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The large and growing number of digital images is making manual image search laborious.
Only a fraction of the images contain metadata that can be used to search for a particular
type of image. Thus, the main research question of this thesis is whether it is possible
to learn visual object categories directly from images. Computers process images as long
lists of pixels that do not have a clear connection to high-level semantics which could
be used in the image search. There are various methods introduced in the literature to
extract low-level image features and also approaches to connect these low-level features
with high-level semantics. One of these approaches is called Bag-of-Features which is
studied in the thesis. In the Bag-of-Features approach, the images are described using a
visual codebook. The codebook is built from the descriptions of the image patches using
clustering. The images are described by matching descriptions of image patches with the
visual codebook and computing the number of matches for each code.

In this thesis, unsupervised visual object categorisation using the Bag-of-Features ap-
proach is studied. The goal is to find groups of similar images, e.g., images that contain
an object from the same category. The standard Bag-of-Features approach is improved
by using spatial information and visual saliency. It was found that the performance
of the visual object categorisation can be improved by using spatial information of local
features to verify the matches. However, this process is computationally heavy, and thus,
the number of images must be limited in the spatial matching, for example, by using the
Bag-of-Features method as in this study. Different approaches for saliency detection are
studied and a new method based on the Hessian-Affine local feature detector is proposed.
The new method achieves comparable results with current state-of-the-art. The visual
object categorisation performance was improved by using foreground segmentation based
on saliency information, especially when the background could be considered as clutter.

Keywords: bag-of-features, self-organizing map, local feature, unsupervised visual ob-
ject categorisation, spatial verification, saliency detection, computer vision
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CHAPTER 1

Introduction

The number of digital images has increased dramatically during the last decade. This
originates from the popularity of digital cameras and the fact that nearly all mobile
phones contain a built-in camera. The increasing number of images has lead to many
image sharing services such as Flickr and Picasa, and also digital art sharing services such
as DigitalArt and devianART. Nowadays, these image sharing services contain billions
of images, e.g., Flickr alone already contains more than 6 billion images [54]. Despite
the many image sharing services, only a fraction of the images are stored on the image
sharing services; the majority of the images are stored in the photographers’ personal
computers and mobile phones.

Because of such high number of images, it is not possible to manually browse through
all the images to find a particular type of image. Therefore, the image sharing services
provide an image search for the users, to search for images from the massive image col-
lections by typing in keywords. However, all of these services have one serious limitation.
The content of each image must be described using metadata, i.e., by giving tags as in
Flickr, or by giving a representative name as in DigitalArt and devianArt, and uploading
images to the correct predefined category. This causes two problems: i) Images need to
be described manually which is laborious, especially if it is done afterwards; ii) Descrip-
tions of the images might vary significantly which makes the search impractical without
intelligent cross-referencing keywords or use of taxonomies. For example, one might give
the same tag for different kinds of images or give different tags for the same image. The
problem of giving the same tag for different kinds of images is illustrated in Fig. 1.1.
It shows example images from Flickr with the tag “sport car”. Fig. 1.1a and 1.1b are
very different, whereas Figs. 1.1a and 1.1c are more similar because both of the images
actually contain a sport car. The difference between the Figs. 1.1a and 1.1b illustrates
the problem of manual labelling of the images. Especially in the cases where there are
many people labelling their own image collections and then another person is making a
search, severe differences can occur. Of course, these images were chosen on purpose to
empahise the problem.

One obvious solution to the manual image search problem is to use computers to organise

11
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(a) (b)

Figure 1.1: Three examples from Flickr with the tag “sport car”: (a) Sport car
image by Jason Thorgalsen; (b) Sport car image by Stephen Dyrgas; (c) Sport
car image by Damian Morys.

and find a particular type of images because the computers offer a great amount of
computational power and they never get exhausted. However, it is not a straightforward
matter to use computers to search images because the computers store and process colour
images as a long list of pixels which do not have a clear connection to any high-level
concepts which could be used to assist users to search images. This can be simply shown
in practice by computing the pixel-wise differences of the images shown in Fig. 1.1. At
first, the images must be resized to be able to make pixel-wise comparisons. Next, pixel-
wise difference images are computed by computing the difference of each pair of pixels.
For the images 1.1a and 1.1b the mean of the pixel-wise distances is 84.05, whereas for
the images 1.1a and 1.1c the mean of the distances is 124.3. For the image pair 1.1b and
1.1c the mean of the distances is 97.07. According to the mean of the distances, the most
similar pair of images are the Figs. 1.1a and 1.1b and the most dissimilar pair of images
is Figs. 1.1a and 1.1c which do not agree with the higher level concepts. This simple
example shows that pixel information cannot be used directly to find similar images or
to organise a collection of images.

Smeulders et al. [85] made a comprehensive study on Content Based Image Retrieval
systems (CBIR) prior 2000. One of their contributions was that they divided the problem
of recognising real world objects using visual information into two problems: the sensory
gap and the semantic gap. The sensory gap was defined as the gap between the object
in the real 3-D world and the captured 2-D image. When a real world object is captured
into a 2-D image, some of the information is lost, e.g., we cannot be sure what is behind
the object because of occlusions. The semantic gap was defined as the difficulty of
connecting extracted low-level features with the high-level concepts. There are many
methods of extracting low-level features such as edges [8], lines and curves [20], blobs [60],
colour histograms, etc., but it is not self-evident how these low-level features should be
connected to the high-level concepts. However, by defining these two gaps, researchers
can concentrate on closing one of the gaps in their research. In this thesis, the focus is
on the semantic gap, i.e., we have a set of images that we want to organise based on
high-level concepts.

Due to the existence of the semantic gap and the problem of laborious manual labelling,


http://www.flickr.com/photos/vodcars/3658161002/
http://www.flickr.com/photos/stephen_dyrgas/2528406653/
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CBIR has received significant amount of attention from computer vision research and it
has become one of the hot topics in computer vision [16]. It has lead to several approaches
to connect low-level features to high-level concepts for automatic labelling. In this thesis,
low-level features are connected to the high-level concepts which are defined as image
categories. This task is called Visual Object Categorisation (VOC) which refers to the
problem of detecting the category of the image. To solve the problem, one needs to
extract low-level features successfully despite the existence of the sensory gap and then
find the connection between the low-level features and the high-level concepts to make a
connection over the semantic gap.

In VOC, low-level features are extracted from the images and then connected to the high-
level concepts. Many of the current VOC methods [2, 3, 11, 14, 17, 21, 36, 38, 96] are
based on local features, particularly in Scale Invariant Feature Transform (SIFT) [60]. A
local feature is a description of a detected region in the image. Regions are detected using
local feature detectors which are discussed in Sec. 3.1.1. Description can be an N x N
grey-level patch [58] of a detected region or it can be a histogram of gradients [60]. The
idea is that one can use local features to find similar regions from different images. The
most trivial way to compute the similarity between the images is to compute the number
of similar regions in the images using the local features [38]. One popular approach
using these local features to describe the content of the whole image originates from
text document search, where documents are described as occurrences of a predefined
vocabulary, i.e., a set words. This approach is called the Bag-of-Words approach [6, 59].
In the VOC, visual words, i.e., local feature descriptors, are used instead of textual words.
This approach is called the Bag-of-Features approach [84, 14].

1.1 Background

The most important works related to this thesis are [14, 92|. Csurka et al. [14] introduce
the BoF approach for VOC which is extended to UVOC in this thesis. In this work, we
utilise the performance measure from Tuytelaars et al. [92] and compare our results to
the method in [92].

The BoF approach [84, 14] is illustrated in Fig. 1.2 and discussed more in detail in Chap-
ter 3. First, regions of local features are detected from images. Second, these regions
are converted into scale and rotation invariant descriptors in the local feature description
step [60]. In the third step, a codebook is constructed using the descriptors of local fea-
tures. In the study by Csurka et al. [14], the codebook generation was performed during
the training phase using the k-Means clustering algorithm. In the best methods, however,
the training ground truth is used to refine and probe more efficient codebooks [36, 58]. In
the feature generation step, the extracted local features are matched against the gener-
ated codebook. A standard feature is the frequency vector over the codebook codes — “a
bag of features”. Finally, a category is assigned by feeding the feature vector to a classifier,
such as the support vector machine (SVM) as was introduced by Csurka et al.

The annual Pascal VOC competition datasets [28] have become the standard bench-
mark for the supervised VOC. The annual competition attracts many research groups
to submit their solutions to VOC, object detection and segmentation tasks. The Pascal
image set itself has been updated annually by increasing the number of classes from 4
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Figure 1.2: Bag-of-Features approach applied to the supervised VOC. In the
first row, detected local features are drawn with green rectangles. In the second
row, detected local features are described by computing gradients in 8 directions
that are illustrated with arrows. In the third row, visual vocabulary is built and
codes are shown. In the fourth row, codebook histograms are shown. In the fifth
row, members of three different classes are shown.

to 20, and also the number of the images has increased from hundreds to thousands.
The rapid development in VOC has increased the mean average precision of the VOC
methods evaluated in the Pascal VOC competition from 56.9% (2008) [26] to 77.1%
(2010) [24]. The winner of the Pascal VOC 2010 was developed by Song et al. [87]. Their
method integrates contextual information into the typical VOC method. They were using
Context-SVM that can take an advantage of the context information. Their approach
first predicts different visual objects in the image, and then refines the prediction based
on context information gathered in the first prediction.

Albeit, the supervised VOC methods have been evolving rapidly and the performance
of the state-of-the-art VOC method has increased dramatically in the annual Pascal
VOC competitions [24, 26], the supervised VOC is now facing problems, especially when
the number of classes is increased from tens to thousands. Deng el al. [17] studied the
scalability of the supervised VOC. The first scalability issue that they found is the rapid
increase of computation needed for training classifiers. They stated that it took 1 hour
to teach a linear SVM classifier and 8 hours to test using a single 2.66GHz CPU. Even
though the training can be done in parallel (e.g. by training each classifier on separate
CPU), the limitations approaches quite fast. Also the required amount of memory grows
quickly and becomes easily a bottleneck. The second issue that they found is the collapse
of classification performance when the number of classes increases. This finding also
supports our results published in [50]. The performance decreases from 34% with 200
classes to 6.4% with 10,000 classes [17]. However, people can recognize accurately more
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than 30,000 categories [5].

It is laborious to obtain training data for a large number of categories and also the su-
pervised VOC has scalability issues as was shown by Deng et al. [17]. Thus this thesis
focuses on Unsupervised Visual Object Categorisation (UVOC). In this thesis, unsuper-
vised learning methods, especially self-organisation, are studied in order to develop a new
method for UVOC. The benefit of UVOC is that it does not need training images which
can be too laborious to obtain. In UVOC, the goal is to find images that belong to the
same group or category, i.e. images that contain an object from the same category.

UVOC has been used for two different tasks: specific object discovery and object category
discovery. In the first task, the problem is to find all instances of the specific object, such
as a popular building or place, in unsupervised manner. In this task, the input is a set of
images and then the method needs to find which of the images contain the same specific
object [11]. In the latter task, the method needs to discover which of the images contain
an object from the same category, e.g. cars, aeroplanes, faces. This problem is even
more difficult because the appearance of the objects can vary more than in the first task.
In this thesis, the latter problem is studied. Methods for finding groups of images that
contain objects of the same class are explored and evaluated in many experiments.

Grauman and Darrell [38] introduced a method that compares the local features of each
image with all the other images and then computes the number of matching local features.
The number of matches defines the similarity between a pair of images. A graph is built
by connecting images with edges. The weights of the edges are based on the similarity of
the pair of images. After this, from the graph that was built, initial object categories are
clustered with the Normalised Cuts algorithm [82]. These initial object categories are
used to generate the prototypes of the categories. SVM classifiers are then taught with
the prototype categories. Final categorisation result is obtained by predicting a category
of each object with the SVM classifier. It is obvious that this approach is computationally
rather heavy. Pairwise image comparison in the first step can easily become a bottleneck
if one needs to categorise tens or even hundreds of thousands of images. Learning can
also become a problem if the number of categories increases dramatically because each
category needs an own SVM classifier to be learned. Grauman and Darrel had only
four categories in their experiments, which can be because of the high computational
complexity.

One of the popular approaches to categorising images in an unsupervised manner is to
use Latent Dirichlet Allocation (LDA) [6]. Sivic et al. [83] presented an unsupervised
method utilising the LDA model. They improved the original LDA by introducing hier-
archical LDA (hLDA). With the hierarchy, they were able to improve the categorisation
performance, but the results were reported only for a small number of categories and it
is not obvious if the approach generalises well.

Bart et al. [3] developed a method that builds a visual taxonomy (TAX) using a topic
model similar to the LDA. Instead of having a single level, they build a hierarchy similar
to the method introduced by Sivic et al. [83]. In the TAX model, the topics are codebook
feature histograms. Categories are histograms of topics and the categories are organised
in a hierarchy in the way that the root node contains all possible topics and leaf nodes are
the specific cases. The TAX is learned using interference with Gibbs sampling. However,
in their experiment they used only 13 categories, which gives an idea of the scalability
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and computational complexity of their method. They said that it took 24 hours to learn
a taxonomy for 1300 images. Thus, it is not very practical for learning thousands of
categories.

Kim et al. [48] introduced an UVOC method that is based on link analysis. The method
finds linkages between the features by pairwise matching of the local features of the im-
ages. The number of matching local features for a pair of images defines the weight of
the edge. This is used as an initial setup which is then refined by running the PageR-
ank algorithm to search “hubs”. These hubs are then used to refine the weights of the
nodes. The final categories are found by using spectral clustering on the matrix that
defines similarities between the images. Kim and Torralba [49] improved the method
by using an iterative method to refine the links between the images. In addition, the
Normalised Cuts segmentation [82] is used to find the initial regions that are iteratively
refined. Also, instead of directly using local features, they use BoF histograms and His-
togram of Oriented Gradients (HOG) [15]. Thus, for one image there is a set of segments
described with these descriptions. This improvement makes it more scalable and they
used hundreds of thousands of images in their experiments. However, the number of
categories remained rather low (5 categories).

Tuytelaars et al. [92] made a comprehensive study about UVOC based on the BoF
approach. They compared local feature detectors, normalisation methods, categorisation
methods and different sizes of visual codebooks. They also introduced a new method for
evaluating the performance of a UVOC which is also used in thesis in addition to the
method introduced by Sivic et al. [83].

In this thesis, the BoF approach is used because in the supervised VOC it has shown
superior performance [87] and it is scalable. Moreover, Tuytelaars et al. [92] used BoF in
their UVOC experiments and showed that the baseline methods achieve state-of-the-art
results. BoF contains some weaknesses, e.g. spatial information is not used in the basic
method, but these limitations and weaknesses can be solved. This thesis revisits and
revises the standard parts of the BoF approach.

1.2 Objectives

The goal of the thesis is to study UVOC, i.e. to study a method that categorises any
given set of images into groups of instances from the same category. Instances of the
same category do not need to be images of the same specific object, but they can also
be images of visually similar objects i.e. from the same object category. The focus in
the thesis is in the BoF approach to UVOC, studying the bottlenecks and properties of
the approach in this context and propose a novel processing method which improves the
performance.

The main research question is that is it possible to develop a method that can categorise
any given set of images using only visual information in similar manner with people
without any training data?

The second research question is that how spatial information can be used to improve
the UVOC performance using the BoF approach? The BoF approach disregards spatial
information, thus it could be worthwhile to study how the spatial information can be
used to improve categorisation performance.
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The third research question is that how visual saliency information can be used to improve
UVOC performance?

1.3 Contributions

This thesis studies UVOC using the BoF approach. The BoF approach consists of many
separate steps and each step contains many possible methods that can be used. In this
thesis, different methods were experimentally evaluated in the supervised VOC task and
the most suitable methods were selected to be used in the proposed UVOC approach.
The main contributions of the thesis are the study of UVOC based on the BoF approach,
careful selection of the methods used in each step and the improvements to the standard
BoF approach that are applicable for UVOC. In addition to these contributions, a few
other noteworthy contributions were made. A list of the contributions of this thesis is as
follows:

e Better visual codebook using SOM

The first contribution of the work is an improvement to the codebook generation
step. The standard method for the codebook generation method, k-Means [14],
is replaced with a Self-Organising Map (SOM) [53]. It is shown that by chang-
ing the codebook generation method, it is possible to achieve better categorisation
performance. These results were published in [50].

e Performance evaluation as a function of the number of categories

It is self-evident that the categorisation performance decreases when the number
of classes/categories increases. This thesis and publications referred to also show
that the performance collapses quickly in a typical Bag-of-Features approach. It is
important to study the behaviour of an approach with different numbers of cate-
gories because it gives insight about the scalability and generalisation ability of the
categorisation method. The rapid collapse of a simple Bag-of-Features approach
was published in [50, 51].

e New image set: Randomised Caltech-101

In this thesis, the quality of Caltech 101 [30] as the benchmarking image set was
evaluated and a few weaknesses were found. Based on the findings, a new image
set was generated using the images and contour information from Caltech 101 and
random landscape images from Google image search. Then, the effect of the ran-
domisation was evaluated quantitatively. This contribution was published in [52].

e New image set: Abstract images

An Abstract image set was collected as a part of the co-operation project VisiQ
between the Lappeenranta University of Technology (LUT) and Aalto University.
The initial idea come from LUT, but most of the images were collected by Mari
Laine-Hernandez from Aalto University and she also carried out all the subjec-
tive experiments including an eye-tracking experiment for saliency detection and a
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manual categorisation task, which was performed by human participants. She also
prepared saliency maps from fixation data. The contribution of this thesis is the
idea for the new kind of image set for UVOC benchmarks and saliency detection, the
evaluation of existing and proposed saliency detection and UVOC methods using
the new image set, categorisation trees, and similarity matrices. This contribution
is not yet published.

e New saliency detection method and boosting visual object categorisation using
saliency maps

In this thesis, a new method for saliency detection was introduced. The method is
very simple, but it reaches the state of the art in saliency detection performance.
Visual object categorisation is boosted using saliency information to choose only
the important local features among all detected features. This contribution is not
yet published.

e Extension of the BoF method by using spatial scoring of local features

Unsupervised categorisation performance using the standard Bag-of-Features ap-
proach is improved by introducing spatial information. The spatial local feature
verification step improves the categorisation performance significantly. This con-
tribution is not yet published.

1.4 Structure of the thesis

This thesis is organised as follows: The second chapter presents datasets and how the
performance can be evaluated in supervised VOC and unsupervised VOC. These eval-
uation methods are used in the experiments conducted in the following chapters. The
third chapter introduces the Bag-of-Features approach and its different steps in the su-
pervised and unsupervised visual object categorisation. In the fourth chapter, a few
related approaches are discussed such as how spatial information can be used with the
Bag-of-Features approach. The fifth chapter investigates visual saliency detection and
how it can be applied to visual object categorisation. The sixth chapter discusses the
results of the thesis and future work. Finally, the seventh chapter summarises the major
contributions and findings of the thesis.



CHAPTER I

Datasets and performance evaluation

In this chapter, a few of the most popular datasets for VOC are presented and differ-
ent methods for evaluating the performance of the supervised and unsupervised VOC
methods are discussed. The choice of the dataset that is used for the VOC research
is important because different datasets have different properties, such as the number of
categories and images, or the number of objects in one image. The most popular datasets
for VOC are Caltech-101 [30] and its extended version Caltech-256 [39], LabelMe [81]
and the annual Pascal VOC competition datasets [29, 23, 26, 27, 24, 25].

To evaluate the performance of a supervised or an unsupervised VOC method, one needs
to have a performance evaluation method. For the supervised VOC, the performance
evaluation can be computed directly from the number of correctly classified samples and
the total number of samples, but for UVOC the performance evaluation is more difficult
because the categorisation result cannot be directly compared with the ground truth
labels as in the supervised case. This chapter discusses different benchmark datasets and
performance evaluation methods for the supervised and especially for the unsupervised

VOC.

2.1 Benchmark datasets

In this section, a few of the most popular datasets for VOC are presented which are
the followings: Caltech-101 [30]; Caltech-256 [39]; the annual Pascal VOC challenge
datasets [29, 23, 26, 27, 24, 25]. Caltech-256 and Pascal VOC datasets provide the most
difficult challenge. However, Caltech-101 is still important for the basic research since
Caltech-256 and Pascal VOC datasets include 3-D pose variations and Pascal datasets
also contain multiple objects in a single image. The images in Caltech-101 are of mod-
erately good quality, a wide range of object categories and the foregrounds annotated,
and most importantly, its 3-D pose variation is controlled, i.e., the objects are captured
from the same view point.

19
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2.1.1 Caltech-101

The Caltech-101 image set by Fei-Fei et al. [30, 31] contains roughly 8,700 images from
101 object categories and 500 background images. Each image contains only a single
object, and the objects are cropped to the centre and rotated so that each object is
roughly in the same pose. Some of the object categories are overlapping (e.g. cougar
body and cougar face, crocodile and crocodile head, and faces and faces easy), but still
the data set offers a very diverse collection of images because of the relatively large
number of object categories. This is one of the most popular data sets used in VOC
evaluations. An image collage from Caltech-101 is shown in Fig. 2.1 where one image
is shown from each object category. The figure shows the great variability between the
object categories. Some of the images are artificial, for example the images of the stop
sign, the stapler and the crab are drawings. However, not all of the stop sign category
images are drawings which causes rather large intra-category variability. An example of
intra-category variability is illustrated in Fig. 2.2, where a few images are shown from
the barrel, the chair and the stop sign categories. Such a great amount of intra-category
variability makes it difficult to learn an object category only from a few examples. Some
of the categories contain drawings and photos from the object category which can cause
difficulties for VOC because of larger variability within the object category. The problem
of overlapping object categories can be seen also in the image collage. Images from faces
and faces easy originate from the same image where the latter image is a cropped version
of the first one.

Fei-Fei et al. [30] have set the standards for VOC research by using Caltech-101. However,
the published performance improvements saturated quite rapidly, and the state-of-the-art
supervised VOC methods reached 84.3% classification accuracy with 30 training images
per class and 73.2% with 15 images per class [102] in 2009. Ponce et al. [77] identified
significant weaknesses in Caltech-101: the images are not challenging enough since the
objects are captured from similar view points causing small variation in poses and scales,
and often the object backgrounds are undesirably similar. These issues are visible in the
original images in Fig. 2.3 where all the faces are frontal, their poses and locations are
very similar, and some similar background structures appear in every image. Ponce et
al. proposed a new data set collected from Flickr images. The set was used in Pascal
VOC 2005 and is continuously updated for the annual competition. In 2005, there were
only four categories, but in the 2006 competition, the number was increased to 10 [29]
and in 2007 the number of categories increased to 20 [23].

2.1.2 Randomised Caltech-101

The images in Caltech-101 [30] have many good properties, but there are also certain
undesirable properties due to the selection process of the images. Specifically, i) the
objects are mainly in a standard pose and scale in the middle of the images; ii) background
variability is insufficient in certain categories making it a more characteristic feature than
the object’s visual appearance.

To solve these issues of Caltech-101, as one of the contributions of the thesis, a new image
set was generated based on Caltech-101: Randomised Caltech 101 [52]. The randomised
Caltech-101 circumvents the problems related to the pose, location, and scale of the
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Figure 2.1: Collage of images from the Caltech-101 image set [30]. One image
from each object category is shown.

object, and to the background. The remaining difference between the other available sets
is the fact that the randomised data is still intrinsically 2-D whereas the others contain
images in all 3-D poses. Genuine 3-D data is extremely difficult for computer vision
methods, but it is questionable whether the problem is learnable just from the data, or
should the 3-D pose information be provided as well. Since then, state-of-the-art results
have been reported by Su et al. [88], but they used separate 3-D data in training. It can
be agreed that genuine 3-D data is the ultimate challenge, but because the 2-D visual
object categorisation is still an open problem, 2-D data sets, such as Caltech-101, are
still important for method development, and therefore, making them more challenging is
important. On the other hand, categorization can be performed, in principle, using 2-D
methods which are trained with objects in different poses separately (car front, car rear,
car side, etc.)

In the Randomised Caltech-101 [52] image set, the backgrounds are replaced with random
landscape images from Google and the strong prior of the object placement and pose is
reduced by random Euclidean transformations. The randomisation process is illustrated
in Fig. 2.3. A collage of the image set is shown in Fig. 2.5.
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Figure 2.2: Examples from Caltech-101 [30] to illustrate intra-category variabil-
ity of barrels, chairs and stop sign categories.

RANDOMISATION PROCESS

Contours of the foreground objects have been annotated for all the images in Caltech-
101 [30, 31]. Using the annotation data, the foreground regions were cropped, geomet-
rically transformed, and drawn onto other backgrounds. In the randomisation process,
random rotations of +20° were applied. The range of angles was selected to limit the
variations below the direction sensitivity of the human visual system [98]. Random trans-
lations were achieved by positioning the transformed regions randomly onto the random
background images from Google. The scale was not explicitly changed, but the varying
size of the random backgrounds implicitly changed the proportional object scale.

The minor pose and alignment variance of the original images is visible in the middle
row in Fig. 2.4, where the selected categories are clearly recognisable from their average
images. On the other hand, the average images become blurry when the averages have
been computed after random rotations only. This can be seen clearly for the natural
objects in the rightmost column of the figure while two simple human-made objects, the
stop sign and ying-yang symbol, are still recognisable due to the rotation limits. It is
evident that the randomised rotations and translations, and the implicit scale changes
prevent the utilisation of the strong prior related to the object alignment and pose in the
original Caltech-101 [30] images for VOC learning.

The importance of background randomisation is not evident from the average images in
Fig. 2.4, but is quantitatively verified by the experiments in the experiments Sec. 3.5.1.
Natural scenery and landscape images were gathered from the Internet using Google
and the foreground objects were embedded onto these randomly selected backgrounds at
random locations. It is noteworthy, that the images cannot be considered as “natural”
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Figure 2.3: Randomising Caltech-101.

Figure 2.4: Average category images of Caltech-101 [30] and Randomised
Caltech-101 [52]: (1st row) Examples of original Caltech-101 images; (2nd row)
average category images of the original ones; (3rd row) the average of randomised
images.

anymore because the objects do not appear in their typical scene. However, methods
based purely on the object appearance and tolerating geometric variation should remain
unaffected while methods which exploit the insufficient background variation in Caltech-
101 [30] may severely fail.

Caltech-101 [30] can be claimed to be still useful for research since it provides good-quality
category data with controlled 2-D variation. Thus the Caltech-101 and Randomised
Caltech-101 [52] image sets are used as the main image sets in the thesis. In addition,
Caltech-256 [39], which is introduced next, is used in a few experiments.
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Figure 2.5: An image collage of the images from Randomised Caltech-101 [52]
image set. One image from each object category is selected to the collage.
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2.1.3 Caltech-256

Caltech-256 [39] can be considered as an extension of Caltech-101 [30] because Caltech-
256 contains some of the Caltech-101 object categories and many new categories. Caltech-
256 is improved by removing all the overlapping categories which were a problem in
Caltech-101 and the number of images per category is increased significantly in Caltech-
256. Moreover, the quality of the images is better because of higher resolution. However,
in many object categories, the images are captured from various viewpoints which makes
the objects visually more dissimilar and the categorisation task more difficult. Thus
some of the predefined categories can actually have sub-categories, e.g. fire-truck could
be divided in the fire-truck side and fire-truck front sub-categories. In the supervised
learning, it is not a critical issue if the images from both sub-categories are included
in the training set, but in unsupervised learning, however, it is rather likely that these
two categories are separated because they do not share the same visual features, except
their red colour (which is also shared with many other categories), and naturally the
appearance of the fire-trucks is quite different depending on the viewing point. If one
has seen only the front and side views of the fire-trucks and no images from an angle
where both the front ant side of the fire-truck can be seen, it can be difficult to connect
these images together. This issue is illustrated in Fig. 2.6, where four images of fire-
trucks are shown from Caltech-256 [39]. Two of them are front-views and two of them
are side-views.

(a) (b) (d)

Figure 2.6: Example images of fire-trucks from Caltech-256 dataset [39].

2.1.4 Pascal VOC competition image sets

Annual Pascal VOC competitions have encouraged research groups to exploit all possible
ways to improve the performance of their method. The images in the annual Pascal VOC
competitions [22, 29, 23, 26, 27, 24, 25| can contain objects from many different object
categories in a single image as shown in Fig. 2.7.

In the classification challenge of the Pascal VOC competition, the task is to predict if
an object from class X is in the image or not. By using unsupervised learning, one can
assign each image only to one category (or if an image is first segmented then it would be
possible to assign each segment into different category). Thus, the Pascal VOC datasets
are not suitable for this thesis. Additionally, the number of categories is quite limited,
even though the number of images is large.
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Figure 2.7: Example images from Pascal VOC 2011 dataset [25]: (a) Bottle; (b)
Bus; (c) Car; (d) Chair; (e) Dog; (f) Motorbike; (g) Person; (h) Sheep.

2.1.5 Abstract image set

As one of the contributions of the thesis, an Abstract image set was collected to acquire
low-level information about how people recognise and categorise images. Since the images
contain only abstract art, it is difficult to give unambiguous labels for every image.
This makes labelling the image set into specific categories difficult, and thus, instead
of labelling images into specific categories, a category tree was built, based on pairwise
similarities that were captured from image stack assignments made by the participants.

The abstract images were downloaded from various sources of artistic images, e.g.,
digitalart.org, caedes.net and sxc.hu. The images were selected from categories
labelled as abstract and surreal. An initial set of 250 color images was selected based on
visual quality and content. The images were supposed to be visually complex, with an
abstract content, but also images with semi-representative content, such as 3-D modelled
images, were included in order to make the test image collection varied. The final set of
100 images were selected from the initial set at random. The selected images are shown
in Fig. 2.8.

Following this, the construction of image-wise ground truth for visual saliency and class
hierarchy is explained. 24 university students without a background in art and with
normal vision were selected for our saliency experiment, and 20 students for the categori-
sation experiment. The visual saliency experiment was a free-viewing experiment, where
every image was shown for five seconds to each participant and an eye-tracker was used
to record the eye movements. Attention maps were generated by following the approach
by Judd et al. [46]. At first, fixation points were captured from the eye tracking data.
These fixation points were used to generate a visual attention map for each image and
for each participant separately. Next, the ground truth attention map for an image was
constructed by summing up the visual attention maps of each participant for that image.

The category tree was built from the categorisation results made by human participants.
The tree is illustrated in Fig. 2.9. In the categorisation experiment, 20 participants
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Figure 2.8: An Abstract image set.

were asked to categorise the images into stacks. The number of stacks and the stack
assignments were decided by each participant. Co-occurrence of images in the same stacks
was used to form the visual categorisation ground truth which represents the average
participant opinion. The cluster hierarchy was built using agglomerative clustering with
an average distance rule to connect image clusters together. A distance matrix that is
used to build the hierarchy is complement of the similarity matrix and the similarity
matrix was computed from image stack assignments that were performed by human
subjects. The similarity between images i and j is the number of times ¢ and j have
been assigned into the same stack divided by the number of human subjects and thus
the value is between 0 and 1.

2.2 Performance evaluation

To measure the performance of a supervised or an unsupervised VOC method, one needs
to have a performance evaluation method. In this section, different methods are described
for evaluating the performance of a supervised and an unsupervised VOC method. The
methods described require an image set with the ground truth (correct labels) for evalu-
ating the performance. For this purpose, the standard benchmark data sets described in
the previous section can be used, but problems still remain for the evaluation of an UVOC
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Figure 2.9: Ground truth category tree with 20 leave nodes.

method. For example, how to compare categorisation results with a different number of
discovered categories? These issues have been discussed in the works by Tuytelaars et
al. [92] and Sivic et al. [83]. They applied measures used to evaluate and compare clus-
tering methods. In the following, these two works are reviewed and, in addition, an
alternative method is introduced.

In this thesis, the following performance measure is used for the supervised VOC evalu-
ation:

N,
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where N, is the number of ground truth classes, X; is a list of images belonging to class
i and Y; is a list of images assigned (predicted) to class ¢ and | - | denotes the number
of images. Thus, the classification accuracy for class i becomes the number of images
correctly classified to class ¢ divided by the total number of images belonging to class 4.
Therefore, the final performance is the mean classification accuracy over the classes.

The performance evaluation method presented above cannot be used in the UVOC be-
cause the number of predicted categories can be different from the ground truth and
also the order of predicted categories can be any. Thus, it is not possible to compute
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the performance UVOC using the same evaluation method. Next, a few methods for
evaluating the performance of a UVOC method are presented.

For the UVOC method evaluation, Sivic et al. [83] proposed a performance evaluation
method which takes a “categorisation tree” representing the class hierarchy as the input,
and computes its performance to represent the true hierarchy. The evaluation protocol
utilises the concept of a hierarchy, i.e., the categories near the root are more mixed than
the leaf nodes, which should ideally represent the pure categories. This performance
evaluation method cannot be compared with a typical average accuracy measure that
is used in supervised learning because their method is more sensitive to errors. In this
method, every mistake causes a double error: at first the image is assigned into a wrong
node, and also the performance of the other node decreases because there is one image
from an incorrect category. The performance of a single node, P(t, ), is computed as

) | X; N Yy
P(t,i) = ————— 2.2
i = Beot 2)

where X; are the ground truth images for category 7 and Y; are the images assigned to
node t. Thus, the equation computes how many of the images are assigned from a same
category to a specific node and divides it by the number of images assigned to the node
+ the number of images belonging to the category — the number of images assigned from
the specific category to the node. The average performance, perf,,oc, is computed as

Nc
perfuvoe = Nic i_zlmtax P(t,q) , (2.3)
where N, is the number of categories. The method ultimately chooses nodes P(t, %) that
give the best categorisation performance per each object category, and then it computes
the average over these nodes. The main drawback of this method is that it actually
measures the hierarchical decomposition rather than the categorisation performance. It
is not clear whether the hierarchy decomposition is relevant to the categorisation task, or
whether it is a problem of its own. For example, if the objects of the same category are
separated at the upper levels in the hierarchy, it is heavily penalised even though they
would finally appear as two pure leaf nodes.

Tuytelaars et al. [92] adopted their evaluation strategies from the clustering evaluation
literature, i.e. how well the produced clusters can map the data to their true labels. They
also noticed two possible cases in the method evaluation: 1) the number of categories is
enforced to correspond to the number of ground truth categories and 2) the number of
produced categories does not correspond to the number of categories in the original data.
For the first case, two simple measures can be used. The first one, “purity”, is computed
as follows:

purity(X | Y) = ) ply) maxp(z | y) (2.4)
yey

where X stands for the ground truth category labels and Y stands for the cluster labels.
In practise, p(z | y) is empirically computed from the ground truth label frequencies in
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each category. Purity measures how well a method separates the images of one category
from all other categories. The second measure is the mutual information (information
gain) which is used also in decision tree learning algorithms:

I(X|Y)=H(X)-HX|Y) , (2.5)

which is based on the original entropy of an image set H(X) and the entropy after the
categorisation, the conditional entropy H(X | Y'). The conditional entropy is computed
as:

HX|Y) = Y o) Y ol | v) 1ogp(x—1|y) | (2.6)

yey zeX

Conditional entropy measures how certain one can be that the image actually belongs to
the cluster. However, since the term H(X) is constant in (2.5), the conditional entropy
in (2.6) can be directly used. When the number of clusters increases considerably, the
conditional entropy and purity give ideal results. The main problem of these measures
is that they can be used for the method comparison only when all methods return the
same number of categories. Moreover, the values depend on the total number of images.
The main drawback, however, is the limitation that neither of the methods estimate the
categorisation accuracy well if the estimated number of categories is not the same as
in the ground truth and especially if |Y| > |X|. In extreme cases, every image is its
own category, and this produces the perfect performance values purity = 1 and H(X |
Y) = 0. Tuytelaars et al. [92] circumvented this undesirable property by introducing
an “oracle”, which means that they separated the training and test sets to discover the
classes, and to test the formed classes with the test data. In this case, on the other
hand, one could compute the number of correctly categorised images for each category
and compute categorisation accuracy for each category and then take mean over the
categories to obtain categorisation performance. This performance evaluation method
could be more intuitive than the conditional entropy, but it needs to have separate
training and testing set images. Thus, it is not used in this work.

2.3 Summary

Many datasets and benchmarks as well as methods for evaluating the performance of VOC
and UVOC methods, have been introduced during the past few years. In this chapter,
the most popular benchmarks were discussed and their characteristics were listed and
compared with each other.

In this summary, all the presented image sets are summarised and briefly compared. The
major differences between the image sets are the number of images in the image set, the
number of categories, existence of 2-D and 3-D transformations and number of objects
in each image. The differences between the image sets are summarised in Table 2.1.

The suitable benchmarks for the UVOC development are Caltech-101 [30], Randomised
Caltech-101 [52] and Caltech-256 [39]. Pascal VOC benchmarks are not suitable because
one image can contain objects from many categories, and thus, each image should be
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Table 2.1: Comparison between the imagesets.

Name Images | Categories | 2-D t. | 3-D t. | Objects/image

Caltech-101 [30] 8,677 101 - - 1

r-Caltech-101 [52] 8,677 101 + - 1

Caltech-256 [39] 29,782 256 + + 1
Pascal VOC 2005 [22] | 1,578 4 + + 1-N
Pascal VOC 2006 [29] | 2,618 10 + + 1-N
Pascal VOC 2007 [23] | 9,963 20 + + 1-N
Pascal VOC 2008 [26] | 4,340 20 + + 1-N
Pascal VOC 2009 [27] | 7,054 20 + + 1-N
Pascal VOC 2010 [24] | 10,103 20 + + 1-N
Pascal VOC 2011 [25] | 11,530 20 + + 1-N

categorised in many categories. This is not possible without dividing the images into
segments, and categorising each segment separately. Thus, Pascal VOC benchmark image
sets are excluded from the thesis.

Moreover, a few methods for evaluating the performance of VOC and UVOC methods
were also discussed. For the supervised VOC, only one method was introduced which is
a simple average classification accuracy over the classes. However, for UVOC there are
a few options: i) A method based on conditional entropy (2.6) introduced by Tuytelaars
et al. [92] and ii) Mean performance (2.3) introduced by Sivic et al. [83]. Both of the
methods have their strengths and weaknesses. Thus, as it is not obvious which method
to use, both methods are used to evaluate the performance of the UVOC methods.
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CHAPTER III

Bag-of-Features approach for unsupervised
visual object categorisation

This chapter presents a method for Unsupervised Visual Object Categorisation (UVOC)
using the Bag-of-Features (BoF) approach [84, 14]. In BoF, there are many steps and in
each step, there are many alternative methods that can be used for the same task. Nat-
urally, different methods have different properties. Thus this chapter gives an overview
of different methods and the performances of different methods are compared with each
other in the experiments section. Finally, a set of methods is chosen to be used in UVOC.

Csurka et al. [14] demonstrated how visual object categories can be learned using local
features, clustering and supervised learning using the BoF approach. Their work has
inspired many others to use BoF in their VOC [28, 36, 96] and UVOC [50, 92] studies.
The BoF approach in UVOC is illustrated in Fig. 3.1, where given images are categorised
using unsupervised learning. As in BoF, the first step for the supervised VOC is a
local feature detection where important local features are detected. Subsequently, these
detected local features are described by using a local feature descriptor. A codebook is
constructed using cluster centroids produced by a clustering method or using SOM [53]
node vectors as in our case. After this, the given image is described by matching extracted
local features with the codebook and computing frequency of how many times each code
has a match. The differences between the unsupervised and supervised (see Fig. 1.2)
VOC based on BoF are that the final step is typically clustering instead of classification.
Moreover, in the unsupervised VOC there is no training data that could be used to
enhance the code selection in the codebook building as is introduced by Leibe et al. [58].

3.1 Local feature extraction

In this section, a few of the most popular local feature extraction methods are discussed
and their characteristics are summarised at the end of the chapter. In the local feature
extraction, local features are detected using a local feature detector and then described
using a local feature descriptor. Thus, the result of local feature extraction is the spatial
location of the detected region and description of the region. The local feature extraction
is one of the key elements in visual object categorisation using the BoF approach because
the descriptions of the detected regions are used to describe the appearance of the im-
age. The selection of the local feature extractor has significant impact on categorisation
accuracy [70, 68, 64].

33
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Figure 3.1: Bag-of-Features approach applied in UVOC. In the first row, de-
tected local features are drawn with green rectangles. In the second row, detected
local features are described by computing the gradients in 8 directions which are
illustrated with arrows. In the third row, visual vocabulary is built by using a
Self-Organising Map. In the fourth row, codebook histograms are shown. In the
fifth row, images are categorised using Self-Organisation.

As mentioned earlier, local feature extraction consist of two steps: local feature detec-
tion (i.e. interest point detection) and local feature description (i.e. key-point descrip-
tion) [60]. In the first step, important regions are detected from an input image which
are then described using a descriptor in the second step. The output of local feature
extraction is a combination of spatial location information (x, y, scale (or scale-u, scale-v
if an affine detector is used) and orientation) and region description of the appearance
of the detected region [70].

A number of local feature detectors and descriptors have been proposed in the literature.
A survey and comparison of different detectors can be found in the work by Mikolajczyk
et al. [70] and for the descriptors in [68]. These comparisons, however, are based on the
repeatability and matching performances over different views of the same scenes. There-
fore, their applicability to VOC and UVOC is unclear. More explicit VOC evaluations
have been carried out by Zhang et al. [103] and Mikolajczyk et al. [64]. Their main
conclusions were that detector combinations performed better than any single detector,
and that the extended versions of Scale Invariant Feature Transform (SIFT) [60] descrip-
tor, the Gradient Location and Orientation Histogram (GLOH) [68], is slightly superior
to others in VOC. The better performance using the detector combinations can also be
explained by the increased number of detected features. The drawback of GLOH is that
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it requires training data to estimate eigenvectors for the required PCA dimensionality
reduction step — proper selection of the PCA data can explain the slightly better perfor-
mance compared with the original SIFT. Based on the above works, SIFT can be safely
used as the descriptor, but it is justified to investigate which detector is the most suitable
for UVOC.

3.1.1 Local feature detectors

In the local feature detection, a local feature detector detects regions from the image
that are considered important and stable across the images of the same object on an
object category. A good local feature detector should detect the same parts of the visual
objects in different images. For example, if multiple images are taken of the side of
a car, it should detect the same regions in every image, for example wheels, mirrors,
etc. Detected regions should be invariant to scale, rotation and preferably to affine
transformations so that they can be described accurately with a local feature descriptor.
Otherwise, it is difficult to find similar regions from images. The best performing local
feature detector detects a great number of regions to guarantee that the same regions
can be found from the other images as well [70, 93]. The local feature detectors that are
used in the thesis are presented next.

The SIFT local feature extractor method [60] contains a region detector and a region
descriptor. Here, only the local feature detector is considered and the descriptor part
is discussed in Sec. 3.1.2. The SIFT local feature detector is based on Difference-of-
Gaussian (DoG) operator. Local features are detected from a scale-space that is built
by subsequently smoothing and resampling the input image I with a Gaussian function
g(z,y,0). The input image is smoothed with a Gaussian filter as follows:

G({,C7y,0') = g(l’,y,(f) * I(.’L‘,y) ’ (31)

where G is the smoothed image and * is the convolution operation. Local features are
searched from local extremes of Difference-of-Gaussian images G, which is defined as
subtraction of two images smoothed with different o values as follows:

AG = G(Ivya kg) - G(I, y70) ’ (32)

where k is a factor > 1. This is repeated with many k values in order to obtain an octave
of DoG images AG. Scale invariance is achieved by downsampling the input image
and then computing another octave for the smaller image. Typically, the downsampled
version is half of the size of the previous image. Thus, it takes less time to compute
octaves for the smaller images. Locations of the local features are searched from each
octave by selecting local extreme values from a 9 x 8 x 9 neighbourhood. If the value of the
pixel is the highest or the lowest in its neighbourhood, it will be selected as a candidate
point. Next, candidate points, or actually regions, that do not have enough contrast will
be removed. Orientation of the local feature is assigned based on the dominant gradient
in the detected region. If the magnitude of the second most highest gradient is nearly
equal (>80% [60]) then two local features with different orientations will be detected.
This is done to guarantee that the region will be correctly detected even though it will
also add a false match.
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The Harris-Laplace detector [65, 70, 93] is based on the Harris corner detector [40] to
detect spatial locations of the local features. The Harris corner detector is based on the
second order moment matriz. The second order moment matrix for the neighbourhood
of pixel © = (z,y) is defined as follows:

I(x,0p) Ix(maUD)Iy(m’UD)] , (3.3)

_ 2
M(x,01,00) = op g(o1) * [Im(m,UD)Iy(%UD) 132,(937013)

where o is a Gaussian kernels size (integration scale) and op is a Gaussian kernel size
(differentiation scale), The Gaussian g(o) and the image gradient I,(x,op) are defined
as follow:

0
I:z:(w7UD) = %Q(O‘D) *I(QZ) ’ (34>
1 _ 22492
g(O') = ﬁe 202 . (35)

The pixel x is chosen as a local feature, i.e., corner, if the cornerness R is above a
threshold. The cornerness is defined as:

R = det(M) — 3 trace*(M) > threshold , (3.6)

where [ is a parameter that is given by the user, and threshold is a predefined threshold
for accepting points that are defined to be corners [66, 93]. These corners are detected
in many scales, by filtering the image with a Gaussian filter of various sizes. Then the
scale of the regions is detected from Gaussian scale-space by maximising Laplacian-of-
Gaussian over the scale space by finding local extreme values of the determinant of M.
The Gaussian scale-space is built by filtering the input image with a Gaussian kernel
of different sizes. Orientation of the local feature is defined in the description phase,
where gradients are computed from the (resampled) detected region and the dominative
gradient is used to define the orientation of the detected feature.

The Harris-Affine detector is an affine invariant version of the Harris-Laplace detector.
It uses Harris-Laplace to detect spatial locations and scales of the local feature and
then parameters of the detected regions are refined using an iterative algorithm. In
the iteration phase, shape of the detected region is transformed from ellipse to circular
based on the second moment matrix, in the way that magnitudes of the moments are
equalised. [66, 67]

The Hessian-Laplace detector [70] is similar to the Harris-Laplace detector, but instead
of using Harris corner detector to detect spatial locations of the local features, a Hessian
matrix is used which is defined as follows:

— Imm(mag ) Ify(m’a )
H(z,op) = [Ia:y(w»gg) Iyy(wvgz) .

where I, (x) is the second order partial derivative in the direction x, I, is the second
order partial derivative for direction y and I, the second order partial derivative for x
and y directions for a Gaussian with op kernel size smoothed image I. Local maximum
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of the determinant is used to locate blobs from the input images [70]. The scale of the
detected region is defined, as in Harris-Laplace, by choosing the location and scale where
the determinant of the Hessian-matrix gets local maximal values [67].

The Hessian-Affine detector [67, 70| is an extension to the Hessian-Laplace detector that
is also invariant against affine transformations. The Hessian-Affine detector is similar to
the Harris-Affine detector, but instead of the Harris corner detector, the Hessian matrix
is used to define initial locations of the local features. However, Hessian-based detectors
give strong responses to blobs and ridges in the image and Harris corner detectors give
strong responses to a corner like shapes in the image.

Maximally Stable Extremal Regions (MSER) introduced by Matas et al. [63] differs
significantly from the previously presented local feature detectors. Instead of finding
regions where the change is maximal, such as a corner, MSER method finds regions where
the change is minimal. Regions are found by thresholding the image with increasing
threshold and using connected components analysis to connect pixels that are above
the threshold. Detected regions are typically converted into ellipses before description,
and thus, a significant amount of information is lost in respect to invariance against the
rotation and scale of the region.

The SURF local feature extraction method [4] is basically a faster version of SIFT. It
contains a local feature detector and descriptor. Here, only the detector part is considered
and the descriptor is discussed in Sec. 3.1.2. SURF is a very fast local feature detector
(and descriptor). The SURF detector uses an approximation of the determinant of the
Hessian matrix, which is computed by using integral images to speed up the process.
Then it seeks the maximum values for the determinant of the Hessian matrices. The
smoothing Gaussians are also approximated by using box filters — this can be done in
constant time without downsampling the original image by increasing the box filter size
to acquire local features in many scales. Since the size of the filter is increased, there is
no need for computing the integral images again. Orientations of the detected regions
are computed using 2-D Haar wavelet filters on the # and y axes. The orientation is
chosen from the most dominative response. [4]

Dense sampling extracts local features uniformly using a pre-defined spatial grid, scale
and orientation. This is a very simple approach to the local feature detection, but in
the comparisons, this approach has produced results superior to the local feature driven
methods [26]. Since then, a hybrid method has also been proposed [91]. In the hybrid
method, the initial locations of the local features are set by generating grids of different
sizes to capture local features of different scales. Then, the location of each local feature
is re-defined by choosing a more stable location from its neighbourhood. The topology
is kept, by not letting the neighbourhoods overlay. Even though this seems to be a good
idea, the results achieved in [91] do not promise any improvement in VOC.

Example images of detected regions are shown in Fig. 3.2. The performance of different
local feature detectors is evaluated in Sec. 3.5.2. Properties of the discussed local feature
detectors are summarised in Table 3.1.

3.1.2 Region descriptors

In this section, region descriptors are discussed. In the region description step, a detected
region is described in a way that allows regions to be compared with each other and
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Table 3.1: Invariance of local feature detector against different transformations.

Detector Rotation inv. | Scale inv. | Affine inv.
Dense sampling
Difference-of-Gaussian
Hessian-Laplace
Harris-Laplace
Hessian-Affine
Harris-Affine

SURF

MSER

e e S
e
+o+

similar regions can be found. Typically, a region descriptor is invariant against illumina-
tion [58, 60, 68, 95] and against rotation [60, 68]. There are many methods for describing
the detected regions such as, Gradient Location Orientation Histogram (GLOH) [68], His-
togram of Oriented Gradients (HOG) [15], Local Binary Pattern (LBP) [74], SIFT [60],
Speeded Up Robust Features (SURF) [4], thus only a few of them are described here.

Scale Invariant Feature Transform (SIFT) [60] is a combination of an interest point
detector and a descriptor. Here, only the descriptor part is discussed because the detector
was discussed in the detector section. The SIFT descriptor is very widely used in many
state-of-the-art studies in visual object recognition. In the original paper, and in most
of the other studies as well, the region is sampled using a 4 x 4 grid and for every cell in
the grid, a gradient is computed in eight directions. Magnitudes of these gradients are
then used as a descriptor resulting a 4 x 4 x 8 = 128 dimensional vector. The descriptor
is also normalised to acquire better invariance against illumination changes.

The SURF descriptor is similar to the SIFT descriptor with only a few differences. The
detected region is divided into 4 x 4 grid and each cell is sampled with 5 x 5 points,
but instead of computing the gradients from the sampled points, 2-D Haar wavelets are
used to produce the sums of dz, dy, |dx| and |dy|, where dx is gradient in z direction,
dy in y direction and |dz| and |dy| are their absolute values. Finally, the descriptor is
obtained by concatenating the sums (dz, dy, |dz| and |dy|) together to form a vector d
and normalising it by dividing it with its length |d| as follows: d = d/|d|. The SURF
descriptor is typically 64 dimensional, only a half of the dimensionality of the SIFT
descriptor, however in the experiments made by Bay et al. it was shown that the SURF
descriptor is at least as distinctive as the SIFT descriptor. [4]

GLOH developed by Mikolajezyk and Schmid [68] is an extension to the SIFT descriptor.
The descriptor is computed in 17 locations in log polar coordinates and gradients are
computed in 16 directions which forms a vector with 17 x 16 = 272 dimensions. The
length of the vector is reduced to 128 using PCA whose largest eigenvectors have been
estimated beforehand from 47,000 image patches.



3.1 Local feature extraction 39

(d)

©) | () ' (8

Figure 3.2: Detected interest regions by using several methods and their dif-
ferent implementations: (a) Harris-Affine (FS); (b) MSER (FS); (¢) Dense sam-
pling; (d) Harris-Laplace (FS); (e) Hessian-Affine (FS); (f) DoG, i.e. SIFT (LV);
(g) Harris-Laplace (LV); (h) Hessian-Laplace, basically Hessian-Affine, (LV). FS:
implementation from the Feature Space web-site [69]; LV: implementation from
the Lip-Vireo web-site [104].

3.1.3 Colour information

All the detectors and descriptors discussed earlier use only grey-level information. Van
de Sande et al. [95] have studied different approaches to the use of colour information in
the SIFT descriptor. Their final result is that colour information can improve category
recognition up to 8%, but the usefulness of colour information is category dependent, and
thus, it is problematic in UVOC, because the object categories are unknown. The Colour-
SIFT descriptor also makes descriptors more distinctive (the original SIFT descriptor is
128 x 1, whereas the Colour-SIFT descriptor is 128 x 3) which increases the needed
computation. Van de Sande et al. used the Harris-Laplace detector to choose the regions
for Colour-SIFT descriptor extraction.

3.1.4 Local feature filtering

One of the problems in the BoF approach is that in the feature generation step a large
number of false matches are made, especially if the size of the codebook is small. When
the size of the codebook is small, two very dissimilar local features can be matched to the
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same code. It is also common that a region detector detects most of the local features
from the background (see Fig. 3.2), and thus, a codebook histogram represents mostly
the background of the image instead of the object itself.

One approach to solving this problem is to filter out all local features that come from
the background. If it is assumed that the background varies more than the foreground,
then one can try to find a set of common local features and use only these because the
common features should be extracted from the foreground and infrequent local features
can be assumed as being extracted from the background.

FEATURE MATCHING

To filter out uncommon features, we need to have a threshold for local feature matching
that we use to define whether two local features match with each other or not. In the
specific object detection method introduced by Lowe [60], a match of two local features
was accepted if the distance between the features was less than 1.5 times the distance
between the second best match. Lowe also claimed that it is not possible to set a single
threshold. However, we need to have a single global threshold that we can use to match
any pair of local features. In our case, the threshold does not need to be perfect and we
are doing object category detection instead of specific object detection as Lowe did. In
our case, we are satisfied if we can filter out many local features from the background and
keep most of the local features detected from the foreground. The problem of selecting
the optimal threshold is adhered to in the experiment presented in Sec. 3.5.3.

The algorithm (see Algorithm 3.1) to find a common set of local features is defined
as follows: i) Extract local features D = {dx,. .., dpnumofFeatures}; i) Acquire a list of
common local features, D, by comparing all the local features in the training set against
each other. To accept a match, the distance between the local feature and the common
set of local features can be at most maxDist; If the local feature does not match with
a current set of common local features, it will be added to the list of common local
features and counter, hitCounter, for the new common local feature is initialised and
the number of common local features, n, will be increased by one. If the local feature
matches the one of the common local features, the counter of the matching common local
feature will be increased by one. iii) Ascertain the number of hits for each common local
feature; iv) Choose the common local features which have more than minHits matches;
Sample images about filtering are shown in Fig. 3.3.

Figure 3.3: Local feature filtering sample outputs using Randomised Caltech-
101: Left: Original image (wrench); Middle: All the extracted Hessian-Affine local
features; Right: Local features after filtering uncommon features out.

Fig. 3.3 shows that many local features are kept, even though minHits is large. This
is explained by the fact that the maxDist is quite high, and thus, many of the local
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Algorithm 3.1 Find a set of common local features

Require: D = {dy,...,dnumofFeatures}, maxDist, minHits
commonLf, «— d;
hitCounter; «— 0
n«1
// Find a list of unique local feature descriptors
for all di, .. numofFeatures € D indexed with ¢ do
[distance,bm] = findClosestFeature(commonLf,d;)
if distance < maxDist then
hitCountery,, «— hitCountery,, + 1
else
ne—n+1
commonLf, —d;
hitCounter,, < 0
end if
end for
// Filter out local feature descriptors that are not enough popular
for i =1ton do
if hitCounter; < minHits then
delete(commonL§f))
end if
end for
return commonlLf

features are matched with a local feature from the common local feature set. In many
cases, many local features are filtered out that are detected from the background while
most of the local features from the foreground are kept. In the experiments section, an
experiment is made to verify if this visual interpretation is valid.

3.2 Codebook generation

In the codebook generation step, extracted local features are used to form a codebook
which is used to generate BoF histograms to describe the input images. In the original
BoF study by Sivic et al. [84] the k-Means clustering algorithm was used to cluster
extracted local features and the cluster centroids were used as the codebook. In this
section, a few alternative approaches for the codebook generation are discussed.

Even though the k-Means is one of the most popular methods for generating codebooks
it is also known to have some weaknesses: for example, the cluster centroids are typically
found around high densities in data, and therefore, the input space is not evenly covered.
Jurie and Triggs [47] have developed a clustering method which is more robust than
the k-Means. Their method avoids setting all cluster centroids into high density areas.
Their algorithm first chooses N samples randomly and then computes maximal density
of the samples using a mean-shift estimator. Then it assigns a cluster centroid to the
maximal density and eliminates all samples that are within a certain radius from the
cluster centre. Then the algorithm repeats these steps with the remaining samples as
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long as there are too many samples left or the number of clusters is too low. When all
the clusters are found, Jurie and Triggs had an additional step to find the topological
order of the codes. Interestingly, this “topology preserving” enforcement is very similar
to the main characteristic of self-organisation. The problem in this method is that one
needs to choose a radius.

One of the problems in codebook generation is the difficulty of setting the size of the
codebook. Nistér and Stewénius [73] approach to this problem was to use a hierarchical
codebook. The codebook was built using hierarchical k-Means, i.e., local feature descrip-
tors were clustered recursively into smaller and smaller clusters. This process defines the
hierarchy of the codebook. By using a hierarchical codebook, Nistér and Stewénius were
able to generate a large codebook efficiently.

Problem-specific clustering approaches have been developed as well. Leibe et al. [58]
developed a method that can learn a model of a visual object class from a set of images
from a particular class. However, in the UVOC problem, there are no training or valida-
tion sets with manually labelled ground truths which conversely prevents using the most
effective enhancements in the codebook generation that are used in the supervised VOC.

One problem-specific enhancement outside clustering is to utilise the spatial information
in the codebook generation or probing. For example, Lazebnik et al. [57] reported a
method which uses a spatial pyramid to organise descriptors based on their appearance
and location.

One family of algorithms for codebook generation are the ones typically used for data vi-
sualisation and exploration, such as the Multi-Dimensional Scaling (MDS) [7], Kohonen’s
Self-Organising Map (SOM) [53], Isomap [90], and locally linear embedding (LLE) [79].
These methods have similar properties, and therefore, in the thesis the one that can
find a topological grouping of data points effectively is selected: the self-organising map
and its public implementation, the SOM Toolbox [1]. The self-organising map has been
successful compared with the k-Means algorithm in the experiments [50].

3.3 Feature generation and normalisation

In the Bag-of-Features approach, images are described by matching extracted local fea-
tures with the codebook in the feature generation step that is illustrated in Fig. 3.4. The
process of describing the images with codebook histograms in the BoF approach [14]
can be described as follows: Let D be a set of local feature descriptors which are de-
tected from an image using a local feature detector such as the Hessian-Affine [66] and
described using a local feature descriptor such as SIFT [60], and let C B be a codebook
which contains Ng, codes. In practice, codes in the CB are clusters’ centroids. Let Ny
be the number of local feature descriptors extracted from the image. After this, a BoF
histogram f is generated according to the Bag-of-Features approach which is defined in
Algorithm 3.2. The Dist function calculates the Euclidean distance between two vectors.
The smaller the distance, the greater the similarity is between the two vectors. Hence,
a code that minimises the distance from a descriptor is chosen as the best match which
has an index of bm.
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Figure 3.4: Feature generation step of the Bag-of-Features approach illustrated.
Circles represent the locations of the detected local features (the scale and orien-
tation is disregarded to make it visually more applicable). The visual codebook is
shown at the bottom and the local features are connected to the matching codes
with lines.

3.3.1 Normalisation methods

Tuytelaars et al. [92] made a comprehensive study of the effects of normalisation meth-
ods in UVOC. Their conclusion was that the L2-norm normalisation produces the best
performance followed by the binarised-BoF. Their results show that the normalisation
has a significant impact on the categorisation performance, thus it is also an important
topic for discussion in this thesis.

In the Ll-norm normalisation the feature vector (e.g., BoF histogram) f is divided by
its L1-norm (i.e. Manhattan distance):

% __ S (3.8)

N b
| Zz:dl |fz|

where Ny is the number of the dimensions in the feature vector and 7 is a running index
(¢ = 1,...,Ng). In the Ll-normalisation, the BoF histogram is divided by the sum of
all bins thus the result will be a vector of values between 0 and 1. In the L2-norm
normalisation, the feature vector f is divided by its L2-norm (i.e. Euclidean distance)
to make it an unit length vector:
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Algorithm 3.2 Codebook histogram generation using the Bag-of-Features approach

Require: D, CB
N¢p < length(CB)

for all di Zdl,...,lef e D do
bm <« argmin Dist(d;, CB;)

J

fbm - -fbm +1
end for
return f

fo_ f
S

In the code-wise normalisation, all bins of a certain code are normalised. In the binarised-
BoF, the median of occurrences of each code is computed, and all bins below the me-
dian are set to zero, and all above to one. By binarising the BoF histograms, the BoF
histograms should be more stable because small differences diminish in the normalisa-
tion. [92]

f=

(3.9)

In the Term Frequency - Inverse Document Frequency (TF-IDF) normalisation [45],
the number of occurrences of a code in an image (Term Frequency) is divided by the
number of images containing the code (Inverse Document Frequency). The idea in TF-
IDF normalisation is to give more weight to codes that are popular only in a subset of
images. TF-IDF has been used successfully in large scale CBIR by Philbin et al. [76].

DIMENSIONALITY REDUCTION

The dimensionality of the codebook feature histograms can be decreased by using the
traditional method called Principal Component Analysis (PCA) [44]. In the PCA-BoF,
the histogram dimensionality is reduced, for example to 20, by the PCA. In the di-
mensionality reduction using PCA, information is lost, but PCA preserves most of the
variation which in the case of BoF histograms means that codebook codes that have
more variation gain more weight. [92]

SOFT-ASSIGNMENT AND ACCURATE MATCHING

Gemert et al. [96] have developed a method based on the k-Means. They replaced the
simple learning rule which assigns a sample to the closest cluster, with uncertainty, plau-
sibility and distance values. These values are used in the codebook histogram generation.
For example, if a data point is in the middle of two clusters, it will be assigned with the
uncertainty of 50% to both clusters.

The idea of soft-assignment is that each local feature is being matched to many codes in
the codebook, and thus the local feature can be estimated more accurately by weighting
different codes based on distances between the local feature and the codebook codes. [96]
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3.4 Image categorisation

In the final step of the BoF approach, the input images are categorised. In the unsu-
pervised visual object categorisation, the codebook feature histograms (i.e. images) can
be categorised by using any clustering method. One of the most popular methods is the
k-Means clustering which is very simple, and thus, it can be used as a baseline method
as in [92]. The goal of the thesis is to improve UVOC using BoF and the image cate-
gorisation step is as important as the other steps in the categorisation process. Thus, in
this section other related categorisation methods are described and their performance in
a typical UVOC task is evaluated.

3.4.1 k-Means clustering

The k-Means clustering algorithm has been used in many applications. One reason can be
its simplicity, which is the reason why it is also used in the thesis as the baseline method
for image categorisation. k-Means has been used earlier for UVOC by Tuytelaars et
al. [92]. In their experiments, the k-Means clustering performed very well compared to
the other methods.

The k-Means clustering algorithm consists of two phases: a cluster assignment phase
and a cluster updating phase. Initial cluster locations are usually chosen randomly.
Then, each data point is assigned to its closest cluster (the cluster assignment phase).
Next, cluster centroids are updated by computing the mean of data points belonging to
a specific cluster (the cluster updating phase). This is repeated as long as the cluster
centroids are changing or the maximum number of iterations is reached. More formal
presentation of the algorithm is given in Algorithm 3.3. In the beginning of the k-Means,
the cluster centroids CB are set by randomly choosing k data points from D, i.e.,
CB = Didx, _, Where idz = randperm(length(D)). Then, each data point d; € D
is assigned to its closest cluster clusters;. Next, cluster centroids C B are updated by
computing the mean of the members in each cluster.

3.4.2 Self-Organizing Map

One possible method of categorising images is to use Self-Organizing Map (SOM) [53].
In SOM, nodes on the SOM are organised so that similar nodes are closer to each other
and dissimilar are further apart. The SOM algorithm is very simple and it is shown in
Algorithm 3.4. At first, it can be initialised randomly as in k-Means or by using some
heuristics to obtain better initialisation, e.g., by computing the principal components
and using them to give initial weights for the SOM nodes. After the initialisation, for
each input sample dy, ..., djcngin(p) € D), the closest node, bm, (the Best Matching Unit
(BMU)) from the codebook CB is searched and the weight of the BMU is changed so
that it is moved towards the given data point. BMU bm is defined as follows:

|d = CByn| = min{|ld — CBi} . (3.10)
To maintain the topology, also BMU’s neighbours (in the topology) are updated in such

a way that the weights of the nodes that are closer in a topology to the BMU are changed
more than the weights of the nodes that are further away. Neighbouring nodes for the
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Algorithm 3.3 k-Means clustering algorithm

Require: D // Dataset e.g. BoF codebook histograms
Require: N, // Number of clusters
Require: maxlter // Maximum number of iterations
CBy « zeros(Ng, get Dimensions(D))
idx — randperm(length(D))

// Repeat clustering while clusters are changing
while CB;_1 # CB; and t < maxzIter do
CBt <« CBt_l
// Cluster assignment phase
for i = 1 to length(D) do
clusters; «— argmin Dist(d;,CB, )
c€l,...,N¢yp
end for
// Cluster updating phase
for ¢ =1 to Ny do
CB;1,c — mean(D;|clusters; = c)
end for L
t=t+1
end while
return CB, // Codebook i.e. cluster centroids

BMU bm are search by finding nodes that are connected to the best match in the topology.
The neighbourhood function w for the BMU C By, is defined by the spatial location of
the BMU x,, and spatial location of the neighbouring node x. as follows:

W(Tpm, Te, ) = Qp €XP <W> (3.11)
e 272(¢) ’
where «ay is learning factor at time step t, @, and x. are coordinates of the BMU bm
and the neighbouring node ¢ and 7 is for adjusting the learning rate. The function w
is greater than zero for all the nodes within the neighbourhood and zero for all other
nodes. Data points can be given at once (batch mode) or separately. The output should
be quite similar, but the batch mode is faster. [53]

In Fig. 3.5, Caltech-101 images have been categorised using a 20 x 15 SOM. The SOM is
trained with 30 x 101 images, i.e., codebook histograms of 3030 images are given to the
SOM for training. For each node, the best matching image, (i.e., minimal distance from
the codebook feature histogram to the SOM node that has not been used yet) is selected
and shown in the figure. We can see in the figure how the SOM is able to find groups
of similar images. For example, in the bottom left corner, there are cartoon characters
(Garfield and Snoopy) and other drawn images. In the left top corner, there are pictures
of animals without backgrounds. In the centre of the result, there are many images of
faces and also accordions, and in between the accordions and faces, there is an image
with both.
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Algorithm 3.4 Self-organizing Map [53]

Require:
Require:
Require:
Require:

te—1
Oét<—1

D // Input data, e.g. BoF codebook histograms

Ng, // Number of nodes in the map, i.e. number of clusters
l // Learning factor (0 >1<1).

€ // Threshold to stop the learning process

CB « rand(Nu, get Dimensions(D))

6 «— inf

while § > € do

CB' <~ CB
for all dl7 ey dlength(D) e D do
bm « argmin Dist(d;, CB,)

cel,...,N¢yp

// Update weight of the best matching unit and its neighbours
for c=1to Ny do

CB. <« CB. +w(bm,c,t,o4) (d; — CB,)

end for
end for
iyl < g #
§ — YN+ \/(CB.—-CB.)?
t—t+1
end while
return CB
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Figure 3.5: Result of the image categorisation using SOM on Caltech-101 images.
Only one image is shown for each node.

3.4.3 Neural Gas

Neural Gas [62] is similar to the SOM, but in Neural Gas nodes are not organised in
a topology. Instead of forcing the nodes in a predefined topology, the algorithm learns
a structured manifold in the feature space which is defined based on the distances of
the nodes in the input space. The learning algorithm in Neural Gas is presented in
Algorithm 3.5. As in the SOM algorithm, the codebook C'B can be initialised with
random weights. Then, it is trained by choosing randomly one sample d, at time ¢. The
training step is repeated t,,4, times. Each time, Ny closest nodes are searched for the
randomly chosen training sample by computing distances from the training sample d,. to
all nodes in the codebook C B. These best matches are founded by sorting the distances
scores into ascending order and using indexes idxz; ., of the sorted list denote the
Ni best matching units. Then, weights of the best matches are updated based on the
distance from the training sample d, to the best matching unit CB,4,,, neighbourhood
factor \;, and the learning factor a;. In each learning iteration, or epoch, weights of the
Ny, best matching nodes are updated. The algorithm takes samples D, initial and final
learning factors ag and a final, initial and final neighbourhood factors Ag and Ainq. The
output of the Neural Gas clustering is a codebook, i.e. weights of the nodes CB.

In Fig. 3.6, Iris dataset [35] is clustered using the three previously presented clustering
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Algorithm 3.5 Neural Gas learning algorithm [62, 55]

Require: D, ao, A finals Ao, Afinalv tmazs Nk Neb

CB « rand(Ng, get Dimensions(D))

for t = 0 to ¢4, do
r < rand(1) // Select random training sample
At = Ao(Afinat/Xo)tme // Update size of the neighbourhood
o < ao(Qpinar/ao)tmes // Update learning rate
// Distance from training sample to every codebook node
scores < Dist(d,,CB)
// Sort distances into ascending order and get order (idx)
[scores,idx] <« sort(scores)
for i =0 to N; do

CBsz, «— CBzdxl + O‘teiNk/)\t (dr - CBzd"cl)

end for

end for

return CB

methods. Neural Gas and k-Means produce very similar results, as we can see that the
cluster centroids are almost in identical places, even though the ordering is different.
SOM assigned nodes are close to the centre of the whole data set. In addition, cluster
assignments differ from Neural Gas and k-Means. The cluster in the middle is rather
small in comparison with the other clusters. Obviously, the parameters of the SOM are
not optimal, the size of the SOM should be larger or the shape of the map should be
planar, toroidal or cylinder so the SOM nodes would cover the data more evenly. Here,
SOM was trained using SOM Toolbox [1] with default parameters.

3.4.4 Hierarchical clustering

One of the problems with the previously introduced clustering methods is that the number
of clusters or nodes must be defined beforehand. When one is using a benchmark image
set, it is not difficult to fix this value, but then the method is not fully unsupervised
and in real life, it is not always possible to fix or know the number of categories. This
supports the use of hierarchical clustering instead of “flat” clustering. However, it does
not solve the problem of selection the optimal number of categories.

In the hierarchical clustering, one can start clustering from the bottom by connecting
clusters together, or from the top by dividing each cluster into parts. In the bottom-
up approach, all the data points are assigned to their own cluster in the beginning.
Then, two clusters are merged together on the second level to form a new cluster. These
two clusters that are going to be merged are selected based on distances and there is
many options to compute the distance such as, single link, complete link, average link
distance, median link, centroid and Ward’s method [43, 72|. In the top-down hierarchical
clustering, all the images are in a single cluster in the beginning. Then, the cluster is
divided into partitions for example using k-Means [43].
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Figure 3.6: Examples of clustering results using (a) k-Means, (b) SOM [53]
and (c) Neural Gas [62] using Iris data set [35] with two first dimensions. Data
points from different categories are marked with different colours and symbols and
nodes/cluster centroids are marked with larger symbols.

3.5 Experiments

In this section, the performance of the BoF approach is evaluated in the supervised and
unsupervised VOC using the original Caltech-101 dataset [30], Randomised Caltech-101
dataset [52], and the extended version of Caltech-101, called the Caltech-256 dataset [39].

3.5.1 Experiment 1: Randomising Caltech 101 images

In the thesis, a new image set based on Caltech-101 [30]

was introduced. This new im-

age set is called Randomised Caltech 101 and the effects of the randomisation process
are evaluated in the following experiment. In this experiment, the effect of the back-
ground, the object orientation and the spatial location is studied in several experiments
using supervised VOC with 1-NN classifier. According to the standard VOC evaluation
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procedure, categorisation performance is utilised as the quantitative evaluation measure.
The performance is computed as the average classification accuracy over classes (2.1)
as it was presented by Lazebnik et al. [57]. The performance values are computed as a
function of the number of categories. The asymptotic VOC behaviour is important since
the methods should ultimately cope with thousands or even hundreds of thousands of
categories.

The experimental procedure is randomised itself: for each number of categories, 10 in-
dependent iterations were performed by first selecting random categories and 30 random
training images for each category. 20 images, or what was omitted from the training
process, were used in testing. The experiment was repeated with 5, 10, 20, 50, and 101
object categories.

There were six data configurations for which the BoF method was tested and the code-
book size optimised: i) the original Caltech-101 data (Caltech 101 (full)), ii) only the
Caltech-101 foreground objects (Caltech 101 (Fg)), iii) only the Caltech-101 backgrounds
(Caltech 101 (Bg)), iv) the full randomised images according to Section 2.1.2 (r-Caltech
101 (Full)), v) Foregrounds from Randomised Caltech-101 (r-Caltech 101 (Fg)) and vi)
Backgrounds from Randomised Caltech-101 (r-Caltech 101). Classification results using
Bag-of-Features with the Hessian-Affine detector and the SIFT descriptor and a 200 x 1
codes SOM codebook with the 1-NN classifier are shown in Fig. 3.7.

HesAff+SIFT, 1-NN, SOM codebook

—O— Caltech 101 (full)
[6) Caltech 101 (Fg)
I\ =—©— Caltech 101 (Bg)
\ r-Caltech 101 (Full)
—E— r-Caltech 101 (Fg)
—©— r-Caltech 101 (Bg)

Performance

10 20 30 40 50 60 70 80 90 100
Number of classes

Figure 3.7: Performance of the Bag-of-Features approach using Hessian-Affine
detector, SIFT descriptor and 1-NN with various modified Caltech-101 image sets.

The best performance in Fig. 3.7 was achieved using the foregrounds only from the orig-
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inal Caltech-101 (the green curve). The background clutter had virtually no effect on
the performance with Caltech-101 since the performance with the full images was al-
most the same (the red curve). Most of the local features are extracted from the object
(see Fig. 3.2e) and thus ground truth foreground segmentation has no significant effect.
The rotation and scaling of the foregrounds affected the detected features which is evi-
dent from the results for the Randomised Caltech-101 foregrounds (the magenta curve)
which is the third best, but clearly outperformed by the original foregrounds and full
images. In Randomised Caltech-101, the background clutter had the expected result
as it significantly reduced the performance compared with the Randomised Caltech-101
foregrounds. Interestingly, the Caltech-101 background only (the blue curve) achieved al-
most the same performance as the full Randomised Caltech-101 images (the cyan curve).
The worst performance was achieved with the Randomised Caltech-101 backgrounds only
(the black curve). It is noteworthy that the worst result does not correspond to random
chance which can be explained by the fact that since the features in the foreground were
just omitted, the total number of detected features correlates with the object sizes, and
therefore, provides a cue of the class.

As a summary, the Randomised Caltech-101 data set provides a more challenging test
benchmark for the VOC methods, since the background clutter and invariance have a
drastic effect on the performance. The Randomised Caltech-101 does not provide natural
data, but it should be used with Caltech-101 to represent how well a method can tolerate
geometric transformations and background clutter.

3.5.2 Experiment 2: Local feature detector experiment

This experiment focuses on the comparison of different region detectors and different
implementations. Detected local features were described with SIFT region descriptor
and codebooks were built by using SOM. The size of the SOM is chosen for each detector
separately, in the way that the performance is the highest on average. Classification is
made using 1-NN classification rule. In this experiment, Randomised Caltech-101 dataset
was used and the evaluation protocol was the same as in the previous experiment: 10
independent trials with 30 randomly chosen training images and 20 randomly chosen test
images. This was repeated for 5, 10, 20, 50 and 101 classes as in the previous experiment.
The performance of VOC with different local feature detectors is shown in Fig. 3.8.

The Hessian-Affine detector (the Feature Space implementation) seems to provide the
best results followed by dense sampling, and Harris-Laplace (the Feature Space imple-
mentation). Vireo implementations do not perform as well as the Feature Space which
might be due to different default parameters. In this experiment, the default parameters
were used. This experiment verifies that Mikolajczyk’s Hessian-Affine detector outper-
forms the other detectors in the 1-NN based VOC task.

3.5.3 Experiment 3: Finding an optimal threshold for accepting a local fea-
ture match

To define an optimal threshold for accepting matches, 30 images were chosen from 101
Randomised Caltech-101 object categories. Then distances between every local feature
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Figure 3.8: Performance curves of VOC method using different region detectors,
and Randomised Caltech 101 image set, SIFT descriptor, SOM codebooks and 1-
NN classification rule.

pair within an object category was computed. Finally, distributions of foreground-
foreground (FGFG) and foreground-background (FGBG) matches were computed and
are shown in Fig. 3.9.

Fig. 3.9 shows that the matching FGFG features have generally shorter Euclidean dis-
tance (smaller error) than FGBG matches. The result makes it possible to define a
threshold that can be used to filter out matches that are more likely a FGBG (false) than
a FGFG (correct) match. When the difference between the correct and false matches is
maximised, more foreground features should be accepted, and thus, the codebook his-
tograms should describe the foreground more accurately and categorisation performance
should be increased. According to the difference (FGFG-FGBG), the matching threshold
is set to maxDist = 1.5 x 10° with the Hessian-Affine detector and the SIFT descriptor.

3.5.4 Experiment 4: Local feature filtering using sets of common features

In this experiment, the Randomised Caltech-101 was used because the image backgrounds
vary more than in the original Caltech-101 image set. Thus, it should be more suitable
for the experiment, where a common set of local features is searched with Algorithm 3.1
and used for generating the codebook and codebook histograms. Maximal distance for
accepting local feature matches was set to maxDist = 1.5 x 10° based on the previous
experiment. However, minHits is still unknown, it is optimised experimentally by using
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Figure 3.9: Cumulative sums of matching local features. The blue curve cor-
responds to the number of matching FGFG features below a threshold, and the
red curve corresponds to the FGBG matches. The green curve is the difference
between FGFG and FGBG matches.

manHits = 0,1,5,10,20,50,100. When minHits = 0, it means that no local features are
filtered, and thus, it can be used as the baseline. In this experiment, the 1-NN classifier
is used to avoid all the necessary parameter tuning. The results of the experiment are
shown in Fig. 3.10.

In Fig. 3.10, we can see that the classification performance is improved only a very
small amount by filtering out local features that are not frequent. Example images of
filtered local features in Fig. 3.3 show that some of the local features are filtered out from
the background, but most of the local features are preserved even though the minimum
number of hits is large. Because the filtering affects the extracted local features only by
a small amount the effect on the VOC performance is also insignificant.

3.5.5 Experiment 5: Codebook generation experiment

In this experiment, Caltech-101 dataset was used. The testing procedure is the same as
in the previous experiments: 30 images are randomly chosen from each class for training
and 20 images are randomly chosen for testing (if there was 20 images left after the
training, otherwise the rest of the images were used). This was repeated 10 times for
5, 10, 20, 50 and 101 classes. In this experiment, SIFT (DoG) detector was used with
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Figure 3.10: Results of the local feature filtering experiment using a list of
common features and 1-NN classifier.

SIFT descriptor. Visual codebooks were generated using k-Means and SOM and the
images were classified using 1-NN classification rule. The comparison between k-Means
and SOM generated codebooks of various size are shown in Fig. 3.11.

Fig. 3.11 shows that the supervised VOC approach using SOM can predict object cat-
egories more accurately in most of the cases. This is especially true when the size of
the visual codebook is small, the BoF approach using SOM performs better. However,
when the size of the visual codebook is increased significantly, the performance drops
when SOM is used, but increases slightly when k-Means is used. The cause of this effect
could be that the amount of training data (the number of local features) for SOM is not
enough if the size of the SOM is large.

3.5.6 Experiment 6: Unsupervised visual object categorisation using Caltech-
256

In this experiment, the presented UVOC approach based on the BoF approach was com-
pared to that of [92], which represents the current state-of-the-art in UVOC. The results
are reported for the same 20 categories of Caltech-256. According to the results of the
experiment 2, the Hessian-Affine local feature detector was used with SIFT descriptor to
extract local features. Codebooks were generated using 1-dimensional SOM, i.e. code-
books were 50 x 1, 100 x 1, 200 x 1, 500 x 1, 1000 x 1, 2000 x 1, 5000 x 1, and 10000 x 1.
For unsupervised categorisation, the previously used 1-NN classifier is replaced with a
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Figure 3.11: Codebook generation method comparison using Caltech 101 image
set.

20 x 1 unit category book generated by the SOM algorithm. For comparison, the same
experiments are also conducted with the Neural Gas [62] with 20 nodes and k-Means
algorithms with 20 clusters. The performance is reported by computing the conditional
entropy defined in Eq. (2.6). In this experiment, the effect of the normalisation is also
investigated using Ll-normalisation Eq. (3.8) and L2-normalisation Eq. (3.9). These
results were compared with results achieved without using any normalisation.

In Fig. 3.12, conditional entropy graphs are shown for the different methods and sizes of
the codebook. In the Tuytelaars et al. [92] protocol, the size of the category book was
fixed to the number of categories. The different colours denote the different methods and
the markers denote the different normalisation methods.

Two important findings can be made based on Fig. 3.12. First, the large codebooks
provide better results. Second, the k-Means and Neural Gas algorithms are very sensi-
tive to the data normalisation, whereas SOM is not. Moreover, the SOM performance
steadily increases, and with the largest codebook, it outperforms the second best ap-
proach, k-Means with the L2-norm normalisation. In the original work by [92], the best
performance, the conditional entropy value of 1.78 (+/- 0.03), was achieved with dense
sampling, binarised features, and a k-Means category book. A comparable performance
of 1.78 (+/-0.02) was achieved with the proposed method.
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Figure 3.12: Performances in the UVOC experiment with the 20 Caltech-256
classes [92]. The red line stands for SOM categorisation, the green for Neural
Gas and the blue for k-Means. The cross denotes L1-normalisation, the circle L2-
norm normalisation and the triangle denotes that codebook histograms are not
normalised. Performance measured using the condiotional entropy [92].

As a summary, we can conclude that this experiment verified our previous results indi-
cating that the SOM algorithm is a competitive alternative to clustering methods, such
as the k-Means algorithm. It also has some advantageous properties, such as its stable
performance with various normalisation methods.

3.5.7 Experiment 7: Unsupervised object discovery from Randomised
Caltech-101

This experiment is the most challenging UVOC experiment with images from the Ran-
domised Caltech-101 data set. For each iteration, 30 images are randomly selected from
each category, and following the previous experiment, the size of the category book is
fixed to the true number of categories. The other parameters are selected based on the
previous experiments: the Hessian-Affine detector, SIFT descriptors, and the L2-norm
normalisation of the histogram features.

Fig. 3.13 presents the results of this experiment. Performance of the proposed method is
reported using both performance measures, the conditional entropy Eq. (2.6) by Tuyte-
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laars et al. [92] and Sivic performance [83] Eq. (2.2). Note that for the conditional
entropy, the smaller values are better, and for the classification accuracy, the greater
values are better. By comparing the results in Figs. 3.13a and 3.13b, it is obvious that
the both performance measures provide the same information: the performance steadily
degrades as the number of categories increases, and on average, the codebook size 1000
provides the best performance (insignificant difference to others). Fig. 3.13b shows that
the performance degrades as the number of categories increases, as is expected, but com-
pared to pure chance, the performance improves (approx. 2 times better for 20 categories
and 5 times better for 100 categories).

3.6 Summary

In this chapter, an UVOC approach using the BoF approach was presented, alternative
methods for different steps were discussed, and in the experiments, seven experiments
were carried out.

In the first experiment, the importance of the background, the spatial location of the
object and the orientation of the orientation in the supervised VOC was tested. The
result of the experiment was that the background is very important in the Caltech-101
dataset [30] which verifies the results by Ponce et al. [77]. Moreover, the orientation
and spatial location of the objects decreases the performance of the VOC. In the second
experiment, different local feature detectors were compared with each other in the super-
vised VOC task. The result of the experiment, was that the Hessian-Affine local feature
detector performs the best.

In the third experiment, a threshold for accepting local feature matches was searched and
founded by making pairwise comparisons from foreground local features to foregrounds
(FGFG) and to backgrounds (FGBG). The threshold was chosen by selecting the value
that has high FGFG — FGBG, i.e. it should accept most of the local features detected
from the foreground while filtering out local features extracted from the background. In
the fourth experiment, a new method for filtering out local features that are extracted
from the background was tested. Even though the method seems to be able to filter
some local features that are coming from background while preserving most of the local
features extracted from the foreground, the new method did not have significant impact in
the supervised VOC performance. In the fifth experiment, k-Means and SOM clustering
methods were compared in the codebook generation task. The evaluation was performed
by evaluating the performance of the supervised VOC when using these two clustering
methods. The result of the experiment was that the SOM algorithm can generate visual
codebooks that are at least as good as codebooks generated by k-Means clustering and
when the size of the codebook is small, then SOM can generate better codebooks for
the supervised VOC with the dataset and the local feature extraction method that were
used.

In the sixth experiment, the 1-NN classifier was replaced with unsupervised clustering.
Three alternative clustering methods: k-Means, SOM and Neural Gas, were tested. The
result was that the clustering methods perform quite evenly at their best. However, SOM
seemed to be much more stable when compared with different normalisation methods.
In the seventh experiment, the performance of the UVOC using the standard BoF ap-
proach to describe images was tested with various sizes of codebooks generated SOM. A
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conclusion of the experiment was that the performance decreases rapidly as in the super-
vised VOC in experiments 1 and 2. The size of the codebook affects to the performance,
especially when the number of categories is small (5 or 10). However, with larger number
of categories the difference between the performance with larger and smaller codebooks
decreases. In the last experiment, the performance was measured with conditional en-
tropy Eq. (2.6) by Tuytelaars et al. [92] and Sivic’s performance measure Eq. (2.2) [83].
Results with both performance evaluation methods are nearly identical. Small differ-
ences are due to the fact that in Sivic’s performance evaluation method, each category
contributes equally to the final performance evaluation, whereas in conditional entropy,
each sample contributes equally to the final performance evaluation.



3. Bag-of-Features approach for unsupervised

-
el

6.5

55 -

>

o
T

.
A Y

Conditional entropy
»
‘\
\\s
\~.
~,

By _— 50
/ 100
3r " 200
',' 500
o5 1000
2000
2 5000
r 10000
"""" Random
1.5
5 10 20 50 101
Number of categories
(2)
05
50
100
0.45 200
500
0.4 1000
\ 2000
0.35 5000
10000
"""" Random
8 0.3
j=
@
£
2 025
i3
o
=
w 02 “ \
0.15F . \
0.1
‘S\‘
S
\~
~\
0.0 = i
0 I
5 10 20 50 101
Number of categories
(b)

Figure 3.13: Results for the Randomised Caltech-101 UVOC experiment: (a)
conditional entropy; (b) Sivic performance [83].



CHAPTER IV

Utilising spatial information with Bag-of-Features

In this chapter, spatial information is used to improve the categorisation performance
of the BoF UVOC approach described in Chapter 3. The standard BoF approach dis-
regards all the spatial information. Therefore, the local features can be in any spatial
configuration and the BoF histogram remains the same, even though the appearance of
the image changes. One can think about the spatial configuration as an analogy to the
order of the words in a paragraph. The order of the words is very important to the
interpretation of the text. Similarly the spatial configuration of the local features is im-
portant for VOC. In this chapter, different approaches to utilise the spatial information
in the BoF approach are presented.

4.1 Bag-of-Bag-of-Features

The first approach to add spatial information to the UVOC is to use a “Bag-of-Bag-of-
Features” (BoBoF) approach which is based on the BoF approach [84, 14]. In the BoBoF
approach, an input image is divided into parts using a grid or segmentation. Then each
segment (or grid cell) is described using the BoF approach. A secondary codebook, the
BoBoF codebook, is built by clustering the BoF histograms in similar manner with BoF
codebook generation in the BoF approach where the BoF codebook is built using local
features. Next, each input image is described by BoBoF histograms which are generated
by matching the BoF histograms to the BoBoF codebook and computing the histogram.
The idea in the BoBoF approach is that each BoBoF code is constructed from local
features that are nearby each other in the original image. When local features that
are nearby each other are described with a single code, it adds a spatial constrain in the
image description although the BoF approach disregards all the spatial information. The
algorithm to describe the images with BoBoF approach is presented in Algorithm 4.1.
The algorithm takes a list of training images I 2 .. n,,.,., BoF codebook CB, a list of
descriptors D1 2. N,..., as inputs, and spatial locations of the extracted local features
Lis. Nivoin-

61



62 4. Utilising spatial information with Bag-of-Features

Algorithm 4.1 Image categorisation using the BoBoF approach.

Require: I, CB, D, L, Nypsize
Ntrain «— length(I)
fori=1,..., Nygin do
imgS,; «— imgSegmentation(I;)
end for
fori=1,..., Nygin do
for j =1,...,length(imgs$,) do
idx < L; < imgS, ; // Local features from image i belonging to segment j
fij < generateCodebookHist(D; iae, CB) // See Algorithm 3.2.
end for
end for
// Build a codebook as in the BoF approach using codebook histograms.
CByopoy — generateCodebook(f, Nyobsize)
fori=1,..., Nyain do
fi-wbof — generateCodebook Hist(C Byoport, f;)
end for
return f

bobof

4.1.1 Grid approach

One straightforward approach to add spatial information to the BoF approach is to
divide an input image into parts using a grid and run the BoBoF algorithm introduced in
Algorithm 4.1. This approach is similar to the approach of Lazebnik et al. [57] where they
used a spatial pyramid approach where an image is divided into 1 x 1, 2 x 2 and 4 x 4 grids
and computed local feature histograms for each cell using the standard BoF approach.
Then they concatenated all the feature histograms together and used Support Vector
Machine (SVM) to learn the object categories. In their case, the final description of the
image becomes (12 + 22 + 42) x numberO fCodes = 21 x numberO fCodes, whereas in
the case of BoBoF the length of the image description is defined by the size of the BoBoF
codebook, thus making BoBoF description of the image significantly more compact.

4.1.2 Segmentation approach

Instead of dividing an image into parts using a grid, a segmentation method can be
used. If the segmentation method can successfully separate different objects in the scene,
object categorisation performance could be increased. However, the segmentation and
categorisation problem is a chicken-egg problem, i.e., in order to get good segmentation
one should recognise objects in the scene and on the other hand, to recognise objects in
the scene, one should segment the objects. Thus, the segmentation problem is difficult.

One of the most popular segmentation methods is the Normalised Cuts segmentation [82].
Originally Normalised Cuts was used to find clusters from data sets, but Shi and Malik
developed a method that used Normalised Cuts to find segments from images. In Nor-
malised Cuts, data points are clustered using a pairwise similarity matrix of the data
points which are used as weights for the edges that connect the data points. The Nor-
malised Cuts algorithm tries to find optimal cuts by searching for edges that can be cut
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while maintaining high similarity between the nodes that are connected and cutting the
edges that connect nodes with smaller similarities. The problem of finding the optimal
cut is NP-hard, thus the solution must be approximated which is done by using spectral
clustering. The Normalised Cuts algorithm has been successfully applied in [41, 80], and
thus, it is chosen also for this study. One of the advantages of Normalised Cuts is that
the user can choose how many segments the method should find.

4.2 Spatial matching of local features

An alternative approach to using spatial information with the BoF approach is to spa-
tially match (i.e. verify) local features. Instead of matching local features using only
distances between the descriptors of the local features, it is possible to use spatial in-
formation of the local features to make sure that the local feature matches are correct.
This method has been used successfully in specific object detection [11, 76] and homog-
raphy estimation [86]. However for object category detection the spatial matching of
local features is more complicated since the visual appearance can vary more, i.e. the
appearance of the local patches can vary and the spatial locations of the object parts
can be different. Lankinen and Kamarainen [56] proposed a new method for automatic
landmark assignment which finds parts of the visual objects that are visually similar and
in the same spatial configuration. Their method is capable of finding stable landmarks
from a set of images belonging to the same category, even though the visual appearance
of the objects varies to some extent.

4.2.1 Spatial matching approach

The spatial matching algorithm used in the thesis is based on the unsupervised landmark
alignment algorithm introduced by Lankinen and Kamarainen [56]. However, instead of
finding landmarks for a set of images from a specific category, the task here is to compute
the distance between a pair of images based on the descriptors of spatially matching local
features. Thus, their algorithm is used to find landmarks for a pair of images and compute
the fitness of the landmarks. This information is used to define a distance between a pair
of images.

However, the spatial matching step is computationally expensive, and thus, it is not
possible to match all images against each other, especially when there are hundreds or
thousands of images. One must choose candidate images carefully. Fortunately, we have
the UVOC method based on BoF which can be used to find a list of candidate images
for every given image. Using the BoF histograms of the images, it is trivial to find
a sorted list of the most similar candidate images. A list of the N_.4,q best matching
images can be given to the unsupervised landmark alignment algorithm by Lankinen and
Kamarainen [56] to spatially match the local features of the given image and candidate
images, and to compute the fitness of the matching local features, which is used to define
the distance between a pair of images. This approach is similar to the approach by
Philbin et al. [76] and Chum et al. [12, 13], but instead of detecting specific object, the
objective here is to detect the category of the object.
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SELECTION OF CANDIDATE IMAGES

Since, the spatial matching using RANdom SAmple Consensus (RANSAC) [34] for ho-
mography estimation is computationally intensive and it can be performed only to a
subset of image pairs, this thesis uses a similar approach to Chum et al. [13], using BoF
codebook histograms to obtain a list of similar images. The first step in the candidate
image search is to run the BoF approach to describe all the given images with BoF his-
tograms as is illustrated in Fig. 3.1 and described in Chapter 3. Next, a list of similar
images is generated for each input image by computing Euclidean distances between the
BoF codebook histograms and sorting the distances and images into ascending order.
Then, N.qnq most similar images are given to the spatial matching algorithm where the
local features of the given image and N q,q most similar images are compared pairwise.
Chum et al. [13] did not use a hard threshold to limit the number of candidate images
as is done here, instead they used an iterative method to select a cut for each query. In
their method, the cut was made after 20 images in a row were predicted to be negative
match. This approach was not studied in the thesis, but it is likely that it does not
work, because it is possible that the 20 first images are from a wrong category, i.e., false
matches.

SPATIAL MATCHING

The spatial matching algorithm for VOC introduced by Lankinen and Kamarainen [56]
finds stable landmarks from a set of images by finding a transformation matrix (i.e.
fundamental matrix) between a pair of images using local features and RANSAC [34].
In the transformation matrix estimation using RANSAC, at first, two local features
are chosen randomly from the given image. Next, correspondences for the randomly
chosen local features are chosen randomly from the N, best matches in the candidate
image. Then the transformation T matrix is computed based on the spatial locations
of the correspondences. The transformation matrix T is used to transform the spatial
location L of the local feature from the candidate image to the given image. Next,
the local features that spatially match after the transformation are then matched using
the descriptor part of the local features. If the local feature matches spatially and the
distance between descriptors is “small”’, then the match is accepted.

The spatial matching algorithm returns the number of matching local features and dis-
tances between the matching local features which are used for defining the distance be-
tween the pair of images. The distance between the image pair is evaluated by computing
a distance between spatially matching local features, choosing the Ny, best matches and
computing fScore the sum of the distances of the local feature descriptors of the best
matches. In the case of supervised learning, fScore can be used for deciding the class of
the given image by choosing an image from the training set with the smallest distance to
the unknown image and using its class information to predict the class of the unknown
image. In unsupervised categorisation, fScore can be used to find a sorted list of similar
images to every given image. The problem of finding the optimal size of the candidate
list Ny, is studied experimentally in Sec. 4.3.4.
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4.2.2 Unsupervised spatial verification and categorisation

In UVOC, it is not possible to match the images with candidate images with known
labels. Thus, one needs to solve an image categorisation problem utilising spatial match-
ing information fScores without using labelling information. In the spatial matching,
images are compared pairwise resulting in a matrix of pairwise distances. By using the
pairwise distances, the images are sorted in ascending order. A list of candidate images
contains false matches, and thus, only a subset of the pairwise image distances are im-
portant. Therefore, only N.,,q smallest pairwise distances are kept for each input image.
The value of N_4,q is experimentally explored in the experiment in Sec. 4.3.3. Next, a
similarity matrix is constructed by setting the similarity value of image pair 7 and j as
S(i,7) = Neand/rank(i, j), where N qnq is the number of images in the list of candidate
images after the cut and rank(i, j) is the index of image j in the list of similar images for
the image . The similarity matrix might not be symmetric because the spatial matching
phase does not produce symmetric results. To fix the issue, the similarity matrix is made
symmetric by refining each similarity value by S’(7, j) = max(S(i, 5), S(j,4)). This guar-
antees that the similarity matrix is symmetric. The final clustering result is computed
by using the Normalised Cuts algorithm [82].

4.3 Experiments and results

In the following experiments, the methods using spatial information presented earlier
are evaluated in supervised and unsupervised VOC. For the evaluation, Caltech-101 [30]
and Randomised Caltech-101 [52] datasets were used. For the supervised VOC, the
performance evaluation method defined in Eq. (2.1) was used. For the unsupervised
VOC, the method introduced by Tuytelaars et al. [92] (see Eq. (2.6)) and by Sivic et
al. [83] (see Eq. (2.2)) were both used and the results are compared. In the supervised
VOC, 30 images were chosen randomly for each class for training and 20 images for
testing. In the unsupervised VOC, 30 images were chosen from each category with no
separate testing set. The Hessian-Affine local feature detector was used for detecting local
features and SIFT descriptor for describing the detected local features. The local feature
codebook was generated using SOM and the size of the SOM is 200 x 1 if nothing else
is mentioned. BoF and BoBoF histograms were both normalised using L2-normalisation
defined in Eq. (3.9). For the supervised VOC, 1-NN classification rule is used to predict
the class.

4.3.1 Experiment 8: Grid approach

The performance of BoBoF using the grid approach was evaluated using the Randomised
Caltech-101 image set. Since it is not obvious how to choose the optimal grid size,
different grid sizes were used and the optimal size was chosen for each case. In addition,
the size of the BoBoF codebook was optimised experimentally by choosing the optimal
size from 10-500. The idea of using grids in BoBoF is similar to the method introduced
by Lazebnik et al. [57], but here only one level “hierarchy” is used. In this thesis, the
BoBoF histograms are generated from the new BoBoF codebook instead of concatenating
several Bag-of-Features histograms together as in [57]. Lazebnik et al. also used SVM to
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learn object categories, but since the heavy supervised learning is not the topic of this
thesis, 1-NN is used.

Results of the experiment are shown in Fig. 4.1. The red solid line with circles denotes
the performance with the Bag-of-Features approach presented earlier and the blue line
denotes the optimal performance achieved using the BoBoF approach with the optimal
size of a BoBoF codebook and the optimal grid size. Fig. 4.1 shows that grid segmentation
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Figure 4.1: Bag-of-Bag-of-Features experiment using the Randomised Caltech
101 image set. Segmentation using various sizes of grids (1 x 1 — 10 x 10) and
Bag-of-Bag-of-Features codebooks 10-500. The red line is the performance with
BoF and the blue line is the performance with BoBoF using grid segmentation.

with a Bag-of-Bag-of-Features codebook does not improve classification accuracy. The
BoBoF method using grid segmentation actually performs surprisingly poorly compared
with the standard method. Lazebnik et al. [57] were able to improve the classification
accuracy significantly using a spatial grid pyramid, but in this experiment, the outcome
is the opposite. The reason behind this could be the fact that the size of the BoBoF
codebook needs to be larger to separate the images from different categories, but the
number of segments is small (1-100) compared to the codebook size (10-500). Thus,
the final BoBoF codebook histograms are sparse and obviously more random than in the
case of the standard BoF method.
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4.3.2 Experiment 9: Normalised Cuts segmentation

In this experiment, the input images are divided into segments using the Normalised
Cuts segmentation algorithm [82]. Then all the segments are described separately using
the BoF approach presented in Chapter 3 with BoF codebook histograms, which are used
to generate the BoBoF codebook. BoF and BoBoF histograms are normalised using the
L2-normalisation defined in Eq. (3.9). Randomised Caltech-101 dataset [52] is used as
the image set, and in each experiment, the image set is divided into 30 randomly chosen
training images and 20 randomly chosen test images. 1-NN is used as the classification
rule. The results are shown in Fig. 4.2.
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Figure 4.2: 1-NN classification performance using Normalised Cuts with 10
segments with various sizes of Bag-of-Bag-of-Features codebooks denoted with
different colours.

Fig. 4.2 shows that the performance is not improved by the usage of BoBoF codebook
and Normalised Cuts. The classification performance is significantly lower than that
which was achieved in the previous experiment with the BoF approach for which results
are shown in Figs. 3.7 and 3.8.

Based on the two previous experiments using the BoBoF approach, it can be concluded
that the BoBoF approach is not very suitable for VOC because the BoBoF codebook
histograms tend to be very sparse because of the low number of segments and large
BoBoF codebook. The size of the BoBoF codebook can be set to small, but then its
discrimination power suffers. The number of segments can also be made larger, but then
each of the segments captures less local features, and thus, their description suffers, which
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causes inaccurate descriptions of the segments. However, segmentation has been used
successfully in VOC where the goal was to find similar segments from an image set [49].

4.3.3 Experiment 10: Finding value for the number of candidate images for
spatial verification

Spatial matching using RANSAC and homography estimation as was presented in Sec. 4.2.1
is computationally expensive. Thus, it is necessary to limit the number of images com-
pared pairwisely using spatial matching even though it can lead to suboptimal solutions.
In this experiment, the size of the list of candidate images for the spatial matching is
defined, i.e., value for N q,q of Sec. 4.2.1, by carrying out an experiment. In the experi-
ment, Randomised Caltech-101 image set was used. 30 images from 101 categories were
chosen randomly and then the bag-of-feature approach was performed to obtain BoF
histograms for every image. Then, a graph was plotted that illustrate how many of the
best matching images based on BoF histograms must be listed in the list of candidate
images to be enough confident that there is at least one image from the same category as
the given image. The results of the experiment are shown in Fig. 4.3. From the figure,
we can see that the confidence of having at least one image from the correct category
increases rapidly when the number of candidate images is low (horizontal axes), but after
100 candidate images the level of confidence (vertical axes) begins to saturate. Thus, the
size of the candidate set Ncqpq is set to 100, i.e. 100 best matching images based on BoF
histograms are chosen for the spatial matching step. According to the figure, for more
than 80% of images at least one correct match is within 100 best candidates from the
BoF method. According to Fig. 4.3b, only the first 80 images are more likely to be from
the correct category compared to the standard BoF approach and the spatial matching
begins to saturate around 30 candidate images. Thus, only the 30 best matching images
based on spatial distances are kept in the list of similar images in UVOC using spatial
information.

4.3.4 Experiment 11: Supervised visual object categorisation

There is no simple method of choosing the optimal value for the number of matching
features Ny, that is used to define how many of the best matching features are used to
compute the sum of feature distances, i.e. fScore, which is used to define the distance
between the pair of images. Thus, an experiment was conducted to find the optimal
value experimentally. Results of the experiment are shown in Fig. 4.4.

From Fig. 4.4, it can be seen that spatial matching can improve the performance signif-
icantly and the most suitable N;,, is between 4 and 6, thus we chose Nj,, = 5 for the
experiment to produce Fig 4.5. This figure shows that the spatial local feature verifica-
tion can improve the classification accuracy significantly. Spatial verification improves
classification accuracy especially when the number of classes increases. Moreover, the
performance is improved with both the Caltech-101 [30] and Randomised Caltech-101
image sets.



4.3 Experiments and results 69

4.3.5 Experiment 12: Unsupervised visual object categorisation using Ran-
domised Caltech-101

In this experiment, the performance of UVOC was measured using the BoF approach
and the spatial matching approaches with Randomised Caltech-101 dataset. In UVOC,
label information cannot be exploited in the categorisation process, thus the 1-NN clas-
sification rule must be replaced with an unsupervised categorisation method. The final
categorisation results were obtained as was presented in Sec. 4.2.2. The standard BoF
method was used to generate a sorted list of candidate images for each given image.
Then the spatial matching method was used to match all the given images with their
Neang = 100 best matching images, based on the Euclidean distances of BoF histograms.
For each image pair, fScore for Ny, = 5 was computed (cumulated sum of distances
of 5 best spatially matching SIFT descriptors). fScores of pairs of image were used to
build a similarity matrix that was given to the Normalised Cuts algorithm [82] to obtain
image categories. The test was repeated 10 times with 5, 10, 20, 50, and 101 object
categories. In each test, 30 images were chosen randomly from each category. Fig. 4.6
shows that the spatial matching improves the categorisation performance. One can also
notice a difference in the BoF performance compared to Fig. 3.13. The reason for the
difference is that, in this experiment, clusters were formed using Normalised Cuts as was
presented in Sec. 4.2.2 instead of clustering the BoF histograms directly using SOM as
in Sec. 3.5.7. The UVOC approach using Normalised Cuts seems to also improve the
performance slightly.

4.3.6 Experiment 13: Unsupervised visual object categorisation using Caltech-
256

In this experiment, the previous experiment is repeated using Caltech-256 [39] and choos-
ing the same 20 categories as in the experiment presented in Sec. 3.5.6 and in [92]. 30
images were chosen randomly from each category as in the previous experiment. This
experiment cannot be compared directly with the experiment presented in Sec. 3.5.6
because in that experiment, all the images were used in the categorisation. Thus, the
performance using the BoF approach is not the same. In this experiment, the focus is
in the comparison between the BoF approach discussed in Chapter 3 and the spatial
matching approach discussed in this chapter.

Input images were described in the same way as in the previous experiments. The
Hessian-Laplace detector and SIFT descriptor were used to extract local features. A
visual codebook was built using a SOM of size 200 x 1 and codebook histograms were
normalised using L2-normalisation. In the spatial matching, as a distance between the
pair of images a sum of the Ny, = 5 best matching local features was used as in the
previous experiment. Results of the experiment are shown in Fig. 4.7.

Fig. 4.7 shows that the performance can be improved significantly using the spatial
matching. Both performance evaluation methods (i.e. Sivic performance Eq. (2.2) and
Conditional entropy Eq. (2.6)) show that the spatial matching improves the results sig-
nificantly. We cannot compare these results directly with the results obtained earlier
because the number of input images are different in the experiments.
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4.4 Summary

Different approaches were presented for the use of spatial information in the BoF ap-
proach. BoBoF methods using the grid approach and segmentation approaches did not
improve the performance of the VOC. However, spatial verification of the detected local
features improved categorisation performance significantly. In the local feature spatial
verification, local features were also matched spatially and then the sum of distances
between the descriptors of the best matching local features was used as a measure of
how well the two images matched each other. In the supervised VOC using the 1-NN
classifier, it is easy to use pairwise image distances, i.e., sum of the distances between
the descriptors of the best matching local features, but in UVOC, it is not as straightfor-
ward. In this work, pairwise distances were used to rank images, which were then used
to compute similarities between the images. This was given to Normalised Cuts [82] to
form the final clusters. As we can see from the results shown in Figs. 4.6 and 4.7, the
performance of the UVOC is improved significantly by using the spatial matching.
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Figure 4.3: Candidate image search based on Bag-of-Features using Randomised
Caltech-101 with 101 categories and 30 images from each category: (a) Finding
optimal number of candidates for spatial matching; (b) Probability of having an
image from the same category using BoF and spatial matching.
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Figure 4.4: Supervised VOC experiment using spatial local feature matching.
Performance using only BoF is shown with yellow and spatial matching results are
shown with different colours. Two different datasets were used: (a) Caltech-101
dataset [30]; (b) Randomised Caltech-101 dataset [52].
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performance using spatial verification of landmarks using the distance of 5 best
landmarks.
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Figure 4.6: Results of the UVOC experiment using the Randomised Caltech-101
image set. (a) Conditional entropy Eq. (2.6); (b) Sivic performance Eq. (2.2).
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CHAPTER V

Visual saliency information in object categorisation

The way people perceive visual information has evolved during thousands of years of
evolution. People can recognise thousands of objects quickly and accurately [5]. People
perceive tremendous amounts of information through their visual system. However, only
a fraction of the information is important. Thus, during the evolution, the vision system
has evolved so that the focus can be changed quickly to detect important things. This
“pop up” effect is called saliency [42]. The motivation to study the saliency detection in
this thesis is that it could be used to improve the VOC categorisation performance by
detecting the foreground and using local features that are extracted from the foreground.

Visual saliency detection has been one of the active research fields in computer vision.
It has been used in a variety of applications such as automatic image cropping [10],
thumbnail generation [61], image collage generation [37], image segmentation [94], image
segmentation for VOC [99, 9], VOC [18], and automatic calibration for gaze tracking [89].
Thus, saliency detection has received a great amount of attention from computer vision
research in the last few years [19, 46, 100, 101].

In this chapter, a few saliency detectors are introduced together with a new saliency
detector based on local features. Performance comparisons between the saliency detectors
are made using a data set by Judd et al. [46] and a new Abstract image set introduced
in Sec. 2.1.5. The performance of the saliency detector is evaluated using the procedure
introduced by Judd et al. [46] which uses a recall curve to evaluate the performance of
saliency detectors. Finally, in the last two experiments saliency information is used in
the supervised and unsupervised VOC to guide a segmentation method into detecting
the foregrounds of the images and discarding all the local features detected from the
background.

5.1 Saliency detection methods in literature

In saliency detection, the problem is to predict the saliency of each pixel, i.e. define
how much each pixel attracts attention from human observers. These predicted saliency

7
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maps are compared with ground truth saliency maps, e.g. by computing a recall curve.
This is computed by choosing p,% (Percent Salient) of the most salient pixels from the
predicted saliency map. Then the recall can be computed by computing the number of
fixation points inside the thresholded area and then dividing their number with the total
number of fixation points. This is repeated with p, = 1%, 3%, 5%, 10%, 15%, 20%, 25%,
and 30% in order to obtain the recall curve. Ground truth saliency maps are obtained
by using human participants and an eye-tracker. From eye-tracking data, the fixations
are detected by locations where the eye stops for a short moment. Many methods have
been introduced in the literature for saliency detection; a few of them are discussed next.

The first detector is the standard Itti&Koch saliency detector [42]. The Itti&Koch de-
tector uses a bottom-up approach to detect saliency. At the lowest level, it uses low-level
features such as intensity, contrast, colour opponency, orientation and motion information
and stereo disparity if they are available. These low-level features are given to an artifi-
cial neural network that combines these features together to detect the visual saliency of
an image. The Itti&Koch saliency detector is compared with the state of the detector by
Judd et al. [46]. The Learning Predictor (LP) method by Judd et al. combines low level
features (e.g. Itti&Koch) with mid-level features (e.g. horizon) with high-level features
(e.g. Viola&Jones face detector [97], Felzenszwalb person and car detector [32]). In ad-
dition to these features, Judd et al. also founded that central bias is very important in
saliency detection. They measured performance of their saliency detection method with,
without central bias and using only central bias and found that LP without central bias
performs slightly worse than central bias only and LP with central bias performs better
than central bias only. For fusing these features together, they are using a support vector
machine. Because of high number of features and powerful supervised machine learning
it achieves the state of the art results [46].

One of the methods that are relevant to this thesis is published by Cheng et al. [10]. It
introduces a foreground /background segmentation method based on saliency detection.
For the saliency detection, it uses global contrast information. Cheng et al. introduce a
method called Histogram-based Contrast (HC) which computes saliency using a colour
histogram of the image in the L*a*b colour space. To compute the saliency value for
a pixel, the method computes colour contrast between all other pixels and sums them
together. This is computationally heavy, and thus, it can easily be made faster by
realising that all the pixels with the same value are given the same saliency value. Thus,
saliency can be computed for each different pixel value once and those that are computed
can be used globally since the method does not use spatial information. Cheng et al.
improved this method by also taking spatial relationships into account. The improved
method is called Region-based Contrast (RC) and it uses the segmentation method by
Felzenszwalb et al. [33] and then computes saliency values inside segments in a similar
manner as HC. To emphasise the spatial relationship between the pixels, they also used
the spatial distances of the pixels in the saliency estimation. Cheng et al. also introduced
a Region-based Contrast Cut (RCC) segmentation method that uses saliency information
from RC to initialise the GrabCut segmentation method [78]. The GrabCut algorithm
seeks segments iteratively, but in the original paper, the object in the foreground had
to be marked manually with a bounding box. Cheng et al. use saliency information to
choose the foreground (more salient pixels) and background (less salient) automatically.
The segmentation application using saliency information makes the method particularly
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interesting for this work.

Examples of the predicted saliency maps using the methods presented earlier and the
ground truth with the original image are shown in Fig. 5.1. The saliency detectors
presented in this section are evaluated using the data set introduced by Judd et al. [46]
and the Abstract image set presented in this thesis, in Sec. 5.4.2.

Figure 5.1: Outputs of the saliency maps using local feature detectors. From the
left: Original image, ground truth, Learning Predictor (LP) by Judd et al. [46],
Region-based Contrast (RC) by Cheng et al. [10] and Hessian-Affine (HA) pre-
sented in the thesis. The data set is introduced by Judd et al. [46].

5.2 Saliency detection using local feature detectors

In this section, a comparison of local feature detectors is made from the point of view
of which one of the local feature detectors captures the most of the salient ground truth
region. Different local feature detectors were used for detecting regions and then the
detected regions were converted into saliency maps as presented in Algorithm 5.1. The
algorithm takes the regions of the detected local features L, an input image I as inputs.
At first, the saliency A of each pixel is set to zero. Then, the saliency values of the pixels,
x = (z,y), belonging to the region i of detected local features, are increased by one. This
is repeated for every detected local feature. Finally, the saliency map is normalised by
dividing the saliency values by their sum. A few examples of predicted saliency maps are
shown in Fig. 5.2.
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Algorithm 5.1 Local feature regions to saliency maps

Require: L, I
A, width(I), 1,...,height(r) < 0 // Initialise saliency map with zeroes
for i = 1,..., numberOfFeatures(L) do
// Select all the indexes of pixels belonging region L;
// and store them in 1, ..., 2, where x; = (z,y)
x « getPixelsO f Region(L;)
for j =1,...,length(x) do
Acjyy — Agjy; 1
end for
end for
A A/(Sle™ ™ 4))
return A

Fig. 5.2 shows how the saliency maps generated using different local feature detectors
differ from each other. The Harris-corner (Eq. (3.3)) detector based detectors, the Harris-
Laplace and the Harris-Affine detect the highest number of local features, and thus, the
saliency maps are covered with salient pixels. Additionally, the Hessian-matrix (Eq. (3.7))
based local feature detectors detect a large number of features. However, saliency maps
generated from Hessian-Laplace and Hessian-Affine local features seem to also cover
more non-salient areas (i.e. black pixels). In the saliency prediction experiment, the
performance of each saliency predictor is evaluated using a recall curve. Experiment and
results are in Sec. 5.4.1.

5.2.1 Predicting the saliency of local features

Whether it is possible to learn a model of a salient local feature was then studied as this
could be used to select only important ones among hundreds or even thousands of local
features. Such a model could be used directly in VOC to choose only the important, i.e.
salient, local features to improve the categorisation performance.

In Fig. 5.2, it is shown that local feature detectors can capture local features from salient
regions in the image. To acquire more benefit, one can try to learn a model of a salient
local feature. To learn which of the local features are salient, three different approaches
were tested: i) the codebook based approach; ii) the regression model Artificial Neural
Network (ANN); iii) and the nearest-neighbour method using a kd-tree. These three
methods for local feature saliency prediction are evaluated in the experiments section.
Saliency value for a local feature is computed from the ground truth saliency map. At
first, the detected region of a local feature is projected onto the ground truth saliency
map and then the mean saliency value of the detected region is computed. The mean
saliency value of the region is used as the saliency of the detected region (i.e., the region
of the detected local feature). An example of a saliency of ten detected local features is
shown in Fig. 5.3. It shows a ground truth saliency map where the brightness defines the
saliency of the pixel. Detected region are marked with yellow ellipses and saliency value
of the detected regions is marked above each region using red.
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Figure 5.2: Outputs of the saliency maps using local feature detectors. From
the left: Original image, ground truth, Harris-Laplace, Harris-Affine, Hessian-
Laplace, Hessian-Affine, MSER and SIFT. The data set is introduced by Judd et
al. [46].

5.3 Improving object category detection using salient regions

Figs. 5.1 and 5.2 show that it is possible to detect salient regions, e.g. objects, in the
images, and thus, it could be possible to benefit from saliency maps. Judd et al. [46] used
object detectors to improve saliency detector performance. In this section, the goal is the
opposite, the saliency information is used to improve the VOC performance. However,
both approaches assume that the object of interest is salient.

Saliency information can be used with segmentation to choose an important region from
an image to be used in categorisation. If the important region can be detected suc-
cessfully, the image can be described more accurately because the codebook histogram
would contain only hits from the foreground (see, e.g., Fig. 3.7), and thus, the cate-
gorisation performance should be better. Cheng et al. [10] have developed a method
that uses saliency information to detect important area from an image. Here, segmenta-
tion results are used to detect the foreground from the images. Example results of the
detected salient segments are shown in Fig. 5.4. The figure shows how the RCC seg-
mentation method [10] can detect foregrounds from the Randomised Caltech-101 images
even though some of them have challenging backgrounds. The foregrounds, especially
of the first three images, are detected very well. The RCC segmentation fails on the
car side image (Fig. 5.4j) because the saliency detector detects that the mountain is the
most salient region as the mountain differs the most from its surroundings. According
to the color contrast differences, it differs the most from the rest of the image, and thus,
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Figure 5.3: Saliency values for detected Hessian-Laplace local features. Ten
local features are shown with yellow ellipses and saliency of the region is shown
with a red number above the region. The intensity displays the ground saliency
value in the image on the right.

it is incorrectly detected. There is a similar problem with the lotus image in Fig. 5.4m.
The inner part of the lotus is labelled as salient, but the leaves of the flower do not
differ significantly from the background, and thus, they are considered as non-salient.
When this is given to the GrabCut segmentation algorithm, it segments the inner part
of the flower and it is used as the predicted foreground. In this experiment, the data set
is very challenging because it is artificial and the backgrounds can also contain salient
objects. However, RCC is able to find the foreground in many cases, and thus, it can be
used to detect foregrounds for VOC. An experiment using RCC predicted foregrounds is
introduced in the following section.

5.4 Experiments and results

In this section, the performances of different saliency detectors are compared with each
other, and then, saliency detection is used to detect the foreground from the images to
filter out local features that come from the background. The effect of this local feature
filtering approach is studied in the last two experiments.

In the saliency detection experiments, a recall curve is used to compare the performance
of different saliency detectors. The evaluation method follows the same procedure used
by Judd et al. [46].
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Figure 5.4: Example outputs of Region-based Contrast (RCC) segmentation
by Cheng et al. [10]. Images are from Randomised Caltech-101 [52]: The left
column shows the original images; The middle column shows the ground truth
foregrounds; The right column shows the RCC predicted foregrounds.
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5.4.1 Experiment 14: Comparison of local feature detectors in saliency pre-
diction

In this experiment, saliency detectors based on local feature detectors, which were pre-
sented in Sec. 5.2, are compared quantitatively using the dataset presented by Judd et
al. [46]. In addition to the presented saliency detectors, we have an inter-subject which
tells how well people can predict saliency maps, i.e. how consistent are the saliency maps
generated from different subjects. We also have the central bias saliency detector where
the saliency of the pixels are defined as the inverse of the distance from the centre of the
image.
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Figure 5.5: Recall curves for saliency detection using different local feature
detectors and the natural images dataset introduced by Judd et al. [46].

Fig. 5.5 shows that the Hessian-Laplace and Hessian-Affine local feature detectors per-
form the best. The Harris-Affine and Harris-Laplace local feature detectors perform
slightly worse than Hessian-matrix based detectors. The difference between the two
Hessian-matrix based detectors is small and Harris-corner based detectors perform equally.
This is not very surprising because the saliency maps shown in Fig. 5.2 are visually very
similar. MSER and Difference-of-Gaussian detector used in SIFT do not perform as well.
However, all the detectors are far from the inter-subject performance and even behind
the centre biased saliency detector.
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5.4.2 Experiment 15: State-of-the-art saliency detection

In this experiment, the performance of state-of-the-art saliency detectors presented in
Sec. 5.1 is evaluated using two image sets: the Judd et al. image set [46] and the
Abstract image set presented in Sec. 2.1.5. The saliency detector by Judd et al. is
trained using 903 training images from their image set, the rest of the saliency detectors
do not need training data. In addition to the current state-of-the-art detectors, Hessian-
Affine local feature detector based saliency detector that was introduced in this thesis
was also compared to the other detectors.

Results of the saliency detection experiments are shown in Fig. 5.6. The state-of-the-art
saliency detector by Judd et al. [46] seems to perform very well with both of the image
sets. The Hessian-Affine based local feature saliency detector had the second best perfor-
mance. The Region-based Contrast (RC) method by Cheng et al. [10] performed slightly
better than the Itti&Koch detector [42] with the Abstract image set, but with the image
set by Judd et al., the RC and Itti&Koch detectors performed equally well. However, the
RC saliency detector’s performance was worse than the Hessian-Affine saliency detector
with both image sets. Although, the order of the best performing saliency detectors is
very similar with both image sets, one can notice that the performance is worse for all
the saliency detectors with the Abstract images.

5.4.3 Experiment 16: Salient local feature prediction

The ability to predict saliency of the local features is tested using the data set introduced
by Judd et al. [46]. Their experiment procedure is followed by choosing the same 903
images for training and 100 images for testing. The training data was collected by
extracting local features using the Hessian-Affine local feature detector and the SIFT local
feature descriptor. Next, the saliency of each local feature was computed as described
in Sec. 5.2.1. Thus, the training data was a set of local feature descriptors and saliency
value of each local feature.

To learn to predict which of the local features are salient, three different approaches
were tested in the experiments: i) Codebook based saliency prediction; ii) Regression
modelling using Artificial Neural Network (ANN); iii) Nearest neighbour method using
a kd-tree. In the codebook approach, a BoF codebook was built and then saliency of
each local feature was defined by computing the mean of ground truth saliency of the
training set local features. In the ANN approach, a multi-layer feed-forward network was
trained using the Scaled Conjugate Gradient algorithm [71]. Only a subset of the training
data was used because of memory capacity limitations. The training data was divided
into tree parts: training (70%), validation (15%) and testing (15%). In the nearest
neighbour method, the saliency of the test set local features were simply predicted by
choosing the saliency of the most similar local feature in the training set. The results
for the experiments are shown in Fig. 5.7. The horizontal axis determines the ground
truth saliency value for a local feature and the vertical axis determines the predicted the
saliency value of the local feature. Therefore, if the saliency is predicted correctly, both
should be plotted on the black line an equal distance away from both axes. However,
the results was the same for all three approaches: all methods failed to predict saliency
of the testing set local feature.
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Figure 5.6: Recall curves for the saliency detection experiments: (a) Abstract
image set; (b) Judd et al. image set [46].

categorisation
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(a) (b) (c)

Figure 5.7: Saliency prediction using a) Codebook; b) Artificial Neural Network;
¢) Nearest neighbour using a kd-tree. The horizontal axis is the ground truth
saliency value and the vertical axis is the predicted value. The black line denotes
the correct prediction.

The reason for this behaviour can be found in Fig. 5.8, where the mean and the standard
deviation of each saliency value of a matching code is plotted in the codebook approach.
We can see in the figure that the deviation is very high. For a group of similar local
features, i.e. local features which match the same code, saliency value varies considerably.
Thus it is difficult to learn the saliency of different codes as could be seen in Fig. 5.7a.
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Figure 5.8: Mean and standard deviation for the codebook code saliency.
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5.4.4 Experiment 17: Improving VOC performance using salient foreground
detection

This experiment studies how the automatic foreground detection using saliency informa-
tion and segmentation affects the performance of supervised VOC. In this experiment,
the Caltech-101 [30] and Randomised Caltech-101 [52] image sets were used. The ex-
periment was divided into three test cases: i) Ouly the ground truth foregrounds of the
images are used; ii) Automatically detected salient segments are used; iii) Full images
are used. The motivation in the experiment was to experimentally study the feasibility
to use saliency guided segmentation to detect foreground from the images. According
to Fig. 3.7 there is room for improvement (gap between r-Caltech (Full) and r-Caltech
(Fg)). In this experiment, the image classes were learned and the images were classified
using the BoF approach with the Hessian-Affine feature detector and SIFT descriptor in
supervised manner. For generating the codebook, a 200 x 1 SOM was used. The code-
book feature histograms were normalised using the L2-norm. Finally, the given images
were classified using the 1-NN classification rule using 30 training images and 20 test
images from each class. Supervised learning was used to simplify the experiment set-up.
The results are shown in Fig. 5.9.

Fig. 5.9 shows that the classification performance can be improved by choosing local
features only from the salient segments of the images if the background does not contain
relevant information about the object in the foreground as in the case of Randomised
Caltech-101. However, the performance is inferior to the performance using local features
only from the ground truth foregrounds. Randomised Caltech-101 image set is quite
challenging especially for saliency detectors because the backgrounds can also contain
salient objects. With Caltech-101, the salient segment detector (RCC [10]) does not
improve classification performance significantly. In the Caltech-101 dataset, backgrounds
contain important information about the object as was found in the earlier experiment
in Section 3.5.1 and in Fig. 3.7. In a more realistic case, salient segment detection could
improve classification performance because it is very likely that the backgrounds have
more variability than in the case of original Caltech-101.

5.4.5 Experiment 18: Improving UVOC performance using salient fore-
ground detection

The UVOC experiment was carried out using the Caltech-256 [39] image set using the
same test experiment as Tuytelaars et al. [92] used in their survey of UVOC methods. Im-
ages were selected from the same 20 categories that were used in [92]. The experiment is
a comparison between three different categorisation methods: SOM [53], Neural Gas [62],
and k-Means using the full images and only the salient segments detected using RCC by
Cheng el al. [10]. The size of the SOM, number of nodes in Neural Gas and number of
clusters in k-Means was set to the number of ground truth categories. Then the images
were categorised using the clustering method with 20 clusters and the performance was
measured by computing conditional entropy by Tuytelaars et al. [92] as in Eq. (2.6) and
using the performance measure by Sivic et al. [83] defined in Eq. (2.2). Lower entropy
means higher performance. Results of the experiment comparing performance of the
UVOC using full images and only the salient segments are shown in Fig. 5.10.
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Figure 5.9: Classification performance using the salient segment detector
(RCC) [10]: (a) Randomised Caltech-101; (b) Caltech-101. Performance using
only local features from the foreground (red cross), from the salient segment (green
circle), from whole image (blue plus).
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Results are slightly mixed, which is caused by the fact that the number of images in dif-
ferent categories varies considerably and the Sivic performance measure takes on average
categorisation accuracy over the categories, whereas the conditional entropy is computed
for the whole data set without balancing the categories. In Fig. 5.10, we can see that
the categorisation performance was improved with RCC foreground detection when the
size of the codebook is small (less than 500 words for SOM and less than 1000 words
for k-Means and Neural Gas). When the size of the codebook was increased, the RCC
foreground detection did not improve the categorisation performance. However, with k-
Means and Neural Gas categorisation, the best performances were achieved with a small
codebook and RCC foreground detection whereas with SOM categorisation and overall,
the best performance was achieved with a larger codebook and without RCC foreground
detection.

5.5 Summary

In this chapter, different local feature detectors were first compared in saliency prediction
task. The idea behind the experiment was to study if the local feature detectors can
capture local features from the salient objects. In the experiment in Sec. 5.4.1, the
Hessian-Affine local feature detector performed the best. In the following experiment
in Sec. 5.4.2, the saliency detector based on Hessian-Affine local features was compared
with the current state-of-the-art saliency detectors. The current state-of-the-art detector
by Judd et al. [46] performed the best, the saliency detector based on Hessian-Affine was
the second best performing only slightly worse than the detector by Judd et al. This
promising result lead to the next question; Is it possible to learn a model of salient local
feature? To answer this question, the following approach was used to learn a model:
compute the mean of ground truth saliency value of each detected local feature region
and use it with the local feature descriptor as training data. Then a few methods were
used to learn the model: codebook, neural network and nearest neighbour method, but
all of the methods failed. The reason for the failures could be the high variation in
saliency values for similar local features (which is shown in Fig. 5.8). Finally, in the last
experiments, saliency information was used to improve the VOC performance. Saliency
information was used to help the segmentation method to segment the foreground from
the images. These foregrounds were used to filter out all the local features detected
from the background. The conclusion from the experiment was that the foreground
detection can improve the categorisation performance if the backgrounds of the images do
not contain valuable information about the object category. Thus, foreground detection
improved results with the Randomised Caltech-101 dataset, but with the original Caltech-
101 dataset, the effect on the performance was insignificant. In the unsupervised VOC
using the foreground segmentation based on saliency information, the performance was
improved especially with small codebooks, e.g., for SOM the performance was improved
when the size of the codebook was less than 500 and for Neural Gas and k-Means, the
performance was improved with smaller than 1000 codes codebooks. However, with
larger codebooks the improvement was small or even negative. It is also necessary to
note that in Caltech-256, the background can provide important information about the
foreground.
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CHAPTER VI

Discussion and future work

The main research question in the thesis was that is it possible to learn to detect visual
object categories in the same manner as people using unsupervised learning. In this the-
sis, the approach to learning the object categories was to use the popular Bag-of-Features
(BoF) approach and self-organisation. According to the results achieved in the work, it
is possible to learn object categories, but the categorisation accuracy, or performance,
is significantly lower than in supervised Visual Object Categorisation (VOC). However,
unsupervised learning was chosen because supervised learning needs known data, i.e.
images with ground truth labels, which can be laborious to obtain especially when the
number of categories is increased to thousands of categories. Moreover, it is computa-
tionally and memory-wise demanding to train a classifier for thousands of categories [17].
Unsupervised learning does not need known data for training classifiers or class models,
and thus, it can be used to categorise objects from thousands of categories. It can also
be used when images do not have clear categories. For example, in the case of holiday
images, it can be difficult to describe the content of the image with words.

The second research question concerned how spatial information can be used in Unsu-
pervised Visual Object Categorisation (UVOC) using the BoF approach to improve the
categorisation performance. In this thesis, the spatial information was used to verify the
local feature matches. Then, a cumulative sum of distances of matching local feature
descriptors was used to define how well two images match each other. In the supervised
VOC, this information was used directly in the 1-NN classifier, which was shown to
improve the classification performance significantly. However, in UVOC pairwise image
distances could not be used directly. Thus, an alternative approach was used. At first, for
each given image, a ranked list of similar images was generated based on pairwise image
distances. Then, this information was transformed into similarity information which was
given to the Normalised Cuts algorithm [82] to form the final clusters. In this way, the
performance of the UVOC was also improved significantly compared with the standard
BoF approach.

The third research question was whether is it possible to take advantage of saliency
information in the VOC process. In the last experiment of the thesis, the RCC back-
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ground /foreground segmentation method [10] was used to find the most salient segment
from the input images. Only the local features that were extracted from the salient seg-
ment were used. The results were compared with the results using all the local features
and local features from the ground truth foreground. The result was evident: salient
segment prediction improves the classification performance, but it is still inferior to the
performance using the ground truth segmentations. However, we must notice that the
Randomised Caltech-101 image set is quite difficult since some of the backgrounds also
contain salient areas, and thus, it is difficult to detect the foreground. Nevertheless,
the foreground prediction based on saliency improved the results. However, with the
original Caltech-101 dataset salient segment detection did not improve the classification
accuracy significantly. The reason behind this is that the backgrounds contain important
information about the object in the foreground.

The saliency detector based on the Hessian-Laplace detected regions performed better
than the standard baseline Itti&Koch detector [42] and even the detector by Cheng et
al. [10] that has been claimed to be a state-of-the-art detector. However, the Hessian-
Affine based saliency detector did not perform as well as the state-of-the-art detector
by Judd et al. [46], but it is not as complicated and does not need any training as the
detector by Judd et al. needs. In addition, the Hessian-Affine detector does not use
central biased saliency as Judd et al. does. Without central biased maps, the Judd et
al. detector’s performance was almost equal to that of the central biased maps, which is
close to the performance of Hessian-Affine based detector.

6.1 Future work

In this thesis, UVOC using the BoF approach [14] was studied. The standard BoF ap-
proach was improved by using spatial matching to verify local feature matches. However,
this study has also revealed new issues related to UVOC.

6.1.1 Spatial information in unsupervised visual object categorisation

In this work, the spatial information was used for pairwise local feature matching between
the images. The result of the spatial local feature matching was a cumulative sum
of distances of the best matching local feature descriptors. The result of the spatial
matching phase is pairwise distances between the images. In the supervised VOC with a
k-NN classifier, with this information is straightforward, but in the unsupervised VOC it
is not clear how the pairwise distance information should be used. In this work, pairwise
distances were converted into similarity information and Normalised Cuts [82] was used
to form the final clusters, but one could also use, e.g., PageRank [75] or any other graph
algorithm to find the clusters.

6.1.2 Combining saliency detection with spatial information

In the saliency detection experiment, the performance of VOC was improved by detecting
salient regions from the images and then using only local features that were detected from
the salient regions. One could combine this method with the spatial matching by first
detecting the salient regions from both images and then filtering out all the local features
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that are extracted from the non-salient regions. This would decrease the computation
time and perhaps improve the categorisation performance.

6.1.3 Model selection problem

In the unsupervised learning, one of the difficult problems is that of selecting the number
of categories correctly. In the UVOC development using a standard benchmark the
number of categories can be fixed using the ground truth information, but in real life
this is not possible. Thus, this problem needs attention.
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CHAPTER VII

Conclusion

The number of digital images is huge and rapidly increasing both in the Internet and
in the personally owned devices. The enormous number of images makes a manual
image search for a particular type of image laborious and slow. Thus, there are many
image sharing services and image managing applications that provide an image search.
However, most of the image searches contain a major problem: the images must be
described manually beforehand. Therefore, the main research question was whether it is
possible to learn visual object categories in an unsupervised manner? Thus, this thesis
studied an approach which tries to automatically find groups of images containing an
object from the same category; a process which is called unsupervised visual object
categorisation.

In this work, a Bag-of-Features based framework was studied for the problem of unsuper-
vised visual object categorisation because the Bag-of-Features approach has performed
well in supervised visual object categorisation and Bag-of-Features can be scaled up to
thousands of categories. However, the performance was much lower than for the su-
pervised case, but the introduced unsupervised visual object categorisation method can
provide an “automatic organisation of images” which is visually agreeable.

The performance of the basic unsupervised visual object categorisation using the Bag-
of-Features approach suffers from false local feature matches in the feature generation
step, and thus, codebook histograms can be confused between the images of different cat-
egories. This problem leads to the second research question which was whether spatial
information can be used in unsupervised visual object categorisation using the Bag-of-
Features approach to improve the categorisation performance? The problem of false
matching local features with the codebook can be narrowed down by using spatial infor-
mation on the local features. In the spatial matching, also the spatial configuration of
matching local features is verified. The spatial matching improved categorisation accu-
racy significantly, but it also increased computation dramatically. However, by choosing
candidate images wisely using the Bag-of-Features method, the computational need can
be kept reasonable.

The third research question was that how the saliency information can be used to im-
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prove unsupervised visual object categorisation performance? In this thesis, the saliency
information was used to detect the salient region from the images and then to use only
the local features that were extracted from the salient region. In the experiments, it was
shown that salient region detection can significantly improve categorisation performance
if the backgrounds do not contain important information about the foreground.

In the future, the model selection problem should be solved in order for unsupervised
visual object categorisation methods to be made completely unsupervised. Nowadays,
most of the unsupervised visual object categorisation methods (including the proposed
method) need to be given the number of categories. This is not a severe problem if one is
using a public benchmark dataset with known data. However, in the real life, the model
selection problem can be very severe.

One can also try to improve the performance of the proposed unsupervised visual object
categorisation method by combining foreground segmentation using visual saliency in-
formation and spatial local feature verification. The foreground segmentation filters out
local features detected from the background, which decreases computation, and could
also improve the categorisation performance with spatial matching.
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