last element), processing of special characters, duplicate 

processing, unimplemented functions, timing, and 

inexact documentation 

(Smidts et al. 

2002), C++ and 

waterfall 

Java Timing and synchronization bugs, pointer bugs, bugs 

related to equality of objects, bugs related to inheritance 

and overriding, and bugs related to exceptions, 

initialization bugs, and missing or erroneous checking of 

return value 

(Hovemeyer & 

Pugh 2004), bug 

patterns and a 

detection tool 

LISP Shared variables and side effects Generally known 

FORT 

RAN 

Argument passing, initialization, and overwriting of 

variables  

(Hatton & 

Roberts 1994) 

Cobol Erroneous sequences, incorrect matching of statement 

groupings, missing conditions, and missing cases of input 

data 

(Werner 1986) 

 
Continued on next page
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Operating Systems 

Env Typical bugs Studies and matters involved 

Unix uti-

lity 

prog-

rams 

Pointer- and array faults (e.g. related to 

range), initialization faults, faults related to 

signed characters, wrong assumptions, not 

defining something that resembles 

something else, bad address, omissions of 

checks for errors and end of file, and race 

condition faults 

(Miller & Fredriksen 1990), 

(Miller, Koski, et al. 1995) 

Non-

Stop UX 

(basis 

for 

UNIX 

V) 

E.g. bugs in device drivers, pointer faults, 

missing exception checks, and incorrect 

algorithm or code placement 

(Iyer et al. 1996) 

Linux Faults related to blocking, pointers, 

allocation, bounds, and interrupts 

(Chou et al. 2001), average 

bug age estimate based on data 

1.8 years, logarithmic 

distribution except Yule for 

block checker 

The most common effects of fault injection 

in Linux kernel were reference to null 

pointer, page fault, invalid operation code, 

and protection fault 

(Gu et al. 2003), latencies also 

studied.  About 10% of faults 

propagate. 

Tandem 

QUAR- 

DIAN90 

OS 

Neglecting unexpected situations (different 

kinds, e.g. timing, racing, or state), missing 

routine or operation, and the use of an 

incorrect constant or variable 

(Lee & Iyer 1993), (Lee & Iyer 

1995), About 72 % of the 

faults were recurrences 

Mary-

land 

Naval 

Omissions, bugs related to incorrect facts, 

and description table access faults  

(Fredericks & Basili 1998) 

Sperry 

Univac 

Omissions and data definition faults (Fredericks & Basili 1998) 

DOS/VS 

envi-

ronment 

Configuration and architecture faults; faults 

related to communication and dynamic 

behavior, e.g. wrong command sequence, or 

missing steps like opening a file; faults 

related to functions offered, e.g. functions 

had been changed; faults related to 

calculation, logic, limits, reference, 

adderssability, or initialization; omitted 

commands; wrong values; and output faults 

(Endres 1975) 

IBM 

MVS  

Storage corruption particularly due to 

allocation, pointer, and buffer overrun 

errors; and undefined states 

(Sullivan & Chillarege 1991), 

boundary conditions were 

common triggers 

 

2.3 Features of Faults and Failures 

 
This subchapter discusses about what bugs are like.  The first part discusses features of fault 

prone software, and methods to predict fault proness.  The second part involves the question 

about why so many bugs are hidden.  The third part involves failure interaction, fault 

regions, and the question about how many faults are usually needed to cause a failure. 
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2.3.1 Features of Fault-Prone Software 

 
Table 6 presents research about features of faults and effect of different factors on fault 

density. 

 

      Table 6.  Features of faults and effects of different factors on fault density 

 

Fault proness of files 

According to numerous studies since the study of Endres (1975), there are fault prone files in 

computer systems.  General research about fault-prone programs has been done.  According 

to Vouk and Tai (1993), fault proness may oscillate as the function of time.  According to 

Ostrand and Weyuker (2002), Fenton and Ohlsson (2000), and Pighin and Marzona (2003), 

the same files remain fault prone from release to release.  However, files containing lots of 

pre-release faults do not seem to contain so many post-release faults (Ostrand & Weyuker 

2002) (Fenton & Ohlsson 2000).  Software systems produced in similar environments have 

roughly similar fault densities (Fenton & Ohlsson 2000). 

Failure intensity and number of failure indications 

According to Shima et al. (1997), failure intensities can be different for different software 

faults and even for faults in the same module.  Intensities for some faults can be identical 

(ibid.).  One fault may have many failure indications (Munoz 1988). 

Symptoms and detection mechanisms 

Generally speaking, sequences with more operands and larger value ranges reveal more 

faults than smaller sequences (Doong & Frankl 1994).  Relative frequencies of add and 

delete operations is also a factor (ibid.).  Howden (1986) investigated the relationship 

between a missing function and number of times a function is repeated.  Lee and Iyer (1993) 

studied faults in Tandem QUARDIAN90 operating system.  Address violation was a 

common detection mechanism.  Most often the immediate effect when the fault was 

exercised was a single non-address error, e.g. field size, or an index.  Symptoms of 

undefined problems were typically related to overlay or to data structures.   

Effect of workload 

The level and the type of workload affect failures.  Several studies indicate that system 

failures tend to occur during high loads.  For example, Chillarege and Iyer (1985) show that 

this holds for latent errors.  According to Woodbury and Shin (1990), high workloads 

increased the age of hidden faults.  Chillarege (1994) studied software probes for self-

testing.  According to the study, software faults are often partial and/or latent; in the study, 

partial faults were defined as faults that do not cause a total system outrage.  A Combination 

of latent faults may trigger in high workload and other special situations (ibid.). 

Fault injection phase 

Mohri and Kikuno (1991) present a method where the development phase of a fault is found 

based on location and other information.  In IBM, defect types were injected in a specific 

phase, e.g. assignment faults evolved during the coding phase, and algorithm faults evolved 

during low level design phase (Fredericks & Basili 1998).  For HP, many faults were 

injected during detailed design and re-design; no formal review was performed after 

redesigns (ibid.).  In (Leszak et al. 2002), the majority of bugs did not originate in early 

phases; functionality faults and algorithm faults frequently evolved during implementation 

phase.  Many defects originated in component-specific design or implementation (ibid.). 

 
Continued on next page 
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Fault detection phase 

Many IBM faults studied by Fredericks and Basili (1998) have been triggered by boundary 

conditions.  Process inference trees were built about bugs detected in different life cycle 

phases in IBM (Fredericks & Basili 1998).  For Sperry Univac, the majority of data handling 

faults were discovered in unit testing, whereas most data definition faults were found in 

functional testing (Fredericks & Basili 1998).  Higher fault densities in function testing 

correlated slightly with high fault densities in system testing in (Fenton & Ohlsson 2000). 

Fault content during different life cycle phases 

In Selby‟s and Basili‟s study (1991), pretty shallow phase of software development 

contained the greatest relative amount of errors.  In addition, faults that were between initial 

states of program development and formulation of abstract data types were harder to correct 

than faults at those levels.  The authors assume that it is due to the fact that programmers 

understand root and leaf levels better than other levels (ibid.).  According to Selby (1990), 

effects of multiple testing phases on fault proness depend on the application. 

Age of software 

New files often contain more faults than older ones (Ostrand & Weyuker 2002); see (Pighin 

& Marzona 2003) for contradictive results. Eick et al. (2001) study the risk factors and 

symptoms for decaying of code, and develop metrics.  They also figure out reasons for 

decay, like inappropriate architecture, violation of design principles, and imprecise 

requirements.  Hochstein and Lindvall (2005) assess how to diagnoze degeneration of code 

and modify the code so that it remains in conformance with the architecture. 

Effect of modifications 

Modified software may have higher fault density than new software (Fredericks & Basili 

1998) (Leszak et al. 2002), and the faults may be more difficult to correct (Fredericks & 

Basili 1998).  According to research of University of Maryland Naval Research Laboratory  

(Fredericks & Basili 1998), modified or re-used modules had higher amount of incorrect or 

misinterpreted functional specifications than new modules.  According to Naval Research 

Laboratory results, more faults were multimodular in modified than in original modules 

(Fredericks & Basili 1998).  According to Selby (1990), reused components are less fault-

prone than new ones, but reuse does not increase the reliability of the whole system.  

According to Thomas et al. (1997), modified components contain lots of interface faults. 

Size and structure of fault region 

Not so many faults are multimodular (Endres 1975) (Fredericks & Basili 1998).  Munoz 

(1988) studied how wide spread bugs are.  In the study, the scope of a defect was determined 

by combinatorial testing.  In (Cohen et al. 1997), a large number of faults were triggered by 

several combinations of parameters.  In many cases, the set of contiguous input points 

tended to cause the same failure in (Dunham & Finelli 1990).  According to Ammann and 

Knight (1988), small perturbations in input data may change drastically the probability to 

detect faults.  Failure propagation is related to the width of bugs; it is investigated in 

subchapter 2.3.2.  In the subchapter 2.3.3, research is introduced about how many software 

variables affect a software bug. 

 

Knowing the cause of the faults helps in analyzing fault-proness.  There are many studies 

about looking for factors that cause fault proness, see e.g. (Jacobs et al. 2007).  Factors for 

fault proness are being searched with statistical methods.  For example, Munson and 

Khoshgoftaar (1992) have performed discrimination analysis to detect fault-prone programs.  

Complex metrics of the program was data for this study. 

 

There are some contradictive results about the correlation between fault-proness and 

complexity, see e.g. table 7 and (Subramanyam & Krishnan 2003).  Sometimes the 

contradictions are due to different programming language (Subramanyam & Krishnan 2003).  

In addition, different complexity measures have different correlations with each other and 

with fault proness and other quality variables like change effort, Itzfeldt (1990) has a survey.  

There are numerous different measures for software complexity, see e.g. (Peng & Wallace 
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1993) and (Itzfeldt 1990).  According to Güne§ Koru and Tian (2003), high defect modules 

are those that have almost but not exactly the highest complexity.   According to Eaddy et al. 

(2008), if a concern in software (e.g. software requirement) is scattered e.g. across multiple 

classes or methods, the degree of scattering correlates with the number of defects. 

 

Effect of metrics on fault proness has been studied.  For example, Subramanyan and 

Krishnan (2003) survey experiments involving CK metrics for object oriented software.  

Vouk and Tai (1993) present metrics variables and discuss their ability to predict fault prone 

products and problems in defect prediction.  There are studies about correlation between 

metrics variables, e.g. between CK variables, see e.g. (Subramanyam & Krishnan 2003).  

Fault proness depends on the application and on development methodology.  Some 

comparative studies have been made, and there have been differences; e.g. Smidts et al. 

(2002) compared waterfall and formal development of C++ code.  In (Leszak et al. 2002), 

different software domains had vast differences in defect attributes even within the same 

project.  The study also involved correlation between defect density and both process 

compliance metrics and static metrics.  Tian and Troster (1998) inspected tree-based defect 

models that link defects to a quality indicator.  Table 7 presents some metric variables and 

their effect on fault proness. 

 

     Table 7.  Examples of studies about effect of measures on fault density 

 

Metrics Effect Studies Application 

/Environment 

Cohesion No effect (Briand, Wüst, et al. 2000) Object oriented 

programs 

High module 

strength 

Lowers (Card et al. 1986) Functional 

programs 

(Selby & Basili 1991) See footnote
2
 

Global variables Increases (Card et al. 1986) Functional 

programs 

Coupling Increases (Selby & Basili 1991) See footnote
2
 

(Succi et al. 2003) 2 C++ projects 

Generally 

increases, some 

measures 

decrease or have 

no effect 

(Briand, Wüst, et al. 2000) Object oriented 

programs 

Depends on 

language and 

depth of 

inheritance 

(Subramanyam & Krishnan 

2003) 

C++, Java 

Number of 

descendants 

Increases (Card et al. 1986) Functional 

programs 

 

 
Continued on next page 

                                                 
2
 An internal software library tool that contains several languages.  The static source code metrics was 

constructed from the portion written in a PL/I -like high level source language. 
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Inheritance-, 

coupling-, and class-

related measures, 

including depth of 

inheritance and 

number of 

immediate 

descendants 

All measures 

increase, some 

(depth of 

inheritance and 

number of 

immediate 

descendants) 

decrease in 

other studies 

referred 

(Briand, Wüst, et al. 2000) Object oriented 

programs 

7 CK metrics 

including 

inheritance depth 

and number of 

immediate 

descendants 

Generally 

increase, depth 

of inheritance 

may decrease 

and number of 

immediate 

descendants 

decreases 

(Succi et al. 2003) 2 C++ projects 

Depth of inheritance Increases, 

decreases, and 

then increases 

again as 

inheritance 

deepens 

(Selby & Basili 1991) See footnote
2
, 

inheritance is 

nesting of 

processes 

Usually 

increases, 

depends on 

coupling 

(Subramanyan & Krishnan 

2003) 

C++, Java 

Number of methods 

in a class 

Increases (Subramanyan & Krishnan 

2003) 

C++ 

Decreases (Subramanyan & Krishnan 

2003) 

Java 

Module size Depends on 

application 

(Ostrand & Weyuker 2002) 

 

Compare 

different studies 

(Hatton 1996) Compare 

different studies 

Increases (Subramanyan & Krishnan 

2003) 

C++, Java 

 

Bieman et al. (2003) studied design patterns and change proness.  The change proness of 

classes used in design patterns was different in different cases.  For example, the class size 

sometimes increased change proness.  There are other studies about design patterns, too.  For 

instance, Vokáč (2004) analyzed the correlation between the appearance of some design 

patterns and faults in C++ software.  According to the study, there was a negative 

correlation.  Some tools can look for fault patterns.  Livshits and Zimmermann (2005) 

present methods and a tool for detecting new fault patterns using revision histories, and 

detecting their violations. 
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Table 8 presents classification methods for predicting fault-prone modules. 

 

    Table 8.  Methods for predicting fault proness 

 

Prediction method Authors 

Association mining. E.g. (Chang et al. 

2009) 

Logistic regression, classification trees, and optimal set production.  

The latter study also involves pattern recognition to analyze data for 

software process planning. 

(Briand et al. 1993) 

and (Briand et al. 

1992) 

Finding high-risk components with optimized set reductions based on 

software properties like number of global variables and nesting.  The 

method is compared with trees and logistic regression. 

(Briand et al. 1993) 

Using continuous attributes in classification trees. (Morasca 2002) 

Logistic regression and rough sets are assessed as means of fault 

proness measurement, and a hybrid model combining both is built. 

(Morasca & Ruhe 

2000) 

Non-parametric discriminant analysis. (Khoshgoftaar et al. 

1996) 

Boolean discriminant functions. (Schneidewind 2000) 

Case-based reasoning. (Khoshgoftaar et al. 

1997) 

Fuzzy decision trees. (Suárez & Lutsko 

1999) 

Hyperbox algorithms in classifying software quality.  Fuzzy box and 

genetic algorithms are presented. 

(Pedrycz & Succi 

2005)  

A forest of learning decision trees. (Guo, Ma, et al. 

2004) 

Some computer risk identification techniques are compared.  Tree-

based defect models are analyzed in identifying and characterizing 

fault-prone modules. 

(Tian et al. 2001) 

Statistical approach for measures of Java class fault proness.  A 

model is presented, applying model to different software than the one 

it was made for is assessed, and ability of several methods like 

regression-based MARS is assessed. 

(Briand et al. 2002) 

Statistical dynamic bug searching for software with multiple bugs.  

The method in the study is based on making clusters of predicates 

that are true in bug situations. 

(Zheng, Jordan, et al. 

2006) 

A model for finding files with largest number of faults and largest 

fault densities.  The predictions are based on change history and fault 

parameters like file size. 

(Ostrand et al. 2005) 

Methods for building models for measuring fault proness for different 

applications. 

(Denaro et al. 2002) 

A project based measure about costs of misclassification.  A table of 

used metrics variables is introduced. 

(Khoshgoftaar et al. 

2005)  

An approach based on resources and events in development.  The 

lack of experience of the programmer, failure history, late substantial 

modifications, software involved in the late design change, or 

uneasiness of developers, may be indications of fault-prone routines. 

(Hamlet & Taylor 

1990) 

The combination of principal component analysis and neural network 

method to find sets of high-risk modules.  It is stated that usual 

correlation and factor analysis-based methods result in too much 

correlation between classes. 

(Neumann 2002) 
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2.3.2 Hidden Bugs 

 

There are some classes of bugs that are hard to observe, the following list presents some 

such bug types.  A Bohrbug is a bug that is solid and easy to detect (Gray 1985). 

 A context preclude means that some configuration or set of memory constraints 

makes it impractical or impossible to use the debugging tool (Eisenstadt 1997). 

 A stealth bug is a bug that consumes the evidence of itself (Eisenstadt 1997). 

 Heisenbug goes away when one tries to look it (Gray 1985).  For instance, it may go 

off when one turns on the debugging tool (Eisenstadt 1997), or it may be caused by 

a racing condition (Bourne 2004). 

 Mandelbug is so complex that it is hard to predict the failure occurrence or non-

occurrence, due to the activation or propagation of fault caused by either of the 

following two reasons presented by e.g. Grottke and Trivedi (2007).  There may be a 

delay between failure activation and failure occurrence, so it is difficult to identify 

what caused the failure; repetition of the step does not necessarily cause the failure 

again.  Another reason is that other elements of software system (e.g. operating 

system or hardware) can influence on software behaviour. 

 Schroedinbug manifests itself only after unusual software use or use in a new 

situation or reading a source code, when the person who did the activity notices that 

the software never should have worked and it stops working for everyone until fixed 

(Raymond 2003). 

    

Kelly and Shepard (2004) present problems in testing.  According to the study, multiple 

symptoms may disguise the root cause of a problem.  The authors also discuss the 

cause/effect chasm.  The cause/effect chasm means that the symptom of a problem being far 

removed in space or time from the root cause (Eisenstadt 1997). 

 

Hidden bugs may survive tests, even if the code is executed during the tests.  A fault may 

remain hidden for a long time; see e.g. (Sullivan & Chillarege 1991).  According to Sullivan 

and Chillarege (1991), executing a piece of code of a tested operating system in exceptional 

environment like rare prior state, loading, or input data, may trigger field failures.  In (Cai et 

al. 2005), special combinations of input, noise, and failure detection process triggered 

common mode failures.  Testing usually does not reveal external faults, see subchapter 5.1.1 

and the introduction of chapter 5.  In addition, some external conditions may modify for 

example heap and memory content, and this may affect test results (Whittaker 2001). 

 

Systems do not always detect the first symptoms, and the errors may propagate (Sullivan & 

Chillarege 1991).  In the study, memory corruption errors corrupted only few bytes, which 

made them harder to detect.  In several studies, e.g. (Lee & Iyer 1993), a propagation 

concept "further corruption" means that consequences of a fault are first used without the 

fault being detected and later the fault is detected by a task not related to the one that 

accessed the first fault for the first time. 

 

There are many studies about error propagation.  According to Michael and Jones (1996), 

the errors in software code that affected data state behaved homogenously in the vast 

majority of cases: either all or none of them propagated to output.  The amount of code 

executed after perturbation (after fault injection), the number of perturbations per location, 

and the extent to which the perturbed values differ from the original ones, did not have much 

effect on the homogeneity results.  Voas (1992) presents a technique that contains analysis 

of probabilities that a fault affects specific section of software, probabilities that the section 

affects state, and probabilities that the state affects output.  Also input error or data 

corruption may lead to erroneous output (Voas & Miller 1995a). 

 

Models have been developed about bug propagation.  For example, Okun et al. (2004) study 

propagation of logical faults.  Wooff et al. (2002) describe graph models containing 
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probabilities that a fault transfers to another node.  Estimation of root node probabilities is 

presented and sensitivity analysis for software changes is discussed in the article. 

 

Binkley and Harman (2004) study how many global variables and formal parameters a 

typical failure depends on.  Voas and Miller (1995a) studied propagation by using 

information about variables that were altered by wrong input.  Bishop and Bloomfield 

(2003) studied execution profiles of program statements and their effect on failure rate.  

There are studies where error propagation is analyzed by performing flow analysis, see 

(Murrill 2008).  Bug detection by reasoning about logical dependencies and assumptions is a 

topic for research, see e.g. (Frankl & Weyuker 1993a).  Bug detection by locations of 

variables is a related issue.  Murrill (2008) does not recommend static flow analysis as an 

analysis method for error propagation. 

 

Error propagation in operation systems has been studied.  In (Lee & Iyer 1993), Tandem 

QUARDIAN90 operating system errors that were detected quickly either were bound to be 

detected on the first access, or the first error could be accessed without being detected and 

the problem was detected by the task that accessed the first error for the first time.  In the 

study, errors with long latency were susceptible for causing further corruption.  Overlay 

errors (errors that corrupt memory) often propagate and corrupt data in MVS operating 

system in (Sullivan & Chillarege 1991).   A propagated error can often defeat the established 

recovery mechanisms (ibid.). 

 

Even if there are faults in software, the output may be coincidentally correct.  According to 

White and Sahay (1985), two or more inequalities may combine to impose an equality 

restriction on the input domain; this is called coincidental equality.  White and Cohen (1980) 

presented coincidental correctness.  Coincidental correctness means that there is a fault in 

software and output variables coincidentally are the same as if the domain and the 

computation had been correct.  A good example of coincidental correctness is an equation 

x+x=x*x when x=2 or x=0.  Software may also contain faults that cover each other's effect, 

so the result is correct (Abbott 1990). 

 

Blindness means that an erroneous predicate may produce correct output when it is in touch 

with other context.  Blindness is one form of coincidental correctness.  Any linear 

combination of errors involving assignment and equality blindness may cause blindness 

(Zeil & White 1981).  Table 9 presents common forms of blindness. 

 

          Table 9.  Basic blindness 

 

Blind-

ness 

Explanation These two cannot be 

distinguished 

if this 

holds 

Source 

Assign- 

ment 

Functions may evaluate to 

zero when they are parts 

of expressions (Zeil & 

White 1981). 

U+2*A-T>B U>B 2*A-T=0 (Zeil & White 

1981) 

X>0 A>0 X=A (Zeil 1983) 

Equal-

ity 

This type of blindness is 

due to equality restrictions 

(Zeil & White 1981). 

C+D>1 C>0 D=1 (Zeil & White 

1981) 

Self An expression cannot 

always be distinguished 

from its multiples (White 

& Sahay 1985). 

X-1>0 X+A-

2>0 

X=A (White & 

Sahay 1985) 

X+1>0 2*X+2>0 true (Zeil 1983) 

 
There is implicit information loss when two or more parameters give the same result.  There 

is explicit information loss when variables are not validated; for example, if a module does 

not release information that other modules could potentially use.  Function type is a factor in 



 Chapter 2. Avoiding Known Bugs  38 

susceptibility to information hiding.  For example, there is no information loss for function 

f(a)=a+1, where a is an integer argument.  Modulo function f(a) = a mod b has information 

loss, and testability of the function decreases as b decreases.  (Voas & Miller 1995b). 

 

Voas and Miller propose specification decomposition to reduce cancellation of effects of 

faults.  They recommend minimizing variable reuse, and increasing the use of out-

parameters (output variables exclusively for testing).  The study assumes that there is a 

single fault and it is in one location.  The study also discusses mutations, executions, and a 

method to estimate the probability of infection.  (Voas & Miller 1995b). 

 

2.3.3 Number of Faults in a Failure Situation 

 

Bugs may interact with each other.  The amount of interaction and some reasons for it are 

discussed below.  The portion of code that the bug may affect is discussed too; for example, 

the question about how many variables a failure is dependent on is investigated.  The breadth 

of a bug has an effect on propagation.  Propagation was discussed in the previous 

subchapter. 

 

If random input is used, independent versions of software do not fail independently 

(Littlewood & Miller 1989).  Bishop (2006) surveys experiments made about intentional 

diversity in design between different versions of software that all perform the same task.  

According to those studies, different versions have common faults.  According to Bishop, the 

primary cause for common faults in final program versions has been inexact specifications.  

Yoo and Seong (2002) analyzed an N-version system where different versions had different 

specification languages.  There were matters that tended to cause defects in several replicas 

(Yoo & Seong 2002).  Diversity is useful in inspection, too: research shows that people who 

inspect software from different perspectives find different faults (and only few faults are 

found by several inspectors who have different perspectives), see e.g. (Laitenberger & 

DeBaud 1997).  Correlated failures are discussed in subchapter 6.3, too.  See also subchapter 

5.1.2 about test coverage. 

 

Brilliant et al. (1990) look for cases where programmers make equivalent faults.  Apparently 

different logical faults may yield faults that cause statistically correlated results, and faults 

that seem to correlate do not necessarily correlate (ibid.).  Some special cases in input space 

like cases of three points where two or more of them coincide or all are parallel, are subject 

to correlated faults (ibid.).  Another type of correlated faults in the study was a precision 

bug; for example, cosines were compared instead of angles.  In (Cai et al. 2005), common 

mode failures were due to e.g. initialization, computation, or precision bugs, or system 

coherence faults. 

 

Dunham and Finelli (1990) introduce studies about characteristics for real-time failures.  

Typical features for real-time programs are repeated execution, fast iteration rates, and 

correlated inputs (ibid.).  In the studies, widely varied failure rates were observed, faults 

interacted in non-intuitive ways, and some failures were caused by interaction of several 

faults (ibid.). 

 

Table 10 describes research about how many faults are needed to cause a failure.  At least 

some of those studies involve correlated faults. 
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  Table 10.  Studies about number of events or conditions affecting a failure 

 

Fai-

lures 

Field Result Study 

97942 N-version 

experiment 

Rare situations cause severe errors.  All software 

versions that failed under three rare faulty inputs 

had already experienced failures under two rare 

faulty inputs. 

(Eckhardt 

et al. 

1991) 

 

365 Browser 

and server 

Approximately 90 per cent of failures were 

caused by three or fewer conditions.  None of the 

failures were caused by more than six conditions. 

(Kuhn & 

Reilly 

2002) 

109 Medical devices 106 faults were due to values of 1-2 conditions, 2 

had 3 conditions, and only 1 had 4 conditions.  

None of the faults had more than 4 conditions. 

(Wallace 

& Kuhn 

2001) 

329 NASA distributed 

software, 

development and 

integration testing 

1-way, 2-way, 3-way, and 4-way bugs 

represented respectively 68%, 93%, 98%, and 

100% of bugs. 

(Kuhn et 

al. 2004) 

Not 

stated 

Dynamic fault 

tree models 

Modeling-feature interactions that arise only in 

cases involving 15 or more events are possible. 

(Coppit et 

al. 2005) 

Not 

stated, 

>100 

000 

Dimensionality 

model to 

characterize 

triggers for 

robustness 

failures 

The input arguments were used as model 

parameters, each representing one dimension.  

Approximately 82% of all failures were caused 

by a single parameter in the study. 

(Pan 1999) 

 

Brilliant et al. (1990) studied how many faults had to be corrected to correct failures caused 

by multiple faults.  According to the study, some such failures could be fixed by correcting 

only one of the faults, and some could be fixed by correcting two or more such faults.  One 

NASA study had a similar result: fixing either of two different faults could correct the same 

failure (Dunham & Finelli 1990). 

 

Some research has been done about how many software variables have effect on a specific 

software failure.  According to Binkley and Harman (2004), a typical predicate in C-

program studied depends on 72 % of formal parameters, and on 48 % of global variables that 

can potentially be used or defined by a call to the predicate's procedure, and on 2.4 % of 

global variables in the scope.  The study also computed correlations involving formal 

parameters and global variables visible to a predicate; both were compared to the proportion 

actually used and the size of the function.  There was no correlation between the number of 

formal parameters and that of global variables. 

 

There is research about what types of bugs can be detected by combinatorial testing methods 

and how effective they are.  See also subchapter 5.1.2 about test coverage.  According to 

several research documents, pairwise testing is very efficient means of finding faults, see 

e.g. (Dalal et al. 1998) and (Cohen et al. 1997).  Pairwise testing means that all 2-way 

combinations of parameter values are tested.  Smith et al. (2000) compare testing of all-pairs 

(all pairwise combinations of parameter values are tested) and all values (all parameter 

values are tested at least once, and only one parameter has different value than in a test case 

that gives a correct result) for a remote agent planner software in Deep Space -mission.  

When all pairs- and all values –methods were both used, 88% of timeouts and correctness 

bugs were detected by those methods but only half of the interface and engine bugs were 

detected (ibid.).  All pairs -method detected only 20 % more bugs than all values- method 

(ibid.).  All values -method missed more timeouts than correctness bugs with respect to all 

pairs (ibid.). 
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Mutation testing means that small changes (mutations) are made to the module, and results 

of the original module and those of the mutated module are compared.  If the results differ, it 

can be said that the mutant has been killed.  Mutation testing is often related to coupling of 

faults.  Some faults have very simple mutations and some do not (Howden 1982).  

Sometimes testing elemental mutants fails but more complex mutation testing may succeed 

(Howden 1982).  Woodward and Halewood (1988) study an intermediate technique between 

using elemental and all mutations.  (Offutt 1992) supports the hypothesis that test data sets 

that detect all simple faults detect large percentage of complex faults.  K.S. How Tai Wah 

(2003) discusses a model to study coupling and studies the effect of killing mutants with one 

fault in mutation testing on mutants with more faults.  Research is also being done about 

orthogonality of mutants, see e.g. (Lee et al. 2004) about orthogonality of mutants in object-

oriented mutation testing.  Saglietti (1990) investigates metrics of dissimilarities in input 

partitions between different versions of software. 

 

2.4 Faults and their Causes 
 

Knowing what causes bugs helps preventing them, so more and more attention is being paid 

to the causes of software faults.  Possible causes of faults are investigated in this subchapter.  

In addition, classifications that involve causes for bugs are surveyed. 

 

Many bugs are due to carelessness (Maxion & Olszewski 2000), (Nakashima et al. 1999) or 

lack of understanding.  According to Spohrer and Soloway (1986a), many faults like type 

mismatches may be due to misunderstanding the semantics of the programming language.  

Some logical faults were due to erroneous reasoning (ibid.).  Some other bugs may be due to 

misinterpreting specifications or mixing local and global (ibid.).  Chou et al. (2001) studied 

causes for Linux-bugs.  In the study, a common cause was that programmers do not 

understand the system well and do not know what all functions do in usual and more 

exceptional situations.  There were copy-paste-faults probably due to ignorance or the fact 

that programmers trusted each other's work.  In (Cai et al. 2005), common causes for faults 

were misunderstanding of specifications and lack of knowledge of application area or 

programming language.  Changing only parts of the code caused bugs in (Sullivan & 

Chillarege 1991).  Keeping track of cross references would help prevent those faults (ibid.). 

 

Faults may be due to wrong assumptions.  Table 11 introduces some types of wrong 

assumptions. 

 

Table 11.  Some typical wrong assumptions 

 

Implicit assumptions.  Jacobs et al. (2005) mention implicit assumptions not communicated 

to other projects.  The study is about virtual teams. 

People assume that other people test the software, see (Nakashima et al. 1999). 

Programming environment.  McKeeman (1975) studies how to prevent false assumptions 

about the programming environment.  The study presents examples of false assumptions 

about the programming language as a cause of faults. 

Evalutaion errors.  Gerhart and Yelowitz (1976) found that evaluation errors were common 

in proven programs.  For example, the programmer might have had assumed left-to-right 

ordering and the compiler may have performed computations in another or non-deterministic 

order (ibid.). 

Type mismatches.  Bug fixes in MVS operating system often changed message format or 

data structure organization, and other modules had implicit assumptions that contradicted 

those changes (Sullivan & Chillarege 1991). 

 
Continued on next page 
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Special items.  Maxion and Olszewski (2000) mentioned assumptions about special items, 

e.g. an assumption that there were a maximum number of rows/columns of data when there 

were not. 

Independency.  False assumptions about independency between sections of work products 

(sections can be, e.g. components, requirements, or constraints) are mentioned in (Conte de 

Leon & Alves-Foss 2006); the study involves detecting dependencies. 

Allowing transformations which are valid only in some parts of their domain without 

recognizing those parts may cause bugs (Fateman 1990). 

 

 

Some attention is being paid to the lack of understanding.  IBM has had a level of experience 

in its fault trigger classification (Kelly & Shepard 2001), and Kelly and Shepard (2001) 

associated a level of understanding with each defect category in their bug classification.  

Spohrer and Soloway (1986b) studied how novices think when they make bugs.  Jiang et al. 

(1999) studied what people with different orientations perceive as reasons for system 

failures; reasons were related to user and developer, processes, and organizational and 

technical environments. 

 

Some design methods and programming languages support the concept of mode.  Leveson et 

al. (1997) discuss mode confusions and reasons for mode confusion.  Bachelder and 

Leveson (2001) introduce a model about a military helicopter system.  By using the model, 

the following mode confusion errors were identified in the system: unintended side effects, 

indirect mode transitions, inconsistent behavior, ambiguous interfaces, and the lack of 

appropriate feedback.  Operator authority limits are mentioned as the sixth class.  According 

to Sullivan and Chillarege (1992), there are several causes for missing state bugs: some of 

those bugs are due to ignored cases, some are due to technical software functioning like 

setting state flags incorrectly, and some are due to situations where software misinterprets 

events and makes faulty transactions. 

 

More and more studies have classified both bugs and their causes.  Some studies find a cause 

for each bug type, and some studies classify bugs and their causes orthogonally, (Leveson 

2001) is a good example of both actions.  Classification methods can be based on some 

specified criteria (Fredericks & Basili 1998); or on data similarity, cluster analysis 

(Podgurski et al. 1999) is a good example of the latter.  More and more attention is being 

paid to human errors.  Nakajo and Kume (1991) had classified the type of each fault as either 

of three types: internal, functional, or interface fault.  Cause-effect relationships of software 

errors are analyzed from data of observation points in a fault tree.  The observation points 

form a three-level hierarchy of fault classification: fault type, human error, and process flaw 

that caused the human error.  Typical human errors are misunderstanding of specifications or 

program function.  According to the study, human errors may be due to a process flaw like 

inappropriate definitions and lack of methods to record and report them. 

 

Lutz (1993) studied and compared faults in safety critical parts and non-safety critical parts 

of safety critical software.  According to Lutz (1993), faults were often caused by 

misunderstanding specifications, and a common root cause for this was often communication 

errors between development teams.  In the study, each root cause was associated with a 

process flaw or inadequacy in the control of system complexity, and with process flaw in 

communication or development methods used.  Inadequate identification or understanding of 

interfaces or requirements, and interface design during system testing, were common flaws, 

particularly for safety-related faults.  Other common flaws especially for safety critical 

systems were imprecise, incomplete, or unsystematic specifications; missing, unknown, 

undocumented, or wrong requirements; and insufficient design of requirements (Lutz 1993).  

An individual mistake was the most common human root cause and the lack of system 

knowledge was the second common human root cause in (Leszak et al. 2002).  According to 
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Hansen et al. (1998), many failures in an air data system have been due to the insufficient 

understanding of interactions between air data system, flight control laws, and redundancy 

management software. 

 

Leveson has studied common factors for software-related aircraft and spacecraft accidents.  

Software faults have been only one of the many factors in those accidents.  According to the 

study, the vast majority of software-related spacecraft accidents involve incomplete 

requirements specifications and unhandled or mishandled software states or conditions.  

Leveson linked mechanic events to conditions or lacks of conditions that allowed them.  

Those conditions were linked to system factors.  Leveson identified striking similarity in 

system factors in all those accidents.  Leveson classified system factors as flaws in safety 

culture, ineffective organizational structure and communication, and ineffective or 

inadequate technical activities.  (Leveson 2001). 

 

Nakajo et al. (1993) studied methods for preventing the lack of communication in software 

development process.  Those methods had originally been developed for hardware.  Bug 

tracking tools help in sharing knowledge about bugs during and after software development.  

There are several tools for bug tracking, e.g. Bugzilla on https://bugzilla.mozilla.org/ is a 

public bug tracking tool. 

 

2.5 Summary of Avoiding Known Bugs 
 

Catalogues of bug types have been created.  Different bug classifications are being 

developed for different purposes, and automatic classification methods are being developed.  

What a good bug report should contain is also being studied.  There are bug databases for 

increasing bug knowledge.  The temporal development of bugs has not got much attention 

by research people.  Subchapter 2.1.3 contains a short study about the topic.  Simple bug 

types like character- and calculation faults have been present all the time.  There have been 

inversion bugs at least from 1970's.  From the 1980's, software has become more complex 

and bugs related to e.g. stress, order of operations, timing errors, missing states, sizes of data 

elements, and user interfaces have been present.  Correlation between different bug types 

could be studied more.  There is empirical research about how long a bug lasts, but the 

problem is hard to solve empirically: there is a possibility that a bug is never detected. 

 

Characteristics of bug types have not got much attention by researchers.  Research is being 

done about fault patterns.  Attempt has been made to find fault patterns by comparing 

different studies, but there have been problems in comparison; e.g. in Shull et al. (2005), 

there was no common definition for interface bug, which has made comparison difficult.  

The study is discussed in subchapter 7.1.2.  Fault patterns could be looked for with other 

methods, too.  Some statistical and other kinds of methods to look for fault proness have 

been surveyed in this chapter.  How much these methods and other means help in detecting 

characteristics of faults could be a topic for research.  Knowing characteristics of an 

individual bug type could help detect fault patterns, and vice versa. 

 

There are studies about problems and numbers and types of faults found in different 

application domains.  Omissions and logical faults are common in many application areas.  

What causes the need for new requirements is also studied.  Safety critical systems have 

some specific problems.  Research is also being done about error-prone features of 

programming languages and methodologies, and about frequent faults when using a specific 

programming language or operating system.  Different methods, programming languages, 

and operating systems have different fault prone features. 

 

There is a lot of research about fault prone files, predicting fault proness, effect of the life 

cycle phase on fault content and on easiness to correct a fault, effect of age and legacy on 

https://bugzilla.mozilla.org/
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number and types of bugs, and when and where bugs are born.  Size and structure of failure 

region for a fault is being studied.  What software features or software development features 

correlate with bugs or help detect or correct bugs is being investigated.  For example, 

complex sequences often reveal more faults than easy ones.  Bug symptoms, fault detection 

mechanisms, and effect of workload on fault detection are also being studied.  One bug may 

have several symptoms.  When faults are detected and what triggers them are also studied.  

The effect of metrics on fault proness depends on the development environment and the 

application domain.  Some studies involve design patterns.  There are also statistical 

methods for looking for bugs, e.g. predicates that are true in failure situation are being 

caught. 

 

Types and classes of hidden bugs are being discussed.  Some bugs are hard to observe 

because they for example appear in rare situation or high workloads or give remote 

symptoms or several symptoms.  Those bugs may be hidden for a long time.  Not all hidden 

bugs appear in rare situations.  There are studies about information that can be hidden from 

testers.  In addition, testers do not necessarily detect fault symptoms.  Also, the user may 

start to use the program in a new way, which may reveal hidden bugs.  Research has been 

done about error propagation.  For example, how dependencies of variables affect error 

propagation is being studied. 

 

Software faults may also cover each other, or environment may cover bugs.  Even if there 

are faults in software, the output may be coincidentally correct.  For example, if the software 

multiplies two numbers when it should add them, the result is correct if both the numbers are 

twos or both are zeros.  Some forms of coincidental correctness and blindness are presented 

in this thesis. 

 

Researchers have not been emphasized that faults covering each other is an undesired 

phenomenon.  There may be some situations where those faults do not cover each other.  In 

addition, changes in software or in the environment may trigger those failures.  According to 

some studies, fixing one fault may eliminate a failure caused by several faults.  The studies 

do not critisize this approach even though it is very dangerous: the other faults still remain 

hidden and may actualize in other situations.  When not all the faults are corrected, the 

remaining faults remain hidden and may be disastrous with other conditions (e.g. other input 

or different memory content) or after code changes. 

 

Several methods should have wider application area than what they have.  For example, 

more attention should be paid to the phenomenon that expressions may cover faults in other 

expressions.  This is considered mostly in domain testing but could be considered in other 

connections, too.  Blindness and coincidental correctness are investigated in connection to 

domain testing; they are rarely discussed outside the field of domain testing.  They should be 

taken into account when investigating e.g. static analysis, risk-based testing, or fault-based 

testing. 

 

There are cases where programmers make equivalent faults.  For example, many geometric 

and trigonometric problems are like that.  Faults may interact in non-intuitive ways.  

Generally speaking, one or two rare conditions are enough to trigger a failure, but sometimes 

even 15 conditions are needed.  How many variables a failure depends on is also being 

studied.  Some studies compare the fault detection ability of several combinatory testing 

methods.  Types of faults found by these methods are being compared, too.  Some studies 

assess a testing method that may reveal a connection between parameters or fault regions.  

How complex mutants need to be in mutation testing is also being studied. 

 

As stated above, correlation between different fault types could be studied more.  However, 

the number of faults in a failure situation has been studied a lot.  Abstract models of fault 

correlation, too, have been studied quite a lot in the context of defect prediction or modelling 

of configurations of components.  Fault proness has been studied, too, as stated above. 
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More and more attention has been paid to the root causes of faults.  Typical root causes are 

carelessness, lack of knowledge, lack of communication, misunderstandings, wrong 

assumptions, and insufficient specifications.  What software faults cause mode confusion or 

missing state is also being studied.  Several classification systems classify faults and their 

causes.  The root causes are often the same even when software faults are of different types.  

Human errors like misunderstandings may be caused by process faults. 
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3 DEFECT PREVENTION AND PREDICTION 
 

Chapter 2 investigated information about software bugs in general.  The rest of the thesis 

involves failure avoidance.  In this thesis, the failure avoidance means are classified as 

means for fault prevention, fault prediction, fault detection, and fault tolerance, see chapter 

1.  This chapter involves methods intended for preventing and predicting software faults.   

The first subchapter involves means for fault prevention, although those means have 

connections with other areas of failure avoidance.  The main topic is the disciplined software 

development process and its measurement, but some other topics are discussed briefly.  The 

second subchapter discusses defect prediction like risk analysis, prediction metrics, and 

defect prediction models.  The topics of the second subchapter, particularly risk analysis, 

have connections to fault prevention, fault detection, and fault tolerance, too.  The last 

subchapter is a summary of this chapter. 

3.1 Defect Prevention 

 
This subchapter involves means for defect prevention.  The first part discusses general 

means for defect prevention, like good software engineering practices (particularly the 

software development process), measuring, modelling, and reverse engineering.  Some 

fundamentals of software engineering are also briefly discussed.  In the second part, the 

relationship between bug prevention and different phases of the software life cycle is 

discussed. 

3.1.1. General Means for Defect Prevention 

 

According to a study of Tervonen and Kerola (1998), different people have different ideas 

about what software quality is.  The study involves how to achieve co-understanding.  There 

are studies about how to make quality assurance more practical, see e.g. (Koono & Soga 

1990).  Rai et al. (1998) classify software quality assurance into the following dimensions: 

technical, managerial, organizational, and economic.  This thesis involves the technical 

dimension.  Good software has different attributes like correctness, efficiency, and 

maintainabiltiy, and this thesis is about bug elimination, i.e. correctness. 

 

Good software engineering practices like a disciplined development process and the use of 

appropriate methodologies, tools, and metrics, are an efficient way to prevent bugs.  

(SWEBOK 2007) contains a systematic framework for software engineering, including 

processes, methodologies, and best practices. It also includes managerial and organizational 

issues whereas this thesis is about technical issues. 

 

Germain and Robillard (2005) studied effect of the process used on cognitive activities.  The 

aggregate variation due to process was small and limited.  Process used had an impact on 

control tasks like inspection and review. 

 

There is a lot of research about process improvement.  For example, measuring and 

modeling process quantities helps improve the process.  According to the survey and 

experiment of Green et al. (2005), quality and productivity perception helps improve a 

software process.  See (Rainer & Hall 2003) about analysis of factors that affect software 

processes.   Research is being carried out about statistical process control.  Statistical process 

control means looking for trends, cycles, and irregularities, and improving process or 

product based on those trends (Peng & Wallace 1993).  Software quality metrics is discussed 

in subchapter 3.2.2. There are studies about software process evaluation like validation, see 

e.g. (Cook & Wolf 1999). 
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Some studies present errors in theories that are related to software engineering.  For 

instance, Morris and Bunkenburg (2002) present inconsistency in theories of non-

deterministic functions.  Xia (1999) investigates flaws in software engineering like in 

definitions, interpretations and representations.  For example, some circular definitions are 

criticized, and the inconsistent interpretation of the measure of length is discussed in the 

study.  Inconsistencies in models cause software bugs and are a topic for research.  

Medvidovic et al. (2003) study discontinuity between models.  In the study, connectors 

transfer or compare information between different models of the same or different artifacts.  

Different views of software and software inconsistencies can be modelled, too, see e.g. 

(Grundy et al. 1998) and (Liu et al. 2002).  According to Grundy et al. (1998), there can be 

inconsistencies between views, between developers, and between development phases.  

Moynihan (2000) studies requirement uncertainty. 

 

Some studies were found about the relationship between reverse engineering and bug 

elimination.  Tian (1996) searches problem areas in testing; the search is executed by tree 

based analysis, where each node has a responding attribute and splitting is performed 

according to values of the attribute.  Taghdiri (2004) derives specifications from code and 

detects errors in code by analyzing those specifications. 

 

3.1.2 Relationship between Life Cycle Phases and Bug Elimination 

 

The bug elimination means mentioned in subchapter 3.1.1 can be used in all phases of 

software life cycle. There are many methods that are used in one or more phases of the 

software development process.  Ramamoorthy et al. (1986) classify methods according to 

weather they are phase dependent or phase independent.  For example, risk analysis can be 

considered phase independent, although it may have different content in different life cycle 

phases.  Review and testing should be executed in every phase of the life cycle.  There are 

models about software development life cycle.  For example, Boehm (1988) presents 

waterfall model and spiral model.  Those models often contain requirement engineering, 

architectural design, modular design, coding, and testing. 

 

Making goals should be the first part of software development process but requirement 

specification or risk analysis is often considered the first phase of it.  It is hard to achieve 

goals if they have not even been specified.  There are some studies about goals, and more 

and more research is being done about them.  See e.g. (Fredericks & Basili 1998) about 

setting goals and measuring whether they are achieved.  (Stallinger & Grünbacher 2001) is 

one example of numerous studies on software process -related simulation; the aim of the 

method in the study is to achieve convergence towards a goal.  After making goals, later 

phases of software life cycle can be performed.  Sometimes one can return to the previous 

phase or even an earlier phase than that during the development cycle, e.g. Boehm (1988) 

presents a spiral model for a software life cycle. 

 

van Lamsweerde et al. (1998) present formal generic refinement techniques for making 

specifications from goals.  Using this framework, conflicts between goals can be eliminated.  

For example, new goals can be set or goals can be weakened.  van Lamsweerde and Leiter 

(2000) analyze exceptions for a single goal.  All obstacles are formalized.  Operations in the 

study are conditional input-output relationships over objects.  Techniques for elaborating 

goals and generating obstacles from goal specifications and from domain properties are 

presented.  Methods for resolving and preventing obstacles are introduced.  The study also 

includes classifications of obstacles. 

 

Requirement engineering is an important way to prevent bugs.  Sommerville and Ransom 

(2005) detected a correlation between increased business benefits and improved requirement 

engineering process.  According to the study, it is hard to know if there is a casual 
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relationship.  There is a lot of research about requirement engineering.  The relationship 

between bugs and requirement engineering is investigated in chapter 4, particularly in 

subchapter 4.5.1. 

 

Architectural Design Considering architectural design, safe memory allocation and 

deallocation is closely related to prevention of memory bugs, see e.g. (Gay & Aiken 1998) 

about memory regions and (Dhurjati et al. 2005) about memory safety.  Ideal module size to 

reduce faults is discussed in subchapters 3.2.2 and 2.3.1.  Godfrey and Zou (2005) study the 

detection of merging and splitting of functions. 

 

Some architectural models consider failures, see e.g. (Perry & Wolf 1992) for a model that 

involves erosion due to violations over time, and drift over time due to insensitivity that 

leads to inadaptivity and then lack of coherence and lack of clarity of form (relationships 

between weighted properties).  See subchapter 4.2.1 about modelling interfaces. 

 

Modular design and coding are often considered as phases that cause bugs even though 

root causes are in earlier phases and general policies, see subchapter 2.4.  However, bugs are 

born in these phases, too, as described in chapter 2.  How to detect those bugs is investigated 

in chapter 4. 

 

Testing could be performed during and after each phase of life cycle.  Very often it is 

executed only after coding.  Chapter 5 is about testing. 

 

Maintenance and configuration management are usually not included in software 

development models, like V-model or spiral model. However, they are important parts of the 

development process.  (SWEBOK 2007) has maintenance and configuration management as 

different topics in the description of phases of software life cycle.  There is a lot of research 

about changes made to programs.  Some examples are mentioned here.  Phihip (1998) 

investigates issues like cohesion, proper program structure, scope of variables, and 

documentation of variable names.  The article is about maintenance of event-driven 

software, but the same ideas help avoiding bugs in other life cycle phases, too.  Elbaum and 

Diep (2005) study fault-, coverage-, and invariant detection in software by profiling released 

software.  The study also involves improvements to profiling.  There is research about 

looking for dependencies before making changes, see e.g. (Robillard 2008).  Change impact 

analysis is also under investigation, see e.g. (Badri et al. 2005).   There are lots of studies 

about change proness of software, see e.g. (Bieman et al. 2003).  Also, there is software 

metrics that is related to maintenance, see e.g. (Peng & Wallace 1993).  Cleland-Huang et al. 

(2008) study how critical goals are maintained throughout the lifetime of software system.  

(Rai et al. 1998) is a survey about maintenance research. 

 

A Phase Review is recommended, at least at the end of each phase of the software 

development cycle.  However, not many studies have been done about phase reviews.  

Dunham and Finelli (1990) present the software development process for NASA Langley 

laboratory, where DO-187A -standard had been implemented.  In that process, verification, 

validation, and quality assurance activities were integrated in every life cycle step.  

Requirement traceability matrix had been used.  In design review, it was checked that 

requirements had been translated correctly, no additional functionality had been added, and 

design standards had been followed.  The code review included checks of interface, 

hierarchy, pseudo-code, and whether the coding standards had been followed.  See 

(Ramamoorthy & Bastani 1982) about reviews like verification after testing phase.  The 

article, like many others, involves metrics about testing, like number or faults remaining. 

 

Tracing means linking different results.  Tracing guarantees that goals are achieved.  For 

example, requirements are often traced backward by linking them to goals, risks, and 

different kinds of models and documents where they originate, and forward to software 

architecture.  The architecture can be linked to design and code.  See e.g. (Gates & 
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Mondragon 2002) about tracing between and within life cycle phases.  When tracing is used 

and a fault has occurred, forward search can be performed from failure modes to effects and 

backward search from hazards to contributing causes, see e.g. (Feng & Lutz 2005).  Tracing 

can also be done between or within artifacts created during the same phase of life cycle 

(Ramesh & Edwards 1993).  Gates and Mondragon (2002) survey tracing approaches and 

develop methods for tracing of constraints.  Some tracing tools are presented in the study.  

Some studies involve how to find candidate links for requirement tracing, see (Hayes et al. 

2006).  Conte de Leon and Alves-Foss (2006) survey formal and other approaches to 

component traceability and introduce an own method. 

 

3.2. Defect Prediction 
 

In this subchapter, defect prediction is investigated.  The first part surveys risk analysis.  In 

the second part, aspects of process control and defect prediction are discussed.  Measures 

and factors of reliability are involved.  The third part involves defect prediction models.  The 

fourth part discusses uncertainties in using defect prediction models. 

 

3.2.1 Risk Analysis 

 

Software projects sometimes fail, and they are often late.  Software is often buggy, and bugs 

may cause a lot of harm.  Risks in software development and how to avoid them is a topic 

for research.  Risk analysis helps avoid known and unknown faults and their effects.  There 

are models that aim at early avoidance of risks. 

 

There are several risk classifications.  Risk classification is usually based on the amount and 

likelihood of damage.  According to IEEE standard (IEEE1540 2001) risks should be 

assessed individually, in combination, and along with their interactions with system and 

enterprise risks. 

 

Pfleeger surveys risk classification grades, risk items, and common mistakes like having 

false precision or using values and use characteristics instead of distributions.  One should 

not rely too much on science; models may be wrong.  Confusing facts with values is a 

common mistake, e.g. one should not conclude the degree on risk solely from what has or 

has not happened before.  A risk may exist even if nothing has happened before.  

Conversely, the risk can be small even if harm has occurred.  (Pfleeger 2000). 

 

A USA military standard (MIL-STD 882B 1984) involves risk analysis, which is performed 

in several phases of the software life cycle.  User‟s views are often considered in risk 

analysis.  See e.g. (Fields et al. 1999) for planning human interfaces in safety critical 

systems. 

 

Accidents are often analyzed in order to stop repeating the same mistakes and to improve the 

developing process.  A process for choosing the best method to describe an accident has 

been under research, see, for example (Munson 1999).  Using a specific method has also 

been a common topic for research.  Accidents can be described e.g. by cause-effect diagrams 

like fault-trees or event trees; see e.g. (Mulvihill 1988) for event trees.  Research has been 

done about improving those methods and combining several methods, see e.g. (Xu & Dugan 

2004) for combining dynamic fault trees and event trees.  Description methods are being 

extended, see the fault tree column in table 12.  Leveson (2004) criticizes event-based 

methods.  According to Leveson, events and initial state are often chosen subjectively and 

the links between events may be subjective and biased.  Usually, no root causes are looked 

after (ibid.).  Leveson proposes a system-theoretic model for risk analysis.  Table 12 presents 

that model and some other common methods of risk analysis.  It was stated above that 
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accident description methods can be combined.  More generally, risk analysis methods can 

be combined, see e.g. (Tekinerdogan et al. 2008). 

 

Table 12.  Typical risk analysis methods 

 

Method Typical use and research 

A system-

theoretic model 

A model is introduced for accidents that emphasizes system factors and 

models accidents as violations of safety constraints.  The control system 

can react to component malfunction, external disturbances, and 

component interactions.  (Leveson 2004). 

HAZOP (Hazard 

and Operativity 

Analysis) 

When using HAZOP, the faults are classified systematically (see 

subchapter 2.1.2).  The leader hypothesizes an abnormal condition and 

asks questions to experts and determines whether and how the situation is 

possible and what effects it has on the system.  HAZOP emphasizes 

component interactions.  (Reese & Leveson 1997). 

Deviation 

analysis 

Reese and Leveson (1997) introduce a deviation analysis method, in 

which causality diagrams are built and deviation formulas of system 

variables are incorporated there, and deviations are evaluated with 

interval mathematics. 

A method for 

analyzing failure 

mode 

assumptions and 

system 

dependability 

Value error, timing error, and unsolicited service are possible.  When 

using this method, failure mode assumptions are formalized as assertions 

on the types of faults that the component may induce.  (Powell 1992). 

Fault trees Liu and McDermid (1996) perform safety analysis by understanding the 

physical model, building a fault tree, and checking a consistency of the 

fault tree.  A support system is introduced in the study.  In addition, fault 

trees for processes are being developed, see e.g. (Malhart 1995) and 

(Subramanian et al. 1995).  Sohn and Seong (2004) assess testability by 

calculating output failure probability and importance of statements for 

output failure.  Those numbers are calculated from a fault tree.  See 

(Bobbio et al. 2003) about parametric fault trees to remove replicas and 

take only essential information into account.  Fault trees that contain 

stochasticity, effect, and time intervals for events are being developed 

(Johnson 2003).  See (Clarke & McDermid 1993) about weakest 

preconditions in fault trees where external disturbances are included.  

Ciarambino et al. (2002) use recursive operativity analysis as one 

HAZOP method, to prevent loops in fault trees.  Sullivan et al. (2004) 

reverse-engineer specifications with an abstract fault tree.  Coppit et al. 

(2005) study dynamic fault trees with priority and gates and functional 

dependence.  Processing simultaneous events is discussed in the study.  

See (Ou & Dugan 2000) about sensitivity analysis of modular dynamic 

fault trees in respect to component failures.  The fault trees in the study 

may contain static and dynamic modules. 

FMEA (Fault 

Mode and Effect 

Analysis) 

This is a method for taking all risk situations into account.  In many 

versions of FMEA, a table is being made about all equivalence classes.  

SFMEA means software fault and effect analysis.  SFMEA pays 

particular attention to hidden dependencies, e.g. unexpected interactions 

or unstated assumptions (Lutz & Woodhouse 1996). 

 
Continued on next page
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Formal and 

argument- based 

methods 

Liu et al. (1995) survey the use of formal methods.  Other safety 

techniques presented in the study are fault tree analysis, FMEA, failure 

propagation and transformation, and Toulmin argument form.  

(Armstrong & Paynter 2006) is one instance of the studies about how to 

construct and deconstruct arguments and justify them; this study involves 

safety related arguments. 

Methods for 

requirements, 

e.g. forward and 

backward search 

Smidts et al. (1996) present failure modes for requirements.  Feng and 

Lutz (2005) present a safety analysis method, based on requirements, 

architecture, and scenarios.  This method combines forward and 

backward search of failures and enables consistency checking between 

the results.  The method finds missing and incorrect requirements.  The 

study investigates safety analysis of product lines. 

Other forward 

and backward 

search methods 

For example, many state based methods include forward and backward 

searches between risk states and other states, see e.g. (Modugno et al. 

1997).  Tracing makes it possible to do searches between risks and other 

elements like causes, goals, requirements, and code. 

Architecture-

based analysis 

Goseva-Popstojanova et al. (2003) study risk factors for connectors and 

components in UML analysis.  Khajenoori et al. (2004) discuss 

knowledge-centered assessment patterns for safety concerns in software 

architecture. 

 

3.2.2 Aspects of Process Control and Defect Prediction 

 

Defects can be predicted by using bug knowledge and by using models and metrics.   Plenty 

of research has been done about developing and estimating software quality metrics.  

Metrics makes statistic process control possible; statistical process control is discussed in 

subchapter 3.1.1.  Many aspects of software quality can be measured, but this thesis 

emphasizes defect control.  The following list contains examples of research involving 

information system metrics in general. 

 Ontology of measures, e.g. units and attributes, (de los Angeles Martín & Olsina 

2003). 

 Axioms in metrics, see e.g. (Le Traon et al. 2003). 

 Metrics problems; Munoz (1988) involves problems in correctness measurement, 

and (Xia 2000) is about coupling. 

 Empirical evaluation of metrics, e.g. (Le Traon et al. 2003). 

 Approaches for metrics (Cant et al. 1995). 

 

Many studies compare software to something else.  Among other things, such comparison 

makes it possible to understand program better or derive its characteristics.  Software is 

sometimes compared to thermodynamic properties.  For instance, Kirk and Jenkins (2004) 

investigate metrics; name-, flow-, and structural obfuscation; compression; and complexity.  

The concept of entropy is often used in models of quality assessment. 

 

There are lots of source code measures like those describing program size, complexity, 

cohesion, and coupling, see e.g. (Peng & Wallace 1993) for a survey of source code 

measures and software quality metrics.  Size related metrics has been developed, like a 

number of lines in code or metrics based on number of operations, see e.g. (Peng & Wallace 

1993).  (Gencel & Dermiros 2008) is a study about functional size measurement.  See 

(Sarkar et al. 2007) for modularization metrics.  Software complexity is a topic for research, 

because it has an effect on, among other things, the correctness and maintainability of 

programs.  See (Lew et al. 1988) about what complexity consists of.  Measures for 

complexity and for complexity information content are investigated in the study, for 

example for data structures, modules, and the whole system.  There are studies about 
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measuring design cohesion (Bieman & Kang 1998) and code cohesion (Lung et al. 2004).  

Software consistency (Murphy et al. 2001) and software process consistency (Krishnan & 

Kellner 1999) are topics for research.  In (Krishnan & Kellner 1999), the measurement of 

consistency is discussed.  According to the study, software defects can be reduced by 

improving software process consistency. 

 

Zhang and Pham (2000) present 32 software reliability factors and their correlation and 

investigate ranking.  (Wijnstra 2003) is an instance of studies involving design aspects like 

self-test, graceful degradation, error handling, operational aspects, initializations, etc.  

According to the study, quality attributes can be transferred to design aspects.  Also, design 

metrics has been developed, and Zhao et al. (1998) have compared it to code metrics.  

Statistical analysis of non-stationary metrics is being studied (Pillai & Nair 1997), the article 

is about process metrics. 

 

Finding relevant factors for software reliability is an important topic for research.  Number 

of defects found early correlates with number of defects found later (Jalote et al. 2007).  A 

correlation between defect density and project effort is a common topic for research.  

According to Selby (1990), density of fault detection as a function of testing time depends 

on the application.  Plenty of research has also been done about effect of source code 

measures on defect density (see subchapter 2.3.1), effort (Itzfeldt 1990), and defect 

prediction (Itzfeldt 1990).  Results about effect of source code metrics on defect density 

have been contradictive, see e.g. table 7 in subchapter 2.3.1. 

 

Correlation between metrics and defect density is not the only criterion in choosing metrics.  

For example, some metrics make the defect prediction result more accurate and thus are used 

regardless of whether they correlate with faults, e.g. old defect densities can be used (Fenton 

& Neil 1999).  There are also defect prediction methods and models that do not use metrics 

but use only e.g. faults found before, see e.g. (Briand, El Eman, et al. 2000) for capture-

recapture models.  Prasad and McDermid (1999) have developed a multivariable method for 

assessing whether a computer system works as the customer wishes. 

 

There are studies about comparing methods to predict metrics.  Gray and MacDonell (1997) 

discuss and compare prediction methods like least square regression, regression tree, case-

based reasoning, neural networks, rule-based systems, fuzzy systems, and classification of 

decision trees.  They also include robust regression analysis: the method to modify the 

model to correspond the data points.  Hybrid neuro-fuzzy systems are also included in the 

comparison. 

 

Tian et al. (1997) survey and present tools for capturing, analysis and presentation.  Defect 

tracking, data collection (e.g. for measuring reliability), measurement, and modeling tools 

are involved.  How to choose tools and how to integrate them are also problems discussed in 

the study. 

 

3.2.3 Defect Prediction Models 

 

Models are being developed for estimating reliability of software that has been tested with a 

specific method.  Lyu and Nikora (1992) survey some models.  Models are usually either 

steady state models or reliability growth models (Littlewood et al. 2001).  Steady-state 

systems containing fixed failure and repair rates for faults can be described by Markov-

models, see e.g. (Bukowski & Goble 1995).  In reliability growth models, the number of 

expected faults can be derived from the number of total faults.  The number of expected 

faults convergences towards zero or some other value (Littlewood et al. 2001).  As an 

example of a reliability growth model, Goel and Okumoto (1979) present a non-homogenous 

Poisson process -based model for defect prediction, where failure-rate improves all the time.  
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Research has been done about this model, see e.g. (Bai et al. 2003).  Another popular 

example is Musa‟s and Okumoto‟s (1984) logarithmic Poisson model, where earlier fixes 

cause more failures than later ones. 

 

In addition to steady state and reliability growth models, there are special use models.  

Tian‟s study (2002) involves data clustering models, and data with different failure 

intensities.  According to the study, these intensities can be used as a piecewise linear model 

or software reliability growth models can be fitted into these cluster models. 

 

There are numerous defect prediction models.  Distributions are being developed for faults 

left or for failure rate.  For example, Hou et al. (1994) assume hypergeometric distribution 

for faults left.  Failure rate is often assumed to be lognormal, see e.g. (Mullen 1998) for 

proof for the assumption.  Another group of frequently studied models is the family of 

capture-recapture-models, see e.g. (Briand, El Eman, et al. 2000).  Some models allow 

estimation before testing, see e.g. (Graves et al. 2000).  Change history (Graves et al. 2000) 

and data from similar projects (Xie et al. 1999) are sometimes used in predicting defects.  

Wohlin and Körner (1990) model bug spreading; the model includes probabilities that a bug 

presented in a certain phase of life cycle is found during a specific phase of life cycle.  In 

(Chillarege et al. 1991), defect subgroups with inflected growth curves are related to 

initialization defects, particularly missing initializations.  There are surveys about models, 

e.g. Peng and Wallace (1993) present some models.  Some models can take into account one 

or more of the issues presented in table 13. 

 

          Table 13.  Special issues in defect prediction models 

 

Distortions. For example, learning may slow down failure detection, see e.g. (Hou et al. 

1994). 

Differences in failures, corrections, and testing, e.g. different failure rates of faults, 

different severities of faults, erroneous or imperfect corrections of faults, and effect of 

testing on changes of failure probabilities (Peng & Wallace 1993). 

Delay in repairs. Repairing failures takes time, see (Gokhale et al. 1997) 

Common mode failures. Faults that have an effect on many components, see (Littlewood et 

al. 2001). 

Operational profile when the software is in use, i.e. user inputs, see (Littlewood et al. 

2001). 

Components whose status is unknown.  One does not always know if components are 

working or have failures, see e.g. (Tan 2007). 

Several defect reduction cycles, e.g. test and correction, (Rallis & Lansdowne 2001). 

Level of correctness, see e.g. (Weiss & Weyuker 1988) about a model containing a 

tolerance function for correctness. 

Concentration of defects, e.g. Ostrand et al. (2005) present negative binomial distribution 

model that allows fault concentration.  

 

 

Besides probability theories, different kinds of known information and belief are used when 

estimating reliability.  Littlewood and Strigini (1993) discuss how to combine belief (based 

on e.g. design principles, test results, or design process), faults occurred, similarities with 

known systems, and other such factors when estimating reliability.  Because the required 

level of dependability is high in safety critical systems, not enough can be learned in order to 

predict their quality well enough (ibid.).  Pasquini et al. (1996) study reliability estimation 

based on input domain.  According to the study, testing may affect neighbouring input 

values.  See (Chang & Jeng 2005) about impartial evaluation in software reliability practice.  

The study investigates using prior information and prejudgements on software quality in 

connection with usage testing. 
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Lo et al. (2005) study reliability growth assessment based on individual components and 

system architecture.  The study is an instance of sensitivity analysis studies; sensitivity 

analysis is investigated for parameters, components, uses, transition probability interactions, 

and relative error components.  Some studies have also been done about calibration and 

robustness of defect prediction models, see e.g. (Briand, El Eman, et al. 2000) for those of 

capture-recapture-models. 

 

There are several studies about absolute bounds or confidence intervals for reliability.  For 

example, Bishop (2002) studies methods to calculate bounds for reliability for a specific 

execution profile of software statements and for calculating bounds regardless of execution 

profiles.  There are also studies about bounds for faults that a system can tolerate, see e.g. 

(Santos et al. 2005). 

 

3.2.4 Critique of Defect Prediction 

 

Research has been done to compare different fault prediction models, see e.g. (Roper et al. 

1997).  Results of those studies contradict, some examples are mentioned in (Myrtveit et al. 

(2005).  In addition, each technique has its relative strengths and weaknesses, and absolute 

and relative effectiveness depend on the nature of the process and the nature of faults (Roper 

et al. 1997).  It is hard to find an appropriate method for a specific system.  It is 

recommended that several models be combined in defect prediction (Neumann 2002).  There 

is a recent tendency to use learning and adaptive models for defect prediction, Kiran and 

Ravi (2008) have a survey and an experiment.  Neural networks are sometimes used in 

defect prediction, see e.g. (Neumann 2002) about combining neural networks with other 

methods.  Some combined models are being built for defect prediction, see (Fenton & Neil 

1999) about Bayesian networks.  Menzies et al. (2007) study data mining in order to build 

defect predictors.  Many recent defect prediction studies, like this one, make use of Bayesian 

methods.  (Lessmann et al. 2008) is about benchmarking classification models for defect 

prediction. 

 

Many studies criticize software defect prediction models.  Models may be based on wrong 

assumptions.  According to Butler and Finelli (1993), it is often assumed that different 

systems fail independently, although based on former experiments, it should not be assumed. 

 

According to Fenton and Neil, models cannot cope with the unknown relationships between 

faults and failures; faults or their severities may be hidden, and it cannot always be known 

which faults lead to failures.  The metrics variables cannot always be interpreted in terms of 

software features.  Relationships between variables in models are not always known.  

Sometimes only a part of the problem is modeled and even that part is misspecified.   Casual 

effects are often omitted.  Goldilock's conjuncture of module size is investigated in the 

study.  Also, there are wrong assumptions of the significance of variables, distributions etc, 

and data points are removed in models.  Many models lack the way to integrate views 

between components structural complexity and within component structural complexity.  

This integration could explain why different problem or design decomposition approaches 

might result in more or less defects.  (Fenton & Neil 1999). 

 

Uncertainty factor in structural models are that one does not know components or 

dependability, and parameters are hard to estimate.  An uncertainty factor in reliability 

growth models is that the growth is not always steady even if it is assumed to be steady.  In 

addition, there is general uncertainty: the model and the reality are different.  A stress test 

may help in that respect, and a model should be as continuous as possible.  Unknown 

dependability between components and between consecutive inputs results in uncertainty, 

particularly if a change of one part may affect other parts.  Non-obvious error propagation 
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should be avoided by e.g. isolating the path or by a safety monitor.  (Littlewood & Strigini 

1993). 

 

Briand et al. (1992) present restrictions for modeling software process or its features.  Also 

Kitchenham et al. (1994) criticize quantitative quality assurance research.  Myrtveit et al. 

(2005) look for reasons why different studies have contradictive results about which fault 

prediction model is the best.  According to the article, many studies are made by using single 

data sample and samples are often small, different accuracy indicators give different results, 

and the same accuracy indicator may give different results depending on how it is used.  The 

authors discuss previous results about accuracy indicators not indicating what they should. 

 

According to Dunham and Finelli (1990), models that take into account real-time 

characteristics are needed.  According to Rai et al. (1998), not much research is being done 

about connections between different quality assurance areas.  There is no framework for 

selecting tools and techniques (ibid.).  Technology changes should have to be taken into 

account (ibid.). 

 

The software development process has a significant effect on failure rate, see e.g. (Dunham 

& Finelli 1990).  According to Dunham and Finelli, the description of e.g. product and 

process data is important in identifying bugs.  Effectiveness and efficiency evaluations for 

development process and individual tools and techniques are important since development 

methods contribute to reliability (ibid.).  Investigation of the fundamentals of failure process 

is important (ibid.). 

 

3.3 Summary of Defect Prevention and Prediction 
 

Research is being done about software processes and their modeling.  Some models describe 

the developing process; waterfall model and spiral model are common examples.  Metrics 

used in improving software development processes is a topic for research. 

  

Errors in development framework may result in software failures.  Some studies present 

errors in theories that are related to software engineering, and there are studies about 

inconsistencies in models, and about metrics of software process consistency.  Obstacles for 

goals and contradictions between goals may result in software bugs, and they are being 

studied. 

 

Models of the software development life cycle often contain specification, design, coding, 

and testing phases.  In research material studied for this thesis, issues related to requirement 

specification, coding, or testing, were more often related to bug detection than issues related 

to architectural design; architectural design issues were more often related to bug prevention 

than those involving other phases of life cycle.  Some bug-related architectural issues were 

memory allocation, deciding about module size, and planning good interfaces.  The software 

life cycle also contains setting of goals, maintenance and configuration, and phase reviews.  

Tracing is a common way to guarantee that requirements of earlier phases are fulfilled in 

later phases of life cycle.  Tracing can also be used within one specific phase. 

 

Many risk prediction methods have been developed for hardware analysis and retailed for 

software risk analysis.  Plenty of research has been done, for example, about modified fault 

trees and failure mode and effect analysis.  Some new methods have been developed for 

software risk analysis, like deviation analysis.  Choosing and using a description method for 

risks and accidents is a topic for research.  Mistakes in risk analysis are also being studied.  

Risk analysis and static fault analysis can sometimes be connected; for example, risk states 

can be analyzed in state based static analysis.  Risk analysis methods are being improved; for 

example, more and more attention is paid to root causes of failures. 
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Plenty of research has been done about quality factors and how to understand and measure 

software quality.  Also, there is research about fundamentals of measuring software 

attributes, about creating and evaluating measures, and about predicting metrics.  There are 

many quality attributes, and they are being studied.  For example, research is being done 

about complexity measurement and interaction between different factors of complexity.  

Also, cohesion measurement is being developed.  Correlation between different quality 

attributes is being studied, as well as correlations between quality attributes, defect density, 

defects found, and development effort.  Different methods are being developed for 

predicting metrics. 

 

Models about the software development process and the software development life cycle 

were discussed above.  Models are used in many other areas of software development, too.  

Predicting defects with models has been one common research area.  Models may use 

information e.g. about quality attributes and/or faults found.  What information should be 

used in defect prediction is a topic for research.  Different applications need different 

models.  Defect curves for different applications have different shapes, and factors affecting 

the curve shape are being studied.  Some models can take into account differences between 

faults, special issues, and/or different sources of uncertainty.  Bounds of reliability are 

studied, too.  Sometimes input domains or data from known systems are being used in defect 

prediction.  There is also a tendency to combine defect prediction models.  There is research 

about mining factors that are important in defect prediction, and about prediction models that 

are based on artificial intelligence. 

 

Defect prediction decisions and deciding which copies have a correct answer in N-version 

programming (see subchapter 6.3) may have a lot in common, but I have not found research 

that compares those problems.  More generally, there is not much research about 

connections between different fields of software engineering.  For example, according to Rai 

et al. (1998), not much research is being done about connections between different quality 

assurance areas, as discussed in subchapter 3.2.4. 

 

Defect prediction models have been critisized.  Research has been done about comparing 

different defect prediction models.  Those studies give contradictive results, and researchers 

have found numerous reasons for these contradictions.  Some researchers have mentioned 

factors for uncertainty, incorrectness, and incompleteness in defect prediction models and 

given means to mitigate them. 

 

More generally, research models are incomplete and contain uncertainty.  One reason for 

this is that models differ from reality.  Defect prediction models have been critisized of 

being different from reality, but the problem is more general: models are not the same as 

reality. 

 

There are many other uncertainty factors, too.  Research papers often mention lots of 

uncertainty factors about the study involved.  Shull et al. (2005) is a study about defect 

classes, and it is discussed in chapter 2.  However, Shull presents lots of uncertainty factors 

of his study and studies in general. 

 

In presenting uncertainty factors, Shull has an emphasis on uncertainty in post-hoc 

comparison of studies.  For example, mismatches between different studies in comparative 

research make comparison more uncertain.  As will be discussed in chapter 4, according to 

(Miller 2000), studies about defect detection methods have been found incomparable.  Miller 

states that one reason for this incomparabity is the great variation among those studies; for 

example, different studies cannot be compared to each other since those studies use different 

methods.  Another problem is that results of studies cannot always be quantified since there 

are no common definitions that could be used consistently in each study; for example, Miller 

states that there is no common definition of bug type. 



 Chapter 3. Defect Prevention and Prediction  56 

 

Using results is different from drawing a conclusion.  According to (Shull et al. 2005), too 

wide conclusions are often drawn: a study may cover only a small number of projects but 

conclusion about a large number of projects are drawn anyway. 
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4 CHECKS DURING AND AFTER DEVELOPMENT 
 

This chapter involves means for checking, i.e. those means to look for faults that are not 

based on testing.  Testing means are based on executing the program and comparing the 

result (e.g. output values, output frequencies, execution time, or whether the program 

terminates correctly) to some reference (e.g. to a desired result or a result of execution of 

another program).  Some methods can be considered as checking or testing methods, 

depending on how they are being performed; examples of those methods are symbolic 

execution, log file analysis, constraint analysis, and cross-reference analysis.  The means 

investigated in this chapter can be applied during or after development, and many of those 

means can be applied during both stages. 

 

In chapter 2, features of bugs and particularly those of hidden bugs are surveyed.  Chapter 3 

discusses bug prediction, and bug prevention with e.g. risk analysis and a disciplined 

development process.  Chapter 5 involves testing.  All situations cannot usually be tested, 

and testing phase is usually not the best phase to eliminate bugs.  Static and dynamic checks 

and proofs for code and documents may reveal faults that testing does not reveal, like faults 

that cause failures in rare situations or whose appearance is dependent on the test 

environment. 

 

This chapter involves analysis of specifications, architecture, design, and code.  The first 

subchapter investigates code and data based analysis methods, the second subchapter 

involves flow or dependence oriented methods, and the third subchapter focuses on methods 

primarily based on states.  The fourth subchapter introduces and classifies logical systems; 

the application of some of them is introduced.  Partiality, iteration, and termination are 

discussed, too.  The fifth subchapter discusses formal methods in software engineering, 

including prerequisites and limits for proving.  Because proving is complex, it is not much 

used even though it is an efficient way to prevent bugs.  So the subchapter also discusses 

about how proving could be made easier.  The last subchapter is a summary about checks 

during and after development. 

 

Many analysis methods can have either code-, flow- or state oriented view.  Type checking 

is a good example.  In addition, type checks can be static or dynamic.  Compilers do static 

analysis; they find many type faults.  In dynamic typing, a type of a variable can be changed.  

In soft typing, the static analyzer generates type checks that are performed during runtime; 

see (Cartwright & Felleisen 1996).  Static analysis of programs with dynamic storage and 

recursive data structures is being investigated (Landi 1992). 

 

Abstract interpretation is used in many kinds of static analysis.  Abstract interpretation of 

software means taking only some features into account.  Accuracy consumes resources, so 

taking out unnecessary details is often worthwhile.  What is needed should be preserved.  

Cousot and Cousot (1979) have built a general framework for abstract interpretation.  

Examples of abstract interpretation in the study are approximation of assertions and 

representing sets of states by lattices.  Research is being done about comparing and 

combining analysis frameworks.  The study (Filé et al. 1996) is about unification relations 

between abstract interpretations.  Many abstract domains like intervals, octagon, and 

ellipsoid are used in static analysis, for example in preventing rounding errors and out-of-

bound -faults (Blanchet et al. 2003).  Cousot (1997) analyses types as abstract 

interpretations. 

 

Software checks may be performed manually or automatically.  Some static checkers draw 

upper limits for space and time usage (Ferdinand et al. 2006).  Checking and proving can be 

performed constructively during development to prevent bugs, or developed system can be 

checked and/or proven retrospectively in order to increase understanding or directly detect 
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bugs.  In some dynamic analysis methods, probes can be used to collect information in order 

to detect bugs (Boujarwah et al. 2000).  Some checking methods have complete coverage, 

but checking usually does not reveal external factors. 

 

In checking, one makes assumptions, does a check, and draws a conclusion.  An example of 

a pretty informal check is to perform code review to make sure that all case-statements have 

default-branches.  During that check, one first assumes that if there are default branches, all 

situations are taken into account, then checks that there are branches and default branches, 

and draws a conclusion that all situations are taken into account, at the latest during the 

default-branch.  Checking may have several degrees of rigour.  Formal proofs are extremely 

strict checks.  They include strict derivation of the conclusion.  In proving, one creates a 

theory with premises and often checks that they hold, does derivation, and draws a 

conclusion.  Logical methods are followed in derivation. 

 

4.1 Document- and Code-Based Analysis 

 
This subchapter describes checks that are based on analysis of software code.  The first part 

discusses some typical methods to find several kinds of bugs by studying the code.  The 

second part describes methods for analyzing values, ranges, and sizes of data elements, and 

for analyzing precision.  Those methods are usually code-based. 

4.1.1 Static and Dynamic Code-Based Analysis 

 

Some typical methods that are based on reviewing software code are discussed in this 

subchapter.  There has been some effort to classify those methods.  According to Weinberg 

and Freedman (1984), inspection contains checks for specific issues, review is performed in 

the course of time, and walkthrough is a posterior design of existing code.  Those terms are 

not used consistently, though, and they have different definitions. 

 

Requirement parsing is a static analysis method for requirements.  An unambiguous set of 

attributes is defined for each requirement.  The set can contain e.g. initiator of an action, 

source, action, object, and constraints.  This method may reveal inconsistencies between 

requirements.  (Peng & Wallace 1993). 

 

Comment analysis and making false assumptions are investigated in (Howden 1990).  False 

assumptions are common causes for software faults, e.g. if information that was known was 

not made part of a program (Howden 1990).  Comments may indicate false assumptions 

about other parts of the program (ibid.).  Howden discusses comment analysis tools that read 

user specified facts and assumptions and check that the assumptions are based on facts.  

Some tools can check code against annotations (Jackson 1995). 

 

Discovering program invariants usually has connections with proving and is discussed in 

subchapter 4.4.2.  However, invariants are sometimes looked after without connections to 

rigorous proving.  Ernst et al. (2001) present methods for dynamically discovering likely 

program invariants from execution traces.  Besides more principal computation, pointer 

processing is discussed in the article. 

 

Algorithmic analysis may contain e.g. re-derivation of equations; verifying numerical 

techniques; stability, truncating, rounding, and precision analysis; or timing analysis (Peng 

& Wallace 1993).  Algorithmic analysis has strong connection with other analysis 

techniques.  For example, with algorithmic analysis, incompatibility of data representation, 

e.g. units, incompatibility with hardware or software resources, nontermination of structures, 

or range faults may be found (Peng & Wallace 1993).  For example, a trigonometric routine 

may only work on the first quadrant in the coordinate system; that fault may be detected with 
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algorithmic analysis (ibid.).  Memory and time requirements may also be checked; Peng and 

Wallace (1993) perform it dynamically and call it "Time and size analysis". 

 

Code reading and walkthrough are methods to study algorithm.  For example, code 

reading can be used for checking interfaces, comments, and compliance of standards, and 

for cross-checking of tracing analysis, and for checking that all paths are executed (Peng & 

Wallace 1993).  Peng and Wallace (1993) present a long list about faults that code reading 

may reveal.  Examples are nesting faults, erroneous predicates, missing items, array access 

faults, sequencing faults, and dead code.  Endres (1975) also has lists that contain e.g. 

initialization and reference faults.  In (Shimeall & Leveson 1991), code reading helped 

detecting calculation faults, missing checks, missing branches, and overrestriction.  In 

walkthroughs, logic-, interface-, data-, and syntax faults are found easily (Peng & Wallace 

1993). 

 

Software inspection is often defined in standards as a static analysis method that follows a 

strict process.  Fagan (1986) has developed the idea of software inspection.  He used a 

checklist-based approach.  There are other techniques, too.  For example, Petersson et al. 

(2004) survey capture-recapture methods and discuss other defect prediction methods in 

inspection, Porter et al. (1995) study defect based approach, and Padberg et al. (2004) 

investigate neural methods to estimate defect content from inspection defect data.  

Laitenberger and DeBaud (2000) survey dimensions of inspection and present taxonomy.  

There is interaction between fault type classification (see subchapters 2.1.1 and 2.1.2) and 

inspection.  Some studies compare inspection methods to each other, see e.g. (Laitenberger 

et al. 2000) that involves inspection of UML design documents.  Comparisons of different 

inspection parameters are sometimes contradictive, and reasons for it are studied in (Porter et 

al. 1998). 

 

The following list introduces some research areas of software inspection 

 Managing inspection, e.g. (Thelin et al. 2004) is about performing pre-inspection to 

decide which software parts need most attention in inspection. 

 Modeling inspection, e.g. (Porter et al. 1998) 

 Assessing inspection parameters, e.g. team size (Bisant & Lyle 1989). 

 Inspection methods, e.g. capture-recapture methods (Petersson et al. 2004) and 

defect classification (Kelly & Shepard 2001). 

 Kind of software to be inspected , e.g. very large software (Porter et al. 1997). 

 

Many studies compare different defect detection methods.  Miller (2000) compares defect 

detection studies by metadata analysis.  Defect detection methods involved are code reading, 

functional testing, and structural testing, although there is uncertainty even in this respect.  

The studies were not comparable, results differed, and many parameters were different in 

different studies. 

 

In (Endres 1975), about an equal number of faults of each class were detected by inspection, 

testing by authors, and testing by other people.  Simulation and proving did not reveal all 

types of faults.  Specification and algorithm choice faults had more diversity between 

number of faults found by testing and inspection than implementation faults.  Endres stated 

that there are numerous possible prevention means, including better understanding, clearer 

specifications, better specification languages and programming methods, making applicable 

algorithms available, and structuring programs better.  Managing technical reviews is under 

investigation, e.g. Laitenberger et al. (2000) survey management of inspections. 

 

How successful designers investigate the code that they modify is studied in (Robillard et 

al. 2004).  According to the study and previous studies discussed in the study, successful 

designers have a plan for code reading.  Also, successful changes are more scattered around 

the program, whereas unsuccessful changes are more located in one place (ibid.). 
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4.1.2 Values, Sizes, and Precision 

 

Values, value ranges, and sizes of data elements are a factor in may software faults.  

Methods are being developed for analyzing the sizes of data elements.  For example, 

overflows occur when values are too large in respect to the allowed size of the data item.  In 

addition, order of computation may have an effect on results of a series of computations 

with limited sizes or precision, see e.g. (Goldberg 1991).  What to do with values outside 

domains is discussed in subchapter 4.4.2.  Kopetz (1975) discusses input checks before each 

function call.  He recommends input range tests, too. 

 

Interval arithmetic (Kulisch & Miranker 1981) and other areas of mathematics like 

convergence analysis are used in analyzing values, sizes, precisions, and ranges of data 

elements.  Interval analysis of maximum and minimum values have been derived for 

operations for different data sets and types like real numbers and matrices, when maximum 

and minimum values of operands are known, see (Kulisch & Miranker 1981).  There are 

studies about analyzing and model-checking intervals, like time intervals from one state to 

another, see e.g. (Hulgaard et al. 1995).  Also, some systems based on probabilistic logic 

may process probability ranges of conditional probabilities (Lukasiewicz 2001).  Rowe 

(1988) studied upper and lower bounds for set units and intersections; sets of variables, 

values, and their frequencies were inspected.  The study involved resource usage of database 

queries, but the results can be utilized in size and range analysis to eliminate software faults. 

 

Dependence between variables is often analyzed with interval arithmetic, see (Kulisch & 

Miranker 1981).  Some other analysis methods like sensitivity analysis and deviation 

analysis are based on dependencies between variables.  Sensitivity analysis can be used in 

size analysis and range analysis, too.  Sensitivity means effect of the change or value of one 

or more variables on values of other variables.  According to Bryant (1992), ordered binary 

decision diagrams of boolean functions can be used in sensitivity analysis of combinatory 

circuits.  Sensitivity analysis can be used more generally, e.g. for intervals of values of 

variables in software, but no studies were found about the topic.  Reese and Leveson (1997) 

present deviation analysis that contains causality diagrams for values of variables in 

formulas that software contains. 

 

Precision faults are common software bugs.  Research is being done about eliminating 

precision faults and improving accuracy of calculations.  There are studies that relate to 

implementation of floating point systems, see e.g. (Goldberg 1991).  Goldberg surveys 

characteristics of floating point arithmetic and eliminating related faults.  According to 

Goldberg, rounding and truncating cause failures.  Dunham (1986) discusses methods to 

improve precision in comparison, e.g. the use of gradual underflow with guard digits or 

chopping.  According to Kopetz (1975), precision faults may be due to, for example, the fact 

that the results of the functions (e.g. trigonometric functions) may be too inaccurate for 

specific acceptable input data range.  The order of computations also has effect on results.  

Sometimes when computing rounded or truncated numbers, the order of computation means 

even when it would not be significant with exact values.  This is due to the fact that field 

axioms that hold for exact numbers do not hold any more when numbers are truncated or 

rounded (Darcy 2006). 

 

Error accumulation means that imprecision may accumulate if a computation is performed 

repeatedly, see (Goldberg 1991).  One common bug is to assume convergence to some point, 

e.g. zero, when the computation converges to another point or diverges.  For example 

Bastani et al. (1988) study convergence problems, connected with proving termination.  The 

article is about fault tolerance in distributed programs. 
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The precision of calculation is somewhat related to sizes of data elements, too.  Interval 

arithmetic is used in precision analysis, see (Virkkunen 1980).  In numerical analysis, 

precision is often calculated, see e.g. (Tropp et al. 2006).  Some numerical algorithms detect 

non-convergence automatically (Troscinski 2003). 

 

4.2 Flow and Dependence Based Checking 

This subchapter describes checks that are primarily based on dependence between software 

artefacts, or on control or data flow of the software.  The first part discussed modelling 

software artefacts and finding bugs by analysing those models.  The second part investigates 

flow based checks.  Those flow based checks are often related to dependencies between 

software artefacts, particularly dependencies between variables in software. 

4.2.1 Modeling Software Artifacts 

 

Many kinds of bugs can be prevented and detected by modelling software artefacts.  

Examples are interface bugs and specifications that have not been satisfied.  Modeling 

software in the system is a topic for research, e.g. UML (unified modeling language) is 

widely studied; e.g. Jansen and Hermanns (2005) make extensions to UML statecharts and 

study them empirically.  Integration of models is a trend.  See (Wand & Weber 1990) for 

information system models; e.g. information system levels, modeling concepts, internal and 

external structure, the mapping between external (what) and internal view (how), 

environment, component decompositions, and system stability are involved in the study.  

Regnell et al. (2000) present model transformation and model expansion as means to 

integrate use case modeling with usage-based testing.  Formalization principles of 

information systems are being studied, see e.g. (Ter Hofstede & Proper 1998). 

 

There is research about modelling of aspects, see e.g. (Katara & Katz 2003).  de Oliveira et 

al. (2004) focus on domain knowledge and define the concept of domain-oriented software 

development environment.  In the article, to understand tasks to be decomposed, the tasks 

are described verbally, conceptually, and formally.  Robillard (2008) studies topological 

means to look for dependencies.  There is also research about concerns.  For example, 

Robillard and Murphy (2007) study how to present concerns with a graph.  Marin et al. 

(2007) study identifying cross-cutting concerns. 

 

Many studies involve interaction between software components.  Several models and 

languages have been built for this interaction, see e.g. (Liu et al. 2002).  They help analyzing 

correctness and completeness.  Examples of inconsistencies are situations where interactions 

are expected but not found and situations where unexpected interactions occur, see .e.g. 

(Keck & Kuehn 1998).  Hepner et al. (2006) analyze conflicts among software components. 

 

There is research about attributes of connectors, see e.g. (Navarro et al. 2001) and (Xia 

2000).  See also (de Lemos 2004), which investigates failure behaviour.  There are also role-

based approaches for removing unnecessary interaction, see e.g. (Colman & Han 2007).  

Wahbe et al. (1993) study fault isolation when models are coupled.  See (Lopes et al. 2003) 

about high-order architectural connectors, which take connectors as parameters.  Katz (1993) 

presents another way to adapt connectors.  In the study, semantic abstractions of processes 

called roletypes are connected with actual parameters. 

 

See (Bellman & Landauer 1995) about wrapping (machine-processable descriptions of 

resources) and validation and verification.  See also (Ceri et al. 1988) about designing and 

prototyping program construction system using relational databases.  In this study, relational 

algebra and interface subschema are used.  There is research about automatic task 
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construction from models (Wang & Shin 2006).  There are studies about process 

visualization (program execution visualization), see e.g. (Moher 1988). 

 

Static analysis can be done about software data and interfaces.  Charts and models can be 

built based on the analysis.  For example, entity relationship models can be built for static 

data analysis purposes.  Research is being done about evaluating the quality of entity-

relationship models, e.g. Markowitz and Shoshani (1989) evaluate the quality of an extended 

entity-relationship model.  There are studies that compare different data models, e.g. Haugen 

(2005) compares UML and MSC (message sequence chart -model).  Data analysis can be 

performed, e.g. for design (Markowitz & Shoshani 1989), verification (Haugen 2005), or 

testing (Kansomkeat & Rivepiboon 2003) purposes. 

 

4.2.2 Flow Analysis 

 

Knowledge of control flow and data flow can be utilized in several phases of software life 

cycle.  In addition, the phrase "information flow" has been defined in many ways and used in 

many different contexts.  Peng and Wallace (1993) define information flow analysis as an 

extension for data flow analysis, where data flows are compared with design intent.  Many 

models of software architecture are based on data flow.  In data flow analysis, control flow is 

analyzed focused on the use of variables (Peng & Wallace 1993).  Here are some examples 

about the use of flow analysis: 

 Documenting and understanding software (Moonen 1997). 

 Transforming text-format requirements to graphic flows (Peng & Wallace 1993). 

 Extracting objects (Guo 2003). 

 Testing flow coverage (Frankl & Weyuker 1993c), see also subchapter 5.1.2 about 

flow based test coverage. 

 Detecting flow faults like uninitialized variables, and inconsistencies in write-read-

sequences like variables being written but never read before rewrite or end of 

program (Peng & Wallace 1993). 

 Detecting dependency faults (Podgurski & Clarke 1990). 

 Assessing effects of variables on a failure (Binkley & Harman 2004). 

 Analyzing side effects (Yur et al. 1997). 

 Detecting type mismatches, e.g. in call chains (Tip & Dinesh 2001). 

 Analysis of live variables (Allen & Cocke 1976). 

 Detecting dead code (Bergeron et al. 2001). 

 Detecting buffer overflows, Murata (1989) uses PETRI-nets. 

 Some tools detect race conditions (Beckman 2006). 

 

Automatic static analysis utilizes flow, data, and interface analysis (Zheng, Williams, et al. 

2006).  Zheng, Williams, et al. (2006) study what kinds of faults can be found by automatic 

static analysis and by manual inspection.  According to the study, a significant amount of 

critical null pointer faults and several other faults can be detected by automatic static 

analysis. 

 

Dependence data can be used in deciding strategies to reduce state explosion problem.  Zeil 

et al. (1992), and Jeng and Weyuker (1994) have made a simplifying observation: an 

interpretation of a predicate depends only on paths in front of it. 
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There are several representations for control and data flow. 

 

Graphs are frequently used in presenting control and data flow and scopes of 

software variables, see e.g. (Schmidt 1998).  For example, program flow can be 

presented with flow charts and computation trees (ibid.).  Flow graphs are being 

extended.  For example, Mauborgne (2003) studies extending graphs to present 

infinity and infinity relations, and infinity representations can be used in flow 

graphs, too.  Every flow graph that can be decomposed has a decomposition tree that 

describes how the flow graph has been built by composing (sequencing and nesting) 

other flow graphs, see e.g. (Canfora et al. 1998).  Lano (1990) presents an N square 

method for presenting connected functions.  Component interconnection is related to 

data flow, see e.g. (Ural & Yang 1993) for describing interprocedural data flow by 

directed graphs.  Binkley and Harman (2004) investigate bubble and skyline 

visualizations for dependencies between predicates and formal parameters or global 

variables.  Flow graphs can be model-checked, see e.g. (Schmidt 1998).  Forward 

and backward analysis can be performed, e.g. to find out variables that affect or are 

affected by a specific variable (Allen & Cocke 1976).   Detecting neglected 

conditions by studying dependence graphs is investigated in (Chang et al. 2008).  

Graph theory can be used in improving efficiency of flow analysis, see e.g. (Hecht 

& Ullman 1973). 

 

Algorithms can e.g. check that variables have been defined when they are used 

(Moonen 1997), calculate the definitions (of variables) that are valid in a specific 

program part (Moonen 1997), or they can calculate values for variables (Dor et al. 

2004).  Sometimes algorithms find those network nodes that are needed in flow 

analysis, e.g. for testing, see e.g. (Hong et al. 2003). 

  

Flow equations and other relations are also used in describing control and data 

flow.  Inclusion and equality relations are often used, see e.g. (Palsberg 1998).  

There are studies about the relationship between flow relations and types, e.g. 

Palsberg investigates the relationship between control flow equations and recursive 

types.  A simple way to describe flow is a decision table, see (Lew 1982).  There are 

algebras for data flow, see e.g. (Fernandes & Desharnais 2007). 

 

Reachability, dependencies between variables, and potential dependencies are essential 

concepts in flow analysis.  There are studies about defining the importance of each node in a 

flow chart, see e.g. (Hecht & Ullman 1973) and (Kandara 2003).  Loops, arrays, nesting, and 

recursion within or between procedures are challenges in flow analysis.  Loop paths have 

been analyzed, e.g. numbers of iterations have been studied.  White and Wiszniewski (1988) 

investigate recursive modeling of loops and computing loop paths for all such nested and 

concatenated loops where the number of iterations is known upon entry.  Termination issues 

are also essential in flow analysis, e.g. Hong et al. (2003) take the termination or non-

termination of paths into account in their analysis.   Many studies analyze problems like 

processing pointers, and finding out where pointers point or may point to, or which element 

of a composite structure is being processed, see e.g. (Yur et al. 1999) and (Amme & 

Zehendner 1997).  (Forgács 1994) involves flow analysis with inter- and intraprocedural 

recursion.  Finding infeasible paths is one problem in flow analysis, see e.g. (Bergeron et al. 

2001).  Flow analysis methods are being developed for special systems like systems 

containing communication (Boujarwah et al. 2000), those with shared variables (Boujarwah 

et al. 2000), concurrent systems (Saleh et al. 2001), object oriented systems (Boujarwah et 

al. 2000), and time dependent systems (Bernardeschi et al. 1998). 

 

In the beginning, many studies were about systems that had only one entry point and one 

exit point, but later there have been extensions, see e.g. (Dannenberg & Ernst 1982).  Casati 

et al. (2000) study flows for changing and dynamic environments that may also contain 

temporary starts and stops and exceptional situations.  Control flow analysis may have 



 Chapter 4. Checks during and after Development  64 

problems in making a difference between duration of a transfer and time to the next transfer; 

see e.g. (Baresi & Pezze 1998). 

 

Kandara (2003) investigates paths in a flow chart.  Relationships among paths are studied.  

For example, Kandara analyzes situations where all paths that go through one node y 

traverse through some other node x.  Some concepts are defined and used in flow analysis in 

the study, and their application to test coverage is investigated.  There are studies that 

discuss problems with path approach, see e.g. (Howden 1976). 

 

Orso et al. (2004) present classifications of data dependencies.  Methods for flow analysis 

are classified, too.  Some examples of classifications are: 

 Static/dynamic (Boujarwah et al. 2000). 

 Interprocedural/intraprocedural (Ural & Yang 1993). 

 Context-sensitive/context-insensitive, e.g. (Reps 2000). 

 Path-sensitive/Path-insensitive (Dor et al. 2004). 

 Incremental data flow techniques are often classified to elimination algorithms and 

iterative algorithms, but this classification is rough, e.g. Marlowe and Ryder (1989) 

present  a hybrid strategy. 

 

There are numerous studies about improving precision in flow analysis.  For example, 

algorithms may eliminate unreachable paths, see e.g. (Snelting et al. 2006).  As another 

example, methods for gathering alias information are being developed, see e.g. (Yur et al. 

1999).  They are needed particularly in pointer analysis, see (Yur et al. 1999).  Burke and 

Ryder (1990) survey means for preventing precision faults in incremental data flow analysis. 

 

The first page of this subchapter contained a list about the use of flow analysis.  Here are 

some more examples about eliminating faults with flow and/or dependence analysis. 

 Building path sets which form a minimal spanning set over possible entities in a 

subset of a graph (Marré & Bertolino 2003).  In the study, the set is built for 

coverage testing. 

 Cognitive study on how people search faults by reviewing entity-relationship 

diagram and data flow diagram (Hungerford et al. 2004). 

 Algorithm to guarantee initialization (Strom & Yellin 1993). 

 Constraints for states; they can be used in pathwise decomposition of a program 

(Huang 1990). 

 (Olender & Osterweil 1992) is about interprocedural static analysis of sequencing 

constraints; the goal is to detect incorrect sequencing of events.  The study involves 

flow and state analysis automation of constraint specifications. 

 Detecting neglected conditions by studying dependence graphs (Chang et al. 2008). 

 

The following list contains examples of the (Lacroix 2006) survey about memory protection 

related static analysis methods.  The survey is primarily intended for language features, but 

those methods can also be used in other kinds of flow analysis. 

 Monotonic operations for objects (e.g. variables, stacks, states), lattices of the 

control flow. 

 Constraints on sets of values, and constraint-based subtyping (type1 < type2). 

 Concepts of set theory like successor, predecessor, input, and output. 

 Constraint propagation. 

 Input error propagation. 

 

Plenty of research has been done that relates logics and flow analysis.  Table 14 contains 

some examples of this research. 
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       Table 14.  Examples of research that relates logic and flow analysis 

 

Using logics in or with flow analysis, see e.g. (Hong et al. 2003) about using temporal logic 

in choosing test cases based on program flow. 

Transformations between graphical presentations of data flow and logic structures, 

(Hong et al. 2003). 

Definition of flow analysis.  Schmidt (1998) defines data flow analysis as model checking. 

Using constructive logic in building flow analysis algorithms and analyzing flow graphs 

(Lerner et al. 2005). 

Relationships between flows and set constraints.  In set based analysis, dependences 

between variables are abstracted as sets of values of variables; see e.g. (Heintze & Jaffar 

1990).   

Counters for variables (Corbett 1993): analyzing data flow near end transitions, 

constrained expressions about necessary conditions of an end transition are based on data 

flow, previous guards, and whether transitions occur. 

Improving flow graph analysis of concurrent Java programs by supplying additional 

feasibility constraints (Naumovich et al. 1999). 

The connection between consequence verification of logic programs and recursively 

defining flow chart computations forward or backward has been studied by Clark and van 

Emden (1981). 

Predicate abstractions and use of weakest preconditions/strongest postconditions e.g. in 

looking for reachable states or values of variables (Flanagan & Qadeer 2002). 

Reasoning about fault location based on control flow and/or data flow.  Le Traon et al. 

(2003) have metrics about location, e.g. the number of tested components in a path is one 

variable. 

Constraint propagation is analyzed in e.g. (Bessiere 2006). 

Analyzing which variables share variables, and which variables are bound to other 

variables.  Palsberg (1998) investigates flow analysis in relationships between variables in 

the abstraction and application operations in lambda calculus. 

 

 

Slicing is a kind of data flow analysis.  See (Weiser 1984) about program slicing: 

expressions or lines that have or may have an effect on values of variables in a specific point 

of software code, algorithm, or formal presentation, are the only expressions or lines that are 

investigated when slicing is used.  Plenty of research is done about slicing; only some 

examples are presented in the next two paragraphs. 

 

Cukic (1997) presents vertical slicing (grouping statements that affect a specific output 

variable) and horizontal slicing (grouping statements that affect specific input variables).  

Slicing can be static, dynamic, or hybrid (Gupta et al. 1997).  There are several meanings for 

the concept of dynamic slicing, see e.g. (Wong et al. 2005) for differences between them.  

Harman et al. (2003) study amorphous slicing that does not necessarily preserve syntax but 

preserves semantic behavior.  Slicing can be used, for example, in program understanding 

(Peng & Wallace 1993), reverse-engineering (Harman et al. 2003), building test cases 

(Hierons et al. 2003), debugging (Peng & Walace 1993), and as a checking method (Egyed 

2003). 

 

Slicing is often associated with concepts.  For example, Tonella (2003) studies using a 

concept lattice of decomposition slices for program understanding and impact analysis.  

Gold et al. (2005) introduce unification of program slicing and concept assignment.  Term 

rewriting, dependence tracking of variables, and slicing are used in locating type faults; e.g. 

Tip and Dinesh (2001) implement a prototype.  See (Danicic et al. 2005) about a tool that 

can identify and remove a set of statements which cannot be executed when a condition of 

interest holds at some point in a program.  In (Egyed 2003), slicing is used in a tool that 

detects new traces and conflicts and ambiguities between traces. 
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Sneak circuit analysis is one way to analyze control and data.  According to Hansen (1989), 

software sneaks related to output are undesired output and undesired inhibit of output.  An 

undesired output by virtue of its timing in relation to mismatched input timing is a timing 

sneak, and a situation where a program message does not adequately reflect the condition is 

a message sneak (Hansen 1989). 

 

Desk checking is a dynamic way to analyze code.  The programmer moves step by step 

through the code and tracks values of inputs (Zeil 1999).  This term is used in many different 

ways.  For example, (IEEE 1990) uses the words “desk checking” when it means a static 

review of documents or code.  Many online glossaries, e.g. (Farlex 2009), define the term as 

manual testing of a logic of a program. 

 

4.3 Software States 

This subchapter investigates state based checking methods.  The first part investigates 

representations of states, state space exploration, and state based model-checking.  Software 

typically has a very large number of states.  The second part involves means to mitigate state 

space explosion. 

4.3.1 State Space Exploration and Representation 

 
Unfortunately, state related bugs like missing states are common.  Methods are being 

developed for exploring the state space of software.  For example, D‟Amorim et al. (2008) 

have developed an efficient method for exploring state spaces of object based software.  

More often, state space is explored by building some representations and analyzing them. 

 

Describing software states helps reducing states and taking all states into account.  States can 

be described with graphs and with decision trees, transaction trees (see e.g. (Madria et al. 

2000)), decision tables, Karnaugh maps (see e.g. (Halder 1982) for large Karnaugh maps), 

and other charts.  State machines are graphs that generally allow nondeterminism but not 

concurrency.  Many extensions to state machines allow concurrency; some extensions to 

state machines are described in this subchapter.  Biswas and Rajaraman (1987) study 

defining feasibility of decision tables.  Moret (1982) surveys decision tables, decision trees, 

and other decision diagrams.  Ordered binary decision diagrams can be used as symbolic 

representations of state machines (Bryant 1992).  Giguette and Hassell (2000) present a 

relational database model of program states. 

 

State machines help in taking into account all possible software states and all desired 

transfers.  They can be used in describing and planning software function in different states 

and transfers (Walkinshaw et al. 2006).  They are widely used in model checking 

specifications, design, or code.  Specifications are often presented in the form of different 

sequence charts.  Statecharts are stategraphs that allow hierarchy, concurrency, and 

communication of states (Harel 1987).  UML sequence charts can be converted to statecharts 

(Latronico & Koopman 2001).  In addition, elements like real numbers can be parsed with a 

state machine (Baker 1991).  State machines are also useful in risk analysis; for example, 

risk states can be searched forward and backward with state machines and other networks 

(Modugno et al. 1997).  Keck and Kuehn (1998) discuss using system knowledge when 

analyzing problematic states. 

 

State machines of software must usually correspond those of specifications.  Model-checking 

can be performed using logical formulas that contain software functions, see e.g. (Alur, 

McMillan, and Peled 2005).  Atlee and Gannon (1993) present a method for state-based 

model-checking of event-based requirements.  According to the authors, event-based 
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requirements may have unexpected or ignored combinations or sequences of events and 

unexpected timing.  Requirements may have logical constraints in the study.  In many 

studies, requirements are transferred to state machines, and specific properties are verified, 

see e.g. (Nicollin et al. 1992).  Sreemani and Atlee (1996) study converting tabular state-

based requirements to a model that they verify.  Heimdahl and Czerny (2000) perform an 

experiment of analyzing completeness and consistency when verifying state-based 

requirements.  Petrenko et al. (2004) study confirming configurations with extended state 

machines.  One problem involved in the study is to determine in a given state an input that 

does not cause output sequence from a state belonging to a given set or at least its maximum 

proper subset. 

 

Research is being done about identifying states and transitions using state machines 

(Walkinshaw et al. 2006).  There are extensions for state machines.  State machines can, for 

example, be hierarchic (Kansomkeat & Rivepiboon 2003), stochastic (Chang et al. 1998), 

timed (Nicollin et al. 1992), or recursive (Alur, Benedikt, et al. 2005).  States may overlap 

(Harel 1987).  Alternating automata can have both deterministic and non-deterministic 

transformations, see e.g. (Kupferman & Vardi 2001).  State machines can be combined to 

make product machines, see e.g. (Kumar & Vemuri 1992).  There may be many entry and 

exit points in some types of state machines (Alur, Benedikt, et al. 2005).  Return transforms 

can be used in failure recovery, see (Schultz & Cardenas 1987).  See chapter 6 for recovery 

from failures.  Pitt and Shields (2002) discuss the use of local invariants in state machines. 

 

Networks are classified according to what conditions they have for nondeterminism and 

concurrency.  Many complex systems can be analyzed with PETRI-nets (German et al. 

1995).  Different kinds of PETRI-nets are being developed.  Different PETRI-nets may have 

different types of distributions for firing times, see e.g. (Trivedi et al. 1995).  Some methods 

and tools involve transient states, too (German et al. 1995).  Gerogiannis et al. (1998) 

classify extension of PETRI-nets into following categories: extension of tokens or places or 

arcs, modified semantics, extension of structural mechanisms, uncertain fuzzy information, 

and combining PETRI-nets and other specification methods.  PETRI-nets are frequently 

used in analyzing complex systems.  Bucci et al. (2004) study analysis of real-time systems 

with special properties like dense time domain and suspensions; extended timed PETRI-nets 

are used in the analysis. 
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4.3.2 State Reduction 

                Figure 4.  The number of condition combinations in respect to conditions 

 

The term "state explosion problem" means the problem that appears when there are really a 

lot of states in large programs.  Figure 4 presents the number of condition combinations 

based on the number of conditional expressions and the number of branches in each such 

expression.  It is assumed that each conditional expression has the same number of branches.  

The vertical scale is logarithmic. 

 

There are surveys about reducing states.  Keck and Kuehn (1998) survey interaction of 

network service features and the state space explosion that follows from it.  Keck and Kuehn 

discuss unexpected combinations.  The survey contains a classification of means to fight 

state space explosion; the classification might also be adapted in other circumstances.  Also, 

many of the methods mentioned in the article can be applied in other contexts, too. 

 

Table 15 presents means to fight state space explosion.  Studies are separated from each 

other by commas, unless stated otherwise. 
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Table 15.  Means for fighting state space explosion 

 

Setting rules as constraints 

Keck and Kuehn (1998) discuss the following methods: detecting necessary conditions for 

ambiguity or for reachability, using additional states, creating rules for interaction, using 

mutual exclusion, establishing priorities, and using heuristic methods.  Assertions (Leveson 

1991) and serialization (Flanagan & Freund 2004) can also be used in eliminating states.  Ip 

and Dill (1996) investigate state reduction with reversible rules.  Cheung and Kramer have 

developed a method for compositional reachability analysis with context constraints, see 

(Cheung & Kramer 1994) and later articles of the same authors about improvements of this 

method.  Context constraints are behavior restrictions imposed on each process by its 

neighbours. 

Abstraction and reduction: processing equivalent states as one state 

Symmetry (Keck & Kuehn 1998), isomorphism symmetry (Sistla et al. 2004), processing 

groups of states as one state (Sistla et al. 2000), rule-based selection among equivalent states 

(Keck & Kuehn 1998), partial order methods (Flanagan & Godefroid 2005), ordered binary 

decision diagrams (Bryant 1992), symbolic execution (Keck & Kuehn 1998), parameters 

(Bobbio et al. 2003), reduction (Klop 1992), hiding (Keck & Kuehn 1998), counter-example 

based abstraction refinement (Clarke et al. 2003). 

Removing states by software architecture and design 

Modularization and encapsulation (Cukic 1997); using operators that preserve order, e.g. 

Phillips (1992) discusses monotonicity; placing diagnosis and recovery in ways that reduce 

state space, e.g. planning the depth of fault tolerant structures (Abbott 1990) and the level of 

redundancy (Boland & El-Neweihi 1995). 

Removing states by using properties of data structures and/or algebras 

Modularity and compositionality with graphs or algebras by design or refactoring (Cheng et 

al. 2003); heuristic search (Santone 2003); minimalization of representations, e.g. graphs 

(Pop 2002), (Lee & Yannakakis 1996); minimal coverage (Marré & Bertolino 2003); 

constructing spanning sets (Marré & Bertolino 2003); contracting formulas (Meyer 2003); 

derivation of properties of unusual states from properties of algebraic sequences (van der 

Schoot & Ural 1998); lattice properties and process intervals (Alagar & Venkatesan 2001). 

Removing unreachable states by data flow- and/or reachability analysis 

Reachability analysis (Keck & Kuehn 1998), reachability based behavioral equivalence 

(Cheung & Kramer 1996), slicing (Danicic et al. 2005), eliminating deadlocks and livelocks 

(Keck & Kuehn 1998), analysis of live variables (Allen & Cocke 1976), counters for 

variables (Corbett 1993). 

Re-using values and/or subpaths, and/or partially processing the system with other 

 methods than state-based ones 

 Executing simulation in model graph to some point, then generating a graph from 

there to some until-point (Stuart et al. 2001). 

 Prefix methods: use of a path prefix method where branch coverage is studied by 

using previous input paths (Prather & Myers 1987). 

 Re-use of previously selected paths (Chung & Lee 1997). 

 Combining data flow analysis and state machines (Cheung & Kramer 1994). 

 Fixpoint calculation (Phillips 1992), (Desharnais et al. 2000). 

 Symbolic representation with Presburger arithmetic formulas and approximation for 

systems with unbounded integer values (Bultan et al. 1999). 

 Performing an execution trace arbitrarily and dynamically collecting information 

about thread communication; this trace is analyzed to add backtracking points that 

identify alternative transactions (Flanagan & Godefroid 2005). 
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In addition, one efficient way to minimize states is to exclude undesired states.  Not much 

research has been done about this powerful means.  Denning (1976) surveys fault tolerant 

operating systems.  Capability is part of the survey: a process can do only what is on a list. 

 

4.4 Different Types of Logical Systems 
 

This subchapter introduces methods for mathematically proving that a piece of software is 

correct.  In the first part, different kinds of logical systems are discussed.  The second part 

involves special topics like partiality, iteration, and termination.  The following list contains 

examples about what proving covers. 

 

 Processing formal models and specifications with logics and algebras, see 

subchapter 4.5.1. 

 Constructing specifications with a formal system (Gerrard et al. 1990). 

 Proving that the system satisfies specific properties, e.g. (Bravetti 2003) . 

 Proving postconditions when specific preconditions hold and after a specific 

sequence has been executed (Gries 1981). 

 Looking for necessary conditions for a problem, e.g. looking for weakest 

preconditions (Flanagan & Qadeer 2002). 

 Looking for preconditions or deriving them from postconditions or other items 

(Gries 1981). 

 

 

4.4.1 Logical Systems 

 

Methods for software proving, particularly logic and algebra, are being investigated and 

developed all the time.  There are numerous logical systems.  Logical systems are being 

extended, e.g. van den Brand et al. (2003) extend some term rewriting systems.  Many 

surveys have been done that present some logical systems.  In addition, logical systems are 

sometimes compared with each other.  For example, Bellini et al. (2000) survey some 

logical systems and compare some of them to each other.  Some studies investigate general 

properties of logic and characteristics of logical systems in general, see e.g. (Morris & 

Wegbreit 1977) for induction and (Armstrong & Paynter 2006) for argumenting.  Very 

often, the goal of logical studies is to develop an appropriate logical method for a specific 

application or application domain, see e.g. (Ozsoyoglu & Wang 1989)  and (Whang et al. 

1992) for  algebra and languages that can be used in database applications.  Filliâtre (2007) 

investigates total correctness: a formal proof of program is derived in the study with a tool.  

There are methods for proving total correctness (Babich 1979), (Pettorossi & Proietti 2004). 

Dawson (2004) formalizes general correctness. Collofello and Vehathiri (2005) discuss 

measuring correctness. 

 

There is a tendency to build high order systems, where elements of simple systems may be 

parameters, see e.g. (Young 1997) and (Poigné 1992).  Abstraction is a trend, based on 

common features of elements and relationships between elements.  Abstraction can be based 

on, e.g. axioms (Kohlas & Stärk 2007) or category theory (Poigné 1992).  Reduction is being 

studied.  In some reduction methods, it is proven that the original system has a specific 

property if the reduced system has, see e.g. (Lipton 1975).  Bobbio et al. (2003) study 

reduction in specific networks, particularly structural deduction. 

 

Table 16 contains some types of logical systems.  The same system may belong to several of 

those types.  Studies are separated from each other by semicolons, unless stated otherwise. 

 



 Chapter 4. Checks during and after Development  71 

 Table 16.  Logical systems 

 

General philosophies 

Frege reference and sense, or concept and object (Frege 1892); logical models in 

argumenting (Chesñevar et al. 2000); combining logic and linguistics (Wondergem et al. 

2001); constructing and deconstructing arguments and performing justification, e.g. 

(Armstrong & Paynter 2006). 

Global theories 

Model theory (Makowsky 1992); category theory (Poigné 1992); Galois connection, e.g. 

Dawson (2004) uses Galois connection between weakest liberal precondition and strongest 

postcondition; domain theory (van Breugel et al. 2005). 

Logics with different definitions of connectives 
Differences in connectives like implication, e.g. relevance logic, see e.g. (Goto & Cheng 

2006). 

Classifications based on truth values 

Truth-functional logic where the truth value of the compound sentence depends only on the 

truth values of the individual components (Payne 2005): 2 truth values, e.g. propositional 

logic (Payne 2005) and predicate logic (Romero 2005), truth-functional logic with >2 truth 

values (for elements with fuzziness, uncertainty, inconsistency, or undefined items) (Takagi 

et al. 1996), (Baroni et al. 2001), (Chung 1989), (Kifer & Lozinskii 1989), continuous truth 

values (Baroni et al. 2001); judgments are more complicated than such sentences, see (Jones 

2007) about judgement forms; intuitionistic logic (Ferrari et al. 2005), e.g. constructive logic 

(Akama 1995) and refinement calculi (Yunfeng et al. 1999). 

Algebra 

Tucker and Zucker (2002) present universal algebraic specifications.  They study e.g. 

algebraic structures like groups, rings, and fields, algebraic specification of computable 

functions, abstract algebras, and universal properties common to algebraic systems. See e.g. 

(Bravetti 2003) about process algebras.  

Multiple conclusion logic 

Logical systems with multiple conclusions, see e.g. (Miller 1994). 

Deontic Logics 

Reasoning about obligation, permission, and prohibition.  (Cheng 2006). 

Modal logics 

Modal logics involve necessity and possibility (Bellini et al. 2000).  Examples are temporal 

logic (linear or branching time) (Bellini et al. 2000).  See (Kifer & Lozinskii 1989) about 

episthemic logic. 

Order, amount, and monotonity 

Non-monotonic logic, e.g. default logics involve beliefs that can be changed (Doyle 1979); 

global partial order logic (Alur, McMillan, and Peled 2005); declarative partial order 

programming systems (Parker 1989); interval logic (Ravn et al. 1993). 

Probabilistic logics 

Logics that contain probabilities.  See e.g. (Lukasiewich 2001) for a brief survey on 

probabilistic logics and reasoning about systems containing uncertainty, and for probabilistic 

logic programming with conditional constraints. 

Set based 

Set theories, e.g. (Lubarsky 2006) ; multisets (Frankl & Weyuker 1993c); systems using set 

operations (Ozsoyoglu & Wang 1989); set based analysis (Heintze & McAllester 1997). 

 
Continued on next page
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Type systems 
E.g. recursive types, subtyping, or polymorphic types; (Palsberg 1998), (Naumov 2006). 

Constraints 

Constraint logic (Dantsin et al. 1997); constraint solving, e.g. partial order and lattices 

(Georget & Codognet 1998), the article is about semiring-valued constraints; Bistarelli et al. 

(1997) introduce a semiring-based framework for solving constraint satisfaction and 

optimization problems; set-constraints (Dovier et al. 2000); non-linear constraints and 

constraints that define bounds (Hentenryck et al. 1998).  

Inductive reasoning 
Morris and Wegbreit (1977) examine subgoal induction.  In the study, inclusion and 

equivalence relationships between computational induction, subgoal induction, inductive 

assertion, and structural induction are analyzed.  Subgoal induction is a going backward- 

approach and inductive assertion is a going forward- approach (ibid.). 

Deduction 
Systems with equivalences (Gries 1981), natural deduction (Maghrabi & Golshani 1992); 

reduction systems (e.g. rewrite systems including term rewriting and graph rewriting) (Klop 

1992); sequent calculi (Maghrabi & Golshani 1992). 

Analogical systems for proving termination 
Fundamentals of computability were studied a lot during 1950‟s and 1960‟s, see e.g. 

(Shepherdson & Sturgis 1963).  There are many analogical systems for proving termination.  

Computability, lambda-calculi, Turing machine and its variations, fixed-point calculus, 

PETRI-nets, etc. (Potgieter 2006), (Bouziane 1998), (Badendregt 1992), (Phillips 1992). 

Combinatory  logic      
Lambda-calculus without abstraction, using different combinators (Meunier et al. 2005). 

Non-determinism  
Processing non-determinism by algebras and logics, e.g. (Desharnais et al. 2000). (Walicki 

& Meldal 1997) is a survey about algebraic approaches to non-determinism. 

Tabular verification 
Properties, operators and relations for specifications (Sekerinski 2003); algebraic 

composition of function tables (von Mohrenschildt 2000); formal semantics for tabular 

expressions (Janicki & Khedri 2001), expressions are guards or values in the study. 

Software-related logical systems 
Studies about properties of recursive programs and how to prove recursive programs, e.g. 

(Phillips 1992); object oriented calculi, see e.g. (Yunfeng et al. 1999); relation calculus for 

specific static analysis methods – i.e. for static analysis methods that use over- and 

underapproximation (Schmidt 2007); logical formulas for state machines, e.g. equations 

about transitions (Alur, Benedikt, et al. 2005). 

Properties of integers and counters 

Proving with properties of counters, e.g. in (Gunter & Peled 2005), based on behavior of 

program counters, paths are constructed that satisfy constraints for program variables.  

Siegel and Avrunin (2000) study improving a method of creating and solving integer 

equations for the existence of an execution trace that violates a specific property - if no 

solution exists, there are no violations; if a solution exists, there may be violations and some 

properties can be seen from the equations. 

 
Continued on next page
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Languages 

Algebraic languages for e.g. building models, and model-based languages like Alloy, VDM, 

and Z (Jackson 2002); processing continuity in programming languages (Gupta et al. 1998);  

formal languages for combining or refining specification descriptions (Feather 1989); use of 

semantics of languages in proving, e.g. axiomatic semantics (Bonsangue 2001) or 

denotational semantics (Desnarhais et al. 2000); abstract pseudocode (Aho et al. 1983). 

Examples of abstraction 

Logical frameworks for several logical systems (Guerrini et al. 1997); abstract model theory 

for specifications and programming (Gougen & Burstall 1992); abstract data types (Aho et 

al. 1983); high order types (Poigné 1992); abstract reduction systems (Klop 1992); axioms in 

a combined algebraic structure for algebraic specifications, relational database, modules, 

constraint systems, and other structures satisfying specific conditions (Kohlas & Stärk 

2007); relationships about the various conceptions of unification in different fields and what 

is common for them (Knight 1989). 

 

4.4.2 Specific Issues 

 

Some special topics in proving get a lot of attention by research people.  Some important 

special topics are partiality, iteration, and termination of the algorithm.  Those topics are 

discussed below. 

 

Partiality 

 

Proving something partial is often a topic for research.  There are studies about problems 

involved and means to perform partial proving.  Some means to work with partiality are 

 Limiting the domain.  There are studies about processing partial functions, see e.g. 

(Parnas 1993) for a simple method and its problems.  See (Field et al. 1998) for 

partial equations. 

 Supertotal functions.  See (Boute 2000) about supertotal functions that are zeros 

outside their domain and problems with comparing their values. 

 Many truth values and operation (Chung 1989). 

 Type approaches (Poigné 1992). 

 

Sometimes evaluation is performed partially even for total functions.  For example, 

sometimes only critical portions are investigated with formal methods and their safety and 

liveness features are proven (Easterbrook & Callahan 1998).  Moreover, evaluation is 

sometimes made for systems when only parts of them have been implemented; see (Avrunin 

et al. 1998).  Stubs (Avrunin et al. 1998) and modular proving may help in partial 

implementations.  Gannon et al. (1987) present the theory of modular proving, where details 

of modules can be ignored outside the modules. 

 

 

Iteration 

 

Many logical systems involve nesting and/or infinity.  Plenty of research is being done about 

proving loops.  Loops can be proven e.g. with help of rules, deriving hypothesis about loop 

function and proving loop against it, or by looking for invariants.  See (Dunlop & Basili 

1982) about proving loops with functional verification (loop functions).  Inductive assertion 

and subgoal induction are also discussed in the study.  Using fixed-point arithmetic in 

analyzing finite and infinite control structures is an important topic for research, see 
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(Desharnais et al. 2000).  One research target is undeterministic loops; see (Desharnais et al. 

2000) about verifying semantics of a candidate abstraction. 

 

Heuristic iterative methods are being developed for proving loops, primarily for looking for 

linear loop invariants; see (Sankaranarayanan et al. 2004) for a brief survey.  Invariants can 

also be detected by constraint-solving.  For non-linear invariants, see e.g. (Sankaranarayanan 

et al. 2004); in the study, Gröbner bases and ideals are used for transferring the invariant 

generation problem to a constraint solving problem.  Loop invariants may be generated 

automatically, see e.g. (Sankaranarayanan et al. 2004).  Huang (1980) presents a stronger 

postcondition than loop invariant for proving consistency in loops.  Backward subgoal 

induction is used in proving loops without using loop invariants; see (Morris & Wegbreit 

1977). 

 

See (Stavely 1995) about iteration over data structures, when number of items iterated and 

values to be iterated are fixed on entry.  In that study, the data structure is verified against 

function and task.  Matters like access and termination need to be proven only once for a 

data structure, not for every loop (ibid.).  Basili and Abd-El-Hafiz (1996) discuss problems 

with different approaches for documenting loops and looking for invariants.  They present a 

hybrid method where loop is decomposed, knowledge based methods are used in invariant 

generation, and algorithmic method is used for documentation. 

 

 

Termination 

 

One research area is computability properties of functions, and whether algorithms terminate 

and whether they terminate within finite time, see e.g. (Potgieter 2006).  See (Hayes 2002) 

about termination of real-time repetitions.  See (Negrini & Sami 1983) for loops and 

termination.  Computability theories with recursive functions, Turing-machines, lambda-

calculus, fixed-point operations for certain domains, and PETRI-nets are equivalent methods 

for proving termination or non-termination of algorithms (Potgieter 2006), (Bouziane 1998), 

(Badendregt 1992), (Phillips 1992).  Bastani et al. (1988) study convergence problems in 

proving termination by analyzing rate of state change. 

 

See (Verbaeten et al. 2001) about termination proofs for logic programs – programs in the 

study contain tables.  Decorte et al. (1999) study constraint-based termination analysis for 

logic programs.  Pedreschi and Ruggieri (2003) present a framework that always results in 

successful resolution for logic programs. 

 

4.5 Formal Software Engineering 

 
Formal methods are being applied during all phases of the software life cycle, and in many 

areas of software development.  This subchapter discusses the use of formal methods in 

different connections.  The first part discusses the use of formal methods during different 

phases of the software life cycle.  Some special methods like semantic analysis and use of 

category theory are also discussed.  Some methods like proving by contracts and processing 

floating point calculations are mentioned, and some application domains are investigated.  

The second part discusses real-time systems.  Analysis tools are being discussed in the third 

part.  The fourth part involves limits for checking methods, particularly for rigorous proving. 

4.5.1 Software Development 

 

Formal methods can be applied in all phases of the software life cycle and with numerous 

areas of software engineering.  Both specifications and code can be produced formally, see 

e.g. (Yunfeng et al. 1999).  There are many studies about ambiguities in structural analysis 
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of requirements.  For example, Baresi and Pezze (1998) discuss imprecision and ambiguity 

of one structural analysis method and give solutions for them.  Writing requirement 

specifications based on intents and refining them is assumed to reduce faults (Leveson 

2000).  Some systems can rewrite specifications into logical expressions.  Große-Rhode 

(2002) studies integrating different views of specifications with transformation systems.  

Testing can be performed formally, too (Gerrard et al. 1990). 

 

Model-checking means property verification.  For example, it can be model checked that 

code satisfies specifications or design requirements (Prasad 2006).  Research is being done 

about model-checking by using a specific logical system, e.g. verification tools have been 

developed, see e.g. (He Jifeng et al. 2002).  Model-checking in general is also a topic for 

research; for example, new methods are being developed, see e.g. (Cheung & Kramer 1996). 

 

There are different approaches for program semantics, and they often have connections with 

static analysis or proving.  Bonsangue (2001) has done a brief survey about program 

semantics.  In the survey, the connection between different semantics has been investigated. 

The survey also analyses connection between different kinds of semantics and logic, and 

between different semantics and mathematical analysis.  The monogram also processes 

connections with semantics and set theory, and with semantics and topology.  Some other 

branches of mathematics and computer science, like domain theory and semantics analysis 

of types, have connections with program semantics (Fiore 1995).  Concurrency, non-

determinism, recursion, and timing, and are special features that have been investigated in 

semantic analysis, see (Bonsangue 2001). 

 

Here are some examples of methods for static analysis.  A static analysis method has been 

developed where program semantics is presented as equations on sets of states, and the least 

fixed point is solved by forward or backward deduction, see (Cousot & Cousot 1979).  

Invariant assertions need to be approximated to make the system countable (ibid.).  The 

method can be used e.g. for proving postconditions and studying ranges for values of 

variables, as presented in the study.  A systematic design of program analysis frameworks is 

investigated in the study.  The method has been developed further in several later 

publications of the authors.  Desharnais et al. (2000) abstract the input-output semantics of 

non-deterministic programs by elements of Kleene algebras.  See (Sag & Wasow 1999) 

about event-based semantic analysis. 

 

Formal systems are being built for modeling requirements (Bravetti 2003), and for 

architectural design (He et al. 2004).  Logic and algebra are used in modeling, and several 

problems like some multitasking problems can be prevented with them (Ostroff 1992).  See 

(Taibi & Taibi 2006) about a specification language for design patterns.  There are logical 

systems for validating timing properties (Bravetti 2003).  (Johnson & Malek 1988) is a 

survey of tools and models for evaluating reliability, availability, safety, and serviceability 

(in the article, serviceability has to do with the aspects of system design that ease diagnosis 

and repair). 

 

Executable specifications are being developed and debated, see e.g. (Abbott 1990).  

Specifications are often presented with abstract models or with axioms (Gerhart 1984).  

Jones (1996) presents types of formal specification languages.  Macqueen and Sannella 

(1985) present completeness results for proof systems for algebraic specifications.  Kramer 

and Cunningham (1979) present the way to use invariants in capturing the behavior of 

structure and developing formal specifications.  See (Sutcliffe & Maiden 1998) about 

domain theory for requirement engineering; in the study, generic models are used for 

modeling and critique for new requirements.  Trace specifications are based on call 

sequences (Hoffman & Snodgrass 1988). 

 

There are formal methods for proving consistency and other elements of correctness of 

specifications, see e.g. (Hoffman & Snodgrass 1988).  Specifications can be verified 
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statically (Prasad 2006) or dynamically (Gerrard et al. 1990).  There are prototype 

languages, too (Belkhouche & Geraci 1996).  Specifications are often built and verified 

constructively (Gerrard et al. 1990), or logical languages may enable definitions of 

consistency proofs (Hoffman & Snodgrass 1988).  If specifications are being refined, 

decomposition, e.g. constraint-based one, is often done before refinement, and 

synchronization is often necessary after refinement (Go & Shiratori 1999). 

 

See (Zave & Jackson 1996) about multiparadigm specifications.  In the study, formal 

specifications are constructed for systems that map events to commands so that the same 

event can be used with many commands and vice versa.  Consistency analysis for those 

specifications is studied, too, in the article. 

  

The connection between category theory and functional programming is under research, see 

e.g. (Poigné 1992).  Under Curry-Howard isomorphism, a proof of a formula computes a 

function that witnesses the formula (Makarov (2006) investigates the method); or 

propositions can be evaluated to types, and connectives can be interpreted as type 

construction operators (Naumov 2006).   According to category theoretic point of view, 

propositions and types can be objects, and proofs and programs can be morphisms, see e.g. 

(Blute & Scott 2003).   Methods are being developed for applying category theory to 

specification, design, and maintenance, see (Williamson & Healy 1999).  More generally, 

properties of for example graphs, strings, automates, and partially or totally ordered sets can 

be investigated with category theory, see e.g. (Poigné 1992). 

 

Hybrid systems contain both discrete and continuous elements (Avrunin et al. 1998).  There 

is research about developing and verifying hybrid systems, including sensitivity and 

reachability analysis (Avrunin et al. 1998), (Barton 2000).  Wang (2005) studies safety 

analysis of linear hybrid systems that may contain unbound variables and continuous 

variables that may change values at different rates. 

 

The following list contains some formal methods for some areas in software engineering 

 Multilayered approach to design and verification for trustworthy systems (Alves-

Foss et al. 2004). 

 Using category theory in configuring components, Vickers and Hill (2001) have a 

general approach. 

 Bidoit et al. (1985) present a specification language and a program construction 

method; both contain exception handling. 

 Proving that one program simulates the other (Birman & Joyner 1976).  According 

to Birman and Joyner, one program could be a specification and another could be an 

implementation. 

 Parametric temporal logic for measuring to what extent a reactive system satisfies a 

formula (Alur et al. 2001). 

 Proving where contracts are preconditions, postconditions, or invariants, e.g. (Meyer 

2003). 

 Automatically looking for program invariants and their violations (Li & Zhou 2005). 

 See e.g. (Appel 2001) about proof-carrying code.  When proof-carrying code is 

executed, the proof of the code is checked automatically, and the code is executed 

only if the proof holds. 

 Making specifications consistent with an invariant (Schewe & Thalheim 1999). 

 Approximate correction checking with certifier checks (Jin et al. 1999).  The 

accuracy is known. 

 Formulas for floating point calculations (Virkkunen 1980) and formal systems for 

integer programming (Sarkar & De Sarkar1989) . 

 A composite model-checker for multiple types (Bultan et al. 2000).  It combines 

BDD and Presburger arithmetic representation, and can be extendable for other 

symbolic representations. 
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 O-Slang combines specification algebra with specification composition via 

specification-building operations, e.g. aggregation, inheritance, and communication, 

which are defined with category theory (DeLoach & Hartrum 2000). 

 Testing of labelled Markov processes (van Breugel et al. 2005); domain theory and 

coalbegraic extension are used, and using finite branching and similarity in testing is 

investigated in the study. 

 Localizing errors in counterexample traces (Ball et al. 2003). 

 

Formal methods have been developed for specific application domains.  Table 17 contains 

some examples. 

 

      Table 17.  Applying formal methods within specific application domains 

 

 

Application domain Examples of use of appropriate formal systems and issues 

Buffer consistency and 

overflow elimination 

Model checking against file system errors (Yang et al. 2004). 

Databases Relational calculi (Ozsoyoglu & Wang 1989), languages and 

graphs (Beyer et al. 2005), and algorithms for deduction of 

formulas (Yang et al. 1989). 

User interface Formal proving (Brestel et al. 2005). 

Concurrency A chemical abstract machine (Berry & Boudol 1989); processing 

non-determinism (Atlee & Gannon 1993);  state-based model 

checking of event-driven formalization (Atlee & Gannon 1993), 

problems with using logical disjunction in presenting states and 

transfers in concurrent programs – and solutions for the problems 

(Atlee & Gannon 1993); finding collections of actions that can be 

executed without interleaving them with actions of other threads 

(Flanagan & Freund 2004);  nested transaction trees that process 

possible failures of sub- and supertrasactions (Madria et al. 2000).  

Winskel and Nielsen (1995) have done an overview about models 

for concurrency. 

Communication 

protocols 

Finding paths for desired states (Motteler et al. 1995). Motteler et 

al. (1995) present lemmas involving testing sequences.  Shiratori et 

al. (1991) have a small survey about protocol verification. 

Safety critical systems Logics and analysis tools (Jacky 1995) , (Gargantini & Morzenti 

2001). 

Fault-tolerant 

computing 

E.g. clock issues and type checks (Owre et al. 1995). 

 

 

Many methods and tools combine proving and testing.  For example, formal methods are 

often used when deriving test cases, see e.g. (Carver 1996), and some formal languages 

support design-time checks (Gerrard et al. 1990).  There are methods that combine formal 

methods with less rigorous analysis like reviews, see e.g. (Traore & Aredo 2004).  Some 

methods combine several formal systems.  For example, Beauvais et al. (2001) study 

merging declarative formalism with events and imperative formalism.  See (Kurshan et al. 

2002) about combining software and hardware verification techniques. 

 

4.5.2 Real-Time Systems 

 

There are numerous logical systems for specifying and verifying real-time applications, 

including logic, algebras, and graphs, see (Falk 2004) for a brief classification.  Some of the 

systems are extensions of non-real-time systems; for example, temporal logics are extensions 
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of modal logics (Bellini et al. 2000).  Logical systems for real-time systems often involve 

sequential and parallel processing, time intervals, guarded commands, and/or order 

constraints even for variables that are arbitrary close to each other (Bellini et al. 2000), 

(Nicollin et al. 1992). Some logical systems contain description about what happens when 

some or all processes terminate, see (Jahanian & Mok 1986).  Some logical systems contain 

advanced temporal requirements; e.g. Ravn et al. (1993) present interval and combination 

related constraints like "at any time interval <= k, duration of (A and B) is < k2".  Many 

analysis methods calculate bounds for completion times (Ferdinand et al. 2006).  In a real-

time system, the time domain may be dense; e.g. Fränzle (2004) studies using decidable 

fragments of dense-time duration calculus for model-checking realistic real-time systems.  

Mok et al. (2004) present a specification model where events are instances and composite 

events and correlation can be specified.  Luqi et al. (2004) present a document-driven 

methodology for real-time systems. 

 

Synchronization of parallel actions in real-time systems is being investigated, see e.g. 

(Bravetti 2003).  Problems with verification of embedded software are also discussed, see 

e.g. (Latronico & Koopman 2001).  (Kopetz 2000) is a roadmap for real-time systems.  It 

involves e.g. the composition of components which are as independent as possible, 

constructive integration, validity and upper limits for worst-case behavior, and 

implementation of generic fault tolerance.  Architectures like smart sensors are also involved 

in the study.  Neumann (1986) presents hierarchical design of computer systems for real-

time systems. 

 

4.5.3 Tools 

 

Compilers usually perform different kinds of static analysis.  There are other tools for static 

and dynamic analysis, too.  The next paragraph presents some examples of analysis tools, 

and the following paragraph involves proving tools. 

 

Hiller et al. (2002) present an environment for error propagation analysis.  See (Trivedi 

2002) about a defect prediction tool.  Some tools assist in defect tracking and version 

control, see e.g. (Sanyal et al. 1992).  Some tools can reason about fault location.  For 

example, Korel (1988) describes a knowledge based tool that can reason about bug location 

based on program structure, execution traces, and user input.  Deeprasertkul et al. (2005) 

present a pre-compile tool for error detection by parsing and pattern matching; the tool can 

do some automatic correction.  Williams and Hollingsworth (2005) study automatic mining 

of source code based on change history.  Dillon and Stirewalt (2003) study customizable and 

integrable analyzing components that are generated with a tool.  Gregoriades and Sutcliffe 

(2005) present a requirement development tool that indicates problem paths and tasks and 

their causes (components, input values, and calculation of input values needed for the goal), 

and supports comparison of alternative requirements and designs. 

 

Many tools can be used for example in property verification (Prasad 2006), proving 

theorems (Dawson 2004), or type-checking (Tip & Dinesh 2001).  Tools are being 

developed for proving with pre- and postconditions and other assertions, see e.g. 

(Rosenblum 1995).  Assertions may involve dependencies of variables, e.g. dependencies of 

function arguments on each other (Rosenblum 1995).  Some tools detect conflicts between 

rules, or violations of assertions (Stonebraker et al. 1988), (Rosenblum 1995).  Many 

proving tools are customizable; one can even generate custom verification tools with a HOL-

tool and other languages (Shepherd 1992).  User may define rules, see e.g. (Young 1997), 

but some tools can derive them.  Li and Zhou (2005) present a general method to find 

implicit rules and detect violations.  Schumann (1999) surveys some automatic provers.  

Young (1997) studies desired features in proving tools and problems in comparing proving 

tools. 
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4.5.4 Limits of Analysis and Proving 

 

Many problems related to proving and testing are undecidable.  There are undecidability 

theorems, some essential ones are presented below: 

 General theorems by Gödel, Church, Turing etc., see e.g. (Wegner & Goldin 2003) 

for an overview. 

 Rice theorem about undecidability of a non-trivial question, and theories about 

undecidability of associativity and commutativity analysis. (Charlesworth 2002). 

 (Blass & Gurevich 2001): Decidable invariants do not suffice to verify single-loop 

programs even if pre- and postconditions are decidable. 

 (Barber et al. 2003) and (Holzmann 1997): It cannot be model-checked that there is 

no unexpected system behaviour (missing or extra paths or services). 

 According to Reps (2000), in general, context-sensitive structure-transmitted data 

dependence analysis is undecidable. 

 Landi (1992) presents undecidability statements for static analysis. 

 

In addition, the following things make rigorous proving to fail: 

 Erroneous preconditions (e.g. misunderstandings). 

 Invariants do not hold (models and reality are different; models usually have 

assumptions that do not necessarily hold). 

 Erroneous command sequence (i.e. what the system does differs from what is being 

proven). 

 Erroneous derivation (errors in performing the proving, e.g. sequence error in 

derivation, logic errors, or abstracting out something that would be needed in the 

proof). 

 What is to be proven is outside the scope of the logical system. 

 External disturbance (it is actually an instance of being outside the scope of the 

logical system).  In control theory, there are equations for estimating system state 

when there are unknown inputs and disturbances, see e.g. (Chang et al. 1994). 

 

Erroneous derivation usually makes rigorous proving to fail.  In constructive development, 

the development fails if the derivation is erroneous.  For example in building specifications 

constructively, derivation errors result in errors in specifications.  Substitution 

inconsistencies are a topic for research, too, see (Cavalcanti et al. 1999).  Morris and 

Bunkenburg (2002) investigate inconsistency in theories of nondeterministic functions, i.e. a 

flaw in the theory.  (Jones et al. 1998) is an example of studies involving prerequisites of use 

of formal methods. 

 

Gerhart and Yelowitz (1976) studied typical faults in proven programs.  Logical errors, 

missing computation (e.g. returning an index instead of a value), and missing final task were 

frequent faults.  Making wrong assumptions was also common, e.g. about the order in which 

the compiler makes calculations.  According to the study, proving was not deep. 

 

It would be desired that the use of formal methods be more common (Feather 1998).  The 

following list presents some remedies that are under investigation: 

 Partial application, e.g. proving only safety and liveness properties (Easterbrook & 

Callahan 1998). 

 Lightweight formal methods, e.g. (Feather 1998). 

 Automatic proving, e.g. (Schumann 1999). 

 Fraser et al. (1991) investigate formal and informal specification languages and 

making formal languages from informal ones. 

 Dijkstra (2000) introduces computation calculus for proving formalisms of intended 

interpretations.  From intended operational interpretations, higher level of 

abstraction can be derived with the calculus. 
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4.6 Summary of Checks during and after Development 
 

Many analysis methods can have code-, flow-, or state oriented view.  Checks can be 

performed manually or automatically, and they can be performed during or after software 

development.  Checks may be more or less formal, rigorous proving being extremely formal.  

Analysis, even code based analysis, can be static or dynamic. 

 

Code analysis methods may be related to range, size, or precision of data elements; there is 

some research about these methods.  Those methods sometimes involve dependence between 

variables.   There are simple derivations for maximum and minimum values for some binary 

operations on different interval domains, but not much research about more complex 

sensitivity analysis was found.  There are more general informal methods, too, like 

algorithmic analysis, code review, or looking for invariants in the programs. Not much 

research has been done about these methods.  Some comparative studies and few other 

studies have been found.  Those methods are very powerful and general.  There are lists of 

faults that can be found with those methods.  Many more types of faults can be found with 

those methods than what are on the lists.  In addition, faults that are often found by flow 

related methods can also be found with these static methods.  General methods like 

algorithmic analysis and code review can also be used in looking for range, size, and 

precision problems in addition to special methods like interval analysis. 

 

Instead, a more formal general method, software inspection, gets a lot of attention among 

researchers.  Some comparative studies relate inspection to testing.  More such studies 

should be done since inspection methods and testing methods have a lot in common.  For 

example, choosing checklist items and choosing test cases may have common features.  

However, choosing test cases is not investigated in inspection-related studies and vice versa.  

In addition, inspection- related studies do not use results of research in choosing test cases,  

and vice versa.   There is a same kind of relationship between defect prediction in software 

inspection and properties of curves in general defect prediction models.  In some studies 

mentioned in this thesis, one conclusion is that the field lacks cross-field research.  The 

observations presented in this paragraph support the conclusion. 

 

Uncertainty in research and particularly in comparison of different studies is discussed in the 

summary of chapter 3.  According to Miller (2000), results of studies cannot always be 

quantified due to the lack of common definitions that could be used consistently in each 

study.  For example, there is no common definition of bug type (ibid.).  Another 

terminological problem is that some terms have definitions related to information 

technology, and those definitions may differ from either general definitions or definitions of 

the same terms in other fields.  Some of those terms are included in IT standards.  The word 

“inspection” has a general meaning, but in software engineering, the term has got a special 

meaning.  In glossaries, software inspection is usually defined as a strict process with certain 

meetings, specific roles, and specific organization. 

 

Some terms like “desk checking” have been defined in different ways in different 

documents.  Some terms like "inspection" and "walkthrough" are used inconsistently.  As 

stated above, the term “software inspection” has been defined in glossaries as a strict 

process.  In some papers, the word often means methods like code review, code 

walkthrough, or algorithm analysis, which all are usually less formal methods.  The 

definitions for those less formal methods are used inconsistently, too. 

 

Some terms have a general definition but are unnecessarily redefined in some studies.  Those 

redefinitions add part of the context of those studies or that of their domain to the general 

definition without stating it explicitly.  For example, the definition of term “confluence” in a 

study about automatic generation of loop invariants using Gröbener basis (Sankaranarayanan 
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et al. 2004)
3
 includes local context.  With reduction systems, the general definition of 

confluence only guarantees that different reductions from the same arbitrary object 

eventually lead to a common object (Klop 1992).  In term reduction, it means that different 

reductions from the same arbitrary term eventually lead to a common term.  The common 

term need not be a normal form
4
 or lead to a normal form: there can be infinite reductions 

like cycles.  Hence, the general definition only guarantees that if there is a normal form, 

equivalent normal forms are unique (Klop 1992); it does not guarantee that there is a normal 

form.  In the study, in the narrow contexts where the reduction could be shown to be 

terminating, confluence of a reduction was defined as follows: “every term reduces to a 

unique normal form”.  This is a definition in local context - in the context where all 

reductions terminate.  Thus it is not a general definition and presented as such, may confuse 

those who have been using the broad definition. 

 

There are many forms of representations for software and its environment, component 

interaction, data and its relationships, and for control and data flow.  More and more 

research is being done about aspects and concerns.  Graph theory is often applied when 

studying representations.  There are analysis methods that use representations for finding 

bugs.  Integration and paying attention to inconsistencies are trends in research involving 

models.  Like there is research about understanding root causes of bugs and application 

domain, there is research about understanding the domain of models. 

 

Flow analysis often involves dependences between variables.  Flow analysis helps 

understand program and reveals several faults like type and dependency faults.  Plenty of 

research has been done about making flow analysis easier and more precise.  There is 

research involving path related problems and problems and challenges in flow analysis.  

Some areas of mathematics are sometimes used in flow based analysis.  Some studies 

connect flow analysis and logic.  How to detect bugs with flow and dependence methods is a 

topic for research.  Flow analysis is sometimes combined with other methods to detect bugs.  

There are also studies about error propagation to output and constraint propagation. 

 

As stated in the summary of chapter 2, different methods have different fault prone features.  

For example, graphs do not always express timing or scope of variables, as discussed in 

subchapter 2.2.2, see (Yoo & Seong 2002).  A related problem in control flow was found in 

(Baresi & Pezze 1998): control flow analysis may have problems in noting difference 

between the duration of the transform and a time to the next transform. 

 

State space exploration and state space representation methods are being developed.  

Software states are often presented with tables, trees, graphs, and networks, and those 

presentations are being extended.  Identifying states in state machines is being studied.  

Missing states are common causes for software failures.  State machines are often used for 

model checking or risk analysis. 

 

The state space explosion makes state-related faults more common and model checking 

harder.  A lot of research has been done about how to relief the state space explosion, and 

several relief methods have been developed.  One means is reduction of graphs.  There are 

studies involving general reduction of graphs and trees.  Some of those studies are about 

state space explosion, and some are more general.  Results of those more general studies can 

be used to mitigate state space explosion.  States can also be reduced from other 

representations like tables. 

 

                                                 
3
 The study is discussed in subchapter 4.4.2. 

 
4
 Normal form means a terminal: no more reductions can be performed. 
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Lightweight methods could be used in fighting state space explosion, but not enough 

attention has been paid to these methods.  Examples of lightweight methods are modularity 

and easy elimination of unnecessary states.  Examples of the latter are easy minimalization 

of graphs, and making the system go to error state if something unexpected happens. 

  

Excluding and logging undesired states is a good means to fight explosion, but it has not got 

much attention.  One related study was found about processes in an operating system.  

Minimalization could be performed by setting priorities, too.  For example, erroneous input 

is usually rejected instead of being processed.  For example, new input could be asked for if 

the piece of software is interactive and the user enters inappropriate input.  If this is the case, 

erroneous input need not be partitioned according to values of other variables if partition 

testing is used.  Sometimes it is hard to know if one wants the system to process unknown 

states.  If they are excluded, they can be put into a log file.  This way, the developers get to 

know that such states exist, and they may include the states if they wish. 

 

Many studies of state space explosion involve telecommunication systems.  However, state 

space explosion problems are present in numerous other application domains, too, and in 

systems where there is no concurrency.  The results of the studies about state space 

explosion in telecommunication systems should be used when studying other application 

domains, too.  However, people do not find those results when they could need them.  As 

another example of using results of studies in other fields, results of studies for developing 

compilers are often related to software control and data flow.  Results of these studies could 

be used in improving fault analysis methods that are flow-based. 

 

There are numerous logical systems, and they are being extended.  Both logic in general and 

special logical systems and application domains are being studied.  Some fundamental 

theories about recursion and computability have been developed in 1960‟s.  Also, partiality, 

iteration, and termination have been topics for research.  Abstraction of logical systems is a 

trend.  There are some studies about connections between logical methods and developing 

methodologies, e.g. between category theory and functional programming. 

 

Formal analysis and proving methods can be applied in all phases of the software life cycle.    

Different kinds of logical systems, axioms, models, and languages can be used in proving.  

Some common topics of research are looking for invariants to capture the behaviour, 

methods for model-checking, different approaches of program semantics, and constructive 

development.  Some formal methods and systems have been developed for some areas in 

software engineering, e.g. for making specifications consistent with an invariant, performing 

floating point calculations, or proving that one program simulates another.  There is a 

tendency to integrate methods.  Some tools can do automatic proving or reasoning about 

contradictions and failures.  Some tools can correct faults. 

 

Not much attention has been paid to prerequisites and limits of a logical method.  Those 

limits are reasons why formal methods are not frequently applied.  The research is more 

practically oriented: making formal methods easier to apply with means like lightweight or 

customizable methods and automatic proving are under research.  There is a slight tendency 

for early validation and verification of software, but it should be stronger. 

 

Some research is being done about how to make people apply formal proving more often.  

The question should be more general since checks are an efficient way to prevent faults and 

should get much more attention.  Different kinds of checks have been developed, but checks 

have not been used very often, nor do they get much attention by research people, compared 

to testing.  However, checking is very efficient method to reveal faults.  For example, many 

checking methods have complete coverage, including unpredicted and rare situations, and 

unpredicted facts and fault types may be detected by checking. 
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5 TESTING 
 

Testing is a very common means to detect software faults.  This chapter discusses software 

testing as a means to detect defects.  Testing may also reveal external factors that have an 

effect on software reliability, but testing does not reveal all external failures.  Software may 

be tested for other reasons, too.  For example, efficiency or user-friendliness can be tested.  

Those tests are outside of the scope of this thesis. 

 

Plenty of research has been done about methods for choosing test cases, test coverage, and 

testing methods.  Due to the large amount of methods and criteria and research involving 

them, it has been impossible to discuss them in detail.  This chapter contains only collections 

of existing methods for choosing test cases and performing the testing, and collections of 

coverage criteria.  The chapter also contains outlines of assessing testing methods. 

 

The first subchapter of this chapter involves choosing test cases and estimating test 

coverage.  The second subchapter presents different test methods and their classifications.  

Estimation of testing and some problems related to testing are also discussed, and testing 

tools are presented.  The summary follows as the last subchapter. 

 

5.1 What to Test 

In this subchapter, the problem about choosing test cases is discussed.  The first part 

involves examples about what to test.  The second part investigates different types of test 

coverage, and methods for assessing coverage. 

5.1.1 Items to be Tested 

 

Table 18 contains examples about items to be tested.  The first part presents common items 

and the second part introduces method-specific items. 

 

             Table 18.  Items to be tested 

 

General Testing 

Risks 

Cases that are most prone to cause management problems or to cause timing problems 

(Kaner 2004), known faults (Kaner 2004), most frequent faults (Amland 2000), or faults that 

cause most damage (Amland 2000), and erroneous inputs like wrong values (Kaner 2004) or 

wrong command sequences (Leveson 1995). 

Special items 

Missing element; missing function; blank; zero; leading zero; one; small absolute value; 

empty; special character like quote; first; last; border; close to border; output on border; 

discontinuity of a piecewise continuous function; discontinuity of a derivate; points where 

function stops being e.g. constant, monotonic, or linear; and items outside domains.  

(Redwine 1983), (Howden 1986), (Ostrand & Balcer 1988), (Wooff et al. 2002), (Clermont 

& Parnas 2005), (Goodenough & Gerhart 1975). 

Hierarchy 

Howden (1986) proposes the following tests for arrays, but they could be executed for other 

kinds of collectors, too: zero value, zero row, zero column, and a case where some values are 

special and some are not. 

 
Continued on next page 
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Predicates 

Arithmetic expressions, arithmetic relations with arguments in all orders, conditional 

commands, iteration commands, operation sequences, off by ones in relational expressions, 

smallest possible increments and decrements, sign and value, value and sign should not be 

the same in every test case, value and sign should not be the same as any other value or sign 

in all test cases, and in arithmetic operations variable should have a measurable effect on 

value and sign of the result; all those are in (Foster 1980). 

Functions 

If input variables are names of subroutines, each type of subroutine should be tested 

(Howden 1980).  If the number of appropriate steps is another input variable, some values 

for which the function converges should be tested, and some values for which the function 

does not converge should be tested (ibid.).  Extreme values for calls and returns should be 

tested (Foster 1980). 

Code 

Some command sequences and operation sequences (Foster 1980), loading (Krishnamurthy 

et al. 2006), relationships between variables (Foster 1980), maximum, minimum, and 

intermediate values (Howden 1980), combinations of maximum and minimum values  

(Howden 1980), maximum and minimum values in an expression (Howden 1980), identical 

and distinct values (Howden 1980), cases where all items have the same value (Howden 

1980), cases where output values differ from input values for variables used in both input 

and output (Howden 1980), output out of range (Howden 1980), same paths with several 

values (Kaner 2004), repetition of a test case (Kaner 2004), all permutations for specific sets 

of values for some variables (Grindal et al. 2004), different sizes of data structures (Marinov 

et al. 2003), member of a family of related classes (Weyuker & Ostrand 1980), and paths 

with the highest number of conditions and operations affecting the result (Foster 1980). 

Special situations 

File not open, read past end of file, overflow, and underflow are examples of error situations 

in (Westerfield 1992).  Those situations could be tested.  Extra item (Smidts et al. 2002) and  

wrong type (Spohrer & Soloway 1986a), (Sullivan & Chillarege 1991) are special situations, 

too.  There are some new studies about testing of input validation; for example, Liu et al. 

(2009) have a path based approach. 

Method or application specific items 

Interaction 

The following items should be tested: possible interactions of components (Howden 1986); 

messages (Briand et al. 2003); parameters of functional unit, characteristics of each 

parameter, objects in the environments whose state could affect the functional unit's 

operation, and characteristics of each environmental object (Ostrand & Balcer 1988).  In 

object oriented testing, objects, interfaces, and pure, inherited, and overridden methods 

should be tested (Alkadi & Alkadi 2001). 

Mutation testing 

Mutant operations have been defined for expressions.  Absolute value of a variable, the 

negation of the absolute value, and forcing x to zero are examples of mutants (Wong & 

Mathur 1995).  Effect of omitting some mutants (selective determination) has been studied 

(Offutt et al. 1996).  There are many other types of mutants; e.g. Emboss msbar generates 

same types of mutants for strings that are generated for DNA sequences in real life, see e.g. 

(Royce & Necaise 2003). 

 
Continued on next page 
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Domain testing 

A lot of attention is paid to border shifts, coincidental correctness, and missing expressions, 

see e.g. (Clarke et al. 1982).  Some errors related to boundaries are shifted bounds, tilted 

bounds, missing bounds, extra bounds, and closure faults (Zhang & Harris 2000).  Stress-

testing is related to testing boundaries for input, output, and loading, and values close to 

boundaries, see table 21.  Research has been done about how to choose testpoints for 

different types of domains, e.g. domains with several inequations, those with linear and 

different kinds of non-linear equations, discrete and continuous domains, and situations 

where points exactly on the border cannot be tested, see (Jeng & Forgács 1999) for 

discussion about all those problems.  Some studies involve choosing testpoints for given 

paths, e.g. (Jeng & Forgács 1999).  White and Wiszniewski (1988) present the number of 

test points needed for loop patterns.  Hierons (2006) studies finding test cases to avoid 

coincidental correctness in boundary value analysis. 

Operational profile 
See (Chen & Yu 2001) on sampling strategies where test cases are allocated approximately 

in proportion to the size of subdomains; Ntafos (2001) puts it more exactly: probabilities are 

used instead of sizes because each input is not always equally likely to occur.  Those 

sampling studies involve partition testing but the methods could be applied elsewhere, too.  

Naixin and Malaiya (1994) examine how operational profile should be considered in testing 

when failure probabilities and the number of test cases are known. 

 

Research has been done about making assumptions in testing and building test cases.  For 

example, some methods for selective regression testing assume that if a system is faulty, all 

faults are found by testing specific scope (Leung 1995).  Test cases can be created formally.  

For example, Zhu (2003) analyses replacement systems in algebras that can be used in 

deriving test cases. 

 

Test cases are often collected from some source.  Sometimes a source is converted to another 

source for test case derivation, see e.g. (Kansomkeat & Rivepiboon 2003).  Seeding faults to 

the source of test cases is another way to build test cases, see e.g. (Fu et al. 2005).  Some 

studies compare sources for test cases, e.g. Zhu et al. (2002) compare different graph 

representations.  Table 19 contains some sources for test cases. 

 

    Table 19.  Sources for test cases 

 

Textual scenarios.  Textual descriptions can e.g. be structured and converted to state 

machines (Glinz 2000). 

High level specifications.  They can be of any format.  Some examples are formal language, 

algebra, formal model (Zhu et al. 2002).  Test cases can be derived e.g. from algebraic 

specifications by replacement e.g. (Zhu 2003). 

Source code.  See e.g. (Hierons et al. 2003) for conditional slicing. 

UML diagrams.  See e.g. (Kansomkeat & Rivepiboon 2003) for generating test cases from 

UML statecharts. 

Models.  E.g. Podgurski and Clarke (1990) present semantic models about faults and 

software behavior. 

Graph representations.  There are different types of graph representations.  Methods for 

building minimum spanning trees and other minimum coverage selection methods can be 

used in path selection, see e.g. (Marré & Bertolino 2003).  Flow graph is commonly used in 

looking for test cases, see e.g. (Hong et al. 2003).  Gabow et al. (1976) reduce two problems 

to graph-theoretic problems.  One is testing a specific set of statements.  The other is finding 

a path which satisfies impossible path. 

 
Continued on next page 
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Cause-effect-graphs.  Tai et al. (1993) investigate fault-based testing of cause-effect-

graphs; relation and boolean faults are looked after in the study. 

Classification trees.  Chen et al. (1999) propose improvements for classification trees. 

Class vectors.  Leung et al. (2003) present a method for generating test cases from class 

vectors. 

Risk or fault regions.  Risk or fault regions of the software can be used as sources for test 

cases, see e.g. (Amland 2000). 

Information about similar systems.  E.g. known problems can be used in building test 

cases, see subchapters 2.2 and 2.3.1.  Performance of other systems, and performance testing 

benchmarks can be used in test case construction, see (Carrington et al. 2005) about 

assessing performance benchmarks. 

Previous succeeded and failed test cases.  E.g. old test cases can be used in regression 

testing, see (Rothermel et al. 2004). 

Software behaviour.  Bowring et al. (2004) study learning about software behaviour and  

clustering it into classes.  According to the article, the information can be used in making 

plans about test cases.   

Sampled user executions.  User executions can be sampled for bug isolation (Liblit et al. 

2003). 

Constraints.  Carver‟s study (1996) involves constraints that have been derived from an 

abstract program; besides testing, constraints can also be checked against abstract program 

(ibid.). 

Properties of functions, or relations between functions.  For example, CAVEAT tool 

deduces properties of functions and graphs and information about relationships between 

functions (CEA LIST 2004). 

Other relations.  Relations between conditional expressions are used in test case selection, 

see e.g. (Chen et al. 2003). 

Algebraic specifications.  Zhu et al. (2002) investigate choosing test cases from formal 

specifications, including algebraic specifications. 

Operation sequences in a graph.  Probabilities and probability distributions of operation 

sequences can be used as sources for test cases (Chang et al. 1998). 

Any sources for known antigoals and antirequirements.  See (van Lamsweerde 2004) 

about antigoals and antirequirements. 

Input distribution.  Input distribution is used as a basis for selecting acceptance testing 

cases (Kopetz 1975). 

Domain features.  Sinha and Smidts (2006) present a technique for taking domain features 

into account in testing.  The study presents, e.g., types of system invariants and involves 

language features. 

No source.  Random data.  See e.g. (Duran & Ntafos 1984) about random testing. 

 

 

Howden (1986) introduces input-output, trace, and transform oracles for specification 

testing.  See (Freedman 1991) about component testing, and how to make software 

observable and controllable.  Observability means how input affects output.  Controllability 

means how easily specific output follows from input. 

 

Many failures are related to rare events.  It is not likely that a specific rare event occurs in a 

random test set, nor have developers always taken rare events into account.  Voas et al. 

(1996) do experiments and develop algorithms for making it more likely that rare events are 

selected for test cases in failure-tolerance testing.  See (Haraszti & Townsend 1999) about 

rare-event simulation for software that has high complexity. 

 

Software is not the only thing that should be tested.  When software is run, external factors 

like the operating system, API, and other files, affect memory, heap, file handles, etc.  The 

result of those other activities has an effect on software function, particularly on software 
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input.  Files may have been corrupted, and data may be erroneous.  Other users may modify 

the data in files.  Also bad user input causes errors in programs.  Errors with external 

connections may be hard to reproduce.  (Whittaker 2001). 

 

5.1.2 Coverage of Testing 

 

Coverage of test is one factor in estimating if sufficient amount of testing has been done.  

See also subchapter 2.3.3.  Zhu et al. (1997) have a survey about test coverage. 

 

Coverage criteria can be derived from several sources, e.g. from code, specification, or 

constraints to be satisfied.  Frankl and Weyuker (1993c) survey data flow coverage methods, 

and Grindal et al. (2004) survey combinatorial methods.  Table 20 presents some coverage 

criteria. 

         Table 20.  Coverage criteria 

 

Combinatory.  All items, all n-way combinations of items, all values of some items, k-

boundary, and k-perimeter are coverage criteria mentioned in (Grindal et al. 2004). 

Value based.  The tested item is a value for a variable (Grindal et al. 2004).  Examples of 

using value based criteria are distinguishing each expression from all its strict 

subexpressions (Weiser et al. 1985), and testing each subexpresion with at least two values 

(ibid.). 

Control based.  The tested item can be e.g. node (Kansomkeat & Rivepiboon 2003) or entry 

(Frankl & Weyuker 1993c).  Pohjolainen (2002) mentions e.g. branch, elemental decision, 

and all ways to execute a conditional decision as coverage criteria.  Pohjolainen also 

mentions statement coverage, i.e. that all statements are executed.  Tai (1993) mentions a 

method where all simple and compound subexpressions are tested with both truth values in a 

compound expression. 

Control and value based.  For example, all combinations of values of conditions are tested 

(Frankl & Weyuker 1993c). 

Fixing some items and testing others.  Grindal et al. (2004) mention strategies where some 

parameters contain default values and other parameters are tested. 

Combined method.  This method requires that every possible branch be tested at least once 

for each special value for each input and output variable (Howden 1986). 

Orthogonal arrays and covering arrays.  See (Grindal et al. 2004) and (Cohen et al. 1994) 

for orthogonal arrays, and e.g. (Grindal et al. 2004) for covering arrays.  Yilmaz et al. (2006) 

present methods that use coverage arrays for testing different configurations and finding out 

features of the configuration subspaces in which bugs manifest. 

States and transfers.  Each state and/or transfer is tested, see e.g. (Fujiwara et al. 1991). 

Flow criteria.  Data flow coverage criteria involve e.g. definitions, uses, and/or paths from 

some or all definitions to some or all uses (Frankl & Weyuker 1988), (Frankl & Weyuker 

1993c).  k-tuple criteria involve definition-use-paths between a specific definition and use 

(Frankl & Weyuker 1993c). Further, uses can be separated to predicate- and computation 

uses (Frankl & Weyuker 1993c).  See also (Jeng & Weyuker 1994) for more criteria.  Hong 

et al. (2003) survey data flow coverage criteria.  Podgurski and Clarke (1990) analyze 

dependence coverage. 

Context.  Context coverage involves paths that define variables used in a specific statement 

in (Frankl & Weyuker 1993c); Information Processing Ltd (IPL) (1999) investigates object 

specific context coverage (e.g. inheritance context decision coverage, or interaction coverage 

of inherited methods), user specific context coverage (e.g. thread coverage), and state based 

context coverage. 

 
Continued on next page
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Ordered context.  Ordered context method requires that each ordered context be exercised 

by a path that visits the definitions in the given order (Frankl & Weyuker 1993c). 

Orders.  Orders of ordered data elements can be tested (Ntafos 1988). 

Iteration.  Paths that iterate loop k or less times and paths that fail the test on loop boundary 

can be tested (Ntafos 1988). 

Mutation.  Mutations can be tested (Frankl & Weyuker 1993c). 

Specification-mutation.  This is a coverage measure for mutants in a specification 

(Abdurazik et al. 2000). 

Operational profile.  Operational profiles for input can be tested (Chen 1998). 

Couplings and Interfaces.  Offutt et al. (2000) study coupling based covering in integration 

testing.  In the study, similar measures are used for e.g. subroutine calls and use of external 

devices that are used when measuring data flow coverage. 

Compound.  E.g. Grindal et al. (2004) discuss compound strategies. 

Fault tolerance coverage.  Error and fault handling coverage and fault assumption coverage 

are presented in (Avižienis et al. 2004).  According to the article, failure assumption 

coverage can be either failure mode coverage or failure independence coverage. 

 

Many studies compare test coverage criteria, assess specific criteria (Abdurazik et al. 2000), 

or investigate methods for assessment.  Relationships between coverage criteria are a 

common topic for research.  For example, some criteria may subsume other criteria, see e.g. 

(Grindal et al. 2004).  Feasibility affects the relationships (Frankl & Weyuker 1988).  Frankl 

and Weyuker (1993b) discuss why subsumption relation does not always mean that errors 

are more likely detected.  Frankl and Weyuker (2000) use failure regions and multisets of 

input subdomain for building relationships between coverage criteria. 

 

Links between coverage criteria and properties of the program under test, e.g. number of 

bugs, are under research (Garg 1994).  Plenty of research has been done about test adequacy 

properties and relationships of those properties.  Weyuker (1988) presents axioms about 

adequacy properties.  Parrish and Zweben (1991) have an axiomatic perspective for test data 

adequacy criteria.  The study examines relationships between adequacy properties for 

different adequacy criteria and for different assumptions. 

  

Chen et al. (2003) study relations among choices of test cases, e.g. embedding, and relations 

among test cases.  Checking consistency among test case constraints and representing 

different types of those constraints is also studied in the article.  Coverage metrics and 

coverage measurement tools have been developed (Pohjolainen 2002).  There are studies 

about comparing test case allocation measures, e.g. (Leung et al. 2000).  There are fault 

class hierarchies, see e.g. (Lau & Yu 2005) and (Okun et al. 2004) about fault class 

hierarchies in expressions.  In those studies, hierarchies are presented where test cases that 

detect all faults in a larger fault class detect all faults in smaller class.  Okun et al. (2004) 

also compare classes of logical faults in specification based testing and calculate 

relationships between those classes.  Sizes of test input sites of some combination testing 

strategies are presented in (Grindal et al. 2004). 

 

According to Roper (1999), the link between adequacy criteria and attributes of the program 

under test is missing.  Also, there is no link between two criteria unless test cases for the 

more modest criterion are a subset of those of the more demanding criterion (ibid.).  Frankl 

and Weyuker (2000) shortly survey research containing critique of relationships between 

coverage criteria.  Hierons (2002) studies comparing test sets and test criteria by using test 

hypotheses and fault domains. 

 

Algorithms and heuristic methods are often used in test case selection and reduction.  Chang 

et al. (1991) present a strategy that uses heuristic rules to achieve branch coverage.  Jeffrey 

and Gupta (2007) use coverage information in their heuristic method for reducing test suite.  
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There is research about reducing test cases by graph theoretic methods.  Some examples are 

using previous paths (Prather & Myers 1987), looking for minimum coverage (Marré & 

Bertolino 2003), or algorithms for constructing minimum spanning set (Marré & Bertolino 

2003). 

  

There are theories about if there are test sets with which testing is certainly adequate.  

Adequancy problems with finite and infinite test sets, tolerance functions, etc. are under 

research, see e.g. (Li et al. 2004), (Garg 1994).  How many test points define a subdomain is 

an important question, and it can be calculated, see (Zhu et al. 1997) for functional testing.  

According to Zeil and White (1981), number of test cases needed in path testing depends on 

the number of input variables and program variables.  Cain and Park (1996) derive the 

number of necessary test points for finite domain vector spaces in testing the equality of 

functions.  Chusho (1987) studies how to eliminate redundant test cases in respect to a 

coverage criterion, e.g. how to avoid re-testing a branch that has already been covered by 

another test case. 

 

See (Dalal & McIntosh 1994) about stopping criteria.  Large software and changing code 

are also involved in that article.  There are many stopping criteria based on the probability of 

finding more faults.  E.g. Littlewood and Wright (1997) present methods based on faults 

found during the testing period.  The authors propose that the testing may be continued even 

if faults have been found and the test will eventually fail.  According to Littlewood et al. 

(2001), the test can be deterministic so that it is known that the software certainly fails.  

Costs of failures are often taken into account when analyzing coverage and stopping criteria, 

see e.g. (Amland 2000). 

 

Miller et al. (1992) study the problem about how to estimate the probability of faults if 

testing reveals no failures.  A method is introduced that is based on prior information, and on 

assumptions about the operational profile.  The situations are also covered where the 

assumptions about operational profile change.  According to Butler and Finelli (1993), 

estimating the reliability of life-critical software requires so many test cases that it is 

impossible, regardless of whether the software is standard or fault-tolerant, and whether 

blackbox (input to output) or reliability growth models are used.  See (Littlewood & Wright 

1997) about stopping rules for operational testing of safety critical software, both discrete 

and continuous systems are inspected.  The authors think that pessimistic rules are good, and 

Bayesian models (statistical models using a priori information) should be used.  Also, one 

should stop after finding a fault (ibid.). 

 

5.2 Test Execution and Evaluation 

 
This subchapter involves methods and means for test execution and evaluation.  The first 

part involves testing methods.  Test evaluation and some problems in testing are discussed in 

the second part.  The last part discusses some testing tools. 

5.2.1 Testing Methods 

 

Coverage criteria can be regarded as testing methods.  About coverage criteria see 

subchapter 5.1.2.  There are surveys and classifications about testing methods, see e.g. (Peng 

& Wallace 1993). Some of them cover other issues like fault coverage and test case selection 

methods, e.g. (Adrion et al. 1982).  There is research about finding theoretical foundations 

for testing.  For example, Hamlet (1994) has a survey about foundations of testing; it 

involves e.g. coverage, models, and dependability.  Table 21 presents some typical testing 

methods.  Studies are separated from each other by periods unless stated otherwise. 
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      Table 21.  Typical testing methods 

 

Random testing.  E.g. Duran and Ntafos (1984) assess random testing.  

Risk-based.  Common use test cases and test cases based on many kinds of risks like 

timeout in input, wrong number of input arguments, etc. may be tested (Kaner 2004).  

Amland (2000) has an overview.  Some test cases can be based on previous failures, and 

some may be out-of-bound-cases (Kaner 2004).  See also stress-testing row since matters 

like strong workload can be tested in risk-based testing. 

Failure-based.  See e.g. (Richardson & Thompson 1993) for test data selection. 

Fault-based.  Stamelos (2003) investigates associative shift faults and a model to detect 

those faults.    (Tai 1993) is about predicate testing, including methods for detecting extra or 

missing predicates and operators. (Tai 1996) is an instance of studies involving the question 

about how many test cases are needed for eliminating each fault type in predicates (this 

study investigates eliminating all Boolean, relation, and/or off-by arithmetic faults).  

DeMillo and Offutt (1993) present experimental results about constraint-based testing, 

where faulty conditions are written as constraints.  See (Morell 1990) about theories of fault-

based testing, combinations of faults, and what to do if no faults exist.  There are theories 

about alternative test sets and when they differentiate program from its alternatives.  

Equations that determine alternatives not differentiated by the test are analyzed in the article.  

In the study, expressions are replaced by symbolic alternatives, and system output is an 

expression in terms of input and its symbolic alternatives.  In the article, those system output 

expressions are equated with the output from the original program. 

State-based.  Paths are often represented by trees (Lee & Yannakakis 1996).  Different test 

methods like DS, UIOS, W, and Wp, have been developed for testing state machines 

(Dorofeeva et al. 2005), (Lee & Yannakakis 1996).  Lee and Yannakakis (1996) survey 

problems in testing finite state machines, and several fundamental problems like state 

verification or identifying unknown initial state. 

Flow based.  Podgurski and Clarke (1990), and Laski and Korel (1983) study control and 

data dependencies and their use in testing and debugging, e.g. in detecting operator faults 

and dependence faults.  Test cases can be built from program slices, too, see e.g. (Hierons et 

al. 2003) about conditional slicing to choose partitions in partition testing.  Flow based 

dependence analysis and search methods have been developed for finding input for a 

specific statement, assertion, or path; see e.g. (Allen & Cocke 1976) and (Snelting et al. 

2006). 

Path approach.  Path approach is a method where input is being iterated until a specific 

path is executed (Peng & Wallace 1993).  Some studies involve recursive programs 

(Snelting et al. 2006); the article is about finding input for a specific path.  There are other 

studies, too, about finding test input for executing a specific path, branch, or statement, see 

e.g. (Sy & Deville 2001). Howden (1976) studies reliability of path analysis and different 

kinds of path related errors.  Howden (1986) analyses properties of path faults.  Ntafos and 

Hakimi (1979) study path coverage problems in digraphs.  Watson and McCable (1996) 

describe path testing methodology based on cyclomatic complexity of the control flow 

graph.  Malevris (1995) presents means to restrain infeasible paths in testing all sequences 

and jumps.  Zeil (1983) studies finding undetectable expressions for a test path when the 

class of error expressions is a vector space.  There are new studies about paths in software.  

See (Ngo & Tan 2008) for a heuristic method for detecting infeasible paths. 

Branch based.  See e.g. (Howden 1980). 

 

Continued on next page
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Software/hardware integrated critical path analysis.  A standard (MIL-STD 882B 1984) 

mentions the method but does not define the concept of critical path.  According to Kundu 

(1978), critical path is a path where according to some complexity measure, there is the 

greatest number of e.g. statements, variables, or their dimensions.  The article involves using 

groups in finding optimum critical path in a directed acyclic graph that can be used for 

software testing. 

Class based.  Plenty of research is being done about how to test object oriented software, 

particularly classes.  Theories of behavioral equivalence are often used (Chan et al. 2002).  

There is research about object-oriented state based testing, see e.g. (Briand et al. 2004).  

Porwal and Gursaran (2004) study weak branch criterion evaluation for class testing; effect 

of the length of test sequences, nature of faults, and class features, on fault detection ability 

was studied for C++ classes.  In the weak branch criterion, a pair of labelled edges is 

replaced by one unlabelled edge. 

Event-oriented object testing.  Event-driven nature of object based programming brings 

declarative aspects on integration and system testing (Jorgensen & Erickson 1994). 

Antirandom testing.  Antirandom testing means choosing test cases that differ most from 

each other (Malaiya 1995); Malaiya also presents metrics for this difference. 

Mutation.  Research is being done about choosing mutants, e.g. (Wong & Mathur 1995), 

and about coupling of mutants (see subchapter 2.3.3).  Budd et al. (1980) study mutation 

analysis for programs, particularly programs with decision tables.  Where to locate mutants 

and how to test them are being studied, see e.g. (Voas 1992).  See (Delamaro et al. 2001) 

about interface mutation in integration testing; errors that have an effect on other functions 

and output, can be seeded to functions.  Woodward and Halewood (1988) present problems 

in deciding whether a mutant is live or dead, and solutions for these problems. 

Domain testing.  When using this method, testpoints are chosen at or near the boundary.  

Boundary faults may be due to, e.g. incorrect branch predicates or erroneous assignments 

that affect predicate variables (Clarke et al. 1982).  Research is being done about the nature 

of border shifts (Clarke et al. 1982).  Test strategies are being investigated, e.g. what 

untested areas follow from choices of test cases is being studied, see e.g. (Clarke et al. 

1982).  White and Cohen (1980) inspect language features and troubles that they cause for 

domain testing.  Jeng and Weyuker (1994) present a method to figure out executable paths.  

There are other problems, too, like loops and dynamic structures (Jeng & Forgács 1999).  

Research is being done about how to make domain testing more efficient, e.g. how to 

improve coverage or accuracy, or develop simpler strategies for complex situations, see e.g. 

(Jeng & Forgács 1999), (White & Wiszniewski 1988). 

Combinatorial testing.  E.g. Cohen et al. (1997) study combinatorial design in generating 

test sets.  Grindal et al. (2004) survey combinatorial testing research and strategies.  Many 

combinatorial strategies for choosing test cases are based on some combination-based 

coverage criterion (Grindal et al. 2004).  Grindal et al. (2004) survey e.g. in parameter order 

-methods and their extensions. 

 
Continued on next page
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Partition testing.  Goodenough and Gerhart (1975) present fundamental theorems of testing 

based on equivalences of test cases.  They use decision tables in test data selection.  Every 

value within an equivalence class is equal in the sense of the classification.  If one is able to 

build homogenous classes, either all test cases in a class produce the correct state and output 

in respect for the specific fault, or all test cases reveal the fault (Weyuker & Ostrand 1980).  

According to Pasquini et al. (1996), an equivalence class may be scattered in many parts of 

the code.  Partition testing uses all information and can reveal unknown combinations, 

particularly logical faults (Hamlet & Taylor 1990).  It is an excellent method if partitions 

with high failure rate are small (ibid.).  Kaner (2004) has a collection of errors that students 

make when they apply partition testing.  There are studies about how to build partitions and 

choose representatives of them, see e.g. (Hierons et al. 2003).  Weyuker and Jeng (1991) 

present strategies for considering all built partitions if partitions overlap.  Ostrand and Balcer 

(1988) present constraints on partitions to eliminate contradictive and impossible partitions.  

Bastani‟s study (1985) involves hierarchic equivalence classes and probabilities. 

Model-based.  Paradkar (2005) surveys research about how to choose test cases from 

models.  Models can be e.g. graphs or algorithms.  Pretschner et al. (2004) translate a model 

into constraint logic programming code.  Muccini et al. (2004) investigate testing software 

against architecture.  Different abstraction levels are possible with relation to a specified 

view, and different implementations of architecture are possible (ibid.). 

Comparing program to another program or a reference.  Back to back testing is 

discussed in (Peng & Wallace 1993) and (Avižienis et al. 2004). 

Testing by comparison.  Avižienis et al. (2004) mention testing where outputs are 

compared with each other or output is compared to a reference. 

Stress-testing.  Stress-testing means testing factors like large sizes, large values, large and 

small frequencies, or premature input; (Peng & Wallace 1993), (Clermont & Parnas 2005).  

Oehlert (2005) studies fuzzing an application with unusual data, e.g. detecting buffer 

overruns with large input values, or detecting wrong signs by flipping the top bit of an 

integer.  Krishnamurthy et al. (2006) study session-based workload generation for stress 

testing. 

Performance testing.  Testing system performance.  See (Avritzer et al. 2002) and 

(Weyuker & Vokolos 2000). 

Interface testing.  See e.g. (Briand et al. 2003) about client-server class integration testing. 

Integration testing.  Integration testing can be e.g. top-down, bottom-up, or sandwiched 

(Peng & Wallace 1993). 

Regression testing.  Research is being done about techniques for choosing a method for 

regression testing, and methods have been surveyed and studied, see e.g. (Rothermel et al. 

2004).  The study investigates e.g. decision whether to reset some or all test cases when 

software has been modified, and the granularity of test suite.  Li and Wahl (1999) survey 

regression testing and choosing test cases.  Research is also being done about wrong and 

missing changes and about what should have been changed (Leung 1995).  Leung also 

discusses fault detecting ability of selective regression testing. 

Symbolic execution.  Symbolic execution of loops has been studied (Adrion et al. 1982).  

Those situations are being discussed where the number of iterations is not always known in 

advance, see e.g. (Jeng & Forgács 1999).  Symbolic execution trees can be used in testing 

(Adrion et al. 1982). 

Structural analysis.   In (Peng & Wallace 1993), structural analysis means testing structures 

with automatic tools. 

Fault injection.  See (Zeil 1983) about perturbations, and (Fu et al. 2005) about compile-

time fault injection. 

 

Continued on next page
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Simulation.  Research is being done about randomness (L‟Ecuyer et al. (2007) mention 

some studies), making rare events more likely (L‟Ecuyer et al. 2007), combining discrete, 

continuous, and analytical simulation (Donzelli & Iazeolla 2001), developing abstract 

simulation  (Lee & Fishwik 1999), and integrating simulation with modelling (Lee & 

Fishwik 1999) (Donzelli & Iazeolla 2001).  Ng and Chick (2001) study reducing input 

uncertainty in a way that reduces output uncertainty in simulations.  McGeoch (1992) studies 

analyzing algorithms and reducing variance.  See (Lee & Fishwick 1999) for multimodeling 

methodology for real-time simulation. 

Debugging.  Debugging can be e.g. event based (Lazzerini & Lopriore 1989), algorithm 

based (Stumptner & Wotawa 1998), trace based (Shapiro 1983), dependence-based 

(Strumptner & Wottawa 1998), or slice based (Wong et al. 2005).  There are studies about 

fault localization and characterization, e.g. (Lawrance et al. 2006), and about simplifying 

and isolating failure-inducing input in testing (Zeller & Hilderbrandt 2002).  Uchida et al. 

(2002) present a model for analyzing the reading strategies that can be used in debugging.  

(Stumptner & Wotawa 1998) is a survey about intelligent debugging.  Nikolik (2005) 

presents convergence debugging, i.e. searching for test cases close to faulty ones by 

comparing how many times expressions are evaluated true and false.  Debugging tools may 

contain automatic tractability (Pohjolainen 2002). 

Log file analysis.  See (Andrews & Yingjun Zhang 2003). 

Constraint analysis.  Constraint analysis is mentioned in (Peng & Wallace 1993). 

Cross-reference list analysis.  This method is mentioned in (Peng & Wallace 1993) and 

(MIL-STD 882B 1984). 

Bounded exhaustive testing.  In this method, all inputs are tested up to a specific 

complexity or size, see (Marinov & Khurshid 2001). For example, Sullivan et al. (2004) 

assess bounded exhaustive testing. 

Mining.  Song et al. (2006) study defect association mining and correction effort prediction.  

E.g. defects in a transaction are involved in the study.  Li and Zhou (2005) introduce a miner 

for extracting rules and detecting their violations.  Li et al. (2006) study mining copy-paste 

bugs. 

Evolutionary or adaptive testing.  See e.g. (Bergadano & Gunetti 1996) about inductive 

program learning.  The study involves testing program and distinguishing it from other 

possible mutant programs by learning from a finite set of input-output examples. 

 

 

Table 22 contains nearly-orthogonal classifications of testing methods. 

 

      Table 22.  Classifications of testing methods 

 

Structural testing / Functional testing.  Test cases are built from design and code in 

structural testing, and from external specifications in functional testing (Adrion et al. 1982).  

There are other sources, too, like error logs (Andrews & Yingjun Zhang 2003). 

View.  Table 21 presents methods based on risks, faults, failures, coverage of elements (e.g.  

paths, branches, states, or classes),  structure,  model, or stress.  Each view is presented in 

different row. 

Entity.  The entity that is tested can be e.g. unit, component, or integration of components  

(Peng & Wallace 1993).  Testing can also be system testing or acceptance testing (ibid.).  

Elbaum et al. (2009) study using system test cases when choosing unit test cases. 

 

Continued on next page 
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Life cycle phase.  Testing can be performed during different phases of software life cycle 

e.g. during specification-, design-, coding- or maintenance phase (Adrion et al. 1982). 

Static / dynamic.  See e.g. (Adrion et al. 1982).  Many kinds of dynamic techniques are 

discussed e.g. in (Peng & Wallace 1993), like those based on dynamic flow testing, 

comparing to a reference, fault injection, or debugging.  Many methods have static and 

dynamic versions, for example data flow analysis can be static or dynamic (Boujarwah et al. 

2000). 

Time-related / no time-related.  Many test methods can be performed independently of 

time or old versions of software.  Regression testing (see table 21) is related to time. 

Stochasticity. Test cases can be selected by deterministic or probabilistic basis (Thévenod-

Fosse & Waeselynck 1993). 

General / system part specific.  In table 21, for example path testing is general, and 

interface testing involves only interfaces. 

Debug testing / operational testing / combination. In debug testing, existing faults are 

located, and in operational testing, the quality of software is assessed, and many testing 

methods have both goals (Frankl et al. 1998). Subcategories for debug testing are searching 

for likely bugs (Frankl et al. 1998) and tracking known bugs (Adrion et al. 1982). 

Incremental / cross-checking / none.  Le Traon et al. (2003) use this classification for data 

flow test methods. 

Advance design / adaptive testing.  In extensive testing, the test set that has been planned 

in advance is executed, and in adaptive testing, defects are corrected in the test cases (Munoz 

1988). 

Directed / representative.  Choosing test cases based on a specific criteria suitable for 

detecting a specific class of faults is called directed testing and testing based on operational 

profile is called representative testing in (Mitchell & Zeil 1996). 

Using one technique / combining several techniques.  For example, directed and 

representative testing are combined in (Mitchell & Zeil 1996). 

General / application domain specific.  Table 21 presents general or widely used methods. 

Table 23 presents domain-specific methods. 

 

 

Table 23 contains examples of domain-specific testing. 

 

      Table 23.  Examples of domain-specific testing 

 

Domain Examples of testing 

Database Consistency, integrity, indirect access; Peng 

and Wallace (1993) discuss these features in 

connection with static database analysis. 

Spreadsheet Fault localization, e.g. faulty cells or variables 

(Lawrance et al. 2006). 

Expert systems Testing rule based systems (Kiper 1992). 

 
Continued on next page 
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Concurrent systems Graph based methods, e.g. (Taylor et al. 

1992); comparing execution traces to 

specifications (Brockmeyer et al. 1996); 

replay of sequences (Tai et al. 1991); 

reachability analysis (Cheung & Kramer 

1994).  Some tools look for atomicity 

(Flanagan & Freund 2004). 

Protocol testing Motteler et al. (1995) investigate ways in 

which conformance testing may fail to catch 

faults.  They also briefly survey studies about 

protocol testing methods. 

 

 

Chu (1997) presents an evaluation framework for software testing strategies.  Some studies 

test empirically or assess one or several test methods, see (Miller, Roper, et al. 1995) for a 

survey.  One can test or assess e.g. ability to detect faults (Hamlet 1989), number of test 

cases needed (Dorofeeva et al. 2005), or maximization of coverage (Hamlet 1989).  Vouk 

and Tai (1993) study estimating testing methods based on changes and e.g. test history. 

 

There are comparative research methods to compare different testing methods based on their 

fault detecting ability (Hamlet 1989).  Many comparative studies have been done, and 

Hamlet mentions some of them in the study.  Empirical and analytical methods have often 

been used (Hamlet 1989).  Test sets and fault criteria have been studied, and relationships 

between different testing methods have been constructed, see e.g. (Hamlet 1989) and 

(Hierons 2002).  Comparison of test methods has been criticized, see (Hamlet 1989).  Some 

modeling and comparing studies involve failure regions, see e.g. (Frankl & Weyuker 2000).  

Some studies involve bounds or confidence intervals for defect detection, see e.g. (Hamlet 

1989).  The results of comparative studies of testing methods sometimes seem somewhat 

contradictive, at least partly due to using different input subdomains, see (Weyuker & Jeng 

1991).  Miller, Roper, et al. (1995) discuss problems in evaluating test criteria.  Hierons 

(2002) studies how test sets or test criteria can be compared in deterministic 

implementations in the presence of test hypotheses or fault criteria. 

 

5.2.2 Estimating Testing 

 

Marick (1997) discusses classic testing mistakes in organizational level.  Sullivan et al. 

(2004) discuss errors in testing methods like errors in oracle, errors in specification where 

the test is generated, incompleteness, or limited focus.  Kelly and Shepard (2004) present 

problems in testing.  For scientific software, or other software where the application domain 

is complex, testing is difficult and can be inefficient, due to factors such as very long 

running times, multiple symptoms disguising the root cause of a problem, the lack of 

effective oracles, and the cause/effect chasm (Kelly & Shepard 2004).  The cause/effect 

chasm means that the symptom of a problem being far removed in space or time from the 

root cause (Eisenstadt 1997).  In (Clapp et al. 1992), a test generally revealed one fault; in 

one test, three faults were detected.  A test technique that relies solely on some code cannot 

find missing-path faults (Jeng 1999). 

 

Howden (1976) proves that no testing strategy can be constructed which is reliable for all 

programs.  Reliability means in this context that if faults are not found when a program is 

tested, it has no faults.  The prerequisites for testing being reliable are studied in the article. 
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How to supervise the quality of testing is under research.  There are measures about failures, 

like MTTF (mean time to failure) or number of faults found (Hamlet 1994), (Peng & 

Wallace 1993).  Some measures involve testing effectiveness.  Cangussu et al. (2003) 

investigate statistics of faults left and rate of fault reduction.  Test effort, complexity, quality 

of test process, and some coefficients are used as parameters.  Sensitivity analysis is 

performed for those parameters in the study.  Capture-recapture methods have sometimes 

been used in measuring testing accuracy, see e.g. (Ohba 1982), and see (Isoda 1998) for 

criticism.  Nikolik (2006) studies measuring diversity in control flow and data flow between 

different test cases.  Munoz (1988) studies product testing and discusses correctness 

measurement problems.   Van Rompaey et al. (2007) investigate metrics for evaluating 

poorly designed tests. 

 

Classification criteria are being presented for test quality measurement (Chen et al. 2004).  

Le Traon et al. (2003) present axioms for diagnozability in testing, and develop measures for 

diagnozability in flow based and design-by-contract testing.  Testability indicates test effort 

and efficiency.  There are studies about relationships between testability and inductive 

inference, e.g. (Cherniavsky & Smith 1987).  Benander et al. (2000) have made a study that 

supports the hypothesis that in recursive algorithms, finding and fixing bugs is more likely 

and faster than in iterative algorithms. 

 

There are measures about testability.  For example, Sohn and Seong (2004) present a 

measure for testability and investigate its use in fault tree analysis.  The measure is based on 

failure probability of a statement or a variable and entropy that describes the importance of 

the variable or statement.  According to Bertolino and Strigini (1996), testability is not 

directly proportional to trustworthiness.  The definition of testability is revisited in the 

article: the incompleteness of the test oracle and the possibility of observing faults in the 

absence of failures are taken into account, not only program structure and input distribution.  

The Bayesian inference level is more useful than classical confidence level because a-priori 

beliefs are crucial and some erroneous programs are inside confidence intervals (ibid.). 

 

See (Wooff et al. 2002) about whether uncertainties should be quantified.  The study 

involves Bayesian graphical models for software testing.  A probability model for failures is 

introduced in the study, about probabilities that fault transfers to another node of a graph.  

Estimating root node probabilities is discussed in the article.  Sensitivity analysis is done in 

the article for initial specifications about how changes affect pre- and post-testing reliability. 

 

5.2.3 Testing Tools 

 

Automatic tools have been presented for testing, proving, and estimating software properties.  

For example, Jalote (1989) studies automatic testing of completeness of specifications.  

There are tools for automatic generation of test cases, see e.g. (Pohjolainen 2002).  Some 

tools transform program to something else, e.g. build graphs, and generate test cases from 

them, see e.g. (Kansomkeat & Rivepiboon 2003). 

 

(Tian 1999) is a survey; some types of tools related to data capturing, analyzing, usage 

testing, or reliability assessment, are presented in the study.  Pohjolainen (2002) has made a 

classification and a survey; the study contains e.g. tools for functional testing, test case 

generation, complexity measurement, coverage analysis, regression, load analysis, and test 

management.  Many tools have several tasks (Pohjolainen 2002).  There are classifications 

for some specific kind of tools, e.g. Shahmehri et al. (1995) classify debuggers.  Some 

studies compare tools to each other, e.g. Horwath et al. (2000) compare SilkTest and 

WinRunner.  There are also guidelines for choosing tools, e.g. (Johnson 2007).  On the 
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Internet there are collections containing hundreds of tools, for example (QADownLoads) 

website contains numerous tools. 

 

 

5.3 Summary of Testing 
 

How to choose test material has always been discussed.  At least since 1980's, lists have 

been made about items to be tested, and coverage criteria have been developed later.  Those 

early lists cover e.g. data elements and their interaction, expressions, risks, unusual 

situations, and loading.  Those lists are sometimes detailed but it is hard to make them 

complete.  For example, maximum and minimum absolute values with both signs should 

usually be tested, but that has not been mentioned on detailed lists.  There is research about 

how rare events will be taken into account in testing.  There are many different sources for 

test cases. In fault injection based testing like mutation testing, faults are created; research is 

being done about where they should be located. 

 

There are lots of general and special testing methods.  Some methods like path and branch 

testing have been studied at least from the 80‟s but some methods like performance testing 

have been studied for only about ten years.  What is being tested depends on the method - 

maybe too much.  In object based testing, object oriented features like inheritance are being 

tested.  In boundary value analysis, attention is paid for testing expressions, paths, and 

borders.  The error classification used in boundary value testing is barely used elsewhere, 

although it would be useful in other contexts, too.  There is a question about if more 

attention should be paid to boundary errors when using other testing methods. 

 

Constraints to limit test cases have been under investigation.  When to stop testing is being 

studied a lot.  Deriving the minimum number of test points for a specific method and 

minimalizing the number of test cases have been related to test coverage.  Sometimes it is 

claimed even in research papers that exhaustive testing would guarantee that there are no 

faults, but that is not the case: all unexpected behaviours cannot be detected by testing.  For 

example, missing paths are hard to detect by testing.  In addition, software may have 

different environment at different times.  For example, software can read from an 

uninitialized memory area.  If the default values of memory areas are zeros, the values are 

most likely zeros during the test execution.  Sometimes in run time when they are not zeros, 

the hidden bug actualizes. 

 

In the field of testing, there is a lot of research about relationships.  Some studies create 

relationships between coverage criteria, between test sets, between test methods, fault 

classes, or between test coverage properties and software properties like number of bugs.  

Some studies involve fault regions.  Studies comparing coverage properties with each other 

or with software properties have been criticized.  Some studies compare testing methods.  As 

with comparative studies about defect prediction methods, results of studies that compare 

testing methods have been contradictive.  Reasons for this are being discussed and research 

is being done about how testing methods should be compared.  Frameworks, methods, 

models, and metrics are being developed for test evaluation.  Problems in testing are being 

discussed.  There are axioms involving testing.  What makes testing reliable is being studied, 

too.  Testability has been studied and discussed.  Automatic integrated tools have been 

presented for static analysis, testing, proving, and estimating software properties.  There are 

surveys about testing tools. 

 

There are interesting relationships that should be kept in mind.  Dependence of data 

elements has a relationship to the number of faults that have an effect on a failure situation.  

The relationship between data element dependencies and failures is discussed in subchapter 

2.3.3. This relationship could be studied further.  Flow dependence is related to test 
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coverage, and dependence information is used in creating coverage criteria.  Data flow 

dependence is related to dynamic dependence of data elements, which should be kept in 

mind in assessing test coverage. 

 

As mentioned in the summary of the previous chapter, there is much more research about 

testing than about checks.  In addition, there are studies about testing of special items and 

other unusual situations.  However, only few studies involve paying attention to unusual 

situations already during development. 

 

In addition, many methods are used in testing only, although faults could be eliminated 

earlier by using those methods during development.  A lot of research has been done about 

using domain theory and category partitioning in testing phase but no research was found 

about applying those methods during other phases of software life cycle.  As mentioned in 

the summary of chapter 2, blindness and coincidental correctness are rarely investigated 

outside domain testing, even though they have connections with other analysis and testing 

methods, too.  Also, path-, branch- and data flow analysis are often performed in testing only 

even though they should have been performed during earlier phases of life cycle. 

 



 Chapter 6. Fault Tolerance  

 

99 

6 FAULT TOLERANCE 
 

Even if software developers use methods presented in chapters 4 and 5, there can still be 

faults in software.  One usually does not check everything, proving may contain errors, 

application of formal methods has restrictions, and everything cannot usually be tested.  

Particularly, rare situations and external factors are often omitted from testing.  Often there 

is a possibility of an external failure, and there are unpredicted factors; testing reveals some 

of them but not all.  This chapter involves preventing harm if there is a possibility of a 

failure.  The probability of a failure in the presence of a fault can be reduced, and the 

software usually needs to have means to recover and continue when a failure occurs. 

 

The first subchapter introduces some terms, problem areas, and general issues of fault 

tolerance and of related modeling.  The three following subchapters involve the most 

common means for maintaining reliability.  Failure diagnosis, N-version programming, and 

recovery, are discussed in consecutive subchapters.  Several of those methods are often 

applied in the same system.  For example, in N-version systems, the software may use 

recovery blocks in the components or after the result of the N components has been 

calculated (Torres-Pomales 2000).  Also, multiversion software may perform self-checks 

(Torres-Pomales 2000), which are a common diagnosis means.  The fifth subchapter 

involves some other reliability means, methods, tools, and development trends.  The sixth 

subchapter is a summary of this chapter. 

 

6.1 Introduction  
 

Reliability issues have been applied for hardware.  They have been adapted for software, and 

special features of software have been taken into account more and more.  General surveys 

have been done about computer system reliability for several decades; (Strigini 2004) is a 

relatively recent survey. 

 

The use of the most common terms in the field is not very consistent.  Some most commonly 

used definitions are presented below. 

 

Safety: Features and procedures which ensure that the product performs normally in normal 

and abnormal conditions, thereby minimizing the likelihood of an unplanned event 

occurring, controlling and containing its consequences, and preventing accidental injury, 

death, destruction of property, and/or damage to the environment, whether intentional or 

unintentional (Herrmann & Peercy 1999).  Safety means that it is guaranteed that something 

bad never happens (Phillips 1992). 

 

Reliability: The probability of failure-free operation of the software program for a specified 

time under specified conditions (Herrmann & Peercy 1999).  Another definition for 

reliability is that it is a set of attributes that bear on the capability of software to maintain its 

level of performance under stated conditions for a stated period of time (ibid.).  Very often, 

reliability means preventing the damage if something bad happens anyway.  If there still are 

faults in software, damage caused by them can be prevented by means of reliability. 

 

Liveness: The system stays alive.  Liveness means that it is guaranteed that something good 

eventually happens (Phillips 1992). 

 

Damage: Loss or detriment caused by hurt or injuries affecting estate, condition, or 

circumstance (Oxford Dictionary IV 1989).  Damage also means injury, harm, disadvantage, 

inconvenience, trouble, matter for regret, misfortune, or a pity (Oxford Dictionary IV 1989). 
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Harm: Evil, hurt, injury, damage, mischief, loss, grief, sorrow, pain, trouble, distress, 

affection, pity, or a pity (Oxford dictionary VI 1989). 

 

Plenty of research is being done about error detection and recovery.  Different methods are 

assessed and compared, see e.g. (Leveson 1991).  Research is being done about how 

software can efficiently detect faults and recover from them.  How to use information that is 

meant to be used for other purposes is being studied, see e.g. (Lomet & Salzberg 1991).  One 

has often been able to achieve non-intrusive checkpointing and information collecting, see 

e.g. (Israel & Morris 1989).  One problem is that recovery systems may have bugs see e.g. 

(Torres-Pomales 2000), and they cannot always detect other faults than what they have been 

planned to detect (Abbott 1990).  Generally, faults are not detected either if detection and 

recovery mechanisms are in wrong locations.  Where to place fault tolerant structures and 

checkpoints is also a topic for research, e.g. Torres-Pomales (2000) surveys the topic. 

 

Different subsystems or modules may have independent or even different fault tolerance 

techniques (Strigini 2004).   Functions, modules, or some other entities, or whole systems 

can be replicated; some studies compare different solutions, e.g. Boland and El-Neweihi 

(1995) compare component level and system level redundancies.  Defensive programming 

has often been placed in different parts of software, but Kantz and Koza (1995) present a 

system where defensive programming has been built as an independent subsystem. 

 

One area of interest in research is how to fit software components together in a fault tolerant 

way.  Arora and Kulkarni (1998a, 1998b) study adding fault-tolerant components to increase 

the level of reliability and the number of fault classes that the system can tolerate.   Sinha 

and Hanumantharya (2005) combine using of that method and prior use of category theory in 

composition.  Also the depth of fault tolerant structures has to be decided when planning 

fault tolerant software (Abbott 1990). 

 

There are studies that have mathematical analysis of fault tolerance, see e.g. (Wu et al. 

1996).   Some fault tolerance models include combinations of different fault tolerance 

means; for example, (Wu et al. 1996) contains systems with both N-version programming 

and recovery blocks.  Some defect prediction models can take correlated failures and other 

special matters into account.  For example, they may use information about numbers of 

correct programs, see e.g. (Littlewood et al. 2001).  Fault tolerance models are usually used 

for defect prediction, reducing development or testing effort, or finding optimal 

configurations, see e.g. (Wu et al. 1996).  Kim et al. (2004) present a framework-based 

approach for analyzing the reliability of an embedded system based on the framework and 

component reliabilities.  Plugin components are possible, and separation of concerns is 

applied in the study.  Some experimental studies compare different recovery methods, e.g. 

Bhargava et al. (1990) compare recovery with synchronous checkpoints with recovery with 

independent checkpoints. 

 

6.2 Fault Detection and Diagnosis 
 

For many accidents, ignoring the signs about that something is wrong has been a 

contributing factor, see e.g. (Leveson 2001).  Doing something for those signs would have 

saved the situation.  The same can be true with software, which makes failure detection and 

diagnosis important. 

 

Self-checks are an important means for diagnosis.  Complexity theory is used in the theory 

of self-checking, see e.g. (Wasserman & Blum 1997).  Wasserman and Blum study 

developing good result checkers.  Checkers can even be adaptive: a complex checker may 

generate more detail data if it does not have enough of it (ibid.).  Staknis (1993) investigates 
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n-way dependencies and independencies of a fault on input variables, and on different 

degrees of checks of those variables.  Laws about relations between checks and about logical 

connectives of input checks are also derived in the study; e.g. conjunction between checks 

means performing all of them.  Methods have been developed for testing and assessing 

robustness, see e.g. (Bennani & Menascé 2004), and characteristics for robust algorithms are 

discussed, see e.g. (Strigini 2004). 

 

Nicola and van Spanje (1990) analyze models about checkpointing strategies.  

Checkpointing intervals based on Poisson process, transaction load, or time intervals are 

analyzed in the study.  The study also investigates dependence of the recovery period on 

checkpointing strategy; in the article, the dependence can be deterministic, stochastic with 

distributions, or parametric.  Some diagnosing methods use partitions.  Preparata et al. 

(1967) have theories about how many faults can be diagnozed in partitioned systems where 

units can test each other, and those methods have been developed further.  Jeon and Cho 

(2002) present an adaptive partitioning model for system-level diagnosis.  Walter et al. 

(1997) investigate formal verification of on-line diagnosis.  Guo, Mukhopadhyay, and Cukik 

(2004) study verifying result checkers.  Huebscher and McCann (2008) survey autonomic 

computing, including self-checking, self-fixes, and self-healing. 

 

Table 24 presents methods for defect detection and diagnosis, classified by view.  Some 

methods contain automatic recovery.  Different studies are separated by semicolons unless 

stated otherwise. 

 

     Table 24.  Fault detection and diagnosis methods 

 

Data structure redundancy 

Repeated dual links, other repetitions in data structures, extra rows and columns in matrices 

(Strigini 2004). 

Code checks during runtime 

Type checks  (Cartwright & Felleisen 1996); data structure consistency based on check and 

repair (Demsky & Rinard 2006); consistency in data structure processing, e.g. detecting 

cycles by monitoring path length (Giguette & Hassell 1999); repeating an operation and 

comparing results (Tewksbury 2002); comparing values of variables with previous values, 

with values of other variables, or to references or reasonable values (Torres-Pomales 2000); 

reading back output (Gericota et al. 2006); backward calculation (Torres-Pomales 2000); 

error correcting codes like checksums or codes for detecting transposed bits (Torres-Pomales 

2000), (Gallian 1996); assertions (Leveson 1991), probes (Probert 1982); looking for 

unintentional redundancies (e.g. commands) - they may indicate faults (Xie & Engler 2003); 

protecting memory by checking e.g. return addresses, Chen et al. (1995) discuss protecting 

memory from operation system crashes by different checks; comparing results to those of 

other replicas (Torres-Pomales 2000); simulation (Lee & Fishwick 1999); analyzing log file, 

see (Andrews & Yingjun Zhang 2003) for analyzing log file for testing; monitoring 

performance and use of resources (Swobodova 1981), and system clock (SDL 2006). 

Trace processing and partitions 

Slicing (Weiser 1984); partitions (Jeon & Cho 2002); building process trace tree and 

traversing it for searching for an incorrect, incomplete, or diverging sequence of procedures 

(Shapiro 1983); tracking a fault that is e.g. in output (Shapiro 1983). 

 
Continued on the next page 
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Software intelligence 

Failure states (Kumar & Vemuri 1992); self-stabilizing algorithms
5
; automatic detection of 

convergence problems (Troscinski 2003); wrappers doing some checks, e.g. wrappers that 

intercept unintentional calls to functions or calls to defective functions (Strigini 2004); rule-

based systems like algorithmic checks that find conflicts and other faults, see (Stumptner & 

Wotawa 1998) for debugging; Martin et al. (2005) study a query language to look for 

patterns related to sequences of events and objects - queries are converted to checkers that 

look for rule violations; neural networks may be used in detecting both known faults (He et 

al. 2000) and unknown faults up to external disturbances (Tewksbury 2002). 

External checks 

Information flow, incremental and cross-checking strategies (Le Traon et al. 2003); 

watchdog (Torres-Pomales 2000); paying attention to symptoms like suspicious behavior or 

degraded performance, recognizing faults based on common symptoms (Lee & Iyer 2000), 

(Sheth et al. 2005); diagnostic messages (Hatton 1999); checks outside algorithms like 

monitors for programs (Strigini 2004), or programs that check other programs (Strigini 

2004), Blum and Kannan (1995) present program checkers and theorems about checkers and 

checkability. 

  

6.3 N-Version Programming 
 

Avižienis (1995) discusses a design paradigm for N-version software, i.e. for making N 

copies of the software.  Chen and Bastani (1992) study partial replication of software, where 

only some of the system data is stored in replicas.  In the study it is assumed that the whole 

process can be restored from a partial data replica unless faults prevent the restoring effort.  

Control processes in systems with replicas are also under investigation, see e.g. (Bishop 

2006).  One problem is keeping the replicas consistent, see e.g. (Brilliant et al. 1989) and 

(Bishop 2006). 

 

Software components may work as main, backup (active), or spare (standby) components.  A 

great amount of research is being done about how small the copies should be, how many 

copies of software there should be, should the copies be of different types, and how many 

copies of each type there should be, and if some of the copies should be spare copies.  

Hocenski and Martinovic (1999) examine reliability factors of a system that has a hardware 

spare copy and checkpoints where data is transferred to the spare unit; they perform 

experiments for both redundant and non-redundant software.  If there are more than one 

original components in a system that contains spare components, either there can be spare 

copies for individual components or spare components can be shared, e.g. Torres-Pomales 

(2000) presents both kinds of solutions.  In warm standby systems, the probability for spare 

component failures can be anything from zero to that of active components.  If a system has 

N components and still works when K or fewer of them are faulty, it is called K-out-of-N-

system (N > K).  See (Behr & Camarinopoulos 1997) about methods for comparing the 

reliability of incomplete K-out-of-N-systems, where not all paths are present. 

 

                                                 
5
 The word "stabile" means different things in different fields of mathematics and computer science.  

It is often related to the precision of computations.  Self stabilization of algorithms often means that 

the system goes to a legitimate state in a finite amount of time, see (Strigini 2004).  How to cope with 

transient faults is also being studied, see e.g. (Mossé et al. 2003).  Self-stabilizing algorithms and their 

restrictions are under investigation, see e.g. (Das et al. 1996) for a self-stabilizing algorithm for 

directed acyclic graphs.  Self-stabilizing algorithms should work even if the data has been corrupted 

(Strigini 2004). 
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According to Brilliant et al. (1989) and Littlewood et al. (2001), there may be individual 

differences in reliability: some 2-out-of-3 systems can be less reliable than some single 

systems.  Sometimes the maximum number of faulty units is known or may be assumed.  Xu 

and Randell (1997) analyze variations of deciding which units are correct if there are 

comparators and there can be at most T faulty units. 

 

Models are being developed for systems with a specific configuration, e.g. for K-out-of-N-

systems with identical components (Lai et al. 2002), or systems with non-identical or spare 

components, see below.  Some models can take into account gradual degradation (Shmueli 

2003), reparation times (Vermeulen et al. 1998), preventive maintenance (Vermeulen et al. 

1998), component-based failure rates (Vermeulen et al. 1998), common mode errors, or 

uncertainty.  That uncertainty often involves unavailability of spare components.   She and 

Pecht (1992) analyze K-out-of-N warm standby systems.  See (Bunea et al. 2005) about 

Bayesian models where information of other plants is used.  Dai et al. (2004) present a 

model for correlated failures where failure distributions are not restricted to be of a specific 

type.  In the model, different components may have different failure distributions, so can 

different N-way combinations of components, even for the same N. 

 

Data transfer between replicas is one topic for research.  Basic ways to transfer data are 

comparators and reciprocal monitoring, e.g. Torres-Pomales (2000) describes both kinds of 

mechanisms.  Comparators are studied a lot; there is not so much research about reciprocal 

monitoring except for distributed systems.  Data transfer means are often replicated, because 

they also may be faulty, see e.g. (Torres-Pomales 2000).  There is research about how to get 

an agreement about the return value or system status.  Examples of methods for estimating 

results of different components are comparison, voting methods, switching, self-checks, and 

acceptance tests (Littlewood et al. 2001).  In voting, the results between replicas are 

compared to each other, and possibly some other factors are used, like fault histories of the 

replicas (Torres-Pomales 2000).  Multi-stage voting and hierarchical voting are discussed, 

see  (Vouk et al. 1990). 

 

In voting, majority can be wrong (Bishop 2006).  Another problem is to decide about when 

the results of different copies are regarded as different results (Brilliant et al. 1989), 

(Brilliant et al. 1990).  In addition, results can be different from each other, but all may be 

correct.  If the differences are due to inexact computation, this is an instance of the 

consistency comparison problem (Brilliant et al. 1989).  Sometimes it is not even clear to 

decide whether results can be compared; for example, internal states may have an effect on 

results of individual copies for a short period of time (Brilliant et al. 1989), or if the software 

contains a number of related values, it is not sufficient to take a vote based on individual 

values (Bishop 2006). 

 

See (Leveson et al. 1990) about correlated failures between different software versions, and 

about problems in voting and self-checks.  Also, several faults that cause a failure (always or 

in specific situations) may have a common cause.  There are experimental studies about how 

frequently common mode failures are present, see e.g. (Bishop 2006).  In the vast majority 

of multiple processor halts for Tandem GUARDIAN operation system, the same fault halted 

primary and backup processors (Lee & Iyer 1993).  Few halts were due to independent 

processor faults, and few halts were not related to faults on both processors (ibid.). 

 

Plenty of research is being done about diversity between different copies.  Different demands 

can be loosely coupled (Lee & Iyer 1995), or difference seeding can be used (Ammann & 

Knight 1988).  Bishop (2006) surveys experiments about design diversity.  Littlewood et al. 

(2001) discuss the question whether to choose several methods in order to cause diversity 

and which methods to choose.  For example, the authors discuss problems in assessing 

strengths and weaknesses of different development methods on specific applications and 
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conditions of operation.  According to the authors, two methods may be equally good in 

average but those methods may be good for different sets of inputs. 

 

Table 25 contains examples of means to cause diversity. 

 

Table 25.  Examples of means to cause diversity. 

 

 

Different technical and physical actions, sources of inputs, and implementation 

technology for replicas of system functions (Littlewood et al. 2001).  The study did not 

describe different implementation technologies for software but for example, some systems 

may be discrete and others may be continuous.  See e.g. (Littlewood & Wright 1997) for 

reliability prediction for discrete and continuous systems. 

Different input data values for different copies (Ammann & Knight 1988). 

Different methodologies for different versions (Littlewood & Miller 1989). 

Different specification languages for different copies.  Based on their experiment, Yoo and 

Seong (2002) assume that a wrong description will produce unique faults with unique 

specification languages. 

Different programming languages for different copies (Littlewood et al. 2001). 

Converting input representation between different copies (Abbott 1990). 

Algorithmic changes e.g. by changing expressions, data structures, or the order of storage 

allocation, or rearranging internal data (Ammann & Knight 1988). 

Timing or causing external disturbances, Rushby (1993) discusses those as problems. 

Action, state, and timing, e.g. different copies performing different tasks, memory state, 

race, timing, or random events (Lee & Iyer 1993). 

Authors.  Research has been done about if several copies of the same software version 

should be made by same or different people; some pieces of this research are introduced in 

subchapter 2.3.3. 

 

6.4 Failure Recovery 
 

Some systems stop when they fail, but it is usually desired that the system be able to recover.  

Recovery methods can be classified.  A forward method brings the system into a new state in 

order to perform a function, or updates a file using change record data (IEEE 1990).  A 

backward method returns the system back to an earlier state (IEEE 1990).  The third fault 

recovery method is to include enough redundancy to be able to mask the fault (Avižienis et 

al. 2004).  Avižienis et al. (2004) also classify means for preventing the failure from 

occurring again: the alternative means are diagnosis i.e. finding out the cause, isolating the 

fault, re-configuring the system, and re-initialization.  Research is being done about these 

means, e.g. about how to do restarts and if one should do periodic restarts, see e.g. (Bao et 

al. 2005).  One problem in recovery is that other failures, even those that are independent of 

the first one, may occur during recovery, see e.g. the study of Al-Saqabi et al (1996). 

 

An architectural means for recovery is recovery blocks, where program components check 

their correctness and back up when they detect a failure.  The software needs to store 

information about its state for recovery.  Some methods use log files. 

 

Negrini and Sami (1983) present graph- and dependence based analysis about whether the 

acceptance test in recovery block makes sense i.e. represents testing the system state.  See 

(Mill 1985) about building a sufficiently correct state from a state in a recovery point.  See 

(Wang et al. 1993) about progressive retry.  There are checkpoints, and the deepness of the 

recovery and the number of participating processes are increased gradually until recovery 

succeeds.  Method investigated in the study uses log files in recovery.  Qin et al. (2005) 
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study recovery from faults by environmental changes; some other methods are discussed 

briefly in the article. 

 

Plenty of research has been done about modeling recovery.  The following list contains some 

examples. 

 Failure distribution models when multiple version system contains checkpoints 

(Nicola & Goyal 1990). 

 Validating recovery blocks by testing.  The model is based on failure events (correct 

and incorrect results of alternates and those of acceptance test).  The relationship 

between faults and fault correction is based on failure history and the amount of 

testing done.  The faults are repaired and the repairing time is taken into account.  

(Pucci 1992). 

 Including correlation between outputs of different modules (alternates) operating on 

a single input, between successive inputs, and between successive acceptance test 

runs on correct/incorrect module outputs, all in the same recovery block.  (Tomek et 

al. 1993). 

 Recovery blocks with nested clusters of failure points. When in failure cluster of the 

primary module, the input sequence encounters clusters of failure points belonging 

to the first alternate, the second alternate is invoked.  (Csenki 1993). 

 

Research is being done and surveyed for database recovery, see e.g. (García-Muñoz et al.  

2007), a survey. There is also research about how to recover when there is non-determinism, 

see e.g. (Elnozahy et al. 2002).  A lot of research has been done about recovery and 

checkpoints for co-operating processes.  There can be e.g. atomic transactions, or recovery 

may be based on beginning and ending of a conversation (Romanovsky & Strigini 1995).  

There is research about modeling communicating recovery blocks, see e.g. (Berman & 

Kumar 1998), and about coordinating different recovery mechanisms, see e.g. (Tai et al. 

2001).  Al-Saqabi et al. (1996) present an algorithm that can recover a communication 

protocol from multiple failures and from failures in recovery process; no content of 

messages is lost but some messages are retransmitted automatically. 

 

Recovery points and exception processing are examples of failure recovery.  According to 

Maxion and Olszewski (2000), special situations like special items, wrong types, overflows, 

and precision errors cause exceptions.  There may be situations where program analysis 

method does not notice exceptions, e.g. a subprogram may encapsulate exceptions (Sinha & 

Harrold 2000).  Methods and models are being developed for static analysis of exception 

flow (Sinha & Harrold 2000) and for detecting uncaught exceptions (Jo et al. 2003).  Some 

methods can analyze effect of exceptions on dependencies and control flow (Sinha & 

Harrold 2000).  Handling multiple exceptions is one topic for research, see e.g. (Sinha & 

Harrold 2000).  Maxion and Olszewski (2000) study eliminating exception handling failures 

with three methods: dependability case analysis for exceptions and their reasons, N-version 

programming, and collaboration.  There are also studies about choosing the correct 

exception handler, see e.g. (Cui & Gannon 1992).  Garcia et al. (2001) survey exception 

handling for different languages and present taxonomy for technical aspects of exception 

handling. 
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6.5 Other Reliability Issues 
 

Research is being done about several other means to increase fault tolerance.  Table 26 

contains some of those means.  Many of those means are very easy to use and do not need 

extra resources. 

 

Table 26.  Means to increase fault tolerance 

 

Isolated software 

Software makes it possible to design complex solutions, but for safety reasons, they should 

be simple and isolated, and evolutive development and separation of concerns help 

(Littlewood & Strigini 1993).  See (Alves-Foss et al. 2004) about multilayered approach for 

system design and verification. 

Weak replication 

Replication means may also be weaker than building N versions.  Kistler and 

Satyanarayanan (1992) present a system where cache is utilized to guarantee continuous file 

system function. 

Data replication 

Research is being done about how to get replicated data files consistent when changes are 

made to the files, see e.g. (Lim & Hurson 2002).  Taking backups (IEEE 1990) is a way to 

replicate data to be used to replace or restore data in a failure or a disaster. 

Averaging 

Averaging can be performed to get better estimations of values and minimize the effect of a 

possible faulty value.  The values can be, for example, values of different copies of the same 

software (Latif-Shabgahi et al. 2004) or values of a variable in the cause of time, see (Lander 

& Berbari 1989) about the latter. 

Fault tolerance in programming languages 

Austin et al. (1994) investigate checks for spatial and temporal access faults, and state that 

UNIX typically provides storage protection on segment granularity.  Some programming 

languages have safety features.  For example, EC (Hatton 2005) and MISRA-C (Hatton 

2004) are safe subsets of C.  Hartel and Moreau (2001) survey research about Java safety.  

See (Phillips 1984) for safe data type specifications, where equality axiom is independent of 

implementations.  De Florio and Blondia (2008) survey fault tolerant programming 

languages and adopting customer semantics for a language. 

Safety margins 

Systems can sometimes be made to tolerate a more stressful environment than they are 

expected to have (Littlewood & Strigini 1993). This is one form of safety margins, which are 

one means of defensive programming.  The possibility of the unknown should be taken into 

an account. 

 

Fault tolerance is being built only for faults that are somewhat anticipated.  It is harder to 

estimate the risk of the unknown.  One cannot know exactly either, to what extent the 

unknown can be prevented with fault tolerance. 

 

Abbott (1990) surveys resourceful systems, systems that set goals and select alternative 

plans if they are not achieved.  Some system can even replace a function for another, and 

some even do reactive reasoning for an error and/or a change of environment (Abbott 1990).  

According to the study, real situations have uncertainties and the border between the system 

and its environment is fragile.  Self-checks and self-protection are involved in resourceful 

systems (ibid.).  Giguette and Hassell (2002) study the use of a recovery planning tree when 

planning recovery methods in resourceful systems. 
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Delgado et al. survey run-time monitoring tools.  Many systems react to violations of 

specifications in a particular state.  Use of automata and algebra is limited in tools, but logic 

and high-level language are common.  Few tools can capture domain-level and design-level 

properties before implementation.  Some tools have automatic recovery.  (Delgado et al. 

2004). 

 

Lee and Iyer (2000) study SYMPTOMS-tool for rediagnozing failures based on common 

symptoms.  See (Liang et al. 2004) about NT_SwiFT for Windows NT.  The set of 

components provides components for automatic error detection and recovery, checkpointing, 

event logging and replay, and communication error recovery, and incremental data 

replication.  Some tools collect dependencies between components.  For example, on the 

webpage (Maples 2004), Windows Dependency Walker is presented.  It collects information 

about dependencies between modules.  According to the webpage, the tool can be used in 

error detection. 

 

6.6 Summary of Fault Tolerance 
 

There are some general problems involving reliability.  Terms involving reliability are not 

always used consistently.  Also, terms like safety and reliability have their special meanings, 

although the use of those terms is not consistent.  Another general matter is that results of 

studies about availability could be used when studying reliability but they are not used very 

frequently. 

 

There is research about methods and problems in recovery, fitting components together, and 

placing fault tolerant structures and checkpoints.  There are different architectural and code-

related solutions to achieve fault tolerance, for example self-checks, N-version systems, 

recovery blocks, and exceptions.  For recovery blocks, the reliability of acceptance test and 

that of recovery are being studied.  The reliability of different configurations of fault tolerant 

solutions is being studied; the components may be of same type or different types.  Some 

studies involve concurrency, non-determinism, and failures during recovery of fault 

tolerance solutions.  Some research has been done about the breadth and depth of fault 

tolerance mechanisms.  Several fault tolerance means are often combined.  Redundancy can 

be achieved at different levels, and it can have different degrees; more research could be 

done about partial or weak redundancy since it often is an easy way to increase reliability.  

For example, repetition of a function or a procedure could be a cheap way to increase 

reliability. 

 

There are different methods for fault detection and diagnosis.  Different types of self-checks 

are easy to use and could be used more often.  For example, more attention could be paid to 

using multiple data structures for both increasing the reliability and making software more 

efficient.  Other replications like repeated calculations increase reliability, too.  As another 

example, robust algorithms could recognize input outside domain.  What can be checked in 

software, effects of checks, and making checkers are topics for research.  There are metrics 

and axioms for diagnozability and theorems about checks and about diagnosis.  More 

research could be done about assessing self checks. 

 

Control process for N-version replicas and the consistency of replicas are being studied.  

Data transfer between different copies is a topic for research.  Comparators are studied a lot; 

there is not so much research about reciprocal monitoring except for distributed systems.  

Deciding the result of N-version computation is being investigated.  Factors that cause 

differences between different replicas are being discussed.  Sometimes differences are due to 

slight differences at the places and times when different units perform their tasks or get 

information, but I have not found any discussions about this source of differences.  The 

possibility of correlated faults is a typical problem, too.  Whether replicas should be different 
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and ways to achieve diversity are being studied.  One way to increase the difference is to 

make the fundamental structure different.  For example, some replicas can be discrete and 

others can be continuous. 

 

Other means for achieving reliability are isolating critical parts, weak replication, data 

replication, averaging different values, safe data types, fault tolerance in programming 

languages,  and safety margins and other forms of defensive programming.  Safety margins 

may mean, e.g., accepting greater input intervals than what the software uses, and making 

longer than necessary deadlines for events.  Not very much research has been done about 

means mentioned in this paragraph, even though they are usually easy to use. 

 

There are models to predict or optimize reliability; some models involve repair, correlation, 

nesting, communication, or other extensions, or use information of other systems.  For N-

version systems, research about models is concentrated on looking for the optimal 

configurations and their models.  There are models about several means to achieve 

reliability, and some models combine different means to achieve fault tolerance.  There is a 

tendency towards robustness and adaptability.  Some systems have means for preventing the 

fault from occurring again, and some systems can recover by changing the environment.  

Some diagnozing methods contain automatic recovery.  Some tools can reason about faults.  

Some tools that have been done for other purposes are used in reliability, too. 
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7 DISCUSSION AND CONCLUSIONS 
 

In this chapter, the contributions of the thesis are presented in relation to the goals of the 

thesis. The thesis had the following goals: 

1 Figuring out the status quo in the field. 

2 Proposing some basis for structural framework for the field. 

3 Surveying and increasing bug knowhow. 

4 Surveying research about fault prevention, fault prediction, fault detection, and fault 

tolerance. 

5 Figuring out what should be studied more. 

6 Encouraging for early fault elimination. 

7 Presenting concrete recommendations. 

 

The contributions of this thesis are discussed in detail in the first subchapter.  In addition to 

those investigated in the subchapter, one more contribution is to present recommendations to 

software developers, research scientists, and teachers.  Recommendations are presented in 

the third subchapter.  Between those subchapters, in the second subchapter, different 

methods for fault elimination are compared with each other.  In the last subchapter, problems 

with doing this thesis are discussed and recommendations are presented for future work. 

 

Plenty of research has been done about organizational, managerial, and economical means 

for software fault elimination.  However, the emphasis in this work is in technical means and 

in what can be done by means of software development.  The thesis investigates fault 

elimination only.  Quality assurance contains many other areas like effectiveness and 

maintainability of software. 

 

7.1 The Contributions of the Thesis 

7.1.1 Figuring out Status Quo 

 

Types of Research 

 

Software fault elimination is a wide topic, and plenty of research has been done about it.  

Three common ways to do research have been the development of models and methods, 

execution of experiments, and writing surveys.  Theoretical research has been done in the 

form of developing models and other formal entities.  Lots of models have been developed 

e.g. for software development processes.  Another area where models have been developed 

intensively is defect prediction.  It has been widely admitted that models differ from reality, 

and the fact that reality is often unknown makes the situation worse.  Participants for 

experimental studies have often been either companies or university students.  Interviews 

and surveys have also been used as methods in experimental studies.  See the subchapters 

7.1.3 and 7.4 for discussion about surveys of different areas of software development. 
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Problems with the Difference between Research Environment and Reality 

 

Many studies state lots of uncertainty factors.  Stating them in a research document helps a 

lot in assessing results.  There are differences between research conditions and reality.  

Controlled experiments are often done with university students, so they do not necessarily 

correspond to real-world development.  Also, studying models has uncertainty because 

models differ from reality.  For these and some other reasons, software engineering research 

contains a lot of uncertainty, and research methods need to be assessed.  There are some 

studies that assess methods for software engineering research; some assessment studies are 

general and some are related to a specific field of software engineering, e.g. testing.  

Comparative research is discussed in subchapter 7.1.2. 

 

 

Universal Problems are Sometimes Erroneously Connected with Only one or Few Methods 

 

Some common types of software faults and some fault-related problems are studied only in 

relation to one or few specific methods, even though those faults and problems are more 

general.  For example, blindness and coincidental correctness are investigated in connection 

with domain testing, but studies that do not involve domain testing usually do not take them 

into account.  Unfortunately, software often contains blindness and coincidental correctness, 

regardless of whether one uses domain testing.  They can often be detected with other 

methods, too, so studies that involve other test or analysis methods could take those types of 

faults into account.   More generally, in some fields, the research and development approach 

is method-oriented, although the aspects of those studies could be taken into account in other 

fields and when using other methods, too. 

 

 

Results of a Specific Study Could Be Used Elsewhere 

 

Some studies concentrate on a particular application or application group like 

telecommunication system, a specific application type like real-time applications, or a 

certain phase of software development cycle.  Some studies concentrate on a specific 

methodology like object based development, or a specific language like Java.  The results of 

many studies are dependent on a specific system or application environment, or few of them.  

Very often those results could be used with some other systems and in some other 

application environments, too.  In addition, application environments change and so does the 

usability of results of previous studies. 

 

Attention should be paid to what the characteristics to the environments are where the results 

of the studies hold; it makes it possible to generalize the results to some extent.  For 

example, many studies of state space explosion are related to telecommunication systems but 

the results could be applied elsewhere, too, since state space explosion is a quite general 

problem.  However, people do not find those results when they could need them.  People 

doing research for application domains outside telecommunication systems have hard to find 

the results that are only related to telecommunication systems and that do not even have 

keywords about state space explosion.  As another example of studies that concentrate on 

particular application group, results of many studies about resource availability could be 

applied in increasing reliability.  How a structural framework could improve the situation is 

discussed in subchapter 7.1.2. 
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Lack of Cross-Field Research 

 

More cross-field research should be recommended.  For example, items for software code 

inspection can often be chosen by same grounds and with same methods as test cases, and 

vice versa.  Not much attention has been paid to this analogy, even though taking common 

features into account would help developing both fields.  Also, defect prediction in software 

inspection and properties of curves in modes about faults found in testing have common 

features, but attention has not been paid to them.  In some studies mentioned in this survey, 

the conclusion is that the field of the study lacks cross-field research.  In those studies, only 

the area of the study is considered, but the problem is more general.  On the other hand, 

there is a tendency to combine different methods.  For example, several defect prediction 

models are being combined in assessing defects, flow analysis is often combined with other 

methods, formal methods are often combined, and one system may combine several means 

to increase fault tolerance.  In addition, many researchers agree on the view that methods can 

be applied in different areas. 

 

7.1.2 Proposing Basis for Structural Framework 

 

An Outline for Structural Framework 

 

The field of eliminating software faults is unstructured.  Particularly, analysis and checking 

lack a position in framework.  One reason for this may be that too little attention has been 

paid to many areas of analysis and checking.  The table of contents in this work could be 

considered as a support when developing a structural framework.  Some topics could be 

inserted into several categories, so the table of contents is intended to be for discussion 

instead of being a final classification.  (SWEBOK 2007) may also be a big help when 

constructing a structural framework. 

 

If there is a structural framework, studies that contain fault elimination could use keywords 

related to that framework, so the studies could be found more easily.  A framework would 

also help figuring out research domains whose results could be used in specific areas of fault 

elimination even though their main purpose is not fault elimination.  Some studies have 

another purpose but produce some as-a-side-knowledge about software faults.  For example, 

plenty or research has been done about topics like logical programming in database design, 

data flow analysis in testing compilers, and availability and optimization issues.  Some of the 

results could well be used in software fault elimination.  Particularly, results of studies for 

developing compilers are often related to software control and data flow and could be used 

in improving flow-based error analysis methods.  As-a-side-knowledge usually is 

unstructured and consists of occasional hints about fault elimination.  In this survey, some of 

those hints are referred to when surveying the quality related content where they could be 

applied.  Those hints are hard to find if the studies do not have keywords that are related to a 

structural framework of fault elimination.  A structural framework would encourage the use 

of keywords related to the framework. 

 

 

Improving Comparability of Different Studies 

 

Comparison of studies has been problematic.  Many studies compare different software 

development methods.  Some studies have compared results between different comparative 

studies, and those results have been found contradictive.  For example, different studies 

about defect prediction methods have different conclusions about which method is the best.  

The same is true for studies that compare testing methods.  Reasons have been looked for 

those contradictions.  In some fields, studies have not even been comparable.  For example, 

studies about defect detection methods have been found incomparable, see (Miller 2000).  
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Reasons for this incomparability are discussed in the summary of chapter 3.  Miller states 

that one reason for this incomparability is the great variation between those studies; for 

example, different studies use different methods and thus cannot be compared to each other.  

Another reason is that results of studies cannot always be quantified due to the lack of 

common definitions that could be used consistently in each study; for example, there is no 

common definition of bug type (ibid.). 

 

It should be considered if recommendations could be established to improve comparability.  

However, compulsive standardization would hide individual differences.  Those differences 

should be kept in mind.  There should be a possibility to divert from standards, but 

diversions of standards should be explained in the documents where the diversions occur. 

 

More Consistent Use of Terms 

 

More consistent use of terms would make research papers, coursebooks, and software 

documents more understandable.  It would also make comparing studies easier.  There are 

some glossaries and development frameworks.  For example, there are several online 

glossaries, and (SWEBOK 2007) contains good explanations of terms related to software 

development framework.  Regardless of the existing standards and glossaries, the 

terminology is not used consistently in research papers.  For example, many terms are not 

defined in standards and glossaries, some terms are defined differently in different 

documents, and some terms are not used consistently even if they have been defined 

consistently.  Visser et al. (1997) define mismatches in the use of concepts, and those 

mismatches can be found, particularly between term, definition, and concept to be defined.  

The article also involves mismatches on classes and on relations, but the field of software 

engineering does not seem to have strict classifications of its terms.  When writing the thesis, 

I found several matters causing confusion.  Some examples of those matters are presented 

below. 

 

Multiple definitions for terms in different glossaries cause inconsistency in the use of 

terms.  For example, the term “desk checking“ has been defined differently in different 

glossaries.  Many online glossaries state that it means a manual testing of a logic of a 

program.  IEEE glossary (IEEE 1990) uses the term when it means a static review of 

documents or code.  In some documents like (Zeil 1999), the definition is more detailed than 

in glossaries. 

 

Arbitrary definitions of standard terms cause unnecessary problems since definitions in 

existing standards or glossaries could be used.  Some terms like "inspection" and 

"walkthrough" are used inconsistently, even though at least some of them have been defined 

in glossaries.  In glossaries, inspection is usually defined as a strict process with certain 

meetings, specific roles, and specific organization.  In some papers, the word is used in the 

meaning of less formal methods like code review, code walkthrough, or algorithm analysis.  

The terms for those methods are not used consistently either. 

 

Including local context in definitions sometimes causes troubles.  Some terms have a 

general definition but are unnecessarily redefined in some studies.  Those redefinitions add 

part of the context of those studies or that of their domain to the general definition without 

stating it explicitly.  This can be confusing for those who have used the general definitions.   

For example, using the word “confluence” in a loop invariant study has been discussed in the 

summary of chapter 4. 



 Chapter 7. Discussion and Conclusions 

 

113 

 

Special IT related definitions for general terms may sometimes cause problems.  On the 

other hand, there may be a legitimate need for information technology (IT) related 

definitions.  Those definitions may differ from either general definitions or definitions of the 

same terms in other fields.  Some of those terms are included in IT standards.  For example, 

the term “inspection” usually means a strict organized process to investigate software code; 

inspection often contains meetings.  Also, terms like safety and reliability have their special 

meanings, although those terms are not used consistently.  Understandability and 

comparability may be improved by referring to the special IT related definitions and 

emphasizing that there are other more general definitions for the terms, too. 

 

Arbitrary definitions of non-standard terms are often problematic.  This is the case where 

one needs to define terms used in a study, and there are no general definitions to use.  

Results of comparative studies sometimes show that different definitions for the same terms 

make comparison of different studies difficult or impossible.  For example, Shull et al. 

(2005) compare different studies about the presence of bugs.  They observe that the content 

of “interface bug” has been defined differently in different studies, so it is hard to compare 

research results about interface bugs.  Definitions in prior studies could be considered in 

order to improve comparability and understandability.  If one wants to use a different 

definition than that in previous studies, it should be explained in the study. 

 

As stated in the previous subchapter, too strict standardization may hide individual 

differences.  So the general rule stated in the previous subchapter can be applied here, too:  

one should keep in mind individual differences and divert from general standards and 

definitions, but the diversions should be explained in the research document. 

 

7.1.3 Research Areas of Subfields of Fault Elimination and Bug 
Knowhow 

 

The main contribution of this thesis is to survey research about different fields of software 

fault elimination.  A short summary of research done is given below.  Bug knowhow gets 

special attention since it is an efficient way to eliminate bugs and not much attention is 

usually paid to it.  Knowing about bugs helps stop repeating common faults.  This 

subchapter is a summary of research that has been done in the field of fault elimination, and 

the next subchapter is about areas where more research should be done. 

 

 

Subfields of Fault Elimination 

 

Software faults can be eliminated by avoiding root causes, bugs, and bug interactions that 

appear frequently (chapter 2); taking fault prone features and characteristics of bugs into 

account (chapter 2); establishing a good software development process and improving it 

(chapter 3); performing risk analysis (chapter 3); applying appropriate methods during 

different phases of software development process (chapter 3); and analyzing (chapter 4), 

proving (chapter 4), and testing (chapter 5) software after each phase of software 

development cycle.  As long as faults cannot be totally eliminated, means of fault tolerance 

are needed in order to prevent the harm (chapter 6).  Plenty of research has been done about 

all these main topics.  Chapters 2-6 survey research being done and discuss areas that do not 

get much attention.  See also subchapter 7.1.4 for the most eyestriking areas that need more 

attention.  In the following paragraphs, some main research areas are listed about each of 

those topics. 
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Bug Knowhow 

 

In this thesis, bug knowhow is regarded as one subfield of fault elimination.  It is 

investigated in chapter 2.  There is research about characteristics of bugs, which fault types 

exist, fault classifications, fault proness, failure propagation, bugs types in specific 

applications and application domains, reasons for hidden bugs, number of faults in a failure 

situation, and root causes for faults.  This research has been surveyed in this thesis. 

 

There are different studies about fault proness.  For example, some studies investigate 

factors of fault proness, e.g. features of fault prone software, fault prone features of 

programming languages, or fault-prone problems.  There are also studies about fault proness 

of some specific language or environment, and about measuring and predicting fault-

proness.  There has been some effort in comparing different studies about fault proness and 

about fault types.  Due to the lack on consistency in the studies, there have been problems in 

comparing different studies. 

 

Because methodologies change, some bugs become more common or less common in the 

course of time.  In addition, there are software bug types that have been repeated all the time.  

Frequent bug types are calculation and initializing bugs.  Software has become more 

complex, so e.g. timing and interface faults have become more frequent.  All situations 

should be taken into account in software development.  Methods that guarantee this are 

becoming better and better.  Anyway, missing software states have become a more common 

bug type.  One reason may be that state spaces tend to be enormous, i.e. software has a large 

number of possible states.  State space explosion is discussed in subchapter 7.1.4. 

 

Some surveys have been performed about bug knowledge.  There are surveys about fault 

proness, metrics for fault proness, typical faults in specific environments or application 

domains, number of faults in a failure situation, and precision of calculations. 

 

Fault Prevention, Fault Prediction, Fault Detection, and Fault Tolerance 

 

In the field of defect prevention and prediction, there is some research about 

fundamentals of software engineering, and issues like control and data representation.  

Graph theory is studied widely in software engineering research.  There is research about 

processes and about assessing and improving a software development process.  

Methodologies get a lot of attention, so do models.  There is research about risk analysis, 

risk representation, and requirement specification.  All phases of software development life 

cycle get attention by research people.  There is research about factors that have an effect on 

quality.  Defect prediction gets a lot of attention.  There is plenty of research involving 

metrics for development, for processes, and for defect prediction.  Surveys have been done 

about general development like software engineering methodologies, control and data 

representation, software development processes, modelling, requirement analysis, process 

and quality metrics, defect prediction, and risk analysis.  Small reviews have been done 

about some areas of foundations of software engineering. 

 

In the field of checking and analysis, there is research about software inspection.  There 

are also studies about limit analysis and about precision, and about modeling software and 

its environment.  Flow analysis gets a lot of attention, usually connected with the function of 

compilers or with logic programming.  There are some studies about flow analysis related to 

bug detection.  There are studies about software states: for example, there are studies about 

state machines, often connected with model checking.  There is research and development 

involving different logical systems for proving software, and methods for using those 

systems.  Connections between logical methods and developing methodologies are also 

being studied to some extent.  Termination of programs also gets attention.  There are also 

other studies involving formal methods in diverse areas of software development.  Each 
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phase of software development life cycle has studies about applying formal methods, and 

many checks can be performed formally.  Some topics for analysis surveys have been 

software inspection, software state description, state space explosion, data flow analysis, and 

proving methods. 

 

In the field of testing, there are studies about choosing test cases.  Early studies are more 

general and later studies are primarily method specific.  Coverage criteria get a lot of 

attention, and test coverage in general is being studied.  Relationships between coverage 

criteria are also studied a lot.  There are lots of studies about testing methods.  Some 

methods like performance testing have not got much attention before this decade.  There is 

research about assessment of testing.  Some topics for testing surveys have been test 

coverage, testing methods, and testing tools.  Small surveys have been done about choosing 

test cases. 

 

In the field of fault tolerance, there is a lot of research about configurations with full 

replication, and about modeling different configurations.  N-version systems with full 

replication have got a lot of attention, so have recovery blocks.  However, I have not found 

much research about reciprocal monitoring of different copies in N-version systems, but 

there may be some in other sources and with other keywords than the ones I have used.  

There is plenty of research about checks and diagnozing, but I have not seen so much 

research about assessing checks.  Examples of reliability related surveys are surveys about 

fault tolerance in general, means of fault tolerance with configuration design and recovery 

blocks, fault diagnosis, and self-checks. 

 

Temporal Development in the Field 

 

There has been temporal development in the field, too.  Some development studies like 

those that involve fundamentals of software development have been present during all 

decades, but some issues are more dominant during specific decades than during other ones.  

Here are some examples.  Fundamental theorems were developed in 1960‟s, many of path 

methodologies were developed from 1970‟s to early 1980‟s, and many new features and 

methodologies were developed during late 1980‟s and 1990‟s.  At that time, comparative 

studies probably became more frequent.  More and more attention has been paid to system 

factors in the 2000‟s; however, there was some emphasis on them even during 1980‟s if not 

earlier.  More and more research is being done about software development processes.  In 

the 1970's if not earlier, there have been studies about controlling development process by 

metrics, but more and more attention is being paid to it.  More and more research is also 

being done about looking for features of fault proness.  More generally, there is a trend 

towards statistic methods and looking for features e.g. by reverse engineering or cluster 

analysis.  In the 2000‟s more and more research has been done about integrating different 

methods and integration of different models, and about data mining.  There is a relatively 

new trend towards adaptability. 

 

Interrelationship between Fields of Fault Elimination 

 

Fields of fault elimination are often interrelated.  Integration between different fields of 

fault eliminations is a trend.  For example, static analysis is sometimes compared to model 

checking, many tools have several tasks, and some methods and tools combine proving and 

testing. 
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7.1.4 Detecting Research Areas that Should Get More Attention 

 

Each chapter of the thesis (chapters 2-6) covers a specific field of software fault elimination.  

Omitted research areas are mentioned in the appropriate chapters.  A few omitted areas are 

briefly discussed in this subchapter. 

 

The most eyestriking lack of research is about most software checking and analysis methods, 

except proving and testing methods.  Flow analysis gets a lot of attention but it is probably 

due to the fact that it is used in compiler technology.  It seems that studies of flow analysis 

generally have the view of language analysis.  It should be kept in mind that flow analysis 

can also be used in bug elimination; some means to detect bugs with flow analysis are 

surveyed in this thesis.  Formal software inspection gets plenty of attention.  Less formal 

methods like time and size analysis, limit analysis, precision analysis, algorithm analysis, 

core review, code walkthrough, and comment analysis, are often easier to use and very 

efficient but do not get as much attention by developers or researchers as formal inspection.  

Precision analysis gets some attention but the view is often related to implementation.  To 

some extent, the lack of research of these less formal methods may be due to the fact that 

there is a myth that only testing belongs to quality assurance.  However, quality assurance 

also contains many other fields of bug elimination and many other areas than bug 

elimination. 

 

One area where not much research has been done is partial replication or weak replication of 

software, as a lightweight method to increase fault tolerance.  For example, difficult modules 

could be replicated, calculations could be done in several ways, repeated data structures 

could be used, or there could be redundancy inside a data structure.  Instead, total replication 

by N-version software has got a lot of attention.  However, I have not found much research 

about N-version systems with reciprocal monitoring, but there is probably research about it 

in other sources like architecture-related journals, and with other keywords than the ones I 

have used.  Other lightweight methods to increase reliability, like safety margins, have not 

got a lot of attention either.  Also, one possible area for more research is the assessment of 

software self-checks.  This lack of lightweight method research may also be due to the fact 

that one thinks that QA is testing only.  Because one only thinks of testing, one pays 

attention to fault tolerance only in extreme cases where there is a need for full replication. 

 

State space explosion gets a lot of attention in relation to distributive and concurrent 

systems, but the problem is much more general.  Not enough attention is being paid to 

lightweight methods against state space explosion, like state modularity and lightweight 

elimination of unnecessary states, and in including only desired states in software, even 

though lightweight methods could be easily used as a partial solution.  Many states could be 

eliminated in early phases of software development by making the software e.g. go to error 

state in some situations.  In addition, inappropriate input should be eliminated in as early a 

phase as possible.  For example, new input could be asked for if the piece of software is 

interactive and the user input is out of range or illogical; this is an easy way to eliminate lots 

of erroneous states.  Means to fight state explosion problem, e.g. in graphs and state 

machines, have been developed, and they are often based on abstraction.  Also, simple 

methods like encapsulation and modularization often help.  There are surveys about state 

space explosion.  Some methods are being studied in detail but since the topic is wide, there 

is room for more research. 

 

Correlation of different bug types should also be studied more; knowing the correlation 

helps avoiding those bugs.  So more research could be done about which bug types correlate 

with each other.  However, abstract models of fault correlation and number of faults in a 

failure situation have got plenty of attention by researchers.  Plenty of attention has been 

paid to fault proness in general. 
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Characteristics of bug types and their temporal development have not been studied very 

much.  Subchapter 2.1.3 contains a small analysis about temporal development of bug types, 

but the sample is small and more research could be done about the topic.  Also, research 

about characteristics of individual bug types would help in understanding and eliminating 

them.  There have been some efforts to find fault patterns by comparing different studies, 

comparing them has turned out to be problematic; Shull et al. (2005) is discussed in 

subchapter 7.1.2.  There are other methods, too, to look for fault patterns.  This thesis 

surveys some statistical and other methods to look for fault proness.  How much these 

methods and other means help in detecting characteristics of faults could be studied.  As 

stated in the summary of chapter 2, knowing characteristics of an individual bug type could 

help detect fault patterns, and vice versa. 

 

 

7.1.5 Encouraging People for Early Elimination of Faults 
 

In many studies and coursebooks it has been recognized that the earlier the faults be 

detected, the less costly they are.  Regardless of that, too little attention has been paid to 

eliminating faults during development instead of testing.  Different kinds of checks have 

been developed; these checks would help early fault elimination.  Those checks are not 

performed very often, and only little research is being done about these checks compared to 

research involving testing.  In addition, attention is being paid to the testing of special items 

and other unusual situations.  However, only few studies involve paying attention to unusual 

situations in development and not only during testing. 

 

The related problem is that many methods are used in testing only, although their use in 

development could result in earlier elimination of faults.  A lot of research has been done 

about how to apply domain theory and category partitioning in testing phase.  Similar 

approaches should be applied in all phases of software life cycle.  For example in coding, 

category tables should be done about equivalent classes of values for different variables.  It 

would help take all situations into account when writing software code.  Now those tables 

are built only when testing the code, if at all.  Nor is much attention paid to reduction of state 

space by ruling out impossible states before making a more detailed partition, see also the 

subchapter 7.1.4.  In addition, path, branch, and data flow analysis in design and coding 

phases could be useful.  This analysis is not performed very often.  In the rare cases where it 

has been performed, it has been performed only during testing of code that had already been 

developed. 

 

Methods presented in chapters 4 and 5 could be applied both during development and during 

testing.  They should be applied as early as practical.  Testing is recommended in all phases 

of software life cycle, but it is often executed only after all development work. 
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7.2 Pros and Cons of Different Fields of Software Fault  

      Elimination 
 

Each field of software fault elimination is useful but none is sufficient.  The benefits of using 

processes, models, and methodologies have been discussed in chapter 3.  Table 27 presents 

some benefits and insufficiencies of the other fields of fault elimination. 

 

  

            Table 27.  Evaluation of fields of fault elimination 

 

Field Benefits Why is this insufficient alone 

Bug 

knowhow 

+ A lot of prior information available 

+ Special analysis of rare situations 

- Knowledge is inherently used all the 

time within and besides concrete means 

like those in the following rows 

Analysis, 

checks 

(rigorous 

proving 

excluded) 

+ Unpredicted facts and fault types 

may be detected 

+ Includes rare situations 

+ Some methods have complete 

coverage 

+ Some checking methods are good 

ways to counteract state space 

explosion 

+ Many methods are easy to use 

 

- State space explosion problems 

- External activities are usually ignored 
 

Rigorous 

proving 

+ Reliable (co-incidental correctness 

and coincidental equivalence are 

rare) 

+ Covers the whole of what is being 

proved 

+ All abstraction levels are possible 
 

- Works only inside strict restrictions  

(e.g. scope of the system, correct initial 

conditions) 

- External activities are ignored 

- Takes time to use 

- Takes time to learn 

- Requires formalization 
 

Testing + May reveal outside activities 

+ Tester gets holistic feel of software 

and its use 

+ Often easy to use 
 

- State space explosion problems 

- Unusual situations hard to detect 

- Covers only cases that are being tested 
 

Building 

fault 

tolerance 

+ Unpredicted facts are covered 

+ Rare situations are usually covered 

+ External factors are covered 
 

- When using probabilities, they must be 

small so that the combined probability is 

small 

- Common mode failures are possible 

- Does not remove all combinations of 

independent failures 

- Heavyweight means like full 

replication use resources 
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7.3 Recommendations 
 

Table 28 contains recommendations for software developers, scientists, and teachers in order 

to eliminate software failures.  By following these recommendations, one can understand 

failure elimination better, create more consistent development framework, pay attention to 

forgotten research areas, stop repeating the same bugs all the time, and use all available 

methods of fault elimination in as early a phase as practical.  There recommendations also 

help people use information and methods outside their own research or development areas. 

 

     Table 28.  Recommendations for software developers, scientists, and teachers 

 

For software developers 

Increase your bug knowhow, use information in chapter 2. 

Stop repeating the same bugs all the time; pay attention to known bug types. 

Pay attention to best practices, common terms, and good methods for software 

development, and if practical, be consistent with those.  Use information in chapter 3. 

Do not forget analysis methods like algorithm and limit analysis. 

Perform analysis and proving, not only testing. 

Use methods intended for analysis, testing, and proving during both development and 

testing. If practical, use methods intended for testing when analyzing software.  Use 

information in chapters 4-5. 

Use methods for eliminating state space explosion outside distributive systems, too. 

Execute testing during and after each phase of software life cycle, not only as the last 

phase before and during implementation. 

Consider fault tolerance, use information in chapter 6.  Keep in mind lightweight 

methods like partial replication, repetition of data structures, repeated computations, and 

safety margin.  Take backup copies of your software. 

For research scientists 

Pay attention to best practices, common terms, and good methods for software 

development, and if practical, be consistent with them.  Use information in chapter 3. 

Use terms consistently, so that studies are found easier and understood better. 

Consider using keywords related to bug elimination. 

Figure out factors about making studies more comparable. 

Keep in mind uncertainty factors in studies. 

Pay attention to whether your research could also have applications in other areas and 

application domains, and/or be associated with other fault elimination methods or other 

environments, and if it is related to other phases of life cycle. 

Consider fault elimination methods, fault characteristics, problems, and the like from 

other research areas and from other application domains or environments or life cycle 

phases.  They might affect your research area, too.  If your study involves fault 

elimination methods, consider fault characteristics and problems from studies of other 

methods. 

Consider cross-field research and common features of your method/problem with other 

ones. 

 
Continued on the next page 
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Temporal development of bug types, characteristiscs of each bug type, and bug type 

correlation are candidate topics for research. 

Consider doing research about the effectiveness of the forgotten static analysis methods 

like time, size, and precision analysis, algorithmic analysis, code reading, or code 

walkthrough. 

Keep in mind that state space explosion is a global problem, not only related to 

distributive systems.  Consider research about lightweight methods to fight state space 

explosion. 

Pay attention to doing analysis and proving earlier than during coding or testing phase. 

Continue developing simple proving methods. 

Consider research about lightweignt methods for fault tolerance like partial software 

replication, safety margins, and assessing self-checks. 

This survey may help in choosing research issues.  For example, several lists and tables 

in this thesis are candidates for surveys, and more extensive surveys could be done on 

topics that have been surveyed in this thesis. 

For teachers 

Include bug knowhow in your courses. 

Encourage students to stop repeating the same bugs all the time. 

Encourage students to use best practices, common terms, and good methods for software 

development.  Also, encourage them to use analysis, testing, proving, and using 

reliability means like partial replication in everyday life. 

Encourage students to early elimination of bugs. 

This survey may help in planning courses. 

 

 

7.4 Problems in Doing this Thesis and Recommendations for  

       Further Work 
 

 

This thesis consists of a wide survey about the field of software fault elimination.  Because 

the review is wide, it had been impossible to do deep reviews about any subtopics.  Also, 

because the survey has a broad content, a high abstraction level follows. 

 

General surveys about fault elimination have been performed several decades ago when the 

field did not have many subfields, and those surveys are relatively short.  Since then, the 

field has extended significantly.  Lots of surveys are being performed all the time about 

many topics in the field, see subchapter 7.1.3.  Some of those surveys are very narrow and 

some involve wide area like testing methods, testing tools, or fault tolerance.  There are also 

topics with several small reviews, like some areas of foundations of software engineering, or 

choosing test cases.  There are so many surveys that it is impossible to give a collection of 

them in this thesis. 

 

One problem has been that because the topic is wide, there is plenty of research about it.  

The time to do this thesis has been limited, so only a small part of existing research could 

have been investigated.  I have limited my research to some most well known journals and 

online searches for some well known fault related terms, and on what I know based on my 

previous experience.   There is a risk that some common research topics have been left 

outside this review since almost all research of those topics has been published in some other 

documents.  In addition, there may be studies that use other keywords than what I have used, 

particularly when the usage of terms is inconsistent.  Also, there can be subfields that are so 

narrow that they easily get unnoticed.  In addition, the publications that I have used usually 
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do not contain studies with qualitative methods, so it would generally have been impossible 

to include organizational studies in the thesis.  Another risk is that some topics have 

connection to fault avoidance and that connection is hard to observe and has not been 

noticed. 

 

There may be opportunities for completing this survey by adding areas where a significant 

amount of research has been done but that have been omitted from this thesis.  Also in the 

more detailed level, there are some areas where more surveys could be done.  For example, 

static checks and software analysis could be surveyed in detail.  Even though these fields are 

not being studied a lot, they are broad and surveys could be done about them.  Also, this 

thesis contains short surveys and tables about several topics; these surveys and tables could 

be extended with more thorough surveys.  For example, this thesis surveys formal software 

engineering methods and temporal development of software fault types; these surveys could 

be extended.  Generally speaking, there are surveys about areas where plenty of research has 

been done.  In subchapter 7.1.4, fields are discussed that do not get very much attention by 

research people.  More research could be done about those topics.  The scope of this thesis 

could also be widened: managerial, organizational, and economical means for failure 

elimination could also be included in a general survey, like the connections between process 

and projects, and managerial views of process improvement. 
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8 CLOSURE 
 

Plenty of research has been done about different fields of software fault elimination.  

Chapters 2-6 of this thesis survey research about defect prevention and prediction, bug 

knowledge, checks, testing, and fault tolerance, respectively.  Each of those chapters has a 

summary in the end.  Subchapter 7.1.3 contains a small summary about the main research 

areas. 

 

However, there are some areas that lack research almost entirely even though they can be 

efficient means to avoid bugs.  The most eyestriking ones are the field of other analytical 

reviews than software inspection (e.g. algorithm analysis, analyzing limits, and code 

review); characteristics of different bug types; correlations between different bug types and 

its avoidance; temporary development of bug types; lightweight methods for software to 

increase reliability like partial replication, safety margins, and self-check assessment; and 

some lightweight methods to reduce state space explosion, e.g. exclusion of unnecessary 

states.  More research could be done about those domains. 

 

Some of those domains could be surveyed more, too, like those in the field of checks and 

analytical reviews.  This thesis contains some analysis about temporal development of bug 

types, but a more thorough analysis could be done about the topic, using a larger sample and 

possibly several sources.  This survey contains small surveys and tables that could be 

extended by performing thorough surveys.  One example is formal software engineering 

methods.  Also, due to limited resources for this thesis, there can be research areas that exist 

but have not been found.  So it is possible that the survey could be completed by adding 

missing research areas.  Also, new research is being done all the time, so this survey could 

be completed.  The survey could also be broadened: for example, short surveys about 

organizational, managerial, and economical means of failure improvement could be 

included. 

 

The field also lacks structural framework.  The table of contents of the thesis could be 

regarded as a basis for structural framework.  Particularly, the field of analysis and checking 

could get its position in the framework.  Structural framework helps in increasing 

consistency, e.g. in building glossaries of terms; consistency improves comparability and 

understandability of documents.  Structural framework could also help people find research 

results.  For example, if studies have quality assurance related keywords in addition to 

keywords related to their application domains, the results can be found and used when 

working with other application domains.  Framework also helps in referring to those 

research domains outside quality assurance where studies typically have hints about 

improving software quality. 

 

Also, there should be more definitions of terms, and they should be used more consistently.  

However, one should keep in mind that sometimes there is a need to use a term in a different 

way as before.  More generally, it should be considered if recommendations could be 

established to improve comparability of research results, since different studies have not 

always been comparable.  If such recommendations are established, it should be kept in 

mind that situations differ and there may be occasional need for diversion from those 

recommendations. 

 

Some problems and areas of fault elimination are studied only in relation to a specific 

method, although the same problems occur when one does not use those methods.  Some 

problems, means, and methods are studied only in connection with a specific application 

domain, even though the problems, means, and methods are more general.  One should 
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broaden the scope of research of those problems.  Also, there should be more cross-field 

research since methods in different fields are often studied separately even when they have 

common features. 

 

Very often, one associates quality assurance only with testing.  One should keep in mind 

other efficient means to eliminate failures: one should know about bugs to stop repeating 

them, the organization often needs a development process and framework, defect prediction 

should be performed, software should be analyzed and often even proven in addition to 

testing, and failures could be prevented by partial or total replication of systems and 

software.  Unfortunately, many checks and analysis methods that could already be used in 

development phases are used only in testing phase when all code has been written.  One 

should do analysis and testing in as early a phase of software development as possible. 

 

So quality assurance needs to be kept in mind all the time during software development, and 

the above mentioned methods should be used when possible.  When doing quality assurance 

related research and development, one should keep in mind that quality assurance should be 

part of the development all the time.  As stated above, one should also keep in mind that 

quality assurance methods and research results could often be used with many more methods 

and application domains than what they are used now.  Where a specific method or 

methodology could be used can also be a topic for research. 

 

This thesis is intended to help everyone take into account all areas of software failure 

elimination.  Subchapter 7.3 contains recommendations for researchers, developers, and 

teachers.  I hope this thesis helps researchers in choosing their research topics, using 

appropriate keywords, and keeping in mind that results of studies could be used in other 

contexts, too, and research of other topics may contain elements of failure elimination.  

Methods in different areas may have common features.  In addition, problems in other fields 

could be present in your field, and research of other fields of fault elimination could be used 

in your research.  Developers could use this thesis as a guide for different means for 

eliminating bugs.  This thesis is also intended to be a framework for teachers in choosing 

course topics.  Much of the information in this thesis will be used in my draft book about 

software failures. 
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