
Lappeenranta University of Technology
Faculty of Technology
Degree Programme in Energy Technology

New computer software for defining the three-dimensional geometry for a
centrifugal compressor impeller

The topic of this Master’s thesis was approved by the Department Council of Energy and
Environmental Technology on 23.12.2010

Supervisors: Pekka Röyttä

Examiners: Jari Backman

Pekka Röyttä

Kotka, 23.12.2010

Antti Tiihala
Puutarhakatu 15 B 19
48100 Kotka
FINLAND
+358505323070

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto
Teknillinen tiedekunta
Energiatekniikan koulutusohjelma

Antti Tiihala

New computer software for defining the three-dimensional geometry for a centrifu-
gal compressor impeller

Diplomityö

2010

30 sivua, 11 kuvaa ja 3 liitettä

Tarkastajat: Jari Backman
Pekka Röyttä

Hakusanat: kompressori, juoksupyörä, suunnittelu, ohjelmointi

Keywords: compressor, impeller, design, programming

Diplomityössä suunnitellaan tietokoneohjelmisto keskipakokompressorin juoksupyörän
geometrian määrittelyyn. Työn tilaajana toimii virtaustekniikan laboratorio Lappeenran-
nan teknillisestä yliopistosta. Työ tulee olemaan samankaltainen Tomi Putuksen vuonna
2009 tekemän diplomityön kanssa, jonka aiheena oli radiaalikompressorin juoksupyörän
virtauskanavan suunnittelu. Putus kirjoitti diplomityössään tietokoneohjelman, jota voi-
daan käyttää määrittämään juoksupyörän kolmiulotteinen geometria annetuilla alkuar-
voilla. Tässä työssä suunniteltava ja toteutettava ohjelma on lähes samanlainen, mutta
suurena erona on käytetty ohjelmointikieli (C++) ja kompressorin meridionaalisen pro-
jektion muodon määrittely.

ABSTRACT

Lappeenranta University of Technology
Faculty of Technology
Degree Programme in Energy Technology

Antti Tiihala

New computer software for defining the three-dimensional geometry for a centrifu-
gal compressor impeller

Master’s Thesis

2010

30 pages, 11 figures, and 3 appendices

Examiners: Jari Backman
Pekka Röyttä

Keywords: compressor, impeller, design, programming

In this thesis, a computer software for defining the geometries for centrifugal compressor
impellers is designed and implemented. The project is done under the supervision of
Laboratory of Fluid Dynamics in Lappeenranta University of Technology. This thesis
is similar to the thesis written by Tomi Putus (2009) in which centrifugal compressor’s
impeller flow channel is researched and commonly used design practices are reviewed.
Putus wrote a computer software which can be used to define impeller’s three-dimensional
geometry based on the basic geometrical dimensions given by preliminary design. The
software designed in this thesis is almost similar but uses different programming language
(C++) and different way to define the shape of the impeller’s meridional projection.

Contents
NOMENCLATURE 2

1 INTRODUCTION 3

2 DESIGNING THE CENTRIFUGAL COMPRESSOR IMPELLER 4
2.1 What is a compressor? . 4
2.2 The centrifugal compressor . 5

2.2.1 Types of impellers . 8
2.2.2 Velocity triangles . 9

3 COMPUTER GRAPHICS 10
3.1 Bézier curve . 10
3.2 B-spline . 12

3.2.1 A B-spline curve definition . 13
3.2.2 Cox-de Boor recursion formula 14

4 DESIGNING THE SOFTWARE 15
4.1 Programming language . 15
4.2 Curvepoint file formats . 16

4.2.1 .csv - Output of Centriflow . 16
4.2.2 .crvd - Curvepoint custom data 16
4.2.3 .crvp - A geometry data created by Curvepoint 18
4.2.4 .crvm - A meridional projection data 19
4.2.5 .crvg - A gamma distribution . 21

4.3 IGES export file format . 22
4.3.1 History of IGES . 22
4.3.2 ASCII File format . 22
4.3.3 Sections S, G, D, P and T . 23

5 PROGRAMMING THE SOFTWARE 24
5.1 Loaders . 24
5.2 Cox-de Boor C++ implementation . 24
5.3 Defining the geometry . 26
5.4 Converting to IGES . 26
5.5 Miscellaneous . 26

6 USING THE SOFTWARE 27
6.1 Program: curvepoint . 27
6.2 Program: curvepoint-init . 27
6.3 Program: curvepoint-plot . 27
6.4 Program: curvepoint-viewer . 28

7 CONCLUSIONS 29

APPENDIX 1: Curvepoint source code files
APPENDIX 2: IGES opened in SolidWorks (IMPELLER.IGS and IMPESEGM.IGS)

2

NOMENCLATURE
Abbreviations
ANSI American National Standards Institute
CAD Computer Aided Design
CFD Computational Fluid Dynamics
GLUT Graphics Library Utility Toolkit
IGES Initial Graphics Exchange Specification
SDL Simple Direct media Layer

3

1 INTRODUCTION

The main goal of this thesis is to design and impelement new computer software which
will be used to define a three-dimensional geometry for the centrifugal compressor im-
peller. This project is under the supervision of Laboratory of Fluid Dynamics in Lappeen-
ranta University of Technology. This software is called Curvepoint and it’s programmed
in C++ using developer tools offered by the GNU Project. The source code of Curvepoint
is generic so it can be ported to any system supporting C++. However, Curvepoint is
developed by using GNU/Linux and therefore that’s the most tested platform.

Curvepoint defines the three-dimensional geometry for an impeller and saves it to the
Initial Graphics Exchange Specification (IGES) format which meets the ANSI standard
and is also widely supported by CAD softwares. There are several ways to use these files.
For example, they can be used in CFD calculations.

The first part of this thesis describes centrifugal compressors in general. After that, the
computer graphics history is revealed and B-splines are explained. The B-splines are
very important in this project because the shape of both the meridional projection and
the gamma distribution are defined by using them. The rest of this thesis deals with
the Curvepoint software itself. Programming techniques, file formats, and the general
structure of the software are explained in detail.

4

2 DESIGNING THE CENTRIFUGAL COMPRESSOR
IMPELLER

In this thesis, we are only interested in the compressor impellers so there’s no deeper
research for the compressors in general. However, we must first know some basics of the
centrifugal compressors. These are very common nowadays in many industries. There has
been researching for the high-speed compressors in the Laboratory of Fluid Dynamics in
Lappeenranta University of Technology and that field can be considered as their bravura.

2.1 What is a compressor?

The basic aim for a compressor is to compress a working fluid and deliver it at a pressure
which is higher than its original pressure. If this fluid is liquid, it’s practically incom-
pressible and the compressor is not then the right word to describe it, so we call it a

pump. There are numerous applications where the compressors are required, for example,
to provide air for a combustion or to provide air for the driving pneumatic tools. (Boyce,
2003, p. 1)

There are many different types of compressors around. As mentioned before, in this the-
sis we are only interested in the centrifugal compressor but it’s just one type among the
others. The compressors can be divided in two main categories: a positive displacement
and a continuous flow. The positive displacement is like, for example, an piston engine in
which a successive volume of fluid is confined in a closed space to increase its pressure.
The highest pressures are achieved by using the positive displacement compressors but
these are not good with the high flows. The continuous flow, as its name predicts, doesn’t
have the same kind of syclic flow but its flow is continuous. However, the positive dis-
placement method can also be like the continuous flow if the cycles are fast enough. The
continuous flow compressors can have high flows but quite low pressure ratios. (Boyce,
2003, p. 2)

5

Figure 1: CC-3 impeller and a wedge diffuser. NASA Glenn Research Center (2007)

2.2 The centrifugal compressor

The centrifugal compressor impeller and a wedge diffuser can be seen in the figure 1.
This type of compressor is the continuous flow compressor and that’s well-known for
its smooth operation, large tolerance of process fluctuations and especially for its high
reliability. The range in size varies from pressure ratios of 1.3:1 per stage in the process
industries, to 3-7 per stage in small gas turbines. On experimental models, the pressure
ratio can even be as high as 13:1. With the pressure ratios higher than 5:1, a special kind
of diffuser is needed because of the supersonic flow (Mach Number greater than 1). The
operating range which is considered as a stable varies from 45 % to 90 % of the rated
capacity. The operating speeds of these compressors can be extremely high. For aircraft
applications, for example, the rpm range can be 50 000 - 100 000 but most units run below
20 000. (Boyce, 2003, p. 8-9)

6

Figure 2: The main parts of a centrifugal compressor. Larjola (1988)

7

Inside the compressor impeller and diffuser, the velocity of the fluid is converted to the
pressure. The diffuser consists essentially of vanes which are tangential to the impeller
and normally the compressor is designed so that the half of the pressure rise takes place
in the impeller and the other half in the diffuser. (Boyce, 2003, p. 9)

The main parts of a centrifugal compressor is presented in the figure 2. The main parts
are an inlet duck (11), an impeller (13) and a diffuser (16). (Larjola, 1988, p. 7)

The most of the kinetic energy is converted into the pressure energy inside the diffuser.
This can be seen in the figure 3. As just mentioned above, the diffuser consists essentially
of vanes and these vane passages diverge to convert the velocity head into the pressure
energy. As shown in the figure 4, the inner edge of the vanes is in line with the direction
of the resultant fluid flow from the impeller. (Boyce, 2003, p. 9)

Figure 3: Aerodynamic and thermodynamic properties of the fluid in a centrifugal com-
pressor stage. Boyce (2003)

8

Figure 4: The flow in a vaned diffuser. Boyce (2003)

2.2.1 Types of impellers

There are three types of impeller blades used: radial blades, backward curved blades and
forward curved blades. These are defined (Boyce, 2003, p. 11) according to the exit blade
angles

β2 = 90◦C ⇒ Radial blade , (1)

β2 < 90◦C ⇒ Backward blade , (2)

β2 > 90◦C ⇒ Forward blade . (3)

The backward curved impeller is the most common since they have a low outlet kinetic
energy, a low diffuser inlet Mach number, and the surge margin is the widest when com-
pared to the radial and forward curved impellers. On the other hand, the backward curved
impeller has some disadvantages such as a low energy transfer, a complex bending stress,
and difficulties in manufacturing. By contrast, the radial curved impeller is easy to man-
ufacture and it is also a reasonable compromise between the low energy transfer and the
high absolute outlet velocity. As a disadvantage, the radial curved impeller surge margin
is narrow. (Boyce, 2003, p. 12)

9

The forward curved impeller is relatively rare but its main advantage is a high energy
transfer capability. (Boyce, 2003, p. 12)

2.2.2 Velocity triangles

In the figure 5, the velocity triangles can be seen. In this thesis, we are only interested
in the real geometrical angle of the blade. We called this angle a gamma. The gamma
distribution (see 4.2.5) tells us what is the current angle as a function of a meridional
lenght.

Figure 5: Velocity triangles. Wirzenius (1978)

10

3 COMPUTER GRAPHICS

There is a long history of a technical drawing and also designing methods in general.
There was no mathematics involved in the earliest drawing methods. In Italy, there were
reneissance naval architects known for using drafting techniques that involved conic sec-
tions. These desing techniques led to the use of splines. The splines are basically wooden
beams bent into the optimal shapes. With using these, it was possible to draw very smooth
lines that are well suitable in naval architectures. (Farin, 2002, Preface)

In the twentieth century, aiplanes and cars made their appearance. This was a huge im-
provement also in designing methods because the need for smooth lines became more
important. This was strictly linked to aerodynamics but also, especially in cars, to an
artistic design. The computer graphics today is so evolved that the whole airplane or a
car, just to mention a few, can be modelled virtually. In this thesis, we will learn what are
the building blocks of these very large structures.

In this thesis, author’s opinion concerning about the learning methods of the computer
graphics is that drawing techniques performed with the hardware rather than the soft-
ware is much more informative. The hardware in this context means, for example, these
wooden splines as described above and has nothing to do with the computer hardware
that performs calculations and such things. Of course, this whole hardware thing can be
considered at a conceptual level only.

3.1 Bézier curve

In this thesis, the Bézier curve deserves only a quick overview. Bézier curves can be
considered as a special case of the B-spline which is in-depth introduced in section 3.2.

Farin (2002, p. 437) defines the Bézier curve as:

“A polynomial curve that is expressed in terms of Bernstein polynomials.”

These Bézier curves are widely used in the computer graphics and can represent smooth
curves which are scalable and exclusively defined. The simplest curve is a straight line
between the points P0 and P1 and is called a linear Bézier curve. The higher the count

11

of points, the higher the order. Usually it’s not convenient to use very high order Bézier
curves but use B-splines instead.

The Bézier curves were invented in the late 50s and early 60s. Paul de Casteljau and
Pierre E. Bézier discovered them simultaneuously, latter being more credited. These are
parametric curves and contains some limitations like an unability to represent some simple
curves such as circles. To define a Bézier curve of degree n, we need to choose n+1 control
points so that they indicate the shape of the desired curve. As one or more control points
are moved, the shape of the curve changes. (Shene, 2008, Unit 5)

The construction of the Bézier curves according to Shene (2008, Unit 5): given n+1 points
P0, P1, P2, P3, ..., Pn in space which are the control points and the Bézier curve defined
by these control points is

C(u) =
n∑

i=0

Bn,i(u)Pi , (4)

where the coefficients are defined as

Bn,i(u) =
n!

i!(n− i)!
ui(1− u)n−1 . (5)

The point that corresponds to u on the Bézier curve is the weighted average of all the con-
trol points, where the weights are the coefficient Bn,i(u). This is referred as the Bézier ba-

sis functions or Bernstein polynomials. The line segments P0P1, P1P2, P2P3, ..., Pn−1Pn

are called legs which form a control polyline. All the basis functions are non-negative and
C(u) pass through the first and the last control point (P0 and Pn). The domain u is [0,1]
but other values can also be used by converting them first. (Shene, 2008, Unit 5)

If the domain is [a,b], then the converting to [0,1] is simply

u =
u− a

b− a
. (6)

All the properties of the Bézier curves are not perfectly covered in here. Although, some
of those are worth a mention, like a convex hull property and a partition of unity. The first

12

Figure 6: Convex Hull Property.

one means that the Bézier curve defined by the given n+1 control points lies completely
in the convex hull of the given control points. The convex hull of a set of points is the
smallest convex set that contains all thepoints and this is demonstated in the figure 6
where the convex hull of the 11 control points is shown in color gray. The curve will not
go outside of this region and that’s an important thing to know when determining limits.
The second thing to mention, the partition of unity, means that the sum of basis functions
at a fixed u is 1. (Shene, 2008, Unit 5)

3.2 B-spline

The B-spline is the essential part of the almost any modern graphics development per-
formed by the computer. Therefore, the B-spline is also the essential part of the Curve-
point’s computing.

13

Farin (2002, p. 438) defines the B-spline as:

“A piecewise polynomial function. It is defined over a knot partition, has

local support, and is nonnegative. If a spline curve is expressed in terms os

B-splines, it is called a B-spline curve.”

The B-splines are the building blocks of the geometry object produced by Curvepoint.
When compared to the Bézier curve, the B-spline can be difficult to understand. However,
it’s possible by using uncomplex figures and equations. In literature, there are many ways
to explain the B-splines and this variety can be confusing. In this thesis, the simpliest
methods are preferred.

Any B-spline can be converted in to one or more Bézier curves and vice versa. By default,
the B-splines don’t interpolate any of its control points whereas Bézier curves automat-
ically clamps its endpoints. It is, however, possible to force the B-splines to interpolate
any of its control points without repeating it. That’s not possible with Bézier curves.
(Andersson, 2003, p. 23)

3.2.1 A B-spline curve definition

The definition of the B-spline curve according to Shene (2008, Unit 6) is

C(u) =
n∑

i=0

Ni,p(u)Pi , (7)

where Ni,p are B-spline basis functions of degree p, Pi = {P0, P1, P2, ..., Pn} are control
points and U = {u0, u1, u2, ..., um} is a knot vector. In addition, n, m and p must satisfy
m = n + p + 1 . The equation 7 is very similar to Bézier curve but involves more
information. (Shene, 2008, Unit 6)

14

3.2.2 Cox-de Boor recursion formula

Shene (2008, Unit 6) defines B-spline basis function

Ni,0(u) =





1 if ui ≤ u < ui+1

0 otherwise
, (8)

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u) . (9)

In the figure 7, all knot spans are listed on the left column and all degree zero basis func-
tions on the second. This triangular computation scheme helps to understand the way of
computing Ni,p(u) for p greater than 0. (Shene, 2008, Unit 6)

[u0, u1] N0,0
N0,1

[u1, u2] N1,0 N0,2
N1,1 N0,3

[u2, u3] N2,0 N1,2 N0,4
N2,1 N1,3 N0,5

[u3, u4] N3,0 N2,2 N1,4
N3,1 N2,3

[u4, u5] N4,0 N3,2
N4,1

[u5, u6] N5,0

Figure 7: A triangular computation scheme for a Cox-de Boor recursion formula.

15

4 DESIGNING THE SOFTWARE

4.1 Programming language

Tomi Putus used MATLAB programming language when he wrote his software for his
thesis. To run that software we need the commercial MATLAB program. In this thesis,
we don’t want the software being dependent on anything except the standard free libraries.

There’s no the Programming Language which is the only one suitable in this project.
Programming in this project is mostly putting mathematical equations to the form com-
puter understand and can thereby calculate them. An efficiency isn’t the main issue here
because the calculations used in this project are performed relatively fast on a modern
computer. The most important thing when selecting the programming language is that it’s
well known. Hence, others can read and understand the source code. C++ programming
language is selected in this project because it meets all the criteria.

However, it’s worth a mention that the author is already familiar with C++ programming
language. That might be the real reason for the language selection for Curvepoint. A
coding style is from Kerninghan and Ritchie (1988)

16

4.2 Curvepoint file formats

Curvepoint needs numerical data for defining the impeller geometry. This data are stored
in files and are loaded by the program. In the open source world, it’s convenient to use
plain text files for clarity. It’s also possible to use a custom format by using binary files.
These would be very compact, resource friendly, and can be read fast by the computer.
However, the problem is that the examining or modifying these settings by hand is very
difficult for the human. Because of the open source nature of this project, it’s clear that
the plain text files are used for storing numerical data.

The loader which loads values from these plain text files isn’t a stand-alone application
but a subroutine. It’s written in C++ using mostly a String library for parsing the data and
it’s designed to be as universal as possible.

4.2.1 .csv - Output of Centriflow

This format is not the author’s design. Centriflow is 1D designing software for the cen-
trifugal compressors and its result file is used by the Curvepoint. The file suffix is .csv.

This file contains pretty much everything that is needed for the centrifugal compressor
geometry. However, some 3D geometry related information will be added to this. The
loader for loading the important values from this file is more complex than loader for the
.crvp or .crvd file format.

4.2.2 .crvd - Curvepoint custom data

This simple file format is the author’s design. It contains all the values needed from .csv

file so the user doesn’t need to edit the .csv file at all. It also contains values needed for
the three-dimensional geometry.

17

Here is an example of some .crvd file:

#CRVD 1.0

// full centriflow.csv

N0 = 9
N2 = 18
d1t = 0.0932
d1h = 0.0326
d2 = 0.171
b = 0.0075

gamma1h = 25.2
gamma1t = 54
gamma2 = 40

// Settings

z1/d2 = 0.34
bladecut = 0.3
bladethick/d2 = 0.005

// Settings (default-meridional)

angle hle = 0.34
angle hte = 0.3
angle tle = 0.34
angle tte = 0.3

// EOF

Every .crvd must start with #CRVD 1.0. Comments are allowed with // like in C++.

18

4.2.3 .crvp - A geometry data created by Curvepoint

This relatively simple format is also the author’s design. This .crvp file contains all the
data needed for creating the 3D geometry and Curvepoint Viewer uses this file as an input.
This will be converted to the IGES if needed. This format supports the B-splines and can
also draw points using coordinates.

Here is an example of .crvp file:

#CRVP 1.0

[b-spline]
examplecurve1
[/b-spline]

[vertex]
examplevertex1
[/vertex]

examplecurve1.ctrl 0 = 0.0000 0.0000 0.0000
examplecurve1.ctrl 1 = 0.2500 0.0000 0.0000
examplecurve1.ctrl 2 = 0.7500 1.0000 0.0000
examplecurve1.ctrl 3 = 1.0000 1.0000 0.0000

examplecurve1.knot 0 = 0
examplecurve1.knot 1 = 0
examplecurve1.knot 2 = 0
examplecurve1.knot 3 = 0
examplecurve1.knot 4 = 1
examplecurve1.knot 5 = 1
examplecurve1.knot 6 = 1
examplecurve1.knot 7 = 1

examplevertex1.vertex 0 = +0.01630000 +0.05810000 +0.00000000
examplevertex1.vertex 1 = +0.01629999 +0.05810000 +0.00002048
examplevertex1.vertex 2 = +0.01629995 +0.05810000 +0.00004097
examplevertex1.vertex 3 = +0.01629988 +0.05810000 +0.00006145
examplevertex1.vertex 4 = +0.01629979 +0.05810000 +0.00008193

Every .crvp must start with #CRVP 1.0. Comments are allowed with // like in C++.

19

4.2.4 .crvm - A meridional projection data

This format is almost like the .crvp but the main difference is that it has no z-coordinate.
It also has no [b-spline] section because for the meridional projection there must always
be the hub and the tip. There are no limits for the B-spline so there can be an arbitrary
amount of control points.

Figure 8: A meridional projection.

20

Here is a complete .crvm file and the source for the figure 8:

#CRVM 1.0

hub.ctrl 0 = 0.0163 0.0581
hub.ctrl 1 = 0.0223 0.0297
hub.ctrl 2 = 0.0567 0.0040
hub.ctrl 3 = 0.0855 0.0000

hub.knot 0 = 0
hub.knot 1 = 0
hub.knot 2 = 0
hub.knot 3 = 0
hub.knot 4 = 1
hub.knot 5 = 1
hub.knot 6 = 1
hub.knot 7 = 1

tip.ctrl 0 = 0.0466 0.0581
tip.ctrl 1 = 0.0506 0.0294
tip.ctrl 2 = 0.0582 0.0174
tip.ctrl 3 = 0.0855 0.0075

tip.knot 0 = 0
tip.knot 1 = 0
tip.knot 2 = 0
tip.knot 3 = 0
tip.knot 4 = 1
tip.knot 5 = 1
tip.knot 6 = 1
tip.knot 7 = 1

Every .crvm must start with #CRVM 1.0. Comments are allowed with // like in C++.

21

4.2.5 .crvg - A gamma distribution

This file format works just like the previus .crvm format. The only difference is the first
line which is used to detect the file format. In the .crvg this line is #CRVG 1.0. An
example of a gamma distribution can be seen in the figure 9.

Figure 9: A gamma distribution.

The source for the figure 9 is not printed here. It works similar to the previous examples.
However, every .crvg file must start with #CRVG 1.0. Comments are allowed with //

like in C++.

22

4.3 IGES export file format

An export format of Curvepoint is the IGES. That’s well known format by the CAD
softwares so it’s possible for them to view a geometry produced by Curvepoint.

4.3.1 History of IGES

In the 1979 when mechanical CAD systems were relatively young, the IGES project was
started. Before that it was difficult to share data among the CAD users because there
weren’t any standards for CAD. Therefore, a group of users and vendors of CAD started
to create the first national standard for the CAD data exchange. There were some meet-
ings with CAD vendors, that included ComputerVision, Applicon and Gerber, and soon
after, an open meeting was held at National Academy of Sciences on October 10, 1979.
About 200 people attended to herald the birth of the IGES standard. (National Institute of
Standards and Technology, 2010)

4.3.2 ASCII File format

There are fixed and compressed versions of ASCII file format. Also, there is a binary
format but it’s not used anymore. In this project, only the fixed one is used because it’s
obviously clearer than the compressed one. The IGES file consists of 80-column lines
which are grouped into sections. That 80-column limit is derived from the punched card
era. There are five sections S, G, D, P and T which will be described soon. Section-
specific data is in the columns 1-72, an identifying letter code in the column 73, and an
ascending sequence number in the columns 74-80. All of these are numbers start at 1
and are incremented by 1 for each line. Columns 73 and 74-80 could be considered as a
special kind of line number. (U.S. Product Data Association, 1996, p. 9)

This format is very strictly and therefore one error in the file could ruin the whole file.
When designing the Curvepoint exporting feature, one must be extra careful.

23

4.3.3 Sections S, G, D, P and T

The first two sections are called Start Section (S) and Global Section (G). Start Section
has been reserved for human-readable prologue to the file and it contains one or more
lines. There is only one data field in the columns 1-72. Start Section basically contains
comments and other information. Global Section is relatively complex and definitely isn’t
normal-human-readable until getting familiar with the IGES standard. It contains infor-
mation describing the preprocessor and some information needed by the postprocessor to
handle the IGES formatted file. There are also text strings in this section like an author
name which is represented as ”7HTIIHALA”. The number before the letter ”H” means
the number of characters in the string. (U.S. Product Data Association, 1996, p. 16)

In a section called Directory Entry (D), one line has been divided into ten fields and two
lines form an entity. Therefore, the entity consists of 20 fields. In the columns 1-72,
every field length is eight characters and those are right-justified. (U.S. Product Data
Association, 1996, p. 23)

The next section is Parameter Data Section (P). This contains the data associated with
the each entity. It’s not meaningful here to describe this section precisely but it’s worth a
mention that the data is free-formatted. This section contains also most of the information
about the geometry. (U.S. Product Data Association, 1996, p. 32)

The last section is Terminate Section (T). There’s only one line here and it is the last
sequenced line of the file. (U.S. Product Data Association, 1996, p. 34)

24

5 PROGRAMMING THE SOFTWARE

In this section, the programming methods are explained. First thing to do is to program
the loaders that can load the values from the text files described in the previous section.
After that, the Cox-de Boor recursion formula is implemented in C++. Then we move
on defining the three-dimensional geometry and saving that information to the .crvp file
(see section 4.2.3). Finally the .crvp is converted to IGES. There is also a program called
Curvepoint Viewer which can be used for viewing the three-dimensional geometry but its
details are not revealed here because it’s an optional software (see section 6.4).

The list of the source code files can be found in appendix 1.

5.1 Loaders

All the loaders source code can be found in loader.cc. Parsing methods are quite simple
and C++ Strings library is primarily used for them. The format of the files where the
values are loaded is simple: parameter = value. As an exception of this, the Centriflow
file needs more advanced method for the parsing.

As an example, we can see an excerpt of the source code from loader.cc in the figure
10. It loads values from a .crvd file. This is probably the simplest method to load values
(parameter = value) from the text file. The return vector in this example function
contains all the values found in the text file and their validity is checked later.

5.2 Cox-de Boor C++ implementation

The source code for the Cox-de Boor C++ implementation can be found in coxdeboor.cc.
It might be difficult to understand the code at a first glance but it’s quite clear when
examined in depth. The Cox-de Boor is well explained in the section 3.2.2.

25

Figure 10: An excerpt of the source code from loader.cc.

26

5.3 Defining the geometry

The source code in the file convert.cc contains mainly all the code for calculating the
three-dimensional geometry. In addition to this, thick.cc contains the code for defining the
thickness of the blades. These two routines are the most important part of this software.
The thickness distribution was quite hard to implement. There should be an easier way
for that but the author didn’t have enough time to reimplement this feature.

5.4 Converting to IGES

The programming process for iges.cc was straightforward but required a careful study of
the IGES standard. It uses only one IGES entity, Linear Path entity (Type 106, Form 12).
It’s enough for drawing the whole three-dimensional geometry of the impeller.

The IGES files have fixed names: IMPELLER.IGS and IMPLSEGM.IGS. Latter shows
only one segment of the impeller.

5.5 Miscellaneous

A program for plotting the B-splines, curvepoin-plot, uses functions from coxdeboot.cc

and loader.cc. It is the simplest program and the source code is easy to read.

The header files bsplinecurve.hh and csvdata.hh, and vertex.hh are stand-alone files con-
taining C++ classes. The csvdata.hh is the most important. It name refers just to .csv file
but it contains also other information needed for the geometry.

27

6 USING THE SOFTWARE

This section can be considered as a manual for the Curvepoint.

6.1 Program: curvepoint

This is the main program of the Curvepoint software. It performs the calculations needed
for the three-dimensional geometry.

It is takes four files, .crvd, .crvm, .crvg, and .crvt as command line parameters. After
the processing, it outputs the .crvp and IGES files. IGES files are what we are looking
for when using the Curvepoint software. In appendix 2, there are some pictures of IGES
opened in SolidWorks.

6.2 Program: curvepoint-init

This program is used at first. It takes one command line parameter which can either be
the .csv or .crvd. If the .csv file is used as the parameter, curvepoint-init’s output is .crvd

file. If the .crvd file is used as the parameter, curvepoint-init outputs three files: .crvm,
.crvg, and .crvt.

The program, curvepoint-init, is therefore used for generating default values for all the
necessary files. It is not needed if these files are written by hand or generated by some
another program.

6.3 Program: curvepoint-plot

This program is used when plotting the B-splines found in .crvm, .crvg, and .crvt. It takes
one of these files as a command line parameter and outputs simple file containing the xy-
coordinates. These coordinates can be plotted to a curve by using, for example, Gnuplot
program.

28

6.4 Program: curvepoint-viewer

This program is used for viewing the three-dimensional geometry. It takes .crvp file as a
command line parameter.

This program is not an essential part of the Curvepoint software. It works only in X11
desktop environment and uses OpenGL drawing functions. It was mainly used when
writing draw functions. In figure 11 is a screenshot of this program.

This program is, however, very interesting if programming and X11 desktop environment
are concerned because it uses Xlib and OpenGL libraries directly. Usually, higher level
libraries like GLUT or SDL are used when programming OpenGL.

Figure 11: Curvepoint Viewer and an impeller.

29

7 CONCLUSIONS

The goal of this thesis was to develop and implement new computer software for defining
the three-dimensional geometry for a centrifugal compressor impeller. In general, that
goal was reached but there are still some room for further developing. The main problem
is that the software is more complex than it should be. An object-oriented programming
should have been used more efficiently.

Defining the three-dimensional geometry for an impeller is quite difficult. Especially
defining the thickness of the blades became a big problem. In theory, it’s quite easy but
the method used here was not easy to implement. There are easier ways which should be
used when developing this software further.

30

References

Andersson, F. (2003). Bezier and B-spline Technology. [Retrieved 5 July, 2010], url:
http://www8.cs.umu.se/education/examina/Rapporter/461.pdf.

Boyce, M.P. (2003). Centrifugal compressors: a basic guide. PennWell Corporation.
ISBN 0-87814-801-9.

Farin, G. (2002). Curves and surfaces for CAGD: a practical guide. Morgan Kauffmann
Publishers. ISBN 1-55860-737-4.

Kerninghan, B. and Ritchie, D. (1988). The C Programming Language, Second Edition.
Prentice Hall, Inc. ISBN 0-13-110370-9.

Larjola, J. (1988). Radiaalikompressorin suunnittelun perusteet. Aalef Oy Lappeenranta.
ISBN 951-763-505-2.

NASA Glenn Research Center (2007). CE18 Small Compressor Test Facility. [Retrieved
6 July, 2010], url: http://www.grc.nasa.gov/WWW/5810/ce18.htm.

National Institute of Standards and Technology (2010). Brief History of IGES. [Retrieved
10 June, 2010], url: http://ts.nist.gov/standards/iges/about.cfm.

Shene, C.K. (2008). Introduction to Computing with Geometry. [Retrieved 1 July, 2010],
url: http://www.cs.mtu.edu/∼shene/COURSES/cs3621/NOTES.

U.S. Product Data Association (1996). Initial Graphics Ex-

change Specification (IGES 5.3). [Retrieved 10 June, 2010], url:
http://www.uspro.org/documents/IGES5-3 forDownload.pdf.

Wirzenius, A. (1978). Keskipakopumput. Kustannusyhtymä. Tampere.

APPENDIX 1: Curvepoint source code files

The official version of Curvepoint 1.0
MD5 (curvepoint-1.0.tar.gz) = 1754d51eef0f9e0bc7ee3e6d28082c44

lines filename

64 bsplinecurve.hh
55 bspliney.cc
13 bspliney.hh
157 checkdata.cc
16 checkdata.hh
991 convert.cc
18 convert.hh
102 coxdeboor.cc
15 coxdeboor.hh
90 csvdata.hh
63 draw.cc
17 draw.hh
342 iges.cc
12 iges.hh
346 init.cc - main function for curvepoint-init

584 loader.cc
50 loader.hh
59 main.cc - main function for curvepoint

134 plot.cc - main function for curvepoint-plot

331 thick.cc
31 thick.hh
26 vertex.hh
183 viewer.cc - main function for curvepoint-viewer

total lines: 3699

APPENDIX 2.1: IGES opened in SolidWorks (IMPELLER.IGS)

APPENDIX 2.2: IGES opened in SolidWorks (IMPESEGM.IGS)

