
Lappeenranta University of Technology

Faculty of Technology Management

Department of Information Technology

Master’s Thesis

Antti Pohjonen

TEST AUTOMATION SCHEME FOR LTE CORE NETWORK

ELEMENT

Examiners of the Thesis: Professor Jari Porras
 M.Sc. Henri Elemo

Instructor of the Thesis: M.Sc. Henri Elemo

 II

ABSTRACT

Lappeenranta University of Technology
Department of Information Technology

Antti Pohjonen

TEST AUTOMATION SCHEME FOR LTE CORE NETWORK ELEMENT

Thesis for the Degree of Master of Science in Technology

2010

92 pages, 27 figures and 3 tables

Examiners: Professor Jari Porras

M. Sc. Henri Elemo

Keywords: Test automation, LTE, Software testing, Agile development

Modern sophisticated telecommunication devices require even more and more
comprehensive testing to ensure quality. The test case amount to ensure well enough
coverage of testing has increased rapidly and this increased demand cannot be
fulfilled anymore only by using manual testing. Also new agile development models
require execution of all test cases with every iteration. This has lead manufactures to
use test automation more than ever to achieve adequate testing coverage and quality.

This thesis is separated into three parts. Evolution of cellular networks is presented at
the beginning of the first part. Also software testing, test automation and the
influence of development model for testing are examined in the first part. The second
part describes a process which was used to implement test automation scheme for
functional testing of LTE core network MME element. In implementation of the test
automation scheme agile development models and Robot Framework test automation
tool were used. In the third part two alternative models are presented for integrating
this test automation scheme as part of a continuous integration process.

As a result, the test automation scheme for functional testing was implemented.
Almost all new functional level testing test cases can now be automated with this
scheme. In addition, two models for integrating this scheme to be part of a wider
continuous integration pipe were introduced. Also shift from usage of a traditional
waterfall model to a new agile development based model in testing stated to be
successful.

 III

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto
Tietotekniikan osasto
Antti Pohjonen

TESTI AUTOMAATIO JÄRJESTELMÄ LTE RUNKOVERKKO ELEMEN TILLE

Diplomityö

2010

92 sivua, 27 kuvaa ja 3 taulukkoa

Tarkastajat: Professori Jari Porras

Diplomi-insinööri Henri Elemo

Hakusanat: Testi automaatio, LTE, ohjelmistotestaus, ketterä ohjelmistokehitys
Keywords: Test automation, LTE, Software testing, Agile development

Modernit kehittyneet tietoliikenneverkkolaitteet vaativat yhä enemmän ja
kattavampaa testausta laadun varmistamiseksi. Kattavan testauksen tarvitsevat
testitapaus määrät ovat nousseet huomattavasti ja manuaalisella testauksella tätä
kasvanutta kysyntää ei pystytä enää tyydyttämään. Lisäksi uudet ketterät
ohjelmistokehitysmenetelmät vaativat testien suorittamista jokaisen
iteraatiokierroksen yhteydessä. Tämän takia laitevalmistajat ovat siirtyneet
enenemissä määrin käyttämään testiautomaatiota riittävän kattavuuden ja laadun
varmistamiseksi testauksessa.

Diplomityö on jaettu kolmeen osaan. Ensimmäisessä osassa esitellään soluverkkojen
evoluutiota ja tutkitaan ohjelmistotestausta ja sen automatisointia sekä erilaisten
ohjelmistokehitysmenetelmien vaikutusta testaamiseen. Toisessa osassa kuvataan
prosessia jolla rakennettiin automaattinen toiminnallisuustestaus järjestelmä LTE
runkoverkon MME elementille. Testiautomaatiojärjestelmän kehityksessä käytettiin
ketteriä ohjelmistokehitysmenetelmiä ja Robot Framework testiautomaatio-
ohjelmistoa. Kolmannessa osassa esitellään kaksi vaihtoehtoista mallia tämän
järjestelmän liittämiseksi jatkuvaan integraatiojärjestelmään.

Työn tuloksena saatiin rakennettua automaattinen testaus järjestelmä. Lähes kaikki
uudet toiminnallisuustestauksen testitapaukset voidaan automatisoida järjestelmän
avulla. Lisäksi tehtiin kaksi vaihtoehtoista mallia järjestelmän integroimiseksi osaksi
laajempaa jatkuvaa integrointi ympäristöä. Myös siirtyminen perinteisestä
vesiputousmallista uuteen ketterän kehitysmenetelmän käyttöön testauksessa
havaittiin onnistuneen.

 IV

Acknowledgements

This thesis work was carried out in the IP Control Department at Nokia Siemens

Networks Oy in Finland. I would like to thank all people at Nokia Siemens Networks

who have made this thesis possible.

I wish to express my gratitude to Professor Jari Porras for supervising this thesis and

for his feedback. I also want to express my gratitude to Henri Elemo, for all the

valuable advice at all stages of the work and for being the instructor of this thesis.

I would also like to thank the Robot Test Automation team and the rest of the

Integration, Quality and Methods team members for their general feedback and

support.

I also wish to thank Luisa Hurtado for revising the language of this thesis and for the

encouraging support I got during this project.

Finally, I want to give special thanks for my family and friends for their support

during my studies.

.

Espoo, 11 May 2010

Antti Pohjonen

Table of Contents

1. Introduction...5
2. Evolution of cellular networks ...6

2.1. Analog systems in first generation networks ..7
2.2. Digital era of 2G and 2.5G...8
2.3. 3G The beginning of mobile broadband ...11

3. LTE network architecture ..13
3.1. MME network element ..16

4. Software Testing and Test Automation ..20
4.1. Definition of software testing...20
4.2. Testing coverage and risk management ..22
4.3. Testing levels and possibility for test automation ...24
4.4. Test automation versus manual testing ...27

5. Software development model’s influence on testing...32
5.1. Traditional development models ..33
5.2. Agile development models...38
5.3. Distributed Software Development ..41
5.4. Continuous integration process ..43

6. Fully automated functional testing with Robot Framework45
6.1. Test automation with Robot Framework ..46
6.2. Development of Robot Framework testing library..50

6.2.1. Getting info, formal training and self learning ..50
6.2.2. Beginning of Robot Framework Tester Development51

7. Integration testing and tool development..54
7.1. TTCN3 testing language and tester ..55
7.2. Start of integration and end to end functionality testing..................................61
7.3. Training and competence transfer for users ..64
7.4. Testing framework structure redesign ..65

8. Automated Functional testing ..67
8.1. Smoke and Regression test sets..68
8.2. Automated testing with BuildBot CI tool ...71
8.3. Manual functional testing...72

9. End to end Continuous Integration...74
9.1. Service Laboratory concept..75
9.2. Complete continuous integration tube ..80

10. Results...85
11. Conclusions and Future Work..87
References...89

 2

Abbreviations

1G First Generation

2G Second Generation

3G Third Generation

3GPP 3G Partnership Project

4G Fourth Generation

8-PSK eight-Phase Shift Keying

AMPS Advanced Mobile Phone System

ANSI American National Standards Institute

API Application Programming Interface

ATCA Advanced Telecom Computing Architecture

ATDD Acceptance Test Driven Development

CDMA Code Division Multiple Access

CDPD Cellular Digit Packet Data

CI Continuous Integration

CPPU Control Plane Processing Unit

DAD Distributed Agile Development

D-AMPS Digital Advanced Mobile Phone System

DSD Distributed Software Development

DSSS Direct-Sequence Spread Spectrum

E2E End To End

EDGE Enhanced Data rates of Global Evolution

ETSI European Telecommunications Standards Institute

E-UTRAN Evolved Universal Terrestrial Radio Access Network

FDD Frequency-Division Duplexing

FDMA Frequency Division Multiple Access

GGSN Gateway GPRS Support Node

GMSK Gaussian minimum shift keying

GPRS General Packet Radio Services

GSD Global Software Development

GSM Global System for Mobile Communications

 3

GTP GPRS tunneling protocol

HSCSD High Speed Circuit Switched Data

HSS Home Subscriber Server

HTML Hyper Text Markup Language

IEEE Institute of Electrical and Electronics Engineers

IMT International Mobile Telecommunications

IMT-DS IMT Direct Spread

IMT-FT IMT Frequency Time

IMT-MC IMT Multicarrier

IMT-SC IMT Single Carrier

IMT-TC IMT Time Code

IPDU IP Director Unit

IRC Internet Relay Chat

ITU International Telecommunications Union

JDC Japanese Digital Cellular

LTE Long Term Evolution

MCHU Marker and Charging Unit

MIMO Multiple-Input and Multiple-Output

MME Mobility Management Entity

MTC Main Test Component

NAS Non-Access-Stratum

NGMN Next Generation Mobile Networks

NMT Nordic Mobile Telephone

NSN Nokia Siemens Networks

OFDM Orthogonal Frequency Division Multiplexing

OMU Operational and Maintenance Unit

OS Operating System

PCEF Policy and Charging Enforcement Function

PCRF Policy and Charging Rules Function

PDC Personal Digital Cellular

PDE Public Definition Environment

PDN-GW Packet Data Network Gateway

 4

PTC Parallel Test Components

RAN Radio Access Network

RF Robot Framework

ROI Return of Investment

S1AP S1 Application Protocol

SAE-GW System Architecture Evolution – Gateway

SC-FDMA Single-Carrier Frequency Division Multiple Access

SCM Software Configuration Management

SCTP Stream Control Transmission Protocol

SGSN Serving GPRS Support Node

S-GW Serving Gateway

SMMU Signaling and Mobility Management Unit

SMS Short Messaging Service

SOAP Simple Object Access Protocol

SUT System Under Testing

SVN Subversion

TACS Total Access Communication System

TC-MTS Methods for Testing and Specification Technical Committee

TDD Time Division Duplexing

TDD Test Driven Development

TDMA Time Division Multiple Access

TD-SCDMA Time Division - Synchronous Code Division Multiple Access

TR Technical Report

TSV Tab Separated Values

TTCN3 Testing and Test Control Notation Version 3

UE User Equipment

UMTS Universal Mobile Telecommunications System

UWC Universal Wireless Communication

W-CDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access

XML eXtensible Markup Language

XP Extreme Programming

 5

1. Introduction

The modern mobile telecommunication networks are complex and sophisticated

systems. These networks are made up of many different elements which all

communicate with each other with various interfaces and protocols. The amount of

features and technologies these elements have to support is increasing rapidly with

increasing demand and continuous development of mobile services around the world.

The rapid increment of technologies makes it even more difficult to achieve adequate

testing coverage for equipment manufacturers, because the amount of needed test

cases is also increasing rapidly. The usage of new agile development models are

adding pressure to execute all related test cases at least once in short development

cycles. To address these challenges, test automation is raising its popularity for all

levels of testing among the testing community. [1, 2, 3, 4]

This thesis describes the implementation of a test automation scheme for an Long

Term Evolution (LTE) core network element. The core network element used as the

system under test (SUT) was the mobility management entity (MME), which is

responsible for session and mobility management and control plane traffic handling

and security functions in an LTE network. The test automation scheme implemented

in this thesis covers phases of automatic build commission to hardware, integration

testing, fully automated functional testing and design of complete continuous

integration system. Preceding phases before build compiling are introduced, but not

covered in detail.

Development of MME core network element is carried out with agile development

model and the scrum method. MME’s development was done in multisite

environments located in different geographical locations and time zones. Test

automation scheme development was started using the same agile model and scrum

method. After supporting functions started, the test automation scheme development

method also changed to freer model, where supporting tasks had always the highest

priority. Test automation development was carried out at one site in Espoo, Finland.

 6

2. Evolution of cellular networks

This chapter describes the evolution of cellular networks and focuses on key

technological reforms. Key points of technological changes are discussed in more

detail, and mobile networks data transfer capacity is emphasized. This will give a

general understanding to the reader of history, evolution and major standards of data

transfer in cellular networks.

The first real cellular system was introduced in 1979 in Japan, but wider use of such

networks started during the next decade. There were mobile networks even before

that, but capacity and support for mobility was remarkably weaker, and hence those

networks cannot be classified as cellular networks. The human need for constant

movement and freedom from fixed locations has been the key factor for the success

of cellular networks. [1, 2]

Since the start of the digital era with GSM technology demand for mobile service has

grown tremendously, and after developing countries have started to invest in mobile

technology, the demand has almost exploded. According to Goleniewski and Jarret in

Telecommunications Essentials, “The growth was so rapid that by 2002, we

witnessed a major shift in network usage: For the first time in the history of

telecommunications, the number of mobile subscribers exceeded the number of fixed

lines. And that trend continues. According to the ITU, at year-end 2004, the total

number of mobile subscribers was 1.75 billion, while the total number of fixed lines

worldwide was 1.2 billion.” [1] Nowadays there are more than 4.2 billion mobile

subscribers world wide according to a market study done in 2Q 2009. [5]

The driver of evolution in mobile networks has previously been the need for greater

subscriber capacity per network until the third generation (3G). 3G networks were

the first technological turning point in which individual subscriber demand for

greater data transfer capacity was the driver, and the same driver is leading the way

to next the generation of LTE and Worldwide Interoperability for Microwave Access

 7

(WiMAX) mobile networks, along with service providers’ need for better cost

efficiency per transferred bit. [3, 6]

2.1. Analog systems in first generation networks

Cellular network first generation (1G) was based on analog transmission systems and

was designed mainly for voice services. The first cellular network was launched in

Japan in 1979, and launching continued through the 1980s in Europe and Americas.

A new era of mobile networks was born. The variety of different technologies and

standards was quite wide. The most important first generation standards were Nordic

Mobile Telephone (NMT), Advanced Mobile Phone System (AMPS), Total Access

Communication System (TACS) and Japanese TACS.[1,2]

NMT was invented and used at first in Nordic countries, but later on, was launched

also in some southern and middle European countries. AMPS technology was used

in the United States, Asian and Pacific regions. In the United Kingdom, Middle-East,

Japan and some Asian regions, TACS was the prevailing technology. Also some

country specific standards and technologies were used like C-Netz in Germany and

Austria, Radicom 2000 and NMT-F in France and Comvik in Sweden. [2]

In first generation wireless data networks, there were two different key technologies;

Cellular Digit Packet Data (CDPD) and Packet radio data networks. The latter one

was designed only for data transfer, but CDPD used unused time slots of cellular

networks. CDPD was originally designed to work over AMPS and could be used

over any IP-based network. Packet radio data networks were built only for data

transfer and its applications, such Short Messaging Service (SMS), email,

dispatching etc. Peak speed of packet radio data networks were 19.2 Kbps, but

normally rates were less than half of this peak performance. [2]

 8

2.2. Digital era of 2G and 2.5G

The most remarkable generation shift in cellular networks was from first generation

to the second. The 1G was implemented with analog radio transmission, and the 2G

is based on digital radio transmission. The main reason for this shift was increased

demand for capacity, which needed to be handled with more efficient radio

transmission. In 2G, one frequency channel can be used simultaneously by multiple

users. This is done by using channel access methods like Code Division Multiple

Access (CDMA) or Time Division Multiple Access (TDMA), instead of using the

capacity extravagant method of Frequency Division Multiple Access (FDMA),

whose differences can be seen in figure 1. In these methods one frequency channel is

divided either by code or time to achieve more efficient usage of that channel. [2]

Figure 1: FDMA, TDMA and CDMA [7]

In 2G there are four main standards: GSM, Digital AMPS (D-AMPS), CDMA and

Personal Digital Cellular (PDC).

 9

GSM started as a pan-European standard, but was adopted and widely spread out to

be true global technology. Currently it is the most used technology in mobile

networks [5]. GSM technology uses TDMA with Frequency-Division Duplexing

(FDD) in which downlink and uplink use a different frequency channel. Peak data

rates in plain GSM technology could at first achieve only 9.6 Kbps, but later it

increased to 14.4 Kbps. [1, 2]

D-AMPS also known as Universal Wireless Communication (UWC) or IS-136 and is

mainly used in the Americas, Israel and some Asian countries. D-AMPS is also

based on TDMA, but with Time Division Duplexing (TDD), where downlink and

uplink uses the same frequency channel, allocated by using time slots. Basic IS-136

offers data transfer rates up to 30 Kbps, but with IS-136+ the range are from 43.2

Kbps to 64 Kbps. [2]

CDMA uses a different approach to dividing air interface than in TDMA based

technologies, and it separates different transmission by code and not by timeslots.

The first commercial CDMA technology is based on standard IS-95A and can offer

14.4Kbps peak data rates. CDMA is mostly used in networks located in United

States and East Asian countries. PDC, formerly was known as Japanese Digital

Cellular (JDC), but name was changed as an attempt to market the technology

outside of Japan. This attempt failed, and PDC is commercially used only in Japan.

PDC uses the same technological approach as D-AMPS and GSM with TDMA. PDC

can offer circuit-switched data service rates up to 9.6 Kbps and, as a packet-switched

data service, up to 28.8 Kbps. [2]

The line between 2G and 2.5G cellular networks is vague and cannot be defined

strictly. 2.5G networks in general are upgraded 2G networks offering higher data

transfer rates than basic 2G networks. In some cases those upgrades can be done only

with software updates or minor radio interface changes. These upgrades are

downward compatible, and so only subscribers who want advantages of newer

technology have to update own devices. The general conception is that 2.5G cellular

network should support at least one of following technologies; High Speed Circuit

 10

Switched Data (HSCSD), General Packet Radio Services (GPRS), Enhanced Data

rates of Global Evolution (EDGE) in GMS or D-AMPS networks and in CDMA

networks technology, which is specified by IS-95B or CDMA2000 1xRTT. [1, 2]

HSCSD is the easiest way to boost GSM network capacity, and it needs only

software updates to existing networks. Compared to plain GSM network, a HSCSD

network uses different coding schemes and is able to use multiple sequential time

slots per single user and this way boosts data transfer rates. This technological

improvement does not help networks which are already congested, but instead can

make them worse. A solution which needs real time communication HSCSD is

preferred, because of the nature of circuit switched connection. HSCSD data transfer

rates range from 9.6 Kbps up to 57.6 Kbps with using time slot aggregation and can

be raised up to 100 Kbps, if channel aggregation is used. [1]

GPRS is technology which requires a few new main components to the core network

and updates to other elements as well. The new core components are Serving GPRS

Support Node (SGSN) and Gateway GPRS Support Node (GGSN). SGSN handles

control signaling to user devices and data routing inside SGSN’s serving area. GGSN

handles GPRS roaming to other networks and is the gateway between public

networks like Internet and GPRS network. GPRS technology is a packet-switched

solution and can achieve a maximum of 115 Kbps peak data rate. [1, 2, 8]

EDGE is a third option to upgrade TDMA based cellular networks. EDGE

technology takes advantage of an improved modulation scheme which in most cases

can be achieved only by software updates. In EDGE, data transmission is boosted by

using eight-Phase Shift Keying (8-PSK) instead of basic Gaussian minimum shift

keying (GMSK). This will improve transmission rates up to threefold. [1, 2]

CDMA networks also have some updates to speed up data transfer. These upgrades

are IS-95B, CDMA2000 1xRTT or Qualcomm’s proprietary solution of High Data

Rate, which is also known as 1x Evolved Data Optimized and is a nonproprietary

solution of this technology. This can boost data transfer rates up to 2.4 Mbps, which

 11

is similar as in early implementations of 3G, although these upgrades are still

considered as 2.5G technology. [1]

2.3. 3G The beginning of mobile broadband

Third generation (3G) cellular networks design started soon after second generation

networks were commercially available. European Telecommunications Standards

Institute (ETSI) and key industry players were among the first to start studies. A few

key design principles were truly of a global standard regarding high speed mobile

broadband data and voice services. New services like high quality voice, mobile

Internet access, videoconferencing, streaming video, content rich email, etc. created a

huge demand for mobile data transfer capacity, and 3G is designed to meet these

demands. The earliest 3G networks offered only a little better or the same transfer

rates as most evolved 2.5G systems, but technologically there is a clear difference.

[2]

3G has two major standards; Universal Mobile Telecommunications System (UMTS)

and CDMA2000. Also there is country specific standard Time Division -

Synchronous Code Division Multiple Access (TD-SCDMA) in China. For UMTS

ETSI, organizational members and industry leader manufacturers founded the 3G

Partnership Project (3GPP) in 1998 which functions under ETSI. A similar

partnership program was founded to coordinate CDMA2000 development by the

American National Standards Institute (ANSI) and organizational members called

3GPP2. [1, 2, 9, 11]

The International Telecommunications Union (ITU) has defined an umbrella

specification International Mobile Telecommunications (IMT) 2000 for 3G mobile

networks. It was meant to be truly global, but for political and technical reasons it

was infeasible. The specification defines 5 different sub specifications; IMT Direct

Spread (IMT-DS), Multicarrier (IMT-MC), Time Code (IMT-TC), Single Carrier

 12

(IMT-SC) and Frequency Time (IMT-FT). All current 3G standards fit under those

specifications. [1, 10]

UMTS is based on Wideband Code Division Multiple Access (W-CDMA), which is

an alias for this standard, and it uses FDD or TDD for radio transmission. The

UMTS was at first the 3G standard which acted as an evolution path for GSM

systems, but later on the UWC consortium also took it as an evolution path for North

American TDMA based systems like D-AMPS. [1, 2]

The CDMA2000 standard family is 3GPP2’s answer to the CDMA network’s

evolution towards 3G. It was the first 3G technology commercially deployed. IS-95

High Data Rates (HDR), Qualcomm’s propriety technology, is a base for

CDMA2000 and is optimized for IP packets and Internet access. CDMA2000 uses

multicarrier TDD for radio transmission. As well as UMTS also CDMA2000 is also

based on Wideband-CDMA (W-CDMA) technology, but it is not interoperable with

UMTS. [2, 11]

TD-SCDMA is a standard which is used mainly in the Chinese market. It is

WCDMA technology and uses Direct-Sequence Spread Spectrum (DSSS) and TDD

in radio transmission. [2]

All current 3G technologies are still evolving. Already many upgrades and

enhancements have been made, and new ones will be coming before next generation

networks are commercially available. The most significant technological

enhancements currently are High Speed Packet Access (HSPA) for UMTS networks

and CDMA2000 3X for CDMA2000 networks. [1, 2, 9, 11]

 13

3. LTE network architecture

LTE is the name for 3GPP’s fourth generation (4G) cellular network project. From a

technological point of view, it is not really 4G technology, because it does not fully

comply with ITU’s IMT Advanced, which is considered to be the real umbrella

standard for 4G systems [10, 12]. In this chapter key points of LTE network

architecture and its structure are discussed. The MME core network element is

covered in more detail, because it is the device used as the SUT in this thesis. The

motivation and reasoning behind LTE technology are also presented. This will help

the reader to get a general understanding of technologies related to this thesis and to

introduce the element used in testing in more detail.

The motivation for developing the new technology release called LTE, which was

initiated in 2004, can be summarized with six key points. First was the need to ensure

the continuity of competitiveness of the 3G system for the future. This means that

there had to be commercially competitive new technology available from the 3GPP

group to support industrial manufacturer members to hold their market share against

other rival technologies. Second was user demand for higher data rates and quality of

service which arises from demand for increased bandwidth for new services like

video streaming, virtual working, online navigation etc. Third was the technological

shift to use an entirely packet switch optimized system. Continued demand for cost

reduction in investments and for operational costs was a key driver for operators and

the fourth point. Fifth was the demand for low complexity, meaning that network

architecture had to be simplified. Sixth was to avoid unnecessary fragmentation of

technologies for paired and unpaired band operation. [12, 13, 14]

The technological requirements for LTE were finalized in June 2005 by the next

generation mobile networks (NGMN) alliance of network operators. These

requirements are defined to ensure radio access competitiveness for the next decade.

The highlights of requirements are reduction of delays, increased user data rates and

cell-edge bit-rate, reduced cost per bit by implying improved spectral efficiency and

 14

greater flexibility of spectrum usage, simplified network architecture, seamless

mobility and reasonable power consumption for the mobile terminal. Reduction of

delays is meant to happen in terms of connection establishment and transmission

latency. The spectrum usage goal is meant for implementation in both new and pre-

existing bands. The requirement of seamless mobility refers to different radio-access

technologies. To achieve these requirements, both radio interface and the radio

network architecture needed to be redesigned. [12, 13, 14]

As 3GPP’s technical report (TR) 25.913 declares, LTE’s high spectral efficiency is

based on usage orthogonal frequency division multiplexing (OFDM) in downlink

and single-carrier frequency division multiple access (SC-FDMA) in uplink. These

channel access methods are robust against multipath interference, and advanced

techniques, such as multiple-input and multiple-output (MIMO) or frequency domain

channel-dependent scheduling, can be used. SC-FDMA also provides a low peak-to-

average ratio which enables mobile terminals to transmit data power efficiently. LTE

have support variable bandwidths like 1.4, 3, 5, 10, 15 and 20MHz. Simple

architecture is achieved by using evolved NodeB (eNodeB) as the only evolved

universal terrestrial radio access network (E-UTRAN) node in radio network and

reduced number of radio access network (RAN) interfaces S1-MME/U for MME and

system architecture evolution – gateway (SAE-GW) and X2 between two eNodeBs.

[15]

According to the same TR 25.913, the LTE system should fulfill the following key

requirements:

For peak data rate:

• Instantaneous downlink peak data rate of 100 Mb/s within a 20 MHz

downlink spectrum allocation (5bps/Hz)

• Instantaneous uplink peak data rate of 50 Mb/s (2.5 bps/Hz) within a 20MHz

uplink spectrum allocation

For control-plane latency

• Transition time of less than 100 ms from a camped state to an active state

• Transition time of less than 50 ms between a dormant state and an active state

 15

For control-plane capacity

• At least 200 users per cell should be supported in the active state for spectrum

allocations up to 5 MHz

For user-plane latency

• Less than 5 ms in unload condition for small IP packet

For mobility and coverage

• E-UTRAN should be optimized for low mobile speed from 0 to 15 km/h

• Higher mobile speed between 15 and 120 km/h should be supported with

high performance

• Mobility across the cellular network shall be maintained at speeds from 120

km/h to 350 km/h (or even up to 500 km/h, depending on the frequency band)

• The throughput, spectrum efficiency and mobility targets above should be

met for 5 km cells, and with a slight degradation, for 30 km cells. Cell ranges

up to 100 km should not be precluded.

The 3GPP release 8, simplified LTE non-roaming network architecture, can be seen

in figure 2. LTE non-roaming architecture has E-UTRAN and user equipment (UE)

as radio network access components. In evolved packet core (EPC) network part

have SGSN, MME, and home subscriber server (HSS) which act as subscriber

database, serving gateway (S-GW) and packet data network gateway (PDN-GW) and

policy and charging rules function (PCRF), which has policy management rules for

subscribers and applications etc.[16]

SGi

S12

S3
S1-MME

PCRF

Gx

S6a

HSS

Operator's IP
Services

(e.g. IMS, PSS etc.)

Rx

S10

UE

SGSN

LTE-Uu

E-UTRAN

MME

S11

S5 Serving
Gateway

PDN
Gateway

S1-U

S4

UTRAN

GERAN

Figure 2: LTE network architecture [16]

 16

3GPP technical specification 23.401 also defines interfaces and reference points

which are used in the LTE system:

S1-MME: Reference point for the control plane protocol between E-UTRAN and

MME.

S1-U: Reference point between E-UTRAN and Serving GW for the per bearer user

plane tunneling and inter eNodeB path switching during handover.

S3: Enables user and bearer information exchange for inter 3GPP access network

mobility in idle and/or active state.

S5: Provides user plane tunneling and tunnel management between Serving GW and

PDN GW. It is used for Serving GW relocation due to UE mobility and if the

Serving GW needs to connect to a non-collocated PDN GW for the required PDN

connectivity.

S6a: Enables transfer of subscription and authentication data for

authenticating/authorizing user access to the evolved system between MME and

HSS.

Gx: Provides transfer of policy and charging rules from PCRF to Policy and

Charging Enforcement Function (PCEF) in the PDN GW.

S10: Reference point between MMEs for MME relocation and MME to MME

information transfer.

S11: Reference point between MME and Serving GW.

SGi: Reference point between the PDN GW and the packet data network. A packet

data network may be an operator external public or private packet data network or an

intra operator packet data network. [16]

3.1. MME network element

A MME network element in an EPC network acts as a session and mobility

management node. MME’s main responsibilities are subscriber’s authentication and

authorization, control plane traffic handling, security functions and session and

mobility management in LTE radio network and between other 3GPP 2G/3G access

network or non-3GPP radio networks and LTE radio networks. MME is a dedicated

 17

control plane core network element, and all user plane traffic is directly handled

between eNodeB and S-GW [17]. Due to the flat architecture of LTE radio networks,

all eNodeBs are directly connected to MME, which require more mobility

management transaction with active mobile subscribers [14].

Session and mobility management include various functions, such as tracking area

list management, PDN GW and Serving GW selection, roaming by signaling towards

home HSS, UE reachability procedures and bearer management functions including

dedicated bearer establishment [14]. Besides those functions, MME also handles

non-access-stratum (NAS) signaling and security, SGSN selection for handovers to

2G or 3G 3GPP access networks and lawful interception signaling traffic [16].

Signaling between MME and E-UTRAN is done with S1 application protocol

(S1AP) which is based on stream control transmission protocol (SCTP) [14]. S3 or

Gn is the interface between MME and SGSN, where S3 is SGSN which comply with

3GPP technical specifications Release 8 or newer, and Gn is for Release 7 or earlier.

S10 interface is for control plane traffic between two MMEs and S6a between HSS

and MME for getting subscriber information [16]. S11 interface is meant for the

control plane between MME and S-GW for handling bearer related information. All

MME interfaces S3/Gn, S6a and S10 are based on SCTP, except S11, which is based

on GPRS tunneling protocol (GTP) [16, 18].

NSN MME core network element

Nokia Siemens Networks implementation of MME is based on advanced telecom

computing architecture (ATCA) hardware which can be seen in figure 3 [17]. ATCA

is hardware made with specifications of PCI Industrial Computer Manufacturers

Group which is a consortium of over 250 companies. The purpose of this consortium

is to make high-performance telecommunications, military and industrial computing

applications [19]. By using ATCA hardware as a base, it gives an advantage for

using high end carrier grade equipment. With ATCA, new technology updates like

computing blades and interface options are available along with industry evolution,

 18

meaning that new technologies can be brought to market faster, and component

lifetime in operation will be longer. An ATCA shelf has 16 slots for computer units

from which 2 slots are reserved for HUB blades for internal switching and

communication purposes [19].

Figure 3: MME ATCA hardware [17]

NSN MME has five different key functional units; operational and maintenance unit

(OMU), marker and charging unit (MCHU), IP director unit (IPDU), signaling and

mobility management unit (SMMU) and control plane processing unit (CPPU) [17].

IPDU is responsible for connectivity and load balancing, MCHU offers statistics

functions, SMMU handles subscriber database and state-based mobility management

functions and CPPU is responsible for transaction-based mobility management [17].

In figure 4 this assembly is illustrated. SMMU also provides S6a interface to HSS

and CPPU S1, S11 and S3/Gn interfaces. OMU and MCHU are redundant 2N units,

 19

meaning there have to be N amount of pairs of both working and spare units. IPDU

and SMMU are N+1 which means there has to be at least one working unit and

exactly one spare. CPPU is N+ unit meaning one unit should be in a working state

and the rest of CPPU units can be either in working or spare states [17].

Figure 4: NSN MME units [17]

 20

4. Software Testing and Test Automation

Software testing is a part of development where, systematically, defects and faulty

functionality are searched for improving software quality and reliability. This is

normally done via verification and validation with appropriate test tools and

methods. This chapter describes software testing and the benefits of test automation.

Also, different levels of testing are introduced and described in more detail. This

context helps the reader to understand the complexity and requirements for

implementing similar test automation schemes as described in thesis.

4.1. Definition of software testing

Software testing is a process where one tries to search and find defects, errors, faults

or false functionality. It is not a series of indefinite attempts or vague experiments to

make software crash or misbehave, but rather it is a systematic, carefully designed,

well defined and executed process from which results are analyzed and reported [4,

21, 20]. The only form of testing that does not follow this formula is exploratory

testing, but it is usually backwards traceable and well documented [22].

There are three different methods in software testing; white box testing, black box

testing and gray box testing. In white box testing the test engineer has access and

knowledge of the used data structures, code and algorithms used inside the software.

The test engineer usually also has the possibility to access and test software with a

wide array of tools and procedures like unit tests, module tests, internal interfaces,

internal logs etc. In black box testing the test engineer’s knowledge of software is

limited to the specification level. One can only use external interfaces to test

software and rely on information that the specification gives. In this method,

software is seen as a black box which will reply on input with some output defined in

the specification. Gray box testing is a combination of the two preceding methods.

The test engineer has access and knowledge of internal data structures, code and

 21

algorithms, but one will use external interfaces to test the software. This method is

usually used in integration testing of software. [4]

In software testing software’s behavioral deviation from specification is referred to

as a defect, bug, fault or error. This derives to the conclusion, that without a

specification, no exact testing can be done, and because any specification cannot be

all-inclusive, not all found misbehaviors are considered defects, but instead features

from developer’s point of view. The customer, however, can think otherwise [20]. A

general conception is that when defect occurs, it leads to a fault which can cause a

failure in software. Failure is a state which is shown as misbehavior to other parts

within software. For example, memory leak is a fault which can lead to a software

crash, which is a failure. Not all defects are faults, and not all faults lead to failure.

An error is thought to be a human misbehavior leading to defect, but all terms that

describe defects are usually used as synonyms and interchangeably [21]. Also, the

definition of testing and debugging are usually mixed and are used as synonyms, but

the purpose of testing is to find misbehavior and defects from the software, whereas

debugging is used to describe the process where programming faults are traced from

the actual code [20].

Software testing is a combination of two processes, verification and validation. The

meanings of these processes are quite often mixed and used interchangeably. The

definition of verification according to the Institute of Electrical and Electronics

Engineers (IEEE) standards, is the process of evaluating that software meets

requirements that where imposed at the beginning of that phase. Software has to

meet requirements for correctness, completeness, consistency and accuracy during its

whole life cycle, from acquisition to maintenance. After implementation, those

requirements, including specification and design documents and implemented code

are checked to be consistent. Checking of code can be done only with code review,

and no actual execution of software is needed. The definition of validation, according

to IEEE, is the process of evaluating that the software meets the intended use and

user requirements [23]. This means that software is usually executed against a set of

test cases and as a general concept, this is thought to be the actual testing process.

 22

4.2. Testing coverage and risk management

It is not feasible to perform an all-inclusive testing which finds all underlying defects

even in the simplest of software. This is due to the large number of possible inputs,

outputs or paths inside the software, and the specification of the software is usually

subjective, meaning that the customer and developer don’t usually see everything in

the same way [4]. To fulfill all possible test scenarios would require a tremendous

amount of test cases and through an infeasible number of resources. For these

reasons are the cause why all-inclusive testing can be considered an impossible

challenge. [4]

As mentioned earlier, not all defects lead to failure, and many defects are not even

noticed during a software’s whole life cycle [2]. Other defects can be just cosmetic or

annoying, but do not cause any harm. Then there are those defects that most probably

will lead to misbehavior or even failure of software and must be considered critical

[2]. Another thing one must consider besides the amount of resources invested on

testing is the phase in which testing is done. Table 1 shows how much more it would

cost to fix a defect at later phase in development than if it were discovered and fixed

at some earlier phase [24]. It is a general conception that defects found and fixed

during an early phase of development can save a lot of effort and resources later on

[21].

Defect discovered in

Defect in
Requirements Architecture Implementation

System

Test

Post-

Release

Requirements
1x 3x 5-10x 10x

10-

100x

Architecture
 1x 10x 15x

25-

100x

Implementation 1x 10x 10-25x

Table 1: Cost of finding defect [24]

 23

Overall in testing the key question is; what is the optimal amount of testing; the point

where one test enough to catch all critical defects that can affect on quality, but does

not waste resource on economically infeasible over testing [21]. With less testing,

one will safe resources, but will most certainly let some defects through [4]. This

problem is illustrated in figure 5 in which the horizontal axel is test coverage and the

vertical axis represents quantity [4].

Figure 5: Optimal amount of testing [4]

Commonly the concepts of quality and reliability are mixed and thought to have the

same meaning, but actually reliability is a subset of quality and only describes how

robust, dependable and stable a software is [4]. Quality, instead, defines a larger set

of aspects like the number of features, correctness of requirements, degree of

excellence and price etc [4].

 24

4.3. Testing levels and possibility for test automation

The different levels of testing are unit, module, integration, functional, system and

acceptance testing, and all are classified as functional testing [20]. There has been

developed a special v-model for testing as shown in figure 6, in which on the left side

is the design and planning phases and the corresponding testing levels on the right

side. The number of different phases varies depending how those are classified.

Testing starts from the bottom and goes up. The model also indicates the cost of

fixing a defect, which also increases depending on the level where it is found. Each

testing level usually has its own coverage, purpose, tools and method. One has to

also set also entry and exit criteria for each testing level which defines when software

is robust and mature enough for a new level and when to terminate testing [21]. In

unit or module testing the white box testing method is used, integration testing is

done with the gray box method and functional, system and proceeding testing is

carried out as the black box testing. There is also non-functional testing including

performance, usability, stability and security testing which are normally executed

after functional or system testing has been successfully executed. In non-functional

testing, the method is usually gray or black box testing depending on the tools that

are used. [21, 20]

Figure 6: V-model of testing

 25

Unit testing is mainly conducted to test functionality of the lowest level in code.

Usually tests are targeted to function or method level in the smallest possible

portions and testing all possible lines and different paths inside one module or class.

Unit test results nowadays contain information about code coverage which tells the

percentage of how many lines were accessed during tests. Tests are usually written

by programmers themselves with the white box testing method to gain information

about function or method correctness. Tests are usually carried out by executing part

of the code in a simulated environment in test beds. This level of testing is usually

can be fully automated and needs no human interaction. Results of tests are normally

compared to unit design specifications. [21, 20]

Module testing is usually considered the same as unit testing, because methods and

tools are the same. The main differences are in goal, testing scope and requirements

for test execution. The coverage of module testing, measured in lines, is less

meaningful, and right functionality of module or class is emphasized more than in

unit testing [20]. The scope is to ensure correctness of functionality and the external

interface of the module. When executing a module test, one usually needs to use

mocked versions of other modules interacting with the module under test. Those are

commonly referred to as test stubs or test drivers [21]. As with unit testing, module

testing can also be executed in simulated environment in test beds and can be fully

automated [20].

Integration testing is the first testing phase where modules are tested together to

ensure proper functionality of interfaces and cooperation of modules. There are

usually three practices to carry out integration; big bang, bottom up and top down. In

big bang all changed modules are combined in a “big bang” and tested. If software is

goes through compiling phase and starts up this practice is probably the fastest way

to find and fix interface and interoperability defects and issues [20]. In bottom up

integration, testing is built up by adding the lowest level module first and continue

adding next levels until reaching highest level module [20]. The top down practice

uses just the opposite way of doing integration than bottom up. Methods used in

integration varies from high level white box testing to gray box testing and normally

 26

with bigger software programs, the gray box testing method is dominant [21]. Full

automatization of this phase is infeasible at the beginning of development, because

many defects found in an early state of integration testing are causing difficulties to

even start or keep software running. Without software running at least in a

moderately stable way, it can be impossible or at least infeasible to collect the

necessary logs. A sudden crash of software usually will leave incomplete logs, which

often are useless. When software achieves a sufficient state of robustness and

stability, integration testing can be also fully automated. In integration testing, at

least the basic functionality of software should be tested [20].

Functional testing can be considered to be part of system testing or preliminary

testing before it. Functional testing is mainly done as gray box testing to verify

correctness of systems features and proper functionality. System testing is carried out

normally with black box testing, where the knowledge and information of internal

functionality is limited [20]. Hence the functional testing level has the opportunity to

observe internal logs and monitoring. This phase is the first phase where all features

of a software are tested and checked that they correspond to the architectural design

and specifications. This all-inclusive testing is called regression testing, and its

purpose is to clarify that new functionality has not broken down old functionality.

With good test environment design and planning, almost all test cases can be

automated. There are always test cases which require infeasible requirements like

sudden loss of power or are used only once. Automating these types of test cases is

impractical [20].

The system testing phase is where software is tested against the highest levels of

architectural design and system specifications and testing is carried out using the

black box method. Usually in this phase, real hardware is used along with other real

system elements. In the telecommunication industry network verification belongs

under system testing, where almost all network elements are real hardware [4]. The

automation level of testing is the same as in functional testing but even more

feasible, because no internal logs or monitoring needs to be collected. Defects and

 27

faults found in this level are usually caught through network analyzers or external

logs of hardware equipment [4].

The acceptance testing is done through cooperation with a customer against the user

requirement specification. One part of this testing can also be usability testing where

the user interface is tested. The purpose of this level is to make sure product is

compliant what the customer ordered. This is done also with the black box testing,

usually by using automated or semi-automatic test cases, but with execution is

initiated manually. [20]

Non-functional testing like performance, security and stability testing, normally is

carried out simultaneously with system testing, and some consider it to be part of it

[20]. However, the tools and scope are quite different in non-functional testing than

in system testing. Performance testing usually cannot be executed using the same

tools as functional testing, and the scope of functionality under test is normally many

times narrower. In stability testing, the scope is in causing a heavy load into the

system and analyzing the system capability to handle it [21].

4.4. Test automation versus manual testing

In modern software development, the main question is not as unambiguous as should

one use test automation or manual testing? Rather one should think of the level of

automation to be used and which levels of testing are feasible to automate [4]. There

are many advantages of test automation, such as speed, accuracy, reproducibility,

relentlessness, automated reports etc., however maintenance load of test cases, more

complex designs and implementation of test cases can make test automation

unfeasible to be used in every situation [22]. One should always consider the return

of investment (ROI) when determining whether to automate some testing level and

which level of automation to use [3].

 28

The main advantages of test automation are almost always taken for granted when

speaking on this subject. The following list explains these advantages in more detail.

• Speed is maybe the most important single reason to consider when deciding

the implementation of test automation. In the time a human takes for writing

a 25 digit command and pressing enter, a modern computer can do it

hundreds, thousands or even millions of times. Result analysis of a single line

response like prompt or command executed by a human can take about one

second and by computer only milliseconds. This kind of advantage is

emphasized in regression testing which can contain millions commands and

responses. [3, 4]

• Accuracy, a computer will always execute the test case as exactly as it is

written. It will not make mistakes. If an error does occur, it is either written in

the test case or the result of some external disturbance. [4, 22]

• Reproducibility can be considered to be accuracy plus timing. Even if the test

engineer would not make mistakes timing can be the significant factor when

trying to reproduce a defect which is caused by some timing issue. Of course,

variable timing can be also seen as an advantage in testing, but it should be

controlled and not caused by contingency. [4, 22]

• Relentlessness is one of machines’ best advantage over humans and is

defined as accuracy combined with reproducibility plus stubbornness. A

machine will never give up or get tired and keeps performing its ordered tasks

until it is finished or it breaks apart. [4, 22]

• Automated reports and documentation are always taken as by products of test

automation, but provide a great advantage, since some cases, they can reveal

what will or has been actually tested vs. the specification documentation.

Modern testing frameworks even recommend and encourage making test

cases as human readable as possible [25]. After execution, test automation

tools usually will generate reports and logs and make it easier to prove what

was actually tested and what were the results. [4, 22, 26]

• Provides resources that are needed to test large test contexts simultaneously

like thousands of connections to some server application [4]. This can be

 29

extremely difficult or impossible to manage manually and to successfully

open sufficient amount of connections [4]. These repetitive tasks call for test

automation.

• Efficiency. A test engineer’s talent and capability is not fully used if one will

be tied up in following test executions. Test automation frees up test

engineers to do more valuable tasks, like test case design and result analysis

etc. It also improves motivation and job meaningfulness, if routine tasks can

be left for machines. [3, 4, 22]

Test automation is less advantageous with the more complex test case designs, which

will need different points of view for testing, need for possible new investment for

test automation equipment, and competence to operate new systems. Also

maintenance of test cases is one field that needs more focus than with the manual

testing, where maintenance is usually done within the testing routine [22].

The levels of automation can be divided into three distinct categories: full

automation, semi-automatic and manual testing. In the full automation level, all

procedures are automated, except for thedeeper analysis of failed cases which is done

manually. With a successful outcome, the full automation level process does not

require any human interaction. The setup, test execution, and teardown phases are all

automated, and starting, ending and possible next phase triggering is handled by the

testing system. In semi-automatic testing, at least one of the testing phases of the

setup, execution or teardown must be done manually if too complex or fluctuating to

be automated. The manual testing category contains test cases which are not in any

way feasible to be automated. One-off, usability and exploratory tests are good

examples of this category. One-off test cases are tests that are intended to be

executed only once or very few times. This is because the functionality or feature

under test is only a temporary solution and will be replaced or erased soon resulting

in an ROI too low to justify its automation. Usability tests usually are included in this

category, because user interface tests are difficult to automate due to results being

based on empirical factors and can be extremely hard to describe in any deterministic

way. User interface is a part of software which is constantly changing, with little

 30

variation. Exploratory test descriptions already reveal reasons why those test are not

practical to automate, based on exploring and testing software and designed tests not

already applicable. If any defects are found through exploratory testing, there can be

efforts to make automated test cases for those specific cases, but all preceding

exploratory tests and results must be carefully documented in detail for

reproducibility reasons. [22, 26, 27]

In designing a test automation strategy there is a good model, having a shape

opposite the V-model, which is used to show the importance of ROI and the need of

test automation in certain testing levels. The model is called Mike Cohn’s Test

Automation Pyramid [22] shown in figure 7. The pyramid can be used as a guide on

where to invest test automation resources. [22]

Figure 7: Mike Cohn's Test Automation Pyramid

As from the figure above, it can be observed that the unit and module tests are the

base of test automation pyramid. After an acceptable level of automation is achieved

at a certain level, one can start to automate next level test cases. Unit and module

level tests should be automated as a first thing, and as much as feasibly possible.

 31

Normally, tests are written with the same language as the software and by the

programmers themselves. The next level, functional and system tests, is also

important, but if the preceding base of unit and module tests are leaking, this level’s

number of caught defects will skyrocket, and it will be come inefficient. This level

should be only used to catch architectural defects. The user interface level should be

the last level in which to invest resources, because ROI is the lowest at that level.

Manual tests are shown as a cloud, because there is always possibility that all test

cases are not possible and feasible to automate. [22, 28]

 32

5. Software development model’s influence on testin g

This chapter presents different software development models and their influences on

testing. Also, the effects of distributed software development (DSD) are discussed,

and the continuous integration (CI) process is briefly described [29]. Firstly, the most

used development models are presented with a short description of each and their

influence on testing requirements considered. Then distributed software development

and its subclass distributed agile development (DAD) are presented [30]. Finally a

short introduction to the continuous integration process and its requirements for

testing is analyzed.

Software development is a process in which software is created with certain

structured way. For handling this software development process there are several

readymade models to describe the tasks and actions needed in each different phase of

development. Those models can be divided in two categories; traditional

development models and agile development models. There is also third category

called iterative models, but usually those have same kind of workflow as traditional

models, but with a smaller cycle content. In traditional development models, all steps

are usually predefined before starting each step, and developers just follow the

specifications of each step, progressing in linear mode from each step to next. In

agile development, the only requirements are predefined, and developers make

software in iterative steps which can be done simultaneously in parallel mode. These

two approaches set quite different requirements for testing. In traditional models,

testing is done at the end of the development cycle, but in agile models, development

can start by doing acceptance tests first and executing those tests throughout

development until they are pass, signifying the end of the development cycle. [4, 22,

29, 30]

 33

5.1. Traditional development models

Traditional development models are normally based on the idea of sequential and

well defined upfront design. This means starting a project by defining requirements

and making requirements specification and guide lines for each step or phase of the

project. After this step architects start the overall design of the different phases and

architectural design. All required tasks and steps are carefully designed and

documented upfront, so that in the implementation phase all developers can just

concentrate on making their own tasks. Testing, including verification and validation,

is usually done as the last step of the project with testing plan made during

requirements specification. This means that if there is a defect found during testing

or other needs for change after requirements specification, the whole process has to

be started from the point where that change is needed and proceeding development

phases have to be re-done. Hence, traditional development models do not welcome

any changes during the development process, after the initial requirement

specification is done. Any major changes are usually transferred to the next release.

Four most frequently used traditional development models are Big Bang, Code and

Fix, Waterfall and Spiral model. There are many more, but those are usually just

variations of these four. [4, 20, 21]

Big Bang Development Model

The Big Bang model is not really any structured model, but it has to be mentioned,

because many of nowadays famous products and services have been initially started

with a similar approach. In the Big Bang model, instead of having requirements,

even hint of specifications or fixed schedule, the customer only has an idea and the

resources to start doing it. There is no deadline or even guarantee that the project will

ever get anything ready. The idea behind this model is the same as in the dominant

theory of the creation of universe, with a huge amount of energy and resources that

together will create something special. Sometimes this model works, but there is a

similar chance it will lead to nothing. Testing in this model is just finding defects by

 34

using the product as your testing specification. In many cases, defects that you find

are just meant to be told to the customer, not to be fixed. [4]

Code and Fix Development Model

Code and fix model is the next step from the Big Bang model. There usually is some

informal requirement specification, but not a very well defined one. This is a model

where many projects fall into, if project fails to follow some more specific model.

The model suits small and light projects, where the only goal is to make a prototype,

proof of concept or a demo. This three phase development model can be seen in

figure 8. First developers try to make the product by following specifications. In the

second phase follows some kind of testing of the product which is usually not a

formal structured specification based process, but instead, more like exploratory

testing. If testing results are satisfying for the customer project ends and the product

is released, but if defects are found, the project goes one step back into the

development phase and tries to fix the defect. This fixing, developing and testing

cycle can be carried on until the product satisfies the customer, resources end or

somebody has the courage to blow the whistle and end it. There isn’t usually any

predefined strict deadline for these projects or it has been exceeded a long time ago

and project just tries to complete the assignment using this model. There is not any

separate testing phase in this model, but testing is carried out in the development

cycle where all three steps programming, testing and redesign are constantly repeated

until the project is over. [4, 20]

Figure 8: Code and Fix development model

 35

Waterfall Development Model

Waterfall is the most famous of the traditional development models. It is a

deterministic process that consists of different discrete steps. It is used in the

development process from the tiniest programs to very large projects, because it is

simple, sensible and scalable. Figure 9 shows the usually used steps of the modern

Waterfall model from requirements to product release. The project that follows the

Waterfall model has to do every complete step until they can proceed to the next

step. At the end of this step, the project should make sure that all required tasks of

that step are carried out exactly and without loose ends. Moving from the preceding

step to the next makes this model look like a waterfall. In some new variations of the

modern Waterfall model, little overlapping and going back to preceding step is

allowed, but the original model did not accept this kind of behavior.

Figure 9: Waterfall development model

 36

The discrete nature of this model makes it easy to follow. Every team in the project

knows exactly what to do in each step. If everything is well defined, the specified

deadlines are easy to accomplish. From a testing point of view this is a huge

improvement compared to the two earlier models. All requirements are well defined

and testers just have to follow specification when making test cases and when

analyzing results. If the project follows the original model, finding a big defect from

requirements it means that current release cannot be published and a new project

have to be started to get the defect fixed. Also, the big downside is that other big

changes after requirements are not allowed or at least welcomed, because it means a

need to start from the point where the change is needed and do all proceeding steps

again. In most cases the big changes are shifted to the next release. [4, 20, 22]

Spiral Development Model

Spiral model is an iterative model developed by Barry Boehm in 1986. The model

combines elements from all three preceding models and adds iterative nature to the

development. It means that there is no need to define and specify all requirements at

once or to implement or test in one phase. The model suggests six steps iteration

where smaller parts of the project are done in each iteration phase, until the product

is ready to be released. These steps and spiral nature of the model is presented in

figure 10.

 37

Figure 10: Spiral development model

Six steps are:

1. Determine objectives

2. Identify risks and resolve them

3. Evaluate alternatives

4. Development and testing

5. Plan next level

6. Decide approach for next level

The project should repeat these steps until the final product is ready to be released.

From the testing point of view this is an easy task, because the tester will have

specifications to follow and the possibility to change requirements for the next

iteration level, if defects are found. [4, 20, 31]

 38

5.2. Agile development models

Agile development models are the new approach in development of software. These

models have gained place from traditional models, because agile models offer one

major advantage against traditional models, the changes are welcomed during

development cycles. Agile development models lean on four concepts presented in

the Agile manifesto [32]:

“We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

Individuals and interactions over processes and tools,

Working software over comprehensive documentation,

Customer collaboration over contract negotiation,

Responding to change over following a plan…

That is, while there is value in the items on the right, we value the items on the left

more.”

Beside this manifesto agile development has twelve principles that every project

using agile methods should follow. In those principles, the main reflection is

developing working software, while keeping customer satisfaction in mind, with trust

and honoring everybody involved in the development at the same time. Also, one of

the key principles is to be able to deliver working software frequently, with shorter

timescales. These concepts have been the key drive for the successful entrance of

agile development model. [20, 22, 32]

In the projects point of view, agile development model offers solution in challenges

that are out in modern software business like; time to market has been decreasing

tremendously, minimize waste or unnecessary work also known as features that

nobody will use, fast and easy correction of defects, requirements of products are

changing more rapidly than earlier, development velocity in every area is increasing,

and the life cycle of technologies is shorter nowadays. [22, 30]

 39

Agile development models are iterative and incremental models where in each cycle

there is the intention of doing only a small portion of the whole product. The

difference between agile and waterfall development model against time and the

iterative nature of agile development models can be observed in figure 11. In each

cycle, every phase has to be completed to be ready for the next iteration round. If the

cycle is unfinished at the end of the time window, it will be considered ongoing and

the team will try to finish it before taking any other tasks. When this happens it

means losing a little bit reputation as good and respected team in project. This way

teams try to take only portions of work that they can for certain accomplish during

the development cycle. Steps or phases needed to make this small proportion differ

according to the used agile development model.

Figure 11: Agile versus Waterfall development model [22]

The two most known and popular agile development methods are Scrum and extreme

programming (XP). Both methods tend to develop software in short iterative cycles

and have different steps and tasks scheduled during these cycles. For example,

Scrum calls development cycles as Sprints and in XP those are called iterations.

Sprints and iterations have both fixed time window and sprint is recommended to last

2-4 weeks and iteration 1-3 weeks. In the beginning of each sprint there is a planning

 40

meeting where user stories are selected, which represents tasks for the team, the same

naming is also used XP method. Each day the team has daily scrums where

yesterday’s achievements are told as well as the tasks to be done today and the

possible obstacles to achieve today’s goal. In XP content is pretty much the same,

but the name of meeting is the daily stand up meeting. At the end of sprint there are

two meetings demo and retrospective in scrum method. The demo meeting is held to

demonstrate new completed user stories and those are implemented to other

developer teams and customer called product owner. Retrospective meeting is held to

look at development ways of working used during sprint and how those could be

improved. In XP, similar activities are held internally after the end of every iteration.

There are not any official meetings. [33, 20, 22]

Testing in the agile development model is organized in a different way from the

traditional development models where testing comes almost always as the last phase.

In agile models testing is the key to make user stories to pass, without acceptance

testing passing user stories are not ever accepted and ending. Many projects that have

selected agile models also use test driven-development (TDD) and acceptance test

driven-development methods as their way of working. In TDD workflow starts

similar to the traditional models with planning and design, but as second phase or

step is implementation of test cases that are expected to be passed when the

corresponding part of code is ready. In TDD those test cases are at unit or module

testing level. Then as third step the actual implementation and programming is

started with the only requirement to make those test cases pass. When test cases pass,

the implementation can be considered to be ready. The acceptance test driven

development (ATDD) has the similar principle. The only difference is that test cases

are done at functional testing level. The idea is to continuously execute those

readymade tests to see when the implementation is ready. In a situation where the

developer would think that implementation should be ready, but test are still in failed

state, then those test cases and code have to be reviewed more carefully to see which

ones are done incorrectly and make the change accordingly. These methods can be

considered to emphasize testing, which is quite opposite to the traditional models.

Advantages of making test cases first is to minimize waste implementation, detailed

 41

specification in form of test cases, quick feedback loop and team´s concentration

only in valuable things. These issues make development teams more aware about

business and customer demands, which usually lead to better quality and increase

velocity on development. [4, 22, 30, 33, 34]

5.3. Distributed Software Development

Distributed software development (DSD) has become a common practice for modern

software companies around the world. In the literature DSD is also known and

referred in some articles as global software development (GSD). The distinction

between these two concepts is normally thin and vague; hence in this thesis those

two concepts are considered and used as interchangeable. Definition of DSD is a

development project that is divided between multiple working sites and locations,

meaning that developers cannot work or meet face to face daily and to enable that

developers have to travel [29].

There are many reasons for taking DSD into using it, such as the possibility to

practice time zone independent 24 hour development, reduce cost by outsourcing

part of development in low cost countries with access and obtain the best well-

educated workforce etc. All this has been enabled by maturation of the technical

infrastructure around the world. DSD is suffering from the same problems than

single-site development such as lack of communication, inadequate or insufficient

definition of requirements and specifications, cost and schedule problems and

deterioration of quality. In DSD these problems are even emphasized and few more

challenges can be discovered. If different sites are located in different time-zones

with long distance from main development site there may exist cultural differences

between sites. These challenges need special attention in making meeting

arrangements and the development schedules, defining concepts which can be new

and different for some working sites and making sure of sufficient and redundant

network connections. Studies show that using DSD can take about 2.5 times more

 42

effort to complete some tasks than one location based development, because of

communication and coordination related challenges. [29, 30]

DAD is a special case of DSD. In the agile development model one basic principle

that manifesto emphasizes is “individuals and interaction over processes and tools”

[32]. Hence requirements can change rapidly since it demands for efficient and

frequent communication between sites. Without this kind of communication there is

the possibility that there are issues with lower awareness and poor coordination. This

will lead to losing benefits of distributed development and can cause a negative

impact on other sites. To avoid these possible problems there are recommendations

to use various tools and means such as instant messaging software,

videoconferencing, and desktop sharing programs [22]. Altogether, the main

recommendation is to enable direct communication between developers to help avoid

problems [30]. Other studies suggest that presence of customer or customer proxy is

a key factor in keeping specification requirements and projects well coordinated [29].

Customer proxy is a person or team who acts as representative of actual customer

and can make development decisions based on customer demands [29, 30].

Distributed development model impact on testing is similar to the distribution effect

on development. Testing faces same challenges, requirements and possible problems

can be avoided with same methods. Also mocked interface and modules used in unit

test in different sites are causing a big challenge and increase in defects on

integration testing. Most of the problems occurred when mocked module had

outdated interfaces or message parameters. Few good practices and

recommendations for testing are to keep test data, including test cases, test tools,

configurations etc., available for all development personnel in all sites. Software

under test should be at same baseline in all sites, before the testing is started. This

enables testing to be done in the same manner and with the same configurations in all

sites. Changes on testing tools have to be synchronized and informed clearly

throughout all sites. [29, 30, 35]

 43

5.4. Continuous integration process

Continuous integration process is a wide concept in which modular software is

developed and tested in a continuous way, piece by piece. Martin Fowler describes in

his article about CI, “Continuous Integration is a software development practice

where members of a team integrate their work frequently, usually each person

integrates at least daily - leading to multiple integrations per day. Each integration

is verified by an automated build (including test) to detect integration errors as

quickly as possible” [36]. This is maybe one point of view where only unit and

module level testing is considered to be part of continuous integration. Figure 12 is

presenting this kind of basic and traditional continuous integration workflow

conception. In agile development model CI is especially important, because it

enables having quick feedback on little changes which happen often and is one of the

key building blocks of agile development. [22, 37, 38]

Figure 12: Components of CI system [38]

The most simplified CI process might not include anything else than automatic

compiling of source code. Many consider that CI process without automated testing

is not real CI, just an attempt to see if the code is compiling or not. One could

 44

consider that the compiling process already tests the integrity of build, but without

real testing the value of such process is just to verify the syntax of the programming

language.

Continuous integration is mainly used to reduce development risks. By integration

software changes multiple times a day and by doing it initiating automatic

continuous integration process, defects are detected and can be fixed sooner. Usage

of the automatic CI process reduces repetitive manual tasks and leads to the

possibility of generating deployable software at any time. When integration is done

many times a day it gives better visibility about the project’s progress and status. For

development teams it will enhance the confidence in the entire software product and

increase motivation as a side-effect. Without automatic continuous integration

process development usually suffers from late defect discovery, lack of project

visibility and decreased quality of software. Disadvantages of CI can lead to lack of

focus in overall architecture which eventually will lead to the architecture’s

degeneration. [37, 38, 39]

CI can be considered with larger scope than just integrating software blocks and

executing unit or module test after successful compiling. CI systems have as pre-

build phase’s normal continuous integration code integration and unit or module

tests. Then with some rule a complete build is compiled and tested with automated

functional testing. The rule for making the complete build can be based on schedule

or amount of integrated changes. Often complete CI systems can contain at least

functional testing after complete build is compiled. This larger scope CI gives even

more information about build’s and software’s overall health and increases

confidence on the development’s progress. [37, 38, 39]

 45

6. Fully automated functional testing with Robot

Framework

This chapter presents requirements, equipment environments and tools used to

implement fully automated functional testing framework for MME network element.

It will demonstrate the processes and methods used while achieving this fully

automated test scheme goal. Also it will provide a general description of challenges

met during this process and resolutions found for those. The chapter describes the

actual decisions and actions taken during test automation scheme development and

gives explanations to readers of why certain paths were chosen.

One of the agile development models key advantages is the ability to adapt for

changes and increase development velocity. To achieve full capabilities of agile

development one must use TDD and ATDD in testing. This requirement sets high

demands for testing tools and usage of available testing environments. Tests have to

be easily reproducible, modified and transferred to another environment, if needed.

Also agile development sets new demands for regression testing, because in every

sprint all previous functionality has to be verified again. This means full automation

goal for every new functional test case test engineers will make. Project’s goal for

full automation sets a new demand for testing framework; all result report generation,

log collection and test execution tasks in other words routine work has to be

automated. With these demands fulfilled, test engineers are free to do more complex

tasks which cannot be automated, such as designing and making new test cases. [34,

40]

Practical work Robot framework’s testing library was at first done with agile

development method as product development. For this task a Robot Test Automation

team (Robot TA team) was founded. Later on it turned more like a supporting task

which was not feasible to be done in agile sprints. Product development was still

using agile; hence Robot TA team had to be aware of requirements set to testing

 46

framework couple sprints beforehand. Further development of Robot test library in

other hands was still carried on with agile development method. [25]

6.1. Test automation with Robot Framework

Robot Framework (RF) is an open source Python-based test automation framework

for acceptance level testing based on generic keywords. Test cases are done by using

tabular syntax in hyper text markup language (HTML) or in tab separated values

(TSV) [41] files. RF comes with standard testing library set which includes

commonly used functionality of testing methods. New libraries can be implemented

either with Python or Java. [25, 42]

RF high level architecture can be seen in figure 13 and it consists of four main levels:

Test data, RF core, test library / test tools and SUT. Test data consists of test case

and resource files. Resource files can be a collection of higher level user keywords,

or variables. The RF engine is Python programming language based program which

will interpret those user keywords written in test data and use test library keywords

to execute commands in SUT. [25]

Figure 13: Robot Framework architecture

 47

In RF there are two kinds of keywords: library keywords and user keywords. Library

keywords are written in Test libraries with Python or Java programming language

and those interact with lower level test tools or directly with SUT. So methods or

functions in Python or Java are called library keywords in RF. User keywords are

higher level keywords that combine those lower level keywords written in test

library. Sometimes user and library keyword can be directly mapped without

combining multiple lower level library keywords as user keyword. [25]

One of the main features of Robot Framework is tabular syntax test case and

resource files. If the test case file contains multiple test cases it is actually referred as

test suite. Also, the directory which contains multiple test case files is referred as test

suite, and a use of hierarchical directory structure also divides RF suites in

hierarchical structure. This structure follows the rules of Python hierarchy in

variables and keywords. In those rules a child suite will inherit values and methods

of a parent suite which can be overridden in the child suite. Also the rule of the

nearest implicit name match is valid. These rules also apply to resource files. Only

exceptions for these rules are globally defined variables which cannot be overridden.

[25]

Test case file can contain four sections: Settings, Variables, Test Case and

Keywords. The settings section is used to import testing libraries, resource and

variable files, and also general metadata as a suite level documentation, common

tags, setup and teardown for test cases or suite can be set in settings section. This

metadata can be overridden in test case section, if the test case specific settings are

needed. [25]

In the variables section there are different variables as integers, strings, lists and

dictionaries for common suite level usage, that can be introduced. The test case

section is the place where the actual logic resides and it is done by using a

combination of available keywords. The last section of test case file is keywords

where the higher level functionality is made by combining lower level keywords

such as library and resource keywords to more convenient and practical form. Also

 48

loose functionality as loops and condition statements can be made to make actual test

case section more readable and compact. An example of test case file can be seen in

Figure 14.

Figure 14: An example Test Case file

Test cases can be executed based on test case file or name, directory and tags. Tags

are an option to classifying test cases by using free text. Reports and logs are also

showing statistics of different tags and reports that can be set to even organize test

cases based on tags. In test case execution test cases can be excluded or included

based on tags or set as critical or non-critical for results. Robot Framework uses

command line interface to execute test cases and follow progress outputs of

execution, which are not very informative as you can see in figure 15. [25]

 49

Figure 15: Robot Framework CLI

There is the possibility to view more specific information about execution through

tailing debug file. As for the test automation point of view this lack of interactive

view does not cause any inconvenience, but for the development of a new test case it

has been found as a restraining factor. Outputs of execution are XML based output

file for integration with other possible continuous integration systems and HTML

based report and log files for a human readable format, which can be seen in figure

16. All test data files are in textual format and can be stored and maintained easily

with a version control system. This makes it possible to store test data, together with

products source code. [25, 43]

Figure 16:Example report and log file

Robot Framework is a Python based tool which is interpreted language and does not

need to be compiled before execution. RF offers simple library application

 50

programming interface (API) which can be used to extend, enhance or make new

Test Libraries. Test Libraries can be done with Python or Java, which are both

interpreted programming languages. This feature makes it easy to update and

enhance both RF and Test Data. Interpreted language is also platform independent,

only an interpreter is needed to install. There are already many commonly used Test

Libraries available at project homepage, for example Selenium for web application

testing, and libraries to use SSH, Telnet etc. [25, 43]

6.2. Development of Robot Framework testing library

Development of Robot test library was done with the agile development model by

Robot TA team. It was started at the same time as products development. The

MME’s product development started with tasks related to general software

architecture design, framework studies and planning. Thus at first only module and

unit testing was the only feasible testing method for code. There was no need for

E2E testing framework right away.

Our team started by choosing suitable tools, getting familiar, and training to use

those tools. Team started to develop our own Robot test library for the MME

element. Right from the beginning, our goal was to design and implement the library

in a way that it could support fully automated testing. Also guidelines and

instructions on how to use our testing framework should be made in ATDD style.

Rethinking of test automation was our team’s continuous task. At first, how we could

make one test case automated and make it independent from other test cases.

Proceeding with design task; how could we execute test cases in test suites. [25, 40]

6.2.1. Getting info, formal training and self learning

The project started with gathering information from RF’s project’s webpage and the

user guide. Formal training on Python programming and Robot Framework for early

stage developers was arranged. Robot Framework training was held and given by RF

developers. The direct formal training was needed to give our team a kick-start. At

 51

the same time, took place the introduction to agile ways of working, LTE network

architecture concerning especially MME network element and other tools for

example: subversion-control (SVN), LTE network emulators and Pydev an Eclipse

plug-in which is integrated development environment for Python. [42, 44, 45, 46]

After formal training there was a couple of week’s time to get hands on experience

with new tools and the environment. During this time, a new RF test automation

team was founded, including 5 full-time members and 2 part-time more experienced

testing specialists. This hands-on training period was used to get more familiar with

tools and make a couple different kinds of architectural models for our future testing

framework. At the end of this period, models and ideas were gathered and merged as

one architectural structure for our future development.

6.2.2. Beginning of Robot Framework Tester Development

In the second phase right after the formal training for RF test automation team, the

actual development, designing and implementation started with the help of RF

developers. One of the first steps was gathering knowledge on how the test library

should be organized and done effectively. Mindset was to make this library and

testing framework suitable for fully automated testing, so no hard coded values or

manual process steps would be allowed. This work was scheduled to be done in agile

mode and using Scrum method in two weeks sprints. [47]

Development started from control library for LTE network element emulators which

act as real network elements in testing environment. Design and development started

from zero and the first step was enabling connections to emulator PC hardware and

SUT. The MME network element was still in an early development stage and there

was no possibility to take mature enough release which could be used for end to end

(E2E) testing purposes. User interface was planned to be similar to the one used in

previous generations SGSN hardware and so SGSN was decided to be used as first

test environment for our library. LTE emulators acted in similar ways to the previous

 52

3G or 2G emulator releases, which eased our kick start. This meant that according to

the testing library development point of view, the basic knowledge and all needed

resources were available.

In this early stage of development, the decision was made to divide test data and

development into two separate parts. In the first part, the PythonSource test library

included MME specific RF Test Library made with Python programming language

and supporting tools. Other part Testers designed to include all other RF related files,

such as html based test case inside FeatureX folders, resource files in Resources and

all needed environment specific configuration files in EnvironmentLibrary folder.

Figure 17 shows this early stage tester structure. The first design of the test library

contained only EmuLib for emulator control and platform specific DxMml part for

connectivity and basic commands to SUT. For keeping files and folder harmonic and

solid, it was decided store it under SVN. SVN made it easy to track and revert any

changes, if needed. SVN was a very feasible solution, because all files were used in

textual format [46].

Figure 17: MME Tester structure, first design

The full automation target was one of the team’s main goals since the beginning.

Another requirement to reach the full automation target was the ability to execute all

tests in any free environment. All testing environments were corresponding to each

other in testing software- and hardware-wise, only differences are in configuration

like IP-addresses, identification numbers etc. This resemblance made full automation

more feasible. In RF test cases, it was decided to implement it through

parameterization of all needed variables.

 53

All constant variables should be written in resource or test case files and environment

specific are read and parsed from environment specific configuration files in

EnvironmentLibrary. Those files are written as text files with environment name plus

underscore plus config like IPC-ATCA-1_config and as postfix .py which will make

them Python code files. This makes the usage of these files easy inside the RF testing

library, because those can be imported directly in library source code files or into RF

test cases. Then variables are valid to use without any parsing etc., only requirement

is that configuration files are written according to Python syntax. This allows the

usage of all necessary environment specific variables and parameterization of test

cases. There are only two mandatory parameters which have to be given as global

variables in RF execution command. The first one is TESTENV, which will be the

name of the environment where the execution takes place e.g. IPC-ATCA-1. The

second one is WID, which is the short form for worker identification. WID is used to

map user specific information, for example test tools paths which the user is using

and those paths are defined in environment specific configuration files. For

automation and CI there is a special WID which launches other activities, like

automatic test data update from SVN etc. This way, all configurations, settings and

variables can be easily mapped for certain environments and all tests are truly

independent and can be executed in every environment.

After design and implementation of the first version of the RF test library, a test

phase of testing framework took place. Tests were more proof of concept style than

actual functional or defect finding tests. All tests were only empirical and based on

showing demo of functionality and capabilities of Robot Framework with the

assumed product. No preliminary testing plan was written, only preliminary

requirements were available beforehand. Demo was successful and RF was accepted

as the main testing framework for MME network element. After demo RF test

automation team was dispersed and reorganized for future challenges.

 54

7. Integration testing and tool development

 This chapter describes actions and tasks needed during and after shifting from pure

development to production phase. After designing, the implementation and proof of

the concept demo of RF testing library’s first version, started tasks for support,

training users and competence transfer. The MME network element reached enough

maturity to start E2E testing. First real E2E tests with real element put RF testing

framework to production which caused a lot of support and error correction as

maintenance tasks for our team. At the same time, demand for new keywords and

functionality for testing library increased greatly. Real E2E testing and feedback

from users, lead to the redesigning of the testing library structure.

First E2E testing was done with NSN proprietary LTE network element emulator

software. Emulator software uses fuzzy methods when accepting received messages

and does not inspect every value inside the message parameters to be correct. This

makes it more feasible in preliminary testing, where only certain parameters and the

total message size is evaluated. Second phase and more sophisticate testing was done

with testing and test control notation version 3 (TTCN3) tester. TTCN3 tester’s

development and compiler was acquired from and done by third parties. This was

necessary to guarantee unbiased and independent testing results. [48]

 Acquirement of a new component like TTCN3 tester for E2E testing also required

support from the test automation framework. Design principles of framework were

also modified to support different testers in the future without massive redesign or

implementation. This work was carried out by the Robot test automation team along

with competence transfer and training for Robot framework users. The first real

testing experiences with Robot framework led to some enhancement requests for the

framework. This initiated a redesign process to one part of the Robot framework

structure, to make it more suitable for test development and test data handling.

 55

7.1. TTCN3 testing language and tester

Testing and Test Control Notation Version 3 is an internationally standardized

language for writing and controlling tests. The language has been developed and is

still maintained under the Methods for Testing and Specification Technical

Committee (TC-MTS) at ETSI. This group consists of the leading experts from the

testing community organizations and major industrial members. TTCN3 is based on

Tree and Tabular Combined Notation version 2 (TTCN2) which is the preceding

language of TTCN, developed and maintained by the same group. The language

changed its name, because version 3 does no longer use tabular format and is more

like conventional programming language. TTCN has been over 15 years the

standardized testing language and is widely used by the software industry. Version 3

had its first standards in year 2000 and has been stable ever since. [48]

TTCN3 standards are accepted and followed by the testing tool industry. The

language can be used to specify test cases and with them verify standardized or

proprietary solutions. It has been already used to make tests for complex and very

large industrial systems for example in telecommunication for 3G systems. TTCN3

testing language looks and feels like a conventional programming language and it

has well defined and standardized syntax. It has been designed for testing purposes

and has a couple ready-made embedded special testing features like timers, verdict

and native list types, subtyping etc. TTCN3 language also supports its test

components usage as emulated interfaces, which reduce test environment complexity

and maintenance load. This enables a completely automated testing environment and

test execution. [48]

TTCN3 language itself is not executable and always requires a compiler or

interpreter to be operational. There are many commercial off-the-shelf tools and test

systems already available and open source tools currently under development.

Adoption of the TTCN3 language can be quite straightforward and easy with these

off-the-shelf tools. [48]

 56

TTCN3 tester or actually compiler which is used in testing of MME was developed

by a company called Telelogic, now acquired by IBM and added to IBM’s Rational

Software family [49]. Besides the compiler there is the need for variable, message,

codec, function and procedure definitions for the tester to function. This work, which

is actually tester development and enhancement, is carried out by a third party for us.

To make tester according to 3GPP standard specifications is a very demanding work

and has to be done by an outside contractor to preserve an independent, unbiased and

objective point of view. Also, for customers it is a sign of unbiased testing when the

test tool is built by an independent third party.

In RF there was need to build an interface for controlling the TTCN3 tester. At first it

only needed to start a few sub processes for the main TTCN3 tester process and

collect logs and analyze the verdict from standard out. And besides this, there would

be monitoring and log collecting tasks from SUT. TTCN3 tester tool carried out the

actual testing via interfaces of SUT as shown in this setting in figure 19.

Figure 18: Robot Framework and TTCN3 combination

 57

Another main feature was also the parameterization of variables used in TTCN3 test

cases. Without this parameterization full automation cannot be achieved. Variables

are stored in the environment specific parameter file in TTCN3 testers’ installation

path, which TTCN3 uses when executing test cases. Information on which parameter

file TTCN3 should be used is given as parameter in the startup script. In MME

development this file is named with the same environment name prefix which is used

in TESTENV parameter in RF and postfix .par e.g. IPC-ATCA-1.par. To make sure

the same values of variables are used in RF and TTCN3 tester, in RF a feature has

been built to read and parse variables from environment specific TTCN3 parameter

file at setup phase of each test execution cycle. This way variable values are exactly

the same in RF and TTCN3 tester. Parameterization also supports the goal of a fully

automated testing environment, because in test case there isn’t any hard coded

variable values and all variables are taken either from the environment parameter file

or used default values defined in TTCN3 tester, which are not environment specific.

Later on there came up a need to make check ups and interrogate information from

SUT during the test execution. This kind of feature helps to verify MML user

interface commands and outputs inside SUT, but the most important feature is giving

commands through MML or service terminal which will initiate a procedure. A good

example of this procedure, that can be only triggered from inside the SUT, deleting

the existing and active subscriber from MME which should lead to gracefully

teardown all subscribers connections. This kind of feature is necessary for example

when the element is going under maintenance break and its load has to be moved to

another element. To achieve network detachment, it has to be done inside the

element and the functionality cannot be triggered outside the SUT. To allow this, a

synchronization and signaling channel between the TTCN3 tester and RF was

designed and implemented.

Synchronization needed implementation both in RF and TTCN3 tester. In TTCN3

tester there was already the generic implementation for external synchronization

available, but it needed some modifications to be usable and compatible with RF.

The TTCN3 tester was already doing internal synchronization between testing

 58

components for helping out timing issues and improve visibility and debugging

features. The basic idea of synchronization between test components is quite simple.

In TTCN3 test case creation all test components which are called Parallel Test

Components (PTC) are defined in the Main Test Component (MTC) also

synchronization points are named and number of synchronization parties are written

here. When test case execution starts MTC starts to wait for PTC’s synchronization

messages and when PTC reaches the synchronization point in its own test execution

flow, it sends the synchronization message with verdict to MTC and starts waiting

for the reply from MTC. When MTC has got all synchronization messages from

PTCs with a successful verdict, it will send a “go ahead” signal to all synchronization

parties and they will carry on the test case execution. This synchronization procedure

will loop until all synchronization points are completed. If the PTC synchronization

message verdict is not successful, MTC will immediately send a stop signal to all

PTC’s, because there is no point to continue testing after some of the PTC’s have

failed. Graphical presentation of this synchronization flow can be seen in figure 20.

Figure 19: TTCN3 tester internal synchonization example

 59

The synchronization between RF and TTCN3 tester works quite similar to the

TTCN3 tester’s internal synchronization with few exceptions. The first exception is

the initialization of a signaling channel between the TTCN3 tester and RF. The

signaling channel uses server - client model where the TTCN3 tester acts as a server

side and RF is a client. Communication is done by using telnet protocol [50] in port

55555, because normal 23 port is already used by OS telnet server service and it

would not be feasible to use reserved ports [51] to implement proprietary solution.

The RF is monitoring TTCN3 tester’s standard output stream to catch certain

indication string, that initialization of synchronization signaling channel server is

done and RF can connect to port 55555. Then a simple handshake is carried out and

the signaling channel is ready to be used.

The second exception is communication flow between PTCs and MTC in a case of

external synchronization point in use. In the TTCN3 tester only one PTC can be

using this external synchronization with RF, because current simple implementation

of this protocol cannot tell the difference between different PTCs. As for the rest of

PTCs these external synchronization points are invisible and look like internal

synchronization points. When the PTC reach external synchronization point with

successful internal verdict, meaning all procedures before synchronization have been

successful, first it will communicate this reaching of synchronization point to the

external interface which is external synchronization signaling channel server process.

The server process will deliver this message to RF, which now can act and do some

check up, interrogate or command functions. After RF has done functions defined in

RF test case it will return the verdict of those actions with a simple PASS or FAIL

message. Then PTC will deliver this verdict to MTC, which will then give the verdict

to continue or teardown to all PTCs. This helps the TTCN3 tester and RF to

terminate the test case execution gracefully. A part of the successful flow of this

external synchronization can be seen in figure 21.

 60

Figure 20: TTCN3 tester and RF external sychronization example

For unsuccessful execution of other PTCs test case during or even before external

synchronization point is reached will lead premature teardown of TTCN3 tester and

with it lose synchronization signaling channel or at least never arriving of a

synchronization message or RF can crash or terminate without sending reply. For

these kinds of events default timeouts have been declared for both TTCN3 and RF.

These timeouts are made to be changeable.

The need to communicate verdict of synchronization point back to TTCN3 tester

from RF side led to the implementation of a special TTCN3 analyze library.

Normally RF will fail and stop test case execution when some keyword fails, but in

check up, interrogate or command keywords during TTCN3 external synchronization

point this is not feasible, because then the TTCN3 tester would wait for resolution

until timeout would occur. TTCN3 timeout has been set by default, being quite long,

because changing it is not so easy and flexible. With TTCN3 analyze library the RF

will never fail on error, but store this result of interrogations, checkups or command

results and first return negative verdict to TTCN3 tester and wait for the tester to

finish. The similar process flow is also with error free executions with the exception

 61

that execution continues until all synchronization points are completed. At the end,

the result is analyzed according to the TTCN3 output and possible errors are printed

out to log.

7.2. Start of integration and end to end functionality

testing

Nowadays software of complex systems is usually built in a modular structure. In

modular structures program blocks can be developed separately and tested only with

unit or module testing in which other blocks can be mocked. And even though

module testing would be done with real program blocks, there is seldom enough

module test coverage to cover all possible situations with external interfaces of

program blocks and their signals. When different separately developed program

blocks are tested together it is called integration testing, as seen in an illustrative

figure 18. [37]

Figure 21: Modules combined for integration testing

 62

The MME network element application software is developed in multisite

environments, where sites are geographically located in different places and even in

different time zones. This makes integration testing even more challenging and

important, because real time change distribution is not possible. This means that not

all program blocks or code changes are distributed in all environments

simultaneously. Only a few times a week, a new complete build is installed in every

site to test environments. To keep the external interface intact, synchronized and

compatible with other program blocks, development teams have common variable

definition storage, so called public definition environment (PDE), where each

message between program blocks and their parameters are defined. So each site is

required to do only unit or module testing and after it is passed, the program blocks

are compiled again in the main site, where the complete MME software is built and

tested for the first time in the integration testing. Besides the application software in

complete MME element software there is a platform, in other words, an operating

system which is also updated on certain schedule. Although the platform’s operation

should be invisible to the application, except for some APIs that the platform is

supporting, there are always issues or defects that do not come up in the plain

platform testing and are only found through the application testing. Those faults and

compatibility are also tested for the first time in the integration testing and possible

problems are reported to the platform development. [30, 37]

In the beginning of the integration testing, the only tool to test E2E functionality was

NSN proprietary tool, LTE network element emulator. As a normal emulator, it is a

non-deterministic and stateless tool and does not take care of previous or following

states subscriber or SUT. There were two main reasons for using the emulator as a

preliminary testing tool. The first reason was the need for loose or fuzzy message

content handling from a tester. This gives more tolerance for errors in the message

content. The second reason was unsuitableness of deterministic TTCN3 tester which

was more demanding of a message content verification tool. TTCN3 tester would

also been possible to be configured and build to accept more inexact or fuzzy

messages, but it would not have been feasible, because the LTE emulator was

already capable to validate messages with enough precision. The decision was made

 63

to use the LTE emulator as preliminary E2E testing tool in the beginning of the

integration testing. TTCN3 tester was selected to be used in more strict and

sophisticated E2E testing and it could be used in integration testing when the product

was mature enough. Using LTE emulators as an early phase validation tool also

released TTCN3 tester development resources to be used in more demanding tasks

instead of maintenance work.

Test case development is always done as manual work. When using LTE emulators

this means starting at least 5 or 6 different processes in a certain order. And after

initialization you still need to give a few macro commands and analyze standard

output of emulators to find out the result of test and determine if it did go as

planned. For test case development purposes, this gives real time interaction and

feedback on the test event. But reuse and repeatability are not so high, because the

manual work timing is never the same and risk for human errors is apparent. RF

gives fair advantage and ease in reuse or repeatability of test cases. It takes care of

emulators’ initialization processes and timing differences can be measured in

milliseconds instead of seconds. Another great advantage compared to manual

testing comes from collecting log and monitoring files after tests are complete. In

manual testing you have to collect logs from those same 5 or 6 processes and

besides that, SUT also offers various log and internal message monitoring files

which help one to verify, analyze and debug test case events. In the RF testing

library implementation all those simple and repetitive tasks are carried out

automatically. This makes once tested and approved test case execution faster and

easier reproduce.

 64

7.3. Training and competence transfer for users

The task of adopting, acquiring and seeking knowledge of RF changed to sharing and

giving competence transfer to future users of RF testing framework. This meant an

attempt to convert existing information and tacit knowledge to training materials and

events. Besides a new testing framework also the working method and product were

completely new and continuously changing, so this made the challenge even bigger.

New methods and tools always cause change resistance which lead to the decision to

use hands on or learning by doing methods such as primary training methodology

when passing knowledge and information to new users. Teams were using TTD in

module testing and in entity testing ATDD was chosen to be the future method.

Training and teaching ATDD method to users was not included in the first phase

plan. [34, 40]

The first phase of the training and competence transfer was designed in three parts.

First part was general information of RF, related tools and their advantages. The first

part was targeted to all teams and persons working in MME development and for that

reason it had to be a light and quick presentation of RF. The second part was a more

detailed description of RF libraries, basic functionality and modifications made for

MME’s testing purposes. Also the recommended tester structure, the use of SVN and

the recommended tools were introduced. The third part was most significant and

important for future users and was arranged as a hands on and learning by doing.

This way training and competence transfer could be modified according to each

team’s needs and preferences. A hands on workshop was held first for teams with all

test engineers and continued with other similar sessions, if needed. After key users

got their training the assumption and idea was that they will share it to other users

and RF TA team would only give two first parts of training for new comers and give

support for key users in difficult cases, if needed. At first the need for support was

quite high as expected, but soon after key users absorbed more information and

turned it into tacit knowledge, and requests for basic and simple problems vanished.

 65

7.4. Testing framework structure redesign

RF testing framework is under continuous development and enhancements. Need for

change comes from continuously changing SUT and testing tools. At the beginning

the structure was considered only from a higher architectural perspective as only test

library and test data separation practices. As test case amount and future usage model

was coming clearer, the design needed some improvement for test data part. In figure

22 this change is presented as it was in design phase. In test library PythonSource –

folder one can see two folders tags and trunk, after a short experimental period of

frozen versions of RF test library, also called tags, was decided to wind up. The need

and schedule for enhancements and new features was too fast for periodic

development and so the decision was to use trunk –branch as our production revision

also. This decision required more focus on testing, since even every minor change

has to be tested thoroughly before committing it to SVN. And other visible changes

are Libdoc which is used to create automatic documentation of test library,

MonitoringAndLogs library which contains log collecting and SUT monitoring

functionality, NsMml which contains SUT specific testing functionality, NsUnitTest

is experimental library to make unit tests for the test library and last Ttcn3library,

which is used to control and interact with TTCN3 tester.

Figure 22: Redesing of MME tester

 66

In the Testers side the change is more administrative than operational. Earlier

environments configuration information files were stored under EnvironmentLibrary,

in the new structure the name is more descriptive Config. The Resource folder has

stayed the same, as the folder for RF common resource files. A completely new

folder stored in SVN is the Result folder, the meaning of it is not to store results from

every execution to SVN, but quite the opposite. It is only in SVN to clarify where the

recommended place to store the execution results is. Because in RF you can specify

the output folder as you like, but in examples this Result folder is used. To make sure

no one will store execution results in the SVN, it is forbidden with administrative

measures.

The last improvement is for actual test cases which are organized under the

TestCases folder. Their recommendation is to use a naming style coming from agile

development where first comes the epic name and subfolders beneath are named

after the user story and id number. This will help tremendously in search and update

tasks. This also gives the opportunity to execute all test cases easily with RF, by just

giving root folder TestCases as an argument for test data location and adjust

execution assembly and settings with tags and arguments. [25]

 67

8. Automated Functional testing

This chapter describes and answers the following questions; Why automated

functional testing is needed for the MME network element, what is needed to enable

this automation and how is this automated testing is carried out with different testing

sets? The amount of needed test cases to have a good or at least moderate test

coverage is rapidly increasing in complex telecommunication systems.[3] To execute

all or even some applicable test case sets for every build and version of software

manually is very time consuming, monotonous and a wearisome task for test

engineers. Nowadays it is becoming even less feasible due the continuously

accelerating development schedule. There is no room for errors in the execution, logs

have to be collected and reports have to be made from each execution run. And the

precious work effort of test engineers is needed in making and analyzing those test

cases, not in their execution. All these reasons speak up for the importance of fully

automated test execution framework.

With the increasing amount of test cases and spare time of environments during

nights, an experiment idea came to execute those test cases as one set. The idea was

to test possible limits and robustness of RF implementation and the MME network

element. This meant an experiment where for the first time a larger set of test cases

would be executed in a consecutive manner. This started as an experiment held by

the Robot test automation team, but after awhile the word of this experiment and its

good results spread around and the decision to take this set as a part of the production

tools was made. After making this an official production tool, it was named; nightly

regression test set. Also smaller automated smoke test set was invented as a side

product at the same time to make it quicker to test new builds sanity. Both of these

experimental side products would help everybody in development to see sanity and

functionality of our product from reports. Later on both of these experimental

products were taken as one official meter of our products sanity and progress.

 68

Although the mind set and goal is to make all test cases automated without need for

human interaction, it is not always feasible or even possible. One has to always

consider the ratio of benefits and resources that the automation will obtain and take.

Of course, some very rare cases like sudden outage of some units cannot be always

done with test tools and has to be done manually by taking the unit physically out

from system. Also other test scenarios and exploratory testing which cannot be

feasibly implemented with testing tools has to be considered. These tests need to be

documented very carefully and use automation as much as possible to make them

reproducible.

8.1. Smoke and Regression test sets

In testing there is always the basic question on how to get good enough test coverage

in feasible time and how much testing is enough? For minor changes one test case

can seem feasible, but if such change will affect base or root functionality and have a

general impact, the code and testing have to be done for all sub functionalities. This

kind of all over coverage testing in MME development and in software development

is usually referred to as regression testing and is designed to cover, as much as

feasible, all relevant test cases. Relevant test cases are determined by the team of test

specialists led by the test architect and those tests should cover at least all features

and functionalities, but leave out only duplicate testing, if time window limits test

execution. In agile development there is also a need to get quick feedback on current

builds status or sanity. This kind of test set will contain only basic test cases with

basic features and in agile development it is usually referred as smoke test set. The

smoke test set will give green light to further testing phases, such as regression.

Main differences of these two sets are gathered in table 2.

 69

Test Set Regression Smoke

Execution time Long, from couple hours to days Quick, less than 30 minutes

Main purpose Test that new code has not broken

the old implemented functionality

Test root functionality,

check sanity of build

Execution

schedule

Daily (night time) Whenever new build is

installed

Test set All inclusive, includes also the

smoke test set

Highly focused, well

targeted for root

functionality

Results

significance

All smoke tests must pass, major

percentage of other tests should

pass

All tests must pass

Table 2: Main differences of Regression and Smoke sets

The regression testing is usually all inclusive and hence takes quite a long time to

execute. Basic idea behind regression testing is not to find new defects or faults, but

to try to indicate, if the new code will break the old implementation. Therefore, all

test cases which are added to the regression set should have already working

implementation and cases should have passed test at least when implementing and

having demo of the code. Of course, it can be that those test cases are executed only

in short runs or series during their development phase and hence, new faults are

emerging and visible only during long consecutive execution of the whole regression

set. Also the effects of previous events in systems under test can have affect the

results of test cases. Therefore regression testing does not only test all functionalities

of SUT, but also the stability and robustness of test cases as well. One of the main

requirements for test cases is independency from other cases. This means good

enough set up and teardown functionality of test suite and cases. This can be tested

by executing test cases in random order each night. Random execution also makes

sure, that SUT will be tested in various testing scenarios which can reveal new kinds

of faults. In MME development regression is meant to be executed at least daily and

 70

the target is to get results ready by the next morning, so teams can check how

yesterday’s changes have affected the build.

The smoke test set is more narrow, and highly focused than the regression test set

and targeted to only the most important features and functionality. Its main purpose

is to check builds state, if the root functionality is working like it should, or if it is

broken somehow. If smoke tests will fail, it means no further steps in testing are

feasible to do, before faults in smoke functionality are corrected. This means stating

failing build as broken one. This is a very clear signal to development teams that

there is an A-class problem. Focus of smoke test is usually in root functionality like

in MME development the attach procedure, if attach is broken it means roughly that

more than 95% of features and functionalities don’t work at all in that build. Other

smoke tests are selected from the same kind of areas where the root functionality is

tested. The smoke FT test set should be quick to execute and give results in less than

30 minutes. Time is critical in smoke testing, because if a fault is detected there

cannot be any commitments besides the code to correct the emerged fault. If smoke

testing takes a long time, it will affect the teams’ velocity to produce a new code.

The smoke test set is also a good way to see how some minor change on the testing

framework, tools etc. is affecting our testing environment.

Making different kinds of test sets is quite easy with RF by using tagging. Tags are

free text and can be added to each test case separately or for suite. Tags can be also

forced on, so each test case under the suite will get that tag. The test case selection

can be done in execution command by including or excluding test cases based on the

tags that those contain. For example shown figure 23, smoke test set can be selected

Figure 23: Selection Smoke test set with include option

 71

by giving RF execution command with includes an option which will select then all

test cases with “Smoke” tag on them. The method is also used to select the

regression test set and exclude some long or problematic test cases. And using tags

include and exclude option in RF you can easily influence the execution order by

using multiple execution commands where inclusions and exclusions are in certain

order and then combine the results with a supporting tool called rebot. Rebot is a

robot framework’s supporting tool which can be used to adjust look-and-feel of RF

reports and also combine different test execution results. In MME development tags

are used to select the test set to smoke and regression, but also to mark up different

information like which team will own those test cases. [25]

8.2. Automated testing with BuildBot CI tool

To execute the test in an automated way there should be a tool to start the execution.

For the experiment of automated test execution the Robot TA team decided to try a

tool called BuildBot. Requirements for CI tool in the experimental phase showed that

it is capable of getting the latest test data from SVN, executing RF commands,

showing the latest execution report & logs and storing results for later use. Also, the

way to trigger actions was considered and the tool needed to handle at least SVN

polling and to be able to time schedule trigger option.

BuildBot is an open source CI tool licensed under GNU general public license and

was started as a light-weight alternative for the Mozilla ThinderBox CI tool. [52, 53]

It is built to automate compiling and testing phases to validate code changes of

software builds. BuildBot free up developers from doing routine tasks to do more

demanding and interesting ones, such as the actual development. Software build can

be compiled and tested in parallel on a variety of platforms or projects can be made

with any programming language, which makes BuildBot platform and language

independent. BuildBot itself requires on Python and Twisted networking engine [54]

and so host requirements are minimal. Results and reports of compilations or tests

can be delivered via web-page, IRC, email or you can build your own protocol so

 72

possibilities are limitless. This means notification of broken builds can be given to

the responsible developer or stakeholder without human interaction. BuildBot gives

the opportunity to track interactively progress of builds and provides remaining time

estimation. It is easy to configure, because Python can be used in the configuration.

Robot TA team decided to take BuildBot as part of our automated FT test, because it

was easy to configure, had no need for graphical user interface, needed to execute

test in consecutive way, it is an open source product and it has quite a large user

community [55]. The main requirements for CI tool like getting latest test data from

SVN, storing and capability to show results reports and multiple ways to trigger tasks

were found from BuildBot. In the regression testing experiment BuildBot was

utilized by triggering task with time schedule, storing results to hosts disk and

showing the results via BuildBot’s www-server service. After a short experimental

time, this arrangement turned out to be so successful, that the decision was made to

take this as part of the production and official meter of development. Next phase was

making automated smoke test tasks for BuildBot. In a similar way, those smoke test

set task needed to upload test data from SVN and show results via www-service,

long term result storing was not required, although no results clean up steps were

designed or implemented either. These smoke test set tasks are only triggered

manually by the user by pressing the “Force Build” button which will initiate a new

Build, meaning new smoke test set task.

8.3. Manual functional testing

In rare situations, the fully automated test case creation is not feasible or even

possible. One good example is physical damage or failure of some unit in SUT. This

can be rarely emulated with test tools and is usually done by removing the unit or by

power switch off. Another manual testing form is random exploratory testing [4,

22]. The exploratory testing is form done when results are not known beforehand, so

testing cannot be easily made as test case scripts. In some way it can be thought as a

defect or fault hunt, where the test engineer tries to find ways to cause some

 73

unexpected behavior of SUT. Usually these tests require an experienced test engineer

who has a lot of knowledge of SUT and its behavior. Due to the unexpected nature of

the behavior in both of these testing forms, it is not feasible try to fully automate

those kinds of test cases. This means that documentation of those test scenarios is

even more important than for fully automated test cases, because all defects, faults

and errors have to be reproducible before they can be accepted as faults. In

exploratory testing this means that at least all steps from some zero points for

example reboot have to be recorded somehow. In outage testing automation should

be used as much as possible to ensure this reproducible requirement to be as easy as

possible. In MME development, no manual test cases or scenarios are yet

implemented, but in the near future, those are likely to become a reality which cannot

be avoided.

 74

9. End to end Continuous Integration

The final phase and goal for automated FT testing is complete CI pipe where all tasks

after committing code to regression testing results is automated. This will enable the

opportunity to execute all tests in a flexible manner, where changes will always

trigger some tests and the latest software is under testing. Also, this enables more

efficient usage of our test environments, more feedback and faster results. To achieve

this goal, software projects must have all phases fully automated including unit or

module tests, software configuration management (SCM) for creating software build,

software installation and commissioning, smoke and regression test sets for

functional testing. Even more extensive continuous integration can be achieved, if it

includes automated stability and performance testing, system verification and

network verification.

In MME development all phases preceding software installation were already

automated before this thesis work was started. In previous phases from designing

automation testing scheme to automated FT smoke and regression test sets, has given

opportunity and readiness for complete end to end CI pipe. Only few things are still

missing from complete CI pipe; automated software installation and commissioning

and linking all phases together. Of course, if one would consider CI from a larger

scope, it could also include fully automated stability and performance testing, system

testing and network verification, but those are out of this thesis' scope.

For achieving automated software installation and commissioning the project already

a used proprietary tool called Service Laboratory concept. With this tool new builds

could be installed and commissioned to SUT automatically, without human

interaction. The concept included some preliminary framework for CI testing, but not

sophisticated enough for projects’ CI needs. In spite of it, tool suited quite well to be

taken as part of the continuous integration pipe, but some integration work and

interface planning was still required.

 75

After completing all of these tasks, the project would have complete end to end

continuous integration pipe starting from the committing code to the results after

completed regression testing. This would allow a round-the-clock testing flow, which

would lead to a more effective usage of equipment and greater testing coverage. The

main issues still were to decide architectural structure of the CI pipe and design and

implement tasks for required interfaces between all tools needed in the process that

did not exist yet. The architectural challenge was to decide, whether the CI pipe flow

could be controlled by one of the highest level tools and be based on hierarchical

model, or should it be implemented as flat just by chaining different tools together?

9.1. Service Laboratory concept

Service Laboratory concept (SerLab) is a NSN proprietary tool for automated

software installation and commissioning to test equipment. SerLab takes advantage

of 4Booking, an equipment reservation handling and register tool. Together these

tools form an extensive equipment resource handling and software installation

system, which can be used as part of the CI pipe. In a simplified manner the SerLab

has three basic functions; gathering software build and equipment pool information,

storage for hardware configuration and software installation macros and execution of

those macros against software builds in certain environment. The 4booking tool has

only two basic functions; management of item and pool information, and handling

reservation information of equipment items.

One of SerLab’s main functions is gathering software build and equipment pool

information. When software builds are integrated and compiled at SCM, there will

also be the generation of an xml-file, which contains information about the build.

This XML-file contains information like build id, target platform and application and

CI test related information. After compilation is done the build is copied from SCM

to distribution servers with the XML-file which contains the builds’ information. The

SerLab gets information of compiled builds via these XML-files. The equipment

pool information, containing identification information of pool and its items, SerLab

 76

gets directly from the 4booking system. Pools are just logical containers for

equipment items; like a MME or other network elements. With pools equipment

items can be more easily classified in different groups and purposes. Based on pool’s

settings it can be used just for as a logical storage unit of manual testing equipment

or SerLab can use pool’s equipment in continuous integration for automatic software

installation, commissioning and testing purposes.

The other significant main function of SerLab is acting as the place for hardware

configuration and automated software installation macros. The significance doesn’t

come just from a role as storage place for those macros, but from the ability to also

execute macros via SerLab. Each equipment pool has its own settings and all

equipment items inside the pool have their own settings and configuration macros. In

item’s settings is stored basic information of the item, like IP-address, default route,

subnet mask, and credentials etc. These can be used to test connectivity and in the

case of new software build installation, making the basic configuration for that

element. Besides just basic configuration, a modern network element needs an

installation configuration which is referred as; commissioning an element and hence

this kind of macro is called commissioning macro. After the basic settings have been

given on the ATCA hardware, the only unit commissioned in the system is OMU and

all other units have to be commissioned by executing the commissioning macro. This

installation configuration macro contains information about the roles for the rest of

the CPU blades and units attached on ATCA shelf. Macro also contains unit specific

information like IP addresses, plug-in module information etc. After the execution of

commissioning macro an element is ready to work, but it has default settings for

everything. In modern telecommunication network each element should have a

different kind of network, location, group, element etc. specific identification digits

and other relevant information. This information is stored in hardware configuration

macro which is the last macro that SerLab will execute, if all previous phases have

been successfully executed. SerLab also stores logs and results of all macro

executions and makes debugging and tracing possible, if needed.

 77

The 4booking tool is a supportive tool for SerLab and is also used as a tool for

handling equipment reservation information in manual testing. In continuous

integration and a more specific SerLab service point of view, 4booking offer two

main functionalities, the management of equipment information and handling

reservation information of testing equipments. The management of equipment

information can be divided into two parts; equipment pools and items. Pools can

have multiple equipment items allocated in them, but equipment items can be

allocated only in one pool at a time. For an equipment item one must define unique

item id, name, purpose of use, business related information, responsible person, state,

OS platform and application as equipment item’s mandatory information. Id, name,

purpose of use and responsible person fields are quite self-explanatory and all are

free text fields, only requirement is that id has to be unique. Business related

information is selected from dropdown menu and is meant for selecting the right

business line, business units and their projects, so equipments can be searched and

statistics made from the business angle. This promotes to mapping how many

resources are used in certain project etc. State field contains information of item’s

status and can be Draft, Inactive, Active, Suspended, Flea market, Removed or Lost,

being the most common states Active or Draft. The OS platform and application are

fields indicating the appropriate software for the item. Out of these fields SerLab

uses item id, OS platform and application information in selecting the right software

build for each equipment item. Pool information contains the name, state, OS

platform, application, SCM service, TWA service and pool content aka items

allocated to the pool. Name field is self-explanatory and state field has the same

purpose as the item’s information, but values are different; Draft, Inactive, Active,

Suspended and Removed. OS platform and application fields have the same values as

in item’s information, but are used in SerLab when continuous integration mode for

pool is selected. In continuous integration mode SerLab will automatically install and

commission new software build into one of the pools equipment items, if there is an

item available. If there are no items available, new software build will go to queue

and will be installed and commissioned when the equipment is free to be used. SCM

service field is meant to indicate which commissioning service is used with the pool,

and currently only SerLab is available. TWA service indicates the continuous testing

 78

service to be used with the pool, the default and only value for this field is also

SerLab at the moment.

The reservation management via 4booking for equipment items is implemented with

simple graphical web interface for users or Simple Object Access Protocol (SOAP)

[56] message interface for machine to machine communication. In web interface

reservation can be made just by first searching equipment item by name and then

clicking free slot from reservation calendar, which is seen in figure 24.

Figure 24: 4booking reservation calendar

This will trigger next pop up window where one must confirm and modify

reservation length, if necessary.

After accepting reservation schedule by pressing ok, the last window will appear

figure 25. In this window one can choose reason for Usage, possible choices are

Personal, Calibration, Maintenance and Urgent maintenance, personal is the normal

and default option.

 79

Figure 25: Reasoning and requested software build window

Also one must define which project to use and describe thef purpose as free text. The

last field is reserved for selecting possible software build from dropdown menu, if

needed, but default value is reserve only. If one would select some software build to

be commissioned at the beginning of the reservation, 4booking would send request to

SerLab which would start to carry out the execution of this request at the starting

time of the reservation. In reserve only mode, equipment item is reserved for certain

user and no commissions can be made during this period by other user via SerLab

tool.

SerLab can be used to commission new software build into hardware in two modes.

First one is fully automatic CI mode and the second one is the manual reservation

mode. Mode of operation can be done by pool and from pool’s settings in SerLab.

Table 3 describes both CI and manual reservation process flows in commissioning a

new software build in simplified manner. SerLab will continuously poll for new

software builds and add them to the queue; if there is a newer software build released

before an older one is gone under commissioning, the newer one will take the first

place in the queue and the older one will not be commissioned automatically

anymore.

 80

Step Continuous Integration mode Manual Reservation mode

1 SerLab notice a new CI build Select free slot from 4booking

reservation calendar

2 SerLab will check, if any pool

with new build’s platform and

application is in CI mode

Confirm reservation time and length

3 SerLab will check, if any of the

equipment items on pool are free

Give reasoning for reservation

4 SerLab will make reservation for

a free item

Select a new CI build and

commissioning macro

5 SerLab will execute

commissioning and install the

new software build into item

with pre-selected CI

commissioning macro

SerLab will execute commissioning

and install the new software build

into item with selected

commissioning macro

6 SerLab will execute Smoke Test

Set, if available

SerLab will inform user when

commissioning is finished. Verdict

can be Successful or Failed, if

something goes wrong

7 Release CI reservation from

4Booking

Reservation in 4Booking continues

until expired or canceled.

Table 3: The process flow for commissioning a new SW build

9.2. Complete continuous integration tube

Ideas behind complete continuous integration tube were quite simple; automate

repetitious and ponderous tasks, increase visibility of testing, find defects and faults

as early stage as possible and increase testing coverage and usage of testing

equipment with automation. To achieve this all tasks from after committing code into

 81

SVN to generating regression testing report has to be automated. From this thesis

point of view tasks can be divided into two logical parts; before and after new

complete software build. Before a new software build part contains module or unit

compiling tasks, unit or module testing, request to add changes to new build and

compilation of new software build by SCM. This part was already automated prior to

this thesis work started. In thesis work’s main challenge has been building test

automation scheme for MME network element containing testing framework, design

and implement automated functional testing and attach those to already existing pre-

build systems. This has been achieved by running those tests in scheduled mode.

Beyond this thesis original scope, a future work for achieving complete continuous

integration tube has been started. Those plans have two options for this tube a flat or

a centralized architectural model. In flat architectural model all tools would

communicate with next tool to trigger the next phase. Also from some phases results

would be collected to some centralized service. In centralized architecture there

would be a tool which would be considered as the highest level component. This

component would trigger the next phase ongoing and collect the results after its

execution. The tool would act as an organizer and result storage.

The flat architecture model is planned to have 8 different steps, 4 before build

compilation and 4 post build compilation steps. All these steps and process flow can

be seen in figure 26. All steps would trigger the next step, if step would be

completely successfully executed. The content of each step is given just in a general

manner and not in a detailed format.

 82

Figure 26: A Flat Architecture model in complete CI

The first step would consist of a manual part and it would trigger the next automatic

functionality. The manual part would be checking the program code to SVN. Second

step would be automatic unit or module testing, depending on the code or part of

program and its test scheme. This step would store results of execution, successful or

failure, or might send them to result service. Third step would be announcing

successfully tested changes to complete build. Fourth step would be compiling a new

software build, SCM tools would wait for change announcements for a while e.g. 10

minutes and if no further changes would occur, start to compile a new SW build.

This waiting period is very feasible, because compilation of complete build can take

quite a long time compared to module compilation. In some cases into a new build

there has to be attached multiple modules at once to keep interfaces and cooperation

of different modules intact. After successful compiling SCM tools would distribute

the new build and its information to distribution servers, where proceeding tools can

fetch it. Fourth step would be the last one, to complete the pre-build automation

phases.

 83

In the fifth step SerLab would notice the new build and initiate build commissioning

into one of the CI pools equipment items. After commissioning would be ready,

SerLab would internally trigger the sixth step and initiate Smoke testing. SerLab

would store all results from commissioning and Smoke testing. Seventh step would

be triggered by SerLab after successful Smoke testing. This last step would take the

longest time and hence has to be executed separately from commissioning service to

save resources. Simultaneously and parallel to the regression testing there could be

also triggered network verification and system verification tests, because in smoke

testing all the basic functionalities have been tested and verified to be correct. This

would shorten overall testing time, if corrections or new build would be needed to be

delivered to the customer as soon as possible.

The centralized architecture model, which can be seen in figure 27, is planned to

have also 8 steps, but with slight modifications compared to the flat architecture. The

first four steps would remain as the same as in the flat architecture, because there is

no need to modify the already existing and well working system. The main

difference would be the highest level tool, which would control and organize all

steps proceeding step 4. Steps from 5 to 7 would be modified to use this highest level

tool guidance in triggering and storing results. In the fifth step, SerLab would not try

to notice or poll new builds from distribution servers, but would be triggered by the

highest level tool, which would do the polling instead. After completing

commissioning, SerLab would inform results of it to the control tool, instead of

initiating smoke test execution. Then in the sixth step, the control tool would trigger

smoke test to be executed by testing system and afterwards would get the results. The

seventh step would be the same as the sixth, but the only difference would be

execution of regression tests, instead of smoke test set.

 84

Figure 27: A centralized architecture for complete CI

Main differences between these two models are the number of needed interfaces and

the different tools. Main advantage in flat architecture is the requirement for only one

new interface between SerLab and the testing system. All other interfaces already

exist. Disadvantage in the other hand is the dependency of tools, the pipe is as robust

as its weakest link and it can be difficult to try to replace some non-working parts

afterwards. For example, development and maintenance of SerLab is some other

teams’ responsibility, and changes and defect fixing can be difficult. Main

advantage in centralized architecture is the weakness of flat architecture; all tools are

quite easily replaceable, if needed. Disadvantages are the need for extra tools and

extra interfaces. Here also one has to consider the work needed for maintenance

work for changing interfaces, because tools always evolve and hence interfaces are

quite certainly changed as well from time to time.

 85

10. Results

Implementing the test automation scheme for LTE core network element can be

considered to be successful, except for the end to end continuous integration part.

The time window reserved for making this thesis was too tight and limited for

achieving results on that final goal. Overall status nevertheless was a bit better than

expected at the beginning due to the fact that other parts succeeded nicely and some

parts even exceeded expectations.

The first practical task was to get information and learn the basics of Robot

Framework test automation framework. After a short learning period of Robot

Framework’s architecture and its features, the development of the preliminary test

library for the MME network element was started. This turned out quite well and

Robot Framework was conclusively selected to be our test automation framework.

Development for more sophisticated test libraries, such as test control libraries for

LTE emulator and TTCN3 tester, was started right after Robot TA team members

reached adequate skill level. All these preceding tasks succeeded and ease of

development and usefulness of test libraries exceeded expectations. All test libraries

have preserved without major need for refactoring and only a couple serious defects

are found.

One of the main design principles for Robot Framework test library and test

automation scheme was that all functional test cases should be fully automated. All

design tasks took this as the first guideline and it had highest priority from all others.

The principle was followed almost with all test cases, only two test cases were built

without full automation, but automation level was over 80 % containing automated

test case setup and teardown and most of test case functionality. There were two

main cases in which test cases were not 100% automated. The first case was where

hard coded values had to be used and it was infeasible to parameterize those values,

because test case was needed only a couple times during one sprint. In other test case

sudden removal of SCTP connection was needed and it was not feasible to make it as

 86

software based inside the test tool with time window of one sprint. Nowadays test

tools have been enhanced and there exists the possibility to do software based sudden

connection removals.

To emphasize full automation test case goal a nightly regression testing started as an

experiment which broaden as official meter of products stability and progress.

Nowadays nightly regression testing is one of the key testing methods and visibility

of build’s sanity relies on it. Also smaller automated smoke test sets were built to

help teams test their code changes easily with functional testing besides normal unit

or module testing, giving quick feedback on how changes are working as integrated

with other modules. Result of these automation features manual testing without

Robot Framework is kept in very low level. Only some testing of test tool is carried

out as a manual procedure.

Results of training and competence transfer to users also succeeded better than

anticipated. Robot TA team members did not have any pedagogic training or

background, but nevertheless, the learning curve of the new users has been

remarkably high. The snowball effect, where one already trained user will share his

information and knowledge with beginners, worked out very well.

The only part that was left unfinished was the implementation of end to end

continuous integration pipe. Nevertheless planning and study tasks were successfully

accomplished, but the final decision on how to proceed and the implementation of

work accordingly was still missing.

Overall success rate was at least moderate, the implementation and design for the test

automation scheme for LTE core network element can be considered as successful.

During this thesis work and from beginning of the MME element development teams

have gone through a big change, from waterfall model and its tools to agile model

and the tools used with it. As for the testing point of view this change has to be

graded successful.

 87

11. Conclusions and Future Work

This thesis has described how test automation scheme for the LTE core network

element was built and also presented the main requirements and pitfalls for such

system. Nowadays, demand for faster, better and more comprehensive testing targets

are the key driver for test automation and those targets are in many cases

unachievable by only using manual testing methods.

The exact comparison between test automation and manual testing was not possible

to accomplish, since all test cases were designed to be fully automatic, but the

literature and studies imply up to a 40 % increase in velocity when using fully

automated test cases versus manual test execution. The literature also suggests at first

to invest more effort for test automation at the beginning of the development

pipeline, such as in unit or module level testing. Only, when the first stages of

development are sufficiently automated, the change of focus to next levels is

feasible, because return of investment is higher at the beginning of the development

pipeline.

In this thesis focus was put into the functional testing level, because all preceding

testing levels were already fully automated in advance. In functional testing, the

main challenge was to set a new mindset for all test engineers, in which all test cases

should be automated and stored under a version control. The other considerable

obstacle was to find a way to parameterize all the needed variables within test cases.

All obstacles were solved and nowadays every new test case is done fully automated,

if anyway feasible. Also, the atmosphere towards test automation has changed and its

advantages have been noticed. The only setback was the extremely tight schedule

for end to end continuous integration pipe, which would include also functional

testing; unfortunately the implementation of this part of the thesis work was left as

future work.

 88

Future development after this thesis could be the completion of end to end CI pipe,

which would increase the velocity of testing and give a quicker feedback to teams

about the overall situation. Also, the automatic analysis of results could be further

enhanced to handle the simplest defects and errors. This would really release the

workforce potential, which is now used in wearisome test executions and simple

analysis tasks. Finally, test automation development is a continuous task and is never

complete until the whole project is finished; there is always something to improve.

 89

References

[1] Lillian Goleniewski, Kitty Wilson Jarrett, Telecommunications Essentials,
Second Edition: The Complete Global Source, Addison-Wesley Professional, 2006

[2] Korhonen Juha. Introduction to 3G mobile communications. Arctech House, 2001

[3] Kreuer Dieter, Applying Test Automation to Type Acceptance Testing of Telecom
Networks: A Case study with Customer Participation, 14th IEEE International
Conference on Automated Software Engineering, 1999

[4] Patton Ron, Software Testing, Second Edition, Sams, 2005

[5] GSM Association, Market Data Summary, e-document, from:
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm,
[retrieved March 16, 2010]

[6] HSPA to LTE-Advanced, Rysavy Research / 3G Americas, September 2009, e-
document, from: http://www.3gamericas.org/documents/
3G_Americas_RysavyResearch_HSPA-LTE_Advanced_Sept2009.pdf, [retrieved
March 16, 2010]

[7] Nabeel ur Rehman, et al. 3G Mobile Communication Networks, e-document,
from: http://www.asadasif.com/es/files/3g-report.pdf, [retrieved March 14, 2010]

[8] General Packet Radio Service (GPRS): Service description, 3GPP TS 23.060
V8.0.0 (2008-03)

[9] Third Generation Partnership Project Agreement, e-document, from:
http://www.3gpp.org/ftp/Inbox/2008_web_files/3GPP_Scopeando310807.pdf,
[retrieved February 22, 2010]

[10] About mobile technology and IMT-2000, e-document, from:
http://www.itu.int/osg/spu/imt-2000/technology.html, [retrieved January 5, 2010]

[11] About 3GPP2, e-document, from: http://www.3gpp2.org/Public_html/
Misc/AboutHome.cfm/, [retrieved March 15, 2010]

[12] UTRA-UTRAN Long Term Evolution (LTE) and 3GPP System Architecture
Evolution (SAE), e-document, from: anynomous
ftp://ftp.3gpp.org/Inbox/2008_web_files/LTA_Paper.pdf, [retrieved March 15, 2010]

[13] LTE, e-document, from: http://www.3gpp.org/LTE, [retrieved March 16, 2010]

[14] Sesia S. et al., LTE, The UMTS Long Term Evolution: From Theory to Practice,
John Wiley and Sons, 2009, ISBN 9780470697160

 90

[15] Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN),
3GPP TR 25.913 V8.0.0 (2008-12)

[16] General Packet Radio Service (GPRS) enhancements for Evolved Universal
Terrestrial Radio Access Network (E-UTRAN) access, 3GPP TS 23.401 V8.7.0
(2009-09)

[17] Nokia Siemens Networks Flexi Network Server: Ushering network control into
the LTE era, NSN customer documentation, from: https://www.online.nokia.com/,
[retrieved March 25, 2010]

[18] Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control
plane (GTPv2-C), 3GPP TS 29.274 V8.0.0 (2008-12)

[19] AdvancedTCA Q & A, e-document, from:
http://www.picmg.org/pdf/AdvancedTCAQA.pdf, [retrieved April 10, 2010]

[20] Beizer, B., "Software Testing Techniques", 2nd edition, International Thomson
Publishing, 1990.

[21] Haikala I., Märijärvi J., Ohjelmistotuotanto, Talentum Media Oy, 2004

[22] Lisa Crispin, Janet Gregory. Agile Testing: A Practical Guide for Testers and
Agile Teams, Addison-Wesley Professional, 2008, ISBN 978-0-321-53446-0

[23] IEEE Standard for SoftwareVerification and Validation, IEEE Std 1012-2004,
2004

[24] McConnell, Steve. Code Complete (2nd ed.). Microsoft Press, 2004 . ISBN 0-
7356-1967-0.

[25] Robot Framework User Guide Version 2.1.2, e-document, from:
http://robotframework.googlecode.com/svn/tags/robotframework-
2.1.2/doc/userguide/RobotFrameworkUserGuide.html, [retrieved December 14,
2009]

[26] Holmes A., Kellogg M.. Automating functional tests using Selenium. Agile
Conference, 2006

[27] Tijs van der Storm. Continuous Release and Upgrade of Component-Based
Software. Proceedings of the 12th international workshop on Software configuration
management. 2005

[28] Cohn Mike. The Forgotten Layer of the Test Automation Pyramid. e-document,
from: http://blog.mountaingoatsoftware.com/the-forgotten-layer-of-the-test-
automation-pyramid, [retrieved March 25, 2010]

 91

[29] Korkala M., Abrahamsson P., Communication in Distributed Agile
Development: A Case Study. 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications. 2007

[30] Using scrum in a globally distributed project: a case study, Software Process:
Improvement and Practice, Volume 13 Issue 6, John Wiley & Sons, Ltd., 2009

[31] Boehm B., A Spiral Model of Software Development and Enhancement. ACM
SIGSOFT Software Engineering Notes. 1986

[32] Manifesto for Agile Software Development, e-document, from:
http://agilemanifesto.org/, [retrieved September 13, 2009]

[33] Krasteva I., Ilieva S., Adopting an agile methodology: why it did not work,
Proceedings of the 2008 international workshop on Scrutinizing agile practices or
shoot-out at the agile corral. 2008

[34] Ferreira C., Cohen J., Agile Systems Development and Stakeholder
Satisfaction:A South African Empirical Study. Proceedings of the 2008 annual
research conference of the South African Institute of Computer Scientists and
Information Technologists on IT research in developing countries. 2008

[35] Sengupta B. et al., A Research Agenda for Distributed Software Development.
Proceedings of the 28th international conference on Software engineering, Shanghai,
China. 2006

[36] Fowler M., Continuous Integration, e-document, from:
http://www.martinfowler.com/articles/continuousIntegration.html, [retrieved
November 13, 2009]

[37] Holck J., Jørgensen N., Continuous Integration and Quality Assurance: a case
study of two open source projects, Australasian Journal of Information Systems,
2004

[38] Duvall P. M. Et al., Continuous Integration: Improving Software Quality and
Reducing Risk, Addison-Wesley Professional, 2007, ISBN 978-0-321-33638-5

[39] Hill J. H. et al., CiCUTS: Combining System Execution Modeling Tools
with Continuous Integration Environments, 15th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems, 2008.

[40] Sauvé J. P. et al. EasyAccept: A Tool to Easily Create, Run and Drive
Development with Automated Acceptance Tests. Proceedings of the 2006
international workshop on Automation of software test. 2006

[41] Korpela J., Tab Separated Values (TSV): a format for tabular data exchange, e-
document, from: http://www.cs.tut.fi/~jkorpela/TSV.html, [retrieved March 16,
2010]

 92

[42] Python Programming Language, e-document, from: www.python.org, [retrieved
December 14, 2010]

[43] Robot Framework, e-document, from: http://code.google.com/p/
robotframework/,[retrieved March 25, 2010]

[44] What is Pydev?, e-document, from: http://pydev.org/, [retrieved February 5,
2010]

[45] About the Eclipse Foundation, The Eclipse Foundation, e-document, from:
http://www.eclipse.org/org/, [retrieved March 22, 2010]

[46] Apache Subversion, e-document, from: http://subversion.apache.org/, [retrieved
September 23, 2009]

[47] Cordeiro L. et al. An Agile Development Methodology Applied to Embedded
Control Software under Stringent Hardware Constraints. ACM SIGSOFT Software
Engineering Notes. 2008

[48] TTCN3.org, TTCN3 language , e-document, from: http://www.ttcn-
3.org/home.htm, [retrieved March 14, 2010]

[49] Wikipedia, Telelogic, e-document,
from: http://en.wikipedia.org/wiki/Telelogic, [retrieved January 05, 2010]

[50] Telnet Protocol Specification, RFC 854, e-document,
from: http://tools.ietf.org/html/rfc854, [retrieved February 05, 2010]

[51] Port Numbers, IANA , e-document,
 from: http://www.iana.org/assignments/port-numbers, [retrieved March 16, 2010]

[52] BuildBot Manual 0.7.12, e-document, from: http://djmitche.github.com/
buildbot/docs/0.7.12/, [retrieved March 15, 2010]

[53] Tinderbox, Mozilla Foundation, e-document, from:
https://developer.mozilla.org/ en/Tinderbox, [retrieved March 14, 2010]

[54] Twisted, e-document, from: http://twistedmatrix.com/trac/, [retrieved March 17,
2010]

[55] BuildBot SuccessStories, e-document, from: http://buildbot.net/trac/
wiki/SuccessStories, [retrieved March 17, 2010]

[56] SOAP Specifications, World Wide Web Consortium, e-document, from:
http://www.w3.org/TR/soap/,[retrieved March 16, 2010]

