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ABSTRACT 
 
Yongbo Wang 

Novel Methods for Error Modeling and Parameter Identification of a Redundant 
Serial-Parallel Hybrid Robot 

Lappeenranta 2012 
96 p. 
Acta Universitatis Lappeenrantaensis  500 
Diss. Lappeenranta University of Technology 
ISBN 978-952-265-344-4, ISBN 978-952-265-345-1 (PDF), ISSN 1456-4491 
 
To obtain the desirable accuracy of a robot, there are two techniques available.  The first 
option would be to make the robot match the nominal mathematic model. In other words, the 
manufacturing and assembling tolerances of every part would be extremely tight so that all of 
the various parameters would match the “design” or “nominal” values as closely as possible. 
This method can satisfy most of the accuracy requirements， but the cost would increase 
dramatically as the accuracy requirement increases. Alternatively, a more cost-effective 
solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By 
modifying the mathematical model in the controller, the actual errors of the robot can be 
compensated. This is the essence of robot calibration. Simply put, robot calibration is the 
process of defining an appropriate error model and then identifying the various parameter 
errors that make the error model match the robot as closely as possible. 
 
This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant 
serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF 
hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge 
workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and 
stiffness for the whole structure. The main objective of the study is to develop a suitable 
calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To 
this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) 
error model are developed for error modeling of the proposed robot. Furthermore, two kinds 
of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov 
Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the 
derived error model. A measurement method based on a 3-2-1 wire-based pose estimation 
system is proposed and implemented in a Solidworks environment to simulate the real 
experimental validations. Numerical simulations and Solidworks prototype-model validations 
are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the 
calibration algorithms. 
 
 
Keywords: error modeling, parameter identification, kinematic calibration, hybrid robot, 
serial-parallel robot, Markov Chain Monte Carlo, product-of-exponential, differential- 
evolution. 
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INTRODUCTION 

1.1 Background and Motivations 

This work results from a joint international R&D project named ITER (International 
Thermonuclear Experimental Reactor). ITER will be the largest experimental fusion facility 
in the world and is designed to demonstrate the scientific and technological feasibility of 
fusion power for energy purposes [1]. The 3D model of the ITER machine is shown in Figure 
1. The vacuum vessel (VV) of ITER consists of nine sectors whose inner and outer walls are 
welded together by a field weld.  It will measure over 19 meters across by 11 meters high, 
and weigh in excess of 5,000 tons [2]. The assembly of VV involves various tasks, such as 
welding, machining, NDT testing, measuring the gap between two adjacent sectors and 
transporting a premade splice plate to match the measured gap. All of these assembly tasks 
are required to be performed by a robot from inside the ITER VV. The detailed discussion 
can be found in Publication 3. Due to the requirements of a big workspace, a big payload and 
high accuracy (±0.1 mm) for the assembly robot, neither a commercially available serial 
robot nor a parallel robot can be directly used. To solve this problem, a 10 degree-of-freedom 
(DOF) redundant serial-parallel hybrid robot, IWR (Intersector-Welding/Cutting-Robot), was 
developed at Lappeenranta University of Technology, Finland [3], as shown in Figure 2. The 
serial part of the hybrid robot is used to enlarge workspace while the parallel part is used to 
provide high load capabilities and stiffness for the whole structure.  

 
	

Figure 1. International Thermonuclear Experimental Reactor (ITER). 
 

Two adjacent sectors 
of the Vacuum Vessel 
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Figure 2. The experimental robot prototype developed at LUT. 
 

The inaccuracy of a robot may originate from a number of error sources, geometric errors 
such as backlash, manufacturing and assembly, gear and bearing wear, measurement and 
control, dimensional tolerances of joint actuators and controllers, and non-geometric errors, 
such as temperature variation of the environment, elastic deformations of the structural 
components of robots and so on [4][5]. As a matter of fact, all these errors are uncertain in 
nature; therefore a suitable error model has to be established to predict the robot’s 
performance. For more details of the significance of various error sources, please refer to 
Publication 4. The essence of kinematic calibration is to define an appropriate error model, 
identify a vector of parameter errors and to compensate them in the robot controller so as to 
make the error model match the real robot as closely as possible. It is an integrated process 
consisting of the modelling, measurement, identification and compensation [8]. To illustrate 
this calibration concept and hence provide a framework for later chapters, a simple SCARA 
robot is considered, as shown in Figure 3. In the design stage, the link lengths of a and b 
would be given by a nominal dimension and a machining tolerance limit. The two axes of the 
revolute joints are intended to be parallel to each other and perpendicular to the u-v plane. 
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Figure 3. SCARA robot and kinematic diagram of its two revolute joints. 

 
The relationship between the revolute joint displacements (ߙ௜,  ௜)and the nominal position ofߚ
the end point (࢟௜

௡) in the ith pose configuration can be written as 
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To develop an error model, assume that the manipulator has been constructed and the lengths 
of link a and b are affected by slight machining errors ܽߜ and	ܾߜ; then the error model of the 
two revolute joint mechanism can be written as 
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The second step after obtaining the error model is to measure the end-point pose accurately to 
get a set of measured positions,	࢟௜

௠. In the third step, we can establish a least-square objective 
function based on the deviations between the measured data and the error model predicted 
data. The parameter errors can be identified by optimizing the following objective function 
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In the final step, the identified parameter errors are substituted into the error model to obtain 
an accurate kinematic model with known parameters that characterizes an accurate 
relationship between the joint variables and end-effector pose. 

1.2 Objective and Scope of the Study 

The main objective of the study is to develop a calibration method to improve the accuracy of 
a serial-parallel hybrid robot. The scope of the study includes: 

 Kinematic and error modeling of the serial, parallel and redundant serial-parallel hybrid 
robot.  

b) Kinematic diagram of the two revolute joints a) SCARA robot 
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 Parameter identification of high nonlinear, high dimensional, multi-modal and global 
optimization problems. 

1.3 Main Contributions 

The most significant contributions of this work are summarized as follows:  

 A hybrid modeling method, a combination of the Denavit–Hartenberg (DH) modeling 
method and the vector chain analytical modeling method, developed to calibrate the 
redundant serial-parallel hybrid robot. 

 Extending the product-of-exponentials (POE) modeling and calibration method from 
a serial robot to a redundant serial-parallel hybrid robot.  

  Integrating the Marko Chain Monte Carlo (MCMC) algorithm with the Differential-
Evolution (DE) optimization algorithm for parameter identification and parameter 
redundancy analysis.  

 Employing the Differential-Evolution optimization algorithm for parameter 
identification of the robot with the POE-based error model. 

1.4 Organization of the Thesis 

This thesis consists of two parts. The first part has six chapters which gives an introductory 
overview. The second part is composed of five original scientific journal papers and 
conference articles. In the first part, Chapter 1 introduces the background, motivation, 
objective, research scope and contributions of the thesis; Chapter 2 gives a literature review 
of the error modeling and parameter identification method for robot calibration; Chapter 3 is 
the heart of the work. It proposes solutions to solve the kinematic and identification problems 
of  the redundant serial-parallel hybrid robot. The main idea has been included in publications 
1-7; Chapter 4 demonstrates some numerical simulations to verify the effectiveness of the 
proposed methods for a 10-DOF redundant serial-parallel hybrid robot developed at 
Lappeenranta University of Technology, Finland. The relevant work of the 10-DOF hybrid 
robot can be referred to the attached Publications 1-7. Chapter 5 presents a cost-effective 
wire-based measurement system which is simulated in the Solidworks® assembly CAD 
prototype model to calculate the end-effector poses of the proposed robot. Based on these 
measured end-effected poses, the actual experimental conditions can be simulated. Chapter 6 
concludes the study. 
 



CHAPTER	2	
 

 
23 

 

STATE OF THE ART – LITERITURE REVIEW 

In most general situations, robot calibration can be classified into two types [6], static 
calibration and dynamic calibration. Static calibration identifies the parameters primarily 
influencing the static or time invariant positioning characteristics of a manipulator (e.g. joint-
axis geometries, joint offset and gear eccentricities, etc.) whereas dynamic calibration is used 
to identify parameters primarily influencing motion characteristics of the manipulator (e.g. 
forces, actuator torques, accelerations, mass, inertias, damping, elasticity, etc.) [7]. 
 
Robot calibration is a process integrating four steps [8]:  The first step is to select a suitable 
mathematic model to relate the joint displacements to the end-effector pose. The accuracy of 
the robot will be largely dependent on how accurately this mathematic model can reflect the 
real robot. The second step is about data acquisition. For self-calibration methods [9][10][11], 
the built-in sensor readings from the passive joints and the actuated-joints are imperative.  
The self-calibration methods are suitable for calibration of a closed-loop mechanism (parallel 
robot) if the passive joint displacements can be obtained from built-in sensors. Otherwise, 
classical or external calibration methods have to be used [12][13][14]. The purpose of the 
external calibration methods is to calibrate an open-loop mechanism by using an external 
measurement instrument to obtain the position and orientation values of the end-effector.  
Following the error modeling and data acquisition processes is parameter identification, 
which is usually carried out by means of numerical optimization methods based on least-
square fitting. Finally, the identified parameters and the refined model are implemented in the 
robot’s position control software to get the desired position.  
 
In this work, we focus on the error modeling and parameter identification issues for a static or 
kinematic calibration. Section 2.1 reviews the state-of-the-art kinematic and error modeling 
methods for serial, parallel and hybrid serial-parallel robots. Section 2.2 gives the literature 
review of the main contributions made so far to parameter identification. 

2.1 Kinematic and Error Modeling Methods 

A kinematic model needs to be developed for static robot calibration in order to find true 
mapping between the joint displacements and the end-effector poses. A good kinematic 
model for calibration should meet three requirements, i.e., completeness, proportionality, and 
minimality [15][16].  
 
Completeness: A complete model should contain a sufficient number of independent and 
identifiable parameters to specify the mechanical structure of a robot. For a serial robot, 
Khalil and Gautier [ 17 ] proposed an identification method in which the identifiable 
parameters are calculated from QR decomposition of the analytical observation matrix. 
Besnard and Khalil [18] extended this method to determine the identifiable parameters of 
parallel robots even though the identification Jacobian matrix cannot be obtained analytically. 
Furthermore, for the serial robot, the minimum number of geometrical parameters is given by 
Mooring et al. [8] 

C = 4R + 2P +T ,       (4) 
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where R and P are the number of revolute and prismatic joints respectively, and T is the 
number of end-effector pose parameters measured by an external measurement instrument.  
 
For multi-loop parallel robots, the number of independent parameters can be calculated by 
using the formula proposed by Vischer [19] 

C =3R+ P +SS + E+6L + 6(F-1) ,     (5) 

where R is the number of revolute joints, P is the number of prismatic joints, SS is the number 
of pairs of spherical joints, E is the number of measurement encoders, L is the number of 
loops and F is the number of arbitrarily located frames. 
 
Proportionality or model continuity: Proportionality addresses the problem of mathematic 
singularities, which implies that small changes in the real robot structure should reflect the 
corresponding small changes in the parameters. For instance, the Denavit & Hartenberg (DH) 
model [20] uses a minimum set of kinematic parameters to describe the relationship between 
two adjacent joint axes. This model can meet the completeness property, but it fails to be 
proportional when the two consecutive joint axes are parallel or nearly parallel. To avoid the 
singularity problem, a succession of models have been developed: Hayati [21] proposed a 
modified DH modeling method by incorporating an extra rotation parameter into the parallel 
revolute axes; Veitschegger and Wu [ 22 ] developed a linear and a second-order error 
modeling methods based on the modified DH model; Stone and Sanderson [23] developed an 
S-model which uses six parameters for each link and these parameters are converted to DH 
parameters. The zero-reference model proposed by Mooring [24] does not rely on the DH 
formalism; it contains a reference coordinate system fixed in the work space, and an end-
effector coordinate system attached to the end-effector of the robot. The product-of-
exponential (POE) model presented by Park and Okamura [25] can also be regarded as a 
zero-reference model which is suitable for modeling manipulators with both revolute and 
prismatic joints. The POE modeling method is mathematically appealing because of its 
connection with the Lie group, especially the one-parameter subgroups of Euclidean motions 
[26].  It has proven to be a useful tool in many fields such as robot kinematics [27], motion 
control [28][29]and descriptions of mechanical compliance [30]. Significantly, the POE 
model can perfectly meet the proportionality properties since the kinematic parameters in the 
POE model show smooth variations in accordance with the small changes in joint axes. 
Furthermore, it is unnecessary to attach local frames to each joint since all the kinematic 
parameters are expressed in a fixed reference frame.  
 
Minimality: The kinematic model must contain only a minimal number of parameters and 
the redundant parameters have to be eliminated since they would deteriorate the identification 
result [31][32]. 
 
For a serial robot, the most popular modeling methods are the DH model and the Modified 
DH model. The POE modeling method has also attracted some researchers’ interests in recent 
years. Chen, et al. [33] proposed a local POE formula for modular robot calibration. Unlike 
the traditional POE formula, the joint axes in the local POE formula are expressed in their 
respective local frames instead of in the base frame. The main advantage of this formula is 
that the local coordinate frames can be arbitrarily assigned onto their corresponding links. 
Therefore, one can always assume that the kinematic errors only exist in the initial poses of 
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the consecutive local frames. The local POE formula has been employed for calibration of the 
4-DOF SCARA type serial robot, the 5-DOF tree-typed modular robot [34] and the three-
legged modular reconfigurable parallel robots [35]. In the work by He [36], the identifiability 
of the POE error model was discussed and the explicit expressions of the POE error model 
were presented. It greatly simplifies the analysis of the mechanism and makes the POE 
representation superior to the DH method. For parallel robots, the commonly used kinematic 
modeling method is the vector chain analytical method [ 37 ][ 38 ]. However, very few 
publications can be found and there is no generic modeling method available for a hybrid 
serial- parallel mechanisms. Fan, et al. [39] presented a calibration method for a hybrid five-
degree-of-freedom (DOF) manipulator. In his work, the serial part of the robot is taken as a 
ruler to measure the end-effector’s offset caused by a parallel mechanism at different 
configurations. The calibration error model is dependent on the measurement method. In 
Publications 1, 2 and 4, we propose a hybrid error modeling method for a redundant serial-
parallel robot. This method combines the DH model for a serial mechanism and the vector 
chain analytical method for a parallel mechanism. The advantage of this method is that the 
external pose measurement of the connection point between serial and parallel mechanisms is 
avoided.  Therefore, the two hybrid parts do not need to be calibrated separately but can be 
regarded as a whole, and then the pose measurement of the end-effector can fulfill the 
calibration purpose effectively. In Publications 5 and 7, we extend the application of the POE 
error modeling method from serial robots to serial-parallel hybrid robots.   

2.2 Parameter Identification Methods 

Once a suitable mathematic model has been selected for a robot, the task of parameter 
identification would be to select a suitable optimization method to identify the parameter 
errors. Generally, the optimization method in this step can be categorized into three different 
types: iterative linearization, nonlinear optimization and statistical estimation.  
 
 The iterative linearization method   

The idea behind this method is to linearize the kinematic model to obtain an identification 
Jacobian matrix and an initial estimation of the structural parameters, and, recursively, to 
solve the linear system until the average error reaches a stable minimum. The advantage of 
this method is less computation time to converge, but the identification Jacobian may suffer 
from numerical problems of ill-conditioning. To overcome this problem, the Levenberg and 
Marquardt (LM) minimization techniques can be used [40][41]. The application of this 
method for the calibration of parallel mechanisms can be seen in works [42][43][44].  
 
 Nonlinear optimization method 

The nonlinear optimization method minimizes the sum of square errors between the measured 
and predicted values based on the Euclidean norm. This method is commonly used in high 
nonlinear and complex systems where the identification Jacobian matrix is not easy to derive. 
For the nonlinear optimization method, some global optimization algorithms (such as the 
artificial neural network [45], genetic programming [46], particle swarm optimization (PSO) 
[47], genetic algorithms (GA) [48] and differential-evolution (DE) [49] algorithms) have 
been successfully employed to calibrate specific serial or parallel robots. Comparison of these 
global optimization methods for benchmark or real-world applications can be found in 
literature publications [50][51][52]. The benchmark comparison of DE, GA, PSO and 
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evolutionary algorithm (EA) [50][51] demonstrated that DE algorithms are more reliable and 
easy-to-use than other optimization algorithms. The comparison of DE, GA and PSO [52] 
shows that DE is clearly and consistently superior to GA and PSO in terms of precision as 
well as robustness of results for hard clustering problems. In general, DE is a simple but 
effective evolutionary computation method to solve nonlinear and global optimization 
problems [53][54]. The DE-based identification method is a nonlinear optimization method 
and is purely stochastic; it avoids problems in defining search direction, and whether the 
initial values are close to the optimum solution or not is insignificant. Therefore, the 
development of an identification matrix is not necessary and the numerical problem of ill-
conditioning of identification matrix can be avoided. Owing to the outstanding performance 
of DE and the complicated error model of the proposed robot, the DE algorithm was 
employed in Publications 1, 5 and 7 to identify parameter errors and to find numerical 
solutions for the robot forward kinematics.  
 
 Statistical estimation method 

Due to the uncertainty of parameter errors, some statistical estimation algorithms have been 
employed to identify robot parameters and to analyze the uncertainties of identification.  
Faraz [55] proposed an extended Karman filter (EKF) for the IMU-camera calibration. In the 
work of Omodei [56], the EKF estimation method was used to identify the parameter errors 
of a 4-DOF SCARA robot.  In the same paper, the experimental comparison of the iterative 
linearization method, the nonlinear optimization method and the EKF parameter 
identification method for the same industrial robot were also discussed. Julier [57] pointed 
out that the disadvantage of the EKF is difficult to implement and tune, as it is only reliable 
for the systems that are almost linear on the time scale of the updates. Many of these 
difficulties arise from the use of linearization. If the distribution of the prediction errors 
deviates further from normality, for instance, when the measurement noises are not normally 
distributed, or when higher-order moments are needed to account for the high nonlinearities 
in one's model, alternative approaches, such as particle filters, MCMC methods and Gaussian 
mixture filters can be used [58]. In Publication 2, the MCMC method was used to estimate 
parameter errors of the hybrid robot. Furthermore, the MCMC method has also been used to 
analyze parameter redundancy and parameter identifiability of the hybrid error model in 
Publication 6.  
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NOVEL METHODS FOR KINEMATIC CALIBRATION OF A HYBRID 
ROBOT  

In this chapter, the main contributions of our seven publications are summarized. We propose 
two kinds of error modeling methods and two kinds of parameter identification methods for a 
10-DOF redundant serial-parallel hybrid robot. Section 3.1 and Section 3.4 present the 
Denavit-Hartenberg (DH) hybrid modeling method and the Markov Chain Monte Carlo 
(MCMC) parameter identification method which can also be found in Publications 1, 2 and 4. 
Section 3.2 and Section 3.3 report a Product-of-Exponential (POE) error modeling method 
and a differential-evolution (DE) parameter identification method which can also be found in 
Publications 5 and 7.  

3.1 A Denavit-Hartenberg Hybrid Error Model for a Serial-Parallel Hybrid 
Robot 

The Denavit-Hartenberg (DH) modeling method and the modified Denavit-Hartenberg 
modeling method are commonly used for the calibration of serial robots [8].  However, for a 
parallel robot connected by spherical and universal joints, the DH model would not be a 
suitable modeling method. The vector chain modeling method for the inverse kinematics of a 
parallel robot is the most popular solution [59][60]. In this section, a hybrid modeling method 
is proposed. The combination of the DH model and the vector chain model can be used for 
the hybrid robot serially connected by serial and parallel mechanisms.  

3.1.1 The kinematic model 

Given two consecutive link frames, Fi-1 and Fi, on a robot manipulator, frame Fi will be 
uniquely determined from frame Fi-1 using parameters di, ai, αi, and θi in Figure 4. The DH 
parameters can be established according to the following rules [20]: 
 
 The Z vector of any link frame is always on a joint axis.  The only exception to this rule 

is for the robot end-effector (tool) with no joint axis. 

 Let di be the joint distance from the origin of the coordinate system i-1 to the intersection 
of Zi-1 axis and Xi-axis along Zi-1-axis. Then di is variable for the prismatic joint and 
constant for the revolute joint. 

 The link length ai is defined as the common perpendicular of axes Zi-1 and Zi. 

 Let θi be the rotated angle from Xi-1-axis to Xi-axis about Zi-1-axis. Then θi is variable for 
the revolute joint and constant for the prismatic joint. 

 The twist angle αi is defined as the rotation from Zi-1-axis to Zi-axis about Xi-axis. 
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Figure 4. DH convention for the robot link coordinate system [61]. 
 
Based on the above DH parameter convention, the coordinates of the 4-DOF serial 
mechanism for the 10-DOF hybrid robot can be established as shown in Figure 5, and the 
corresponding kinematic parameters are listed in Table 1. In what follows, the 4-DOF serial 
mechanism is named as carriage. 
 

 
Figure 5. Coordinate system of the carriage. 
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Table	1.	DH	parameters	for	the	carriage	

Link No. αi ai di θi 

1 π/2 0 d1(variable) 0 

2 π/2 0 d2(variable) π/2 

3 π/2 a3 d3 θ3(variable)

4 -π/2 a4 0 θ4(variable)
 
Substituting the above DH link parameters into Equation (6), we can obtain the DH 
homogeneous transformation matrices 0A1, 

1A2, 
2A3, 

3A4 and nominal forward kinematics of 
the carriage 0T4 by 
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where sine and cosine are abbreviated as s and c, and the same abbreviations will also be 
adopted in the following sections. 
  
A schematic diagram of the hexapod parallel mechanism is shown in Figure 6. Two Cartesian 
coordinate systems, frame {4}, and frame {5}, are attached to the connecting platform and 
the moving platform respectively. Six actuated legs are connected to the connecting platform 
by universal joints and to the moving platform by spherical joints. In the following, we 
denote this water-hydraulic-actuated hexapod parallel manipulator as Hexa-WH. 
 
For nominal kinematic parameters of Hexa-WH, let li be the unit vector of the direction from 
A୧ to B௜, and li be the magnitude. Then the inverse kinematics of leg i for the hexapod parallel 
manipulator [62][63] can be expressed by the following vector-loop equation 

 1,2,...6 ,45
5

4
5

4  il iiii abRPl 	,	 	 	 	   (8) 

where 4P5 is the position vector of the moving platform frame {5} with respect to the 
connecting platform frame {4}; 4ai and 5bi are the coordinate vectors of the universal joint Ai 
in frame {4} and the spherical joint Bi in frame {5}; 4R5 is the Z-Y-X Euler transformation 
matrix which represents the orientation of frame {5} with respect to frame {4} 
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Figure 6. Coordinate system of Hexa-WH parallel manipulator. 

 
The schematic diagram of the redundant serial-parallel hybrid manipulator, as shown in 
Figure 7, can be obtained by combining the carriage and the Hexa-WH mechanisms together. 
The coordinate frame {4} of Hexa-WH is coincident with the end-tip frame of the carriage. 
The fixed reference frame {0} is placed at the left rail of the carriage. For this hybrid 
structure, a hybrid model can be expressed as a vector-loop equation 

ହࡼ  ൌ
଴ ସࡼ ൅ ସࡾ ∙ ହࡼ ൌ ସࡼ ൅ ௜࢒ସ൫݈௜ࡾ ൅ ସࢇ ௜ െ ସࡾ ହ ∙ ହ࢈ ௜൯

଴଴ସ଴଴  

																				ൌ ସࡼ ൅ ସࡾ ∙ ݈௜࢒௜ ൅ ଴ࡾ ସ ∙ ସࢇ ௜ െ ଴ࡾ ହ ∙ ହ࢈ ௜
଴଴  ,        (10) 

From Equation (10), the inverse solution of the hybrid robot, i.e., the nominal leg lengths can 
be derived as 

         ݈௜࢒௜ ൌ ൫ ૝ࡾ
଴ ൯

ିଵ
൫ ૞ࡼ െ ૝ࡼ െ ૝ࡾ ∙ ࢏ࢇ ൅ ૞ࡾ ∙ ࢏࢈

ହ଴ସ଴଴଴ 	,			i ൌ 1, 2,⋯ , 6൯ ,    (11) 

where 0R5 and 0P5 are the orientation matrix and the position vector of the end-effector frame 
{5} with respect to the fixed reference frame {0}. 
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Figure 7. Schematic diagram of the hybrid IWR robot. 

3.1.2 Error model 

According to the approaches proposed by Veitschegger and Wu [22], a differential change 
݀ ௜ۯ
௜ିଵ  between two successive joint frames will result if small errors occur in the DH 

parameters θi, di, ai and αi, and the predicted relationship between two consecutive joint 
frames can be expressed as 
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Where i-1Ai, the homogeneous transformation matrix containing four nominal DH link 
parameters, can express the nominal relationship between the consecutive joint frames i and 
(i-1); di-1Ai,  the differential changes resulting from the link parameter errors and the actuator 
joint offset errors, can be approximated as a linear function by the first order Taylor’s series 
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where δθ௜, δd௜, δa௜	and	δα௜ are the small DH parameter errors; and 
డ ೔షభ࡭
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డఏ೔
, 
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,
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డ௔೔
	and	

డ ೔షభ࡭
೔

డఈ೔
 are the partial derivatives calculated by nominal geometrical link 

parameters.  From Equation (6), taking the partial derivative of  i-1Ai with respect to θi, di, ai 
and αi respectively, we can obtain 
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Let d ௜ିଵۯ
௜ ൌ ௜ିଵۯ

௜δ ௜ିଵۯ
௜ , then 

          δ ௜ିଵۯ
௜ ൌ D஘೔δθ௜ ൅ Dୢ೔δd௜ ൅ Dୟ೔δa௜ ൅ D஑೔δα௜,     (18) 

where , , ,
i i i id a D D D D can be solved as follows: 
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Substituting Equations (19) through (22) into Equation (18) and expanding it into a matrix 
form we can obtain 
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The above expression gives the general differential translation and rotation errors for joints 
which are not parallel or nearly parallel. In the case of the 4-DOF carriage, the predicted 
forward solution with kinematic errors can be expressed as 









 





10
)( 4

0
4

04

1

11
4

0
4

0
4

0
pp

i
i

i
i

ip dd
PR

AATTT

　

.    (24) 

Expanding Equation (24), we can get the first-order, second-order and higher-order 
differential products. The work conducted by Veitschegger and Wu [22] concluded that the 
first-order model is sufficiently accurate for most applications. As the size of the manipulator 
structure or the size of the input kinematic errors increases, the effect of the second-order 
error terms increases. Whether or not the first-order model is adequate will always depend on 
the manipulator size, configuration, input kinematic errors, and the required accuracy of the 
model. If the second- and higher-order differential errors are not considered, the relationship 
between the differential change in the carriage end-tip point and the change in link 
parameters can be expressed as 
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where ܂ߜଵ  is the first-order error transformation matrix in the fixed reference frame. 
According to Paul’s work [20], the first-order error transformation matrix has the following 
matrix structure, although values of their elements are in general different 
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where [݀ߜ௫, ݀ߜ௬ ,݀ߜ௭]T are the translational errors and [ߠߜ௫, ߠߜ௬,	ߠߜ௭]T are the rotational 
errors.  
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From Equation (24), the predicted orientation matrix ସ܀
୮଴  and position vector ସ۾

୮଴  of frame {4} 
with respect to frame {0} can be formulated, and the unknown parameter errors δθi, δdi, δai 
and δαi will be taken as variables in the final objective function. The DH convention from 
Paul shows that: for a revolute joint whose axis Zi is a line in space, all four parameter errors, 
including the kinematic parameters and the joint offset errors, have to be calibrated; for a 
prismatic joint whose Zi is a free vector, only two parameters that describe its orientation (δαi 
and δθi) are required, and the other two must be set to be zero. Since the carriage consists of 
two prismatic joints and two revolute joints, the number of parameter errors for the serial part 
is 12. 
 
For the Hexa-WH parallel manipulator, when the manufacturing and assembling errors are 
introduced, different error models can be derived based on a different error modeling method. 
For instance, Wang and Masory [64] employed the DH modeling method to develop an error 
model where the universal joint is replaced by two revolute joints and the spherical joint is 
replaced by three revolute joints; then the problem of error modeling for the 6-UPS 
mechanism is transferred to that of error modeling for the 6-RRPRRR mechanism. By using 
this configuration, 22 parameter errors can be obtained in each joint-link train.  Another 
modeling method used for the hexapod parallel manipulator is the vector chain modeling 
method. The applications of this method can be found in the literature [65][66][67]. With this 
method, the universal joint and the spherical joint can be simplified as a coordinate point; 
thus the consideration of joint axis misalignments of the universal joint is unnecessary. 
Denoting the coordinate deviations between the real coordinate values ( ସ܉ ௜

୰, ହ܊ ௜
୰	) and their 

nominal values (4ai , 
5bi) as δ4ai and δ5bi, and the leg offset error as δli, then the error model 

of the Hexa-WH can be written as 

݈୧
୮ ൌ ሺ݈୧ ൅ δ݈୧ሻܔ୧

୮ ൌ ହ۾
୫ସ ൅ ହ܀

୫ସ ൫ ୧܊
ହ ൅ δ ୧܊

ହ ൯ െ ൫ ୧܉
ସ ൅ δ ୧܉

ସ ൯, i ൌ 1,2,⋯ ,6 . (27) 

Accordingly, we have seven parameter errors in each leg: three coordinate parameter errors 
for joint Ai, three coordinate parameter errors for joint Bi, and one error parameter for leg 
joint offset. Thus, the number of parameter errors for the Hexa-WH is 42.   
 
Integrating the serial and parallel error model together, the final hybrid error model for the 
hybrid robot can be obtained as 

ହ۾
୫଴ ൌ ସ۾

୮଴ ൅ ସ܀
୮଴ ହ۾

୫ସ ൌ ସ۾
୮଴ ൅ ସ܀

୮଴ ቂ      iiii
p

ii ll bbRaal 55m
5

444
i   ቃ. (28) 

From Equation (28), the predicted leg lengths can be rewritten as 

 ݈୧
୮ ൌ ሺ݈୧ ൅ δ݈୧ሻܔ୧

୮ 

																			ൌ ൫ ସ܀
୮଴ ൯

ିଵ
ൣ ହ۾

୫ െ ସ۾
୮଴଴ െ ସ܀

୮଴ ൫ ୧܉
ସ ൅ δ ୧܉

ସ ൯ ൅ ହ܀
୫଴ ൫ ୧܊

ହ ൅ δ ୧܊
ହ ൯൧,  (29) 

where, ହࡼ
௠଴   and ࡾହ

௠଴  denote the measured position vector and orientation matrix of the end-
effector, whose values can be obtained via the accurate measurement instrument; ସࡼ

௣଴  and 
ସࡾ
௣଴  denote the carriage end-tip position vector and orientation matrix predicted by the 

model.  
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3.1.3 Nonlinear identification model 

The purpose of the parameter identification process is to find a vector of parameter errors to 
improve the kinematic model’s accuracy.  To accomplish this, a linear or nonlinear least-
square objective function has to be constructed. For the proposed hybrid error model, the 
error residuals between the measured leg length ݈௜

௠  and the predicted leg length ݈௜
௣  in 

Equation (29) can be adopted to formulate an objective function based on the Euclidean norm. 
Supposing a set of measurement data has been collected, the task of the identification 
algorithm is to find a suitable combination of 54 parameter errors (variables) 
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to minimize the objective function 
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θ       (30) 

In Equation (30), N is the number of measurement configurations; ݈௜,௝
௣  is the model predicted 

leg length at the measurement location j for leg i, whereas ݈௜,௝
௠  is the measured leg length at 

the measurement location j for leg i; θ is the vector of parameter errors (variables) in the 
hybrid error model. The total number of these variables is 54, of which 12 are from the 
carriage while the remaining 42 variables are from the Hexa-WH parallel manipulator. 

3.2 The Product-of-Exponential Error Model for the Serial-parallel Hybrid 
Robot 

The product-of-exponential (POE) error modeling method was originally developed for the 
calibration of a serial robot connected by a revolute and prismatic joint [68].  In the following 
two sections, we will demonstrate that the POE modeling method can also be used for the 
error modeling of redundant serial-parallel hybrid robot. The mathematic background of the 
POE modeling method can be found in Appendix A.  

3.2.1 Kinematic model 

Unlike the Denavit-Hartenberg modeling method, there are only two frames, the base frame 
{S} and the tool frame {T}, that are needed for the POE model. Furthermore, the reference 
configuration of the POE model is usually chosen to make the kinematic analysis as simple as 
possible since any configuration of the manipulator can be defined as a reference 
configuration. Based on the POE conventions, the schematic of the hybrid IWR robot in its 
reference configuration can be established (Figure 8). In this reference configuration, the base 
frame {S} and the tool frame {T} coincide with each other on the end-effector. Parameters q1, 
q2, q3, q4 and di (i=1, 2, ⋯, 6) represent the actuated-joint displacements;  ૆ୱଵ, ૆ୱଶ, ૆ୱଷ, ૆ୱସ	and 
ξpi	ሺi ൌ 1,2,⋯ ,6ሻ represent the joint twist of serial and parallel mechanisms; points p3 and p4 

represent the arbitrarily selected points on the corresponding joint axis, which can be used to 
calculate the position of the axis with respect to the origin of the base frame {S};  l0, l1, l2, l3 
and l4 represent the link lengths.  

Due to the redundant structure, the inverse solution of the hybrid robot can have an infinite 
number of joint configurations for the same given end-effector pose. However, if the forward 
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solution of the serial mechanism has been decided, then the inverse solution of the parallel 
mechanism can be easily obtained. Therefore, in this section, the forward kinematics of the 4-
DOF serial mechanism will be derived first, and then its predicted solution can be integrated 
into the inverse kinematics of the 6-DOF hexapod parallel manipulator to obtain the hybrid 
model. 
 

 

Figure 8. Schematic diagram of the IWR robot in its reference configuration. 
 
Based on the serial-parallel hybrid structure and the POE formula, the forward kinematics of 
the carriage, i.e. the pose of the connecting platform frame {5} in terms of the base frame {S}, 
can be expressed as 

               			gୱହሺܙሻ ൌ ݁૆෠ೞభ∙௤భ ∙ ݁૆෠ೞమ∙௤మ ∙ ݁૆෠ೞయ∙௤య ∙ ݁૆෠ೞర∙௤ర ∙ gୱହሺ૙ሻ                (31) 

where gs5(0) represents the transformation matrix of platform frame {5} with respect to base 
frame {S} in the reference configuration where the input joint displacements q=0. 
 
The inverse solution of the hexapod platform is quite simple and obvious from the geometry 
of the manipulator. Let  ܉ୱ୧ ∈ ࣬ଷ , ܊ୱ୧ ∈ ࣬ଷ

 be the position vector of points Ai and Bi with 
respect to the base frame {S}; let ܉ହ୧ ∈ ࣬ଷ be the position vector of point Ai with respect to 
the platform frame {5}; let ܊୲୧ ∈ ࣬ଷ be the position vector of point Bi with respect to the tool 
frame {T}. Then the extension of the prismatic joints, i.e. the leg lengths of the Hexa-WH, 
can be obtained 

															݀௜ ൌ ௦௜܊‖ െ ‖௦௜܉ ൌ ‖gୱ୲ ∙ ௧௜܊ െ gୱହሺܙሻ ∙ ,‖ହ௜܉ ݅ ൌ 1, 2,⋯ , 6,   (32) 

where gst is the desired pose configuration of tool frame {T} with respect to base frame {S};  
and gs5(q) is the forward solution of the carriage.  
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3.2.2 The error model 

In practice, the manufacturing and assembling errors are unavoidable. For instance, the actual 
leg length would have a joint offset error, the real locations of points Ai and Bi would never 
agree with the designed ones, and the twist of the serial mechanism would also have some 
deviations. Taking these kinematic parameter errors into consideration, the error model of the 
hybrid robot can be written as 

															݀௜
௣ ൌ ݀௜ ൅ ௜݀ߜ ൌ ฮ܊௦௜

௣ െ ௦௜܉
௣ ฮ,								݅ ൌ 1, 2,⋯ , 6,        (33) 

where ݀ߜ௜ is the leg  joint offset; ܊௦௜
௣ ൌ g௦௧

௠ ∙ ሺ܊௧௜ ൅ ௧௜ሻ;  g௦௧܊ߜ
௠  is the measured pose of  the 

end-effector frame {T} with respect to base frame {S}; ܉௦௜
௣  is the predicted position vector of 

point Ai  with respect to base frame {S}, which can be expressed  as 

௦௜܉	       
௣ ൌ ௦௜܉ ൅ ௦௜܉ߜ ൌ ௦௜܉ ൅ ሻࢗg௦ହሺߜ ∙ ହ௜܉ ൅ g௦ହሺࢗሻ ∙  ହ௜܉ߜ

												ൌ ௦௜܉ ൅ ൫ߜg௦ହሺࢗሻ ∙ g௦ହሺࢗሻ
ିଵ൯ ∙ ହ௜܉ ൅ g௦ହሺࢗሻ ∙ ݅								,ହ௜܉ߜ ൌ 1, 2,⋯ , 6,  (34) 

where the transformation error matrix ሻࢗg௦ହሺߜ	 ∙ g௦ହሺࢗሻ
ିଵ

 can be calculated according to  
Equation (A.12).   

According to the identifiability anylysis by He [36], the maximum number of identifiable 
parameters in a serial robot with r number of revolute joints and t number of prismatic joints 
is 6r+3t+6. Since we have two prismatic joints and two revolute joints while there is no pose 
measurement from the tip-point of the carriage, the number of independent identifiable 
parameters resulted from the carriage is 18. Furthermore, each location of the spherical joints 
Ai and Bi is affected by three coordinate parameter errors, and each leg is affected by one 
joint offset error. Thus a vector of 42 parameter errors would result from the 6-DOF Hexa-
WH parallel manipulator. Note that the parameter errors can also be reduced from 42 to 30 by 
attaching the upper platform frame {T} and the lower platform frame {5} of the Hexa-WH to 
the joints Bt1 and A51 respectively [69], but this rearrangement would increase the complexity 
of the hybrid model and would not satisfy the completeness requirement as a good model.  

3.2.3 Nonlinear identification model 

Based on the error model Equation (33), a nonlinear objective function can be formulated. 
The idea of this nonlinear optimization algorithm is to minimize the deviations between the 
measured and the predicted leg lengths based on the Euclidean norm. Supposing the number 
of measured manipulator locations is N, then the task of the identification algorithm is to find 
a suitable combination of the 60 parameter errors (variables) 

                    ી ൌ ሺδ૆௦ଵ, δ૆௦ଶ, δ૆௦ଷ, δ૆௦ସ, δ݀௜, δ܉ହ௜, δ܊୲௜, ሻ,  i=1, 2,⋯ ,6 ,                     (35) 
to minimize  

                            SS஘ ൌ ∑ ∑ ൫݀௜,௝
௠ െ ݀௜,௝

௣ ൯
ଶ଺

௜ୀଵ
ே
௝ୀଵ ,             (36) 

where N is the number of measurement configurations; ݀௜,௝
௠

 
is the measured leg length and 

݀௜,௝
௣  is the predicted leg length at the measurement location j for leg i. 

 

 



 

 
38 

 

3.3 Differential-Evolution Based Parameter Identification Algorithms 

This section gives a basic introduction to the global optimization algorithm, namely the 
differential-evolution algorithm (DE). For more details, please refer to [53]. DE is tailored for 
minimizing real-valued, multi-modal, and nonlinear objective functions. It belongs to a class 
of evolutionary computation algorithms, which utilize mutation, crossover and selection 
operations to mimic the evolutionary process of the real world. According to the DE 
algorithm, the parameter errors in our developed error models can be represented as an 
individual vector θ=(θ1, θ2, …, θD), where D is the individual index of the parameter errors.  
The population in each generation G can be represented as a matrix દ௜,ୋ ∈ ࣬஽ൈே௉, where 
i=1,2, …, NP is the population index defined by user. The flowchart of the DE algorithm is 
shown in Figure 9.  The detailed parameter identification procedures of DE are discussed 
below. 

1) Initialization 

To start a DE optimization process, an initial population as a starting point must be 
created. One way to generate the initial population is to assign a random value for each 
parameter within its feasible boundaries 

),θθ()1,0(θθ ,,,1,,
L

ij
U

ijj
L

ijGij rand      (37) 

where ݆ ൌ 1,2,⋯ , ݅ ;is the individual index for parameter errors ܦ ൌ 1,2,⋯ ,ܰܲ  is the 
population index; and ߠ௝,௜

௅   and ߠ௝,௜
௎  are the lower and upper boundaries of the parameter 

j respectively. After initialization, the population evolves with the operations of 
mutation, crossover, and selection.  

2) Mutation 

The main objective of the mutation operation is to keep a population robust and search 
for new territory. In the step of the DE mutation operation, the new parameter vectors 
are generated by adding a weighted difference vector between two different population 
members to the third member. For each vector	ી௜,ீ , a mutant vector ܕ௜,ீାଵ is generated 
according to the formula of 

)( ,3,2,11, GrGrGrGi F θθθm  .     (38) 

The randomly selected integers have to satisfy the requirement of r1, r2, r3 {1, 2, ⋯ , 
NP} and r1 ≠ r2 ≠ r3 ≠ i. The mutation scale factor F > 0. 

3) Crossover 

The aim of the crossover operation is to increase the diversity of the generated vectors. 
The trial vector is generated as follows 
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  (39) 

where ܩ ൌ 1,2,⋯ , ௠௔௫ܩ   is the generation index for maximum evolutionary 
generations; CR is a crossover rate in range [0, 1];  j୰ is a random value chosen from 
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the set ሼ1,2,⋯ ,  ௜,ீାଵ can get at least oneܝ ሽ. The use of ௥݆ is to ensure that trail vectorܦ

parameter from mutant vector ܕ௜,ீାଵ.  

4) Selection 
In the selection operation of DE, trial vector ܝ௜,ீାଵ  is compared to target vector ી௜,ீ  
by evaluating the objective function values to determine whether the trial vector can 
become a member of the next generation. The vector, which has a smaller objective 
function value, is allowed to evolve to the next generation, i.e. 



 

 
 otherwise.   ,

),()( if ,

,

,1,1,

1,
Gi

GiGiGi

Gi

ff

θ

θuu
θ     (40) 

This selection procedure, guarantees that all individuals of the next generation are as 
good as or better than the individuals of the current population. 

Figure 9. Flowchart of the DE algorithm. 

3.4 Markov Chain Monte Carlo Parameter Identification Algorithms 

This section presents a statistical parameter estimation method, the Markov Chain Monte 
Carlo (MCMC) approach, which basically employs the Metropolis-Hastings algorithm 
[70][71] and has many variants [72][73][74][75]. The basic idea of the MCMC methods is 
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that a Markov chain can be constructed as a stationary distribution, which is also the joint 
posterior probability distribution of parameter errors. The parameter errors can be assigned 
with arbitrary initial guess and then the chain is simulated until it converges to a stationary 
distribution. Observations from the stationary chain can be used to estimate the joint posterior 
probabilities, and to analyze the identifiability of the parameter errors. Moreover, marginal 
distributions of parameters can also be easily obtained by monitoring the values of particular 
parameters in the stationary chain [76]. 
 
In terms of the nonlinear identification model in previous sections, let θ be the vector of 
unknown parameter errors required of identification; let y be a vector of observed random 
variables, which defines a set of measured data. The posterior probability distribution of the 
parameter errors, θ, conditional on observations, y, can be formulated as a Bayes formula 

ሻܡ|ሺી݌ ൌ
ሺીሻ݌ીሻ|ܡሺ݌

׬ ሺીሻ݀ી݌ીሻ|ܡሺ݌
,																																																																														ሺ41ሻ 

where p(θ) is prior distribution (i.e., the probability distribution before examination of the 
data); p(y|θ) is a likelihood function that gives the probability distribution of observations y, 
given error parameter values θ. The most likely values of the parameters are those which give 
higher probability values for the posterior distribution p(θ|y). The point estimates and the 
confidence intervals of θ can be obtained from the posterior distribution in various ways. 
Generally, the mean values of the posterior distribution are commonly used as the point 
estimates of the parameter errors θ, and the α percent credible set is used as a confidence 
interval. Assuming independently and identically distributed Gaussian errors for n 
observations yi, we can have the likelihood function as 
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Let SSી ൌ ∑ ሺ࢟௜ െ ݂ሺࢉ௜, ሻሻଶࣂ
௡
௜ୀଵ , then the same form as the nonlinear identification model in 

the previous sections can be obtained; 	ܡ௜  represents the set of measured data;  ݂ሺ܋௜, ીሻ 
represents the function value predicted by the model;  ܋௜  represents the vector of known 
parameters. 

In the past, Bayesian inference was largely limited to simple models because the normalizing 
constant requires integration over a high-dimensional space. An attractive feature of the 
MCMC methods is that the Markov chain only needs to calculate the ratios of the likelihood 
function. Therefore, the calculation of the normalizing constant ሺ׬  ሺીሻ݀ીሻ and prior݌ીሻ|ܡሺ݌
distribution )(θp  in Equation (42) can be left out [77][78]. A typical MCMC algorithm 
employing the Metropolis rule to explore the posterior distribution ݌ሺࣂ|࢟ሻ  proceeds as 
follows: 
 

1) Initialize the vector of parameter errors θ 

 Select an initial error parameter guess ી଴ by minimizing the objective function 
SSી ൌ ∑ ሺ࢟௜ െ ݂ሺࢉ௜, ሻሻଶࣂ

௡
௜ୀଵ .  
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Generally, the initial guess can be selected arbitrarily for simple models, but for 
high nonlinear and/or high dimensional complex models, the arbitrarily selected 
initial values may slow down the simulation process or even make the simulation 
diverged. Therefore, the initial values should be selected as close to the actual 
values as possible. One way of doing this is through a suitable numerical 
optimization method generating a series of candidate values, but the “best” 
solution can only be determined by trial and error. In this work, the differential-
evolution algorithm is employed to generate the initial guess for the MCMC 
sampling.  

 Define the length of simulation chain Nsimu.
 Generate a proposal distribution )|q( oldθ  and set ܵܵ௢௟ௗ ൌ ܵܵીబ . The algorithm 

based on the LU-decomposition, which factorizes a covariance matrix as the
product of a lower triangular matrix and an upper triangular matrix, is preferred to
generate the proposal distribution since it is quite efficient in generating a large
number of conditional realizations [79].

2) Simulation loop

 Generate θnew from the proposal distribution )|q( oldθ and compute SSnew.  

 Calculate the acceptance probability α

     α ൌ min ቀ1, ௣
ሺી೙೐ೢ|ܡሻ

௣ሺી೚೗೏|ܡሻ
ቁ ∝ min ቀ1, ௣

ሺܡ|ી೙೐ೢሻ

௣ሺܡ|ી೚೗೏ሻ
ቁ ∝ min ቀ1, ݁ି

భ
మ഑మ

ሺௌௌ೙೐ೢିௌௌ೚೗೏ሻቁ.  (43) 

 The new value is accepted if  ܵܵ௡௘௪ ൏ ܵܵ௢௟ௗ or ݑ ൏ ݁ି
భ

మ഑మ
ሺௌௌ೙೐ೢିௌௌ೚೗೏ሻ, where u is

a random number generated in the range of [0, 1].

 Repeat the simulation loop until Nsimu samples have been created.

By using the DE-based parameter identification method, we can get only the point estimation 
of parameter errors, whereas by using the MCMC method, we can obtain both the point 
estimation results and the interval estimation results. Furthermore, the MCMC-based 
identification method can be used to analyze the correlations of parameter errors. The 
drawback of the MCMC-based identification method would be that the selection of initial 
guess is quite arbitrary; for a complex model, too big or too small initial values may lead to 
failure of the identification process. In addition, too large or too small proposal distributions 
would result in failure of the identification process. The proposal distribution should be 
chosen so that the ‘sizes’ of the proposal distribution and the target distributions suitably 
match [80].  
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SIMULATION RESULTS FOR MODEL VALIDATIONS 

This chapter presents some numerical simulation results to verify the effectiveness and 
robustness of the proposed error modeling and parameter identification methods. In the 
environment of Matlab® 7.0, two kinds of error modeling methods and two kinds of 
parameter identification methods are simulated on the same 10-DOF redundant serial-parallel 
hybrid robot as shown in Figure 7 (Section 3.1). The Markov Chain Monte Carlo (MCMC) 
algorithm and differential-evolution (DE) algorithm are used for the simulation of the 
Denavit-Hartenberg (DH) hybrid model considering parameter identifiability unknown. By 
using the MCMC algorithm, the mean values of posterior distribution can be used as the point 
estimates of parameter errors θ, and the correlations of parameter errors can also be observed 
from the stationary chain. From the correlation analysis, we can refine or eliminate redundant 
parameters to obtain a more accurate error model. Section 4.1 provides the simulation results 
of the DH-based hybrid model using the DE-based identification method. Section 4.2 
simulates the MCMC-based method for parameter estimation and correlation analysis of the 
DH-based hybrid model. Section 4.3 presents the simulation results of the DE-based 
identification method for the POE-based model. 

4.1 Denavit-Hartenberg Hybrid Model Using Differential-Evolution 
Identification Method 

To verify the effectiveness of the identification algorithm in Section 3.1, the measurement 
device can be assumed to be perfect to ensure no measurement errors occur. In simulation, 
the open source Matlab® DE code [81] is employed. Based on the scheme of DE/rand-to-
best/1 [53], the DE parameters in the simulation can be set as F=0.75, CR=0.95, D=54, 
NP=600, Gmax=40,000. The simulations are implemented on a computer with an Intel® Core 
2 Duo processor E8500 (3.16GHz) and a RAM (3.25 GB). Simulation procedures are as 
follows: 

1) Randomly generate 100 end-effector measurement poses within the robot workspace
to simulate the measured position ( ହܲ

௠଴ ሻ and the measured orientation matrix ( ܴହ
௠଴ ).

Furthermore, the associated 100 actuated-joint displacements of the carriage are also
randomly generated to simulate the measured joint displacements (Table 2). In the
laboratory experimental test, the end-effector poses can be obtained by external
measuring devices, and the joint displacements can be collected from the built-in
sensor readings.

Table 2. Randomly generated end-effector poses and carriage-joint displacements (unit: mm 
for lengths and rad. for angles) 

No. d1 d2 θ3 θ4 ହܲ௫
௠଴

ହܲ௬
௠଴

ହܲ௭
௠଴  ߶ହ

௠଴  θହ
௠଴  ߰ହ

௠଴

1 515.95 231.22 1.1084 1.0668 200.39 441.43 67.87 0.0403 0.1208 0.0719

2 229.76 205.73 1.2571 0.7626 155.3 255.94 255.75 0.2518 0.0288 0.0027

3 257.54 260.31 1.8784 0.0545 326.89 188.1 20.71 0.2294 0.2045 0.131 

4 124.33 174.15 2.8636 0.1798 195.91 441.88 156.2 0.1279 0.1187 0.0108
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No. d1 d2 θ3 θ4 ହܲ௫
௠଴

ହܲ௬
௠଴

ହܲ௭
௠଴  ߶ହ

௠଴  θହ
௠଴  ߰ହ

௠଴

5 310.13 187.83 0.4178 0.1204 59.66 122.88 160.88 0.1066 0.0778 0.0753

6 716.58 33.34 0.1325 0.9548 489.26 82 474.16 0.0331 0.0938 0.0947

7 710.21 64.10 1.2599 0.3667 259.12 329.3 103.67 0.2423 0.1263 0.1065

8 314.89 10.91 1.8715 0.2231 253.88 127.8 244.67 0.0015 0.1129 0.0761

9 540.36 133.36 2.8893 0.8328 162.51 78.8 222.33 0.0488 0.183 0.0141

10 201.77 97.97 0.9229 1.4613 98.63 138.3 410.42 0.0848 0.1767 0.0496

11 759.99 86.18 1.7123 0.969 431.44 149.35 8.74 0.0131 0.0018 0.0128

12 499.74 148.93 2.4557 1.0837 133.93 2.95 394.25 0.0378 0.0207 0.1274

13 165.55 54.51 1.0286 0.3682 269.34 114.32 270.39 0.1909 0.1206 0.0605

14 87.72 280.13 0.2993 0.3249 275.73 335.05 22.73 0.1263 0.2036 0.1138

15 452.67 282.05 1.3876 0.0587 481.62 490.83 256.92 0.0885 0.2138 0.0841

16 219.46 177.43 0.0913 1.042 134.78 128.07 222.81 0.062 0.1653 0.0668

17 56.93 0.2426 2.1218 0.7968 132.85 309.58 245.68 0.118 0.0955 0.0571

18 126.75 270.91 0.3506 0.7631 154.99 485.91 329.94 0.0486 0.2323 0.018 

19 39.61 204.86 0.6272 1.3535 278.64 246.08 252.68 0.0849 0.0657 0.0646

20 544.71 22.15 1.6656 1.5166 189.09 150.51 370.92 0.0691 0.0173 0.0659

21 625.41 298.91 1.9709 1.1933 122.88 298.54 471.92 0.2173 0.1904 0.0841

22 645.89 94.33 1.1737 0.3875 338.08 271.69 399.66 0.1823 0.2007 0.1389

23 212.04 242.76 1.9052 1.0623 130.64 64.88 218.86 0.0873 0.2352 0.1207

24 716.72 138.43 2.659 1.1927 480.74 276.1 45.15 0.1519 0.2008 0.1483

25 486.38 176.14 2.2052 0.9208 248.78 74.53 466.78 0.0754 0.2479 0.0894

26 11.52 143.27 1.2342 1.2919 213.88 129.27 189.18 0.0691 0.1403 0.1492

27 275.22 165.73 1.7966 1.4559 283.89 264.35 379.46 0.068 0.2513 0.0812

28 426.93 52.595 0.7847 1.0015 306.51 406.68 401.89 0.1773 0.2561 0.0462

29 502.21 176.17 2.285 0.0297 403.49 359.26 402.11 0.1361 0.1367 0.1099

30 357.38 46.44 1.0786 0.2896 440.39 250.4 297.89 0.0201 0.2213 0.0982

31 648.88 133.63 0.247 0.042 79.98 446.99 162.49 0.0146 0.2351 0.0944

32 115.86 161.28 0.9495 1.4687 44.58 475.35 374.17 0.0677 0.2438 0.0686

33 779.86 138.57 0.9437 0.761 156.56 231.17 238.23 0.1152 0.1198 0.0734

34 667.00 250.23 0.073 1.2484 303.67 143.79 257.79 0.0744 0.1987 0.0239

35 272.08 298.85 0.5533 0.7176 189.36 463.18 240.04 0.1777 0.2458 0.051 

36 492.99 291.67 2.7047 0.7763 462.77 248.16 212 0.2486 0.2122 0.0013

37 243.00 223.77 2.0607 0.6687 28.5 438.66 88 0.2026 0.2436 0.1628

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

100 699.01 4.7027 2.6965 0.3599 311.91 109.87 259.13 0.0547 0.1259 0.1069
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2) Assume a set of errors for DH parameters, leg joint offset, and spherical joint
coordinate parameters (Table 3).

3) Based on the assumed errors, nominal parameter values, generated end-effector poses,
and the carriage joint displacements, calculate the simulated actual leg lengths ݈୧,୨

୫

according to Equation (29) in Section 3.1.

4) Take the 54 kinematic parameter errors as variables in Equation (30) to fit the
predicted leg lengths ݈୧,୨

୮  to data.  The simulation will terminate if either the maximum 

number of iterations (e.g. Gmax=40,000) is reached or the objective function value is
below the user-defined threshold (e.g. 10-23 in this simulation).

5) Reorganize the 100 randomly generated data into four different data sets with
different number of measurement poses (e.g. 15-, 25-, 50- and 100-poses). Figure 10
shows the simulation results for these four different data sets.

Figure 10. Simulation results of four different data sets. 

From the results it can be seen that about 15 measurement poses are adequate for the 
objective function value converging to a very small value (10-22). With the increase of 
measurement poses, the simulation time increases accordingly but the number of simulation 
generations decreases when the simulation has already converged. For instance, the 
convergence time is about 8.05 hours in the case of 15 poses, but 31.19 hours in the case of 
100 poses. The increase of measurement poses cannot improve the convergence of the 
objective function values, but it can improve the robustness of the identified parameter errors 
from the whole workspace point of view.  

6) To simulate the influence of the same number of measurement poses on different part
of workspace, construct five data sets with same number of measurement poses (e.g.

Generation: 18,800 
Fitness: 2.403945187ൈ 10ିଶଵ

CPU time: 31.19 hours 

Generation: 21,000 
Fitness: 1.3523595ൈ 10ିଶଵ 
CPU time: 19.32 hours

Generation: 24,000 
Fitness: 5.60922159ൈ 10ିଶଶ 
CPU time: 10.5 hours 

Generation: 30,000 
Fitness: 3.337932265ൈ 10ିଶଶ

CPU time: 8.05 hours 
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data set 1: pose number 1 to number 15; data set 2:  pose number 16 to number 30, 
etc., in Figure 11).  The simulation results are demonstrated in Figure 11. It shows 
that all of the selected runs can converge to almost the same small fitness value (10-22), 
but the simulation time and required generations is different. It implies that the 
runtime can be reduced by choosing an optimal number of measurement 
configurations. However, the determination of the optimal number of configurations 
for data acquisition, in order to perform a successful calibration, is still a research 
issue that remains to be addressed. Different criteria and opinions can be found in 
different literature presentations [82][83][84][85]. An overview of this problem can 
be referenced in the work of  [41]  

Figure 11. Simulation results of 15 measurement poses in five different data sets. 

4.2 Denavit-Hartenberg Hybrid Model Using MCMC-Based Identification 
Method 

By using the DE-based identification method, all parameter errors can be identified even 
when correlations exist. However, the redundant parameters which result in correlations have 
to be eliminated to obtain a more accurate error model [86]. To solve this problem, we 
propose the MCMC-based method for parameter correlation analysis as well as for statistical 
error parameter estimation. The task of simulation is to obtain a posterior distribution chain 
for parameter errors using the MCMC sampling methods. The MCMC toolbox for Matlab 
developed by Laine [87] is employed and the initial guess of the MCMC simulation are 
selected from the results of DE algorithm. The obtained MCMC simulation chain is a matrix 
of samples, which is commonly used to calculate and analyze the posterior means, standard 
deviations and correlations of parameter errors. In what follows, we first simulate the DH-
based identification algorithms of Section 3.1 to check whether redundant parameters exist, 
and then we simulate the refined error model with reduced parameters under two 
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experimental conditions (with measurement noise and without measurement noise). Set the 
length of chain, Nsimu, to be 200,000 for the MCMC simulation, then a posterior distribution 
matrix of	200,000 ൈ 54 can be achieved after the simulation. The mean values and standard 
deviations of each error parameter can be computed from this chain. 

4.2.1 Results of 54 parameter errors without measurement noise	

The identification results as well as the nominal values, assumed parameter errors, are listed 
in Table 3. From the table, it can be seen that the posterior mean values of independent 
parameters have been identified to be exactly the same as the assumed errors with high 
standard deviations (10-5 mm and 10-8 rad.), whereas the correlated or dependent parameters 
have not been correctly identified, so they have larger standard deviations (>10-3 mm).   

Table 3. Nominal values, assumed errors, identified posterior mean values, and standard 
deviations for the 54-parameter model (without measurement noise) 

No. Symbols 
(nominal, errors)

Nominal 
Values (mm)

Assumed
Errors (mm, o)

Posterior 
mean (mm, o) 

Posterior 
Std. (rad.)

1 α1,δα1 π/2 0.0782° 0.07819° 2.352×10-8 

2 α2,δα2 π/2 0.0571° 0.0571° 3.1528×10-9 

3 α3,δα3 π/2 -0.048° -0.048° 5.7552×10-9 

4 α4,δα4 -π/2 0.0417° 0.04173° 1.6735×10-5 

5 a3,δa3 252 -0.2164 -0.2164 2.2333×10-5 

6 a4,δa4 354 -0.4451 -0.4451 0.0048288

7 d3,δd3 422 0.1681 0.1681 2.7881×10-5 

8 d4,δd4 0 -0.3857 -0.38564 0.0073678

9 θ1,δθ1 0 0.0213° 0.0213° 2.6166×10-8 

10 θ2,δθ2 π/2 0.0794° 0.0794° 2.2173×10-8 

11 θ3,δθ3 0 0.0464° 0.0464° 4.8552×10-8 

12 θ4,δθ4 0 0.0345° 0.03449° 1.1837×10-5 

13 a1x,δa1x 231.6663 -0.0654 -0.06538 0.0048255

14 a1y,δa1y -231.9022 0.0687 0.068645 0.0073711

15 a1z,δa1z 0 0.0928 0.092879 0.0041492

16 a2x,δa2x 316.663 0.0448 0.044815 0.0048282

17 a2y,δa2y -84.6778 -0.0942 -0.09425 0.0073716

18 a2z,δa2z 0 -0.0731 -0.07301 0.0062136

19 a3x,δa3x 85 0.0229 0.02291 0.004833

20 a3y,δa3y 316.58 0.0133 0.013246 0.0073733

21 a3z,δa3z 0 -0.0136 -0.01367 0.0080805

22 a4x,δa4x -85 -0.0752 -0.07518 0.0048307

23 a4y,δa4y 316.58 -0.0976 -0.09765 0.007371

24 a4z,δa4z 0 0.0167 0.016552 0.0080475



48 

No. Symbols 
(nominal, errors)

Nominal 
Values (mm)

Assumed
Errors (mm, o)

Posterior 
mean (mm, o) 

Posterior 
Std. (rad.)

25 a5x,δa5x -316.663 0.0576 0.057614 0.0048249

26 a5y,δa5y -84.6778 -0.0486 -0.04865 0.0073654

27 a5z,δa5z 0 0.0329 0.03272 0.0061585

28 a6x,δa6x -231.6663 -0.0117 -0.01168 0.0048258

29 a6y,δa6y -231.9022 0.0676 0.067545 0.0073668

30 a6z,δa6z 0 0.0273 0.027181 0.004128

31 b1x,δb1x 32.5 0.0581 0.058101 2.8297×10-5 

32 b1y,δb1y -125.93 -0.0648 -0.0648 1.5322×10-5 

33 b1z,δb1z 0 0.0717 0.0717 1.6098×10-5 

34 b2x,δb2x 125.309 0.0847 0.084701 2.8356×10-5 

35 b2y,δb2y 34.819 -0.0478 -0.04779 1.4938×10-5 

36 b2z,δb2z 0 0.0324 0.0324 1.8154×10-5 

37 b3x,δb3x 92.809 -0.0139 -0.01389 2.7064×10-5 

38 b3y,δb3y 91.111 -0.0266 -0.02660 1.8706×10-5 

39 b3z,δb3z 0 -0.0281 -0.02810 2.1123×10-5 

40 b4x,δb4x -92.809 -0.0594 -0.0594 2.897×10-5 

41 b4y,δb4y 91.111 0.0375 0.0375 1.9324×10-5 

42 b4z,δb4z 0 0.0088 0.008799 1.9959×10-5 

43 b5x,δb5x -125.309 0.0228 0.022802 3.211×10-5 

44 b5y,δb5y 34.819 -0.0566 -0.0566 1.4835×10-5 

45 b5z,δb5z 0 -0.0368 -0.0368 1.4931×10-5 

46 b6x,δb6x -32.5 -0.0638 -0.06379 3.043×10-5 

47 b6y,δb6y -125.93 -0.0087 -0.00869 1.305×10-5 

48 b6z,δb6z 231.6663 -0.0736 -0.0736 1.1859×10-5 

49 l1,δl1 350+sensor val. -0.3794 -0.3794 2.3128×10-5 

50 l2,δl2 350+sensor val. -0.0895 -0.0895 2.8054×10-5 

51 l3,δl3 350+sensor val. 0.1650 0.165 4.7325×10-5 

52 l4,δl4 350+sensor val. -0.3048 -0.3048 5.3156×10-5 

53 l5,δl5 350+sensor val. 0.3233 0.3233 2.8076×10-5 

54 l6,δl6 350+sensor val. 0.0774 0.0774 1.5764×10-5 

For further analysis of the dependent parameters, the two-dimensional (2D) posterior 
distributions and one-dimensional (1D) marginal density for some parameters are depicted in 
Figures 12-17. 
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Figure 12. 2D marginal posterior distributions and 1D marginal density for parameters δa4, 
δθ4, δa1x, δa2x.  

From Figure 12, it can be seen that three parameter pairs (δa4, δa1x), (δa4, δa2x) and (δa1x, δa2x) 
are linearly correlated. Given more 2D posterior distributions (Figure 13), we can see that the 
parameter δa4 is also linearly correlated with the rest of X direction parameters δa3x, δa4x, δa5x 
and δa6x as shown in Figure 13.  

The same phenomenon can also be found in parameters between δd4 and Y direction 
parameters δa1y, δa2y, δa3y, δa4y, δa5y and δa6y as shown in Figures 14-15.  

The correlation phenomenon on Z direction is not so obvious. The parameter errors in Z 
direction are either correlated with δθ4 or δα4 (Figures 16-17).  For instance, parameter δθ4 is 
linearly correlated with δa3z, whereas δa1z with δa2z and δα4.  

δθ4 

δa1x 

δθ4 

δa1x 

δa2x 

δa4 
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Figure 13. 2D marginal posterior distributions and 1D marginal density for parameters δa4, 
δa3x, δa4x, δa5x.  

 

Figure 14. 2D marginal posterior distributions and 1D marginal density for parameters δdd, 
δa1y, δa2y, δa1x.  
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Figure 15. 2D marginal posterior distributions and 1D marginal density for parameters δd4, 
δa3y, δa4y, δa5y.  

Figure 16. 2D marginal posterior distributions and 1D marginal density for parameters δθ4, 
δa1z, δa2z, δa3z.  
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Figure 17. 2D marginal posterior distributions and 1D marginal density for parameters δα4, 
δa1z, δa2z, δa3z.  

Model refinement and re-parameterization can be made based on correlation analysis, but 
how to refine the model is still an unsolved problem and largely dependent on the specific 
model since the MCMC can only provide the graphical information of the parameter 
correlations. Basically, the model refinement could be achieved either by redeveloping a new 
model or just removing some of the correlated parameters in the model depending on the 
specific situations. In this work, we attempt to remove all of the parameter errors in spherical 
joint Ai to keep the remaining parameter errors identifiable and independent. Consequently, 
there are 36 independent and identifiable parameters left in the reduced model. It should be 
noted that this reduced model can only guarantee that the remaining parameters are 
identifiable and independent but cannot guarantee that the reduced model is the best model to 
satisfy the requirement of completeness and minimality simultaneously. Further model 
refinement work would be stressed on our future work.  

4.2.2 Results of 36 parameter errors without measurement noise	

Table 4 gives the simulation results of the posterior mean values and standard deviations of 
the 36 parameters. It can be seen that the parameter correlations have been successfully 
eliminated, and every parameter errors have been identified to be almost as the same as the 
assumed errors, and the standard deviations arrive at very high precision levels (10-6 mm and 
10-9 rad.). 
 

δa1z

δa2z 

δa3z 

δa2z 

δa1z 

δα4 
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Table 4. Nominal values, assumed errors, identified posterior mean values, and standard 
deviations for the refined 36-parameter model (without measurement noise) 

No. Symbols 
(nominal, errors) 

Nominal 
Values (mm)

Assumed
Errors (mm, o)

Posterior 
mean (mm, o) 

Posterior 
Std. (rad.)

1 α1,δα1 -90° 0.0782° 0.0782° 2.2777×10-9 

2 α2,δα2 90° 0.0571° 0.0571° 2.7999×10-9 

3 α3,δα3 90° -0.048° -0.048° 2.6991×10-9 

4 α4,δα4 90° 0.0417° 0.0417° 2.3243×10-9 

5 a3,δa3 252 -0.2164 -0.2164 8.8467×10-7 

6 a4,δa4 354 -0.4451 -0.4451 1.039×10-6 

7 d3,δd3 422 0.1681 0.1681 2.613×10-6 

8 d4,δd4 0 -0.3857 -0.3857 1.4035×10-6 

9 θ1,δθ1 0 0.0213° 0.0213° 2.6084×10-9 

10 θ2,δθ2 90° 0.0794° 0.0794° 1.2234×10-9 

11 θ3,δθ3 0° 0.0464° 0.0464° 3.2017×10-9 

12 θ4,δθ4 0° 0.0345° 0.0345° 1.6873×10-9 

13 b1x,δb1x 32.5 0.0581 0.0581 2.5743×10-6 

14 b1y,δb1y -125.93 -0.0648 -0.0648 1.362×10-6 

15 b1z,δb1z 0 0.0717 0.0717 1.3075×10-6 

16 b2x,δb2x 125.309 0.0847 0.0847 2.5714×10-6 

17 b2y,δb2y 34.819 -0.0478 -0.0478 1.3262×10-6 

18 b2z,δb2z 0 0.0324 0.0324 1.1825×10-6 

19 b3x,δb3x 92.809 -0.0139 -0.0139 2.6619×10-6 

20 b3y,δb3y 91.111 -0.0266 -0.0266 1.4087×10-6 

21 b3z,δb3z 0 -0.0281 -0.0281 9.956×10-7 

22 b4x,δb4x -92.809 -0.0594 -0.0594 2.8469×10-6 

23 b4y,δb4y 91.111 0.0375 0.0375 1.3211×10-6 

24 b4z,δb4z 0 0.0088 0.0088 9.9319×10-7 

25 b5x,δb5x -125.309 0.0228 0.0228 2.982×10-6 

26 b5y,δb5y 34.819 -0.0566 -0.0566 1.0043×10-6 

27 b5z,δb5z 0 -0.0368 -0.0368 1.0054×10-6 

28 b6x,δb6x -32.5 -0.0638 -0.0638 2.7734×10-6 

29 b6y,δb6y -125.93 -0.0087 -0.0087 1.03×10-6 

30 b6z,δb6z 0 -0.0736 -0.0736 9.6405×10-7 

31 l1,δl1 350+sensor val. -0.3794 -0.3794 1.584×10-6 

32 l2,δl2 350+sensor val. -0.0895 -0.0895 1.372×10-6 

33 l3,δl3 350+sensor val. 0.1650 0.1650 1.3435×10-6 

34 l4,δl4 350+sensor val. -0.3048 -0.3048 1.6412×10-6 

35 l5,δl5 350+sensor val. 0.3233 0.3233 1.5983×10-6 

36 l6,δl6 350+sensor val. 0.0774 0.0774 1.3004×10-6 
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4.2.3 Results of 36 parameter errors with measurement noise 

To simulate real experimental conditions, we assume that the position and orientation of the 
end-effector will be measured by using a high precision laser tracker. The position 
measurement accuracy is ±0.01 mm and the orientation measurement accuracy is ±0.00001 
rad. Measurement noise is regarded as a Gaussian distribution, whose ranges obey the 3σ rule. 
The standard deviations of measurement noise for position and orientation are 0.003 mm and 
0.000003 rad., respectively. Table 5 presents the simulation results of posterior mean values 
and standard deviations of the refined 36 parameters with pose measurement noise.  
 
Table 5. Nominal values, assumed errors, identified posterior mean values, and standard 
deviations for the refined 36-parameter model (with measurement noise)	

No. Symbols 
(nominal, errors)

Nominal 
Values (mm)

Assumed
Errors (mm, o)

Posterior 
mean (mm, o) 

Posterior 
Std. (rad.)

1 α1,δα1 -90° 0.0782° 0.077859° 2.3614×10-8 

2 α2,δα2 90° 0.0571° 0.057234° 2.699×10-8 

3 α3,δα3 90° -0.048° -0.04781° 2.697×10-8 

4 α4,δα4 90° 0.0417° 0.041479° 2.3256×10-8 

5 a3,δa3 252 -0.2164 -0.21465 9.0571×10-6 

6 a4,δa4 354 -0.4451 -0.4450 1.0434×10-5 

7 d3,δd3 422 0.1681 0.17487 2.6985×10-5 

8 d4,δd4 0 -0.3857 -0.3856 1.4193×10-5 

9 θ1,δθ1 0 0.0213° 0.021623° 2.5993×10-8 

10 θ2,δθ2 90° 0.0794° 0.079532° 1.2297×10-8 

11 θ3,δθ3 0° 0.0464° 0.046937° 3.2475×10-8 

12 θ4,δθ4 0° 0.0345° 0.034722° 1.6977×10-8 

13 b1x,δb1x 32.5 0.0581 0.061509 2.6428×10-5 

14 b1y,δb1y -125.93 -0.0648 -0.065029 1.3881×10-5 

15 b1z,δb1z 0 0.0717 0.069514 1.2575×10-5 

16 b2x,δb2x 125.309 0.0847 0.088151 2.6055×10-5 

17 b2y,δb2y 34.819 -0.0478 -0.047026 1.2997×10-5 

18 b2z,δb2z 0 0.0324 0.030068 1.1668×10-5 

19 b3x,δb3x 92.809 -0.0139 -0.010355 2.6603×10-5 

20 b3y,δb3y 91.111 -0.0266 -0.025498 1.4205×10-5 

21 b3z,δb3z 0 -0.0281 -0.030009 9.9522×10-6 

22 b4x,δb4x -92.809 -0.0594 -0.056781 2.8328×10-5 

23 b4y,δb4y 91.111 0.0375 0.038118 1.3413×10-5 

24 b4z,δb4z 0 0.0088 0.007394 1.0058×10-5 

25 b5x,δb5x -125.309 0.0228 0.024621 2.9881×10-5 

26 b5y,δb5y 34.819 -0.0566 -0.055924 1.0115×10-5 

27 b5z,δb5z 0 -0.0368 -0.037492 1.0006×10-5 
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28 b6x,δb6x -32.5 -0.0638 -0.060853 2.804×10-5 

29 b6y,δb6y -125.93 -0.0087 -0.008302 1.0275×10-5 

30 b6z,δb6z 0 -0.0736 -0.07438 9.5351×10-6 

31 l1,δl1 350+sensor val. -0.3794 -0.38249 1.5735×10-5 

32 l2,δl2 350+sensor val. -0.0895 -0.092193 1.3539×10-5 

33 l3,δl3 350+sensor val. 0.1650 0.16235 1.3171×10-5 

34 l4,δl4 350+sensor val. -0.3048 -0.3082 1.6392×10-5 

35 l5,δl5 350+sensor val. 0.3233 0.31997 1.6464×10-5 

36 l6,δl6 350+sensor val. 0.0774 0.074825 1.3081×10-5 

The results show that all of the parameter errors have successfully converged to the assumed 
errors with only a slight difference, and the standard deviations arrive at very high precisions 
(10-5 mm and 10-8 rad.). 

Figure 18. 2D marginal posterior distributions and 1D marginal density for parameters δa4, 
δθ4, δb1x, δb6z. 

From Table 5 and Figure 18, it can be seen that every parameter is independent of each other 
and identifiable. Measurement noises do have an influence on the identification results, but 
the MCMC-based identification method is able to lower the influences to the best extent. 

δa4

δθ4 

δθ4 

δb1x 

δb1x 

δb6z 
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4.3 Product-of-Exponential Model Using Differential-Evolution Identification 
Method 

For our Product-of-Exponential (POE) error model, the Differential-Evolution (DE) 
identification method can be adopted to identify the parameter errors.  The detailed kinematic 
parameter values are listed in Table 6. 

Table 6. Kinematic parameters in the reference configuration 

Symbols Values (mm) Symbols Values (mm) 

l0 45 P3x 0 

l1 330 P3y 0 

l2 252 P3z -628 

l3 314 P4x 0 

l4 116.84 P4y -313 

  P4z -376 

The simulation procedures are as follows: 

1) Randomly generate 100 end-effector measurement poses 
m
stg  within the robot’s 

workspace, and accordingly generate 100 joint displacements for the carriage 
actuators. The randomly generated end-effector poses, carriage joint displacements 
and the DE control parameters are the same as in Table 2, Section 4.1.  

2) Assume a set of parameter errors for the carriage twist (Table 7). The assumed errors 
should meet the requirement of ||ωi+δωi||=1, (ωi+δωi)

T(vi+δvi)=0 for revolute joint,  
and ||vi+δvi||=1 for prismatic joint. The leg joint offset errors and the coordinate 
errors of spherical joints Ai and Bi are randomly generated at their tolerance limits 
(Table 8).  

3) Based on the above assumed errors, generated poses, nominal kinematic values, and 

carriage joint displacements, we can calculate the actual leg lengths m
jid ,  based on 

Equations (33) and (34) in Section 3.2. In reality, the leg lengths can be obtained 
from the built-in sensor readings.  

4) Take the 60 parameter errors as decision variables in the objective function so as to 
calculate the predicted leg lengths p

jid , . Then the task of simulation is to employ the 

DE algorithm to search for an optimal combination of parameter errors to minimize 
the value of the objective function under some program terminal conditions.   

As in the previous section, the simulation is also conducted under two different conditions:  

a) An ideal experimental condition where measurement noises are not considered. This is to 
verify the effectiveness of the proposed calibration methods. 

b) A real experimental condition where measurement noises are added into the randomly 
generated measurement poses. This is to verify the robustness of the proposed calibration 
methods. 

The identification results of these two different conditions are listed in Table 7 and Table 8. 
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The results show that all of the error parameters have been successfully identified. Under 
ideal experimental conditions, we can expect almost the same identified parameter errors as 
the assumed ones. Under imperfect experimental conditions, the identified error parameters 
are also very close to the assumed ones.  

Table 7. Nominal and identified parameters of carriage 

No. 
Symbols	
of	twist	
element	

Nominal	
twist	values	
ξୱ୧	ሺmmሻ	

Assumed	
twist	errors	
δξୱ୧ 	ሺmmሻ

Identified	twist	
errors	without	
noiseδξୱ୧ 	ሺmmሻ

Identified	twist	
errors	with	
noise	δξୱ୧ 	ሺmmሻ

1 ωଵ୶, δωଵ୶ 0 - - -

2 ωଵ୷, δωଵ୷ 0 - - -

3 ωଵ୸, δωଵ୸ 0 - - -

4 υଵ୶, δυଵ୶ 1 cos(0.02)-1 -1.99993ൈ 10ିସ -1.99418ൈ 10ିସ 

5 υଵ୷, δυଵ୷ 0 sin(0.02) 0.0199987 0.0199996

6 νଵ୸, δυଵ୸ 0 0 1.32017ൈ 10ିଵ଻ -9.3368ൈ 10ି଻ 

7 ωଶ୶, δωଶ୶ 0 - - -

8 ωଶ୷, δωଶ୷ 0 - - -

9 ωଶ୸, δωଶ୸ 0 - - -

10 υଶ୶, δυଶ୶ 0 0 -1.79319ൈ 10ିଵହ -7.5492ൈ 10ି଻ 

11 υଶ୷, δυଶ୷ 0 sin(0.02) 0.0199987 0.0199943

12 νଶ୸, δυଶ୸ 1 cos(0.02)-1 -1.99993ൈ 10ିସ -1.99369ൈ 10ିସ 

13 ωଷ୶, δωଷ୶ 0 0 2.39192ൈ 10ିଵଷ 6.7108ൈ 10ିହ 

14 ωଷ୷, δωଷ୷ 1 cos(0.02)-1 -1.99993ൈ 10ିସ 3.63863ൈ 10ିସ 

15 ωଷ୸, δωଷ୸ 0 sin(0.02) 0.0199987 0.0205498

16 υଷ୶, δυଷ୶ 628 0.2 0.2 0.199999

17 υଷ୷, δυଷ୷ 0 0 -9.2727ൈ 10ିଵ଻ 1.08622ൈ 10ି଻

18 νଷ୸, δυଷ୸ 0 0 9.85174ൈ 10ିଵ଻ -4.4995ൈ 10ି଻ 

19 ωସ୶, δωସ୶ 1 cos(0.02)-1 -1.99993ൈ 10ିସ 4.29679ൈ 10ିସ 

20 ωସ୷, δωସ୷ 0 sin(0.02) 0.0199987 0.0192154

21 ωସ୸, δωସ୸ 0 0 -4.3303ൈ 10ିଵହ -0.001064 

22 υସ୶, δυସ୶ 0 0 -2.8376ൈ 10ିଵ଺ -5.53304ൈ 10ି଻ 

23 υସ୷, δυସ୷ -376 0 2.79982ൈ 10ିଵହ -1.09392ൈ 10ି଺ 

24 νସ୸, δυସ୸ 313 0.2 0.2 0.200005

Table 8. Nominal and identified parameters of the Hexa-WH (unit: mm) 

NO.	
Symbols	

ሺNominal,	errorsሻ	
nominal	
values		

Assumed	
errors	

Identified	errors	
without	noise	

Identified	errors	
with	noise		

1 aହଵ୶, δaହଵ୶ 231.6 -0.0654 -0.0654 -0.0596501 

2 aହଵ୷, δaହଵ୷ -231.9 0.0687 0.0687 0.0693789 
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NO.	
Symbols	

ሺNominal,	errorsሻ	
nominal	
values		

Assumed	
errors	

Identified	errors	
without	noise	

Identified	errors	
with	noise		

3 aହଵ୸, δaହଵ୸ 0 0.0928 0.0928 0.0930406 

4 aହଶ୶, δaହଶ୶ 316.6 0.0448 0.0448 0.0479849 

5 aହଶ୷, δaହଶ୷ -84.67 -0.0942 -0.0942 -0.0961375 

6 aହଶ୸, δaହଶ୸ 0 -0.0731 -0.0731 -0.0724037 

7 aହଷ୶, δaହଷ୶ 85 0.0229 0.0229 0.0192319 

8 aହଷ୷, δaହଷ୷ 316.58 0.0133 0.0133 0.0128637 

9 aହଷ୸, δaହଷ୸ 0 -0.0136 -0.0136 -0.0264649 

10 aହସ୶, δaହସ୶ -85 -0.0752 -0.0752 -0.077656 

11 aହସ୷, δaହସ୷ 316.58 -0.0976 -0.0976 -0.100211 

12 aହସ୸, δaହସ୸ 0 0.0167 0.0167 0.0057957 

13 aହହ୶, δaହହ୶ -316.6 0.0576 0.0576 0.0579317 

14 aହହ୷, δaହହ୷ -84.67 -0.0486 -0.0486 -0.0487524 

15 aହହ୸, δaହହ୸ 0 0.0329 0.0329 0.0309625 

16 aହ଺୶, δaହ଺୶ -231.6 -0.0117 -0.0117 -0.0118311 

17 aହ଺୷, δaହ଺୷ -231.9 0.0676 0.0676 0.0727291 

18 aହ଺୸, δaହ଺୸ 0 0.0273 0.0273 0.02563 

19 b୲ଵ୶, δb୲ଵ୶ 32.5 0.0581 0.0581 0.0636969 

20 b୲ଵ୷, δb୲ଵ୷ -125.9 -0.0648 -0.0648 -0.065743 

21 b୲ଵ୸, δb୲ଵ୸ 0 0.0717 0.0717 0.0688051 

22 b୲ଶ୶, δb୲ଶ୶ 125.3 0.0847 0.0847 0.0868672 

23 b୲ଶ୷, δb୲ଶ୷ 34.8 -0.0478 -0.0478 -0.0497133 

24 b୲ଶ୸, δb୲ଶ୸ 0 0.0324 0.0324 0.0325399 

25 b୲ଷ୶, δb୲ଷ୶ 92.8 -0.0139 -0.0139 -0.0171407 

26 b୲ଷ୷, δb୲ଷ୷ 91.1 -0.0266 -0.0266 -0.0277242 

27 b୲ଷ୸, δb୲ଷ୸ 0 -0.0281 -0.0281 -0.0392927 

28 b୲ସ୶, δb୲ସ୶ -92.8 -0.0594 -0.0594 -0.0623811 

29 b୲ସ୷, δb୲ସ୷ 91.1 0.0375 0.0375 0.0326712 

30 b୲ସ୸, δb୲ସ୸ 0 0.0088 0.0088 0.000425282 

31 b୲ହ୶, δb୲ହ୶ -125.3 0.0228 0.0228 0.0222086 

32 b୲ହ୷, δb୲ହ୷ 34.8 -0.0566 -0.0566 -0.0616722 

33 b୲ହ୸, δb୲ହ୸ 0 -0.0368 -0.0368 -0.0416378 

34 b୲଺୶, δb୲଺୶ -32.5 -0.0638 -0.0638 -0.620393 

35 b୲଺୷, δb୲଺୷ -125.9 -0.0087 -0.0087 -0.00470459 

36 b୲଺୸, δb୲଺୸ 231.6 -0.0736 -0.0736 -0.0752284 

37 dଵ, δdଵ 350+sensor -0.3794 -0.3794 -0.382394 
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NO.	
Symbols	

ሺNominal,	errorsሻ	
nominal	
values		

Assumed	
errors	

Identified	errors	
without	noise	

Identified	errors	
with	noise		

38 dଶ, δdଶ 350+sensor -0.0895 -0.0895 -0.0897172 

39 dଷ, δdଷ 350+sensor 0.165 0.165 0.16719 

40 dସ, δdସ 350+sensor -0.3048 -0.3048 -0.302824 

41 dହ, δdହ 350+sensor 0.3233 0.3233 0.319244 

42 d଺, δd଺ 350+sensor 0.0774 0.0774 0.0781733 

The set of 100 randomly generated data is reorganized into four subsets with different 
numbers of measurement poses; the simulation results of the objective function fitness values 
under imperfect experimental condition are plotted in Figure 19.  It can be seen that with the 
increase of measurement poses, the final fitness value and the CPU time are also increased. 
At the generation 6000, the CPU time for the data set of 100 poses is 29 hours and the fitness 
value is about 0.00117mm, while the CUP time for the data set of 25 poses is only 7.3 hours 
and the fitness value is about 0.000264mm. It can also be seen that the more measurement 
poses used, the fewer generations needed to converge. To improve the robustness of 
identified parameter errors and reduce the effect of measurement noise, it is recommended to 
use as many measurement poses as possible to identify parameter errors, and the selected 
measurement pose configurations should cover the entire workspace, especially the 
workspace under extreme situations, such as the boundary of joint motion. 

Figure 19. Fitness values of four different runs with four different measurement data sets. 

To validate the identified parameter errors under imperfect experiment conditions, we can 
randomly generate another set of 25 joint-displacement vectors for carriage and the 
associated 25 leg-length vectors for the Hexa-WH, and then numerically solve the forward 
kinematics to find the end-effector pose values by the DE algorithm. The end-effector pose 
values after calibration can be obtained by including the identified parameter errors into the 
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error model, and the values before calibration can be obtained without considering the 
identified parameter errors in the error model. Table 9 gives the root mean square (RMS) for 
position and orientation values, as well as the maximum position and orientation values of the 
25 end-effector poses before and after calibration.  

Table 9. Results of 25 end-effector poses before and after calibration 

Errors type Before calibration After calibration 
RMS position 0.3604 mm 0.001mm 
RMS orientation 0.0316° 0.000248°  
Max.  position 3.797 mm 0.0098 mm 
Max. orientation 0.4778° 0.0024°  

Furthermore, position errors before and after calibration for the 25 end-effector pose 
configurations can be plotted (Figure 20 and Figure 21).  

Figure 20. Position errors before calibration in the 25 end-effector pose configurations. 
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Figure 21. Position errors after calibration in the 25 end-effector pose configurations. 

From the simulation results in Table 9 and Figures 20 and 21, it can be seen that the accuracy 
of the end-effector has improved and reaches the same precision level as the given external 
measurement device. The end-effector pose error before calibration is dependent on the 
assumed error parameter values, and the accuracy of the end-effector after calibration is 
dependent on the accuracy of the given measurement device system. 
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CHAPTER	5	
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VALIDATION RESULTS BY USING SOLIDWORKS 

This chapter introduces a validation method for the product-of-exponential (POE) calibration 
method by using the 3-2-1 wire-based pose measurement system [ 88 ][ 89 ][ 90 ] in the 
Solidworks environment, as demonstrated in Figure 22. The idea of this simulation method 
lies in the adjustment of the hexapod leg lengths, the carriage revolute angles and the slide 
displacements to form different pose configurations in the Solidworks environment. The 3-2-
1 pose estimation method can be used to calculate the end-effector poses since a set of wire 
lengths can be measured for each pose configuration in the Solidworks environment. Unlike 
the numerical simulations in Chapter 4 where a set of randomly generated parameter errors 
and end-effector poses exist, the simulations in this chapter are much closer to the real 
working environment since the error parameter values are unknown and the end-effector 
poses are calculated by the 3-2-1 wire-based pose estimation system. Section 5.1 introduces 
the three-sphere-intersection algorithms which are the basis of the 3-2-1 wire-based pose 
measurement method. Section 5.2 presents a 3-2-1 wire-based pose estimation method for the 
hybrid IWR robot. Section 5.3 gives the simulation results and comments. 
 

  
Figure 22. A scheme of 3-2-1 wire-based 3D pose estimation system. 
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5.1 Three Spheres Intersection Algorithm 

For the intersection point of three given spheres (Figure 23), trilateration-based techniques 
can be used to determine the position vector of point (P) when the position vector of the three 
points (A1, A2, A3) and three measured wire distances (r1, r2, r3) are known.  
 

 

Figure 23. A scheme of trilateration method to determine the coordinates of  point P. 
 
Assume that three given spherical center vectors A1 = {x1  y1  z1}

T , A2 = {x2  y2  z2}
T , A3 = 

{x3  y3  z3}
T and radii r1, r2, and r3 are known. The equations of the three spheres can be 

written as 

   ሺx െ xଵሻଶ ൅ ሺy െ yଵሻଶ ൅ ሺz െ zଵሻଶ ൌ rଵ
ଶ ,    (44) 

   ሺx െ xଶሻଶ ൅ ሺy െ yଶሻଶ ൅ ሺz െ zଶሻଶ ൌ rଶ
ଶ ,    (45) 

   ሺx െ xଷሻଶ ൅ ሺy െ yଷሻଶ ൅ ሺz െ zଷሻଶ ൌ rଷ
ଶ .    (46) 

By subtracting Equation (46) from Equation (44) and Equation (46) from Equation (45) as the 
same principle used in [91], the squares of the unknowns can be eliminated. We obtain 
   cଵଵx ൅ cଵଶy ൅ cଵଷz ൌ bଵ ,      (47) 

   cଶଵx ൅ cଶଶy ൅ cଶଷz ൌ bଶ ,      (48) 

with the following constant coefficients 

cଵଵ ൌ 2ሺxଷ െ xଵሻ	,							cଶଵ ൌ 2ሺxଷ െ xଶሻ,								bଵ ൌ 	 rଵ
ଶ െ rଷ

ଶ െ xଵ
ଶ െ yଵ

ଶ െ zଵ
ଶ ൅ xଷ

ଶ ൅ yଷ
ଶ ൅ zଷ

ଶ, 

cଵଶ ൌ 2ሺyଷ െ yଵሻ	,							cଶଶ ൌ 2ሺyଷ െ yଶሻ,								bଶ ൌ 	 rଶ
ଶ െ rଷ

ଶ െ xଶ
ଶ െ yଶ

ଶ െ zଶ
ଶ ൅ xଷ

ଶ ൅ yଷ
ଶ ൅ zଷ

ଶ, 

cଵଷ ൌ 2ሺzଷ െ zଵሻ	,							cଶଷ ൌ 2ሺzଷ െ yଶሻ	.					  
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Eliminating z from Equations (47) and (48) yields  

                                            x ൌ fሺyሻ ൌ cଵy ൅ cଶ,      (49) 

where the coefficients 

    
13212311

23121322
1 cccc

cccc
c




 ,
 13212311

132231
2 cccc

cbcb
c




   .                

Substituting Equation (49) into Equation (47) to eliminate x, we can obtain  

                                           z ൌ fሺyሻ ൌ cଷy ൅ cସ,      (50) 

where the coefficients 

    
13

12111
3 c

c-cc-
c  ,    

13

2111
4 c

cc-b
c   .           

Now substituting Equations (49) and (50) into sphere Equation (44) to eliminate x and z, we 
achieve a single quadratic in y as 

                                            ayଶ ൅ by ൅ c ൌ 0,      (51) 

where the coefficients 

    a ൌ cଵ
ଶ ൅ cଷ

ଶ ൅ 1, 

            	b ൌ 2cଵሺcଶ െ xଵሻ െ 2yଵ ൅ 2cଷሺcସ െ zଵሻ, 

															c ൌ ሺcଶ െ xଵሻଶ ൅ ሺcସ െ zଵሻଶ ൅ yଵ
ଶ െ rଵ

ଶ. 
 
Two solutions of Equation (51) are 

         
a

ac

2

4bb-
y

2 


.
            (52)    

To complete the intersection of the three sphere solution, substitute both positive value y+ and 

negative value y- in Equation (52) into Equations (49) and (50), we obtain 

         21 cycx   ,                  (53)    

         43 cyz   c
.                   (54)    

It should be noted that the singularity problem would happen when the centers of spheres 1 
and 3 or spheres 2 and 3 have the same z coordinate, i.e. z1=z3 or z2=z3,  

        cଵଷ ൌ 2ሺzଷ െ zଵሻ ൌ 0 ,  cଶଷ ൌ 2ሺzଷ െ zଶሻ ൌ 0. 

In the case of the 3-2-1 wire-based pose estimation system in Figure 24, the singularity 
problem would occur when using the above algorithm to calculate the position value of Pe1, 
because they have the same z coordinate, i.e. z1= z2 =z3 at this configuration. Therefore, the 
above algorithm can only be used to calculate the position values of Pe2 and Pe3. To solve the 
singularity problem and obtain the position value of Pe1, we can subtract Equation (44) from 
Equation (45) and Equation (45) from Equation (46) as the same principle used in [92]; then 
the squares of the unknowns can be eliminated and we obtain 

   aଵଵx ൅ aଵଶy ൅ aଵଷz ൌ tଵ,      (55) 

   aଶଵx ൅ aଶଶy ൅ aଶଷz ൌ tଶ,      (56) 
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where the constant coefficients are 

aଵଵ ൌ 2ሺxଵ െ xଶሻ	,							aଶଵ ൌ 2ሺxଶ െ xଷሻ,								tଵ ൌ 	 rଶ
ଶ െ rଵ

ଶ ൅ xଵ
ଶ ൅ yଵ

ଶ ൅ zଵ
ଶ െ xଶ

ଶ െ yଶ
ଶ െ zଶ

ଶ, 

aଵଶ ൌ 2ሺyଵ െ yଶሻ,								aଶଶ ൌ 2ሺyଶ െ yଷሻ,								tଶ ൌ 	 rଷ
ଶ െ rଶ

ଶ ൅ xଶ
ଶ ൅ yଶ

ଶ ൅ zଶ
ଶ െ xଷ

ଶ െ yଷ
ଶ െ zଷ

ଶ, 

aଵଷ ൌ 2ሺzଵ െ zଶሻ,								aଶଷ ൌ 2ሺzଶ െ yଷሻ.								 

By eliminating x from Equations (55) and (56), we obtain 

                                            y ൌ fሺyሻ ൌ aଵz ൅ aଶ,      (57) 

where the coefficients 

   ,
aaaa

aaaa
a

11222112

21131123
1 


     .

aaaa

tata
a

11222112

211121
2 


                

Substitute Equation (57) into (55) to eliminate y, we obtain 

                                           x ൌ fሺzሻ ൌ aଷz ൅ aସ,      (58) 

where the coefficients 

   
11

13112
3 a

a-aa-
a


 ,   .

a

aat
a

11

2121
4


                

Now substituting Equations (57) and (58) into Equation (46) to eliminate x and y, we obtain a 
single quadratic in z only 

                                            Azଶ ൅ Bz ൅ C ൌ 0,      (59) 

where the coefficients 

   A ൌ aଷ
ଶ ൅ aଵ

ଶ ൅ 1, 

            B ൌ 2ሺaଵaଶ ൅ aଷaସ െ aଷxଷ െ aଵyଷ െ zଷሻ , 

C ൌ ሺaସ െ xଷሻଶ ൅ ሺaଶ െ yଷሻଶ ൅ zଷ
ଶ െ rଷ

ଶ. 
 
There are two solutions for z 

േݖ																																												 ൌ
െܤ േ ଶܤ√ െ ܥܣ4

ܣ2
	.																																																																						ሺ60ሻ 

To complete the intersection of the three sphere solution, we can substitute both z+ and z- 

from Equation (60) into Equations (57) and (58) 

         ,azay 21                     (61)    

        .zx 43 aa                      (62)    

The sign ambiguities of the two above mirror solutions can be eliminated by observing the 
actual reference coordinate system in the real measurement system. This algorithm can only 
apply to calculating the position value of Pe1 in our case.   

5.2 Measurement Methodology 

Similar to the 3-2-1 wire-based pose estimation system proposed in [93], some joints in the 
end-effector platform coincide as shown in Figure 23 (three wires, r1, r2 and r3, intersect at 
point Pe1; two wires, r4 and r5, intersect at point Pe2; wire r6 ended at the point Pe3). This 
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configuration can greatly simplify the analysis of forward kinematics for the system. A 
closed-form forward pose solution can be obtained by solving three consecutive trilaterations 
according to the equations derived in the Section 5.1.  

 Firstly, Pw1, Pw2, Pw3 and Pe1 can define the first tetrahedron; the position value of Pe1 
can be calculated based on Equations 60 through 62 when wire lengths r1, r2 and r3 
and the position values of Pw1, Pw2 and Pw3 are given.  

 Secondly, Pw4, Pw5, Pe1 and Pe2 can define the second tetrahedron with another two 
known wire lengths, r4, r5, and the known edge length from Pe1 to Pe2. The position 
value of Pe2 can be obtained from Equations 52 through54.  

 Finally, Pw6, Pe1, Pe2 and Pe3 can define the last tetrahedron with the known wire 
length r6 and the known edge lengths  Pୣ ଵPୣ ଷሬሬሬሬሬሬሬሬሬሬሬሬറ  and 		Pୣ ଶPୣ ଷሬሬሬሬሬሬሬሬሬሬሬሬറ. Under this situation, the 
position value of Pe3 can be obtained from Equations (52) through (54).  It should be 
noted that all of the obtained solutions are defined in the same fixed reference frame 
{w}, and the correct solutions can be obtained by choosing the negative sign in both 
Equations (52) and (60) for the setup (Figure 24).  

Figure 24. The 3-2-1 wire-based 3D pose estimation system at Solidworks environment. 

Denote points Pe1, Pe2 and Pe2 with respect to the reference frame {w} as wPe1, 
wPe2 and wPe2, 

whereas in the end-effector frame {e} as ePe1, 
ePe2 and ePe2. Then the end-effector pose with 

respect to the reference frame {w} (denoted as wTe) can be calculated according to [94] 

௘ܶ ∙ ൤
ܲ௘ ௘௜

1
൨௪ ൌ ൤ ܲ௪ ௘௜

1
൨ ,  i=1, 2, 3.      (63) 

Furthermore, we also have 

௘ܶ ∙ ൤
ሺ ܲ௘ ௘ଶ െ ܲ௘ ௘ଵሻ ൈ ሺ ܲ௘ ௘ଷ െ ܲ௘ ௘ଶሻ

1
൨௪ ൌ ൤ሺ ܲ௪ ௘ଶ െ ܲ௪ ௘ଵሻ ൈ ሺ ܲ௪ ௘ଷ െ ܲ௪ ௘ଶሻ

1
൨. (64) 

Combining Equations (63) and (64) brings 
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 (65) 

Rewriting Equation (65), we can get the end-effector pose for the moving platform, wTୣ , as 
-1
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 (66) 

 
From Equation (66) the measured position and orientation values of the end-effector can be 
calculated as follows 
 

ە
ۖۖ

۔

ۖۖ

ۓ
∅௘௠	

௪ ൌ ,ଶଵݎ2ሺ݊ܽݐܽ 																																																																																																										,ଵଵሻݎ
	௘௠ߠ

௪ ൌ atan2ሺെݎଷଵ, ଵଵݎ cosሺ ∅௘௠	
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௪ ሻሻ,																																																			
߮௘௠	

௪ ൌ atan2ሺݎଵଷsinሺ ∅௘௠	
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௪ ൌ 																																																																																																																																,ଷସݎ

					ሺ67ሻ	 

            
where ݎ௜௝  represents the elements of the ith row and jth column in the end-effector pose 

matrix Tୣ୵ ; atan2(y, x) denotes the four quadrant arctangent of the real parts of elements x 
and y. 

5.3 Simulation Results 

In this section, experimental validations are simulated in the Solidworks environment. The 
measured data were obtained by manually adjusting the displacements of the 10 actuated-
joints of the hybrid robot and measuring the corresponding 3-2-1 wire lengths for each 
configuration in the Solidworks environment. The default measurement precision settings 
(decimal places: 2) are used in our Solidworks CAD model, so the accuracy of the 3-2-1 pose 
estimation system will be in a range of ±0.1 mm. Furthermore, we allow a 1 mm assembly 
error along the X direction of the reference frame {w} for the second joint (q2) of the hybrid 
IWR robot but keep the other geometric parameter values unchanged, which means there are 
no manufacturing errors and we only need to identify 60 parameter errors which are affected 
by one assembly error. The POE-based model in Section 3.2 and the DE-based identification 
method in Section 3.3 were employed to identify the 60 parameter errors. The detailed 
simulation procedures are as follows: 

1) Set up a hexagonal platform as the world reference frame {w}. The coordinate values 
of the six hexagon vertex points (Pw1, Pw2, Pw3, Pw4, Pw5 and Pw6) and the three end-
effector points (Pe1, Pe2 and Pe3) coordinate values are listed in Table 10.  
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Table 10. The hexagon vertex coordinate values with respect to the reference frame and three 
end-effector points coordinate values with respect to the moving platform 

Symbols x,y,z coordinate values (mm)  Symbols x,y,z coordinate  values (mm) 

Pe1 [0  120  0]T Pw3 [-65  112.58  0]T 

Pe2 [-130.92  -60  0]T Pw4 [-130  0  0]T 

Pe3 [0  -120  0]T Pw5 [-65 -112.58  0]T 

Pw1 [130  0  0]T Pw6 [65  -112.58  0]T 

Pw2 [65  112.58  0]T   

2) Randomly adjust the actuated-joint displacements in the Solidworks environment so 
as to form a set of 45 pose configurations; the obtained data in each pose 
configuration (Table 11) can be regarded as the measured transducer readings from 
actuated-joints. 

Table 11. Measured actuated-joint displacements in the Solidworks environment 

No. 
(j) 

ଵ,௝ݍ
௠    

(mm)  
ଶ,௝ݍ
௠  

(mm) 
ଷ,௝ݍ
௠   

(o) 
ସ,௝ݍ
௠  

(o) 
݀ଵ,௝
௠  

(mm) 
݀ଶ,௝
௠  

(mm) 
݀ଷ,௝
௠  

(mm) 
݀ସ,௝
௠  

(mm) 
݀ହ,௝
௠  

(mm) 
݀଺,௝
௠  

(mm) 
1 0 0 0 47 350 350 350 350 350 350 

2 0 -30 0 47 350 350 350 350 350 350 

3 0 0 0 47 396 396 350 350 350 350 

4 0 -67 0 57 366 378 424 374 374 386 

5 0 -67 0 57 396 378 424 374 374 386 

6 0 -67 0 57 396 406 424 374 374 386 

7 0 -67 0 57 396 406 424 374 406 386 

8 0 -130 0 57 396 406 424 374 406 386 

9 0 -130 0 54 396 406 424 374 406 386 

10 0 -130 0 54 396 406 424 416 406 386 

11 0 -130 0 54 396 406 424 416 436 386 

12 0 -130 0 54 436 406 424 416 436 386 

13 0 -130 0 54 466 406 424 416 436 386 

14 0 -130 0 54 466 436 424 416 436 386 

15 0 -130 0 54 466 466 424 416 436 386 

16 0 -130 0 54 466 466 424 416 436 436 

17 0 -130 0 54 466 466 424 446 436 436 

18 0 -40 0 54 466 466 424 446 436 436 

19 0 -40 0 54 496 466 424 446 436 436 

20 0 -40 0 50 496 466 424 446 436 436 

21 0 -40 0 50 496 506 424 446 436 436 

22 0 -40 0 50 526 506 424 446 436 436 

23 0 -40 0 50 526 506 424 446 436 476 
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No. 
(j) 

ଵ,௝ݍ
௠    

(mm)  
ଶ,௝ݍ
௠  

(mm) 
ଷ,௝ݍ
௠   

(o) 
ସ,௝ݍ
௠  

(o) 
݀ଵ,௝
௠  

(mm) 
݀ଶ,௝
௠  

(mm) 
݀ଷ,௝
௠  

(mm) 
݀ସ,௝
௠  

(mm) 
݀ହ,௝
௠  

(mm) 
݀଺,௝
௠  

(mm) 
24 0 -140 0 50 506 506 424 446 436 476 

25 0 -140 0 50 546 506 424 446 436 476 

Data from number1 to 25 are used for identification and the rest data are used for verification  

26 0 -80 0 45 486 506 424 416 466 476 

27 0 -80 0 45 486 506 456 416 466 476 

28 0 -80 0 45 486 506 456 451 466 476 

29 0 -80 0 45 486 506 481 451 466 476 

30 0 -80 0 45 486 506 481 451 506 476 

31 0 -30 0 43 486 506 481 451 506 476 

32 0 -30 0 43 516 506 481 451 506 476 

33 0 -30 0 43 516 506 481 486 506 476 

34 0 -30 0 43 516 536 481 486 506 476 

35 0 -30 0 43 516 536 516 486 506 476 

36 0 -30 0 43 516 536 516 486 531 476 

37 0 -30 0 43 516 536 516 486 531 511 

38 0 -30 0 43 541 536 516 486 531 511 

39 0 -30 0 43 566 536 516 486 531 511 

40 0 -30 0 43 566 536 516 486 556 511 

41 0 -30 0 43 566 536 546 486 556 511 

42 0 -55 0 43 566 536 546 486 556 511 

43 0 -55 0 43 526 536 546 486 556 511 

44 0 -55 0 43 526 536 511 486 556 511 

45 0 -55 0 43 526 536 491 486 516 511 

3) Furthermore, the wire lengths in each pose configuration are also recorded (Table 12). 
Based on these wire lengths, the 3-2-1 pose estimation method can be employed to 
calculate the end-effector poses, and results are listed in Table 12. 

Table 12. Measured wire lengths in the Solidworks model and the corresponding calculated 
end-effector poses based on the 3-2-1 pose estimation method 

r1  
(mm)  

r2  
(mm) 

r3 

(mm) 
r4 

(mm) 
r5 

(mm)
r6 

(mm)
߶௘௠
଴

(rad.)
θ௘௠

௪

(rad.)
߰௘௠

௪  
(rad.) 

௘ܲ௫
௠௪  

(mm) 
௘ܲ௬
௠௪  

(mm) 
௘ܲ௭
௠௪  

(mm) 
411 317.67 317.26 419.56 479.55 495.81 0.00  0  0.82  -1.01  267.08  -378.58  

429.68 341.49 341.11 446.83 503.58 521.61 0.00  0  0.82  -0.98  267.09  -408.57  

394.12 312.59 312.17 425.33 473.99 496.74 0.00  0  0.83  -1.00  221.91  -402.24  

326.61 274.27 285.1 439.85 477.86 541.09 0.06  0.12  1.31  4.95  182.89  -399.71  

324.99 280.08 294.87 443.94 482.36 541.63 -0.10  0.15  1.27  15.67  167.68  -409.12  

329.08 288.59 299.07 449.58 479.46 544.49 0.06  0.13  1.28  5.22  151.64  -417.64  
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r1  
(mm)  

r2  
(mm) 

r3 

(mm) 
r4 

(mm) 
r5 

(mm)
r6 

(mm)
߶௘௠
଴

(rad.)
θ௘௠

௪

(rad.)
߰௘௠

௪  
(rad.) 

௘ܲ௫
௠௪  

(mm) 
௘ܲ௬
௠௪  

(mm) 
௘ܲ௭
௠௪  

(mm) 
340 296.27 303.09 427.98 458.59 533.3 0.07  0.25  1.15  -18.80  140.80  -423.00  

395.34 358.42 364.09 490.58 517.5 593.19 0.07  0.25  1.15  -18.77  140.84  -485.99  

399.72 352.64 358.39 480.34 513.73 584.97 0.05  0.26  1.10  -18.79  167.65  -476.80  

401.31 351.92 360.33 476.54 502.24 550.82 0.06  0.12  0.90  8.97  153.46  -476.31  

416.09 364.54 369.27 454.19 482.38 541.68 0.06  0.26  0.80  -18.06  146.72  -479.71  

412.54 372.19 387.88 466.52 494.61 546.95 -0.16  0.25  0.76  7.47  130.10  -493.05  

422.12 389.6 413.83 477.7 506.26 550.26 -0.34  0.24  0.68  28.60  120.46  -508.26  

425.12 394.75 410.52 487.11 507.23 566.44 -0.15  0.27  0.76  8.23  102.15  -518.33  

439.15 409.71 416.89 503.95 516.56 584.15 0.04  0.28  0.81  -12.21  86.44  -533.51  

397.82 363.32 357.73 500.34 517.83 566.7 0.00  0.03  0.98  -19.81  94.23  -489.76  

401.49 366.45 363.63 507.05 519.24 549.03 0.00  -0.10  0.87  5.09  86.61  -491.74  

323.5 278.83 275.12 417.26 431.99 460.52 0.00  -0.10  0.87  5.10  86.60  -401.75  

323.94 290.01 298.63 433.16 447.6 474.43 -0.18  -0.09  0.86  26.11  72.62  -418.75  

328.55 277.99 286.98 413.38 437.27 454.37 -0.17  -0.10  0.79  26.13  107.15  -401.99  

347.19 300.36 292.47 428.88 442.39 468.15 0.05  -0.11  0.80  -1.95  87.63  -418.66  

346.33 310.39 315.14 446.33 459.22 484.15 -0.12  -0.10  0.80  19.89  73.21  -436.23  

328.51 286.16 273.83 442.41 458.42 471.63 -0.11  -0.26  0.97  6.43  82.30  -401.80  

414.31 375.83 360.58 530.23 543.83 557.97 0.01  -0.27  0.96  -6.70  94.05  -490.19  

419.51 392.37 389.62 555.79 568.61 583.28 -0.24  -0.25  0.97  20.71  71.21  -516.29  

The above data are used for identification purpose and the below data for verification 

387.55 314.41 282.17 412.86 451.32 486.41 0.11  -0.02  0.84  -68.22  153.53  -404.85  

349.8 275.62 253.3 389.23 432.9 484.83 0.09  0.10  0.99  -58.13  166.16  -378.38  

351.69 276.9 257.96 385.08 420.36 452.67 0.12  -0.02  0.83  -32.07  153.74  -377.94  

324.12 247.8 239.38 366.5 406.45 451.45 0.10  0.08  0.94  -24.07  165.13  -357.44  

344.91 268.07 253.13 343.77 390.34 448.93 0.06  0.27  0.82  -62.34  154.82  -364.85  

325.82 231.27 213.78 291.42 352.03 402.13 0.05  0.27  0.78  -62.32  175.16  -309.09  

304.67 220.29 218.25 298.62 357.01 403.22 -0.12  0.26  0.77  -42.15  157.69  -317.86  

306.95 221.69 225.77 294.7 343.45 367.2 -0.08  0.12  0.63  -12.03  146.38  -315.22  

320.09 238.57 224.94 301.67 339.22 375.36 0.09  0.13  0.63  -34.96  128.33  -329.79  

282.55 198.47 204.97 274.78 319.71 371.99 0.05  0.27  0.78  -22.91  143.37  -301.57  

298.59 216.68 217.26 261.57 311.63 375.6 0.03  0.42  0.71  -49.69  137.43  -308.70  

290.31 192.16 171.1 260.24 319.05 366.91 0.05  0.22  0.81  -55.98  155.94  -274.89  

270.32 181.56 176.92 266.54 323.01 368.48 -0.10  0.22  0.80  -38.61  140.34  -282.96  

256.1 180.21 193.3 273.45 327.47 370.93 -0.25  0.23  0.77  -20.49  124.98  -294.41  

268.62 195.57 203.59 260.7 320.67 376.68 -0.28  0.37  0.69  -46.27  120.77  -300.18  

243.3 170.05 195.64 242.73 314.9 378.13 -0.37  0.50  0.78  -36.27  140.59  -276.60  
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r1  
(mm)  

r2  
(mm) 

r3 

(mm) 
r4 

(mm) 
r5 

(mm)
r6 

(mm)
߶௘௠
଴

(rad.)
θ௘௠

௪

(rad.)
߰௘௠

௪  
(rad.) 

௘ܲ௫
௠௪  

(mm) 
௘ܲ௬
௠௪  

(mm) 
௘ܲ௭
௠௪  

(mm) 
260.62 194.02 216.8 265.96 333.14 398.92 -0.37  0.50  0.78  -36.28  140.60  -301.59  

280.04 191.94 191.3 260.6 330.28 399.93 -0.11  0.46  0.88  -63.15  163.78  -284.94  

315.59 229.82 209.7 280.71 338.54 396.32 -0.03  0.34  0.72  -77.76  141.95  -313.63  

314.5 229.14 206.27 314.15 357.67 389.66 0.04  0.04  0.75  -41.98  140.41  -320.70  

4) Take the 60 parameter errors in Equation (35) as decision variables, and substitute the 
end-effector poses from number 1 to 25 in Table 12 into Equation (36) in order to 
calculate the predicted leg lengths p

jid , . The identification task employs the DE 

algorithm to search for an optimal combination of parameter errors to minimize the 
differences between the measured leg lengths m

, jid
 
and the predicted leg lengths p

jid ,

under certain given program terminal conditions (e.g. maximum generations Gmax 
and/or  the objective function value).  The identification results are listed in Table 13. 

Table 13. Nominal and identified parameters of the hybrid IWR robot (unit: mm) 

No. Symbols	 Nominal	
values		

Identified	
values	

No. Symbols Nominal	
values		

Identified	
values	

1 υଵ୶ 1 0.6043 31 aହହ୶ -316.6 -317.1 

2 υଵ୷ 0 0.3021 32 aହହ୷ -84.67 -85.17 

3 νଵ୸ 0 0.333 33 aହହ୸ 0 -0.36 

4 υଶ୶ 0 -0.0002 34 aହ଺୶ -231.6 -232.1 

5 υଶ୷ 0 0 35 aହ଺୷ -231.9 -232.4 

6 νଶ୸ 1 1.0003 36 aହ଺୸ 0 -0.5 

7 ωଷ୶ 0 0.3064 37 b୲ଵ୶ 32.5 32.5363 

8 ωଷ୷ 1 0.7216 38 b୲ଵ୷ -125.9 -126.066 

9 ωଷ୸ 0 -0.4503 39 b୲ଵ୸ 0 0.3286 

10 υଷ୶ 628 627.5154 40 b୲ଶ୶ 125.3 125.2117 

11 υଷ୷ 0 0.2527 41 b୲ଶ୷ 34.8 34.6732 

12 νଷ୸ 0 -0.4971 42 b୲ଶ୸ 0 0.4921 

13 ωସ୶ 1 1.0007 43 b୲ଷ୶ 92.8 92.9497 

14 ωସ୷ 0 0.001 44 b୲ଷ୷ 91.1 91.3804 

15 ωସ୸ 0 0.0006 45 b୲ଷ୸ 0 0.2824 

16 υସ୶ 0 -0.1154 46 b୲ସ୶ -92.8 -92.7342 

17 υସ୷ -376 -376.466 47 b୲ସ୷ 91.1 91.1808 

18 ωସ୸ 0 -0.5 48 b୲ସ୸ 0 0.0575 

19 aହଵ୶ 231.6 231.6594 49 b୲ହ୶ -125.3 -125.374 

20 aହଵ୷ -231.9 -232.4 50 b୲ହ୷ 34.8 34.8061 

21 aହଵ୸ 0 -0.5 51 b୲ହ୸ 0 -0.225 
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No. Symbols	
Nominal	
values		

Identified	
values	

No. Symbols
Nominal	
values		

Identified	
values	

22 aହଶ୶ 316.6 316.1 52 b୲଺୶ -32.5 -32.631 

23 aହଶ୷ -84.67 -85.17 53 b୲଺୷ -125.9 -125.857 

24 aହଶ୸ 0 -0.5 54 b୲଺୸ 231.6 231.4647 

25 aହଷ୶ 85 85.4793 55 δdଵ 0 0.0235 

26 aହଷ୷ 316.58 316.4412 56 δdଶ 0 -0.0201 

27 aହଷ୸ 0 -0.5 57 δdଷ 0 -0.5 

28 aହସ୶ -85 -84.6441 58 δdସ 0 -0.5 

29 aହସ୷ 316.58 316.1839 59 δdହ 0 -0.5 

30 aହସ୸ 0 -0.5 60 δd଺ 0 -0.2872 

 

5) After the parameter errors are identified, we can use the rest of the end-effector poses 
from number 26 to 45 in Table 12 to verify the validity of identified results. Firstly, 
the leg length values before calibration are calculated by using these end-effector 
poses under an ideal condition where the identified parameter errors are not included. 
Secondly, the same end-effector data set is used to calculate a set of actual leg lengths 
by considering the identified parameter errors. The calculated leg lengths before and 
after calibration are listed in Table 14. Leg errors, before and after calibration, are 
shown in Figures 25 and 26. 

Table 14. Leg lengths before calibration (superscript b denotes ‘before’) and after calibration 
(superscript a denotes ‘after’) 

݀ଵ,௝
௕  

(mm) 
݀ଶ,௝
௕  

(mm) 
݀ଷ,௝
௕  

(mm) 
݀ସ,௝
௕  

(mm) 
݀ହ,௝
௕  

(mm)
݀଺,௝
௕  

(mm)
݀ଵ,௝
௔  

(mm)
݀ଶ,௝
௔  

(mm)
݀ଷ,௝
௔  

(mm)
݀ସ,௝
௔  

(mm) 
݀ହ,௝
௔  

(mm) 
݀଺,௝
௔  

(mm)
485.56  505.60  422.66  414.62  465.65 475.66 485.98 505.97 424.12 416.05  466.08  476.07 

485.47  505.48  454.63  414.60  465.66 475.61 485.97 505.99 456.14 416.06  466.12  476.11 

485.45  505.45  454.60  449.57  465.53 475.53 485.99 505.96 456.08 451.02  466.12  476.10 

485.37  505.36  479.59  449.57  465.52 475.49 485.96 505.98 481.11 451.05  466.12  476.12 

485.50  505.42  479.63  449.65  505.66 475.63 485.98 505.96 481.11 451.07  506.14  476.12 

485.51  505.42  479.66  449.69  505.70 475.67 485.98 505.96 481.12 451.08  506.15  476.13 

515.47  505.37  479.63  449.69  505.68 475.60 515.99 505.98 481.12 451.08  506.12  476.10 

515.42  505.38  479.61  484.65  505.53 475.50 515.98 505.97 481.07 486.04  506.10  476.09 

515.49  535.49  479.68  484.67  505.54 475.58 515.95 535.96 481.07 486.03  506.09  476.09 

515.42  535.36  514.64  484.66  505.57 475.54 515.97 536.01 516.10 486.05  506.13  476.13 

515.53  535.38  514.66  484.72  530.67 475.66 515.99 535.97 516.07 486.06  531.16  476.13 

515.38  535.38  514.69  484.69  530.57 510.55 515.93 535.97 516.15 486.08  531.09  511.11 

540.39  535.35  514.66  484.69  530.59 510.52 540.96 536.00 516.14 486.08  531.09  511.10 

565.42  535.31  514.62  484.69  530.62 510.51 566.01 535.99 516.12 486.08  531.11  511.10 

565.44  535.31  514.64  484.73  555.67 510.57 565.96 535.96 516.12 486.09  556.09  511.06 

565.41  535.21  544.62  484.73  555.68 510.56 565.97 535.99 546.12 486.11  556.10  511.08 

565.40  535.21  544.63  484.73  555.68 510.55 565.96 535.99 546.13 486.12  556.11  511.08 
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(mm) 
݀ହ,௝
௔  

(mm) 
݀଺,௝
௔  

(mm)
525.44  535.28  544.66  484.75  555.70 510.61 525.99 536.00 546.13 486.13  556.16  511.14 

525.49  535.41  509.70  484.75  555.67 510.64 525.96 535.96 511.13 486.10  556.12  511.10 

525.43  535.43  489.67  484.66  515.56 510.55 525.98 535.94 491.11 486.09  556.13  511.11 

 

 
Figure 25.  Leg errors before calibration in 20 pose configurations. 

 

Figure 26. Leg errors after calibration in 20 pose configurations. 

The results of leg errors before and after calibration in Figures 25 and 26 show that the errors 
can be reduced by at least one order of magnitude, i.e., from about 1.5 mm to less than 0.15 
mm.  

To accurately show improvement in the end-effector poses, we can assume the measured end-
effector values, which should be achieved by the control program, to be the desired ones, and 
compare these values with the numerically calculated end-effector poses to get the orientation 
errors and the position errors under two different conditions (with or without identified 
parameter errors). The POE error model in Section 3.2 and the DE identification method in 
Section 3.3 can be used to calculate the end-effector poses, but the 60 error parameter 



 

 
75 

 

variables should be replaced by the three orientation Euler angles and the three position 
vectors of the end-effector pose. The end-effector pose values after calibration can be 
obtained by including the identified parameter errors in the error model, whereas the values 
before calibration can be obtained without considering the identified parameter errors in the 
error model. Now the task of parameter identification is to search for a set of end-effector 
poses ߠ ൌ ൫ ߶௘

௪ , ௘ߠ
௪ , ߮௘

௪ , ௘ܲ௫
௪ , ௘ܲ௬

௪ , ௘ܲ௭
௪ ൯  to minimize  

 ܵܵఏ ൌ ∑ ൫݀௜,௝
௠ െ ݀௜,௝

௣ ൯
ଶ଺

௜ୀଵ ,      (68) 

where ݀௜,௝
௠  is the measured leg length as in Table 11; ݀௜,௝

௣

 
is the leg length predicted by 

Equations (33) and (34); the measured end-effector pose 
m
stg  is replaced by a homogeneous 

transformation matrix which involves variables of the three Z-Y-X Euler angles and the three 
position vectors 
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Numerical solutions of the end-effector pose before and after calibration are listed in Table 
15. Comparing these results with the measured end-effector poses, we can get the orientation 
errors before and after calibration (Figures 27-28), and the position errors before and after 
calibration (Figures 29-30). 

Table 15. End-effector poses before calibration (superscript b denotes ‘before’) and after 
calibration (superscript a denotes ‘after’) 

߶௘௕
௪  
(rad.) 

θ௘௕
௪  

(rad.) 
߰௘௕

௪  
(rad.) 

௘ܲ௫
௕௪  

(mm) 
௘ܲ௬
௕௪

(mm)
௘ܲ௭
௕௪

(mm)
߶௘௔

௪

(rad.)
θ௘௔

௪

(rad.)
߰௘௔

௪

(rad.)
௘ܲ௫
௔௪  

(mm) 
௘ܲ௬
௔௪  

(mm) 
௘ܲ௭
௔௪

(mm)
0.11  -0.02  0.84  -67.22  153.10 -403.8 0.11  -0.02  0.84  -68.21  153.46  -405.0 

0.09  0.10  0.99  -57.12  165.73 -377.3 0.09  0.10  0.99  -58.08  166.06  -378.6 

0.12  -0.02  0.83  -31.06  153.32 -376.9 0.12  -0.02  0.83  -32.00  153.67  -378.1 

0.10  0.08  0.94  -23.08  164.69 -356.4 0.10  0.08  0.94  -24.00  165.02  -357.6 

0.06  0.27  0.82  -61.32  154.39 -363.8 0.06  0.26  0.82  -62.28  154.73  -365.0 

0.05  0.27  0.78  -61.32  174.76 -308.1 0.05  0.27  0.78  -62.27  175.06  -309.3 

-0.12  0.26  0.77  -41.15  157.29 -316.8 -0.12  0.26  0.77  -42.12  157.61  -318.0 

-0.08  0.12  0.63  -11.03  145.99 -314.2 -0.08  0.12  0.63  -11.97  146.31  -315.4 

0.09  0.13  0.63  -33.96  127.93 -328.7 0.09  0.13  0.63  -34.88  128.24  -330.0 

0.05  0.27  0.78  -21.90  142.98 -300.5 0.05  0.27  0.78  -22.80  143.29  -301.8 

0.03  0.42  0.71  -48.68  137.05 -307.6 0.03  0.42  0.71  -49.59  137.36  -308.9 

0.05  0.22  0.81  -55.00  155.51 -273.8 0.05  0.22  0.81  -55.95  155.78  -275.1 

-0.10  0.22  0.80  -37.61  139.94 -281.9 -0.10  0.22  0.80  -38.58  140.23  -283.2 

-0.25  0.23  0.77  -19.48  124.61 -293.4 -0.25  0.23  0.77  -20.47  124.91  -294.6 
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߶௘௕
௪  
(rad.) 

θ௘௕
௪  

(rad.) 
߰௘௕

௪  
(rad.) 

௘ܲ௫
௕௪  

(mm) 
௘ܲ௬
௕௪

(mm)
௘ܲ௭
௕௪

(mm)
߶௘௔

௪

(rad.)
θ௘௔

௪

(rad.)
߰௘௔

௪

(rad.)
௘ܲ௫
௔௪  

(mm) 
௘ܲ௬
௔௪  

(mm) 
௘ܲ௭
௔௪

(mm)
-0.28  0.37  0.69  -45.27  120.35 -299.2 -0.28  0.37  0.69  -46.28  120.68  -300.4 

-0.37  0.50  0.78  -35.28  140.19 -275.6 -0.37  0.50  0.78  -36.27  140.51  -276.8 

-0.37  0.50  0.78  -35.28  140.19 -300.5 -0.37  0.50  0.78  -36.26  140.51  -301.8 

-0.11  0.46  0.88  -62.14  163.40 -283.9 -0.11  0.46  0.88  -63.08  163.69  -285.2 

-0.03  0.34  0.72  -76.77  141.55 -312.6 -0.03  0.34  0.72  -77.74  141.83  -313.9 

0.04  0.04  0.75  -40.96  140.01 -319.6 0.04  0.04  0.75  -41.92  140.30  -320.9 

 

Figure 27. Orientation errors before calibration in 20 pose configurations. 

 

Figure 28. Orientaion errors after calibration in 20 pose configurations. 

It can be seen from Figures 27 and 28 that the orientation errors are not reduced after 
calibration. The simulation results have perfectly reflected our actual error settings where 
only a 1 mm assembly error along the x-coordinate of world frame {w} is realized in the 
second joint (q2) of the hybrid IWR robot. This arrangement guaranteed that the orientation 
values of the end-effector are not affected by the translational movement of the second joint 
of the IWR robot. The orientation errors in Figures 27 and 28 are only influenced by the 
precision level of the 3-2-1 pose estimation system. 
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Figure 29. Position errors before calibration in 20 pose configurations. 

Figure 30. Position errors after calibration in 20 pose configurations 

From Figures 29 and 30, it can be seen that the improved accuracy for position errors is 
assessed and shown to be better by almost one order of magnitude. Before calibration, the 
biggest position error is about -1.2 mm; but after calibration, the biggest position error is 
reduced to 0.25 mm, which reaches the precision level as that given by the 3-2-1 
measurement system (±0.1 mm).  

Compared with the numerical simulation in Chapter 4, the Solidworks simulation in Chapter 
5 is closer to real applications. In the Solidworks environment, the different accuracy of the 
3-2-1 pose measurement system can be realized by setting different decimal places for the 
Solidworks measuring precision. Moreover, manufacturing and assembly errors can also be 
easily realized in the Solidworks CAD model.  By comparing the simulation results in 
Chapters 4 and 5, we can draw the same conclusion, that is, the higher the accuracy of the 
measurement system we use, the better the identification results we obtain. 
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CONCLUSIONS  

The main purpose of this study is to develop an effective calibration method to improve the 
accuracy of a redundant 10-DOF serial-parallel robot. To accomplish this, two kinds of error 
modeling methods and two kinds of parameter identification methods are proposed. Both of 
the error-modeling methods take into account the geometrical error sources that basically 
result from machining and assembly processes. The two methods can be regarded as a hybrid 
calibration method as they integrate both the traditional forward calibration for serial 
mechanisms and the inverse calibration for parallel mechanisms into one.  

For the Denavit-Hartenberg (DH) hybrid model, the DH modeling method is employed to 
predict a forward solution for a serial mechanism, while the vector chain analytical method is 
used to develop an inverse solution for the parallel manipulator and the hybrid mechanism. 
The advantage of this method is that the forward solution of the serial mechanism can be used 
as a prediction value to fit into the final error model. Therefore, the full pose measurement of 
the end-effector for the hybrid robot can meet the calibration requirement effectively, while 
the pose measurement of the end-tip for a serial mechanism is unnecessary. The identification 
of unknown parameter errors involves using a powerful global optimization method – the 
differential-evolution (DE) algorithm. Computer simulations of the serial-parallel IWR robot 
demonstrate that all of the 54 geometrical parameter errors can be successfully identified. The 
simulation results show that the DE-based parameter identification algorithm has a very 
strong stochastic searching ability. It is very robust and effective and can easily be employed 
to identify multi-dimensional parameter errors for high nonlinear kinematic models. The 
simulation is also helpful to find out the most suitable DE algorithm control parameters and 
termination conditions before carrying out an experimental test. By using the DE-based 
identification method, all the parameter errors can be identified even if correlations between 
parameter errors exist.  

However, to get a more accurate error model, redundant parameters which result in 
correlations have to be eliminated. To solve this problem, the MCMC-based method has been 
proposed for parameter correlation analysis as well as for parameter estimation in a statistical 
way. The simulation results for the reduced error model with measurement noise show that 
all the independent and identifiable parameters have successfully converged to assumed 
errors with only a slight difference and the standard deviations arrive at very high precisions 
(10-5 mm and 10-8 rad.). Another advantage of using the MCMC approach is that it is able to 
lower the influence of measurement noise to as small as possible. The limitation of the 
MCMC approach is time-consuming, thus a powerful CPU processor and RAM are required 
for the simulation computer.  

For the product-of-exponential (POE) error model, solving forward kinematics of the Hexa-
WH parallel manipulator is also a very difficult problem due to its high dimensional (60 error 
parameters) and sophisticated constraints. However, the inverse kinematics problem for this 
parallel manipulator is very simple. The solution is based on the geometry of the manipulator 
and it can also be derived in a manner similar to that used for solving subproblems in [95]. In 
our POE-based calibration model, the forward kinematics for a serial mechanism and the 
inverse kinematics for a parallel mechanism are integrated together to form a hybrid 
calibration model.  The parameter errors derived by the POE modeling method are 
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independent and identifiable, so the DE-based identification method can satisfy the 
requirements of identification effectively. Simulation results show that the accuracy of the 
end-effector can be improved to the same precision level as that given by the external 
measurement device. The higher accuracy the measurement system has, the better the 
identification results that can be achieved. For instance, the simulation in Section 4.3 shows 
that the RMS position error after calibration is about 0.001 mm which matches the assumed 
laser tracker precision (position accuracy: ±0.01 mm, standard deviation: 0.003 mm), while 
the simulation in Section 5.3 also demonstrates that the orientation error (0.3o) and position 
error  (0.12 mm ) after calibration reached the simulated precision of the 3-2-1 pose 
estimation system in Solidworks, i.e. ±0.1 mm for position accuracy, ±0.3o for orientation 
accuracy. 

Finally, the Solidworks CAD prototype model and a 3-2-1 wire-based pose measurement 
system are employed to simulate the working environment of the hybrid IWR robot. 
Calibration results for leg length errors show that kinematic errors can be reduced by at least 
one order of magnitude.  Calibration results for end-effector poses also show that position 
errors can be reduced by about one order of magnitude. To prove its feasibility, our future 
work will focus on experimentally validating the proposed methods on the current IWR 
robotic system, and extending the proposed method to other serial-parallel robots or parallel 
robots. 
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APPENDIX A 

- POE representation for Robot kinematics 

To facilitate the error modeling of the studied robot, some related mathematic concepts are 
summarized in this section. For more details please refer to [36] [95]. 

a) The Lie Group SO(3), or the Special Orthogonal Group, also referred as the rotation
group, has the form of

 1det,:)3( 33   RIRRR TSO . (A.1) 
      Every rigid body rotation about a fixed axis can be expressed as an ∈R SO(3). 

b) The Lie Group SE(3), or the Special Euclidean Group, also known in the robotics
literature as the homogeneous transformation matrix, has the form of
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SE(3) represents the group of general rigid body motions including rotation and 
translation. 

c) The Lie algebra of SO(3), denoted by so(3), is a vector space of the skew-symmetric
matrices, such that
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where the vector ω=(ωx , ωy , ωz)
T∈R3×1 ,which correspondents to the axis of a rigid 

body rotation. The rotation can be represented in an exponential form as qeωR ˆ , 
where q represents the angle of the rotation. 

d) The Lie algebra of SE(3), denoted by se(3), is defined as
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 where ૆෠ admits a six-dimentional vector presentation: ξ=( ω, v)T, termed as twist. 
The twist ξ represents the line coordinate of the screw axis of a general rigid body 
motion. ω is the unit directional vector of the axis, v is the position of the axis with 
respect to the origin. In the exponential form, )3(

ˆ
SEeg q  ξ ,where q∈R is joint 

variable which represents the angle or displacement of a joint motion. For revolute 
joint, if p∈R3×1 is an arbitary point on the axis, then v=-ω×p. For prismatic joint, 
ω=0, v represents the unit directional vector of the axis.  

e) Adjoint transformation, is a 6×6 matrix which transforms twists from one coordinate
frame to another, written as Ad(g). Thus, given g∈SE(3) , Ad(g) can be expressed as
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where ܊መ  is the skew-symmetric matrix of vector b. 

f) Exponential of se(3), presents an important connection between a Lie Group SE(3) 

and its Lie algebra se(3). Given )3(ˆ seξ ,ξ=( ω, v)T and 222
zyx  ω , then  
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where if ω =1, then 
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here cq, sq are abbreviations for cos(q) and sin(q) respectively, and vq=1-cq. 
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If ω =0, which means the joint is prismatic, then 

  R=I3,   b=qv.                      (A.10) 

g) Forward kinematics using POE formular 
Combining the individual joint motions, the forward kinematics for an n-degree-of -
freedom serial robot is given by 

 )0()(
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where gst(0) represents the rigid body transformation between tool frame T and base 
frame S when the manipulator is in its reference configuration (q=0).  We can define 
any configuration of the manipulator as the reference configuration. One natural 
choice is to let the base frame be coincident with the tool frame in reference 
configuration, then gst(0)=I . The twist coordinates ξi for the individual joints of a 
manipulator depend on the choice of reference configuration (as well as base frame) 
and so the reference configuration is usually chosen such that the kinematic analysis is 
as simple as possible. 

 
- POE representation for Robot error modeling 
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According to the error model of He [36], if let the base frame coincident with the tool 
frame in the reference configuration, and assuming no errors in gst(0) and q, then a 
POE based error model can be expressed in an explicit form as:  
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Abstract

This paper focuses on the geometrical error modelling and pa-

rameter identification of a 10 degree-of-freedom (DOF) redundant

serial–parallel hybrid intersector welding/cutting robot (IWR). The

proposed hybrid robot consists of a kinematically redundant 4-DOF

serial mechanism to enlarge workspace and a 6-DOF Stewart parallel

robot to improve the end-effector accuracy. Due to its redundant

degrees of freedom and the serial–parallel structure, the traditional

error modelling and identification methods which tailored for pure

serial robot or pure parallel robot cannot be directly used. In this

paper, a hybrid error modelling method for redundant serial–parallel

hybrid robot is presented by combining both the traditional forward

calibration and inverse calibration method. Furthermore, because

of the high nonlinear and multi-modal characteristics of the derived

hybrid error model, the traditional iterative linear least-square al-

gorithm cannot be utilized to identify the error parameters. In this

paper, an easy-to-use and powerful evolutionary global optimization

algorithm named differential evolution (DE) is employed to search

for a set of optimum combination of all error parameters in the

error model to minimize the discrepancies of measured and pre-

dicted leg lengths. Numerical simulation and analysis are conducted

by generating random manufacturing and assembly errors within

the real error parameter tolerance range. Meanwhile, different

measurement poses of the end-effector and the corresponding joint

displacements of the serial mechanism are also randomly generated

in the workspace to simulate the real physical behaviours. The

simulation results show that the DE-based parameter identification

method is robust and reliable, and all of the preset errors can be

successfully recovered. The simulation also shows that the hybrid

calibration method can avoid the external pose measurement of the

connecting point between serial and parallel mechanism, and the

pose measurement of the end-effector of serial–parallel robot can

satisfy the calibration purpose effectively.
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1. Introduction

Practically, kinematic errors in robot manipulators which
originated from manufacturing and assembly processes are
inevitable thus have to be compensated to a certain value
to meet a specified accuracy requirement. However, af-
ter the robot is assembled, it would be very difficult but
still possible to measure the geometrical errors. Alter-
natively, the most cost-effective way for improving robot
accuracy is to formulate an accurate mathematical error
model according to the designed geometric characteristics
and then use numerical method to identify the unknown
error parameters in the error model and compensate for
these errors in the controller. Over recent decades, a num-
ber of different modelling methods have been proposed
for kinematic modelling of serial robot manipulators. The
most popular model is the DH model which was developed
by Denavit and Hartenberg (DH) [1], but it suffers from
singularity problem when two consecutive joints are par-
allel or near parallel. To avoid singularity of DH conven-
tion, many modelling methods have been proposed. For
instance, Hayati and Mirmirani [2] established a modified
DH model; Veitschegger and Wu [3] developed a linear and
a second-order error modelling methods for serial robot;
Stone and Sanderson [4] proposed a S-model which uses
six parameters for each link and these parameters are con-
verted to DH parameters; Mooring [5], [6] presented the
zero-reference model and it does not rely on the DH for-
malism and adopts only two coordinate systems: one is
reference coordinate system fixed in the work space and
another one is end-effector coordinate system attached to
the end-effector of the robot. For parallel manipulators,
due to its closed-loop kinematic structure characteristics,
the vector chain analytical method is commonly adopted
for kinematic modelling. In terms of hybrid robot con-
nected by serial and parallel mechanisms, to the best of
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our knowledge, there are no generic modelling and identifi-
cation method available. This paper presents a hybrid er-
ror modelling method for redundant serial–parallel robot;
it is a combination of DH modelling method for serial
mechanism and vector chain analytical method for parallel
mechanism. If this hybrid calibration method employs DH
model or modified DH model to predict a forward solution
for serial mechanism, then vector chain analytical method
are used to develop an inverse solution for parallel mech-
anism. The advantage of this method is that the external
pose measurement of the connection point between serial
and parallel mechanism is avoided. Therefore, if the two
hybrid parts do not need to calibrate separately and can
be regarded as a whole, then the pose measurement of the
end-effector can fulfil the calibration purpose effectively.
Once the most suitable calibration model has been selected
for the mechanism, the next step is to select a suitable
optimization method to find out a set of optimum solutions
in the error model to minimize the derived objective func-
tions. Generally, the optimization method in this step can
be divided into two categories. One is iterative lineariza-
tion method which linearizes the derived error model, ob-
tains a corresponding identification Jacobian matrix and
then recursively solves the linear system until the average
error approaches a stable minimum. The advantage of
this method is less computation time to converge, but the
identification Jacobian may suffer from numerical prob-
lems of ill-conditioning. To overcome this problem, the
Levenberg and Marquardt (LM) minimization techniques
can be used [7], [8], but for complex models, LM algorithms
may converge to local minimum. Another one is nonlinear
optimization method which minimizes the sum of square
errors between the measured and predicted values based
on the Euclidean norm to search a set of optimum error
parameters in the predicted error model. This method is
commonly used in the high nonlinear and complex sys-
tems where the identification Jacobian matrix is not easy
but still possible to derive. Based on the error model,
some global optimization algorithms such as Markov Chain
Monte Carlo methods [9], artificial neural networks [10],
genetic programming [11], particle swarm optimization
(PSO) [12], genetic algorithms (GA) [13] and differential
evolution (DE) [14] have been successfully employed to
calibrate the specific serial or parallel robots. The compar-
ison of these global optimization methods for benchmark
or real-world applications can be found in some literatures
[15]–[17]. The benchmark comparison of DE, GA, PSO,
evolutionary algorithms (EAs) in [15], [16] demonstrated
that DE algorithms are more reliable and easy-to-use than
other optimization algorithms. The comparison in [17]
shows that DE is clearly and consistently superior to GAs
and PSO in terms of precision as well as robustness of the
results for hard clustering problems. In general, DE is a
simple but effective EA to solve nonlinear and global opti-
mization problems [18], [19]. The DE-based identification
method is a nonlinear optimization method and is purely
stochastic; it avoids problems in defining search direction,
and whether the initial values are close to the optimum
solution or not is insignificant. Therefore, the development
of identification matrix is not necessary and the numerical

Figure 1. Experimental prototype developed in LUT.

problem of ill-conditioning of identification matrix can be
avoided. Due to the outstanding performance of DE and
the complicated error model of the proposed hybrid robot,
the DE algorithm will be employed in this paper to search
a set of optimum solutions globally in the predicted error
model to minimize the position error of the end-effector.

The remainder of the article is organized as follows.
The kinematic and identification models of the robot are
derived in Section 2. Section 3 presents the implementation
of DE algorithm. Simulation results are given in Section 4,
and conclusions are drawn in Section 5.

2. Error Modelling

The prototype of the hybrid serial–parallel robot, as shown
in Fig. 1, is composed of a 4-degree-of-freedom (DOF)
serial mechanism (carriage) and a 6-DOF hexapod parallel
mechanism (Hexa-WH). The aim is to make a compromise
between large workspace of serial manipulators and high
stiffness of parallel manipulators. The robot is designed for
machining and assembling the vacuum vessel of ITER [20].
To simplify the analysis, the kinematic and identification
model of the two parts will be derived separately in Section
2.1 and then be integrated together to get the hybrid model
[21], [22].

2.1 Kinematic Model

The first step of the calibration procedure is to develop
a suitable mathematic model to specify the relationship
between the outputs of the joint displacement transducers
and the pose of the end-effector. In the following sec-
tions, modelling of the carriage, Hexa-WH and intersector
welding/cutting robot (IWR) will be discussed in detail.

2.1.1 Kinematic Model for the Carriage

Based on the routine of Denavit–Hartenberg (DH) coordi-
nate system from Paul [23], the related coordinate systems
are established as shown in Fig. 2 and the corresponding
kinematic parameters are listed, as given in Table 1.
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Figure 2. Coordinate system of the carriage.

Table 1
DH Parameters of the Carriage

Link No. αi ai di θi

1 π/2 0 d1 (variable) 0

2 π/2 0 d2 (variable) π/2

3 π/2 a3 d3 θ3 (variable)

4 −π/2 a4 0 θ4 (variable)

Substituting the DH link parameters into (1), we ob-
tain the DH homogeneous transformation matrices 0A1,
1A2,

2A3,
3A4 and the nominal forward kinematics of the

carriage 0T4. In the following equations, the sine and
cosine are abbreviated as s and c.

i−1Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

cθi −cαisθi sαisθi aicθi

sθi cαicθi −sαicθi aisθi

0 sαi cαi di

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

0T4 = 0A1
1A2

2A3
3A4

=

⎡
⎢⎢⎢⎢⎢⎢⎣

sθ4 0 cθ4 a1 + d3 + a4sθ4

−sθ3cθ4 −cθ3 sθ3sθ4 −d2 − a3sθ3 − a4sθ3cθ4

cθ3cθ4 −sθ3 −cθ3sθ4 d1 + a3cθ3 + a4cθ3cθ4

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣
0R4

0P4

0 1

⎤
⎦ (2)

2.1.2 Kinematic Model for Hexa-WH

A schematic diagram of the hexapod parallel mechanism is
shown in Fig. 3. Two Cartesian coordinate systems, frame

Figure 3. Coordinate system of Hexa-WH.

O4(X4, Y4, Z4), and frame O5(X5, Y5, Z5) are attached to
the base platform and the end-effector, respectively. Six
hydraulic actuated variable legs are connected to the base
platform by universal joints and to the task platform by
spherical joints.

For the nominal kinematic parameters of Hexa-WH,
let li be the unit vector of the direction from Ai to Bi

and li the magnitude of the leg vector ⇀ AiBi. Then the
inverse kinematics of the ith leg of the parallel manipulator
can be expressed by the following vector-loop equation:

lili =
4P5 +

4R5
5bi − 4ai, i = 1, 2, . . . , 6 (3)

where 4P5 is the position vector of the task frame {5}
related to the connecting frame {4}; 4ai and 5bi are the
position vectors of the universal joint Ai in frame {4} and
spherical joint Bi in frame {5}; 4R5 is the Z–Y –X Euler
transformation matrix which represents the orientation of
frame {5} with respect to frame {4}:

4R5 =

⎡
⎢⎢⎢⎣

cαcβ cαsβsλ− sαcλ cαsβcλ+ sαsλ

sαcβ sαsβsλ+ cαcλ sαsβcλ+ cαsλ

−sβ cβsλ cβcλ

⎤
⎥⎥⎥⎦ (4)

2.1.3 Kinematic Model for IWR

Combining the two parts together we can get a schematic
diagram for the redundant hybrid manipulator which con-
sists of the carriage and Hexa-WH mechanisms as shown
in Fig. 4. The coordinate frame {4} of one platform of the
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Figure 4. Schematic diagram of IWR.

Hexa-WH is coincident with the end-tip frame of carriage.
The fixed reference frame {0} is placed at the left rail of
carriage. Based on this hybrid structure, we can obtain a
vector-loop equation as:

0P5 = 0P4 +
0R4

4P5 = 0P4 +
0R4

(
lili +

4ai − 4R5
5bi

)

= 0P4 +
0R4lili +

0R4
4ai − 0R5

5bi (5)

From (5), the inverse solution of the hybrid robot, i.e., the
nominal leg lengths can be derived as:

lili =
(
0R4

)−1 (0P5 − 0P4 − 0R4
4ai +

0R5
5bi

)
,

i = 1, 2, . . . , 6 (6)

where 0R5 and
0P5 are the orientation matrix and position

vector of the end-effector frame {5} with respect to the
fixed reference frame {0}.

2.2 Identification Model

2.2.1 Identification Model for the Carriage

According to the approaches proposed by Veitschegger and
Wu [3], if small errors occur in the DH parameters θi,
di, ai and αi, it will lead to a differential change di−1Ai

between two successive joint coordinates, and the predicted
relationship between the two consecutive joint coordinates
can be expressed as:

i−1Ap
i = i−1Ai + di−1Ai (7)

where i−1Ai is homogeneous transformation matrix which
has four nominal DH link parameters that can express
the relationship between the joint coordinates i and i− 1;
di−1Ai is differential change due to the errors from link
parameters and the joint offset errors from actuators. The

differential change can be approximated as a linear function
by Taylor’s series:

di−1Ai =
∂i−1Ai

∂θi
Δθi +

∂i−1Ai

∂di
Δdi

+
∂i−1Ai

∂ai
Δai +

∂i−1Ai

∂αi
Δαi (8)

where Δθi, Δdi, Δai and Δαi are small errors in the
DH parameters; the partial derivatives are calculated
by the nominal geometrical link parameters. From
(1), taking the partial derivative with respect to θi,
di, ai and αi respectively, we can easily establish the

matrices of ∂i−1Ai

∂θi
, ∂i−1Ai

∂di
, ∂i−1Ai

∂ai
, and ∂i−1Ai

∂αi
. Let

di−1Ai =
i−1Aiδ

i−1Ai and δi−1Ai =DθiΔθi + DdiΔdi +
DaiΔai +DαiΔαi, then by expanding it into matrix form
we obtain:

δi−1Ai=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −cαiΔθi sαiΔθi Δai

cαiΔθi 0 −Δαi aicαiΔθi+sαiΔdi

−sαiΔθi Δαi 0 −aisαiΔθi+cαiΔdi

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

The above expression gives the general differential trans-
lation and orientation vectors for joints which are not
parallel or near parallel as the function of four DH kine-
matic errors. In the case of 4-DOF carriage, the predicted
forward solution which including kinematic errors can be
expressed as:

0Tp
4 = 0T4+d0T4 =

4∏
i=1

(i−1Ai + di−1Ai) =

⎡
⎣
0Rp

4
0Pp

4

0 1

⎤
⎦

(10)

Expanding (10) and ignoring the second and higher-order
differential errors, the relationship between the differential
change in the carriage end-tip point and the change in the
link parameters can be expressed as:

d0T4 = δT1 ∗ 0T4 , δT
1 =

4∑
i=1

([
0Ai

] ∗ δi−1Ai ∗
[
0Ai

]−1
)

(11)

where δT1 is the first-order error transformation matrix in
the fixed reference frame. According to Paul [23], it has
the following form:

δT =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −δθz δθy δdx

δθz 0 −δθx δdy

−δθy δθx 0 δdz

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

From (10), the predicted orientation matrix 0Rp
4 and po-

sition vector 0Pp
4 of frame {4} with respect to frame {0}

can be formulated, and the unknown constant error pa-
rameters Δθi, Δdi, Δai and Δαi will be taken as identifi-
cation variables in the final fitness function (15). The DH
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convention from Paul [23] shows that for a revolute joint
whose axis Zi is a line in space, all four error parameters
including the kinematic parameters and joint offset errors
have to be calibrated. For a prismatic joint whose Zi is a
free vector, only two parameters describing its orientation
(Δαi and Δθi) are required and the other two must be set
to a value of 0. Since the carriage consists of two prismatic
joints and two revolute joints, the number of identification
parameters for the serial part is 12.

2.2.2 Identification Model for Hexa-WH

For the Hexa-WH, when manufacturing and assembly er-
rors are introduced, the vectors 4ai and 5bi will deviate
from the nominal values and have constant error parame-
ters δ4ai and δ5bi. Leg length li will have an initial offset
δli. Then the error model of Hexa-WH can be written as:

lpi = (li + δli)l
p = 4Pm

5 + 0Rm
5 (5bi + δ5bi)− (4ai + δ4ai),

i = 1, 2, . . . , 6 (13)

Since in each leg we have 7 error parameters, 3 coordi-
nate error parameters for joint Ai, 3 coordinate error pa-
rameters for and Bi and 1 error parameters for the leg
joint offset, the number of identification variables for the
Hexa-WH is 42.

2.2.3 Identification Model for IWR

Integrating the above derived error model of serial and
parallel part together, we can obtain the final error model
of the hybrid robot as:

lpi = (li + δli)l
p = (0Rp

4)
−1

[
0Pm

5 − 0P p
4 − 0Rp

4(
4ai + δ4ai)

+ 0Rm
5 (5bi + δ5bi)

]
(14)

where 0Pm
5 and 0Rm

5 denote the measured position vector
and orientation matrix of end-effector and can be obtained
via accurate measurement instrument; 0Pp

4 and 0Rp
4 de-

note the predicted carriage end-tip position vector and the
orientation matrix which includes the identification error
parameters. Therefore, the error residuals of the measured
leg length lmi from linear actuator inner sensors and the
predicted leg lengths lpi in (14) can be adopted to express
the objective function of DE algorithm as:

Min f(Δkc, δkh) =
N∑
j=1

6∑
i=1

(lmi,j − lpi,j)
2 (15)

In (15), N is the number of pose measurement points, lpi,j is
the predicted leg length from (14) and lmi,j is the measured
value of the ith leg in the jth measurement configuration;
Δkc and δkh are the identification parameter vectors from
the carriage and Hexa-WH. The total number of these
variables is 54, of which 12 are from the carriage while the
remaining 42 variables are from Hexa-WH.

Figure 5. Flowchart of DE algorithm.

3. Application of Differential Evolution for Param-
eter Identification of Hybrid Robot

DE algorithm is a promising candidate for minimizing
real-valued, multi-modal, and nonlinear objective func-
tions [18]. It belongs to the class of EAs and utilizes
mutation, crossover and selection operations, as shown in
the flowchart in Fig. 5. The number of the identification
variables in the objective function is equal to 54. The
variables can be represented in DE as an individual vec-
tor x=(x1, x2, . . . , xD), where D is the individual index.
For each generation G, the population can be represented
as a matrix Xi,G ∈�D×Np, where i=1, 2, . . . ,Np is the
population index. The detailed algorithm steps of DE
for parameter identification of hybrid robot are discussed
below.

3.1 Initialization

To start a DE optimization process, an initial population
for a starting point must be created. The natural way to
generate the initial population is to assign a random value
for each parameter within its feasible boundaries:

xj,i,G=0 = xL
j,i + randj(0, 1) · (xU

j,i − xL
j,i) (16)

where j=1, 2, . . . , D is the individual parameter index,
i=1, 2, . . . ,NP is the population index and xL

j,i and xU
j,i

are the lower and upper boundaries of the jth parameter,
respectively. After initialization, the population evolves
with the operations of mutation, crossover, and selection.
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Table 2
Twelve Nominal and Identified Parameters of the Carriage (15 Measurement Poses from 76–90)

No. Symbols Nominal Preset Errors Identified Errors
Values

1 α1, δα1 π/2 0.0782◦ 0.0781999999993

2 α2, δα2 π/2 0.0571◦ 0.0570999999997

3 α3, δα3 π/2 −0.048◦ −0.048000000001

4 α4, δα4 −π/2 0.0417◦ 0.0416999991195

5 a3, δa3 252 −0.2164 −0.2164000000026

6 a4, δa4 354 −0.4451 −0.445099998348

7 d3, δd3 422 0.1681 0.1681000000063

8 d4, δd4 0 −0.3857 −0.385700004978

9 θ1, δθ1 0 0.0213◦ 0.0213000000003

10 θ2, δθ2 π/2 0.0794◦ 0.0794000000014

11 θ3, δθ3 0 0.0464◦ 0.0463999999999

12 θ4, δθ4 0 0.0345◦ 0.0345000005016

3.2 Mutation

The main objective of mutation operation is to keep a
population robust and search new territory. In the step
of DE mutation operation, the new parameter vectors are
generated by adding a weighted difference vector between
two different population members to the third member.
For each vector xi,G, a mutant vector mi,G+1 is generated
according to the formula:

mi,G+1 = xr1,G + F · (xr2,G − xr3,G) (17)

The randomly selected integers have to satisfied the re-
quirement of r1, r2, r3∈{1, 2, . . . ,NP} and r1 �=r2 �=r3 �= i.
The mutation scale factor F > 0.

3.3 Crossover

The aim of crossover operation is to increase the diversity
of the generated vectors. The trial vector is generated as
follows:

ui,G+1 = (u1,i,G+1, u2,i,G+1, . . . , uD,i,G+1)

uj,i,G+1 =

⎧⎨
⎩
mj,i,G+1, if (randj [0, 1) < CR ∨ j = jr)

xj,i,G, otherwise

(18)

where G=1, 2, . . . , Gmax is generation index. jr is chosen
randomly from the set {1, 2, . . . , D}, the use of jr is to
ensure that vector uj,i,G+1 gets at least one parameter from
mi,G+1. CR is a crossover rate; it is a parameter defined
by users in the range of [0,1].

3.4 Selection

In the selection operation of DE, the trial vector ui,G+1

is compared to the target vector xi,G by evaluating the
objective function to decide whether the trial vector can
become a member of the next generation or not. The
vector, which has a smaller objective function value, is
allowed to evolve to the next generation, i.e.:

xi,G+1 =

⎧⎨
⎩
ui,G+1, if f(ui,G+1) ≤ f(xi,G)

xi,G, otherwise
(19)

By using this selection procedure, it can be guaranteed
that all individuals of the next generation are as good as
or better than the individuals of the current population.

4. Simulation Results

In this section, some numerical simulations for identifying
the kinematic error parameters of a novel redundant hybrid
robot are conducted to verify the validity and effectiveness
of the DE-based method. The detailed nominal and identi-
fied geometrical parameters of the carriage and Hexa-WH
are listed in Tables 2 and 3. The simulation procedures are
as follows:
1. Randomly generate 100 end-effector measurement

poses (0Pm
5 , 0Rm

5 ) within the robot workspace. And
also randomly generate 100 joint displacements of
the carriage actuators within the real motion range,
which can be the representative of the nominal joint
displacements of the carriage actuators in real case.
In practice, the end-effector poses are obtained by the
external measuring devices and the joint displacements
are collected from the actuator sensor readings.
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Table 3
Forty-Two Nominal and Identified Parameters of the Hexa-WH (15 Measurement Poses from 76–90)

No. Symbols Nominal Values Preset Errors Identified Errors

1 a1x, δa1x 231.6663 −0.0654 −0.06540000167417

2 a1y, δa1y −231.9022 0.0687 0.068699995022313

3 a1z, δa1z 0 0.0928 0.092799991314147

4 a2x, δa2x 316.663 0.0448 0.044799998331845

5 a2y, δa2y −84.6778 −0.0942 −0.09420000497952

6 a2z, δa2z 0 −0.0731 −0.07310000716682

7 a3x, δa3x 85 0.0229 0.022899998344534

8 a3y, δa3y 316.58 0.0133 0.013299995030753

9 a3z, δa3z 0 −0.0136 −0.01359999896447

10 a4x, δa4x −85 −0.0752 −0.07520000166834

11 a4y, δa4y 316.58 −0.0976 −0.09760000496367

12 a4z, δa4z 0 0.0167 0.016700002517118

13 a5x, δa5x −316.663 0.0576 0.057599998340029

14 a5y, δa5y −84.6778 −0.0486 −0.04860000497178

15 a5z, δa5z 0 0.0329 0.032899998377918

16 a6x, δa6x −231.6663 −0.0117 −0.01170000167045

17 a6y, δa6y −231.9022 0.0676 0.06759999502538

18 a6z, δa6z 0 0.0273 0.02729999537018

19 b1x, δb1x 32.5 0.0581 0.058100000005788

20 b1y, δb1y −125.93 −0.0648 −0.064800000023

21 b1z, δb1z 0 0.0717 0.071699999997256

22 b2x, δb2x 125.309 0.0847 0.084699999999777

23 b2y, δb2y 34.819 −0.0478 −0.04779999999904

24 b2z, δb2z 0 0.0324 0.03239999999749

25 b3x, δb3x 92.809 −0.0139 −0.0139000000058

26 b3y, δb3y 91.111 −0.0266 −0.02659999996617

27 b3z, δb3z 0 −0.0281 −0.02809999998549

28 b4x, δb4x −92.809 −0.0594 −0.05939999998726

29 b4y, δb4y 91.111 0.0375 0.037499999987263

30 b4z, δb4z 0 0.0088 0.0088000000136

31 b5x, δb5x −125.309 0.0228 0.022799999997413

32 b5y, δb5y 34.819 −0.0566 −0.05659999999247

33 b5z, δb5z 0 −0.0368 −0.03680000000364

34 b6x, δb6x −32.5 −0.0638 −0.0638000000001

35 b6y, δb6y −125.93 −0.0087 −0.00870000001196

36 b6z, δb6z 231.6663 −0.0736 −0.07359999999731

37 l1, δl1 350 −0.3794 −0.37939999998198

38 l2, δl2 350 −0.0895 −0.08950000000639

39 l3, δl3 350 0.1650 0.164999999968428

40 l4, δl4 350 −0.3048 −0.30479999997541

41 l5, δl5 350 0.3233 0.323299999988304

42 l6, δl6 350 0.0774 0.077400000010887
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Figure 6. Fitness values versus simulation generations with different number of measurement poses.

Figure 7. Fitness values versus simulation generations with same number of measurement poses.

2. Assuming some preset errors for the DH error param-
eters, the leg joint offset error parameters and the
coordinate error parameters of joint Ai and Bi, these
preset errors can represent corresponding real physical
manufacturing and assembly errors within the designed
tolerance range (see Tables 2 and 3).

3. Based on the above nominal kinematic values, the
generated poses, the carriage joint displacements and
the preset errors, we can calculate the actual leg lengths
lmi,j according to (14). In reality, the leg lengths can be
obtained from the linear actuator sensor readings.

4. Take the 54 kinematic error parameters as the identifi-
cation variables in the fitness function (15) to calculate
the predicted leg lengths lpi,j . Then the task of the
simulation is to employ DE algorithm to search for an
optimal combination of error parameters to minimize
the value of the fitness function under some program
terminal conditions.

To validate the identification algorithm, we assume that
the measurement device is perfect and the measurement

noises are omitted. The DE control parameters can be
selected according to the scheme of DE/rand-to-best/1
[18]. In the simulation, the open source Matlab r© code
of DE from [24] is employed, the DE control parameter
are set to be F =λ=0.75, CR =0.95, D=54, Np =600
and the error bound range is [−0.5, 0.5], the termination
conditions of maximum generation Gmax =40, 000 and the
minimum objective function threshold are set to be 10−23.
Since in every measurement pose we have only 6 equations
for calculating the leg lengths, to identify 54 variables
we need at least 9 measurement poses. The simulations
were implemented on a computer with an Intel r© Core
2 Duo processor E8500, 3.16GHz and 3.25GB of RAM.
Figure 6 shows the results of calibration simulation with
different number of measurement poses. From the results
we can see that about 15 measurement poses are adequate
for the calibration results to stabilize. With the increase
of measurement poses, the simulation time is increased
but the number of simulation generations is decreased
when the calibration results are stabilized. The increase
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of measurement poses cannot significantly improve the
stabilized objective function values.

To simulate the influence of the same number of mea-
surement poses in different pose configurations, we select 5
sections from 100 measurement poses and let each section
has 15 measurement poses. The simulation results are
demonstrated in Fig. 7. It shows that all of the selected
runs can converge to almost the same stabilized values and
the simulation time can be reduced by suitably arrange the
measurement configurations.

Tables 2 and 3 also present the preset geometrical
parameter errors and the identified parameter errors after
one of the termination conditions has been satisfied when
use measurement poses 76–90. From the identification
results it can be seen that all of the preset variable values
have been successfully recovered and the precision of the
final optimum objective function value approaches to the
scale of 10−22.

5. Conclusions and Future Work

An error modelling and parameter identification method
for redundant serial–parallel hybrid robots is presented.
The proposed hybrid modelling method takes into account
the geometrical errors which are originated from machining
and assembly processes. The method is a combination of
the traditional forward calibration method for serial mech-
anism and inverse calibration method for parallel mecha-
nism. DH model or modified DH model is employed to
predict a forward solution for the serial mechanism and
vector chain analytical method is used to develop an in-
verse solution for the parallel and the whole mechanism.
The advantage of this method is that the forward solution
of the serial mechanism can be used as a prediction value
to fit into the final error model. Therefore, the full pose
measurement of the end-effector of hybrid robot can meet
the calibration requirement effectively and the pose mea-
surement of the end-tip of serial mechanism is not neces-
sary. The identification of the unknown error parameters
involves the using of a powerful evolutionary global op-
timization method, DE algorithm. Computer simulation
of the serial–parallel IWR robot demonstrated that all of
the 54 geometrical error parameters of the hybrid robot
can be successfully identified. The simulation results show
that the DE-based parameter identification algorithm has
a very strong stochastic searching ability; it is very robust
and effective and can be easily employed to identify multi-
dimensional error parameters for high nonlinear kinematic
models. The simulation is also helpful to find the most
suitable DE algorithm control parameters and termina-
tion conditions before carrying out experimental test. Our
future work will focus on the experimental validation of
our method for the current robotic system and extend the
proposed method to other serial–parallel robot to verify its
practicability.
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a b s t r a c t

This paper presents a statistical method for the calibration of a redundantly actuated hybrid serial-parallel
robot IWR (Intersector Welding Robot). The robot under study will be used to carry out welding, machin-
ing, and remote handing for the assembly of vacuum vessel of International Thermonuclear Experimental
Reactor (ITER). The robot has ten degrees of freedom (DOF), among which six DOF are contributed by the
parallel mechanism and the rest are from the serial mechanism. In this paper, a kinematic error model
which involves 54 unknown geometrical error parameters is developed for the proposed robot. Based on
this error model, the mean values of the unknown parameters are statistically analyzed and estimated
by means of Markov Chain Monte Carlo (MCMC) approach. The computer simulation is conducted by
introducing random geometric errors and measurement poses which represent the corresponding real
physical behaviors. The simulation results of the marginal posterior distributions of the estimated model
parameters indicate that our method is reliable and robust.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Robot calibration is used to enhance accuracy of a given manip-
ulator through software modification rather than changing the
mechanical structure or imposing tighter tolerances in manufactur-
ing process. In general, a standard calibration procedure consists of
4 steps: modeling, measurement, identification and compensation.
The goal of the identification step is to determine the set of error
parameters for a real robot to compensate the nominal geomet-
ric model and match the measured data [1]. The topic of parameter
identification involves numerical methods, which has been studied
in depth for a number of years by many researchers. Examina-
tion of the literature on robot calibration indicates that a variety
of numerical methods have been employed to identify geometric
and non-geometric parameters of pure-serial [2] or pure-parallel
[3] manipulators. Very few of publications are focused on the cali-
bration of hybrid robot [4].

In this paper, a general identification model for the redun-
dant hybrid robot is developed to represent geometric errors
from manufacturing and assembly processes. Furthermore, a novel
identification method for the robot calibration is proposed based
on the use of Markov Chain Monte Carlo (MCMC) algorithms to
statistically estimate the error parameters of the studied robot. Dif-
ferent from traditional parameter identification methods, which

∗ Corresponding author. Tel.: +358 5 6212462; fax: +358 5 6212499.
E-mail address: yongbo.wang@hotmail.com (Y. Wang).

produce only one best combination of optimal solutions for the
unknown error parameters, MCMC algorithms [5], on the other
hand, has the ability to find as many as possible combinations
of optimal solutions whose empirical distribution can statisti-
cally fit the data equally well within a certain required accuracy
range.

The paper is organized as follows: In Section 2 we describe the
kinematics of the studied robot. The kinematic and identification
model will be derived in this section. Section 3 gives the basic prin-
ciples of MCMC and its application to the parameter estimations.
Simulation results are given in Section 4, and conclusions are drawn
in Section 5.

2. Error modeling

Fig. 1 shows a prototype of the hybrid serial-parallel robot under
study, which is developed in Lappeenranta University of Technol-
ogy and can be used for machining and assembling of vacuum vessel
of ITER. The robot is composed of a 4 degrees of freedom (DOF)
multi-link serial mechanism (named as Carriage) serially connected
to a standard 6-DOF Stewart parallel mechanism (named as Hexa-
WH), which aims to arrive at a compromise between a high stiffness
of parallel manipulators and a large workspace of serial manipula-
tors. In what follows, we first derive a nominal kinematic model
for the proposed robot. Thereafter, based on the nominal model,
a related identification model including unknown parameters is
developed.

0920-3796/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2011.01.062
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Fig. 1. Prototype of the hybrid serial-parallel robot.

Fig. 2. Schematic diagram of the hybrid robot.

2.1. Kinematic model

The schematic diagram of the redundant hybrid manipulator is
shown in Fig. 2. The connection platform frame {4} of the Hexa-
WH is coincident with the end-effector of the Carriage. The global
reference frame {0} is located at the left rail of the Carriage.

Based on this hybrid structure, a vector-loop equation is derived
as:

0P5 = 0P4 + 0R4
4P5 = 0P4 + 0R4(lili + 4ai − 4R5

5bi)

= 0P4 + 0R4lili + 0R4
4ai − 0R5

5bi (1)

From Eq. (1), the nominal leg length, i.e., the inverse solution of
the robot can be expressed as:

lili = (0R4)
−1

(0P5 − 0P4 − 0R4
4ai + 0R5

5bi) (2)

where 0P5 and 0R5 are the nominal position vector and rotation
matrix of the end-effector frame {5} with respect to the fixed base
frame {0}. 0R4 and 0P4 are the nominal rotation matrix and position
matrix of frame {4} with respect to frame {0}. It can be obtained

from the forward kinematics of the Carriage by using the commonly
used DH modeling method proposed by Paul [6]. Based on this
method, the corresponding nominal forward kinematics of Carriage
0T4 is written as:

0T4 = 0A1
1A2

2A3
3A4 =

[
0R4

0P4
0 1

]
(3)

4P5 in Eq. (1) is the position vector of the end-effector frame {5}
with respect to the connection platform frame {4}. It can be calcu-
lated from the nominal inverse kinematics of Hexa-WH. Let li be
the unit vector in the direction of AiBi, and li the magnitude of the
leg vector AiBi. The following vector-loop equation represents the
inverse kinematics of the ith limb of the parallel manipulator:

lili = 4P5 + 4R5
5bi − 4ai, i = 1, 2, . . . , 6 (4)

where 4ai and 5bi denote the position vectors of universal joints
Ai and spherical joints Bi in frame {4} and frame {5} respectively,
and 4R5 is the Z–Y–X Euler transformation matrix representing the
orientation of Frame {5} related to Frame {4}.

2.2. Identification model

Considering small geometrical errors happen to robot kinematic
DH parameters �i, di, ai and ˛i, we can get the error model of the
Carriage as:

0Tr
4 = 0T4 + d0T4 =

4∏
i=1

(i−1Ai + di−1Ai) =
[

0Rr
4

0Pr
4

0 1

]
(5)

Expanding Eq. (5) and ignoring second and higher order differ-
ential errors, it gives:

d0T4 = ıT1 ∗ 0T4, ıT1 =
4∑

i=1

([0Ai] ∗ ıi−1Ai ∗ [0Ai]
−1

)

ıi−1Ai =

⎡
⎢⎣

0 −c˛iı�i s˛iı�i ıai

c˛iı�i 0 −ı˛i aic˛iı�i + s˛iıdi

−s˛iı�i ı˛i 0 −ais˛iı�i + c˛iıdi

0 0 0 0

⎤
⎥⎦

(6)

From Eq. (5), the real rotation matrix 0Rr
4 and real position vector

0Pr
4 of frame {4} with respect to frame {0} can be formulated. The

unknown constant error parameters ı�i, ıdi, ıai and ı˛i will be
used as identification variables in the final objective function Eq.
(13). Furthermore, according to the DH convention from Paul [6],
we can find that the number of identification parameters of the
serial part is equal to 12.

Similarly, taking into account the manufacturing and assembly
errors, the vectors 4ai and 5bi will deviate from their nominal values
and have constant error parameters ı4ai and ı5bi, leg length li will
also have an initial offset ıli. The error model of Hexa-WH will be
in the form of:

(li + ıli)l
r
i = 4Pr

5 + 4Rr
5(5bi + ı5bi) − (4ai + ı4ai), i = 1, 2, . . . , 6

(7)

Since each joint Ai and Bi can provide 3 fixed coordinate error
parameters and each leg has 1 fixed length error, the number of
identification variables provided by the Hexa-WH is equal to 42.

Integrating the above error model of serial part and parallel part
together, the final error model for the hybrid robot can be expressed
as:

(li + ıli)li
r = (0Rr)

−1 ⌊0P5
r − 0P4

r − 0R4
r(4ai + ı4ai)

+0R5
r(5bi + ı5bi

⌋
, i = 1, 2, . . . , 6 (8)
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In our calibration work, the real end-effector pose vector 0Pr
5 and

0Rr
5 can be obtained by an accurate measurement instrument and

the real carriage pose vector 0Pr
4 and 0Rr

4 will be calculated from
Eq. (5) by using the real sensor readings of the Carriage actuators.

3. MCMC method

Generally, a nonlinear model, with independent and Gaussian
noise, can be presented in the form:

Y = f (X, �) + � (9)

The aim of this problem is to estimate the vector of unknown
parameters � based on a certain number of measurements Y
and known input quantities X (constants, control variables, etc.).
Bayesian approach provides a numerical method to statistically
analyze the unknown parameters and its distribution. The Bayes
formula is given by:

�(�) =
p(y
∣∣� )p(�)∫

p(y
∣∣� )p(�)d�

(10)

where p(�) is prior distribution. p(y|�) is likelihood function which
gives the probability distribution of the observations y when given
parameter values �. The most likely values of the parameters are
those that give high values for the posterior distribution �(�).
Assuming independent and identically distributed Gaussian error
for n observations yi, we have

p(y
∣∣� ) =

n∏
i=1

1√
2��2

e−(yi−f (xi,�))2/2�2 = 1

(2��2)n/2
e−(1/2�2)SS�

(11)

where SS� =
∑n

i=1(yi − f (xi, �))2.
The intractable part of implementing Bayesian inference lies

in the normalizing constant that requires integration over a high-
dimensional space [7]. Fortunately, MCMC methods provide a way
to solve this problem by which the need for computing these dif-
ficult integrals vanishes. The idea behind the MCMC algorithms is
to generate a sequence of random variables {�1, �2, . . .}, whose
empirical distribution can asymptotically approach to the poste-
rior distribution �(�). The simplest MCMC variant is the Metropolis
algorithm [5] which basically has the following steps:

Step 1: Initialization

• Set �1 = min�

∑n
i=1(yi − f (xi, �))2 by using some optimization

methods. In this work, Differential Evolution (DE) algorithm
[8], a simple but powerful evolutionary optimization algorithm
which has the ability to minimize real-valued, high nonlinear, and
multi-modal objective functions, is employed to search a global
optimum as the initial vector value.

• Define the length of simulation chain Nsimu.
• Select a proposal distribution q and set SSold = SS�1

.

Step 2: Simulation loop

• Generate �new from the proposal distribution q( · |�old), and com-
pute SSnew.

• Calculate the acceptance probability

˛ = min

(
1,

�(�new)
�(�old)

)
= min

(
1,

p(y
∣∣�new)

p(y
∣∣�old)

)

= min
(

1, exp
{

− 1
2�2

(SSnew − SSold)
})

(12)

Fig. 3. Two-dimensional marginal posterior distributions for parameters ı˛1, ıa4,
ıa1x , ıl5. The distributions drawn along the axis are the corresponding one-
dimensional marginal density.

• The new value is accepted if SSnew < SSold or
u < exp{− (1/2�2)(SSnew − SSold)}, where u is a random number
generated from U [0,1].

• Repeat the simulation loop until Nsimu samples have been created.

4. Simulation results and analysis

In order to verify the validity and effectiveness of the MCMC-
based method to estimate the kinematic error parameters of the
hybrid robot, the numerical simulation is performed in this sec-
tion. In the simulation, we generate a set of fixed values which can
physically represent the real geometrical errors caused by manu-
facturing and assembly processes. Furthermore, 100 measurement
poses (0Pr

5 and 0Rr
5) and the corresponding joint displacement

of Carriage actuators are randomly generated within the robot
workspace to calculate and simulate the real measured data lm

i,j
,

i.e., the observation matrix y. On the other hand, take the 54 error
parameters as random variables � in Eq. (8) to calculate lr

i,j
. The

error residuals between the measured leg length from inner sen-
sor and the calculated leg length can be used to express objective
function as

� = min�

n∑
j=1

6∑
i=1

(yi,j − f (xi,j, �))2 = min
n∑

j=1

6∑
i=1

(lmi,j − lri,j)
2 (13)

In Eq. (13) n is the number of measurement points, lr
i,j

is real leg
lengths including error parameters from Eq. (8). lm

i,j
is a certain mea-

sured value of the ith leg in the jth measurement point. The task
of simulation is to obtain a posterior distribution chain for error
parameters using MCMC sampling methods. The MCMC toolbox
for Matlab developed by Laine et al. [9] is employed to our simula-
tion. The obtained chain is a matrix of samples, which is commonly
used to calculate the posterior means, the standard deviations and
correlations, etc. After running a chain of length 200,000, we get
the estimated geometrical mean values of Carriage and Hexa-WH
as listed in Table 1.

From the simulation results in Table 1 we can see that the esti-
mated mean values have successfully converged to the given fixed
geometrical errors. Furthermore, the identification parameters
are not too correlated. Fig. 3 gives examples of two-dimensional
marginal posterior correlations of a randomly selected 4 parame-
ters from the final model. The uncorrelated parameters have been
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Table 1
Comparison of given geometrical errors and posterior means of the estimated parameters.

Symbol (nominal, error) Nominal values Assumed geometrical errors Estimated mean values

˛1, ı˛3 90◦ 0.0782◦ 0.078197◦

˛2, ı˛2 90◦ 0.0571◦ 0.0571◦

˛3, ı˛3 90◦ −0.048◦ −0.048◦

˛4, ı˛4 −90◦ 0.0417◦ 0.041714◦

a3, ıa3 252 −0.2164 −0.2164
a4, ıa4 354 −0.4451 −0.44516
d3, ıd3 422 0.1681 0.1681
d4, ıd4 0 −0.3857 −0.38566
�1, ı�1 0 0.0213◦ 0.0213◦

�2, ı�2 90◦ 0.0794◦ 0.0794◦

�3, ı�3 0◦ 0.0464◦ 0.0464◦

�4, ı�4 0◦ 0.0345◦ 0.034484◦

a1x , ıa1x 231.6663 −0.0654 −0.065343
a1y , ıa1y −231.9022 0.0687 0.068738
a1z , ıa1z 0 0.0928 0.093021
a2x , ıa2x 316.663 0.0448 0.044857
a2y , ıa2y −84.6778 −0.0942 −0.094162
a2z , ıa2z 0 −0.0731 −0.072893
a3x , ıa3x 85 0.0229 0.022957
a3y , ıa3y 316.58 0.0133 0.013338
a3z , ıa3z 0 −0.0136 −0.013558
a4x , ıa4x −85 −0.0752 −0.075143
a4y , ıa4y 316.58 −0.0976 −0.097562
a4z , ıa4z 0 0.0167 0.016695
a5x , ıa5x −316.663 0.0576 0.057657
a5y , ıa5y −84.6778 −0.0486 −0.048561
a5z , ıa5z 0 0.0329 0.032932
a6x , ıa6x −231.6663 −0.0117 −0.011643
a6y , ıa6y −231.9022 0.0676 0.067639
a6z , ıa6z 0 0.0273 0.027392
b1x , ıb1x 32.5 0.0581 0.0581
b1y , ıb1y −125.93 −0.0648 −0.064799
b1z , ıb1z 0 0.0717 0.0717
b2x , ıb2x 125.309 0.0847 0.0847
b2y , ıb2y 34.819 −0.0478 −0.047799
b2z , ıb2z 0 0.0324 0.0324
b3x , ıb3x 92.809 −0.0139 −0.0139
b3y , ıb3y 91.111 −0.0266 −0.0266
b3z , ıb3z 0 −0.0281 −0.0281
b4x , ıb4x −92.809 −0.0594 −0.059401
b4y , ıb4y 91.111 0.0375 0.0375
b4z , ıb4z 0 0.0088 0.0088
b5x , ıb5x −125.309 0.0228 0.0228
b5y , ıb5y 34.819 −0.0566 −0.0566
b5z , ıb5z 0 −0.0368 −0.0368
b6x , ıb6x −32.5 −0.0638 −0.0638
b6y , ıb6y −125.93 −0.0087 −0.0086997
b6z , ıb6z 0 −0.0736 −0.0736
ıl1 0 −0.3794 −0.3794
ıl2 0 −0.0895 −0.0895
ıl3 0 0.1650 0.165
ıl4 0 −0.3048 −0.3048
ıl5 0 0.3233 0.3233
ıl6 0 0.0774 0.0774

exactly identified and the correlated parameters have only a little
effect on the final estimated values.

5. Conclusions

This paper presents a MCMC-based calibration method to
identify the geometrical parameter errors which are caused by
manufacturing and assembly processes. A parameter identification
model which has the ability to account for the geometric error
sources is derived for our studied hybrid robot. Using the MCMC
algorithm and the derived identification model, 54 independent
kinematic error parameters of the robot are successfully identified
from the calculation of mean values in posterior distribution chain.
It can be seen from the simulation results that MCMC-based calibra-
tion algorithm is reliable and robust, which can be easily employed

to identify error parameters for the high nonlinear kinematic mod-
els.
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a b s t r a c t

The assembly of ITER vacuum vessel (VV) is still a very big challenge as the process can only be done from
inside the VV. The welding of the VV assembly is carried out using the dedicated robotic systems. The main
functions of the robots are: (i) measuring the actual space between every two sectors, (ii) positioning of
the 150 kg splice plates between the sector shells, (iii) welding the splice plates to the sector shells, (iv)
NDT of the welds, (v) repairing, including machining of the welds, (vi) He-leak tests of the welds, and
(vii) the non-planned functions that may turn out. This paper presents a reasonable method to assemble
the ITER VV. In this article, one parallel mobile robot, running on the track rail fixed on the wall inside
the VV, is designed and tested. The assembling process, carried out by the mobile robot together with the
welding robot, is presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Assembling is one of the biggest challenges in the ITER; some
critical issues are still remained to be solved. The walls of the ITER
sectors are made of 60 mm thick stainless steel and are joined
together by the high efficiency structural and the leak tight welds.
The assembling process mainly includes: (i) preparing splice plates;
(ii) transporting splice plates; (iii) welding; (iv) port assembling;
(v) NDT testing; and (vi) machining and re-welding. After the ini-
tial assembling of the vacuum vessel (VV), the sectors need to be
replaced for repair. The whole assembling process has to be carried
out inside the VV. Because the commercially available robots are
too weak and too large to carry out the required machining opera-
tions and the lifting of the possible e-beam gun column system, the
conventional serial kinematic robots are lack of required stiffness
and accuracy in such machining conditions. The development of
the full remote welding and cutting tools, contributed by the Home
Team in USA, was completed in June 1998 [1], of which the robot
was built in the serial link arm on a rail-mounted vehicle moving on
the guide rail, however the developed system is not able to carry out
the machining process inside the ITER due to its low stiffness. Since
2000, the EFDA in EU has launched several tasks to develop an inter-
sector welding robot (IWR) for carrying out welding and machining
inside the VV [2]. The Laboratory of Intelligent Machine in Lappeen-
ranta University of Technology participated in the related projects
and has developed two generations of special hybrid machines as
the solutions to the tasks. The machining, welding and handing

∗ Corresponding author. Tel.: +358 400191656; fax: +358 56212499.
E-mail address: huapeng@lut.fi (H. Wu).

tests have been curried out in this laboratory by cooperating with
CEA in France, VTT in Finland and Ansaldo in Italy. In 2006, the EFDA
evaluated the different possible methods based on the commercial
serial robot, the special machines and the IWR robot. The evalua-
tion report concluded that the hybrid parallel robot IWR is the best
solution to the required tasks.

This paper analyses the key issues in assembling of the ITER
VV. To fulfill the assembling task, a mobile hybrid parallel mecha-
nism machine is introduced and the optimized assembling process,
carried out by IWR cooperated with another welding robot, is pro-
posed.

2. Requirements of VV assembly

The ITER VV consists of nine sectors and 53 port structures,
which will be jointed together by the field welds. During the assem-
bling process of the VV sectors, the customized splice plates are
used to accommodate the dimensional differences between sec-
tors so as to facilitate their relative alignment and allow access
to the components surrounding the vessel. It is expected that the
back-side protection is required to achieve desirable welds. All the
operations should be carried out from inside of the VV [3]. Besides
the joint welding between splice plates, a machine cutting process
is needed for re-welding and repairing in some drawback points. A
multifunction tool system is needed to fulfill the following tasks:
welding, machining, splice plate handing, and easy going in and out
of the VV.

The specifications in the tool system are defined as: accuracy
±0.1 mm; dynamic machining force 3 kN; handing payload 6 kN;
mobility six degrees of freedom; lower mass <1 ton; speed up to
1.2 m/min.

0920-3796/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2010.12.050



H. Wu et al. / Fusion Engineering and Design 86 (2011) 1834–1837 1835

Fig. 1. Track rail inside sector.

The robot should fulfill the following tasks in several positions
and structures: welding; NDT; machining; measuring; positioning;
thermal shield joining; repair; cleaning; transporting; viewing; and
additional actions that are related to misalignment of sectors, jams
and unsatisfactory operations (e.g. welds, NDT, measuring, posi-
tioning).

To accomplish the above tasks, a mobile parallel kinematics
machine (PKM) together with a simple welding robot is designed
and tested.

3. Structure of assembling system

3.1. Track rail

First of all, the assembling tasks are carried out by the mobile
robot, which runs on a track rail fixed on the wall of the VV. The
track rail has to be assembled inside a sector before transferring to
the assembly site. The rail can be fixed on the surface by utilizing
flexible housing or cooling blocks in Fig. 1(a). This process raises
two issues: (i) disassembling the track rail after assembling the VV
and (ii) passage for robot to come in and out of the VV. The solution
is found as shown in Fig. 1(b): the robot can go inside through the
port with a track rail, one segment of the rail turns a certain degrees
and then slide to the main track rail, the robot is then able to run
in the main rail. After the assembly process has finished, the robot
locates at the slidable rail and slide to the track rail at the port, the
track rail at the port turns to the vertical position and the robot
moves to the upper-side of the rail, then the track rail turns back to
the horizontal position and the robot runs out of the VV. When the
robot can go in and out of the VV, the disassembling of the track
rail can be easily conducted by the robot.

3.2. Parallel kinematics machine tool

The PKM tool, which has found wide applications in industry [4],
is the main tool to carry out handing, machining and other accurate
tasks in the assembling process. It has a ten degrees of freedom
(Fig. 2).

The PKM consists of two relatively independent sub-structures:
(i) the Hexa-WH — a Stewart platform-based parallel mecha-
nism, driven by six water hydraulic cylinders, which contributes
the full six degrees of freedom for the end-effector; and (ii) the
carriage, which offers the Hexa-WH four additional degrees of free-
dom, namely the tip motion, the rotation, the linear motion, and
the tracking motion. The function of the carriage is to enlarge
workspace and offer the robot a higher mobility. The robot is
referred as a hybrid redundant manipulator, since it has not only the
six basic degrees of freedom but also the four degrees of freedom
extra provided by the carriage.

Fig. 2. Prototype of IWR.

Fig. 3. Welding robot.

3.3. Welding robot

The welding robot (Fig. 3) has a carriage similar to that of the
parallel robot, and the carriage has serial links with a four degrees
of freedom. The robot has a simple structure and a large workspace,
and mostly carries out the welding process in co-operation with the
IWR robot.

3.4. Splice plate holder

Transporting the splice plates into the gap between every two
adjacent sectors is a demanding task in assembling the VV. Each
plate weighs more than 100 kg and should be placed accurately for
welding. During the assembling, collisions may happen. The trans-
portation operation requires a holder to have a sufficient payload
capacity and flexibility. One suitable solution is the heavy duty vac-
uum lift mounted on the robot’s end-effector (Fig. 4) [5]. In the lift,
a battery-powered super efficient pump system extracts air from
an integral steel reservoir, and a vacuum level monitoring system
switches off the pump when the preset vacuum level is achieved.
Once the system is primed, a solenoid valve mounted on the reser-
voir activates and extracts air from a suction pad. The pad is fitted
with a replaceable hard-wear seal that can seal on a rough surface.

Fig. 4. Heavy duty lift.
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Fig. 5. Port welding robot.

3.5. Port welding and robot

After the sectors are welded together, it is time to assemble
ports. The aforesaid welding robot cannot perform this task. There-
fore, a special robot is needed; Fig. 5 shows a four degrees of
freedom robot (two rotations and two linear motions). The robot
is standing inside the port and supported by the beams against the
port wall and tightened by screws. The robot body is made of alu-
minum, and it is light and simple. By screws, the lengths of the
supporting beams are adjustable so that the robot can fit ports of
different sizes.

4. Process cycles

The assembly of the VV sectors mainly contains the following
steps: (i) preparing splice plates; (ii) splice plate transporting; (iii)
tack- and multi-pass welding; (iv) NDT testing; and (v) machining
and re-welding.

4.1. Preparing splice plate

First of all, the tolerance of the gap can be 20 mm, and the accu-
racy of the splice plate should be 0.1 mm for welding. Before two
sectors are joined, the distance between the two sectors should be
measured accurately so that a suitable splice plate can be prepared
to compensate the mismatch. For measuring the distance between
the two adjacent sectors, the F4E proposed a mechanical measuring
system shown in Fig. 6(a).

By the proposed method, the distance of the edges between
every two adjacent sectors can be measured. However the orien-
tation of the edges cannot be measured, for example, the cases in
which distances are the same while the shapes of the splice plates
are different. Un-touching sensors shown in Fig. 6(b), such as Scout
seam tracker (6-D laser tracker), can be applied. The Scout seam
tracker can offer 6-D information of the edge and the surface for a
splice plate. Two Scout sensors can be used to detect two edges in

Fig. 6. (a) Mechanical measuring system and (b) untouched measuring system.

Fig. 7. Robot takes splice plate from port.

Fig. 8. Welding and milling process: (a) welding and (b) machining.

parallel. The sensors are mounted on the IWR robot’s end-effector.
According to the robot’s position and the information from the two
sensors, an accurate splice plate (±0.1 mm tolerance) can be made.

4.2. Transporting splice plates

A splice plate is transferred to the port by a crane lift, and then
is taken by the IWR robot with the vacuum lift from the port into
the position for welding (Fig. 7).

Fig. 9. Optional methods for assembly of VV.
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Table 1
Main capabilities of different robots.

Robots Payload (kg) Dynamic work
force (kg)

Repeatability (mm) Robot mass (kg) Mounting

Motorman HF600 600 0.5 2400 Floor
Kuka KR 240 240 0.12 1267 Floor
Kuka KR 1000 1000 0.2 4690 Floor
Kuka KR 500 500 0.15/0.3 Floor, ceiling
ABB IRB 6650S 145 0.14/0.28 2175 Shelf
OTC AX-V500 500 0.5 3000 Floor
Fauuc M-2000iA 900 0.3 Floor
Fauuc M-900iA 350 0.3 Floor, ceiling, angle, wall
IWR 600 300 <0.1 890 Movable on rails, all angles

4.3. Welding and machining

The welding processes include the tack-welding, the root-
welding, and the multi-pass welding:

(i) When the IWR robot puts a splice plate in the right position,
the welding robot carries out the tack-welding (Fig. 8).

(ii) The IWR robot releases the splice plate, then takes another
splice plate from the port and repeats the tack-welding again.

(iii) After the splice plates are fixed, the IWR robot takes the milling
tool for cutting.

(iv) After the tack-welding, the welding robot carries out the root-
welding, and joins the two seams on both sides of each splice
plate.

(v) The welding robot joints the ends between the splice plates
after the IWR has milled the gap between the two splice plates.

(vi) After the root welding has finished, IWR conducts the NDT
testing to find out whether the welds meet the quality
requirements, and the defective welds need re-machining and
re-welding.

(vii) Multi-pass welding is carried out by the welding robot, and
each pass welding are examined by the NDT testing to find
out if the welds meet the quality requirements. If needed,
machining will be carried out for the defective welds.

5. Comparison

For the assembly of the VV, five possible optional methods have
been investigated (Fig. 9): (1) large robots supported by a heavy
mono-rail fixed on a platform travelling on CTM’s; (2) small robots
clamped on the VV and inserted in the holes of four housings and
jammed; (3) robot on support frame anchored to the equatorial
ports; (4) machine tools on multi-beam frame; and (5) the IWR
parallel robot machine on track rail.

The evaluation of those methods has been given by EFDA [6]. The
evaluation indexes includes: accuracy, force capability, functions

of handing and machining, cost, assembly difficulty, productivity
and service. Table 1 shows the most popular industrial heavy duty
robots and their capabilities, those capabilities mainly include: pay-
load, accuracy, weight and mobility. According to the comparisons
in Table 1, the parallel robot IWR with a welding robot on the
tack rail is one of the most suitable solutions for the assembly of
the VV.

6. Conclusion

The assembly of the ITER VV is still a very big challenge, and
the process can only be done from inside the VV. In this work, the
IWR robot with a track rail assembled on the individual sectors
for assembling the ITER VV has been studied. Some key problems
have been solved by using this method. These problems include:
(1) disassembling of track rail after assembling finished by using
the slidable track on port; (2) preparing of splice plate by using 6-D
un-touching sensor to measure the gap between sectors; (3) trans-
ferring the splice plates by the IWR with the heavy duty vacuum
lift; (4) welding and machining by using the IWR and the weld-
ing robot; and (5) port assembly by using the port welding robot.
Finally the comparison of different potential VV assembly methods
has been given.
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a b s t r a c t

This paper presents a novel mobile parallel robot, which is able to carry welding and machining processes
from inside the international thermonuclear experimental reactor (ITER) vacuum vessel (VV). The kine-
matics design of the robot has been optimized for ITER access. To improve the accuracy of the parallel
robot, the errors caused by the stiffness and manufacture process have to be compensated or limited to a
minimum value. In this paper kinematics errors and stiffness modeling are given. The simulation results
are presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The vacuum vessel of ITER is composed of nine stainless steel
sectors welded together and each sector is about 10 m high and
6 m wide. The sectors of ITER vacuum vessel (VV) require more
stringent tolerance (±5 mm) than normally expected for the size
of the structure involved. For the ITER assembling, conventional
serial robots able to offer bigger work space, are very difficult
to carry out the machining and welding process from inside the
vacuum vessel due to their insufficient stiffness and bigger size.
It is believed that parallel robot has high stiffness, accuracy and
high speed than conventional serial robots. But it does not mean
they have infinite stiffness and accuracy and it offers relatively
small workspace. To overcome this kind of limitations and take
advantage both of their merits (bigger workspace and higher stiff-
ness), a compromised hybrid redundant robot which can be used
to perform the welding, machining and remote handling is devel-
oped in Lappeenranta University of Technology. To improve the
accuracy of the parallel robot, the errors caused by the stiffness
and manufacture process have to be compensated or limited to
a minimum value. Thus, the modeling of the stiffness and geo-
metric errors of the robot are absolutely necessary to be built
before the compensation. As the robot have 10 degrees free-
dom with 4 degrees redundant, the modeling is very complex
and high nonlinear, this paper present methods of modeling of
both stiffness and geometry error of a redundant hybrid robot,
and the simulation results have been given in the paper. The
stiffness modeling can be used in trajectory planning to achieve

∗ Corresponding author. Tel.: +358 5 6212435; fax: +358 5 6212499.
E-mail address: huapeng@lut.fi (H. Wu).

minimum deflection, and geometric error modeling can be used
for the robot calibration to compensate the errors cursed by
assembling and machine manufacturing of the robot, therefore
the performance of the robot for the assembly of ITER are much
better.

2. Kinematics analysis and error modeling

The proposed hybrid robot is shown in Fig. 1, which is
connected by two parts in series, i.e., the serial part (4-DOF car-
riage) and the parallel part (6-DOF Hexapod mechanism) [1].
To simplify the analysis, the two parts will be first studied
separately, and then combined together to obtain the final solu-
tions.

2.1. Error modeling of the carriage

For the 4-DOF carriage mechanism, we will use the well-known
Denavit–Hartenberg (D–H) convention to construct the coordinate
system [2], and then derive the relative error model based on the
method provided by Veitschegger and Wu [4]. The schematic dia-
gram of the carriage mechanism is established in Fig. 2, which
provides two translational movements and two rotational move-
ments.

According to the coordinate systems established in Fig. 2, we can
obtain the corresponding D–H link parameters as listed in Table 1
and the nominal D–H homogeneous transformation matrix as given
in the following equation:

0A4 = 0A1
1A2

2A3
3A4

0920-3796/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2008.11.072
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Fig. 1. The experimental prototype developed in LUT.

Fig. 2. Coordinate system of carriage.

=

⎡
⎢⎣

s�4 0 c�4 a1 + d3 + a4s�4
−s�3c�4 −c�3 s�3s�4 −d2 − a3s�3 − a4s�3c�4
c�3c�4 −s�3 −c�3s�4 d1 + a3c�3 + a4c�3c�4
0 0 0 1

⎤
⎥⎦ (1)

Based on Eq. (1), the nominal forward and inverse kinematics
of the carriage can be figured out easily. Furthermore, if there are
small parameter errors in robot kinematic D–H parameters �i, di,
ai, and ˛i, there will be a differential change di−1Ai between the
two consecutive joint coordinates. Therefore, the actual relation-
ship between the two successive joint coordinates will be written

Table 1
D–H parameters of carriage.

Joint i ˛I ai di �i

1 �/2 a1 d1 (var) 0
2 �/2 0 d2 (var) �/2
3 �/2 a3 d3 �3 (var)
4 −�/2 a4 0 �4 (var)

as

i−1Ac
i = i−1Ai + di−1Ai (2)

where i−1Ai is the homogeneous matrix which has the nominal
link parameters that can express the relationship between the joint
coordinates i − 1 and i, and di−1Ai is the differential change due to
errors in the link parameters. It can be approximated as a linear
function of four kinematics errors by Taylor’s series:

di−1Ai = ∂i−1Ai

∂�i
��i + ∂i−1Ai

∂di
�di + ∂i−1Ai

∂ai
�ai + ∂i−1Ai

∂˛i
�˛i (3)

where ��i, �di, �ai, and �˛i are small errors in the D–H kine-
matic parameters and the partial derivatives are evaluated with the
nominal geometrical link parameters. From Eq. (1), take the partial
derivative with respect to �i, di, ai, and ˛i respectively, we can figure
out ∂i−1Ai/∂�, ∂i−1Ai/∂di, ∂i−1Ai/∂ai and ∂i−1Ai/∂˛i easily.

If let di−1Ai = i−1Ai × ıi−1Ai, and

ıi−1Ai = D�i
��i + Ddi

�di + Dai
�ai + D˛i

�˛i (4)

Then expanding Eq. (4) into matrix form we can obtain

ıi−1Ai =

⎡
⎢⎣

0 −c˛i ��i s˛i ��i �ai

c˛i ��i 0 −�˛i aic˛i ��i + s˛i �di

−s˛i ��i �˛i 0 −ais˛i ��i + c˛i �di

0 0 0 0

⎤
⎥⎦
(5)

The above expression gives the differential translation and rota-
tion vectors for the joints which are not parallel or near parallel as
functions of the four D–H kinematic errors.

In the case of the presented 4-DOF carriage, the nominal position
and orientation of the task point p4 with respect to the base frame
due to the 4 × 4 kinematic errors can be expressed as

0Ac
4 = 0A4 + d0A4 =

4∏
i=1

(i−1Ai + di−1Ai) (6)

Expanding Eq. (6), and ignoring second and higher-order differ-
ential errors, then the relation between the differential change in
carriage and the change in link parameters can be derived as

d0A4 = ıA1 × 0A4, ıA1 =
4∑

i=1

([0Ai] × ıi−1Ai × [0Ai]
−1

) (7)

where �A1 is the first order error matrix transformation in the fixed
base frame. According to Paul [5], such a differential operator has
the following form:

ıT =

⎡
⎢⎣

0 −ı�z ı�y ıdx

ı�z 0 −ı�x ıdy

−ı�y ı�x 0 ıdz

0 0 0 0

⎤
⎥⎦ (8)

If let ıX0 =
[

ıdx ıdy ıdz ı�x ı�y ı�z

]T ∈ �6×1 denote the
positional and orientation errors of the carriage, then from Eqs. (7)
and (8), we can get:

ıX0 =
4∑

i=1

�xi =
4∑

i=1

(Gi �yi) (9)

where �xi =
[

ıdxi ıdyi ıdzi ı�xi ı�yi ı�zi

]T
,

and , Gi is the identification Jacobian matrix. �yi =[
��i �di �ai �˛i

]T
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Fig. 3. Nominal model of the Hexapod parallel mechanism.

2.2. Kinematic analysis and error modeling of Hexa-WH

Fig. 3 shows a schematic diagram of hexapod parallel mecha-
nism, for the purpose of analysis, two Cartesian coordinate systems,
frames O4(X4, Y4, Z4) and O5(X5, Y5, Z5) are attached to the base plate
and the end-effector, respectively. Six variable limbs are connected
with the base plate by Universal joints and the task platform by
Spherical joints.

For the nominal kinematic parameters, the following vector-
loop equation represents the kinematics of the ith limb of the
manipulator
−−→
AiBi = 4P5 + 4R5

5bi − 4ai (i = 1, 2, . . . , 6) (10)

where 4P5 denotes the position vector of the task frame {5} with
respect to the base frame {4}, and 4R5 is the Z–Y–X Euler transfor-
mation matrix expressing the orientation of the frame {5} relative
to the frame {4}, and the 4ai, 5bi represent the position vectors of
U-joints Ai and S-joints Bi in the coordinate frames {4} and {5},
respectively.

Let 1i be the unit vector in the direction of
−−→
AiBi, and li represents

the magnitude of the leg vector
−−→
AiBi. Differentiating both sides of

Eq. (10) yields

ılili + liıli = ı4P5 + ı4R5
5bi + 4R5ı5bi − ı4ai (i = 1, 2, . . . , 6)

(11)

Let 4R5
5bi = si, and multiply both sides of Eq. (11) with the unit

direction vector li
T , since li

T li = 1, li
T ıli = 0 we can obtain:

ıli = li
T ı4P5 + li

T ı4˝5 × si + li
T 4R5ı5bi − li

T ı4ai

= li
T ı4P5 + (si × li)

T ı4˝5 + li
T 4R5ı5bi − li

T ı4ai

= [li
T (si × li)

T ]

[
ı4P5
ı4˝5

]
+
[

−li
T li

T 4R5

][ ı4ai

ı5bi

]
(12)

Fig. 4. Schematic diagram of IWR.

Eq. (12) can be rewritten in a matrix form as

ıL = J1ıX1 + J2ıP1 (13)

Since J1 ∈ �6×6 is a square matrix, and no singular points exist
inside the workspace [3], Ji is invertible. Therefore Eq. (13) can be
written as:

ıX1 = J−1
1 ıL − J−1

1 J2ıP1 (14)

where ıX1 ∈ �6×1 denotes the position and orientation error vec-
tor of the end-effector. The first term on the right side represents
the errors induced by actuators and the second one is the position
errors from the passive joints Ai and Bi.

2.3. Kinematic analysis and error modeling of the hybrid
manipulator

The schematic diagram of the redundant hybrid manipulator is
shown in Fig. 4, which is a combination of carriage and Hexapod
manipulator mentioned above. The base plate frame {4}of Hexapod
is coincided with the end task frame of the carriage. The global base
frame {0} is located at the left rail.

According to the geometry, a vector-loop equation can be
derived as

0P5 = 0P4 + 0R4
4P5 = 0P4 + 0R4(lili + 4ai − 4R5

5bi)

= 0P4 + 0R4lili + 0R4
4ai − 0R5

5bi (15)

where 0P5 is the position vector of the task frame {5} (or end-
effector) with respect to the fixed base frame {0}, and 0R4 is the
rotation matrix of the frame {4} with respect to frame {0}.

Differentiating both sides of Eq. (15) and multiplying unit direc-
tion vector li

T yields

[li
T (rbi × li)]

T
[

ı0P5
ı0˝5

]
= [li

T (rai × li)
T + (0R4lili × li)

T
]

[
ı0P4
ı0˝4

]

+li
T 0R4liıli + [li

T 0R4 − li
T 0R5]

[
ı5ai

ı4bi

]
(16)
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where rbi = 0R5
5bi, rai = 0R4

4ai

Eq. (16) can be rewritten in a matrix form as

J3ıX = J4ıX0 + J5ıL + J6ıP1 (17)

Since J3 ∈ �6×6 is a square matrix, and no singular points exist
inside the workspace, J3 is invertible. Therefore, Eq. (17) can also be
rewritten as:

ıX = J−1
3 J4ıX0 + J−1

3 J5ıL + J−1
3 J6ıP1 (18)

where ıX =
[

ı0P5 ı0˝5
]T ∈ �6×1 denote the final output pose

errors, and the first term on the right is the errors caused by the
carriage, the second and third one represent the errors induced by
the Hexapod mechanism.

3. Stiffness analysis of robot

The stiffness modeling is built separately to carriage mechanism
and parallel mechanism. Final stiffness of robot will combine both
stiffness of carriage and parallel mechanism.

3.1. Stiffness of the carriage mechanism

The sources of stiffness for the carriage include the frame stiff-
ness, joints’ stiffness, link stiffness, and active stiffness due to the
position feedback control. It is assumed that the primary source
of the stiffness is the active and passive joint stiffness in the axial
direction of actuation torque or force. The active stiffness is mostly
dependent on the controller, the position error of actuators can be
limited to a very small value by using robust control law such as PID
control, and in this case we can assume that this variation is negligi-
bly small. In this paper, however, we combine stiffness of the speed
reducer, drive shafts, and the servo system into an equivalent stiff-
ness. The stiffness of carriage frame is very difficult to be modelled
because of the complex structure, the deformation mostly depend
on the position of linear bearings on the track rail (the distance of
d2 as shown in Fig. 4), the stiffness of frame can be simplify to two
beams and its deformation will be determined by the position d2.
The stiffness of screw driver for liner motion will be taken account
of the joint stiffness. The stiffness of carriage mechanism is defined
deflection of point O4 with respect to coordinate O0, including two
translation joints d1, d2 and two revolution joints �3, �4 (shown in
Fig. 2). For small deflections of the joints we have

�i = �i �qi (i = 1, 2, 3, 4) (19)

where �i is the torque or force transmitted through the ith joint,
�qi is the corresponding deflection at the joint,

�i is equivalent stiffness of ith joint.
Eq. (19) can be written as

� = � �q (20)

where � = [�1 �2 �3 �4]T, �q = [�q1, �q2, �q3, �q4]T, and
� = diag[�1 �2 �3 �4] is an 4 × 4 diagonal matrix.

From kinematics model of carriage, the relationship between the
joint displacement �q and the displacement �y of point O4 can be
defined as

�y = G �q (21)

where G is the Jacobian matrix of carriage
The force or torque � in joints is also related to the force F at

point O4 by the Jacobian matrix G

� = GTF (22)

From Eqs. (20)–(22), we can obtain the stiffness of the carriage.

�y = [G�−1GT]F (23)

Eq. (23) presents the defection error at point O4 with respect to
a force F.

3.2. Stiffness of parallel mechanism Hexa-WH

From the solution of the inverse kinematics we can compute a
stiffness matrix of Hexa-WH. The stiffness matrix is a function of
the length of the cylinders. Jacobian matrix is defined as:

H = [hi1, hi2, hi3, hi4, hi5, hi6] (24)

where
hi1 = ∂li

∂y
; hi1 = ∂li

∂z
; hi1 = ∂li

∂x	
; hi1 = ∂li

∂ˇ
; hi1 = ∂li

∂x˛

The stiffness matrix of the parallel manipulator has the form:

K = HT K cylH (25)

where
Kcyl is a diagonal matrix where the terms are spring constants

of each cylinder. The spring constant varies depend on the cylinder
stroke:

k = A1
2

((A1x + Vh)/Bw) + (A1x/Bc) + (Vh/Bh)

+ A2
2

((A2(l − x) + Vh)/Bw) + (A2(l − x)/Bc) + (Vh/Bh)
(26)

where A is area and V is volume; x is cylinder stroke and l is cylinder
length; Bw, Bc and Bh is a bulk modulus of the water, cylinder and
hose. The subscripts 1 and 2 refer to the chamber of the double-
acting cylinder. The deflection of the end effector in reference
coordinate O4 is:

�s = K−1W (27)

where W is a vector W=[Fx Fy Fz Tx Ty Tz]T, that is the forces and
torques affected at the point O5.

The stiffness of whole robot can be combined from stiffness of
carriage and stiffness of parallel mechanism Hexa-WH.

4. Simulation results

In this paper the geometry errors are simulated in Matlab. In
order to evaluate the final output errors caused by the error sources,
a simulation example was performed using the following nominal
parameters.∣∣4ai

∣∣ = 328 mm,
∣∣5bi

∣∣ = 130 mm, a1 = 91 mm, a2 = 0,

a3 = 252 mm, a4 = 354 mm; d3 = 331 mm, d4 = 0

Fig. 5. Comparison of the absolute position error of carriage, Hexapod and IWR.
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Fig. 6. Comparison of the absolute orientation error of carriage, Hexapod and IWR.

Moreover, to estimate the accuracy of the derived error model,
we assume a certain kinematic errors occurred in the carriage and
Hexa-WH∣∣ıL
∣∣ = 0.5 mm,

∣∣ıP1

∣∣ = 0.1 mm,
∣∣�˛i

∣∣ =
∣∣��i

∣∣ = 0.1◦;∣∣�ai

∣∣ =
∣∣�di

∣∣ = 0.5 mm

The range of the actuator input values are given in below, which
will be generated by the random function in Matlab. Figs. 5 and 6
illustrate the comparison of the absolute position and orientation
error of carriage, Hexapod and the whole robot (IWR).

0 < d1 < 800 mm, 0 < d2 < 300 mm, 0◦ < �3 < 180◦,

0◦ < �4 < 90◦, 0◦ < ˛ < 15◦, 0◦ < ˇ < 15◦,

0◦ < 	 < 10◦.

Comparing the absolute position and orientation errors of the
carriage, Hexapod and IWR, we can see that the carriage error is
the most important error sources to the final output errors, which
causes about 80% of the whole errors. The final position errors are
not greater than 10 mm, which can be reduced to satisfy the accu-
racy requirement by means of some calibration methods in next
step.

5. Conclusions

In this paper, a redundant hybrid robot used for both machining
and assembling of Vacuum Vessel of ITER is introduced. An error
model derived for the proposed robot has the ability to account
for the static sources of errors. Both geometric error and deflection
error models have been derived. Due to the redundant freedom of
the robot, first we divide it into serial part and parallel part, and
then formulate the error model respectively, finally combine them
together to get the final error model. The geometric error model
has been simulated in Matlab and the results show that about 80%
amount of errors in the end-effector is caused by serial link mech-
anism, i.e. carriage. In practice, to obtain desired accuracy of robot,
these errors have to be reduced by further parameter identification
methods. In stiffness model, the stiffness of parallel mechanism
is mostly dependent on actuators. And for serial mechanism car-
riage, however, the stiffness is dependent on not only actuators,
but also the links and its serial structure. Thus parallel mechanism
can offer more high stiffness than serial mechanism. The deflection
model can be used in optimization trajectory planning to achieve
minimum deflection during the robot motion.
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Accuracy improvement of a hybrid robot for ITER application using 
POE modeling method 
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 Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851, Lappeenranta, Finland	

This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel 
hybrid intersector welding/cutting robot (IWR) to improve its accuracy. The robot was designed to perform the 
assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor 
(ITER). By employing the product of exponentials (POE) formula, we extended the POE-based calibration method 
from serial robot to redundant serial-parallel hybrid robot. The proposed method combines the forward and inverse 
kinematics together to formulate a hybrid calibration method for serial-parallel hybrid robot. Because of the high 
nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional 
iterative linear least-square algorithms cannot be used to identify the error parameters. This paper employs a global 
optimization algorithm, Differential Evolution (DE), to identify error parameters by solving the inverse kinematics 
of the hybrid robot. Furthermore, the DE algorithm was also adopted to solve the forward kinematics of the hybrid 
robot to verify the accuracy improvement of the end-effector using the identified error parameters. Numerical 
simulations were carried out by generating random assembling and manufacturing errors in the allowed tolerance 
range and generating a number of configuration poses in the robot workspace. Simulation of realistic experimental 
conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given 
external measurement device.  

Keywords: ITER, Accuracy; Differential Evolution; Hybrid robot; Product of Exponentials (POE). 

1. Introduction

The assembly of vacuum vessel (VV) of the 
international thermonuclear experimental reactor (ITER) 
need to fulfill some tasks such as measuring the gap 
between two adjacent sectors, transporting premade 
splice plate to match the measured gap, welding, 
machining and NDT testing the sectors. All of these 
assembly tasks are required to be performed by a robot 
from the inside of ITER VV.  Due to high accuracy 
(±0.1 mm) and big workspace requirements of the 
assembly robot, commercially available serial robot or 
parallel robot cannot be directly used. To solve this 
problem, a 10 degree-of-freedom (DOF) redundant 
serial-parallel hybrid intersector welding/cutting robot 
(IWR) was developed in Lappeenranta University of 
Technology, Finland [1, 2]. 

Generally, to meet a specified accuracy requirement 
of a robot, there are two solutions available. One is to 
impose stringent tolerances at the manufacturing and 
assembling phases, but the costs would be increased 
dramatically with the increase of accuracy. Alternatively, 
the most cost-effective way to improve robot accuracy is 
the kinematic calibration after the robot being assembled. 
By this way you only need to identify the errors 
mathematically and compensate them in the control 
software. Robot calibration can be classified into 
dynamic calibration and static or kinematic calibration. 
In most cases the kinematic calibration can satisfy the 
accuracy requirement effectively. This paper stresses the 
kinematic calibration issues including error modeling 

and parameter identification method for serial-parallel 
hybrid robot.  

In our previous work [1], a hybrid modeling method 
was developed to calibrate the serial-parallel robot. But 
some redundant parameters were introduced inevitably 
since the hybrid model is a combination of DH model [3] 
and vector chain analytical model. The presence of 
redundant parameters would deteriorate the 
identification results so they have to be eliminated for 
higher accuracy requirement. Product of Exponential 
formula (POE), however, is an algorithm can be used to 
represent the kinematics of an open–chain mechanism as 
the product of exponential of twists [4], [5]. The global 
and geometric representation of a manipulator 
kinematics greatly simplifies the analysis of the 
mechanism and makes the POE representation superior 
to the DH method. In this paper, we extend this product-
of-exponentials error modeling method from serial robot 
to serial-parallel hybrid robot. 

 Parameter identification involves mathematical 
optimization method, which can be classified into two 
categories. The iterative linearization method is used to 
find out the identification Jacobian matrix and extract 
error parameters by recursively solving the linear system 
[6]. The advantage of this method is a less computation 
time but it suffers from ill-conditioning in the case of the 
error model with redundant parameters. On the other 
hand, the nonlinear optimization method is adopted to 
minimize the errors between the measured and predicted 
values based on the Euclidean norm.  This method is 



	

computation-intensive and redundant parameters may 
deteriorate the identification results but the complex 
computation of identification Jacobian is avoided. The 
comparison of some global optimization methods for 
benchmark or real-world applications can be found in the 
literatures such as [7] and [8]. In general, Differential 
Evolution (DE) proposed by Storn [9] is a simple but 
effective evolutionary algorithm to solve nonlinear, 
multi-modal and global optimization problems. So the 
DE algorithm will be employed in this paper to minimize 
the position error of the end-effector.  

 

2. Kinematic and Error modeling  

2.1 Kinematic model  

The schematic of the proposed serial-parallel hybrid 
robot is shown in Fig.1. The robot, serially connected by 
a kinematically redundant multi-link serial mechanism 
(named as carriage) and a 6 degree-of-freedom hexapod 
parallel mechanism (named as Hexa-WH), aims to 
compromise between a high stiffness of parallel 
manipulators and a large workspace of serial 
manipulators.   

 
Fig. 1.  Schematic of the proposed serial-parallel hybrid robot. 

 

Due to the redundant structure, the inverse solution of 
the hybrid robot can have an infinite number of joint 
configurations for the same given end-effector 
configuration. But the inverse solution of the parallel 
mechanism can be easily obtained if the forward solution 
of the serial mechanism has been decided. Based on the 
hybrid structure and the POE formula [5], a coincident 
base frame S and tool frame T can be attached to the 
end-effector when the robot in its reference 
configuration.  The definition of POE can be referred to 
Appendix A. The forward kinematics of the carriage are 
given by 

        )0()( 5

ˆˆˆˆ

5
44332211

s
qqqq
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The inverse solution of the Hexa-WH platform is 
quite simple and obvious in terms of the geometry of the 
manipulator. Let asi ,bsi be the position vector of point Ai 
and Bi with respect to the base frame S; and a5i ,bti be the 
position vector of point Ai with respect to the tip frame 
of serial mechanism and tool frame T respectively. Then 
the extension of the prismatic joints, i.e. the nominal leg 

lengths of the Hexa-WH can be obtained: 

 ististsisii ggd 55 )()( aqbqab  , 

i=1,2,…,6.  (2) 
 

2.1 Nonlinear calibration model 

In practice, since the manufacturing and assembling 
errors are unavoidable, the actual leg length would have 
a joint offset error, the real location of the point Ai and Bi 
would never agree with the designed ones, and the twist 
of the serial mechanism would also have some 
deviations, the error model of the hybrid robot can be 
written as 
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stg  are the measured end-effector pose frame T 

with respect to the base frame S, the predicted position 
vector of Ai can be expressed  as: 
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where the error matrix 1
55 )()(  qq ss gg can be 

calculated  according to the equation of  (A.10).   

According to the identifiability anylysis of He [5], 
the number of identifiable parameters of a revolute joint 
is 6 and a prismatic joint is 3. So the carriage will have 
18 error parameters since the carriage has 2 prismatic 
joints and 2 revolute joints. Furthermore, each location 
of the spherical joint Ai and Bi provides 3 fixed 
coordinate error parameters, and each leg provides 1 leg 
joint offset error, thus the number of identification 
parameters from the Hexa-WH is 42. 

Based on the calibration model (3), a nonlinear 
objective function can be formulated as the form of (5). 
The idea behind this nonlinear optimization method is to 
minimize the deviations between the measured and 
predicted values based on the Euclidean norm. The task 
of the parameter identification step is to search for a set 
of optimum solution of the error parameters  

  160432 ,,,,,,  iiid baξξξξx 1      (4) 
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where  m
jid ,  and p

jid ,  represent the ith measured and 

predicted leg length in the jth measurement configuration, 
N is the number of measurement configurations.  

3. Simulation results and analysis 

To validate the effectiveness of the proposed 
calibration method, some numerical simulations are 
carried out in this section. The object function(5) is 
highly nonlinear, to solve the optimization problem and 
identify the parameter in (4), Deferential Evolution 
algorithm is employed,  the DE control parameters can 
be selected according to the scheme of DE/rand-to-best/1 
[9] and the open source Matlab® code of DE from [10] 



is applied in the simulation. The simulations were 
implemented on a computer with an Intel® Core 2 Duo 
processor E8500, 3.16GHz and 3.25 GB of RAM.  The 
simulation procedures are as follows: 

1) Generate 100 sets of end-effector measurement poses
and the corresponding carriage actuated-joint
displacements within the robot workspace.

2) Assume 60 constant error parameters to represent the
corresponding real physical manufacturing and
assembly errors within the designed tolerance range.

3) Calculate the measured leg lengths m
ji ,d  according to 

(3) and (4).

4) Take the 60 error parameters as variables in the
optimization function (5) to calculate the predicted

leg lengths p
ji ,d  and implement the DE algorithm to 

search for an optimal combination of error
parameters to minimize the value of the fitness
function under some program terminal conditions.

To simulate the real application conditions and verify
the robustness of the calibration algorithm, we assume 
that the end-effector poses are measured with a high 
resolution laser tracker measurement instrument. The 
position and orientation measurement accuracy are in the 
range of [-0.01, 0.01] mm and [-0.00001, 0.00001] rad. 
respectively. The measurement noise is regarded as a 
Gaussian distribution, with the ranges obeying the 3σ 
rule. Then the standard deviations of the position noise 
orientation noise are 0.003mm and 0.000003 rad. 
respectively. Fig.2 shows the result of fitness values for 
4 different runs and different number of measurement 
poses after 6000 generations.  We can see that with the 
increase of the measurement poses, the fitness value and 
the CPU time are also increased. By using the identified 
error parameters in the case of 50 measurement poses 
and DE algorithm, the position error of 25 end-effector 
poses can be calculated and plotted as seen in Fig.3 and 
Fig.4. From the simulation results in Table 1, it can be 
seen that the accuracy of the end-effector has been 
improved to the same precision level of the given 
external measurement device. It is noted that the end-
effector pose error before calibration is dependent on the 
preset kinematic errors, and the accuracy of the end-
effector after calibration is dependent on the accuracy of 
the given measurement device system. 

Fig.2 Fitness values with 4 different runs and different 
measurement poses.  

Table 1: The calibration result of the end-effector before and 
after calibration for 25 measurement poses  

Errors type Before 
calibration 

After 
calibration 

RMS position 0.3604 mm 0.001mm 
RMS orientation 0.0316° 0.000248°
Max.  position 3.797 mm 0.0098 mm 
Max. orientation 0.4778° 0.0024°  

Fig.3 Plot of position errors before calibration with 25 
measurement poses.  

Fig.4 Plot of position errors after calibration with 25 
measurement poses. 

4. Conclusions and future work

In this paper, we extended the POE-based calibration 
method from serial robot to serial-parallel hybrid robot. 
The error parameters of the model, which takes into 
account mainly the geometrical errors originated from 
manufacturing and assembly processes, are identified 
and fitted to the given measurement data by employing 
Differential Evolution (DE) algorithm. The simulation 
results indicate that our proposed modeling and 
identification method for hybrid robot is robust and 
effective, the complete pose measurement of the end-
effector is enough for the calibration, the measurement 
of the connection point between the serial and parallel 
part is not necessary. The future work will be focused on 
the experimental verifications of our method for the 
current robotic system and extend the proposed method 
to other serial-parallel robot to verify its practicability. 

Appendix A 

The below summarizes the mathematic background 
which related to the POE-based calibration. For more 
details please refer to [5], [11]. 



	

a) The Lie Group SO(3), also referred as the rotation 
group, has the form of 

  1det,:)3( 33   RIRRR TSO . (A.1) 

b) The Lie Group SE(3), also known in the robotics 
literature as the homogeneous transformation matrix, 
has the form of  
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c) The Lie algebra so(3), is a vector space of the skew-
symmetric matrices, such that 
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where the vector ω=(ωx , ωy , ωz)
T∈R3×1, which 

correspondents to the axis of a rigid body rotation.  
d) The Lie algebra se(3), is defined as 
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where ξ̂  is termed as the twist, and ξ=( ω, v)T  is the 

twist coordinate of ξ̂ .  ω is the unit directional vector of 

the screw axis, v is the position of the axis with respect 
to the origin. For revolute joint, if p∈R3×1 is an arbitary 
point on the axis, then v=-ω×p. For prismatic joint, ω=0, 
v represents the unit directional vector of the axis.  
e) Adjoint transformation, is a 6×6 matrix which 

transforms twists from one coordinate frame to 
another, written as Ad(g). Thus, given g∈SE(3) , 
Ad(g) can be expressed as 
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 where b̂ is the skew-symmetric matrix of vector b. 
f) Exponential of se(3), presents an important 

connection between the Lie Group SE(3) and its Lie 
algebra se(3). Given )3(ˆ seξ ,ξ=( ω, v)T and 
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where if ω =1, then 
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If ω =0, which means the joint is prismatic, then 

 R=I3,   b=qv . (A.8) 
g) Forward kinematics using POE formular 

The forward kinematics of an n-degree-of -freedom 
serial robot is given by 
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where gst(0) represents the rigid body transformation 
between tool frame T and base frame S when the 
manipulator is in its reference configuration (q=0).   

h) POE based error modeling  
According to the error model of He [5], if let the base 

frame coincident with the tool frame in the reference 
configuration, and assuming no errors in gst(0) and q, 
then a POE based error model can be expressed in an 
explicit form as  
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ABSTRACT 
In this paper, a statistical method for the determination of 

the identifiable parameters of a hybrid serial-parallel robot 
IWR (Intersector Welding Robot) is presented. This method is 
based on the Markov Chain Monte Carlo (MCMC) algorithm 
to analyze the posterior distribution and correlation of the 
error parameters. Differential Evolution algorithm is employed 
to search a global optimizer as initial values for the random 
sampling of MCMC. The robot under study has ten degrees of 
freedom (DOF) and will be used to carry out welding, 
machining, and remote handing for the assembly of vacuum 
vessel of the international thermonuclear experimental reactor 
(ITER).  In this paper, a kinematic error model which involves 
assembling and manufacturing error parameters is developed 
for the proposed robot. Based on this error model, the mean 
values of the unknown parameters are statistically analyzed 
and estimated using the proposed method. Computer 
simulations reveal that all the reduced independent kinematic 
parameters can be identified with the complete pose 
measurements.  Results also demonstrate that the 
identification method is robust and effective with the given 
measurement noise. 

 

1. INTRODUCTION 
It has been acknowledged that kinematic calibration is the 

economical and effective way to enhance accuracy of a given 
robot after assembling since it only involves software 
modification rather than changing the mechanical structure or 

imposing tighter tolerances in manufacturing process. In 
general, a standard calibration procedure consists of 4 steps: 
modeling, measurement, identification and compensation. The 
aim of the identification step is to determine the set of error 
parameters for a given actual robot to compensate the nominal 
geometric model and match the measured data [1].  The topic 
of parameter identification involves numerical optimization 
method in which model parameters are identified from several 
measured robot end-effector poses. Everett et al. [2] proposed 
that a good kinematic model for calibration should satisfy 
three requirements: completeness, proportionality, and 
equivalence. Base on this requirement, a number of different 
modeling methods have been developed for kinematic 
modeling of robot manipulators. The most popular methods 
are the method proposed by Denavit and Hartengerg (DH) [3], 
and the modified DH method established by Hayati [4], which 
are widely used for serial manipulators [5]. Other alternative 
kinematic modeling methods to perform robot calibration 
exist, for example, the S-model developed by Stone, 
Sanderson, and Neuman [6], which uses six parameters for 
each link and these parameters are converted to DH 
parameters. The zero-reference model proposed by Mooring 
[7, 8] does not rely on the DH formalism and consists of 
establishing a reference coordinate system fixed in the work 
space and an end-effector coordinate system attached to the 
end-effector of the robot. Unlike the standard serial 
mechanisms applied in industrial robots, parallel mechanisms 
have several closed kinematic chains, so the vector chain 
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analytical method is commonly adopted in kinematic 
modeling of parallel robots [9, 10]. 

To be complete, the kinematic model should have the 
required number of independent and identifiable kinmatic 
parameters. In the case of serial robots, Khalil and Gautier 
[11] proposed an identification method in which the 
identifiable parameters are calculated from QR decomposition 
of the analytical observation matrix. Besnard and Khalil [12] 
extended this method for determining the identifiable 
parameters of parallel robots even in the case where the 
identification Jacobian matrix cannot be obtained analytically. 
For the kinematic calibration of hybrid robot, very few of 
publications can be found. Fan et al [13] presented a 
calibration method for a hybrid five degrees of freedom (DOF) 
manipulator, in the work, the serial part of the robot are taken 
as a ruler to measure the end-effector’s offset caused by a 
parallel mechanism at different configurations and the 
calibration error model is dependent on the measurement 
method.   

 This paper proposes a novel parameter identification 
method for the kinematic calibration of redundant hybrid 
serial-parallel robot. This approach is based on the use of 
Markov Chain Monte Carlo (MCMC) algorithms to 
statistically estimate error parameters of the studied robot. The 
MCMC, originally introduced by Metropolis [14], which has 
become a common title for algorithms that simulate values 
from a probability distribution known only up to a normalizing 
constant. It has the ability to find as many as possible 
combinations of optimal solutions whose empirical 
distribution can statistically fit the data equally well within a 
certain required accuracy range [15]. Furthermore, the 
proposed MCMC-based parameter identification method can 
be employed to find out the correlations of the identified 
parameters, and then the identifiable parameters can be easily 
determined and the identification model can be simplified and 
improved to match the actual robot. Therefore, the evaluation 
of the condition number of identification Jacobian is not 
necessary. 

The organization of this paper is as follows: In Section 2 
we describe the kinematic modeling of the studied robot. The 
kinematic and preliminary identification model will be derived 
in this section. Section 3 gives the basic principles of MCMC 
algorithm and its application to the parameter estimations. 
Section 4 reports simulation results on different conditions and 
the improved identification model are determined by 
analyzing the correlations of the simulated parameters of the 
preliminary identification model. Section 5 summarizes our 
findings from this study. 

 

2. DESCRIPTION AND MODELING OF THE ROBOT 
A prototype of the redundant hybrid serial-parallel robot 

under study is shown in Fig.1, which is developed in 
Lappeenranta University of Technology and can be used for 
machining and assembling of vacuum vessel of ITER.  

The robot is composed of a redundant 4-DOF multi-link 
serial mechanism (named as Carriage) serially connected to a 
standard 6-DOF Stewart parallel mechanism (named as Hexa-

WH), which aims to arrive at a compromise between a high 
stiffness of parallel manipulators and a large workspace of 
serial manipulators. In what follows, we first derive a nominal 
kinematic model for the proposed robot.  Thereafter, based on 
the nominal model, a related identification model including 
unknown parameters is developed.  

 

 
 

Figure1. Prototype of the studied hybrid robot 
 
 

2.1 Kinematic Model 

The kinematic structure of the hybrid serial-parallel robot 
is shown in Fig. 2. The end-effector of the robot is located in 
the platform coordinate frame {5} of Hexa-WH. The 
coordinate frame of the tip point of Carriage is coincident with 
the platform coordinate frame {4} of Hexa-WH. The global 
reference frame {0} is located at the left rail of the Carriage.  

  

 
 

Figure 2. Structure of the studied hybrid robot 
 



 3 Copyright © 2011 by ASME 

Based on this hybrid structure, a vector-loop equation is 
derived:  
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From Eqn. (1), the nominal leg length, i.e., the inverse 

solution of the robot can be obtained as: 
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where 0P5 and   0R5 are the nominal position vector and 
rotation matrix of the end-effector frame {5} with respect to 
the fixed base frame {0}. 0R4 and 0P4 are the nominal rotation 
matrix and position vector of frame {4} with respect to frame 
{0}, which can be obtained from the forward kinematics of the 
Carriage by using the commonly used DH modeling method 
proposed by Paul [16]. Based on this method, the 
corresponding nominal forward kinematics of Carriage 0T4 is 
written as: 
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in addition, in Eqn. (1) 4P5 is  the  position  vector  of  the  end-
effector frame {5} with respect to the connection platform 
frame {4}. It can be calculated from the nominal inverse 
kinematics of Hexa-WH.  Let li be  the  unit  vector  in  the  
direction of AiBi,  and  li the magnitude of the leg vector AiBi. 
The following vector-loop equation represents the inverse 
kinematics of the ith limb of the parallel manipulator: 

 1,2,...6 ,45
5

4
5

4 il iiii abRPl   (4) 
where 4ai and 5bi denote  the  nominal  position  vectors  of  
universal joints Ai and  spherical joints Bi in frame {4} and 
frame {5} respectively, and 4R5 is  the  Z-Y-X  Euler  
transformation matrix representing the orientation of Frame 
{5} related to Frame {4}.  
 
2.2 Preliminary Identification Model 

In order for a kinematic model to be used for calibration, 
the model must satisfy three criteria, i.e. completeness, 
proportionality, and equivalence, as discussed in [1, 2].  To be 
complete, the model must contain sufficient number of 
independent parameters to describe the kinematics of the 
studied robot. The minimum number of geometrical 
parameters for serial robots is given by Mooring et al [1]  

T2P4RC   (5) 
where R and P are the number of revolute and prismatic joints 
respectively, and T is the number of end-effector pose 
parameters, which are measured by the external measuring 
system. 

Considering small geometrical errors happen to robot 
kinematic DH parameters i, di, ai and i, we can get the error 
model of the Carriage as: 
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Expanding Eqn. (6) and ignoring second and higher-order 
differential errors, it gives: 
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  (7) 
Then, the actual rotation matrix r

4
0 R   and actual position 

vector r
4

0 P of frame {4} with respect to frame {0} can be 
formulated from Eqn. (6). The unknown constant error 
parameters i, di, ai and i are used as identification 
variables in the final objective function Eqn. (15).  

According to eqn. (5), and noted that the external pose 
measurement of connection point frame {4} is not necessary, 
so a standard DH model of the carriage should have 12 
parameters, 8 of them are from revolute joints and 4 of them 
from prismatic joints. 

For multi-loop parallel robots, the number of independent 
parameters can be calculated by using the formula proposed 
by Vischer [17]  

)1(66P3RC FLESS   (8) 
where R is the number of revolute joints, P is the number of 
prismatic joints, SS is the number of pairs of spherical joints, 
E is the number of measurement encoders, L is the number of 
loops and F is the number of arbitrarily located frames. 
According to this definition, the independent geometrical 
parameters of Hexa-WH is 42, which including three 
coordinates describing the location of the spherical joint Ai on 
the connection platform, three coordinates for the location of 
the spherical joint Bi on the end-effector platform and another 
one for the link encoder offset li for each joint link train, so the 
number of identification parameters provided by Hexa-WH is 
equal to 42.  

Considering the small manufacturing and assembling 
tolerances in the physical structure, the identification model of 
Hexa-WH can be written as: 
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Integrating the above identification model of serial part 

and parallel part together, the preliminary identification model 
for the hybrid robot can be expressed as: 
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In the calibration work, the actual end-effector pose 

vector r
5

0 P  and r
5

0 R  can be obtained by an accurate 
measurement instrument and the actual Carriage pose vector 

r
4

0 P and r
4

0 R  will be calculated from Eqn. (6) using transducer 
readings of the Carriage actuators.  

Obviously, the total number of identification parameters 
of the preliminary identification model is 54 if the correlations 
of these parameters are not taken into account.  But in order 
for the preliminary identification model to meet the 
completeness requirement, the redundant and correlated 
parameters of the hybrid robot must be eliminated.  In the 
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following section, a MCMC-based method is introduced to 
determine the identifiable parameters of the preliminary 
identification model of the hybrid robot. 

 

3. MCMC-BASED PARAMETER IDENTIFICATION  
Generally, a nonlinear model, with independent and 

Gaussian noise, can be presented in the form: 
XY ),(f  (11) 

The aim of this problem is to estimate the vector of 
unknown parameters  based on a certain number of 
measurements Y and known input quantities X (constants, 
control variables, etc.).  Bayesian approach provides a 
numerical method to statistically analyze the unknown 
parameters and their distributions. The Bayes formula is given 
as: 
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where p( ) is prior distribution. p(y| ) is likelihood function 
which gives the probability distribution of the observations y 
when given parameter values . The most likely values of the 
parameters are those that give high values for the posterior 
distribution ( ). Assuming independent and identically 
distributed Gaussian error for n observations yi, we have 
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The intractable part of implementing Bayesian inference 
lies in the normalizing constant that requires integration over a 
high-dimensional space [18]. Fortunately, MCMC methods 
provide a way to solve this problem by which the need for 
computing these difficult integrals vanishes. The idea behind 
the MCMC algorithms is to generate a sequence of random 
variables { 1, 2, ...}, whose empirical distribution can 
asymptotically approach to the posterior distribution ( ). The 
simplest MCMC variant is the Metropolis algorithm [14] 
which basically has the following steps: 

 
Step 1: Initialization 

 Set 2

1
1 )),((min xy i

n

i
i f ; select a suitable 

numerical optimization method. In this work, 
Differential Evolution (DE) algorithm [19], a 
simple but powerful evolutionary optimization 
algorithm which has the ability to minimize real-
valued, high nonlinear, and multi-modal 
objective functions,   is employed to search a 
global optimum with certain accuracy as the 
initial vector values for MCMC sampling.  

 Define the length of simulation chain Nsimu. 
 Select a proposal distribution q and 

set
1

SSSSold . 
 

Step 2: Simulation loop 

 Generate new from the proposal distribution 
)|q( old , and compute SSnew.  

 Calculate the acceptance probability 

)(
)(

,1min
)(
)(,1min

old

new

old

new

p
p

y
y  

          ))(
2

1exp,1min( 2 oldnew SSSS          (14) 

 The new value is accepted if oldnew SSSS  or 

)(
2

1exp 2 oldnew SSSSu ,  where  u  is  a  

random number generated from U [0, 1].  
 Repeat the simulation loop until Nsimu samples 

have been created. 
 

4. SIMULATION RESULTS AND ANALYSIS 
The purpose of this work is to verify the validity and 

effectiveness of the MCMC-based method for the kinematic 
error parameter identification and identifiable parameter 
determination of the hybrid robot as shown in Fig.1. Prior to a 
real calibration experiment in near future, a numerical 
simulation is performed for a virtual prototype with realistic 
kinematic parameters. In the simulation, a set of preset errors 
which can physically represent the actual geometrical errors 
caused by manufacturing and assembling processes is 
generated by the random function in Matlab. The kinematic 
parameters and assumed preset errors of the hybrid robot are 
listed in Table1. Furthermore, two data set with 100 
measurement configurations ( r

5
0 P  and r

5
0 R ) and the 

corresponding joint displacement of Carriage actuators are 
randomly generated within the robot workspace to calculate 
and simulate the actual measured data m

jil , , i.e. the observation 
matrix y. One data set is without noise on measurements and 
another data set are added Gaussian noise on each pose 
measurements. On the other hand, we take the error 
parameters from the identification model as random variables 

 in Eqn. (10) to calculate r
jil , . The error residuals between the 

measured leg length from inner sensor and the calculated leg 
length can be used to express objective function as  

  2
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In Eqn. (15), n is the number of measurement points,  r

jil ,
 

is the calculated leg length including error parameters from 
Eqn. (10).  m

jil ,
 is a certain measured value of the ith leg in the 

jth measurement point. The task of simulation is to obtain a 
posterior distribution chain for error parameters using MCMC 
sampling methods. The MCMC toolbox for Matlab developed 
by Laine [20] is employed to our simulation. The obtained 
chain is a matrix of samples, which is commonly used to 
calculate the posterior means, the standard deviations and 
correlations, etc. The length of simulation chain Nsimu is set to 
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be 200000 in every simulation runs. In what follows, we first 
simulate the preliminary identification model without 
measurement noise to find the independent identifiable 
parameters, and then we simulate the improved identification 
model with reduced parameters by adding measurement noise 
and without noise to further verify our analysis. 

 
4.1 Calibration of Preliminary Identification Model (54 
Parameters) Without Measurement Noise 

If the data set without noise is used, after running a chain 
of length 200000, we obtain a 200000×54 MCMC chain 
matrix for the sampled identification parameters. From it the 
posterior means, standard deviations, correlations and some 
illustrative plots such as histograms and density estimates can 
be calculated [15]. Table 1 gives the posterior mean values 
and standard deviations computed from the posterior sample 
matrix.  The table shows that the posterior mean values of the 
independent parameters have been identified to be exactly the 
same as the preset errors with a very high precision (10-5 mm 
and 10-8 rad) for standard deviations, but the correlated or 
dependent parameters have not been identified correctly and 
have lower standard deviations.  To find out the correlations of 
these dependent parameters, we select some parameters of 
interest to plot the two-dimensional posterior distributions as 
shown  in  fig.  3-8.  From  fig.  3  it  can  be  seen  that  there  are  
three parameter pairs ( a4, a1x), ( a4, a2x) and ( a1x, a2x) are 
very strongly correlated and the ratio between the parameters 
is well identified, but the parameters themselves are not. For 
further analysis we can see that the parameter a4 is also 
strongly correlated with the rest x direction parameters a3x, 
a4x, a5x, a6x as shown in Fig. 4.  The same phenomenon can 

be found in parameters between d4 and the y direction 
parameters a1y, a2y, a3y, a4y, a5y and a6y as shown in fig. 
5-6. Some of parameters in z direction are correlated with 4 
or 4 as  shown  in  fig. 7-8. Based on the above correlation 
analysis, model refinement and re-parameterization can be 
made.  To make the model be complete and have a required 
number of minimal independent parameters, all of the error 
parameters in Ai joint  can  be  removed,  and  then  the  
geometrical errors of these joints are transferred to the 
remained corresponding independent parameters a4, d4, 4 
and 4 according to superposition principle. Consequently, 
there are 36 independent and identifiable parameters left in the 
improved identification model. 

  
Table1. Nominal parameter values, preset geometrical errors 
and posterior mean values of the preliminary identification 
model with 54 parameters (without measurement noise) 

Parameter 
(nominal, 
error) 

Nominal 
values 

(mm, o) 

Preset 
errors 

(mm, o) 

Posterior 
mean 

(mm, o) 

Posterior 
Std 

1, 1  -90° 0.0782° 0.07819° 2.352×10-8 
2, 2 90° 0.0571° 0.0571° 3.1528×10-9 
3, 3 90° -0.048° -0.048° 5.7552×10-9 
4, 4 90° 0.0417° 0.04173° 1.6735×10-5 

a3, a3     252 -0.2164 -0.2164 2.2333×10-5 

a4, a4     354 -0.4451 -0.4451 0.0048288  
d3, d3     422 0.1681 0.1681 2.7881×10-5 
d4, d4     0 -0.3857 -0.38564 0.0073678  

1, 1  0 0.0213° 0.0213° 2.6166×10-8 
2, 2   90° 0.0794° 0.0794° 2.2173×10-8 
3, 3  0°  0.0464° 0.0464° 4.8552×10-8 
4, 4  0° 0.0345° 0.03449° 1.1837×10-5 

a1x, a1x    -231.902 -0.0654 -0.06538   0.0048255  
a1y, a1y    -231.666 0.0687 0.068645   0.0073711  
a1z, a1z    0 0.0928 0.092879   0.0041492  
a2x, a2x    -84.6778 0.0448 0.044815   0.0048282  
a2y, a2y    -316.663 -0.0942 -0.09425   0.0073716  
a2z, a2z    0 -0.0731 -0.07301   0.0062136  
a3x, a3x    316.58 0.0229 0.02291    0.004833  
a3y, a3y    -85 0.0133 0.013246   0.0073733 
a3z, a3z    0 -0.0136 -0.01367   0.0080805 
a4x, a4x    316.58 -0.0752 -0.07518   0.0048307 
a4y, a4y    85 -0.0976 -0.09765   0.007371   
a4z, a4z    0 0.0167 0.016552   0.0080475 
a5x, a5x    -84.6778 0.0576 0.057614   0.0048249 
a5y, a5y    316.663 -0.0486 -0.04865   0.0073654 
a5z, a5z    0 0.0329 0.03272   0.0061585  
a6x, a6x    -231.902 -0.0117 -0.01168 0.0048258 
a6y, a6y    231.6663 0.0676 0.067545   0.0073668 
a6z, a6z    0 0.0273 0.027181   0.004128   
b1x, b1x    32.5 0.0581 0.058101   2.8297×10-5 
b1y, b1y    -125.93 -0.0648 -0.0648   1.5322×10-5 
b1z, b1z    0 0.0717 0.0717   1.6098×10-5 
b2x, b2x    125.309 0.0847 0.084701   2.8356×10-5 
b2y, b2y    34.819 -0.0478 -0.04779   1.4938×10-5 
b2z, b2z    0 0.0324 0.0324   1.8154×10-5 
b3x, b3x    92.809 -0.0139 -0.01389   2.7064×10-5 
b3y, b3y    91.111 -0.0266 -0.02660   1.8706×10-5 
b3z, b3z    0 -0.0281 -0.02810   2.1123×10-5 
b4x, b4x    -92.809 -0.0594 -0.0594   2.897×10-5 
b4y, b4y    91.111 0.0375 0.0375   1.9324×10-5 
b4z, b4z    0 0.0088 0.008799  1.9959×10-5 
b5x, b5x    -125.309 0.0228 0.022802   3.211×10-5 
b5y, b5y    34.819 -0.0566 -0.0566   1.4835×10-5 
b5z, b5z    0 -0.0368 -0.0368   1.4931×10-5 
b6x, b6x    -32.5 -0.0638 -0.06379   3.043×10-5 
b6y, b6y    -125.93 -0.0087 -0.00869 1.305×10-5 
b6z, b6z    0 -0.0736 -0.0736   1.1859×10-5 
  l1, l1     0  -0.3794 -0.3794   2.3128×10-5 
  l2, l2     0 -0.0895 -0.0895  2.8054×10-5 
  l3, l3      0 0.1650 0.165   4.7325×10-5 
  l4, l4     0 -0.3048 -0.3048   5.3156×10-5 
  l5, l5      0 0.3233 0.3233   2.8076×10-5 
  l6, l6      0 0.0774 0.0774   1.5764×10-5 
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Figure 3. Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters a4 (Ea4), 4 (Eq4), a1x 
(Ea1x), a2x (Ea2x). The distributions plotted along the axis are 
the corresponding one dimensional marginal density.  

 

 
 
Figure 4. Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters a4 (Ea4), a3x (Ea3x), 
a4x (Ea4x), a5x (Ea5x). The distributions plotted along the axis 

are the corresponding one dimensional marginal density.  

 
Figure 5. Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters dd (Ed4), a1y (Ea1y), 
a2y (Ea2y), a1x (Ea1x). The distributions plotted along the axis 

are the corresponding one dimensional marginal density.  

 

 
Figure 6. Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters d4 (Ed4), a3y (Ea3y), 
a4y (Ea4y), a5y (Ea5y). The distributions plotted along the axis 

are the corresponding one dimensional marginal density.  
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Figure 7. Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters 4 (Eq4), a1z (Ea1z), 
a2z (Ea2z), a3z (Ea3z). The distributions plotted along the axis 

are the corresponding one dimensional marginal density.  

 

 
Figure 8. Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters 4 (Ealpha4), a1z (Ea1z), 
a2z (Ea2z), a3z (Ea3z). The distributions plotted along the axis 

are the corresponding one dimensional marginal density.  

 

4.2 Calibration of Improved Identification Model (36 
Parameters) Without Measurement Noise 

Table 2 gives the simulation results of the posterior mean 
values and standard deviations of the 36 parameters.  It is to be 
noted that the correlations of the parameters have been 
successfully eliminated, and every parameter has been 
identified  to  be  almost  the  same  as  the  preset  errors,  and  the  
standard deviations arrive at very high precisions (10-6 mm 
and 10-9 rad). 

 

Table2. Nominal parameter values, preset geometrical errors 
and posterior mean values of the improved identification 
model with 36 parameters (without measurement noise) 

Parameter 
(nominal, 
error) 

Nominal 
values 

(mm, o) 

Preset 
errors 

(mm, o) 

Posterior 
mean 

(mm, o) 

Posterior Std 

1, 1  -90° 0.0782° 0.0782° 2.2777×10-9 

2, 2 90° 0.0571° 0.0571° 2.7999×10-9 
3, 3 90° -0.048° -0.048° 2.6991×10-9 
4, 4 90° 0.0417° 0.0417° 2.3243×10-9 

a3, a3     252 -0.2164 -0.2164 8.8467×10-7 
a4, a4     354 -0.4451 -0.4451 1.039×10-6 
d3, d3     422 0.1681 0.1681 2.613×10-6 
d4, d4     0 -0.3857 -0.3857 1.4035×10-6 

1, 1  0 0.0213° 0.0213° 2.6084×10-9 
2, 2   90° 0.0794° 0.0794° 1.2234×10-9 
3, 3  0°  0.0464° 0.0464° 3.2017×10-9 
4, 4  0° 0.0345° 0.0345° 1.6873×10-9 

b1x, b1x    32.5 0.0581 0.0581 2.5743×10-6 
b1y, b1y    -125.93 -0.0648 -0.0648 1.362×10-6 
b1z, b1z    0 0.0717 0.0717 1.3075×10-6 
b2x, b2x    125.309 0.0847 0.0847 2.5714×10-6 
b2y, b2y    34.819 -0.0478 -0.0478 1.3262×10-6 
b2z, b2z    0 0.0324 0.0324 1.1825×10-6 
b3x, b3x    92.809 -0.0139 -0.0139 2.6619×10-6 
b3y, b3y    91.111 -0.0266 -0.0266 1.4087×10-6 
b3z, b3z    0 -0.0281 -0.0281 9.956×10-7 
b4x, b4x    -92.809 -0.0594 -0.0594 2.8469×10-6 
b4y, b4y    91.111 0.0375 0.0375 1.3211×10-6 
b4z, b4z    0 0.0088 0.0088 9.9319×10-7 
b5x, b5x    -125.309 0.0228 0.0228 2.982×10-6 
b5y, b5y    34.819 -0.0566 -0.0566 1.0043×10-6 
b5z, b5z    0 -0.0368 -0.0368 1.0054×10-6 
b6x, b6x    -32.5 -0.0638 -0.0638 2.7734×10-6 
b6y, b6y    -125.93 -0.0087 -0.0087 1.03×10-6 
b6z, b6z    0 -0.0736 -0.0736 9.6405×10-7 
  l1, l1     0  -0.3794 -0.3794 1.584×10-6 
  l2, l2     0 -0.0895 -0.0895 1.372×10-6 
  l3, l3      0 0.1650 0.1650 1.3435×10-6 
  l4, l4     0 -0.3048 -0.3048 1.6412×10-6 
  l5, l5      0 0.3233 0.3233 1.5983×10-6 
  l6, l6      0 0.0774 0.0774 1.3004×10-6 
 

4.3 Calibration of Improved Identification Model (36 
Parameters) With Measurement Noise  

To simulate the realistic situation, we assume that the 
position and orientation of the end-effector will be measured 
with a laser tracker. The position measurement is with 
accuracy ±0.01mm and orientation measurement with 
accuracy ±0.00001rad. The measurement noise is regarded as 
a Gaussian distribution, with the ranges obeying the 3  rule. 
The standard deviations of the position noise and orientation 
measurement noise are 0.003mm and 0.000003rad, 
respectively. Table 3 presents the simulation results of the 
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posterior mean values and standard deviations of the reduced 
36 parameters with pose measurement. The results show that 
all of the independent and identifiable parameters have 
successfully converged to the preset errors only with a slight 
difference, and the standard deviations arrive at very high 
precisions (10-5 mm and 10-8 rad). Furthermore, from Table 3 
and Fig.9 we can see that every parameter is independent and 
identifiable. Measurement noises do have influence on the 
identification results, but MCMC-based identification method 
has ability to decrease the influence as small as possible. 

 
Table3. Nominal parameter values, preset geometrical errors 
and posterior mean values of the improved identification 
model with 36 parameters (with measurement noise) 

Parameter 
(nominal, 
error) 

Nominal 
values 

(mm, o) 

Preset 
errors 

(mm, o) 

Posterior 
mean 

(mm, o) 

Posterior Std 

1, 1  -90° 0.0782° 0.077859° 2.3614×10-8 
2, 2 90° 0.0571° 0.057234° 2.699×10-8 
3, 3 90° -0.048° -0.04781° 2.697×10-8 
4, 4 90° 0.0417° 0.041479°  2.3256×10-8 

a3, a3     252 -0.2164 -0.21465   9.0571×10-6 
a4, a4     354 -0.4451 -0.4450  1.0434×10-5 
d3, d3     422 0.1681 0.17487 2.6985×10-5 
d4, d4     0 -0.3857 -0.3856 1.4193×10-5 

1, 1  0 0.0213° 0.021623°  2.5993×10-8 
2, 2   90° 0.0794° 0.079532° 1.2297×10-8 
3, 3  0°  0.0464° 0.046937° 3.2475×10-8 
4, 4  0° 0.0345° 0.034722° 1.6977×10-8 

b1x, b1x    32.5 0.0581 0.061509 2.6428×10-5 
b1y, b1y    -125.93 -0.0648 -0.065029 1.3881×10-5 
b1z, b1z    0 0.0717 0.069514 1.2575×10-5 
b2x, b2x    125.309 0.0847 0.088151 2.6055×10-5 
b2y, b2y    34.819 -0.0478 -0.047026 1.2997×10-5 
b2z, b2z    0 0.0324 0.030068 1.1668×10-5 
b3x, b3x    92.809 -0.0139 -0.010355 2.6603×10-5 
b3y, b3y    91.111 -0.0266 -0.025498 1.4205×10-5 
b3z, b3z    0 -0.0281 -0.030009 9.9522×10-6 
b4x, b4x    -92.809 -0.0594 -0.056781 2.8328×10-5 
b4y, b4y    91.111 0.0375 0.038118 1.3413×10-5 
b4z, b4z    0 0.0088 0.007394 1.0058×10-5 
b5x, b5x    -125.309 0.0228 0.024621 2.9881×10-5 
b5y, b5y    34.819 -0.0566 -0.055924 1.0115×10-5 
b5z, b5z    0 -0.0368 -0.037492 1.0006×10-5 
b6x, b6x    -32.5 -0.0638 -0.060853 2.804×10-5 
b6y, b6y    -125.93 -0.0087 -0.008302 1.0275×10-5 
b6z, b6z    0 -0.0736 -0.07438 9.5351×10-6 
  l1, l1     0  -0.3794 -0.38249 1.5735×10-5 
  l2, l2     0 -0.0895 -0.092193 1.3539×10-5 
  l3, l3      0 0.1650 0.16235 1.3171×10-5 
  l4, l4     0 -0.3048 -0.3082 1.6392×10-5 
  l5, l5      0 0.3233 0.31997 1.6464×10-5 
  l6, l6      0 0.0774 0.074825 1.3081×10-5 
 

 
Fig.9 Pairwise scatter plots of two dimensional marginal 
posterior distributions for parameters a4 (Ea4), 4 (Eq4), b1x 
(Eb1x), b6z (Eb6z). The distributions plotted along the axis are 
the corresponding one dimensional marginal density. 

5. CONCLUSIONS 
In this paper, a MCMC-based kinematic calibration 

method for identifying the geometrical parameter errors 
resulting from manufacturing and assembling errors of 
redundant hybrid robot is reported. A preliminary parameter 
identification model with redundant parameters is derived for 
the studied redundant hybrid robot. Base on this model, 
MCMC algorithm is employed to statistically analyze the 
correlations and posterior mean values of the identified 
parameters.  This method can be used to determine the 
independent identifiable parameters of a multi-redundant 
hybrid robot and improve the corresponding identification 
model without calculating condition number of the 
identification Jacobian matrix.  The simulation results show 
that the MCMC-based calibration method is reliable and 
robust, which can be easily employed to identify error 
parameters of high nonlinear kinematic models. 
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Abstract - This paper presents a kinematic calibration 
method for a redundantly actuated hybrid robot to im-
prove its absolute positioning accuracy. The studied robot 
is composed of a kinematically redundant serial mecha-
nism with 4 degrees of freedom to enlarge its workspace 
and a standard Stewart parallel manipulator with full 6 
degrees of freedom to improve its accuracy of the 
end-effector. It will be used to carry out welding, ma-
chining, and remote handing for the assembly of vacuum 
vessel of the international thermonuclear experimental 
reactor (ITER).  Based on the product of exponentials 
(POE) formula, an error model involving 60 kinematic 
parameters is derived, which accounts for the kinematic 
errors originated from the manufacturing and assembly 
processes. Due to its hybrid serial-parallel kinematic 
structures and a large number of identification parame-
ters, the traditional iterative least-square algorithm can-
not be used to identify the error parameters. In this paper, 
by combining the forward calibration method with the 
inverse calibration method to formulate a hybrid calibra-
tion method, the parameter identification process is 
transformed into a global nonlinear optimization problem, 
and then Differential Evolution algorithm is employed to 
search a set of optimum solution from the error model to 
minimize the objective function. Numerical simulation 
reveals that all the preset error parameters can be suc-
cessfully recovered under the ideal experimental condition 
without measurement noise. Simulation also demonstrate 
that the identification method is robust and effective with 
the given measurement noise. 

Keywords: Identification, Differential Evolution, Hybrid 
robot, Product of Exponentials (POE).

I. INTRODUCTION

After being assembled, the actual robot kinematic 
parameter values will deviate from those designed or 
nominal ones due to the imprecision of the assembling 
and fabricating processes. Kinematic parameter cali-
bration is a very important procedure to compensate the 
deviations and improve the robot accuracy through 
software modification rather than redesigning the me-
chanical structures or imposing tighter tolerances in 
machining process.  In general, robot calibration can be 
regarded as an integrated process consisting of modeling, 
measurement, identification and compensation. This 
paper focuses on the kinematic parameter modeling and 
identification issues.  

Examining the existed modeling methods, we can 
find that most of them are focused on the pure serial or 

pure parallel robot without redundant structures. For 
serial robot, the most popular modeling methods are the 
DH model which proposed by Denavit and Hartengberg 
[1], and the Modified DH model which established by 
Hayati [2].  Furthermore, S-model developed by Stone, 
sanderson, and Neuman [3], completer and parametri-
cally continuous (CPC) model proposed by Zhuang et 
al.[4], Mooring’s Zero reference model [5], and Park and 
Okamura’s POE model [6],  Chen’s local POE model [7] 
are also utilized in some literatures[8]. For Parallel robot, 
the vector chain analytical method is commonly em-
ployed, DH, POE modeling method can also be found in 
some publications [9], [10]. To my knowledge, there is 
no generic error modelling method for hybrid robot. 

For the identification method, it can be classified into 
two categories. If the error model is simple and linear-
izable, then we can use the iterative linearization method 
to find the identification Jacobian matrix, and then re-
cursively solves the linear system to get the optimal so-
lution. The advantage of this method is less computation 
time but will suffer from ill-conditioning if there are 
redundant parameters exist. On the other hand, if the 
error model is complex and high nonlinear, then we can 
use nonlinear optimization method which minimize the 
average error between the measured and predicted values 
based on the Euclidean norm.  This method is compu-
tation intensive and redundant parameters may degrade 
the identification results but the identification Jacobian 
is not necessary.  Some global optimization algorithms 
such as artificial neural networks [11], genetic pro-
gramming [12], and genetic algorithms (GA) [13], have 
been successfully employed to calibrate serial or parallel 
robots.  

In this paper, we extend the POE-based calibration 
method from serial robot to serial-parallel hybrid robot 
with prismatic and revolute actuator joint. The method is 
a combination of both forward model for serial mecha-
nism and inverse model for parallel mechanism.  The 
error parameters of the model, which take into account 
mainly the geometrical errors originated from manu-
facturing and assembly processes, are identified and 
fitted to the given measurement data by employing 
Differential Evolution (DE) algorithm. DE is a simple 
but effective evolutionary algorithm for solving non-
linear and global optimization problems [14]. It has 
proven a superior performance both in widely used 
benchmark functions [15] and real-world applications 
[16] for identifying system parameters. The simulation 

Yongbo Wang Huapeng Wu  Heikki Handroos 
Laboratory of Intelligent Machines, Laboratory of Intelligent Machines, Laboratory of Intelligent Machines, 
Lappeenranta University of Tech-

nology,Finland 
Lappeenranta University of Tech-

nology,,Finland 
Lappeenranta University of Tech-

nology,,Finland 
e-mail: yongbo.wang@lut.fi e-mail: huapeng.wu@lut.fi e-mail: heikki.handroos@lut.fi 

Differential-Evolution-Based Parameter Identification Method for a 
Redundant Hybrid Robot Using POE Model 

974

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012 



results indicate that our proposed modelling and identi-
fication method for hybrid robot is robust and effective, 
the complete pose measurement of the end-effector is 
enough for the calibration, the measurement of the 
connection point between the serial and parallel part is 
not necessary. 

This article is organized as follows. A brief mathe-
matic background introduction of the POE modelling 
method is presented in Section . The kinematic and 
identification models of the serial-parallel hybrid robot 
are derived in Section . The implementation of DE 
algorithm is presented in Section . Simulation results 
are given in Section , and conclusions are drawn in 
Section .

II. MATHEMATIC BACKGROUND OF POE BASED 
CALIBRATION

To facilitate the error modeling of the studied robot, 
some related mathematic concepts are summarized in 
this section. For more details refer to [8], [17]. 

A. POE representation for Robot kinematics   

a) The Lie Group SO(3), or the Special Orthogonal 
Group, also referred as the rotation group, has the 
form of 

1det,:)3( 33 RIRRR TSO . (1) 
Every rigid body rotation about a fixed axis can be 

expressed as an R SO(3).
b) The Lie Group SE(3), or the Special Euclidean 

Group, also known in the robotics literature as the 
homogeneous transformation matrix, has the 
form of  

13),3(:
1

)3( pR
0

pR
SOgSE . (2) 

SE(3) represents the group of general rigid body mo-
tions including rotation and translation. 

c) The Lie algebra of SO(3), denoted by so(3), is a 
vector space of the skew-symmetric matrices, 
such that 

0
0

0
ˆ

},ˆˆ:ˆ{)3( 33

xy

xz

yz

Tso

(3)

where the vector =( x , y , z)T R3×1 ,which corre-
spondents to the axis of a rigid body rotation. The rota-
tion can be represented in an exponential form 
as qeR ˆ , where q represents the angle of the rotation. 

d) The Lie algebra of SE(3), denoted by se(3), is de-
fined as 

},),3(ˆ:
0

ˆˆ{)3( 13v
0

v
sose

(4)
where ˆ admits a six-dimentional vector presentation: 
=( , v)T, termed as twist.  The twist represents the 

line coordinate of the screw axis of a general rigid body 
motion. is the unit directional vector of the axis, v is 
the position of the axis with respect to the origin. In the 
exponential form, )3(ˆ SEeg q ,where q R is joint 
variable which represents the angle or displacement of a 
joint motion. For revolute joint, if p R3×1 is an arbitary 
point on the axis, then v=- ×p. For prismatic joint, =0, 
v represents the unit directional vector of the axis.  

e) Adjoint transformation, is a 6×6 matrix which 
transforms twists from one coordinate frame to 
another, written as Ad(g). Thus, given g SE(3) , 
Ad(g) can be expressed as 

RRb
0R

ˆ)( 33gAd , (5)

where b̂ is the skew-symmetric matrix of vector b. 
f) Exponential of se(3), presents an important con-

nection between a Lie Group SE(3) and its Lie 
algebra se(3). Given )3(ˆ se , =( , v)T and 

222
zyx , then  

11
))(( ˆ

3
ˆ

ˆ

0
bR

0
vvI qee

e
Tqq

q ,

(6)
where if =1, then 

qqzqxqzyqyqzx

qxqzyqqyqzqyx

qyqzxqzqyxqqx

q

cvsvsv
svcvsv
svsvcv

qqe

2

2

2

2
3

ˆ ˆ)cos(1ˆ)sin(IR

,

(7)
here cq,  sq are abbreviations for cos(q) and sin(q) re-
spectively, and vq=1-cq.

If 1,

2
23 ˆ)cos(1ˆ)sin(

IR
qq , (8) 

and 

vIb 2
323 ˆ

)sin(
ˆ

)cos(1 qqq
q

(9)
If =0, which means the joint is prismatic, then 

R=I3,   b=qv . (10)
g) Forward kinematics using POE formular 
Combining the individual joint motions, the forward 

kinematics for an n-degree-of -freedom serial robot is 
given by 

)0()( ˆˆˆ
1111

st
qqq

st geeeg nnq , (11)
where gst(0) represents the rigid body transformation 
between tool frame T and base frame S when  the  ma-
nipulator is in its reference configuration (q=0).  We can 
define any configuration of the manipulator as the ref-
erence configuration. One natural choice is to let the base 
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frame be coincident with the tool frame in reference 
configuration, then gst(0)=I . The twist coordinates i for
the individual joints of a manipulator depend on the 
choice of reference configuration (as well as base frame) 
and so the reference configuration is usually chosen such 
that the kinematic analysis is as simple as possible. 

B.  POE based error modeling  

According to the error model of He [8], if let the base 
frame coincident with the tool frame in the reference 
configuration, and assuming no errors in gst(0) and q,
then a POE based error model can be expressed in an 
explicit form as  

))((

))((

)(

ˆˆ1

1

ˆ

ˆˆˆ

ˆˆ1

222211

1111

nnnnii qq
n

i

q

qqq

qq

eeeAd

eeeAd

eegg
 , (12) 

where 

ii
iiii

i
iii

i
iiii

i
iii

i

qq

q

ee iiii

I

4
5

3
4

2
3

2

ˆˆ

2
)cos()sin(32

2
)cos(2)sin(2

2
)cos()sin(54

2
)cos(4)sin(4

)(

, (13)

and 

222

33 ,
ˆˆ

ˆ

ziyixii

iii
ii

i
i q

v
0

.

III. ERROR MODELING OF THE HYBRID ROBOT

The schematic of the proposed serial-parallel hybrid 
robot is shown in Fig.1. The robot, serially connected by 
a kinematically redundant multi-link serial mechanism 
(named as carriage) and a standard 6 degree-of-freedom 
Stewart parallel mechanism (named as Hexa-WH), aims 

to compromise between a high stiffness of parallel ma-
nipulators and a large workspace of serial manipulators.  
In the reference configuration, the base frame S and the 

tool frame T are coincided with each other on the 
end-effector. The designed or nominal kinematic pa-
rameters are listed in Table and Table .

Due to the redundant structure, the inverse solution of 
the hybrid robot can have an infinite number of joint 
configurations for the same given end-effector configu-
ration. But if the forward solution of the serial mecha-
nism has been decided, then the inverse solution of the 
parallel mechanism can be easily obtained for a given 
end-effector configuration.  

Fig. 1.  Schematic of the proposed serial-parallel hybrid robot in the 
reference configuration. 

C.  A. kinematic modeling using POE 

Base on the hybrid structure and the POE formula, the 
forward kinematics of the carriage, or the pose of the 
coincident point between serial and parallel mechanism, 
can be given by 

)0()( 5
ˆˆˆˆ

5
44332211

s
qqqq

s geeeeg q . (14)
The inverse solution of the Stewart platform is quite 

simple and obvious from the geometry of the manipu-
lator. Let asi ,bsi be the position vector of point Ai and Bi

with respect to the base frame S; and a5i ,bti be the posi-
tion vector of point Ai with respect to the tip frame of 
serial mechanism and tool frame T. Then the extension 
of the prismatic joints, i.e. the leg lengths of the 
Hexa-WH can be obtained:

ististsisii ggd 55 )()( aqbqab ,

i=1,2, ,6. (15)

D.     B. Nonlinear Calibration model Using POE  

In practice, since the manufacturing and assembling 
errors are unavoidable, the actual leg length would have 

0l

z

id iA

TS ,

4p

3p

1q

3l

3q

2

4q

6l

4l

2l

1l

5l

i

iB

4

3

1

2q

y

TABLE I
KINEMATIC PARAMETERS IN THE REFERENCE CONFIGURATION 

Symbols Values (mm) Symbols Values (mm) 

l0 45 P3x 0
l1 320 P3y 0
l2 330 P3z -628 
l3 252 P4x 0
l4 313 P4y -313 
l5 116.84 P4z -376 
l6 259.93 
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a joint offset error, the real location of the point Ai and Bi
would never agree with the designed ones, and the twist 
of the serial mechanism would also have some deviations, 
the error model of the hybrid robot can be written as 

p
si

p
siii

p
i ddd ab ,                       (16) 

where di is leg  joint offset,  ))(( titi
m
st

p
si g bbqb ,

and )(qm
stg  can be obtained from the measured pose of  

the end-effector frame T  with respect to base frame S, 
the predicted position vector of Ai can be expressed  as: 

ississsi

isissisisi
p
si

ggg
gg

55
1

55

5555

)()()(

)()(

aqaqqa
aqaqaaaa

(17)
where the error matrix 1

55 )()( qq ss gg can be calcu-
lated  according to the equation of  (13).   

According to the identifiability anylysis of He [8], the 
maximum number of the identifiable parameters in a 
serial robot with r revolute joints and t prismatic joints is 
6r+3t+6. Since we have 2 prismatic joints, 2 revolute 
joints and there is no pose measurement from the tip 
point of carriage, the independent identifiable parame-
ters provided by serial carriage is equal to 18. Further-
more, each location of the spherical joint Ai and  Bi
provides 3 fixed coordinate error parameters, and each 
leg provides 1 leg joint offset error, thus the number of 
identification parameters from the Hexa-WH is 42.   

IV. PARAMETER IDENTIFICATION USING 
DIFFERENTIAL EVOLUTION

Based on the calibration model (16), a nonlinear ob-
jective function can be formulated as the form of (19). 
The idea behind this nonlinear optimization method is to 
minimize the deviations between the measured and 
predicted values based on the Euclidean norm. The task 
of the parameter identification step is to search for a set 
of optimum solution  

),,,,,,( 432 iiid bax 1 , (18)
to minimize  

N

j i

p
ji

m
ji ddf

1

6

1

2
,, )()(x (19)

where  m
jid ,  and p

jid ,  represent the ith measured and 

predicted leg length in the jth measurement configuration, 
N is the number of measurement configurations.  

From the calibration model we can see it is a con-
tinuous, high nonlinear and multi-dimensional model 
which has a lot of local minima. To solve this problem, 
the global optimization methods have to be employed. 
Differential evolution (DE) has proven to be a promising 
candidate for minimizing real-valued, nonlinear, and 
multi-modal objective functions. It is a population-based 
optimization algorithm, and belongs to the class of 
evolutionary algorithms which utilizing mutation, 
crossover and selection operation to find out the opti-
mum solutions.  

In this work, the number of identification variables is 
equal to 60. The variables can be represented in DE as an 
individual vector x=(x1, x2, , x60). And the population 
for each generation G can be represented as a matrix 

Np
Gi

60
,X , where i=1,2, is the population 

index. 
To establish a starting point for the optimization 

process, an initial population has to be created. Typically, 
the element of the population can be randomly generated 
within the feasible boundary of the variable parameters 
as 

)()1,0( ,,,0,,
L

ij
U

ijj
L

ijGij xxrandxx   (20) 

where j=1,2 ,60 is the parameter index, i is the popu-
lation index, and L

ijx , , U
ijx ,  are the lower and upper 

bounds of the jth parameters respectively.   
After initialization, the evolution is based on the op-

erations of mutation, crossover and selection. The main 
objective of mutation operation is to keep a population 
robust and search new territory. For each individual 
vector xi,G, a mutant vector mi,G+1 is generated according 
to 

)( ,3,2,11, GrGrGrGi F xxxm (21)

where the randomly selected integers r1,r2,r3

{1,2 ,Np}, and r1 r2 r3 j. The mutation scale fac-
tor F 0.

To increase the diversity of the generated vectors, 
crossover operation is employed and the trail vector 
ui,G+1=(x1,i,G+1,  x2,i,G+1, ,  x60,i,G+1) is generated ac-
cording to the formula: 

otherwisex
jjCRrandifm

u
Gij

rjGij
Gij ,

)1,0(,

,,

1,,
1,,

(22)
where G=1,2 ,Gmax is the generation index, jr is chosen 
randomly from the set {1,2 ,60}, which is used to en-
sure that the trail vector ui,G+1 gets at least one parameter 
from mutation vector mi,G+1. CR is a crossover rate con-
stant which is a user defined parameter within the range 
[0, 1]. 

To determine if the trail vector can be selected as the 
member of the next generation, the trail vector ui,G+1 is 
compared to the target vector xi,G by evaluating the ob-
jective function. The vector which has a smaller objec-
tive function value will be evolved to the next generation, 
i.e. 

otherwise
ffif

Gi

GiGiGi
Gi ,

)()(,

,

,1,1,
1, x

xuu
x  (23) 

Using this selection procedure, the convergence of the 
algorithm can be guaranteed and all individuals of the 
next generation will be as good as or better than indi-
viduals of the current population.  

V. SIMULATION ANALYSIS

In order to verify the validity and robustness of the 
calibration method, some computer simulations for the 
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proposed robot are carried out in this section. The de-
tailed nominal or designed parameter values are listed in 
the Table , Table  and Table . The simulation 
procedures are as follows: 

1) Randomly generate 100 end-effector meas-
urement poses )(qm

stg  within the robot 
workspace. Furthermore, we also generate 
100 joint displacements of the carriage actu-
ators, which can be regarded as the nominal 
joint displacements of the carriage actuators. 
In practice, the end-effector poses are ob-
tained by the external measuring devices and 
the joint displacements are collected from the 
actuator sensor readings. 

2) Assuming some preset errors in the twist of 
carriage (see Table ), then they should meet 
the requirement of || i i||=1 and 
( i i)T(vi vi)=0 for revolute joint and 
||vi vi||=1 for prismatic joint. The leg joint 
offset errors and the coordinate errors of 
spherical joint Ai and Bi are randomly gener-
ated within their tolerance range (see Table 

).
3) Based on the above nominal kinematic values, 

generated poses, carriage joint displacements 
and preset errors, we can calculate the actual 
leg lengths m

jid ,  according to (16) and (17). 

In reality, the leg lengths can be obtained from 
the linear actuator sensor readings.  

4) Take the 60 error parameters as the decision 
variables in the objective function (19) to 
calculate the predicted leg lengths p

jid , .  Then 

the task of simulation is to employ DE algo-
rithm to search an optimal combination of 
error parameters to minimize the value of the 
objective function within some program ter-
minal conditions.   

The DE control parameters can be selected according 
to the scheme of DE/rand-to-best/1 [14]. In our simula-
tion, the DE control parameter F= =0.75, CR=0.95, 
D=60, Np=600, N=100 and the error bound range [-0.5, 
0.5].  

To verify the effectiveness of the identification algo-
rithm, we can assume the measurement device is perfect 
and the measurement errors and noise are omitted. After 
some evolution generations, a set of globally optimal 
solution can be achieved under the terminal conditions of 
maximum generations and convergence precisions. 
From Table  and Table  we can see that all  of the 
preset variable values have been successfully recovered. 
If we simulate the program with different number of 
measurement poses, it can be seen from Fig. 2 that about 
15 measurement poses are required to get a stabilized 
calibration results. 

Fig. 2.  The best objective function values with generations in different 
measurement poses. 

To simulate the real application conditions and verify 
the robustness of the calibration algorithm, we also as-
sume that the position and orientation of the end-effector 
will be measured with a laser tracker. The position and 
orientation measurement accuracy are in the range of 
[-0.01, 0.01] mm and [-0.00001, 0.0001] rad. respec-
tively. The measurement noise may be regarded as a 
Gaussian distribution, with the ranges obeying the 3
rule. Then the standard deviations of the position noise 
orientation noise are 0.003mm and 0.000003 rad. re-
spectively. The simulation results in the Table  and 
Table  show that all of the identification parameters 
have successfully converged to the preset ones only with 
a slight difference due to the influence of measurement 
noises. 

TABLE
NOMINAL AND IDENTIFIED PARAMETERS OF CARRIAGE (UNIT: MM)

Nominal 
values 

Preset 
errors 

Identified 
without noise 

Identified 
With noise 

1x 

1y 

1z 

v1x 

v1y 

v1z 0
0
1
0
0
0

0
)02.0sin(

1)02.0cos(

17

4

1032017.1
0199987.0

1099993.1

7

4

103368.9
0199996.0

1099418.1

2x 

2y 

2z 

v2x 

v2y 

v2z 1
0
0
0
0
0

1)02.0cos(
)02.0sin(

0

4

15

1099993.1
0199987.0

1079319.1

4

7

1099369.1
0199943.0

105492.7

3x 

3y 

3z 

v3x 

v3y 

v3z 0
0

628
0
1
0

0
0
2.0

)02.0sin(
1)02.0cos(

0

17

17

4

13

1085174.9
102727.9

2.0
0199987.0

1099993.1
1039192.2

7

7

4

5

104995.4
1008622.1

199999.0
0205498.0

1063863.3
107108.6

4x 

4y 

4z 

v4x 

v4y 

v4z 313
376
0
0
0
1

2.0
0
0
0

)02.0sin(
1)02.0cos(

2.0
1079982.2
108376.2
103303.4

0199987.0
1099993.1

15

16

15

4

200005.0
1009392.1
1053304.5

001064.0
0192154.0

1029679.4

6

7

4
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TABLE
NOMINAL AND IDENTIFIED PARAMETERS OF HYBRID ROBOT

Nominal 
Values 

Preset 
errors 

Identified 
Without noise 

Identified 
With noise 

a51x 231.6 -0.0654 -0.0654 -0.0596501 
a51y -231.9 0.0687 0.0687 0.0693789 
a51z 0 0.0928 0.0928 0.0930406 
a52x 316.6 0.0448 0.0448 0.0479849 
a52y -84.67 -0.0942 -0.0942 -0.0961375 
a52z 0 -0.0731 -0.0731 -0.0724037 
a53x 85 0.0229 0.0229 0.0192319 
a53y 316.58 0.0133 0.0133 0.0128637 
a53z 0 -0.0136 -0.0136 -0.0264649 
a54x -85 -0.0752 -0.0752 -0.077656 
a54y 316.58 -0.0976 -0.0976 -0.100211 
a54z 0 0.0167 0.0167 0.0057957 
a55x -316.6 0.0576 0.0576 0.0579317 
a55y -84.67 -0.0486 -0.0486 -0.0487524 
a55z 0 0.0329 0.0329 0.0309625 
a56x -231.6 -0.0117 -0.0117 -0.0118311 
a56y -231.9 0.0676 0.0676 0.0727291 
a56z 0 0.0273 0.0273 0.02563 
bt1x 32.5 0.0581 0.0581 0.0636969 
bt1y -125.9 -0.0648 -0.0648 -0.065743 
bt1z 0 0.0717 0.0717 0.0688051 
bt2x 125.3 0.0847 0.0847 0.0868672 
bt2y 34.8 -0.0478 -0.0478 -0.0497133 
bt2z 0 0.0324 0.0324 0.0325399 
bt3x 92.8 -0.0139 -0.0139 -0.0171407 
bt3y 91.1 -0.0266 -0.0266 -0.0277242 
bt3z 0 -0.0281 -0.0281 -0.0392927 
bt4x -92.8 -0.0594 -0.0594 -0.0623811 
bt4y 91.1 0.0375 0.0375 0.0326712 
bt4z 0 0.0088 0.0088 0.000425282 
bt5x -125.3 0.0228 0.0228 0.0222086 
bt5y 34.8 -0.0566 -0.0566 -0.0616722 
bt5z 0 -0.0368 -0.0368 -0.0416378 
bt6x -32.5 -0.0638 -0.0638 -0.620393 
bt6y -125.9 -0.0087 -0.0087 -0.00470459 
bt6z 231.6 -0.0736 -0.0736 -0.0752284 
d1 0 -0.3794 -0.3794 -0.382394 
d2 0 -0.0895 -0.0895 -0.0897172 
d3 0 0.165 0.165 0.16719 
d4 0 -0.3048 -0.3048 -0.302824 
d5 0 0.3233 0.3233 0.319244 
d6 0 0.0774 0.0774 0.0781733 

VI. CONCLUSIONS

This paper presents a POE-based calibration method 
for a novel serial-parallel hybrid robot with redundant 
degrees of freedom. An identification model with 60 
independent error parameters which has the ability to 
account for the geometric error sources originated from 
fabricating and assembling processes is derived. Using 
the DE algorithm, the 60 error parameters of the robot 
are successfully identified.  It can be seen from the 
simulation results that the DE-based parameter identi-
fication method has a very strong stochastic searching 
ability, and it is reliable and can be easily used to identify 
error parameters in highly nonlinear kinematic models. 
The simulation results also verified the effectiveness and 
robustness of the proposed calibration method for seri-
al-parallel hybrid robot. 
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