Lappeenranta University of Technology
Faculty of Technology Management

Department of Information Technology

Master’'s Thesis

Antti Pohjonen

TEST AUTOMATION SCHEME FOR LTE CORE NETWORK
ELEMENT

Examiners of the Thesis: Professor Jari Porras
M.Sc. Henri Elemo

Instructor of the Thesis: M.Sc. Henri Elemo

ABSTRACT

Lappeenranta University of Technology
Department of Information Technology

Antti Pohjonen

TEST AUTOMATION SCHEME FOR LTE CORE NETWORK ELEMENT
Thesis for the Degree of Master of Science in Tetigy

2010

92 pages, 27 figures and 3 tables

Examiners: Professor Jari Porras

M. Sc. Henri Elemo
Keywords: Test automation, LTE, Software testingil& development

Modern sophisticated telecommunication devices ireqeven more and more
comprehensive testing to ensure quality. The t&st @amount to ensure well enough
coverage of testing has increased rapidly and itiiseased demand cannot be
fulfilled anymore only by using manual testing. &lsew agile development models
require execution of all test cases with evenatien. This has lead manufactures to
use test automation more than ever to achieve atletgsting coverage and quality.

This thesis is separated into three parts. Evalutiocellular networks is presented at
the beginning of the first part. Also software tegf test automation and the
influence of development model for testing are exaah in the first part. The second
part describes a process which was used to impletashautomation scheme for
functional testing of LTE core network MME elemeint.implementation of the test

automation scheme agile development models andtFrsbmework test automation

tool were used. In the third part two alternativedels are presented for integrating
this test automation scheme as part of a continunegration process.

As a result, the test automation scheme for funatitesting was implemented.
Almost all new functional level testing test casaa now be automated with this
scheme. In addition, two models for integrating tttheme to be part of a wider
continuous integration pipe were introduced. Alsiftsrom usage of a traditional
waterfall model to a new agile development basedehim testing stated to be
successful.

TIIVISTELMA

Lappeenrannan teknillinen yliopisto
Tietotekniikan osasto
Antti Pohjonen

TESTI AUTOMAATIO JARJESTELMA LTE RUNKOVERKKO ELEMEN TILLE
Diplomity6

2010

92 sivua, 27 kuvaa ja 3 taulukkoa

Tarkastajat: Professori Jari Porras
Diplomi-insin66ri Henri Elemo

Hakusanat: Testi automaatio, LTE, ohjelmistotestkerera ohjelmistokehitys
Keywords: Test automation, LTE, Software testingil& development

Modernit kehittyneet tietoliikenneverkkolaitteet atvat yha enemméan ja
kattavampaa testausta laadun varmistamiseksi. \Kattaestauksen tarvitsevat
testitapaus maarat ovat nousseet huomattavastiajauaalisella testauksella tata
kasvanutta kysyntdd ei pystytda endd tyydyttamaarsdkki uudet Kketterat
ohjelmistokehitysmenetelmat vaativat testien Staoritsta jokaisen
iteraatiokierroksen yhteydessad. Taman takia laiteistajat ovat siirtyneet
enenemissa maarin kayttdmaan testiautomaatiotavén kattavuuden ja laadun
varmistamiseksi testauksessa.

Diplomity6 on jaettu kolmeen osaan. Ensimmaisessésa esitellaan soluverkkojen
evoluutiota ja tutkitaan ohjelmistotestausta ja semomatisointia seka erilaisten
ohjelmistokehitysmenetelmien vaikutusta testaamiséoisessa osassa kuvataan
prosessia jolla rakennettiin automaattinen toimiiisaustestaus jarjestelma LTE
runkoverkon MME elementille. Testiautomaatiojanpdstan kehityksessa kaytettiin
ketteria ohjelmistokehitysmenetelmia ja Robot Fraomk testiautomaatio-
ohjelmistoa. Kolmannessa osassa esitelladn kakdbedtoista mallia timéan
jarjestelman liittimiseksi jatkuvaan integraatigéatelmaan.

Tyon tuloksena saatiin rakennettua automaattinstaus jarjestelma. Lahes kaikki
uudet toiminnallisuustestauksen testitapauksetaandhutomatisoida jarjestelman
avulla. Lisaksi tehtiin kaksi vaihtoehtoista maijestelman integroimiseksi osaksi
laajempaa jatkuvaa integrointi ymparistdd. My0s rtygminen perinteisesta
vesiputousmallista uuteen ketterdn kehitysmenetelniiiyttoon testauksessa
havaittiin onnistuneen.

Acknowledgements

This thesis work was carried out in the IP ConDepartment at Nokia Siemens
Networks Oy in Finland. | would like to thank akkgple at Nokia Siemens Networks

who have made this thesis possible.

| wish to express my gratitude to Professor Jarid®ofor supervising this thesis and
for his feedback. | also want to express my grdétto Henri Elemo, for all the

valuable advice at all stages of the work and &nd the instructor of this thesis.

I would also like to thank the Robot Test Automatiteam and the rest of the
Integration, Quality and Methods team members fairt general feedback and

support.

| also wish to thank Luisa Hurtado for revising theguage of this thesis and for the

encouraging support | got during this project.

Finally, 1 want to give special thanks for my faynénd friends for their support
during my studies.

Espoo, 11 May 2010

Antti Pohjonen

Table of Contents

I [11 (oo [¥ ox 1] o H P PP PPRPRPPPP PRSPPI 5
2. Evolution of cellular NEtWOIKSccemeiiiiiiiiiiiiiiiii s 6
2.1. Analog systems in first generation NEtWOrKScouvuviiiiiiiiiiiiiiii e, 7
2.2. Digital era of 2G and 2.5Gooi i 8
2.3. 3G The beginning of mobile broadbandcccccooiiiiiiii 11
3. LTE Network arChite@CtUIEcoevvut et e e e e e e e et e e e e e e e ee e e ennneeeees 13
3.1, MME network €lemENtccoouiniiiieime e e e e e e et e e e e eees 16
4. Software Testing and Test AULOMALION ... couumneeeerrninneeeeeieieiiiie e e eeeeeeaa 20
4.1. Definition of SOftware teStNGueeeeeriiiiiiiee e 20
4.2. Testing coverage and risk managementccoccc...ooii e 22
4.3. Testing levels and possibility for test aUtHDTA.ccoovviviiiiiiiniiiiiiiiienn, 24
4.4. Test automation versus manual teSting . .cccoccccoovvviiiiiiiiieeeeeiii e 1.2
5. Software development model’s influence on t@stin..............cccccoeiieeeiiiiieennnn. 32
5.1. Traditional development modelsccoeeriiiiiiiiiiiii e 33
5.2. Agile development MOdelS..........coiviieeeieriii e 38
5.3. Distributed Software Developmentccooeeriiiiiieiiiiiiicie e 1.4
5.4. Continuous integration ProCESScceeeeeeeeviiiieeeiiiiieeeeiiiineeeeiiineeeennnn. 43
6. Fully automated functional testing with Roboafeworkcccoeeeeviienes 45
6.1. Test automation with RObOt FrameWorkccoooieiiiiiiiiii, 46
6.2. Development of Robot Framework testing library............c...ccoiiiiieinnnn.n. 50
6.2.1. Getting info, formal training and self le@gp....................ccooeeeeviiine, 50
6.2.2. Beginning of Robot Framework Tester Develept........................... 51
7. Integration testing and tool deVeIOPMENT. c.veinieeeeiiiiiiiie e 54
7.1. TTCN3 testing language and teSter ... o ceeiiiiiiiiiiieeeeieieii e 55.
7.2. Start of integration and end to end functidp@®sting.............cccoeevviiineenenn. 61
7.3. Training and competence transfer for USerS.............ooovvvvviiiiiiineeceeeeinnnnn, 64
7.4. Testing framework Structure redesigncccce.ooeeeeiiiieiiiiiiiee e 5.6
8. Automated FUunCtional teStNGuui i 67
8.1. Smoke and RegresSion tESt SEtS.......cccummmmnrreeereeeiiiiiieeeeeeeeiiineeeeeed 68
8.2. Automated testing with BuildBot Cl tOOI ... cvvveeeiiiiiiiiiiiiii e, 71
8.3. Manual fuNCtioNal tESTING..........cciit et eeeeees 72
9. ENnd to end ContinUOUS INTEGIatioN........ e« eeeeeeeemuiiianaaeeeeeeeiiiiaae e eeeeeennnns 74
9.1. Service Laboratory CONCEPL............. e ereeeeeeiaeeeeiiieeeeeeeeeeeeeaneeeenes 75
9.2. Complete continuous integration tuUbecccccevviiiiiiiiiiiiiiie e, 0.8
1O, RESUIES. ...ttt e e 85
11. Conclusions and FULUIE WOTK............. oo e eeeeeeeeeeeeeeeeeeeeeeeeeeeee e 87

(R] (S (=] 16T 89

Abbreviations

1G

2G

3G
3GPP
4G
8-PSK
AMPS
ANSI
API
ATCA
ATDD
CDMA
CDPD
Cl
CPPU
DAD
D-AMPS
DSD
DSSS
E2E
EDGE
ETSI
E-UTRAN
FDD
FDMA
GGSN
GMSK
GPRS
GSD
GSM

First Generation

Second Generation

Third Generation

3G Partnership Project

Fourth Generation

eight-Phase Shift Keying

Advanced Mobile Phone System
American National Standards Institute
Application Programming Interface
Advanced Telecom Computing Architecture
Acceptance Test Driven Development
Code Division Multiple Access

Cellular Digit Packet Data

Continuous Integration

Control Plane Processing Unit
Distributed Agile Development

Digital Advanced Mobile Phone System
Distributed Software Development
Direct-Sequence Spread Spectrum
End To End

Enhanced Data rates of Global Evolution

European Telecommunications Standards Imstitu

Evolved Universal Terrestrial Radio Accégstwork

Frequency-Division Duplexing
Frequency Division Multiple Access
Gateway GPRS Support Node
Gaussian minimum shift keying
General Packet Radio Services
Global Software Development

Global System for Mobile Communications

GTP GPRS tunneling protocol

HSCSD High Speed Circuit Switched Data

HSS Home Subscriber Server

HTML Hyper Text Markup Language

IEEE Institute of Electrical and Electronics Erggns
IMT International Mobile Telecommunications
IMT-DS IMT Direct Spread

IMT-FT IMT Frequency Time

IMT-MC IMT Multicarrier

IMT-SC IMT Single Carrier

IMT-TC IMT Time Code

IPDU IP Director Unit

IRC Internet Relay Chat

ITU International Telecommunications Union
JDC Japanese Digital Cellular

LTE Long Term Evolution

MCHU Marker and Charging Unit

MIMO Multiple-Input and Multiple-Output

MME Mobility Management Entity

MTC Main Test Component

NAS Non-Access-Stratum

NGMN Next Generation Mobile Networks

NMT Nordic Mobile Telephone

NSN Nokia Siemens Networks

OFDM Orthogonal Frequency Division Multiplexing
OMU Operational and Maintenance Unit

0S Operating System

PCEF Policy and Charging Enforcement Function
PCRF Policy and Charging Rules Function

PDC Personal Digital Cellular

PDE Public Definition Environment

PDN-GW Packet Data Network Gateway

PTC
RAN

RF

ROI
S1AP
SAE-GW
SC-FDMA
SCM
SCTP
SGSN
S-GW
SMMU
SMS
SOAP
SUT
SVN
TACS
TC-MTS
TDD
TDD
TDMA

TD-SCDMA

TR

TSV
TTCN3
UE
UMTS
uwcC
W-CDMA
WIMAX
XML

XP

Parallel Test Components

Radio Access Network

Robot Framework

Return of Investment

S1 Application Protocol

System Architecture Evolution — Gateway
Single-Carrier Frequency Division Multipdecess
Software Configuration Management
Stream Control Transmission Protocol
Serving GPRS Support Node

Serving Gateway

Signaling and Mobility Management Unit
Short Messaging Service

Simple Object Access Protocol

System Under Testing

Subversion

Total Access Communication System

Methods for Testing and Specification TecahiCommittee

Time Division Duplexing
Test Driven Development

Time Division Multiple Access

Time Division - Synchronous Code Divisidultiple Access

Technical Report

Tab Separated Values

Testing and Test Control Notation Version 3
User Equipment

Universal Mobile Telecommunications System
Universal Wireless Communication

Wideband Code Division Multiple Access
Worldwide Interoperability for Microwave Acas
eXtensible Markup Language

Extreme Programming

1. Introduction

The modern mobile telecommunication networks armpiex and sophisticated
systems. These networks are made up of many ditfeeeements which all
communicate with each other with various interfaged protocols. The amount of
features and technologies these elements haveptmsgus increasing rapidly with
increasing demand and continuous development oflensérvices around the world.
The rapid increment of technologies makes it everendlifficult to achieve adequate
testing coverage for equipment manufacturers, Isecdéloe amount of needed test
cases is also increasing rapidly. The usage of agie development models are
adding pressure to execute all related test caskemst once in short development
cycles. To address these challenges, test autamiatiising its popularity for all

levels of testing among the testing community 2[13, 4]

This thesis describes the implementation of a desbmation scheme for an Long
Term Evolution (LTE) core network element. The coetwork element used as the
system under test (SUT) was the mobility managenestity (MME), which is
responsible for session and mobility managementcamdrol plane traffic handling
and security functions in an LTE network. The tstomation scheme implemented
in this thesis covers phases of automatic buildro@sion to hardware, integration
testing, fully automated functional testing and igesof complete continuous
integration system. Preceding phases before boipding are introduced, but not

covered in detail.

Development of MME core network element is carroed with agile development
model and the scrum method. MME’s development wasedin multisite
environments located in different geographical tmees and time zones. Test
automation scheme development was started usingatime agile model and scrum
method. After supporting functions started, the tagomation scheme development
method also changed to freer model, where supgotéisks had always the highest

priority. Test automation development was carrietlad one site in Espoo, Finland.

2. Evolution of cellular networks

This chapter describes the evolution of cellulatwoeks and focuses on key
technological reforms. Key points of technologichanges are discussed in more
detail, and mobile networks data transfer capasitgmphasized. This will give a
general understanding to the reader of historylutiem and major standards of data

transfer in cellular networks.

The first real cellular system was introduced i79® Japan, but wider use of such
networks started during the next decade. There wereile networks even before

that, but capacity and support for mobility was agkably weaker, and hence those
networks cannot be classified as cellular netwoflkee human need for constant
movement and freedom from fixed locations has liberkey factor for the success

of cellular networks. [1, 2]

Since the start of the digital era with GSM tecloggl demand for mobile service has
grown tremendously, and after developing countnigge started to invest in mobile
technology, the demand has almost exploded. Acegridi Goleniewski and Jarret in
Telecommunications EssentialsThe growth was so rapid that by 2002, we
witnessed a major shift in network usage: For tirst ftime in the history of
telecommunications, the number of mobile subscsieeceeded the number of fixed
lines. And that trend continues. According to th&l| at year-end 2004, the total
number of mobile subscribers was 1.75 billion, liile total number of fixed lines
worldwide was 1.2 billion.”[1] Nowadays there are more than 4.2 billion mobile
subscribers world wide according to a market stlmtye in 2Q 2009. [5]

The driver of evolution in mobile networks has poessly been the need for greater
subscriber capacity per network until the third eration (3G). 3G networks were
the first technological turning point in which indlual subscriber demand for
greater data transfer capacity was the driver,taadsame driver is leading the way

to next the generation of LTE and Worldwide Intexgbility for Microwave Access

(WIiMAX) mobile networks, along with service providé need for better cost

efficiency per transferred bit. [3, 6]

2.1. Analog systems in first generation networks

Cellular network first generation (1G) was basedpalog transmission systems and
was designed mainly for voice services. The fiedtular network was launched in
Japan in 1979, and launching continued throughl&89s in Europe and Americas.
A new era of mobile networks was born. The varigtydifferent technologies and
standards was quite wide. The most important giesteration standards were Nordic
Mobile Telephone (NMT), Advanced Mobile Phone SgstAMPS), Total Access
Communication System (TACS) and Japanese TACS.[1,2]

NMT was invented and used at first in Nordic coiesty but later on, was launched
also in some southern and middle European countdddPS technology was used
in the United States, Asian and Pacific regionghinUnited Kingdom, Middle-East,
Japan and some Asian regions, TACS was the pnegatéchnology. Also some
country specific standards and technologies weeel like C-Netz in Germany and
Austria, Radicom 2000 and NMT-F in France and CéniviSweden. [2]

In first generation wireless data networks, theezentwo different key technologies;
Cellular Digit Packet Data (CDPD) and Packet radtiba networks. The latter one
was designed only for data transfer, but CDPD usmased time slots of cellular
networks. CDPD was originally designed to work o¥PS and could be used
over any IP-based network. Packet radio data né&svarere built only for data

transfer and its applications, such Short MessagBeyvice (SMS), email,

dispatching etc. Peak speed of packet radio dataonkes were 19.2 Kbps, but

normally rates were less than half of this peakgoerance. [2]

2.2. Digital era of 2G and 2.5G

The most remarkable generation shift in cellulameks was from first generation
to the second. The 1G was implemented with anadgrtransmission, and the 2G
is based on digital radio transmission. The maasoa for this shift was increased
demand for capacity, which needed to be handled wibre efficient radio
transmission. In 2G, one frequency channel cansedl simultaneously by multiple
users. This is done by using channel access metii@€ode Division Multiple
Access (CDMA) or Time Division Multiple Access (TDA), instead of using the
capacity extravagant method of Frequency Divisionltidle Access (FDMA),
whose differences can be seetiigure 1 In these methods one frequency channel is

divided either by code or time to achieve morece#fit usage of that channel. [2]

Figure 1: FDMA, TDMA and CDMA [7]

In 2G there are four main standards: GSM, DigitMPS (D-AMPS), CDMA and
Personal Digital Cellular (PDC).

GSM started as a pan-European standard, but waesdland widely spread out to
be true global technology. Currently it is the maosted technology in mobile
networks [5]. GSM technology uses TDMA with Fregag-Division Duplexing
(FDD) in which downlink and uplink use a differeinequency channel. Peak data
rates in plain GSM technology could at first aclkeieanly 9.6 Kbps, but later it
increased to 14.4 Kbps. [1, 2]

D-AMPS also known as Universal Wireless Commun@afUWC) or 1S-136 and is
mainly used in the Americas, Israel and some Asianntries. D-AMPS is also
based on TDMA, but with Time Division Duplexing (TI), where downlink and
uplink uses the same frequency channel, allocagagsimg time slots. Basic 1S-136
offers data transfer rates up to 30 Kbps, but w136+ the range are from 43.2
Kbps to 64 Kbps. [2]

CDMA uses a different approach to dividing air ndee than in TDMA based
technologies, and it separates different transonsby code and not by timeslots.
The first commercial CDMA technology is based ocansfard 1S-95A and can offer
14.4Kbps peak data rates. CDMA is mostly useddtwaorks located in United
States and East Asian countries. PDC, formerly Wwaswvn as Japanese Digital
Cellular (JDC), but name was changed as an attémpharket the technology
outside of Japan. This attempt failed, and PDComroercially used only in Japan.
PDC uses the same technological approach as D-AMES5SM with TDMA. PDC
can offer circuit-switched data service rates up.®Kbps and, as a packet-switched

data service, up to 28.8 Kbps. [2]

The line between 2G and 2.5G cellular networksague and cannot be defined
strictly. 2.5G networks in general are upgraded ri&works offering higher data
transfer rates than basic 2G networks. In somesdhasse upgrades can be done only
with software updates or minor radio interface demn These upgrades are
downward compatible, and so only subscribers whatwadvantages of newer
technology have to update own devices. The gegeraleption is that 2.5G cellular

network should support at least one of followinghteologies; High Speed Circuit

Switched Data (HSCSD), General Packet Radio Ses\{GRS), Enhanced Data
rates of Global Evolution (EDGE) in GMS or D-AMP&tworks and in CDMA
networks technology, which is specified by IS-95BC®MA2000 1xRTT. [1, 2]

HSCSD is the easiest way to boost GSM network dgpaand it needs only
software updates to existing networks. Comparegldmm GSM network, a HSCSD
network uses different coding schemes and is ableseé multiple sequential time
slots per single user and this way boosts datesfgarrates. This technological
improvement does not help networks which are alreamhgested, but instead can
make them worse. A solution which needs real tiroerounication HSCSD is
preferred, because of the nature of circuit swidcbennection. HSCSD data transfer
rates range from 9.6 Kbps up to 57.6 Kbps with gisime slot aggregation and can

be raised up to 100 Kbps, if channel aggregatiarséesl. [1]

GPRS is technology which requires a few new mammanents to the core network
and updates to other elements as well. The newammponents are Serving GPRS
Support Node (SGSN) and Gateway GPRS Support N6&SN). SGSN handles
control signaling to user devices and data routisgle SGSN's serving area. GGSN
handles GPRS roaming to other networks and is thewgqy between public
networks like Internet and GPRS network. GPRS teldyy is a packet-switched

solution and can achieve a maximum of 115 Kbps pledk rate. [1, 2, 8]

EDGE is a third option to upgrade TDMA based calluihnetworks. EDGE
technology takes advantage of an improved modulaoiheme which in most cases
can be achieved only by software updates. In EDdalEg transmission is boosted by
using eight-Phase Shift Keying (8-PSK) instead a$ito Gaussian minimum shift
keying (GMSK). This will improve transmission rates to threefold. [1, 2]

CDMA networks also have some updates to speed t#@ptdasfer. These upgrades
are 1S-95B, CDMA2000 1xRTT or Qualcomm’s proprigtaplution of High Data
Rate, which is also known as 1x Evolved Data Omédiand is a nonproprietary

solution of this technology. This can boost dateasfer rates up to 2.4 Mbps, which

10

is similar as in early implementations of 3G, altgb these upgrades are still

considered as 2.5G technology. [1]

2.3. 3G The beginning of mobile broadband

Third generation (3G) cellular networks designtsthrsoon after second generation
networks were commercially available. European dalemunications Standards
Institute (ETSI) and key industry players were agtme first to start studies. A few
key design principles were truly of a global stamdeegarding high speed mobile
broadband data and voice services. New servicesHigh quality voice, mobile

Internet access, videoconferencing, streaming videwtent rich email, etc. created a
huge demand for mobile data transfer capacity, #&ds designed to meet these
demands. The earliest 3G networks offered onlytke Ibetter or the same transfer

rates as most evolved 2.5G systems, but technalibgithere is a clear difference.

[2]

3G has two major standards; Universal Mobile Telewmnications System (UMTS)
and CDMA2000. Also there is country specific staddarime Division -
Synchronous Code Division Multiple Access (TD-SCDMiA China. For UMTS
ETSI, organizational members and industry leadenufacturers founded the 3G
Partnership Project (3GPP) in 1998 which functiamsder ETSI. A similar
partnership program was founded to coordinate CDOOS2development by the
American National Standards Institute (ANSI) angamizational members called
3GPP2. [1, 2, 9, 11]

The International Telecommunications Union (ITU)shdefined an umbrella
specification International Mobile Telecommunicaso(IMT) 2000 for 3G mobile
networks. It was meant to be truly global, but palitical and technical reasons it
was infeasible. The specification defines 5 differsub specifications; IMT Direct
Spread (IMT-DS), Multicarrier (IMT-MC), Time CoddMT-TC), Single Carrier

11

(IMT-SC) and Frequency Time (IMT-FT). All currenG3standards fit under those

specifications. [1, 10]

UMTS is based on Wideband Code Division MultiplecAss (W-CDMA), which is
an alias for this standard, and it uses FDD or TiBDradio transmission. The
UMTS was at first the 3G standard which acted asewawlution path for GSM
systems, but later on the UWC consortium also tbak an evolution path for North
American TDMA based systems like D-AMPS. [1, 2]

The CDMA2000 standard family is 3GPP2's answer hte CDMA network’s
evolution towards 3G. It was the first 3G techngl@pmmercially deployed. 1S-95
High Data Rates (HDR), Qualcomm’s propriety tecogyl is a base for
CDMA2000 and is optimized for IP packets and Ing¢raccess. CDMA2000 uses
multicarrier TDD for radio transmission. As well B8TS also CDMA2000 is also
based on Wideband-CDMA (W-CDMA) technology, buisitnot interoperable with
UMTS. [2, 11]

TD-SCDMA is a standard which is used mainly in tBainese market. It is
WCDMA technology and uses Direct-Sequence Spreadt8pn (DSSS) and TDD

in radio transmission. [2]

All current 3G technologies are still evolving. &&rdy many upgrades and
enhancements have been made, and new ones wibhhi@g before next generation
networks are commercially available. The most d$igant technological
enhancements currently are High Speed Packet ACEi&3A) for UMTS networks
and CDMA2000 3X for CDMA2000 networks. [1, 2, 9,]11

12

3. LTE network architecture

LTE is the name for 3GPP’s fourth generation (4€ljutar network project. From a
technological point of view, it is not really 4Gctenology, because it does not fully
comply with ITU’'s IMT Advanced, which is considerdd be the real umbrella
standard for 4G systems [10, 12]. In this chaptey koints of LTE network
architecture and its structure are discussed. ThEMore network element is
covered in more detail, because it is the devied s the SUT in this thesis. The
motivation and reasoning behind LTE technology @se presented. This will help
the reader to get a general understanding of téobies related to this thesis and to

introduce the element used in testing in more Hetai

The motivation for developing the new technologlease called LTE, which was
initiated in 2004, can be summarized with six keings. First was the need to ensure
the continuity of competitiveness of the 3G systemthe future. This means that
there had to be commercially competitive new te@tmoavailable from the 3GPP
group to support industrial manufacturer membensdid their market share against
other rival technologies. Second was user demankiigber data rates and quality of
service which arises from demand for increased Wwatid for new services like
video streaming, virtual working, online navigatiett. Third was the technological
shift to use an entirely packet switch optimizedteyn. Continued demand for cost
reduction in investments and for operational casts a key driver for operators and
the fourth point. Fifth was the demand for low cdexgy, meaning that network
architecture had to be simplified. Sixth was toidwennecessary fragmentation of

technologies for paired and unpaired band operaftiéh 13, 14]

The technological requirements for LTE were finatlzin June 2005 by the next
generation mobile networks (NGMN) alliance of netkvooperators. These
requirements are defined to ensure radio accespetidimeness for the next decade.
The highlights of requirements are reduction ofgs] increased user data rates and

cell-edge bit-rate, reduced cost per bit by impyimproved spectral efficiency and

13

greater flexibility of spectrum usage, simplifiecétwork architecture, seamless
mobility and reasonable power consumption for trabite terminal. Reduction of

delays is meant to happen in terms of connectidabbshment and transmission
latency. The spectrum usage goal is meant for impiegation in both new and pre-
existing bands. The requirement of seamless mpbéfiers to different radio-access
technologies. To achieve these requirements, badfo rinterface and the radio

network architecture needed to be redesigned.13,214]

As 3GPP’s technical report (TR) 25.913 declared:’sThigh spectral efficiency is
based on usage orthogonal frequency division mekipg (OFDM) in downlink
and single-carrier frequency division multiple es£¢SC-FDMA) in uplink. These
channel access methods are robust against multiptetference, and advanced
techniques, such as multiple-input and multiplepati{MIMO) or frequency domain
channel-dependent scheduling, can be used. SC-FBIStAprovides a low peak-to-
average ratio which enables mobile terminals tosinait data power efficiently. LTE
have support variable bandwidths like 1.4, 3, 5, 18 and 20MHz. Simple
architecture is achieved by using evolved NodeBo(EB) as the only evolved
universal terrestrial radio access network (E-UTRAMde in radio network and
reduced number of radio access network (RAN) iate$ S1-MME/U for MME and
system architecture evolution — gateway (SAE-GW) AR between two eNodeBs.
[15]

According to the same TR 25.913, the LTE systenulshtulfill the following key
requirements:
For peak data rate:
* Instantaneous downlink peak data rate of 100 Mbithinva 20 MHz
downlink spectrum allocation (5bps/Hz)
* Instantaneous uplink peak data rate of 50 Mb& l§ps/Hz) within a 20MHz
uplink spectrum allocation
For control-plane latency
» Transition time of less than 100 ms from a campatk <0 an active state

* Transition time of less than 50 ms between a dotrstaie and an active state

14

For control-plane capacity
» Atleast 200 users per cell should be supportedearactive state for spectrum
allocations up to 5 MHz
For user-plane latency
* Less than 5 ms in unload condition for small IPkehc
For mobility and coverage
» E-UTRAN should be optimized for low mobile speeonfrO to 15 km/h
» Higher mobile speed between 15 and 120 km/h shbalgupported with
high performance
* Mobility across the cellular network shall be mained at speeds from 120
km/h to 350 km/h (or even up to 500 km/h, dependinghe frequency band)
» The throughput, spectrum efficiency and mobilitygets above should be
met for 5 km cells, and with a slight degradatifmm,30 km cells. Cell ranges

up to 100 km should not be precluded.

The 3GPP release 8, simplified LTE non-roaming oekvwarchitecture, can be seen
in figure 2 LTE non-roaming architecture has E-UTRAN and wegripment (UE)
as radio network access components. In evolvedegpaadre (EPC) network part
have SGSN, MME, and home subscriber server (HSSghwhct as subscriber
database, serving gateway (S-GW) and packet datsonegateway (PDN-GW) and
policy and charging rules function (PCRF), whicts lpelicy management rules for

subscribers and applications etc.[16]

UTRAN, 1L
SGSN
GERAN HSS
S3
T S6a
| MME PCRF
i i —S12
T s11 sa | G/ Rx
S10
Serving 5 PDN i Operator's IP
Gateway # Gateway Services
i (&g. IMS, PSS etc.)

Figure 2: LTE network architecture [16]

15

3GPP technical specification 23.401 also defindsrfiaces and reference points
which are used in the LTE system:

S1-MME: Reference point for the control plane protocdiveen E-UTRAN and
MME.

S1-U. Reference point between E-UTRAN and Serving GWHe per bearer user
plane tunneling and inter eNodeB path switchingrduhandover.

S3 Enables user and bearer information exchangmtier 3GPP access network
mobility in idle and/or active state.

S5 Provides user plane tunneling and tunnel managebstween Serving GW and
PDN GW. It is used for Serving GW relocation dudJté mobility and if the
Serving GW needs to connect to a non-collocated BYNfor the required PDN
connectivity.

S6a Enables transfer of subscription and authenboatiata for
authenticating/authorizing user access to the exbsystem between MME and
HSS.

Gx: Provides transfer of policy and charging rulesrirPCRF to Policy and
Charging Enforcement Function (PCEF) in the PDN GW.

S1Q Reference point between MMEs for MME relocatiod #ME to MME
information transfer.

S11 Reference point between MME and Serving GW.

SGi: Reference point between the PDN GW and the patstatnetwork. A packet
data network may be an operator external publjrivate packet data network or an

intra operator packet data network. [16]

3.1. MME network element

A MME network element in an EPC network acts aseas®n and mobility
management node. MME’s main responsibilities afessuber’s authentication and
authorization, control plane traffic handling, setyu functions and session and
mobility management in LTE radio network and betwether 3GPP 2G/3G access
network or non-3GPP radio networks and LTE raditwoeks. MME is a dedicated

16

control plane core network element, and all usangltraffic is directly handled
between eNodeB and S-GW [17]. Due to the flat aechirre of LTE radio networks,
all eNodeBs are directly connected to MME, whichguiee more mobility

management transaction with active mobile subskgifiet].

Session and mobility management include varioustfans, such as tracking area
list management, PDN GW and Serving GW selectioaming by signaling towards
home HSS, UE reachability procedures and beareagement functions including
dedicated bearer establishment [14]. Besides tlusetions, MME also handles
non-access-stratum (NAS) signaling and securitySISGelection for handovers to
2G or 3G 3GPP access networks and lawful interaegtignaling traffic [16].

Signaling between MME and E-UTRAN is done with Sgplecation protocol
(S1AP) which is based on stream control transmispiotocol (SCTP) [14]. S3 or
Gn is the interface between MME and SGSN, wheres S&SN which comply with
3GPP technical specifications Release 8 or newer Gn is for Release 7 or earlier.
S10 interface is for control plane traffic betwedes®o MMEs and S6a between HSS
and MME for getting subscriber information [16]. ISinterface is meant for the
control plane between MME and S-GW for handlingrbeaelated information. All
MME interfaces S3/Gn, S6a and S10 are based on SEXEBpt S11, which is based
on GPRS tunneling protocol (GTP) [16, 18].

NSN MME core network element

Nokia Siemens Networks implementation of MME is dth®n advanced telecom
computing architecture (ATCA) hardware which carsben irfigure 3[17]. ATCA

is hardware made with specifications of PCI IndastComputer Manufacturers
Group which is a consortium of over 250 companié® purpose of this consortium
is to make high-performance telecommunicationsitamyl and industrial computing
applications [19]. By using ATCA hardware as a basgives an advantage for
using high end carrier grade equipment. With AT@aw technology updates like

computing blades and interface options are availabdng with industry evolution,

17

meaning that new technologies can be brought tkebdaster, and component
lifetime in operation will be longer. An ATCA shdifas 16 slots for computer units
from which 2 slots are reserved for HUB blades foternal switching and

communication purposes [19].

Figure 3: MME ATCA hardware [17]

NSN MME has five different key functional units; emational and maintenance unit
(OMU), marker and charging unit (MCHU), IP directamit (IPDU), signaling and
mobility management unit (SMMU) and control plarregessing unit (CPPU) [17].
IPDU is responsible for connectivity and load balag, MCHU offers statistics
functions, SMMU handles subscriber database and-btsed mobility management
functions and CPPU is responsible for transactaseld mobility management [17].
In figure 4 this assembly is illustrated. SMMU also provid&8a interface to HSS
and CPPU S1, S11 and S3/Gn interfaces. OMU and M@rUedundant 2N units,

18

meaning there have to be N amount of pairs of laitking and spare units. IPDU
and SMMU are N+1 which means there has to be &t leae working unit and
exactly one spare. CPPU is N+ unit meaning one shwuld be in a working state

and the rest of CPPU units can be either in workingpare states [17].

SMMU
(N+1) =

Ethernet

Figure 4: NSN MME units [17]

19

4. Software Testing and Test Automation

Software testing is a part of development wheretesyatically, defects and faulty
functionality are searched for improving softwanealifty and reliability. This is

normally done via verification and validation withppropriate test tools and
methods. This chapter describes software testidgtzen benefits of test automation.
Also, different levels of testing are introduceddastescribed in more detail. This
context helps the reader to understand the contplexind requirements for

implementing similar test automation schemes asriesl in thesis.

4.1. Definition of software testing

Software testing is a process where one triesdaocheand find defects, errors, faults
or false functionality. It is not a series of inthéle attempts or vague experiments to
make software crash or misbehave, but ratherat sgstematic, carefully designed,
well defined and executed process from which resafié analyzed and reported [4,
21, 20]. The only form of testing that does notdal this formula is exploratory

testing, but it is usually backwards traceable watl documented [22].

There are three different methods in software rigstivhite box testing, black box
testing and gray box testing. In white box testihg test engineer has access and
knowledge of the used data structures, code amditilms used inside the software.
The test engineer usually also has the possiliditgccess and test software with a
wide array of tools and procedures like unit testedule tests, internal interfaces,
internal logs etc. In black box testing the tesgieeer's knowledge of software is
limited to the specification level. One can onlyeusxternal interfaces to test
software and rely on information that the specti@a gives. In this method,
software is seen as a black box which will replyirgrut with some output defined in
the specification. Gray box testing is a combinatd the two preceding methods.

The test engineer has access and knowledge ohahtdata structures, code and

20

algorithms, but one will use external interfacegetst the software. This method is

usually used in integration testing of softwarg. [4

In software testing software’s behavioral deviatfoom specification is referred to
as a defect, bug, fault or error. This derives He tonclusion, that without a
specification, no exact testing can be done, amduse any specification cannot be
all-inclusive, not all found misbehaviors are colesed defects, but instead features
from developer’s point of view. The customer, hoeg\can think otherwise [20]. A
general conception is that when defect occurgaitl$ to a fault which can cause a
failure in software. Failure is a state which i®wh as misbehavior to other parts
within software. For example, memory leak is a ffavthich can lead to a software
crash, which is a failure. Not all defects are t®uand not all faults lead to failure.
An error is thought to be a human misbehavior legdo defect, but all terms that
describe defects are usually used as synonymsra@thangeably [21]. Also, the
definition of testing and debugging are usually @i>and are used as synonyms, but
the purpose of testing is to find misbehavior aatedts from the software, whereas
debugging is used to describe the process whegggroning faults are traced from
the actual code [20].

Software testing is a combination of two processesfication and validation. The
meanings of these processes are quite often mimdduaed interchangeably. The
definition of verification according to the Instiéu of Electrical and Electronics
Engineers (IEEE) standards, is the process of atialy that software meets
requirements that where imposed at the beginninthaf phase. Software has to
meet requirements for correctness, completenessjstency and accuracy during its
whole life cycle, from acquisition to maintenancgfter implementation, those
requirements, including specification and desigoudeents and implemented code
are checked to be consistent. Checking of codebeatione only with code review,
and no actual execution of software is needed.dEffi@ition of validation, according
to IEEE, is the process of evaluating that theveafé meets the intended use and
user requirements [23]. This means that softwatesiglly executed against a set of

test cases and as a general concept, this is thtmfgh the actual testing process.

21

4.2. Testing coverage and risk management

It is not feasible to perform an all-inclusive tegtwhich finds all underlying defects
even in the simplest of software. This is due @ ldrge number of possible inputs,
outputs or paths inside the software, and the Bpation of the software is usually
subjective, meaning that the customer and develdpet usually see everything in
the same way [4]. To fulfill all possible test saens would require a tremendous
amount of test cases and through an infeasible aurob resources. For these
reasons are the cause why all-inclusive testing lmarconsidered an impossible

challenge. [4]

As mentioned earlier, not all defects lead to fajiand many defects are not even
noticed during a software’s whole life cycle [2]th@r defects can be just cosmetic or
annoying, but do not cause any harm. Then therthase defects that most probably
will lead to misbehavior or even failure of softwaand must be considered critical
[2]. Another thing one must consider besides thewrh of resources invested on
testing is the phase in which testing is dorable 1shows how much more it would
cost to fix a defect at later phase in developntieat if it were discovered and fixed
at some earlier phase [24]. It is a general commephat defects found and fixed
during an early phase of development can save af leffort and resources later on
[21].

Defect discovered in

Defect in _ _ _ | System| Post-
Requirements Architecture| Implementation

Test | Release

Requirements 10-
1x 3X 5-10x 10x

100x

Architecture 25-
1x 10x 15x

100x

Implementation 1x 10x 10-25x

Table 1: Cost of finding defect [24]

22

Overall in testing the key question is; what is dtipgimal amount of testing; the point

where one test enough to catch all critical deftéwds can affect on quality, but does

not waste resource on economically infeasible desting [21]. With less testing,

one will safe resources, but will most certainly $#eme defects through [4]. This

problem is illustrated ifigure 5in which the horizontal axel is test coverage dral t

vertical axis represents quantity [4].

Quantity

Number of missed Cost of
defects Testing

Optimal
point of
Testing

Under
Testing

Over
Testing

Test coverage

Figure 5: Optimal amount of testing [4]

Commonly the concepts of quality and reliabilitg anixed and thought to have the

same meaning, but actually reliability is a sulefeiuality and only describes how

robust, dependable and stable a software is [44liQuinstead, defines a larger set

of aspects like the number of features, correctrifssequirements, degree of

excellence and price etc [4].

23

4.3. Testing levels and possibility for test automation

The different levels of testing are unit, modul&egration, functional, system and
acceptance testing, and all are classified as ifumadt testing [20]. There has been
developed a special v-model for testing as showigime § in which on the left side
is the design and planning phases and the corrdsmprtesting levels on the right
side. The number of different phases varies depgntiow those are classified.
Testing starts from the bottom and goes up. Theemalbo indicates the cost of
fixing a defect, which also increases dependinghenlevel where it is found. Each
testing level usually has its own coverage, purptsels and method. One has to
also set also entry and exit criteria for eachrigdevel which defines when software
is robust and mature enough for a new level andwibgerminate testing [21]. In
unit or module testing the white box testing meth®dised, integration testing is
done with the gray box method and functional, sysend proceeding testing is
carried out as the black box testing. There is also-functional testing including
performance, usability, stability and security itegtwhich are normally executed
after functional or system testing has been subdgsgxecuted. In non-functional
testing, the method is usually gray or black bastitg depending on the tools that
are used. [21, 20]

/

Requirement Specification Acceptance Testing

/ System Testing

Architectural Desing |« | Functional Testing

\ Integration Testing

Module & “— | Module Testing
Unit

il
es'gn\ ™| Unit Testing

».
P

Frogramming

Figure 6: V-model of testing

24

Unit testing is mainly conducted to test functiotyabf the lowest level in code.
Usually tests are targeted to function or methoekellean the smallest possible
portions and testing all possible lines and diffien@aths inside one module or class.
Unit test results nowadays contain information almmde coverage which tells the
percentage of how many lines were accessed dugstg.tTests are usually written
by programmers themselves with the white box tgstirethod to gain information
about function or method correctness. Tests arellystarried out by executing part
of the code in a simulated environment in test batiés level of testing is usually
can be fully automated and needs no human interadResults of tests are normally

compared to unit design specifications. [21, 20]

Module testing is usually considered the same #@stesting, because methods and
tools are the same. The main differences are iy ggsiing scope and requirements
for test execution. The coverage of module testimgasured in lines, is less
meaningful, and right functionality of module omls$ is emphasized more than in
unit testing [20]. The scope is to ensure corressrd functionality and the external
interface of the module. When executing a modu$, tene usually needs to use
mocked versions of other modules interacting whth iinodule under test. Those are
commonly referred to as test stubs or test drij&ty As with unit testing, module

testing can also be executed in simulated enviromnmetest beds and can be fully

automated [20].

Integration testing is the first testing phase wharodules are tested together to
ensure proper functionality of interfaces and coafien of modules. There are
usually three practices to carry out integratiag; dang, bottom up and top down. In
big bang all changed modules are combined in abhitg” and tested. If software is
goes through compiling phase and starts up thistipeais probably the fastest way
to find and fix interface and interoperability def® and issues [20]. In bottom up
integration, testing is built up by adding the |sivéevel module first and continue
adding next levels until reaching highest level med20]. The top down practice
uses just the opposite way of doing integratiomtbattom up. Methods used in

integration varies from high level white box tegtito gray box testing and normally

25

with bigger software programs, the gray box testmgthod is dominant [21]. Full
automatization of this phase is infeasible at tegitming of development, because
many defects found in an early state of integratesting are causing difficulties to
even start or keep software running. Without soféwaunning at least in a
moderately stable way, it can be impossible oreastl infeasible to collect the
necessary logs. A sudden crash of software uswdllfeave incomplete logs, which
often are useless. When software achieves a ifficstate of robustness and
stability, integration testing can be also fullyt@wated. In integration testing, at

least the basic functionality of software shoulddsted [20].

Functional testing can be considered to be parsystem testing or preliminary
testing before it. Functional testing is mainly doas gray box testing to verify
correctness of systems features and proper furaiipnSystem testing is carried out
normally with black box testing, where the knowledand information of internal
functionality is limited [20]. Hence the function@sting level has the opportunity to
observe internal logs and monitoring. This phag@asfirst phase where all features
of a software are tested and checked that theggpond to the architectural design
and specifications. This all-inclusive testing ialled regression testing, and its
purpose is to clarify that new functionality hag hooken down old functionality.
With good test environment design and planning, oalmall test cases can be
automated. There are always test cases which esipfieasible requirements like
sudden loss of power or are used only once. Autogpahese types of test cases is

impractical [20].

The system testing phase is where software isdemgainst the highest levels of
architectural design and system specifications t@sting is carried out using the
black box method. Usually in this phase, real hamws used along with other real
system elements. In the telecommunication indusefwork verification belongs
under system testing, where almost all network etgsare real hardware [4]. The
automation level of testing is the same as in fionetl testing but even more

feasible, because no internal logs or monitoringdseto be collected. Defects and

26

faults found in this level are usually caught thglbbunetwork analyzers or external

logs of hardware equipment [4].

The acceptance testing is done through cooperatfittna customer against the user
requirement specification. One part of this testiag also be usability testing where
the user interface is tested. The purpose of #hgllis to make sure product is
compliant what the customer ordered. This is ddee with the black box testing,

usually by using automated or semi-automatic testes, but with execution is

initiated manually. [20]

Non-functional testing like performance, securitydastability testing, normally is

carried out simultaneously with system testing, aoche consider it to be part of it
[20]. However, the tools and scope are quite diffiéin non-functional testing than
in system testing. Performance testing usually caive executed using the same
tools as functional testing, and the scope of fionetity under test is normally many
times narrower. In stability testing, the scopedniscausing a heavy load into the

system and analyzing the system capability to leand1].

4.4. Test automation versus manual testing

In modern software development, the main quessart as unambiguous as should
one use test automation or manual testing? Rathersbould think of the level of
automation to be used and which levels of testieg@asible to automate [4]. There
are many advantages of test automation, such asispecuracy, reproducibility,
relentlessness, automated reports etc., howevenenaince load of test cases, more
complex designs and implementation of test cases roake test automation
unfeasible to be used in every situation [22]. Gheuld always consider the return
of investment (ROI) when determining whether toomdte some testing level and

which level of automation to use [3].

27

The main advantages of test automation are almasitya taken for granted when

speaking on this subject. The following list exptathese advantages in more detail.

» Speed is maybe the most important single reasaoreider when deciding
the implementation of test automation. In the te@meuman takes for writing
a 25 digit command and pressing enter, a modernpaten can do it
hundreds, thousands or even millions of times. Rasalysis of a single line
response like prompt @ommand executeloy a human can take about one
second and by computer only milliseconds. This kwofdadvantage is
emphasized in regression testing which can comtalions commands and
responses. [3, 4]

» Accuracy, a computer will always execute the temecas exactly as it is
written. It will not make mistakes. If an error doeccur, it is either written in
the test case or the result of some external thahae. [4, 22]

* Reproducibility can be considered to be accuraag pming. Even if the test
engineer would not make mistakes timing can bestpeificant factor when
trying to reproduce a defect which is caused byestming issue. Of course,
variable timing can be also seen as an advantatgsiimg, but it should be
controlled and not caused by contingency. [4, 22]

* Relentlessness is one of machines’ best advantage lmumans and is
defined as accuracy combined with reproducibilityspstubbornness. A
machine will never give up or get tired and keepggrming its ordered tasks
until it is finished or it breaks apart. [4, 22]

» Automated reports and documentation are alwaystakeoy products of test
automation, but provide a great advantage, sinoestases, they can reveal
what will or has been actually tested vs. the dpation documentation.
Modern testing frameworks even recommend and eageumaking test
cases as human readable as possible [25]. Afterugga, test automation
tools usually will generate reports and logs andkenia easier to prove what
was actually tested and what were the result27426]

» Provides resources that are needed to test lasgedatexts simultaneously

like thousands of connections to some server aic [4]. This can be

28

extremely difficult or impossible to manage manyaind to successfully
open sufficient amount of connections [4]. Thegeetitive tasks call for test
automation.

» Efficiency. A test engineer’s talent and capabilgynot fully used if one will
be tied up in following test executions. Test audtion frees up test
engineers to do more valuable tasks, like test dasegn and result analysis
etc. It also improves motivation and job meaningésis, if routine tasks can
be left for machines. [3, 4, 22]

Test automation is less advantageous with the cmrelex test case designs, which
will need different points of view for testing, rieéor possible new investment for
test automation equipment, and competence to a@per&w systems. Also

maintenance of test cases is one field that neexs focus than with the manual

testing, where maintenance is usually done withéntésting routine [22].

The levels of automation can be divided into thrdistinct categories: full

automation, semi-automatic and manual testing.hin full automation level, all

procedures are automated, except for thedeepeysanaf failed cases which is done
manually. With a successful outcome, the full awtton level process does not
require any human interaction. The setup, testudi@t, and teardown phases are all
automated, and starting, ending and possible reastegtriggering is handled by the
testing system. In semi-automatic testing, at lemst of the testing phases of the
setup, execution or teardown must be done maniidathp complex or fluctuating to

be automated. The manual testing category contasiases which are not in any
way feasible to be automated. One-off, usabilityl axploratory tests are good
examples of this category. One-off test cases aesés tthat are intended to be
executed only once or very few times. This is beeatle functionality or feature

under test is only a temporary solution and willrbplaced or erased soon resulting
in an ROI too low to justify its automation. Usatlyiltests usually are included in this
category, because user interface tests are diffiouhutomate due to results being
based on empirical factors and can be extremely tuadescribe in any deterministic

way. User interface is a part of software whictcamstantly changing, with little

29

variation. Exploratory test descriptions alreadyead reasons why those test are not
practical to automate, based on exploring andngsftware and designed tests not
already applicable. If any defects are found thioegploratory testing, there can be
efforts to make automated test cases for thoseifEpeases, but all preceding
exploratory tests and results must be carefully udeented in detail for

reproducibility reasons. [22, 26, 27]

In designing a test automation strategy there igoad model, having a shape
opposite the V-model, which is used to show theartgnce of ROl and the need of
test automation in certain testing levels. The rhadecalled Mike Cohn’s Test
Automation Pyramid [22] shown ifigure 7. The pyramid can be used as a guide on

where to invest test automation resources. [22]

User
Interface
Tests

Functional Tests,
Systemn Tests

Lnit & Module Tests

Figure 7: Mike Cohn's Test Automation Pyramid

As from the figure above, it can be observed thatunit and module tests are the
base of test automation pyramid. After an acceptbblel of automation is achieved
at a certain level, one can start to automate el test cases. Unit and module

level tests should be automated as a first thing, @ much as feasibly possible.

30

Normally, tests are written with the same languagethe software and by the
programmers themselves. The next level, functiomadl system tests, is also
important, but if the preceding base of unit andiaie tests are leaking, this level’s
number of caught defects will skyrocket, and itlwié come inefficient. This level

should be only used to catch architectural defddts. user interface level should be
the last level in which to invest resources, beeaR®I is the lowest at that level.
Manual tests are shown as a cloud, because thelevays possibility that all test

cases are not possible and feasible to autom&e2§

31

5. Software development model’s influence on testin g

This chapter presents different software develogmeodels and their influences on
testing. Also, the effects of distributed softwalevelopment (DSD) are discussed,
and the continuous integration (CI) process isflgrigescribed [29]. Firstly, the most
used development models are presented with a dlesdription of each and their
influence on testing requirements considered. Tdistnibuted software development
and its subclass distributed agile development (DAE presented [30]. Finally a
short introduction to the continuous integratiorogass and its requirements for

testing is analyzed.

Software development is a process in which softwigrecreated with certain
structured way. For handling this software develepimprocess there are several
readymade models to describe the tasks and actemded in each different phase of
development. Those models can be divided in twoegmates; traditional
development models and agile development modelereTls also third category
called iterative models, but usually those havees&amd of workflow as traditional
models, but with a smaller cycle content. In tiadil development models, all steps
are usually predefined before starting each step, @evelopers just follow the
specifications of each step, progressing in lin@ade from each step to next. In
agile development, the only requirements are pmeeéf and developers make
software in iterative steps which can be done gemelously in parallel mode. These
two approaches set quite different requirementstdsting. In traditional models,
testing is done at the end of the development ¢cyelein agile models, development
can start by doing acceptance tests first and ¢xgcuhose tests throughout
development until they are pass, signifying the ehthe development cycle. [4, 22,
29, 30]

32

5.1. Traditional development models

Traditional development models are normally basedhes idea of sequential and
well defined upfront design. This means startingr@ect by defining requirements
and making requirements specification and guideslifor each step or phase of the
project. After this step architects start the ollatasign of the different phases and
architectural design. All required tasks and steps carefully designed and
documented upfront, so that in the implementatibasg all developers can just
concentrate on making their own tasks. Testinduiing verification and validation,
is usually done as the last step of the projech wiésting plan made during
requirements specification. This means that ifehera defect found during testing
or other needs for change after requirements spatdn, the whole process has to
be started from the point where that change is edehd proceeding development
phases have to be re-done. Hence, traditional oereint models do not welcome
any changes during the development process, after initial requirement
specification is done. Any major changes are uguedinsferred to the next release.
Four most frequently used traditional developmentiets are Big Bang, Code and
Fix, Waterfall and Spiral model. There are many endyut those are usually just

variations of these four. [4, 20, 21]

Big Bang Development Model

The Big Bang model is not really any structured eip8ut it has to be mentioned,
because many of nowadays famous products and esrvave been initially started
with a similar approach. In the Big Bang model,téasl of having requirements,
even hint of specifications or fixed schedule, tistomer only has an idea and the
resources to start doing it. There is no deadlmeven guarantee that the project will
ever get anything ready. The idea behind this m@ltie same as in the dominant
theory of the creation of universe, with a huge am@f energy and resources that
together will create something special. Sometinhés model works, but there is a

similar chance it will lead to nothing. Testingthis model is just finding defects by

33

using the product as your testing specificationmi@ny cases, defects that you find

are just meant to be told to the customer, nottéixed. [4]

Code and Fix Development Model

Code and fix model is the next step from the Big@aodel. There usually is some
informal requirement specification, but not a venyll defined one. This is a model
where many projects fall into, if project fails tollow some more specific model.
The model suits small and light projects, wheredhly goal is to make a prototype,
proof of concept or a demo. This three phase dewsdmt model can be seen in
figure 8 First developers try to make the product by felltg specifications. In the
second phase follows some kind of testing of thedpct which is usually not a
formal structured specification based process, ibstead, more like exploratory
testing. If testing results are satisfying for thestomer project ends and the product
is released, but if defects are found, the progmes one step back into the
development phase and tries to fix the defect. Tikiag, developing and testing
cycle can be carried on until the product satistles customer, resources end or
somebody has the courage to blow the whistle anditerThere isn’t usually any
predefined strict deadline for these projects d¢ras been exceeded a long time ago
and project just tries to complete the assignmeirtguthis model. There is not any
separate testing phase in this model, but tessincairied out in the development
cycle where all three steps programming, testiryradesign are constantly repeated

until the project is over. [4, 20]

Informal Code Test
Requirements Final
and % Q Product Release

Specifications

Redesign

Figure 8: Code and Fix development model

34

Waterfall Development Model

Waterfall is the most famous of the traditional eleyment models. It is a
deterministic process that consists of differerdcoite steps. It is used in the
development process from the tiniest programs ty large projects, because it is
simple, sensible and scalabkgure 9 shows the usually used steps of the modern
Waterfall model from requirements to product reéeabhe project that follows the
Waterfall model has to do every complete step uhtly can proceed to the next
step. At the end of this step, the project shoustkensure that all required tasks of
that step are carried out exactly and without lomsés. Moving from the preceding
step to the next makes this model look like a walieln some new variations of the
modern Waterfall model, little overlapping and gpiback to preceding step is

allowed, but the original model did not accept tired of behavior.

Requirements Iﬁ@

Analysis ﬁ

Jiz:::; Design E:ii)7
Implementation %

“Omen| Testing E::§i>7

Product Release

Figure 9: Waterfall development model

35

The discrete nature of this model makes it eadpltow. Every team in the project
knows exactly what to do in each step. If evenyghis well defined, the specified
deadlines are easy to accomplish. From a testingt md view this is a huge
improvement compared to the two earlier models.rédjuirements are well defined
and testers just have to follow specification wheaking test cases and when
analyzing results. If the project follows the ongi model, finding a big defect from
requirements it means that current release canaqiublished and a new project
have to be started to get the defect fixed. Alke, hig downside is that other big
changes after requirements are not allowed orast welcomed, because it means a
need to start from the point where the change ésle@ and do all proceeding steps

again. In most cases the big changes are shiftdek toext release. [4, 20, 22]

Spiral Development Model

Spiral model is an iterative model developed byr&oehm in 1986. The model
combines elements from all three preceding modedisaalds iterative nature to the
development. It means that there is no need tmeeind specify all requirements at
once or to implement or test in one phase. The isualggests six steps iteration
where smaller parts of the project are done in éachtion phase, until the product
is ready to be released. These steps and spinalenat the model is presented in

figure 1Q

36

Iteration levels

aenea]

R
0;5’{‘\{\9
Final
Froduct

Figure 10: Spiral development model

Six steps are:

1. Determine objectives
Identify risks and resolve them
Evaluate alternatives
Development and testing

Plan next level

o gk~ N

Decide approach for next level

The project should repeat these steps until thed finoduct is ready to be released.
From the testing point of view this is an easy ftdsi&cause the tester will have
specifications to follow and the possibility to dgg requirements for the next

iteration level, if defects are found. [4, 20, 31]

37

5.2. Agile development models

Agile development models are the new approach weldpment of software. These
models have gained place from traditional modedsabise agile models offer one
major advantage against traditional models, thengbs are welcomed during
development cycles. Agile development models learonir concepts presented in

the Agile manifesto [32]:

“We are uncovering better ways of developing softwar doing it and helping
others do it. Through this work we have come taezal
Individuals and interactions over processes andstoo
Working software over comprehensive documentation,
Customer collaboration over contract negotiation,
Responding to change over following a plan...
That is, while there is value in the items on tight; we value the items on the left

more”

Beside this manifesto agile development has twelieciples that every project
using agile methods should follow. In those pritesp the main reflection is
developing working software, while keeping customsetisfaction in mind, with trust
and honoring everybody involved in the developnarhe same time. Also, one of
the key principles is to be able to deliver worksajtware frequently, with shorter
timescales. These concepts have been the key finivilne successful entrance of

agile development model. [20, 22, 32]

In the projects point of view, agile developmentdelooffers solution in challenges
that are out in modern software business like; timenarket has been decreasing
tremendously, minimize waste or unnecessary wosk &nown as features that
nobody will use, fast and easy correction of defectquirements of products are
changing more rapidly than earlier, developmenbaigy in every area is increasing,

and the life cycle of technologies is shorter noayesd [22, 30]

38

Agile development models are iterative and increlaemodels where in each cycle
there is the intention of doing only a small pamtiof the whole product. The
difference between agile and waterfall developmmoidel against time and the
iterative nature of agile development models carolmeerved irfigure 11.In each
cycle, every phase has to be completed to be feadkge next iteration round. If the
cycle is unfinished at the end of the time windawyill be considered ongoing and
the team will try to finish it before taking anyhetr tasks. When this happens it
means losing a little bit reputation as good argpeeted team in project. This way
teams try to take only portions of work that theyn dor certain accomplish during
the development cycle. Steps or phases neededke this small proportion differ

according to the used agile development model.

Requirements L

‘ Specifications h

> Code —L
Testing m

—> Release

Time

Agile:

F Iterative & incremental
E
D
C

s Each story is expanded, coded, and tested

D * Possible release after each iteration

C
[alefalefla]e]la]e

Ito It1 te It3 It 4

Figure 11: Agile versus Waterfall development mod€dl?2]

The two most known and popular agile developmerthods are Scrum and extreme
programming (XP). Both methods tend to developvearié in short iterative cycles
and have different steps and tasks scheduled duhiege cycles. For example,
Scrum calls development cycles as Sprints and intt{Re are called iterations.
Sprints and iterations have both fixed time windawvd sprint is recommended to last

2-4 weeks and iteration 1-3 weeks. In the beginoingach sprint there is a planning

39

meeting where user stories are selected, whictesepts tasks for the team, the same
naming is also used XP method. Each day the teasndadly scrums where
yesterday’s achievements are told as well as thkstéo be done today and the
possible obstacles to achieve today’s goal. In ¥Rtent is pretty much the same,
but the name of meeting is the daily stand up mgetit the end of sprint there are
two meetings demo and retrospective in scrum methlbd demo meeting is held to
demonstrate new completed user stories and thoseinaplemented to other
developer teams and customer called product oviRedrospective meeting is held to
look at development ways of working used duringrépand how those could be
improved. In XP, similar activities are held intally after the end of every iteration.

There are not any official meetings. [33, 20, 22]

Testing in the agile development model is organizea different way from the
traditional development models where testing coate®st always as the last phase.
In agile models testing is the key to make userefcao pass, without acceptance
testing passing user stories are not ever accepig@nding. Many projects that have
selected agile models also use test driven-devedaprfTDD) and acceptance test
driven-development methods as their way of workihg. TDD workflow starts
similar to the traditional models with planning addsign, but as second phase or
step is implementation of test cases that are eéageto be passed when the
corresponding part of code is ready. In TDD thast tases are at unit or module
testing level. Then as third step the actual imgletation and programming is
started with the only requirement to make thosedases pass. When test cases pass,
the implementation can be considered to be readhe dcceptance test driven
development (ATDD) has the similar principle. Thdyodifference is that test cases
are done at functional testing level. The ideadscobntinuously execute those
readymade tests to see when the implementatiogaidyr In a situation where the
developer would think that implementation shoulddedy, but test are still in failed
state, then those test cases and code have toibeed more carefully to see which
ones are done incorrectly and make the change dingty. These methods can be
considered to emphasize testing, which is quiteosipe to the traditional models.

Advantages of making test cases first is to minemaste implementation, detailed

40

specification in form of test cases, quick feedb&mp and team’s concentration
only in valuable things. These issues make devetmpriteams more aware about
business and customer demands, which usually ledmbtter quality and increase
velocity on development. [4, 22, 30, 33, 34]

5.3. Distributed Software Development

Distributed software development (DSD) has becoroenamon practice for modern
software companies around the world. In the liteatDSD is also known and
referred in some articles as global software deraknt (GSD). The distinction

between these two concepts is normally thin andu@agence in this thesis those
two concepts are considered and used as interchllegeDefinition of DSD is a

development project that is divided between mudtiplorking sites and locations,
meaning that developers cannot work or meet fadade daily and to enable that

developers have to travel [29].

There are many reasons for taking DSD into usinguth as the possibility to
practice time zone independent 24 hour developnrediice cost by outsourcing
part of development in low cost countries with asceand obtain the best well-
educated workforce etc. All this has been enablednituration of the technical

infrastructure around the world. DSD is sufferiiigm the same problems than
single-site development such as lack of commurinatinadequate or insufficient
definition of requirements and specifications, casid schedule problems and
deterioration of quality. In DSD these problems even emphasized and few more
challenges can be discovered. If different sites lacated in different time-zones
with long distance from main development site they exist cultural differences

between sites. These challenges need special iatteit making meeting

arrangements and the development schedules, dgfioincepts which can be new
and different for some working sites and makingesof sufficient and redundant

network connections. Studies show that using DS ta&e about 2.5 times more

41

effort to complete some tasks than one locatioredbadevelopment, because of

communication and coordination related challenfi.30]

DAD is a special case of DSD. In the agile develeptrmodel one basic principle
that manifesto emphasizes isdividuals and interaction over processes and ool
[32]. Hence requirements can change rapidly sincdemands for efficient and
frequent communication between sites. Without ksl of communication there is
the possibility that there are issues with loweasmess and poor coordination. This
will lead to losing benefits of distributed devefopnt and can cause a negative
impact on other sites. To avoid these possiblelprm® there are recommendations
to use various tools and means such as instant agiags software,
videoconferencing, and desktop sharing programg. [22%ogether, the main
recommendation is to enable direct communicatidwéen developers to help avoid
problems [30]. Other studies suggest that presehcastomer or customer proxy is
a key factor in keeping specification requiremertd projects well coordinated [29].
Customer proxy is a person or team who acts agseptative of actual customer

and can make development decisions based on custlemands [29, 30].

Distributed development model impact on testingiisilar to the distribution effect
on development. Testing faces same challengesireegents and possible problems
can be avoided with same methods. Also mockedfagerand modules used in unit
test in different sites are causing a big challemgel increase in defects on
integration testing. Most of the problems occurneden mocked module had
outdated interfaces or message parameters. Few gpoattices and
recommendations for testing are to keep test datdyding test cases, test tools,
configurations etc., available for all developm@errsonnel in all sites. Software
under test should be at same baseline in all diefore the testing is started. This
enables testing to be done in the same manner éimdhe same configurations in all
sites. Changes on testing tools have to be syndewnand informed clearly
throughout all sites. [29, 30, 35]

42

5.4. Continuous integration process

Continuous integration process is a wide concepwinich modular software is
developed and tested in a continuous way, pieqadne. Martin Fowler describes in
his article about CI, Continuous Integration is a software developmeractice
where members of a team integrate their work fratjye usually each person
integrates at least daily - leading to multipleggtations per day. Each integration
is verified by an automated build (including tesi) detect integration errors as
quickly as possible36]. This is maybe one point of view where onlyituand
module level testing is considered to be part oftiooous integrationFigure 12is
presenting this kind of basic and traditional coatius integration workflow
conception. In agile development model Cl is esgBciimportant, because it
enables having quick feedback on little changesiwhiappen often and is one of the
key building blocks of agile development. [22, 38]

P

-M Feedback

Mechanism
Developer Generate

Commit Changes

Il

| Build Script

0
|
ﬂ—- Commit Changes —>

Developer _
Compile Source Code,
Commit Changes ~ Subversion Cl Server Integrate Database,
[~ i/ Version Control Integration Build Run Tests,
| Repository Machine Run Inspections,
a Deploy Software
Developer

Figure 12: Components of Cl system [38]

The most simplified CI process might not includeytamg else than automatic
compiling of source code. Many consider that Clcpss without automated testing

is not real Cl, just an attempt to see if the cal@ompiling or not. One could

43

consider that the compiling process already tdstsiritegrity of build, but without
real testing the value of such process is justrifywthe syntax of the programming

language.

Continuous integration is mainly used to reduceettgyment risks. By integration
software changes multiple times a day and by ddingnitiating automatic
continuous integration process, defects are deteate can be fixed sooner. Usage
of the automatic Cl process reduces repetitive raanasks and leads to the
possibility of generating deployable software ay ime. When integration is done
many times a day it gives better visibility abdug project’s progress and status. For
development teams it will enhance the confidencehénentire software product and
increase motivation as a side-effect. Without auwatibien continuous integration
process development usually suffers from late deéiéscovery, lack of project
visibility and decreased quality of software. Digantages of Cl can lead to lack of
focus in overall architecture which eventually wikad to the architecture’s
degeneration. [37, 38, 39]

Cl can be considered with larger scope than justgnating software blocks and
executing unit or module test after successful dbngp Cl systems have as pre-
build phase’s normal continuous integration codegration and unit or module
tests. Then with some rule a complete build is dedpand tested with automated
functional testing. The rule for making the comelbtild can be based on schedule
or amount of integrated changes. Often completesy@tems can contain at least
functional testing after complete build is compil&dhis larger scope CI gives even
more information about build’'s and software’s oVerhealth and increases

confidence on the development’s progress. [3739B,

44

6. Fully automated functional testing with Robot

Framework

This chapter presents requirements, equipment @mwients and tools used to
implement fully automated functional testing fransekvfor MME network element.
It will demonstrate the processes and methods wgeite achieving this fully
automated test scheme goal. Also it will providgeaeral description of challenges
met during this process and resolutions found iaisé. The chapter describes the
actual decisions and actions taken during testnaation scheme development and

gives explanations to readers of why certain pagre chosen.

One of the agile development models key advantéagdhe ability to adapt for
changes and increase development velocity. To aehifiell capabilities of agile
development one must use TDD and ATDD in testinlgis Tequirement sets high
demands for testing tools and usage of availalsknte environments. Tests have to
be easily reproducible, modified and transferre@rother environment, if needed.
Also agile development sets new demands for reigredssting, because in every
sprint all previous functionality has to be verfiagain. This means full automation
goal for every new functional test case test ereggmevill make. Project’s goal for
full automation sets a new demand for testing fraork; all result report generation,
log collection and test execution tasks in otherdsoroutine work has to be
automated. With these demands fulfilled, test ezwyia are free to do more complex
tasks which cannot be automated, such as desigmidgnaking new test cases. [34,
40]

Practical work Robot framework’s testing library svat first done with agile
development method as product development. Fotaklsa Robot Test Automation
team (Robot TA team) was founded. Later on it tdrnere like a supporting task
which was not feasible to be done in agile sprifi®duct development was still
using agile; hence Robot TA team had to be awaree@fiirements set to testing

45

framework couple sprints beforehand. Further dguaknt of Robot test library in

other hands was still carried on with agile deveiept method. [25]

6.1. Test automation with Robot Framework

Robot FrameworKRF) is an open source Python-based test automatiarework
for acceptance level testing based on generic kedsvd@ est cases are done by using
tabular syntax in hyper text markup language (HTMk)in tab separated values
(TSV) [41] files. RF comes with standard testingprdiry set which includes
commonly used functionality of testing methods. Néwaries can be implemented
either with Python or Java. [25, 42]

RF high level architecture can be seefignre 13and it consists of four main levels:
Test data, RF core, test library / test tools abld.STest data consists of test case
and resource files. Resource files can be a caledf higher level user keywords,
or variables. The RF engine is Python programmamgliage based program which
will interpret those user keywords written in tésta and use test library keywords

to execute commands in SUT. [25]

Figure 13: Robot Framework architecture

46

In RF there are two kinds of keywords: library keyds and user keywords. Library
keywords are written in Test libraries with PythonJava programming language
and those interact with lower level test tools oedly with SUT. So methods or
functions in Python or Java are called library keyas in RF. User keywords are
higher level keywords that combine those lower liek&ywords written in test
library. Sometimes user and library keyword can diectly mapped without

combining multiple lower level library keywords aser keyword. [25]

One of the main features of Robot Framework is le@bgyntax test case and
resource files. If the test case file contains ipldttest cases it is actually referred as
test suite. Also, the directory which contains npldt test case files is referred as test
suite, and a use of hierarchical directory strictalso divides RF suites in
hierarchical structure. This structure follows thdes of Python hierarchy in
variables and keywords. In those rules a childeswitl inherit values and methods
of a parent suite which can be overridden in thiédcsuite. Also the rule of the
nearest implicit name match is valid. These rulss apply to resource files. Only
exceptions for these rules are globally definedatdes which cannot be overridden.
[25]

Test case file can contain four sections: Settingariables, Test Case and

Keywords. The settings section is used to impostirig libraries, resource and

variable files, and also general metadata as & $enel documentation, common

tags, setup and teardown for test cases or suitdbeaset in settings section. This
metadata can be overridden in test case sectithe ifest case specific settings are
needed. [25]

In the variables section there are different vdeskas integers, strings, lists and
dictionaries for common suite level usage, that banintroduced. The test case
section is the place where the actual logic resided it is done by using a
combination of available keywords. The last sectidrtest case file is keywords
where the higher level functionality is made by tdimng lower level keywords

such as library and resource keywords to more aoamé and practical form. Also

47

loose functionality as loops and condition statetsiean be made to make actual test

case section more readable and compact. An exarhpdst case file can be seen in
Figure 14

r C (o | L1 [Flestpic: IsersiDiopafRobot examples/Example. il
2] Most Yisited | | Metropolitan Subarea... | | Mol ing Home | | Windows Marketplace () Karaportti - Yhtsystie.
| 7] Example [=]
Example
Setting Value
Documentation This is an example Test Suite
Suite Setup Example Suite Setup
Suite Teardown BExample Suite Teardown
Test Setup Example Test Setup
Test Teardown Example Test Teardown
Resource BExample Resource himl
Library Collections N
W
Variable Value
${number} 3 | ‘ ‘
Test Case Action Arguments
E);agrgp\e Tk [Documentation] This i5 an example Test Case
MNumbers Should Be Equal |${number} \3 ‘
Keyword Action Arguments
Numbers Should
Bt [Arguments] FHargl} $arg2}
[Documentation] This an example
Should Be Equal As
Niribiee $arg1} $larg2} oK

Figure 14: An example Test Case file

Test cases can be executed based on test case ridene, directory and tags. Tags
are an option to classifying test cases by usieg fext. Reports and logs are also
showing statistics of different tags and report ttan be set to even organize test
cases based on tags. In test case execution &t can be excluded or included
based on tags or set as critical or non-critical results. Robot Framework uses
command line interface to execute test cases atidwfgprogress outputs of

execution, which are not very informative as yon seae irfigure 15 [25]

48

e O WINNT system32 cmd.exe

an example Tt?st Suite

8 failed

sdippaserobot examplesSoutput.xml
dippasrobot examplessreport.html
ippasrohot examples™log.html

IC:“\Users“Dippa“Rohot examples>

Figure 15: Robot Framework CLI

There is the possibility to view more specific infation about execution through
tailing debug file. As for the test automation poaf view this lack of interactive
view does not cause any inconvenience, but fodéwelopment of a new test case it
has been found as a restraining factor. Outputsxe€ution are XML based output
file for integration with other possible continuougegration systems and HTML
based report and log files for a human readabladorwhich can be seen figure

16. All test data files are in textual format and danstored and maintained easily

with a version control system. This makes it pdssib store test data, together with
products source code. [25, 43]

@ Generated
Example Test Report sonsoni7 s et omnses EXample Test Log 20000117 203147 GriT 50
3 days 13 howrs ago 3 days 13 hours ag
Summar{sinformation Test Statistics
Al tests passed [Total Statistics [Total | Pass [Fail | Graph
This is an example Test Suite [Critical Tests | I I
20100117 20:31:46.989 Al Tests I N I 1|
20100117 20:31:47.036 [Statistics by Tag [Total | Pass | Fail | Graph
000000047 [NaTags 1 H—\“
N [Statistics by Suite [Total | Pass [Fail | Graph
Test Statistics [Example 1 o | 4‘
[Total Statistics [Total | Pass [Fail | Graph
[Critical Tests 1 [1 [o |
[All Tests T 1 o 1|
[Statistics by Tag [Total | Pass [Fail | Graph
[Mo Tags | | | | [——
[Statistics by Suite [Total | Pass [Fail | Graph s an example Test Suite
[Example [+ [+ [o u—\g‘ users\dippatrobot examplesiexample. html
Start/End / Elapsed: 20100117 20:31:45.989 / 20100117 20:31:47.036 / 00:00.00.047
Overall Status: PASS
Test Details by Suite Message: 1 critical test, 1 passed, O failed
1 test total, 1 passed, 0 falled
Metadata / Tags | Crit. | Status Message Start/ Elapsed EISETUP: example re
1 critical test, 1 passed, O failed | 20100117 20:31:46
WA | PASS |4 tost total, 1 passed, O failed 00000 EITEARDOWN. exan
20100117 20:31:47
yes | PASS Sonn

ex: Test Setup
EIKEYWORD

Docum
Start/End / Elapsed:
KEYWORD: B

nurmber), 3

ple
20100117 20:31:47.036/ 20100117 20:31:47.036 / 00:00:00.000
.Should Be Equal As Numbers S{arg1), ${arg2}, OK

TEARDOWN: example resource.Example Test Teardown

Figure 16:Example report and log file

Robot Framework is a Python based tool which ierpreted language and does not

need to be compiled before execution. RF offerspmlibrary application

49

programming interface (API) which can be used tteed, enhance or make new
Test Libraries. Test Libraries can be done withhBgt or Java, which are both
interpreted programming languages. This feature esiak easy to update and
enhance both RF and Test Data. Interpreted langisagiso platform independent,
only an interpreter is needed to install. Thereaready many commonly used Test
Libraries available at project homepage, for exarélenium for web application

testing, and libraries to use SSH, Telnet etc. 43,

6.2. Development of Robot Framework testing library

Development of Robot test library was done with #gde development model by
Robot TA team. It was started at the same time raslyscts development. The
MME’s product development started with tasks relat® general software
architecture design, framework studies and planniis at first only module and
unit testing was the only feasible testing method dode. There was no need for

E2E testing framework right away.

Our team started by choosing suitable tools, ggttamiliar, and training to use
those tools. Team started to develop our own Rdabst library for the MME

element. Right from the beginning, our goal waddsign and implement the library
in a way that it could support fully automated itegt Also guidelines and
instructions on how to use our testing framewor&utth be made in ATDD style.
Rethinking of test automation was our team’s cartirs task. At first, how we could
make one test case automated and make it indepefd®n other test cases.

Proceeding with design task; how could we exe@gedases in test suites. [25, 40]

6.2.1. Getting info, formal training and self learning

The project started with gathering information fr&®’s project's webpage and the
user guide. Formal training on Python programmind Robot Framework for early
stage developers was arranged. Robot Frameworlkrtgaivas held and given by RF

developers. The direct formal training was neededite our team a kick-start. At

50

the same time, took place the introduction to agis/s of working, LTE network
architecture concerning especially MME network etetnand other tools for
example: subversion-control (SVN), LTE network eatats and Pydev an Eclipse

plug-in which is integrated development environnfentPython. [42, 44, 45, 46]

After formal training there was a couple of weetitae to get hands on experience
with new tools and the environment. During thisdina new RF test automation
team was founded, including 5 full-time members arghrt-time more experienced
testing specialists. This hands-on training pevias used to get more familiar with
tools and make a couple different kinds of architesd models for our future testing
framework. At the end of this period, models arebisiwere gathered and merged as

one architectural structure for our future develepm

6.2.2. Beginning of Robot Framework Tester Development

In the second phase right after the formal trairfimgRF test automation team, the
actual development, designing and implementati@rtest with the help of RF
developers. One of the first steps was gatherirviedge on how the test library
should be organized and done effectively. Mindsas wo make this library and
testing framework suitable for fully automated it®$t so no hard coded values or
manual process steps would be allowed. This work seheduled to be done in agile

mode and using Scrum method in two weeks spria@. [

Development started from control library for LTEtwerk element emulators which

act as real network elements in testing environn2esign and development started
from zero and the first step was enabling connestto emulator PC hardware and
SUT. The MME network element was still in an eatgvelopment stage and there
was no possibility to take mature enough releaseiwtould be used for end to end
(E2E) testing purposes. User interface was platodmk similar to the one used in
previous generations SGSN hardware and so SGSNJa@ded to be used as first

test environment for our library. LTE emulatorseattn similar ways to the previous

51

3G or 2G emulator releases, which eased our kark. sthis meant that according to
the testing library development point of view, thasic knowledge and all needed

resources were available.

In this early stage of development, the decisiors weade to divide test data and
development into two separate parts. In the fiest,ghePythonSourcdest library
included MME specific RF Test Library made with Ryt programming language
and supporting tools. Other pditstersdesigned to include all other RF related files,
such as html based test case in§idatureXfolders, resource files iResourcesand
all needed environment specific configuration filesEnvironmentLibraryfolder.
Figure 17 shows this early stage tester structure. The diesign of the test library
contained only EmuLib for emulator control and fdah specific DxMml part for
connectivity and basic commands to SUT. For keefiiag and folder harmonic and
solid, it was decided store it under SVN. SVN m#deasy to track and revert any
changes, if needed. SVN was a very feasible solubecause all files were used in

textual format [46].

[= i) MME Tester
El) PythonSource
=1) trunk
70 DML
I Emuib
[i) Testers
= i) Flexiig
le) EnwironmentLibr ary
i) Featurel
) Featurez
I Resources

Figure 17: MME Tester structure, first design

The full automation target was one of the team’snngoals since the beginning.
Another requirement to reach the full automatioge¢awas the ability to execute all
tests in any free environment. All testing envir@mis were corresponding to each
other in testing software- and hardware-wise, atifferences are in configuration
like IP-addresses, identification numbers etc. Tasemblance made full automation
more feasible. In RF test cases, it was decidediniplement it through

parameterization of all needed variables.

52

All constant variables should be written in reseunc test case files and environment
specific are read and parsed from environment Bpeconfiguration files in
EnvironmentLibraryThose files are written as text files with enviment name plus
underscore plus config likeeC-ATCA-1_configand as postfixpy which will make
them Python code files. This makes the usage sktfiles easy inside the RF testing
library, because those can be imported directhbiary source code files or into RF
test cases. Then variables are valid to use witApytparsing etc., only requirement
is that configuration files are written accordirgy Rython syntax. This allows the
usage of all necessary environment specific vaggland parameterization of test
cases. There are only two mandatory parametershwiage to be given as global
variables in RF execution command. The first on@BSTENV which will be the
name of the environment where the execution tak@sepe.g.IPC-ATCA-1. The
second one i8VID, which is the short form for worker identificatiol/ID is used to
map user specific information, for example tesifqmaths which the user is using
and those paths are defined in environment speadofiguration files. For
automation and CI there is a spec&lD which launches other activities, like
automatic test data update from SVN etc. This vedlyconfigurations, settings and
variables can be easily mapped for certain enviemtsn and all tests are truly

independent and can be executed in every environmen

After design and implementation of the first versiof the RF test library, a test
phase of testing framework took place. Tests weseerproof of concept style than
actual functional or defect finding tests. All ®stere only empirical and based on
showing demo of functionality and capabilities ob®t Framework with the
assumed product. No preliminary testing plan wasttew, only preliminary
requirements were available beforehand. Demo wesessful and RF was accepted
as the main testing framework for MME network elameAfter demo RF test

automation team was dispersed and reorganizedtiaref challenges.

53

7. Integration testing and tool development

This chapter describes actions and tasks needewydand after shifting from pure

development to production phase. After designihg,implementation and proof of
the concept demo of RF testing library’s first vens started tasks for support,
training users and competence transfer. The MM ordt element reached enough
maturity to start E2E testing. First real E2E tesith real element put RF testing
framework to production which caused a lot of supmnd error correction as

maintenance tasks for our team. At the same tiramathd for new keywords and
functionality for testing library increased greatRReal E2E testing and feedback

from users, lead to the redesigning of the tedibrgry structure.

First E2E testing was done with NSN proprietary Lii&work element emulator
software. Emulator software uses fuzzy methods vdwepting received messages
and does not inspect every value inside the megsaganeters to be correct. This
makes it more feasible in preliminary testing, véhenly certain parameters and the
total message size is evaluated. Second phase @edsophisticate testing was done
with testing and test control notation version 3ICN3) tester. TTCN3 tester’s
development and compiler was acquired from and dynéhird parties. This was

necessary to guarantee unbiased and independeng tesults. [48]

Acquirement of a new component like TTCN3 testarE2E testing also required
support from the test automation framework. Degignciples of framework were
also modified to support different testers in th&ufe without massive redesign or
implementation. This work was carried out by theb&atest automation team along
with competence transfer and training for Robomieavork users. The first real
testing experiences with Robot framework led to s@nhancement requests for the
framework. This initiated a redesign process to pa#g of the Robot framework
structure, to make it more suitable for test degelent and test data handling.

54

7.1. TTCN3testing language and tester

Testing and Test Control Notation Version 3 is aterinationally standardized
language for writing and controlling tests. Thegaage has been developed and is
still maintained under the Methods for Testing aS8g@ecification Technical
Committee (TC-MTS) at ETSI. This group consistdla leading experts from the
testing community organizations and major industriambers. TTCN3 is based on
Tree and Tabular Combined Notation version 2 (TTCMWRich is the preceding
language of TTCN, developed and maintained by #maesgroup. The language
changed its name, because version 3 does no losgetabular format and is more
like conventional programming language. TTCN hagrbever 15 years the
standardized testing language and is widely usetthégoftware industry. Version 3
had its first standards in year 2000 and has bedxtesever since. [48]

TTCN3 standards are accepted and followed by tkéntg tool industry. The
language can be used to specify test cases andthath verify standardized or
proprietary solutions. It has been already usenhase tests for complex and very
large industrial systems for example in telecomrmoation for 3G systems. TTCN3
testing language looks and feels like a conventipnagramming language and it
has well defined and standardized syntax. It has lmkesigned for testing purposes
and has a couple ready-made embedded specialgtésétures like timers, verdict
and native list types, subtyping etc. TTCN3 languagso supports its test
components usage as emulated interfaces, whiclcegdat environment complexity
and maintenance load. This enables a completebaied testing environment and

test execution. [48]

TTCN3 language itself is not executable and alwagguires a compiler or
interpreter to be operational. There are many corialeoff-the-shelf tools and test
systems already available and open source tooleerdly under development.
Adoption of the TTCN3 language can be quite striddgtvard and easy with these
off-the-shelf tools. [48]

55

TTCNB3 tester or actually compiler which is usedasting of MME was developed
by a company called Telelogic, now acquired by IBM added to IBM’s Rational
Software family [49]. Besides the compiler therdhe need for variable, message,
codec, function and procedure definitions for #e&dr to function. This work, which
is actually tester development and enhancemeaariged out by a third party for us.
To make tester according to 3GPP standard spdaifitsais a very demanding work
and has to be done by an outside contractor tepresn independent, unbiased and
objective point of view. Also, for customers itdassign of unbiased testing when the

test tool is built by an independent third party.

In RF there was need to build an interface for aimg the TTCNS3 tester. At first it

only needed to start a few sub processes for the MBCN3 tester process and
collect logs and analyze the verdict from standard And besides this, there would
be monitoring and log collecting tasks from SUT.CN3 tester tool carried out the

actual testing via interfaces of SUT as shown is $ktting infigure 19.

TELMET, FTFP % Qéa
%, &
TTCNS3 test component R %éqr &
for 51 interface & .§§
% w
TTCN3 test component <22 5o MME
for SBA interface

&
TTCNS3 test component

for 511 interface

Figure 18: Robot Framework and TTCN3 combination

56

Another main feature was also the parameterizatforariables used in TTCN3 test
cases. Without this parameterization full autonmatiannot be achieved. Variables
are stored in the environment specific parameterifi TTCN3 testers’ installation

path, which TTCN3 uses when executing test casésnhation on which parameter
file TTCN3 should be used is given as parametethan startup script. In MME

development this file is named with the same emvirent name prefix which is used
in TESTENVparameter in RF and postfigar e.g.IPC-ATCA-1.par To make sure

the same values of variables are used in RF and\BTi€ster, in RF a feature has
been built to read and parse variables from enmiemt specific TTCN3 parameter
file at setup phase of each test execution cydies Way variable values are exactly
the same in RF and TTCNS tester. Parameterizatsmsaipports the goal of a fully
automated testing environment, because in test taye isn’t any hard coded
variable values and all variables are taken eiflman the environment parameter file

or used default values defined in TTCN3 testercWlare not environment specific.

Later on there came up a need to make check upstardogate information from
SUT during the test execution. This kind of featin&ps to verify MML user
interface commands and outputs inside SUT, butrtbst important feature is giving
commands through MML or service terminal which wiitiate a procedure. A good
example of this procedure, that can be only triggdrom inside the SUT, deleting
the existing and active subscriber from MME whidmowd lead to gracefully
teardown all subscribers connections. This kindeature is necessary for example
when the element is going under maintenance bredkta load has to be moved to
another element. To achieve network detachmenha# to be done inside the
element and the functionality cannot be triggeratside the SUT. To allow this, a
synchronization and signaling channel between tR€N3 tester and RF was

designed and implemented.

Synchronization needed implementation both in R& &MCN3 tester. In TTCN3
tester there was already the generic implementdtorexternal synchronization
available, but it needed some modifications to bable and compatible with RF.
The TTCN3 tester was already doing internal syneizadion between testing

57

components for helping out timing issues and imereisibility and debugging
features. The basic idea of synchronization betwesincomponents is quite simple.
In TTCN3 test case creation all test componentscivliare called Parallel Test
Components (PTC) are defined in the Main Test Carmapb (MTC) also
synchronization points are named and number oftegnization parties are written
here. When test case execution starts MTC stamgtbfor PTC’s synchronization
messages and when PTC reaches the synchronizaiionimp its own test execution
flow, it sends the synchronization message withdieerto MTC and starts waiting
for the reply from MTC. When MTC has got all synghization messages from
PTCs with a successful verdict, it will send a ‘gjeead” signal to all synchronization
parties and they will carry on the test case execut his synchronization procedure
will loop until all synchronization points are coteged. If the PTC synchronization
message verdict is not successful, MTC will immesiasend a stop signal to all
PTC'’s, because there is no point to continue tgsditer some of the PTC’s have

failed. Graphical presentation of this synchron@atlow can be seen iiigure 2Q

TTCHZ tester intemal synchronization message flowchart n simple Attach exarmple

MTC

PTC1

FTC2

<7 wait For "init" from al PTCSs

Work for initialization |

Init sync message

- Initialized >

A A

Init sync message

1
| wark for initialization |

< Initialized -2

Continue

bl Continueg

>

\wait For "attach” from all PTC's

Atta

Work after "init" synchronization points

< Attach -3 < Attach p-2

ch sync message

FY

Aftach sync message

Continue

[
v o

Continue

Post Attach procudures

R

——

Figure 19: TTCN3 tester internal synchonization exmple

58

The synchronization between RF and TTCN3 testerksvayuite similar to the
TTCN3 tester’s internal synchronization with fewcegtions. The first exception is
the initialization of a signaling channel betwedre fTTCN3 tester and RF. The
signaling channel uses server - client model wkieeeT TCN3 tester acts as a server
side and RF is a client. Communication is done &ipgitelnet protocol [50] in port
55555, because normal 23 port is already used bye®®t server service and it
would not be feasible to use reserved ports [S5liplement proprietary solution.
The RF is monitoring TTCN3 tester's standard outptream to catch certain
indication string, that initialization of synchraation signaling channel server is
done and RF can connect to port 55555. Then a silmgohdshake is carried out and

the signaling channel is ready to be used.

The second exception is communication flow betwe&€s and MTC in a case of
external synchronization point in use. In the TTCtd8ter only one PTC can be
using this external synchronization with RF, beeaasrrent simple implementation
of this protocol cannot tell the difference betwelifierent PTCs. As for the rest of
PTCs these external synchronization points aresiiold and look like internal
synchronization points. When the PTC reach extesyathronization point with
successful internal verdict, meaning all procediiefere synchronization have been
successful, first it will communicate this reachiafysynchronization point to the
external interface which is external synchronizasa@naling channel server process.
The server process will deliver this message toviich now can act and do some
check up, interrogate or command functions. Afterias done functions defined in
RF test case it will return the verdict of thoséiats with a simpld?ASSor FAIL
message. Then PTC will deliver this verdict to MTahich will then give the verdict
to continue or teardown to all PTCs. This helps TECN3 tester and RF to
terminate the test case execution gracefully. A pathe successful flow of this

external synchronization can be seefigare 21.

59

TTCMS tester extemal synchronization message flowchart n simple Attach exanmle

MTC FTCL Frcz Robat Framework

Create External synchronization ART Extemal Synchronization APT

RF Test Case execution

< Initialized >
B Extemnal Sync #PL Initialized infarmation Waiting for TTCH3 synchro-
nization 1o be ready
»

Extemal Sync #PI Initialized information

Telet (55555)

>
: : <
Wait For "init" from all FTC Work for initilization \Werk for initialization Connection Ok -
Initialized

< Initialized >

Init sync message

Tniteync oo faf
Waitng for sync message \Waiting For "attach®
Continue fromPTCs
Continue

T

€

Wait For “attach” from all PTC's | \orke after “init" synchronization points |

attach Attach sync message .
—

Attach sync message —
> —_—

attach

P attarh sync messags
> —
-— Sync check up functicns

Attach sync message
- ! ? e point ok Syric point OK
Continue f— — =
3 -
— Cortinue

\Waiting for test case resuilts

Post attach procuidures |

lﬁ R ——————————

Figure 20: TTCN3 tester and RF external sychronizabn example

For unsuccessful execution of other PTCs test daseg or even before external
synchronization point is reached will lead prematt@ardown of TTCN3 tester and
with it lose synchronization signaling channel dr least never arriving of a
synchronization message or RF can crash or terenw#hout sending reply. For
these kinds of events default timeouts have beelads for both TTCN3 and RF.

These timeouts are made to be changeable.

The need to communicate verdict of synchronizapomt back to TTCN3 tester
from RF side led to the implementation of a speddlCN3 analyze library.
Normally RF will fail and stop test case executiwnen some keyword fails, but in
check up, interrogate or command keywords durin@N3F external synchronization
point this is not feasible, because then the TT@¢8er would wait for resolution
until timeout would occur. TTCN3 timeout has beehlsy default, being quite long,
because changing it is not so easy and flexiblehWTCN3 analyze library the RF
will never fail on error, but store this resultioferrogations, checkups or command
results and first return negative verdict to TTCtd3ter and wait for the tester to

finish. The similar process flow is also with erfoge executions with the exception

60

that execution continues until all synchronizatmwints are completed. At the end,
the result is analyzed according to the TTCN3 dugma possible errors are printed

out to log.

7.2. Start of integration and end to end functionality

testing

Nowadays software of complex systems is usuallyt limia modular structure. In
modular structures program blocks can be develgpedrately and tested only with
unit or module testing in which other blocks can rhecked. And even though
module testing would be done with real program kdodhere is seldom enough
module test coverage to cover all possible sitnativith external interfaces of
program blocks and their signals. When differerpasately developed program
blocks are tested together it is called integratiesting, as seen in an illustrative
figure 18.[37]

Tested
Madule 1

<=
Unit or
module tests

<
SWN Cammit

Integration Testing

Tested
Module 2

o SCM configures A new build
e and compile Ready for
= a new complete Integration

build testing

{

Tested
Module 3

e

Unit ar
module tests

<=
SN Cormmit

Figure 21: Modules combined for integration testing

61

The MME network element application software is eeped in multisite

environments, where sites are geographically lacatadifferent places and even in
different time zones. This makes integration testeven more challenging and
important, because real time change distributiomotspossible. This means that not
all program blocks or code changes are distributad all environments

simultaneously. Only a few times a week, a new detepbuild is installed in every

site to test environments. To keep the externarfate intact, synchronized and
compatible with other program blocks, developmeams have common variable
definition storage, so called public definition @omment (PDE), where each
message between program blocks and their paranaterdefined. So each site is
required to do only unit or module testing and raités passed, the program blocks
are compiled again in the main site, where the detegMME software is built and

tested for the first time in the integration tegtiBesides the application software in
complete MME element software there is a platformother words, an operating
system which is also updated on certain scheduthodgh the platform’s operation

should be invisible to the application, except smme APIs that the platform is
supporting, there are always issues or defects dbahot come up in the plain
platform testing and are only found through theliapfion testing. Those faults and
compatibility are also tested for the first timetie integration testing and possible

problems are reported to the platform developn{86t.37]

In the beginning of the integration testing, théydnol to test E2E functionality was
NSN proprietary tool, LTE network element emulatds. a normal emulator, it is a
non-deterministic and stateless tool and doesaia@ tare of previous or following
states subscriber or SUT. There were two main reafwr using the emulator as a
preliminary testing tool. The first reason was tteed for loose or fuzzy message
content handling from a tester. This gives morertoice for errors in the message
content. The second reason was unsuitablenesseshdeistic TTCN3 tester which
was more demanding of a message content verifitatol. TTCN3 tester would
also been possible to be configured and build toeptc more inexact or fuzzy
messages, but it would not have been feasible,usecéhe LTE emulator was

already capable to validate messages with enougfision. The decision was made

62

to use the LTE emulator as preliminary E2E testiogl in the beginning of the

integration testing. TTCN3 tester was selected ¢ used in more strict and
sophisticated E2E testing and it could be usedtegration testing when the product
was mature enough. Using LTE emulators as an gdrfise validation tool also

released TTCN3 tester development resources tesbe im more demanding tasks
instead of maintenance work.

Test case development is always done as manual Wérkn using LTE emulators

this means starting at least 5 or 6 different pgees in a certain order. And after
initialization you still need to give a few macroramands and analyze standard
output of emulators to find out the result of testd determine if it did go as

planned. For test case development purposes, ihes geal time interaction and

feedback on the test event. But reuse and repéptabe not so high, because the
manual work timing is never the same and risk fomhn errors is apparent. RF
gives fair advantage and ease in reuse or repégtaifitest cases. It takes care of
emulators’ initialization processes and timing elifnces can be measured in
milliseconds instead of seconds. Another great atdge compared to manual

testing comes from collecting log and monitorinigdi after tests are complete. In
manual testing you have to collect logs from theaene 5 or 6 processes and
besides that, SUT also offers various log and malemessage monitoring files

which help one to verify, analyze and debug tesecavents. In the RF testing

library implementation all those simple and repetit tasks are carried out

automatically. This makes once tested and appretestdcase execution faster and
easier reproduce.

63

7.3. Training and competence transfer for users

The task of adopting, acquiring and seeking knoggedf RF changed to sharing and
giving competence transfer to future users of Riffirtg framework. This meant an
attempt to convert existing information and tacibwledge to training materials and
events. Besides a new testing framework also th&ing method and product were
completely new and continuously changing, so thaslenthe challenge even bigger.
New methods and tools always cause change resstemch lead to the decision to
use hands on or learning by doing methods suchriasy training methodology
when passing knowledge and information to new usezams were using TTD in
module testing and in entity testing ATDD was chiose be the future method.
Training and teaching ATDD method to users wasinoluded in the first phase
plan. [34, 40]

The first phase of the training and competencesteanvas designed in three parts.
First part was general information of RF, relateols and their advantages. The first
part was targeted to all teams and persons woikiMME development and for that
reason it had to be a light and quick presentaifdRF. The second part was a more
detailed description of RF libraries, basic funetibity and modifications made for
MME'’s testing purposes. Also the recommended testacture, the use of SVN and
the recommended tools were introduced. The thind was most significant and
important for future users and was arranged asndshan and learning by doing.
This way training and competence transfer couldnmsified according to each
team’s needs and preferences. A hands on workshepheld first for teams with all
test engineers and continued with other similasises, if needed. After key users
got their training the assumption and idea was tiey will share it to other users
and RF TA team would only give two first parts @ihing for new comers and give
support for key users in difficult cases, if need@dfirst the need for support was
quite high as expected, but soon after key usesserbbd more information and

turned it into tacit knowledge, and requests faidand simple problems vanished.

64

7.4. Testing framework structure redesign

RF testing framework is under continuous developgnaed enhancements. Need for
change comes from continuously changing SUT antthtetools. At the beginning
the structure was considered only from a highehnitectural perspective as only test
library and test data separation practices. Asctese amount and future usage model
was coming clearer, the design needed some impmveior test data part. figure

22 this change is presented as it was in design plhagsest libraryPythonSource-
folder one can see two foldetags andtrunk, after a short experimental period of
frozen versions of RF test library, also calledstagas decided to wind up. The need
and schedule for enhancements and new features towasfast for periodic
development and so the decision was to use trurdneh as our production revision
also. This decision required more focus on testamgce even every minor change
has to be tested thoroughly before committing i8%N. And other visible changes
are Libdoc which is used to create automatic docuateon of test library,
MonitoringAndLogs library which contains log coltewy and SUT monitoring
functionality, NsMml which contains SUT specificsting functionality, NsUnitTest
is experimental library to make unit tests for teet library and last Ttcn3library,
which is used to control and interact with TTCNStée.

= i) MME Tesker
= kg PythonSource
i) tags
= g trunk
g EmulatorLibrary
i) Libdac
I MonitoringAndLogs
) MsMml
g NsUnicTest
| Ttenalibrary
B lg) Testers
= g Flexing
) Canfig
i) Resources
g Result
= g TestCases
I Featurel
gL Feature2
) Feature3

Figure 22: Redesing of MME tester

65

In the Testersside the change is more administrative than oje@t Earlier
environments configuration information files wetersd undeEnvironmentLibrary

in the new structure the name is more descrigfivafig TheResourcdolder has
stayed the same, as the folder for RF common reediiles. A completely new
folder stored in SVN is thResultfolder, the meaning of it is not to store reskrten
every execution to SVN, but quite the opposités lnly in SVN to clarify where the
recommended place to store the execution resulBeisause in RF you can specify
the output folder as you like, but in examples Besultfolder is used. To make sure
no one will store execution results in the SVNisitforbidden with administrative

measures.

The last improvement is for actual test cases whach organized under the
TestCasesolder. Their recommendation is to use a namigestoming from agile
development where first comes the epic nhame anéblsigos beneath are named
after the user story and id number. This will hieggmendously in search and update
tasks. This also gives the opportunity to execliteest cases easily with RF, by just
giving root folder TestCasesas an argument for test data location and adjust

execution assembly and settings with tags and asgtsn[25]

66

8. Automated Functional testing

This chapter describes and answers the followingstipns; Why automated
functional testing is needed for the MME networ&reént, what is needed to enable
this automation and how is this automated tessngpirried out with different testing
sets? The amount of needed test cases to have daagoat least moderate test
coverage is rapidly increasing in complex telecomitation systemg3] To execute
all or even some applicable test case sets fenrydwild and version of software
manually is very time consuming, monotonous and eargome task for test
engineers. Nowadays it is becoming even less fieaglbe the continuously
accelerating development schedule. There is no foomrrors in the execution, logs
have to be collected and reports have to be maae éach execution run. And the
precious work effort of test engineers is needethaking and analyzing those test
cases, not in their execution. All these reasomsilsp for the importance of fully
automated test execution framework.

With the increasing amount of test cases and spiar@ of environments during
nights, an experiment idea came to execute theseases as one set. The idea was
to test possible limits and robustness of RF imgletation and the MME network
element. This meant an experiment where for tre fime a larger set of test cases
would be executed in a consecutive manner. Thitestas an experiment held by
the Robot test automation team, but after awhidevtiord of this experiment and its
good results spread around and the decision tothékeet as a part of the production
tools was made. After making this an official protdan tool, it was named; nightly
regression test set. Also smaller automated smegeset was invented as a side
product at the same time to make it quicker to mest builds sanity. Both of these
experimental side products would help everybodgemelopment to see sanity and
functionality of our product from reports. Later dooth of these experimental

products were taken as one official meter of oodpcts sanity and progress.

67

Although the mind set and goal is to make all testes automated without need for
human interaction, it is not always feasible orreymssible. One has to always
consider the ratio of benefits and resources tiatatutomation will obtain and take.
Of course, some very rare cases like sudden owfageme units cannot be always
done with test tools and has to be done manualltaking the unit physically out
from system. Also other test scenarios and exployatesting which cannot be
feasibly implemented with testing tools has to basidered. These tests need to be
documented very carefully and use automation ashnascpossible to make them

reproducible.

8.1. Smoke and Regression test sets

In testing there is always the basic question am ttoget good enough test coverage
in feasible time and how much testing is enoughfiimor changes one test case
can seem feasible, but if such change will affestebor root functionality and have a
general impact, the code and testing have to be éwmall sub functionalities. This
kind of all over coverage testing in MME developrmand in software development
is usually referred to as regression testing andesigned to cover, as much as
feasible, all relevant test cases. Relevant tesicare determined by the team of test
specialists led by the test architect and thosis wwuld cover at least all features
and functionalities, but leave out only duplicagsting, if time window limits test
execution. In agile development there is also a@neayet quick feedback on current
builds status or sanity. This kind of test set wiintain only basic test cases with
basic features and in agile development it is Wguaferred as smoke test set. The
smoke test set will give green light to furthertiteg phases, such as regression.

Main differences of these two sets are gatheredhie 2.

68

Test Set Regression Smoke

Execution time | Long, from couple hours to days Quick, less tham@tutes

Main purpose Test that new code has not brokemest root functionality,

the old implemented functionality check sanity of build

Execution Daily (night time) Whenever new build is

schedule installed

Test set All inclusive, includes also the Highly focused, well
smoke test set targeted for root

functionality

Results All smoke tests must pass, major All tests must pass
significance percentage of other tests should
pass

Table 2: Main differences of Regression and Smokets

The regression testing is usually all inclusive &edice takes quite a long time to
execute. Basic idea behind regression testingtisonfind new defects or faults, but
to try to indicate, if the new code will break tblel implementation. Therefore, all
test cases which are added to the regression sefidsinave already working
implementation and cases should have passed tésasatwhen implementing and
having demo of the code. Of course, it can betthate test cases are executed only
in short runs or series during their developmerasghand hence, new faults are
emerging and visible only during long consecutixeaaition of the whole regression
set. Also the effects of previous events in systemder test can have affect the
results of test cases. Therefore regression tedtreg not only test all functionalities
of SUT, but also the stability and robustness of tases as well. One of the main
requirements for test cases is independency framerotases. This means good
enough set up and teardown functionality of tegesand cases. This can be tested
by executing test cases in random order each nRgmidom execution also makes
sure, that SUT will be tested in various testingnexios which can reveal new kinds

of faults. In MME development regression is meanbé executed at least daily and

69

the target is to get results ready by the next mginso teams can check how

yesterday’s changes have affected the build.

The smoke test set is more narrow, and highly feduban the regression test set
and targeted to only the most important featuresfanctionality. Its main purpose
is to check builds state, if the root functionalisyworking like it should, or if it is
broken somehow. If smoke tests will fail, it means further steps in testing are
feasible to do, before faults in smoke functioadite corrected. This means stating
failing build as broken one. This is a very clemnal to development teams that
there is an A-class problem. Focus of smoke tegsimlly in root functionality like
in MME development the attach procedure, if attschroken it means roughly that
more than 95% of features and functionalities dewotk at all in that build. Other
smoke tests are selected from the same kind of avbare the root functionality is
tested. The smoke FT test set should be quickdowd® and give results in less than
30 minutes. Time is critical in smoke testing, hesmif a fault is detected there
cannot be any commitments besides the code toatdive emerged fault. If smoke
testing takes a long time, it will affect the teamslocity to produce a new code.
The smoke test set is also a good way to see howe seinor change on the testing

framework, tools etc. is affecting our testing @omiment.

Making different kinds of test sets is quite easthviRF by using tagging. Tags are
free text and can be added to each test case tdparafor suite. Tags can be also
forced on, so each test case under the suite atiltiiat tag. The test case selection
can be done in execution command by including cfugkng test cases based on the

tags that those contain. For example shégure 23,smoke test set can be selected

ot O WINNT system 32 cmd.exe

R

C:“\USERS~Dippa“MME TestersTesters:FlexiM% pyhot ——include Smoke ~TestCases

Test Case Action

NS 9 0 0001
s5uccessful Attach
I

Figure 23: Selection Smoke test set with include tipn

[Tags) Smoke

70

by giving RF execution command with includes anapivhich will select then all

test cases with “Smoke” tag on them. The methodls® used to select the
regression test set and exclude some long or prettie test cases. And using tags
include and exclude option in RF you can easilyugrice the execution order by
using multiple execution commands where inclusiand exclusions are in certain
order and then combine the results with a suppptiiol called rebot. Rebot is a
robot framework’s supporting tool which can be useddjust look-and-feel of RF

reports and also combine different test executesults. In MME development tags
are used to select the test set to smoke and segnedut also to mark up different

information like which team will own those test eas[25]

8.2. Automated testing with BuildBot ClI tool

To execute the test in an automated way there dhmih tool to start the execution.
For the experiment of automated test executiorRibieot TA team decided to try a
tool called BuildBot. Requirements for CI tool metexperimental phase showed that
it is capable of getting the latest test data frBMN, executing RF commands,
showing the latest execution report & logs andistpresults for later use. Also, the
way to trigger actions was considered and the meelded to handle at least SVN

polling and to be able to time schedule triggerapt

BuildBot is an open source CI tool licensed undéiUGgeneral public license and
was started as a light-weight alternative for thezMa ThinderBox CI tool. [52, 53]
It is built to automate compiling and testing plsease validate code changes of
software builds. BuildBot free up developers froming) routine tasks to do more
demanding and interesting ones, such as the adtwalopment. Software build can
be compiled and tested in parallel on a varietplatforms or projects can be made
with any programming language, which makes Buildp@tform and language
independent. BuildBot itself requires on Python damdsted networking engine [54]
and so host requirements are minimal. Results apdrts of compilations or tests

can be delivered via web-page, IRC, email or you loaild your own protocol so

71

possibilities are limitless. This means notificatiof broken builds can be given to
the responsible developer or stakeholder withomdmu interaction. BuildBot gives
the opportunity to track interactively progressboiflds and provides remaining time

estimation. It is easy to configure, because Pyttaanbe used in the configuration.

Robot TA team decided to take BuildBot as partwfa@automated FT test, because it
was easy to configure, had no need for graphicat ugerface, needed to execute
test in consecutive way, it is an open source mbdnd it has quite a large user
community [55]. The main requirements for Cl ta&kl getting latest test data from
SVN, storing and capability to show results repartd multiple ways to trigger tasks
were found from BuildBot. In the regression testiagperiment BuildBot was
utilized by triggering task with time schedule, rgtg results to hosts disk and
showing the results via BuildBot's www-server seevi After a short experimental
time, this arrangement turned out to be so suagkedbht the decision was made to
take this as part of the production and officiaten®f development. Next phase was
making automated smoke test tasks for BuildBot Bimilar way, those smoke test
set task needed to upload test data from SVN apw shsults via www-service,
long term result storing was not required, althomghresults clean up steps were
designed or implemented either. These smoke tdstasks are only triggered
manually by the user by pressing the “Force Buiddtton which will initiate a new

Build, meaning new smoke test set task.

8.3. Manual functional testing

In rare situations, the fully automated test casaton is not feasible or even
possible. One good example is physical damageilardaof some unit in SUT. This
can be rarely emulated with test tools and is lgualaine by removing the unit or by
power switch off. Another manual testing form @dom exploratory testing [4,
22]. The exploratory testing is form done when Itssare not known beforehand, so
testing cannot be easily made as test case sdnipgeme way it can be thought as a

defect or fault hunt, where the test engineer tteesind ways to cause some

72

unexpected behavior of SUT. Usually these testsire@n experienced test engineer
who has a lot of knowledge of SUT and its behaubare to the unexpected nature of
the behavior in both of these testing forms, ihad feasible try to fully automate
those kinds of test cases. This means that docati@mtof those test scenarios is
even more important than for fully automated texstes, because all defects, faults
and errors have to be reproducible before they loanaccepted as faults. In
exploratory testing this means that at least apstfrom some zero points for
example reboot have to be recorded somehow. Irgeutsting automation should
be used as much as possible to ensure this repbbeluequirement to be as easy as
possible. In MME development, no manual test casesscenarios are yet
implemented, but in the near future, those ardylitebecome a reality which cannot

be avoided.

73

9. End to end Continuous Integration

The final phase and goal for automated FT tessrapmplete ClI pipe where all tasks
after committing code to regression testing resalsutomated. This will enable the
opportunity to execute all tests in a flexible manrwhere changes will always
trigger some tests and the latest software is utefing. Also, this enables more
efficient usage of our test environments, more lbeel and faster results. To achieve
this goal, software projects must have all phasélg Automated including unit or

module tests, software configuration managemenMS0r creating software build,

software installation and commissioning, smoke aedression test sets for
functional testing. Even more extensive continuimtisgration can be achieved, if it
includes automated stability and performance tgstisystem verification and

network verification.

In MME development all phases preceding softwarstaifation were already
automated before this thesis work was started.révipus phases from designing
automation testing scheme to automated FT smokeegmnession test sets, has given
opportunity and readiness for complete end to engie. Only few things are still
missing from complete Cl pipe; automated softwaisaillation and commissioning
and linking all phases together. Of course, if @rmaild consider CI from a larger
scope, it could also include fully automated stgbdnd performance testing, system

testing and network verification, but those aredfuhis thesis' scope.

For achieving automated software installation ammhmissioning the project already
a used proprietary tool called Service Laboratamyoept. With this tool new builds
could be installed and commissioned to SUT autaraly, without human

interaction. The concept included some prelimirfeaynework for ClI testing, but not
sophisticated enough for projects’ Cl needs. ltespi it, tool suited quite well to be
taken as part of the continuous integration pipg, $ome integration work and

interface planning was still required.

74

After completing all of these tasks, the projectuldohave complete end to end
continuous integration pipe starting from the comting code to the results after
completed regression testing. This would allowwnobthe-clock testing flow, which
would lead to a more effective usage of equipmedtgreater testing coverage. The
main issues still were to decide architecturalcitme of the Cl pipe and design and
implement tasks for required interfaces betweernoalls needed in the process that
did not exist yet. The architectural challenge wmdecide, whether the CI pipe flow
could be controlled by one of the highest levellscand be based on hierarchical

model, or should it be implemented as flat justbgining different tools together?

9.1. Service Laboratory concept

Service Laboratory concept (SerLab) is a NSN patpry tool for automated
software installation and commissioning to testigopent. SerLab takes advantage
of 4Booking, an equipment reservation handling aegister tool. Together these
tools form an extensive equipment resource handdng software installation
system, which can be used as part of the CI pipea simplified manner the SerLab
has three basic functions; gathering software baild equipment pool information,
storage for hardware configuration and softwar&alfegion macros and execution of
those macros against software builds in certainremment. The 4booking tool has
only two basic functions; management of item andl poformation, and handling

reservation information of equipment items.

One of SerLab’s main functions is gathering sofewvauild and equipment pool
information. When software builds are integrated anmpiled at SCM, there will

also be the generation of an xml-file, which camsainformation about the build.
This XML-file contains information like build idatget platform and application and
Cl test related information. After compilation isree the build is copied from SCM
to distribution servers with the XML-file which ctains the builds’ information. The
SerLab gets information of compiled builds via #the$ML-files. The equipment

pool information, containing identification inforta@n of pool and its items, SerLab

75

gets directly from the 4booking system. Pools aust jlogical containers for
equipment items; like a MME or other network eletseWith pools equipment
items can be more easily classified in differemiugrs and purposes. Based on pool’s
settings it can be used just for as a logical g®manit of manual testing equipment
or SerLab can use pool’s equipment in continuotegiration for automatic software

installation, commissioning and testing purposes.

The other significant main function of SerLab idimg as the place for hardware
configuration and automated software installaticeicros. The significance doesn’t
come just from a role as storage place for thoserosabut from the ability to also
execute macros via SerLab. Each equipment poolitkaswn settings and all
equipment items inside the pool have their ownrggttand configuration macros. In
item’s settings is stored basic information of ifeen, like IP-address, default route,
subnet mask, and credentials etc. These can betaigedt connectivity and in the
case of new software build installation, making thesic configuration for that
element. Besides just basic configuration, a modsFtwork element needs an
installation configuration which is referred aspuuissioning an element and hence
this kind of macro is called commissioning macréteAthe basic settings have been
given on the ATCA hardware, the only unit commigsid in the system is OMU and
all other units have to be commissioned by exegutie commissioning macro. This
installation configuration macro contains infornoatiabout the roles for the rest of
the CPU blades and units attached on ATCA sheltrMalso contains unit specific
information like IP addresses, plug-in module infation etc. After the execution of
commissioning macro an element is ready to work,ibhas default settings for
everything. In modern telecommunication network heatement should have a
different kind of network, location, group, elemeit. specific identification digits
and other relevant information. This informatiorstered in hardware configuration
macro which is the last macro that SerLab will execif all previous phases have
been successfully executed. SerLab also stores dmgs results of all macro

executions and makes debugging and tracing postibkeeded.

76

The 4booking tool is a supportive tool for SerLaid ds also used as a tool for
handling equipment reservation information in madntesting. In continuous
integration and a more specific SerLab service tpofrview, 4booking offer two
main functionalities, the management of equipmerformation and handling
reservation information of testing equipments. Timn@anagement of equipment
information can be divided into two parts; equipmpnols and items. Pools can
have multiple equipment items allocated in themt bquipment items can be
allocated only in one pool at a time. For an eq@ptritem one must define unique
item id, name, purpose of use, business relatedndtion, responsible person, state,
OS platform and application as equipment item’s dadory information. Id, name,
purpose of use and responsible person fields ate gelf-explanatory and all are
free text fields, only requirement is that id has ke unique. Business related
information is selected from dropdown menu and mam for selecting the right
business line, business units and their projectequipments can be searched and
statistics made from the business angle. This ptesnéo mapping how many
resources are used in certain project etc. Stalé fiontains information of item’s
status and can be Draft, Inactive, Active, SuspenBiiea market, Removed or Lost,
being the most common states Active or Draft. Ti®platform and application are
fields indicating the appropriate software for fkem. Out of these fields SerLab
uses item id, OS platform and application informatin selecting the right software
build for each equipment item. Pool information t@ins the name, state, OS
platform, application, SCM service, TWA service apdol content aka items
allocated to the pool. Name field is self-explamatand state field has the same
purpose as the item’s information, but values afferént; Draft, Inactive, Active,
Suspended and Removed. OS platform and applichilois have the same values as
in item’s information, but are used in SerLab witemtinuous integration mode for
pool is selected. In continuous integration mode-&e will automatically install and
commission new software build into one of the paajsipment items, if there is an
item available. If there are no items availabley rs@ftware build will go to queue
and will be installed and commissioned when thegygant is free to be used. SCM
service field is meant to indicate which commissigrservice is used with the pool,

and currently only SerLab is available. TWA senviggicates the continuous testing

77

service to be used with the pool, the default anly walue for this field is also
SerLab at the moment.

The reservation management via 4booking for equipiritems is implemented with

simple graphical web interface for users or Simphgect Access Protocol (SOAP)
[56] message interface for machine to machine comication. In web interface

reservation can be made just by first searchingpagent item by name and then
clicking free slot from reservation calendar, whislseen irfigure 24.

Search

Narne ipc-atea-1 ? Iterm type [NOT SELECTED =l ?
Project 7 Product Category] 7
Site s ?
Hardware Categary b ?

Business

% Wy program [NOT SELECTED =l #
Frogram 7

® select business first
S

New Reservation

Page 1/1

05.08.2009 4 el | Morth || Year || >

Hour 00 o1 02 03 04 05 065 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 123
IPC-ATCA T {5
Closeall

M personal W shared unallocated
perzonal with free times shared with free times free

Figure 24: 4booking reservation calendar

This will trigger next pop up window where one musinfirm and modify

reservation length, if necessary.

After accepting reservation schedule by pressingtlo& last window will appear
figure 25.In this window one can choose reason for Usagesilpleschoices are
Personal, Calibration, Maintenance and Urgent reasnice, personal is the normal
and default option.

78

Enter Reservation Details for IPC-ATCA-1

EnvironmentPC-ATCA-1

Starttime 05.08.2010171:15.00

Endtime 05.08.2010 16:00:00

Usage [Personal =l

For project [

Purpose

Reserve only select

Save

Cancel

Figure 25: Reasoning and requested software buildimdow

Also one must define which project to use and diesdhef purpose as free text. The
last field is reserved for selecting possible safsvbuild from dropdown menu, if

needed, but default value is reserve only. If oneld select some software build to
be commissioned at the beginning of the reservatibaoking would send request to
SerLab which would start to carry out the execuidrthis request at the starting
time of the reservation. In reserve only mode, popgint item is reserved for certain
user and no commissions can be made during thiedpby other user via SerLab

tool.

SerLab can be used to commission new software mitibdhardware in two modes.
First one is fully automatic Cl mode and the second is the manual reservation
mode. Mode of operation can be done by pool anch fpool’s settings in SerLab.
Table 3describes both Cl and manual reservation processfin commissioning a
new software build in simplified manner. SerLab Ivdgbntinuously poll for new
software builds and add them to the queue; if tieeeenewer software build released
before an older one is gone under commissionirg,ndbwer one will take the first
place in the queue and the older one will not benmgssioned automatically

anymore.

79

Step | Continuous Integration mode | Manual Reservatiomode
1 | SerLab notice a new CI build Select free slotfébooking
reservation calendar
2 | SerLab will check, if any pool | Confirm reservation time and length
with new build’s platform and
application is in CI mode
3 | SerLab will check, if any of the| Give reasoning for reservation
equipment items on pool are free
4 | SerLab will make reservation forSelect a new CI build and
a free item commissioning macro
5 | SerLab will execute SerLab will execute commissioning
commissioning and install the | and install the new software build
new software build into item into item with selected
with pre-selected CI commissioning macro
commissioning macro
6 | SerLab will execute Smoke TestSerLab will inform user when
Set, if available commissioning is finished. Verdict
can be Successful or Failed, if
something goes wrong
7 Release CI reservation from Reservation in 4Booking continues
4Booking until expired or canceled.

Table 3: The process flow for commissioning a newV% build

9.2. Complete continuous integration tube

Ideas behind complete continuous integration tulerewquite simple; automate
repetitious and ponderous tasks, increase vigilohittesting, find defects and faults
as early stage as possible and increase testingragey and usage of testing
equipment with automation. To achieve this all $askm after committing code into

80

SVN to generating regression testing report habet@utomated. From this thesis
point of view tasks can be divided into two logiqarts; before and after new
complete software build. Before a new software dpirt contains module or unit
compiling tasks, unit or module testing, requesttid changes to new build and
compilation of new software build by SCM. This pads already automated prior to
this thesis work started. In thesis work’s main liglmge has been building test
automation scheme for MME network element contginesting framework, design
and implement automated functional testing andcchtthose to already existing pre-

build systems. This has been achieved by runniosgtitests in scheduled mode.

Beyond this thesis original scope, a future wonkdohieving complete continuous
integration tube has been started. Those plansthaveptions for this tube a flat or
a centralized architectural model. In flat archiseal model all tools would
communicate with next tool to trigger the next ghaklso from some phases results
would be collected to some centralized servicecéntralized architecture there
would be a tool which would be considered as tlghdst level component. This
component would trigger the next phase ongoing ewitect the results after its

execution. The tool would act as an organizer asdlt storage.

The flat architecture model is planned to have fedint steps, 4 before build
compilation and 4 post build compilation steps. thitse steps and process flow can
be seen infigure 26 All steps would trigger the next step, if stepulb be
completely successfully executed. The content ohesep is given just in a general

manner and not in a detailed format.

81

3. Declare changes
ﬁ to be attached

2. Unit or Module a hew SW build %
Testing
ﬁ 4. SCM compiles a
1. Code new SW build
commit to and distribute
SVN the new build

Continuous Integration @
e Flat Architecture
completed 5. SerLab execute
new build’s
commissioning
7. Testing System 6. SerLab execute to HW

execute Smoke Tests

Regression Tests 7

An arrow represent
trigger event after
certain phase is
completed

Figure 26: A Flat Architecture model in complete @

The first step would consist of a manual part @ndauld trigger the next automatic
functionality. The manual part would be checking grogram code to SVN. Second
step would be automatic unit or module testing,ethelng on the code or part of
program and its test scheme. This step would sem@ts of execution, successful or
failure, or might send them to result service. @hatep would be announcing
successfully tested changes to complete build.tR@tep would be compiling a new
software build, SCM tools would wait for change anncements for a while e.g. 10
minutes and if no further changes would occur,tstarcompile a new SW build.
This waiting period is very feasible, because cdatipin of complete build can take
quite a long time compared to module compilatiansbme cases into a new build
there has to be attached multiple modules at an&eep interfaces and cooperation
of different modules intact. After successful colimgi SCM tools would distribute
the new build and its information to distributiogrgers, where proceeding tools can
fetch it. Fourth step would be the last one, to plete the pre-build automation
phases.

82

In the fifth step SerLab would notice the new bl initiate build commissioning
into one of the CI pools equipment items. After ooissioning would be ready,
SerLab would internally trigger the sixth step andiate Smoke testing. SerLab
would store all results from commissioning and Sentésting. Seventh step would
be triggered by SerLab after successful SmokentgsTihis last step would take the
longest time and hence has to be executed sepafiatel commissioning service to
save resources. Simultaneously and parallel tadgbeession testing there could be
also triggered network verification and system figation tests, because in smoke
testing all the basic functionalities have beetettsnd verified to be correct. This
would shorten overall testing time, if correctimrsnew build would be needed to be

delivered to the customer as soon as possible.

The centralized architecture model, which can kenda figure 27 is planned to
have also 8 steps, but with slight modificationmpared to the flat architecture. The
first four steps would remain as the same as irflfiearchitecture, because there is
no need to modify the already existing and well kiy system. The main
difference would be the highest level tool, whiclould control and organize all
steps proceeding step 4. Steps from 5 to 7 woulddidified to use this highest level
tool guidance in triggering and storing resultstHae fifth step, SerLab would not try
to notice or poll new builds from distribution sers, but would be triggered by the
highest level tool, which would do the polling ieat. After completing
commissioning, SerLab would inform results of it ttee control tool, instead of
initiating smoke test execution. Then in the sistép, the control tool would trigger
smoke test to be executed by testing system aedhaitds would get the results. The
seventh step would be the same as the sixth, lutotty difference would be

execution of regression tests, instead of smokeséts

83

Fully automized
pre-build phases

3. Declare changes
to be attached

2. Unit or Module a hew SW build 1%

Testing
z; 4. SCM compiles a

new SW build

160?1125 o and distribute
SVN Continuous Integration the new build
Centralized Architecture
"The Highest Level Tool”
8. Cl -/ \
completed ~J5. SerLab execute
/ i new build's
7. Testing System 6. Testing System commissioning
execute execute Smoke to HW
Regression Tests Tests

Return information phase's

E— y
success or failure

____________________ + Trigger to execute phase

Figure 27: A centralized architecture for completeCl

Main differences between these two models are timeber of needed interfaces and
the different tools. Main advantage in flat arctiitee is the requirement for only one
new interface between SerLab and the testing syst#dinother interfaces already

exist. Disadvantage in the other hand is the degranydof tools, the pipe is as robust
as its weakest link and it can be difficult to to/replace some non-working parts
afterwards. For example, development and maintenafcSerLab is some other
teams’ responsibility, and changes and defect dixocan be difficult. Main

advantage in centralized architecture is the weskpéflat architecture; all tools are
quite easily replaceable, if needed. Disadvantagesthe need for extra tools and
extra interfaces. Here also one has to considemitr& needed for maintenance
work for changing interfaces, because tools alweydve and hence interfaces are

quite certainly changed as well from time to time.

84

10. Results

Implementing the test automation scheme for LTEecoetwork element can be
considered to be successful, except for the enehtb continuous integration part.
The time window reserved for making this thesis was tight and limited for
achieving results on that final goal. Overall statevertheless was a bit better than
expected at the beginning due to the fact thatrqgihgs succeeded nicely and some

parts even exceeded expectations.

The first practical task was to get information aleérn the basics of Robot
Framework test automation framework. After a sHedrning period of Robot
Framework’s architecture and its features, the ldgveent of the preliminary test
library for the MME network element was started.sTturned out quite well and
Robot Framework was conclusively selected to betestr automation framework.
Development for more sophisticated test librarmssh as test control libraries for
LTE emulator and TTCNS3 tester, was started rigieraRobot TA team members
reached adequate skill level. All these precediagks succeeded and ease of
development and usefulness of test libraries exaedpectations. All test libraries
have preserved without major need for refactorimg anly a couple serious defects

are found.

One of the main design principles for Robot Franmwtest library and test
automation scheme was that all functional testabeuld be fully automated. All
design tasks took this as the first guideline arhd highest priority from all others.
The principle was followed almost with all test easonly two test cases were built
without full automation, but automation level wagep 80 % containing automated
test case setup and teardown and most of testfaasgonality. There were two
main cases in which test cases were not 100% ateédma@he first case was where
hard coded values had to be used and it was ibleasi parameterize those values,
because test case was needed only a couple tirmiag dae sprint. In other test case

sudden removal of SCTP connection was needed avasinot feasible to make it as

85

software based inside the test tool with time wimdaf one sprint. Nowadays test
tools have been enhanced and there exists thebpitygso do software based sudden

connection removals.

To emphasize full automation test case goal a lyigagression testing started as an
experiment which broaden as official meter of pmdustability and progress.
Nowadays nightly regression testing is one of tbg testing methods and visibility
of build’s sanity relies on it. Also smaller auta smoke test sets were built to
help teams test their code changes easily withtimal testing besides normal unit
or module testing, giving quick feedback on howrdes are working as integrated
with other modules. Result of these automationuiest manual testing without
Robot Framework is kept in very low level. Only sotesting of test tool is carried

out as a manual procedure.

Results of training and competence transfer tosuséso succeeded better than
anticipated. Robot TA team members did not have pegilagogic training or

background, but nevertheless, the learning curvethef new users has been
remarkably high. The snowball effect, where oneady trained user will share his

information and knowledge with beginners, worketi\ary well.

The only part that was left unfinished was the ienpéntation of end to end
continuous integration pipe. Nevertheless planaimg study tasks were successfully
accomplished, but the final decision on how to peat and the implementation of

work accordingly was still missing.

Overall success rate was at least moderate, thenmemtation and design for the test
automation scheme for LTE core network elementlmamonsidered as successful.
During this thesis work and from beginning of th&HE element development teams
have gone through a big change, from waterfall rhadd its tools to agile model

and the tools used with it. As for the testing pah view this change has to be

graded successful.

86

11. Conclusions and Future Work

This thesis has described how test automation seHemthe LTE core network
element was built and also presented the main nemeints and pitfalls for such
system. Nowadays, demand for faster, better an@ wmmprehensive testing targets
are the key driver for test automation and thosgeta are in many cases

unachievable by only using manual testing methods.

The exact comparison between test automation amii@hdesting was not possible
to accomplish, since all test cases were desigoebet fully automatic, but the
literature and studies imply up to a 40 % increaserelocity when using fully
automated test cases versus manual test exectitieriterature also suggests at first
to invest more effort for test automation at thegibeing of the development
pipeline, such as in unit or module level testi@nly, when the first stages of
development are sufficiently automated, the chanfocus to next levels is
feasible, because return of investment is high¢nexbeginning of the development

pipeline.

In this thesis focus was put into the functionaititey level, because all preceding
testing levels were already fully automated in ambea In functional testing, the
main challenge was to set a new mindset for all@agineers, in which all test cases
should be automated and stored under a versiorrotofithe other considerable
obstacle was to find a way to parameterize allngseded variables within test cases.
All obstacles were solved and nowadays every netwctese is done fully automated,
if anyway feasible. Also, the atmosphere towards aetomation has changed and its
advantages have been noticed. The only setbackheasxtremely tight schedule
for end to end continuous integration pipe, whicbuld include also functional
testing; unfortunately the implementation of theatpof the thesis work was left as

future work.

87

Future development after this thesis could be trmaptetion of end to end CI pipe,
which would increase the velocity of testing andega quicker feedback to teams
about the overall situation. Also, the automatialgsis of results could be further
enhanced to handle the simplest defects and erfbis. would really release the
workforce potential, which is now used in wearisotast executions and simple
analysis tasks. Finally, test automation develogrisea continuous task and is never

complete until the whole project is finished; thexalways something to improve.

88

References

[1] Lillian Goleniewski, Kitty Wilson JarretfTelecommunications Essentials,
Second Edition: The Complete Global Sourddison-Wesley Profession&06

[2] Korhonen Juhalntroduction to 3G mobile communicatiodsctech House, 2001

[3] Kreuer DieterApplying Test Automation to Type Acceptance Tesfifigglecom
Networks: A Case study with Customer Participatibtth IEEE International
Conference on Automated Software Engineering, 1999

[4] Patton RonSoftware Testing, Second Editi&ams, 2005

[5] GSM AssociationMarket Data Summarye-document, from:
http://www.gsmworld.com/newsroom/market-data/marlata_summary.htm,
[retrieved March 16, 2010]

[6] HSPA to LTE-AdvancedRysavy Research / 3G Americas, September 2009, e-
document, from: http://www.3gamericas.org/documents
3G_Americas_RysavyResearch_HSPA-LTE_Advanced_SepiRof, [retrieved
March 16, 2010]

[7] Nabeel ur Rehman, et &G Mobile Communication Networks-document,
from: http://www.asadasif.com/es/files/3g-reporf,ddetrievedMarch 14, 2010]

[8] General Packet Radio Service (GPRS): Service dasmm 3GPP TS 23.060
Vv8.0.0 (2008-03)

[9] Third Generation Partnership Project Agreemeaxtjocument, from:
http://lwww.3gpp.org/ftp/Inbox/2008_web_files/3GPRoSeando310807.pdf,
[retrieved February 22, 2010]

[10] About mobile technology and IMT-2Q@8document, from:
http://www.itu.int/osg/spu/imt-2000/technology. hirfretrieved January 5, 2010]

[11] About 3GPP2e-document, from: http://www.3gpp2.org/Public_html/
Misc/AboutHome.cfm/, [retrieved March 15, 2010]

[12] UTRA-UTRAN Long Term Evolution (LTE) and 3GPP Syd#echitecture
Evolution (SAE)e-document, from: anynomous
ftp://ftp.3gpp.org/Inbox/2008_web_files/LTA_Papeatipretrieved March 15, 2010]
[13] LTE, e-document, from: http://www.3gpp.org/LTE, [retred March 16, 2010]

[14] Sesia S. et alL,TE, The UMTS Long Term Evolution: From Theory tadfce
John Wiley and Sons, 2009, ISBN 9780470697160

89

[15] Requirements for Evolved UTRA (E-UTRA) and Evol¥ERAN (E-UTRAN)
3GPP TR 25.913 v8.0.0 (2008-12)

[16] General Packet Radio Service (GPRS) enhancemerityddved Universal
Terrestrial Radio Access Network (E-UTRAN) acc8&PP TS 23.401 V8.7.0
(2009-09)

[17] Nokia Siemens Networks Flexi Network Server: Usigemetwork control into
the LTE eraNSN customer documentation, from: https://www.oelhokia.com/,
[retrieved March 25, 2010]

[18] Evolved General Packet Radio Service (GPRS) Tlingé?rotocol for Control
plane (GTPv2-C)3GPP TS 29.274 V8.0.0 (2008-12)

[19] AdvancedTCA Q & Ae-document, from:
http://www.picmg.org/pdf/Advanced TCAQA.pdf, [retvied April 10, 2010]

[20] Beizer, B., "Software Testing Techniques", 2ntadilnternational Thomson
Publishing, 1990.

[21] Haikala 1., Marijarvi J.OhjelmistotuotantpoTalentum Media Oy, 2004

[22] Lisa Crispin, Janet Gregorggile Testing: A Practical Guide for Testers and
Agile TeamsAddison-Wesley Professional, 2008, ISBN 978-0-32446-0

[23] IEEE Standard for SoftwareVerification and Validat IEEE Std 1012-2004,
2004

[24] McConnell, SteveCode Completé2nd ed.). Microsoft Press, 2004 . ISBN 0-
7356-1967-0.

[25] Robot Framework User Guide Version 2.1e2document, from:
http://robotframework.googlecode.com/svn/tags/rivaatework-
2.1.2/doc/userguide/RobotFrameworkUserGuide.httrifved December 14,
2009]

[26] Holmes A., Kellogg M.Automating functional tests using Selenidgile
Conference, 2006

[27] Tijs van der StormContinuous Release and Upgrade of Component-Based
Software Proceedings of the 12th international workshofsoftware configuration
management. 2005

[28] Cohn Mike. Thd~orgotten Layer of the Test Automation Pyraneidlocument,

from: http://blog.mountaingoatsoftware.com/the-fatgn-layer-of-the-test-
automation-pyramidretrievedMarch 25, 2010]

90

[29] Korkala M., Abrahamsson RCommunication in Distributed Agile
Development: A Case Stud8rd EUROMICRO Conference on Software
Engineering and Advanced Applications. 2007

[30] Usingscrum in a globally distributed project: a casedtuSoftware Process:
Improvement and Practice, Volume 13 Issue 6, Joleyw& Sons, Ltd., 2009

[31] Boehm B. A Spiral Model of Software Development and EnhaecgrACM
SIGSOFT Software Engineering Notes. 1986

[32] Manifesto for Agile Software Developmesidocument, from:
http://agilemanifesto.org/, [retrieved September2(9]

[33] Krasteva ., llieva SAdopting an agile methodology: why it did not work
Proceedings of the 2008 international workshop awitéizing agile practices or
shoot-out at the agile corral. 2008

[34] Ferreira C., Cohen JAgile Systems Development and Stakeholder
Satisfaction:A South African Empirical Stu@roceedings of the 2008 annual
research conference of the South African Institddit€omputer Scientists and
Information Technologists on IT research in develggountries. 2008

[35] Sengupta B. et alA Research Agenda for Distributed Software Devetapm
Proceedings of the 28th international conferenc8aftware engineering, Shanghai,
China. 2006

[36] Fowler M.,Continuous Integratione-document, from:
http://www.martinfowler.com/articles/continuousligtation.html, [retrieved
November 13, 2009]

[37] Holck J., Jgrgensen NContinuous Integration and Quality Assurance: aecas
study of two open source projecfsistralasian Journal of Information Systems,
2004

[38] Duvall P. M. Et al.Continuous Integration: Improving Software Quakiyd
Reducing RiskAddison-Wesley Professional, 2007, ISBN 978-0-33638-5

[39] Hill J. H. et al.,CICUTS: Combining System Execution Modeling Tools
with Continuous Integration Environmenibth Annual IEEE International
Conference and Workshop on the Engineering of Coenfgased Systems, 2008.

[40] Sauvé J. P. et al. EasyAccept: A Tool to BaGileate, Run and Drive
Development with Automated Acceptance Tests. Prtinge of the 2006
international workshop on Automation of softwarstt®006

[41] Korpela J., Tab Separated Values (TSV): a fdrfor tabular data exchange, e-

document, from: http://www.cs.tut.fi/~jkorpela/T3W¥ml, [retrieved March 16,
2010]

91

[42] Python Programming Language-document, from: www.python.qgrjgetrieved
December 14, 2010]

[43] Robot Frameworke-document, from: http://code.google.com/p/
robotframework/,[retrievetMarch 25, 2010]

[44] What is Pydev,2-document, from: http://pydev.orfpetrieved February 5,
2010]

[45] About the Eclipse Foundatioihe Eclipse Foundatioe;document, from:
http://www.eclipse.org/org/, [retrieved March 221D)]

[46] Apache Subversioe-document, from: http://subversion.apache.greftieved
September 23, 2009]

[47] Cordeiro L. et alAn Agile Development Methodology Applied to Embedde
Control Software under Stringent Hardware ConsttaiACM SIGSOFT Software
Engineering Notes. 2008

[48] TTCN3.org TTCN3 languagee-document, from: http://www.ttcn-
3.org/home.htm[retrieved March 14, 2010]

[49] Wikipedia, Telelogic e-document,
from: http://en.wikipedia.org/wiki/Telelogic, [rettved January 05, 2010]

[50] Telnet Protocol SpecificatioRFC 854, e-document,
from: http://tools.ietf.org/html/rfc854, [retrieveeebruary 05, 2010

[51] Port NumberslANA , e-document,
from: http://www.iana.org/assignments/port-numbgetrieved March 16, 2010]

[52] BuildBot Manual 0.7.12-document, from: http://djmitche.github.com/
buildbot/docs/0.7.12/, [retrieved March 15, 2010]

[53] Tinderbox,Mozilla Foundation, e-document, from:
https://developer.mozilla.org/ en/Tinderbox, [reted March 14, 2010]

[54] Twisted,e-document, from: http://twistedmatrix.com/tracétfieved March 17,
2010]

[55] BuildBot SuccessStories,document, from: http://buildbot.net/trac/
wiki/SuccessStoriegtetrieved March 17, 2010]

[56] SOAP Specification¥yorld Wide Web Consortium, e-document, from:
http://www.w3.org/TR/soap/,[retrievedarch 16, 2010]

92

