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In this thesis the bifurcational behavior of the solutions of Langford system
is analysed. The equilibriums of the Langford system are found, and the
stability of equilibriums is discussed. The conditions of loss of stability are
found. The periodic solution of the system is approximated. We consider
three types of boundary condition for Langford spatially distributed system:
Neumann conditions, Dirichlet conditions and Neumann conditions with addi-
tional requirement of zero average. We apply the Lyapunov-Schmidt method
to Langford spatially distributed system for asymptotic approximation of the
periodic mode. We analyse the influence of the diffusion on the behavior of
self-oscillations. As well in the present work we perform numerical experiments
and compare it with the analytical results.
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1 INTRODUCTION 7

1 INTRODUCTION

One of the most important problems in mathematical modeling is the predic-
tion of the behavior of an object based on certain information of its initial
state. This problem is reduced to finding a law, which allows, by using known
information about the object at initial time t0 in space point x0, to define its
future at any time t > t0. Depending on difficulty of the object this law can
be deterministic or probabilistic, can describe evolution of the object only in
time, space or spatio-temporal ([15]).

Such systems, whose state changes in time, are called dynamical. In mathemat-
ics dynamical systems are related to differential equations. Many fundamental
equations such as Newtons’ and Hamilton’s in mechanics, Maxwell’s in elec-
trodynamics and phenomenological equations, for instance, Hodgkin-Huxley
model in biophysics of neuron, the Lotka-Volterra equations in biological prob-
lem ”predator-prey” and Leontiev’s model in economics, are written in a form
of differential equations and computer representation of the last one — in form
of difference equations.

From theoretical and practical points of view one of the most interesting and
important problem is the analysis of the local bifurcations of the dynamical
system, in particular, the task of restructuring phase portrait of the system
near equilibrium, by changing the parameters of the system. Such bifurca-
tions can lead to appearance of new stationary states, periodical oscillations of
small amplitude. The theory of local bifurcations is well developed for smooth
dynamical systems.

Significantly less studied bifurcations of dynamical systems with non-analytical
or discontinuous nonlinearity, but there are a lot of known effective methods
for it, such as method of dotted images, methods from the theory of polyse-
mantic images and differential inclusion, methods of mathematical theory of
the systems with hysteresis.

Many nonsmooth dynamical systems are characterized by the fact that prop-
erties of the smooth ( continuous) of functions in the mathematical model can
be broken on some manifolds of the system’s phase portrait, codimension of
which is equal to one. In tasks related to local bifurcations near stationary
state of the system such manifolds can contain stationary state or be located
near it. In particular, such models, which have rich bifurcation behavior, were
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suggested by Hopf for the modeling of turbulence in liquid.

In this thesis we consider the Langford system and use Lyapunov-Shmidt
method to get the solution of this system. Then we modify the Langford
system by adding space distribution and analyse it in the case of Neumann
and Dirichlet boundary conditions. After that we study the connection be-
tween solutions of the Langford system and its modifications. In the end of
the present work we show numerical experiments and solutions to compare it
with the analytical one.

2 Theoretical background.

2.1 Turbulence

Turbulence is a complex behavior of a dissipative medium or a field, disor-
dered, stochastic in time and space. Turbulence can be parametrized by sev-
eral nondimensional quantities. The most often used is Reynolds number.
Reynolds number represents the ratio of inertial forces to viscous forces. The
viscous forces dominate at low Reynolds numbers and disturbances are damped
rapidly. These disturbances begin to amplify as Reynolds number is increased
and eventually transition into fully turbulent flows The fluid mixes irregularly
during turbulent flow. Constant changes in the flow’s behavior (wakes, vor-
texes, eddies) make flow rates difficult, if not impossible, to accurately measure.
More detailed description of this phenomena could be found in ([16]).

The turbulent and laminar flows were described by Reynolds in 1883, when he
was studying fluid motion in pipe (for details see [11]).



2 THEORETICAL BACKGROUND. 9

Figure 1: Vortex path

Turbulence is a three-dimensional unsteady viscous phenomenon that occurs at
high Reynolds number. Turbulence is not a fluid property, but is a property
of the flow itself. Turbulent flow can be highly nonlinear and is random in
nature.

Turbulence causes the formation of eddies of many different length scales. Most
of the kinetic energy of the turbulent motion is contained in the large-scale
structures. The energy "cascades" from these large-scale structures to smaller
scale structures by an inertial and essentially inviscid mechanism. This process
continues, creating smaller and smaller structures which produces a hierarchy
of eddies. Turbulent flow is well described by the system of Navier-Stokes
equations.

Turbulence can be created by:

1. Increasing Reynolds number or Rayleigh number or Prandtl number.

2. Irradiating medium by high-intensity sound.

3. the chemical reactions, such as burning. The form of flame can be chaotic
like waterfall.

Let us describe a few interesting facts about turbulence and its applications:

1. In a pipe with absolutely smooth sides in any continuum, which has
a constant temperature and with velocity higher than critical, under
only gravity force always spontaneously formed nonlinear waves and then
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turbulence. If additionally create disturbing force or roughness on the
pipe’s surface, then turbulence also appears.

2. Flies, butterflies and birds use flapping fight. They create eddies during
the flight, which help to create very high ascensional power, spending
less energy.

3. Aircrafts have winglets. They help to save 4% of fuel, because it cause
the decreasing of size and number of eddies behind the wings, which take
useful kinetic energy.

4. A jet exhausting from a nozzle into a quiescent fluid. As the flow emerges
into this external fluid, shear layers originating at the lips of the nozzle
are created. These layers separate the fast moving jet from the external
fluid, and at a certain critical Reynolds number they become unstable
and break down to turbulence.

2.2 Hopf bifurcation

Let us first consider the classical dynamical Hopf system, which consists of two
ordinary differential equations ( ODE ):

ṙ = λr − r3 (1)

ϕ̇ = c (2)

System depends on two parameters, one of them λ will be the main for us and
the second one c = const. Here, we will perform a detailed analysis of the
dynamics of the system. We will follow ([10]) in our discussion.

We will use this system for function r(t) and ϕ(t) to define functions x(t) and
y(t), which can be written in polar coordinates:

x = rcos(ϕ), y = rsin(ϕ) (3)

Let us add initial conditions to this ODE:

r |t=0= r0, ϕ |t=0= ϕ0 (4)
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and solve the Cauchy problem for some value of parameter λ. Then draw plots
for x(t) as function of time t and then draw it on phase plane as plot x(y).

Figure 2: Phase plane as plot x(y) ([10])

Figure 3: Solution of Hopf equation when λ = 4 ([10])

Solution is found by using Matlab and λ = 4.

Let us notice that the solution after some transition process comes to a oscil-
lational mode, which is designated in phase plane as closed curve.

Now change the initial conditions and let us see the solutions. From plots we
can see, that the solution, coming from another point, has the same behavior
and comes to the same oscillation.
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If we continue experiments and solve the Cauchy problem, changing initial
conditions, we will get the same results. When t → ∞ any solution will
come to the same asymptotic oscillational mode. It is important that these
asymptotic oscillations have the same frequency and amplitude as in the first
one.

On phase plane all possible solutions of the Cauchy problem “wound” on closed
curve. This curve is attractor and is called limit cycle. Oscillation process,
describing this limit cycle, is called self-exciting oscillation. Amplitude of
such oscillations does not depend on initial conditions and is defined by only
equations of the dynamical system.

Solutions in form of self-exciting oscillation are possible only in significantly
nonlinear dynamical systems. Dynamical Hopf system has nonlinearity of third
order, which is in r3. Besides, additional nonlinearity is introduced by defini-
tion of x(t) and y(t), i. e. if we express them as trigonometric function.

We can show that for this dynamical system amplitude of oscillation in limit
cycle is equal

√
λ, i.e. depends on parameter of the dynamical system. The

increasing of the value of λ causes increasing of the amplitude.

If we solve this system of the differential equations for λ < 0 we can see, that
there is no limit cycle and only one special point is equilibrium point.

Figure 4: Solution for λ < 0 ([10])
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Figure 5: Solution for λ < 0 on phase plane ([10])

Thus, λ = 0 is bifurcational value of parameter. In this point “node” loses sta-
bility and instead of it the limit cycle appears. This bifurcation of appearance
of the limit cycle from fixed point is called Hopf bifurcation. Restructuring of
phase plane as the result of Hopf bifurcation is shown on figure.

Figure 6: Hopf bifurcation

If the system have dimension of phase plane more than 2 we can get further
bifurcation of appearance of the limit cycle.

Loss stability by periodical motion causes appearance of two-dimensional torus.
Further, loss stability of this trajectory and increasing of Reynolds number
R > Rcrit leads to the next attractive trajectory, i.e. we come from the two-
dimensional torus to the third-dimensional. When we have k bifurcation we
will get k-dimensional torus.

Thus, motion acquires difficult and complicated character, it is called turbulent
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unlike laminar, where fluid flows like layers, having different velocities.

2.3 Hopf model

Hopf model looks as following:

 ∂u
∂t

= −z ◦ z∗ − u ◦ 1 + µ∂
2u
∂x2

∂z
∂t

= −z ◦ u+ z ◦ F ∗ + µ ∂
2z
∂x2

(5)

where µ is a parameter ,

u(x+ 2π, t) = u(x, t) is a real periodical function
z(x+ 2π, t) = z(x, t) is a real periodical function
F (x) = a(x) + ib(x) is a known function

This system depends on two unknown complex functions: u = u(x, t), z =

z(x, t). Let us investigate Hopf system in more details (For more information
see ([12])). When we write system (5) in complex form we will get system of
four equations of four unknown variables. In what follows we confine ourselves
to those solutions of (5) for which u, z are even functions of r and for which
u is real. If we confine ourselves to the even solutions with u real, (5) splits
upon setting z = v + iw. And we got:

z ◦ z∗ = (v + iw) ◦ (v − iw) = v ◦ v − v ◦ iw + v ◦ iw + w ◦ w = v ◦ v + w ◦ w
u ◦ 1 =< u >

z ◦ u = (v + iw) ◦ u = v ◦ u+ iw ◦ u
z ◦ F ∗ = (v + iw) ◦ (a− ib) = v ◦ a+ w ◦ b+ i(w ◦ a− v ◦ b)
∂2z
∂x2

= ∂2v
∂x2

+ i∂
2w
∂x2

Then substitute z, z ◦z∗, z ◦u, z ◦F ∗ in (5) and we will get the following system
of real unknown u, v, w:


∂u
∂t

= −v ◦ v − w ◦ w − u ◦ 1 + µ∂
2u
∂x2

∂v
∂t

= v ◦ u+ v ◦ a+ w ◦ b+ µ ∂
2v
∂x2

∂w
∂t

= w ◦ u+ w ◦ a− v ◦ b+ µ∂
2w
∂x2

(6)
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2.4 Reduction of the Hopf model to a finite system. Lang-

ford system

Imagine u, v, w in model (6) as infinite series:
u = u0

2
+
∑∞

n=1 uncos(nx)

v = v0
2
+
∑∞

n=1 vncos(nx)

w = w0

2
+
∑∞

n=1wncos(nx)

Substitute them in equation for n ≥ 1 and we get:


u̇n = −v2n − w2

n − n2µun

v̇n = vnun + vnan + wnbn − n2µvn

ẇn = wnun + wnan − vnbn − n2µwn

(7)

Denote ν = µn2 and get:


v̇n = (an − ν)vn + wnbn + vnun

ẇn = (an − ν)wn − vnbn + wnun

u̇n = −v2n − w2
n − νun

(8)

Rewrite (5) as:


v̇ = (a− ν)v + wb+ vu

ẇ = (a− ν)w − vb+ wu

u̇ = −v2 − w2 − νu

(9)

System, which was considered by Langford, looks as following:


ẋ1 = (ν − 1)x1 − x2 + x1x3

ẋ2 = x1 + (ν − 1)x2 + x2x3

ẋ3 = νx3 − (x21 + x22 + x23)

(10)

And can be obtained from Hopf system by adding in third equation quadratic
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dependence of third parameter. It is used for describing the behavior two-
component fluid.

Then we will consider Langford system as:


ẋ1 = (2µ− 1)x1 + x1x3 − x2
ẋ2 = x1 + (2µ− 1)x2 + x2x3

ẋ3 = (1− 3µ)x3 + (2µ− 1)x3 − x22 − x12 − x32
(11)

Here µ – dimensionless control parameter. It is known that singular zero
equilibrium point 1/2 < µ < 0 is asymptotically steady, when µ > 1/2 -
unsteady. When µ = 1/2 there is bifurcation of the appearance of the limit
cycle.

We will use system (10) to analyze equilibrium points. To avoid misunder-
standing we will consider system (11) in the Lyapynov-Schmidt method.

If in system (11) take in consideration spatial distribution we come to the
system of the partial differential equations ( PDE):


ut = (2µ− 1)u− v + uxx + uw

vt = (2µ− 1)v + vxx + u+ vw

wt = −µw − (u2 + v2 + w2) + wxx,

(12)

In case of Neumann and Dirichlet boundary conditions in the system the os-
cillating loss of the equilibrium takes place and auto oscillation mode exists.

2.4.1 The vector representation of the Langford system.

Let us write the Langford system as follows:


ẋ1 = (ν − 1)x1 − x2 + x1x3

ẋ2 = x1 + (ν − 1)x2 + x2x3

ẋ3 = νx3 − (x21 + x22 + x23)

(13)
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Take
w = (0, 0, 1)

x = (x1, x2, x3)

And calculate

[w, x] =

∣∣∣∣∣∣∣∣∣
i j k

0 0 1

x1 x2 x3

∣∣∣∣∣∣∣∣∣ = −ix2 + jx1 = (−x2, x1, 0) (14)

[[w, x], x] =

∣∣∣∣∣∣∣∣∣
i j k

−x2 x1 0

x1 x2 x3

∣∣∣∣∣∣∣∣∣ = ix1x3+jx2x3+k(−x21−x22) = (x1x3, x2x3,−x21−x22)

(15)

Thus system (13) we can rewrite in the form of:

ẋ = (ν − 1)x+ (w, x)w + [w, x] + [[w, x], x]− (w, x)2w (16)

System (16) is vector representation of the Langford system.

2.4.2 Equilibrium points of the Langford system.

Now we will find equilibrium points for the Langford system.

It is obviously that x0 = (0, 0, 0) satisfies the equation (16).

Next Let us find the another solution. Take the scalar product of the system
by [w, x]:
|[w, x]|2 = 0

[w, x] = 0⇔ x = cw

Substitute found x in equation (16) and get:

(ν − 1)cw + (w, cw)w + [w, cw] + [[w, cw], cw]− (w, cw)2w = 0

c(ν − 1) + c− c2 = 0

c 6= 0⇒ c = ν
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Thus we got the second solution x1 = νw

2.5 The linear analysis of the equilibriums.

2.5.1 Equilibrium x = 0

For studying of the steady zero equilibrium point let us linearise system (16)
and get this system in the form of:

ẏ = Ay

After taking off the nonlinear component from ((16) we come to the system:

ẏ = (ν − 1)y + (w, y)w + [w, y]

Let us study steady zero equilibrium point by representing y in complex form:

σy = Ay

σy = (ν − 1)y + (w, y)w + [w, y]

Consider 2 cases:

1. When: [w, y] = 0⇒ vectors w and y are collinear w ‖ y

If y 6= 0⇒ y = cw c = 1

Then we will get:

σw = (ν − 1)w + (w,w)w

Next we get the solution:

σ1 = ν

2. When vectors orthogonal: y ⊥ w

(y, w) = 0

Then
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σy = (ν − 1)y + [w, y]

(σ − ν + 1)y = [w, y]

The last system we can rewrite in the form of:

λy = By

B =

 0 −1

1 0

 λ2 + 1 = 0

We get the solution: σ2,3 = ±i− 1 + ν

When ν < 0 zero equilibrium is asymptotically steady, if ν = 0 is critical case
and if ν > 0 equilibrium is unsteady.

2.5.2 Equilibrium x = νw

Let us consider:

ẋ = (ν − 1)x+ (w, x)w + [w, x] + [[w, x], x]− (w, x)2w

Then we come to the equation of perturbations, by doing the substitution
x = νw + u

Notice that x = νw is equilibrium point, then we get equality:

(ν − 1)νw + (w, νw)w − (w, νw)2w = 0

u̇ = (ν − 1)νw + (ν − 1)u + (w, νw)w + (w, u)w + [w, u] + [[w, νw + u], νw +

u]− (w, νw + u)2w

u̇ = (ν − 1)νw + (ν − 1)u + (w, νw)w + (w, u)w + [w, u] + νu + u(u,w) −
νw(w, u)− w(u, u)− ν2w − 2νw(w, u)− w(w, u)2

u̇ = (2ν− 1)u+(1− 3ν)(w, u)w+[w, u]+u(u,w)−w(u, u)−w(w, u)2 the last
on is called equation of perturbations.

Linearise the equation of perturbations:

u̇ = (2ν − 1)u+ (1− 3ν)(w, u)w + [w, u]

Consider two cases:
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1. When: u ‖ w u = cw

σw = (2ν − 1)w + (1− 3ν)(w,w)w

We get the solution:

σ1 = −ν

2. When: u ⊥ w

(σ − 2ν + 1)y = [w, y]

λy = [w, y]

We get the solution:

λ2,3 = ±i⇒ σ2,3 = 2ν − 1± i

When 0 < ν < 1
2
equilibrium is asymptotically steady, if ν = 1

2
is critical case

and if ν < 0, ν > 1
2
equilibrium is unsteady.

3 Langford ODE

In this section we will find a periodic solution for equation (11). For this
purpose we will be using Lyapunov-Schmidt method. Firstly we will make a
brief introduction in Lyapunov-Schmidt method. Lyapunov-Schmidt method
was initially developed in the theory of nonlinear equations for the analysis of
the bifurcations of the solutions and then was modified V.I.Yudovich for the
analysis of periodic solutions in the case of Hopf bifurcation. Let us notice
that this method is not only applied to ODEs but to PDEs as well.

Here we present a short scheme of the method:

1. Get the chain of equations

2. Solve first linear equation

3. Go to the next equation in the chain

4. Satisfy the condition of solvability for the equation

5. Solve the inhomogeneous equation
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6. Repeat from the step 3

In section 3.3 we will consider Lyapunov-Schmidt method on the example of
Langford system.

3.1 Operator form of the Langford system

Let us consider operator A:

A~φ = B~φ+ µC~φ (17)

Here ~φ =


u

v

w

, B =


−1 −1 0

1 −1 0

0 0 0

, C =


2 0 0

0 2 0

0 0 −1

.

Consider bilinear operator K(~x, ~x), defined by the next rule:

K(~φ, ~φ) =


φ11φ23

φ12φ23

−φ11φ21 − φ12φ22 − φ13φ23


Then system (11) could be rewritten as:

~̇φ = A~φ+K(~φ, ~φ) (18)

3.2 Eigenvalues and eigenvectors of the linearised system

Let us first find the critical values of the parameter. It can be found from the
next two equations:

A~φ = λ~φ (19)
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and the second one:

~φ =
∞∑
k=0


ak

bk

ck

 (20)

By substituting (20) into (19) we obtain:


2µ− 1 −1 0

1 2µ− 1 0

0 0 −µ




ak

bk

ck

 = λ


ak

bk

ck

 k = 0, 1, 2, . . . (21)

From here we can find eigenvalues of the matrix A: λ1,2 = 2µ−1± i; λ3 = −µ.

Now it is easily to find the critical value of the parameter µ:

µcrit =
1

2
. (22)

When µ > 1
2
the system is unstable.

Let us consider:

A~φ = λ1,2~φ (23)

Where µ > 1
2
, λ1,2 = (2µ− 1± i).

In order to find eigenvectors that corresponding to eigenvalues λ1,2, solve the
next equation:


0 −1 0

1 0 0

0 0 −1
2




a

b

c

 = ±i


a

b

c

 (24)
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⇒


∓ia− b = 0

a∓ ib = 0

±ic+ 1
2
c = 0

(25)

Therefore, vectors:

~φ1,2 =


±i

1

0

 (26)

By performing similar actions, we can find the eigenvalues of the matrix A∗.
It is clear that matrix A∗ will have the same eigenvalues as matrix A. It is
easy to find that eigenvectors are:

~ψ1,2 =


∓i

1

0

 (27)

3.3 Applying the Lyapunov-Schmidt method to the Lang-

ford ODE

Let us consider (18) when µcrit =
1
2
.

Let us introduce new definitions:

µ = a+ δ,
a = µcrit, δ � 1.

then, equation (18) can be rewritten as:

~̇φ = B~φ+ aC~φ+ δC~φ+K(~φ, ~φ) (28)

Let us set:
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τ = ωt,

δ = ε2.

Then, equation (28) will be rewritten in the next form:

ω~̇φ = B~φ+ aC~φ+ ε2C~φ+K(~φ, ~φ) (29)

We will be looking for ~φ and ω in the form of a series:

~φ =
∞∑
i=1

εi~φi, ω =
∞∑
i=0

εiωi (30)

ω0 = 1.

By substituting (30) into (29) and equating the coefficients of like power of ε,
we will arrive:

ε1 : ω0
~̇

1φ = B~φ1 + aC~φ1 (31)

ε2 : ω0
~̇

2φ = B~φ2 + aC~φ2 − ω1
~̇

1φ+K(~φ1, ~φ1) (32)

ε3 : ω0
~̇

3φ = B~φ3 + aC~φ3 + C~φ1 − ω1
~̇

2φ− ω2
~̇

1φ+K(~φ1, ~φ2) +K(~φ2, ~φ1)(33)

ε4 : ω0
~̇

4φ = B~φ4 + aC~φ4 + C~φ2 − ω1
~̇

3φ− ω2
~̇

2φ− ω3
~̇

1φ+K(~φ2, ~φ2) +

+K(~φ1, ~φ3) +K(~φ3, ~φ1) (34)

(31) is a linear equation. Solution of (31) has the form:

~φ1 = α1~ϕe
iτ + c.j., α1 > 0 (35)

An inhomogeneous equation (32) will have a solution if and only if the condition
of solvability is satisfied:

2π∫
0

(−ω1
~̇

1φ+K(~φ1, ~φ1), ~ψ)e
−iτdτ = 0 (36)

By performing necessary calculations, we obtain:
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K(~φ1, ~φ1) = (α1~ϕe
iτ + α1 ~ϕ∗e

−iτ , α1~ϕe
iτ + α1 ~ϕ∗e

−iτ ) =


0

0

−4α1

 (37)

2π∫
0

(−ω1
~̇

1φ, ~ψ)e
−iτdτ = −4iπα1ω1 (38)

From α1 > 0 follows, that ω1 = 0. The solution of (32) is:

~̇
2φ = B~φ2 + aC~φ2 +


0

0

−4α1

 (39)

~̇
2φ = A~φ2 +


0

0

−4α1

 (40)

~φ2 = α2~ϕe
iτ + c.j.−


0

0

4α2
1

a

 (41)

Now, check the solvability condition for (33):

2π∫
0

(−ω2
~̇

1φ+ C~φ1 +K(~φ1, ~φ2) +K(~φ2, ~φ1), ~ψ)e
−iτdτ = 0 (42)

Let us find K(~φ1, ~φ2) and K(~φ2, ~φ1):



3 LANGFORD ODE 26

K(~φ2, ~φ1) =


iα2~ϕe

iτ − iα1 ~ϕ∗e
−iτ

α2~ϕe
iτ + α1 ~ϕ∗e

−iτ

−4α2
1

a

,

iα1~ϕe
iτ − iα1 ~ϕ∗e

−iτ

α1~ϕe
iτ + α1 ~ϕ∗e

−iτ

0



=


0

0

−4α1α2

 (43)

K(~φ1, ~φ2) =


iα1~ϕe

iτ − iα1 ~ϕ∗e
−iτ

α1~ϕe
iτ + α1 ~ϕ∗e

−iτ

0

,

iα2~ϕe
iτ − iα1 ~ϕ∗e

−iτ

α2~ϕe
iτ + α1 ~ϕ∗e

−iτ

−4α2
1

a



=


(eiτ − e−iτ )(− 1

a
)4iα3

1

(eiτ + e−iτ )(− 1
a
)4α3

1

−4α1α2

 (44)

After calculations, we will get:

2π∫
0

(−ω2
~̇

1φ+C~φ1 +K(~φ1, ~φ2) +K(~φ2, ~φ1), ~ψ)e
−iτdτ = 2π(−ω2iα1 + 2α1 − α3

1
4
a
)

By splitting up this expression into real and imaginary part, we will get:

α2
1 =

1a

2
, ω2 = 0

Finally we get the following solutions:

 ~φ = 0.7ε(eiτ ~ϕ+ c.j.) +O(ε2)

ω = 1 +O(ε3)
(45)
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4 Spatially distributed Langford system

4.1 Operator form of the Langford PDE

Let us introduce operator A:

A~φ = ~φxx + B~φ+ µC~φ (46)

Here ~φ =


u

v

w

, B =


−1 −1 0

1 −1 0

0 0 0

, C =


2 0 0

0 2 0

0 0 −1

.

Consider bilinear operator K(~x, ~x), defined by the next rule:

K(~φ, ~φ) =


φ11φ23

φ12φ23

−φ11φ21 − φ12φ22 − φ13φ23


Then system (12) could be rewritten as:

~̇φ = A~φ+K(~φ, ~φ) (47)

4.2 Neumann boundary conditions

4.2.1 Eigenvectors and eigenvalues of Langford PDE with Neu-

mann boundary conditions

Let us consider (47) in case of Neumann boundary conditions.

System cos(πkx)∞k=0 is the basis

Let us consider:
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A~φ = λ~φ (48)

Writing down the basis decomposition of vector ~φ:

~φ =
∞∑
k=0


ak

bk

ck

 cos(πkx) (49)

By substituting (49) into (48) we will get:


2µ− 1− (πk)2 −1 0

1 2µ− 1− (πk)2 0

0 0 −µ− (πk)2




ak

bk

ck

 = λ


ak

bk

ck


k = 0, 1, 2, . . .(50)

Now let us find the critical value of the parameter µ:

µcrit =
1

2
. (51)

When µ > 1
2
the system loss the stability.

Let us consider:

A~φ = λ1,2~φ (52)

Where µ > 1
2
, λ1,2 = (2µ− 1± i).

In order to find eigenvectors that corresponding to eigenvalues λ1,2, solve the
next equation:


0 −1 0

1 0 0

0 0 −1
2




a

b

c

 = ±i


a

b

c

 (53)
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⇒


∓ia− b = 0

a∓ ib = 0

±ic+ 1
2
c = 0

(54)

Therefore, vectors:

~φ1,2 =


±i

1

0

 (55)

By performing similar actions, we can find the eigenvalues of the matrix A∗.
It is clear that matrix A∗ will have the same eigenvalues as matrix A. It is
easy to find that eigenvectors are:

~ψ1,2 =


∓i

1

0

 (56)

4.2.2 Applying the Lyapunov-Schmidt method

Let us consider (47) when µcrit =
1
2
. New definitions:

µ = a+ δ,
a = µcrit, δ � 1.

Then, equation (47) will change the form into:

~̇φ = ~φxx + B~φ+ aC~φ+ δC~φ+K(~φ, ~φ) (57)

Let us introduce new definitions:

τ = ωt,

δ = ε2.

(57) can be rewritten in the form:
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ω~̇φ = ~φxx + B~φ+ aC~φ+ ε2C~φ+K(~φ, ~φ) (58)

We will be looking for ~φ and ω in the form of a series:

~φ =
∞∑
i=1

εi~φi, ω =
∞∑
i=0

εiωi (59)

ω0 = 1.

By substituting (59) into (58) and equating coefficients of like power of ε, we
will arrive:

ε1 : ω0
~̇

1φ = ∂2~φ1
∂x2

+ B~φ1 + aC~φ1 (60)

ε2 : ω0
~̇

2φ = ∂2~φ2
∂x2

+ B~φ2 + aC~φ2 − ω1
~̇

1φ+K(~φ1, ~φ1) (61)

ε3 : ω0
~̇

3φ = ∂2~φ3
∂x2

+ B~φ3 + aC~φ3 + C~φ1 − ω1
~̇

2φ− ω2
~̇

1φ+

+K(~φ1, ~φ2) +K(~φ2, ~φ1) (62)

ε4 : ω0
~̇

4φ = ∂2~φ4
∂x2

+ B~φ4 + aC~φ4 + C~φ2 − ω1
~̇

3φ− ω2
~̇

2φ− ω3
~̇

1φ+K(~φ2, ~φ2) +

+K(~φ1, ~φ3) +K(~φ3, ~φ1) (63)

It should be pointed that there is no dependence on x. So the solution that we
obtain for ODE will be solution for spatially distributed system with Neumann
boundary conditions.

On the figures below the visualization of asymptotic is presented.

Figure 7: The asymptotic of u(x,t) µ = a+ 0.01
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Figure 8: The asymptotic of v(x,t) when µ = a+ 0.01

On the next figures we plot numerical solution. Initial conditions were taken
from asymptotic.

Figure 9: Numerical solution u(x,t) when µ = a+ 0.01
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Figure 10: Numerical solution v(x,t) when µ = a+ 0.01

4.3 Dirichlet boundary conditions

4.3.1 Eigenvalues the system

Let us find critical value of the parameter:

A~φ = λ~φ (64)

Basis decomposition of vector ~φ will be the next:

~φ =
∞∑
k=1


ak

bk

ck

 sin(πkx) (65)

By substituting (65) into (64) we will get:
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2µ− 1− (πk)2 −1 0

1 2µ− 1− (πk)2 0

0 0 −µ− (πk)2




ak

bk

ck

 = λ


ak

bk

ck

 k = 1, 2, . . .

(66)

Now we can calculate the critical value of the parameter µ:

µcrit =
1 + π2

2
. (67)

When µ > 1+π2

2
the system loss the stability.

4.3.2 Eigenvectors of the system

Let us consider a eigenvector problem:

A~φ = λ1,2~φ (68)

Here µ > 1+π2

2
, λ1,2 = (2µ− 1− (πk)2 ± i).

Eigenvectors could be find from the system:


2µ− 1− π2 −1 0

1 2µ− 1− π2 0

0 0 −µ− π2




a

b

c

 = (2µ− 1− π2 ± i)


a

b

c


(69)


(2µ− 1− π2)a− b− (2µ− 1− π2 ± i)a = 0

a+ (2µ− 1− π2)b− (2µ− 1− π2 ± i)a = 0

(−µ− π2)c− (2µ− 1− π2 ± i)c = 0

(70)
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⇒


∓ia− b = 0

a∓ ib = 0

c = 0

(71)

~φ1,2 =


±i

1

0

 sin(πx) (72)

By performing similar actions, we can find the eigenvalues of the matrix A∗.
It is clear that matrix A∗ will have the same eigenvalues as matrix A. It is
easy to find that eigenvectors are:

~ψ1,2 =


∓i

1

0

 sin(πx) (73)

4.3.3 Applying the Lyapunov-Schmidt method to the Langford sys-

tem with Dirichlet boundary conditions

Let us consider equation (47) when µcrit =
1+π2

2
.

We introduce new notation:

µ = a+ δ,
a = µcrit, δ � 1.

Therefore equation (47) can be rewritten as:

~̇φ = ~φxx + B~φ+ aC~φ+ δC~φ+K(~φ, ~φ) (74)

Now introduce new time variable:

τ = ωt,

δ = ε2.
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Then equation (74) could be rewritten as:

ω~̇φ = ~φxx + B~φ+ aC~φ+ ε2C~φ+K(~φ, ~φ) (75)

We will be looking for ~φ and ω in the form of a series:

~φ =
∞∑
i=1

εi~φi, ω =
∞∑
i=0

εiωi (76)

ω0 = 1.

By substituting (76) into (75) and equating coefficients of like power of ε, we
will arrive:

ε1 : ω0
~̇

1φ = ∂2~φ1
∂x2

+ B~φ1 + aC~φ1 (77)

ε2 : ω0
~̇

2φ = ∂2~φ2
∂x2

+ B~φ2 + aC~φ2 − ω1
~̇

1φ+K(~φ1, ~φ1) (78)

ε3 : ω0
~̇

3φ = ∂2~φ3
∂x2

+ B~φ3 + aC~φ3 + C~φ1 − ω1
~̇

2φ− ω2
~̇

1φ+

+K(~φ1, ~φ2) +K(~φ2, ~φ1) (79)

ε4 : ω0
~̇

4φ = ∂2~φ4
∂x2

+ B~φ4 + aC~φ4 + C~φ2 − ω1
~̇

3φ− ω2
~̇

2φ− ω3
~̇

1φ+K(~φ2, ~φ2) +

+K(~φ1, ~φ3) +K(~φ3, ~φ1) (80)

Let us define: ~ϕ = ~φ1, ~ψ = ~ψ2.

And calculate (~φ, ~ψ):

(~φ, ~ψ) =

1∫
0

(1 + 1)sin2(πx)dx = 2

1∫
0

sin2(πx)dx = 1 (81)

Let us start solving equations. Equation (77) is a linear homogeneous equation.
It is solution can be written in a form:

~φ1 = α1~ϕe
iτ + c.j., α1 > 0 (82)

Inhomogeneous equation (78) has solution if and only if the condition of solv-
ability is satisfied:
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2π∫
0

(−ω1
~̇

1φ+K(~φ1, ~φ1), ~ψ)e
−iτdτ = 0 (83)

By performing calculations, we get:

K(~φ1, ~φ1) = (α1~ϕe
iτ + α1 ~ϕ∗e

−iτ , α1~ϕe
iτ + α1 ~ϕ∗e

−iτ ) =


0

0

−4α1

 sin2(πx)

(84)

2π∫
0

(−ω1
~̇

1φ, ~ψ)e
−iτdτ = −4iπα1ω1 (85)

From the condition α1 > 0, we conclude that ω1 = 0.

Then the solution (78) can be written as:

~̇
2φ =

∂2~φ2

∂x2
+ B~φ2 + aC~φ2 +


0

0

−4α1

 sin2(πx) (86)

~̇
2φ = A~φ2+


0

0

−4α1

 sin2(πx) = A~φ2+
1

2


0

0

−4α1

−1

2


0

0

−4α1

 cos(2πx)

(87)

~φ2 = ~φpr + ~φob (88)

~φpr = ~φ0 + ~φ1 cos(2πx) (89)
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0 = A(~φ0 + ~φ1cos(2πx)) +
1

2


0

0

−4α1

− 1

2


0

0

−4α1

 cos(2πx) (90)

⇒



A~φ0 = −1
2


0

0

−4α1



A(~φ1cos(2πx)) =
1
2


0

0

−4α1

 cos(2πx)

(91)


−~φ1

0 − ~φ2
0 + 2a~φ1

0 = 0

~φ1
0 − ~φ2

0 + 2a~φ2
0 = 0

−a~φ3
0 = 2α2

1

⇒ ~φ0 =


0

0

−2α2
1

a

 (92)


−~φ1

1 − ~φ2
1 + 2a~φ1

1 − 4π2~φ1
1 = 0

~φ1
1 − ~φ2

1 + 2a~φ2
1 − 4π2~φ2

1 = 0

−a~φ3
1 − 4π2~φ3

1 = −2α2
1

⇒ ~φ1 =


0

0

2α2
1

a+4π2

 (93)

~φ2 = α2~ϕe
iτ + c.j.−


0

0

2α2
1

a

+


0

0

2α2
1

a+4π2

 cos(2πx) (94)

Now, let us satisfy the condition of solvability for the equation (79):

2π∫
0

(−ω2
~̇

1φ+ C~φ1 +K(~φ1, ~φ2) +K(~φ2, ~φ1), ~ψ)e
−iτdτ = 0 (95)

Find K(~φ1, ~φ2) and K(~φ2, ~φ1):



4 SPATIALLY DISTRIBUTED LANGFORD SYSTEM 38

K(~φ2, ~φ1) =


iα2~ϕe

iτ − iα1 ~ϕ∗e
−iτ

α2~ϕe
iτ + α1 ~ϕ∗e

−iτ

2α2
1

a+4π2 cos(2πx)− 2α2
1

a

,

iα1~ϕe
iτ − iα1 ~ϕ∗e

−iτ

α1~ϕe
iτ + α1 ~ϕ∗e

−iτ

0



=


0

0

−4α1α2

 sin2(πx) (96)

K(~φ1, ~φ2) =


iα1~ϕe

iτ − iα1 ~ϕ∗e
−iτ

α1~ϕe
iτ + α1 ~ϕ∗e

−iτ

0

,

iα2~ϕe
iτ − iα1 ~ϕ∗e

−iτ

α2~ϕe
iτ + α1 ~ϕ∗e

−iτ

2α2
1

a+4π2 cos(2πx)− 2α2
1

a



=


(eiτ − e−iτ )( 1

a+4π2 cos(2πx)− 1
a
)2iα3

1sin(πx)

(eiτ + e−iτ )( 1
a+4π2 cos(2πx)− 1

a
)2α3

1sin(πx)

−4α1α2 sin
2(πx)

 (97)

By performing the calculations, we will get:

2π∫
0

(−ω2
~̇

1φ+C~φ1+K(~φ1, ~φ2)+K(~φ2, ~φ1), ~ψ)e
−iτdτ =

2π∫
0

(−ω2iα1~ϕe
iτ+Cα1~ϕe

iτ+

c.j.+

+ ( 1
a+4π2 cos(2πx)− 1

a
)2α3

1sin(πx)e
iτ + ..., ~ψ)e−iτdτ =

2π∫
0

(−ω2iα1 + 2α1 +

+
1∫
0

( 1
a+4π2 cos(2πx)− 1

a
)2α3

1sin
2(πx)dxdτ = 2π(−ω2iα1 + 2α1 − α3

1
3a+8π

2a(a+4π)
)

By splitting up this expression into real and imaginary part, we get:

α2
1 =

4a(a+ 4π)

3a+ 8π
, ω2 = 0

Finally, we got the solutions:

 ~φ = 3.07ε(eiτ ~ϕ+ c.j.) +O(ε2)

ω = 1 +O(ε3)
(98)

On the figures below the visualization of asymptotic is presented.
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Figure 11: The asymptotic of u(x,t) µ = a+ 0.01

Figure 12: The asymptotic of v(x,t) when µ = a+ 0.01

On the next figures we plot numerical solution. Initial conditions were taken
from asymptotic.
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Figure 13: Numerical solution u(x,t) when µ = a+ 0.01

Figure 14: Numerical solution v(x,t) when µ = a+ 0.01

4.4 Neumann boundary conditions with additional re-

quirement of zero average

Let us consider equation (47) in case of Neumann boundary conditions with
additional requirement of zero average:
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1∫
0

udx = 0

1∫
0

vdx = 0

1∫
0

wdx = 0 (99)

system cos(πkx)∞k=1 is base system

4.4.1 Eigenvalues and eigenvectors of Langford PDE

Let us consider:

A~φ = λ~φ (100)

We can write base decomposition of vector ~φ in the form:

~φ =
∞∑
k=1


ak

bk

ck

 cos(πkx) (101)

By substituting (101) into (100) we get:


2µ− 1− (πk)2 −1 0

1 2µ− 1− (πk)2 0

0 0 −µ− (πk)2




ak

bk

ck

 = λ


ak

bk

ck

 k = 1, 2, . . .

(102)

Now let us find the critical value of the parameter µ:

µcrit =
1 + π2

2
. (103)

When µ > 1+π2

2
the system loss the stability.

Let us consider:
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A~φ = λ1,2~φ (104)

Where µ > 1+π2

2
, λ1,2 = (2µ− 1− (πk)2 ± i).

In order to find eigenvectors that corresponding to eigenvalues λ1,2, solve the
next equation:


2µ− 1− π2 −1 0

1 2µ− 1− π2 0

0 0 −µ− π2




a

b

c

 = (2µ− 1− π2 ± i)


a

b

c


(105)


(2µ− 1− π2)a− b− (2µ− 1− π2 ± i)a = 0

a+ (2µ− 1− π2)b− (2µ− 1− π2 ± i)a = 0

(−µ− π2)c− (2µ− 1− π2 ± i)c = 0

(106)

⇒


∓ia− b = 0

a∓ ib = 0

c = 0

(107)

~φ1,2 =


±i

1

0

 cos(πx) (108)

By performing similar actions, we can find the eigenvalues of the matrix A∗.
It is clear that matrix A∗ will have the same eigenvalues as matrix A. It is
easy to find that eigenvectors are:

~ψ1,2 =


∓i

1

0

 cos(πx) (109)
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4.4.2 The analysis of nonlinear problem

Let us consider (47) when µcrit =
1+π2

2
.

Let us define:

µ = a+ δ,
a = µcrit, δ � 1.

Then, equation (47) will change the form into:

~̇φ = ~φxx + B~φ+ aC~φ+ δC~φ+K(~φ, ~φ) (110)

Let us introduce new definitions:

τ = ωt,

δ = ε2.

(110) can be rewritten in the form:

ω~̇φ = ~φxx + B~φ+ aC~φ+ ε2C~φ+K(~φ, ~φ) (111)

We will be looking for ~φ and ω in the form of a series:

~φ =
∞∑
i=1

εi~φi, ω =
∞∑
i=0

εiωi (112)

ω0 = 1.

By substituting (112) into (111) and equating coefficients of like power of ε,
we will arrive:
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ε1 : ω0
~̇

1φ = ∂2~φ1
∂x2

+ B~φ1 + aC~φ1 (113)

ε2 : ω0
~̇

2φ = ∂2~φ2
∂x2

+ B~φ2 + aC~φ2 − ω1
~̇

1φ+K(~φ1, ~φ1) (114)

ε3 : ω0
~̇

3φ = ∂2~φ3
∂x2

+ B~φ3 + aC~φ3 + C~φ1 − ω1
~̇

2φ− ω2
~̇

1φ+

+K(~φ1, ~φ2) +K(~φ2, ~φ1) (115)

ε4 : ω0
~̇

4φ = ∂2~φ4
∂x2

+ B~φ4 + aC~φ4 + C~φ2 − ω1
~̇

3φ− ω2
~̇

2φ− ω3
~̇

1φ+K(~φ2, ~φ2) +

+K(~φ1, ~φ3) +K(~φ3, ~φ1) (116)

Let us define: ~ϕ = ~φ1, ~ψ = ~ψ2.

And calculate (~φ, ~ψ):

(~φ, ~ψ) =

1∫
0

(1 + 1)cos2(πx)dx = 2

1∫
0

cos2(πx)dx = 1 (117)

Let us start solving equations. Equation (113) is a linear homogeneous equa-
tion. It is solution can be written in a form:

~φ1 = α1~ϕe
iτ + c.j., α1 > 0 (118)

Inhomogeneous equation (114) has solution if and only if the condition of
solvability is satisfied:

2π∫
0

(−ω1
~̇

1φ+K(~φ1, ~φ1), ~ψ)e
−iτdτ = 0 (119)

By performing calculations, we get:

K(~φ1, ~φ1) = (α1~ϕe
iτ + α1 ~ϕ∗e

−iτ , α1~ϕe
iτ + α1 ~ϕ∗e

−iτ ) =


0

0

−4α1

 cos2(πx)

(120)
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2π∫
0

(−ω1
~̇

1φ, ~ψ)e
−iτdτ = −4iπα1ω1 (121)

From the condition α1 > 0, we conclude that ω1 = 0.

Then the solution (114) can be written as:

~̇
2φ =

∂2~φ2

∂x2
+ B~φ2 + aC~φ2 +


0

0

−4α1

 cos2(πx) (122)

~̇
2φ = A~φ2+


0

0

−4α1

 cos2(πx) = A~φ2+
1

2


0

0

−4α1

+
1

2


0

0

−4α1

 cos(2πx)

(123)

~φ2 = ~φpr + ~φob (124)

~φpr = ~φ0 + ~φ1 cos(2πx) (125)

0 = A(~φ0 + ~φ1cos(2πx)) +
1

2


0

0

−4α1

+
1

2


0

0

−4α1

 cos(2πx) (126)

⇒



A~φ0 = −1
2


0

0

−4α1



A(~φ1cos(2πx)) = −1
2


0

0

−4α1

 cos(2πx)

(127)
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−~φ1

0 − ~φ2
0 + 2a~φ1

0 = 0

~φ1
0 − ~φ2

0 + 2a~φ2
0 = 0

−a~φ3
0 = 2α2

1

⇒ ~φ0 =


0

0

−2α2
1

a

 (128)


−~φ1

1 − ~φ2
1 + 2a~φ1

1 − 4π2~φ1
1 = 0

~φ1
1 − ~φ2

1 + 2a~φ2
1 − 4π2~φ2

1 = 0

−a~φ3
1 − 4π2~φ3

1 = 2α2
1

⇒ ~φ1 =


0

0

2α2
1

a+4π2

 (129)

~φ2 = α2~ϕe
iτ + c.j.−


0

0

2α2
1

a

−


0

0

2α2
1

a+4π2

 cos(2πx) (130)

Now, let us satisfy the condition of solvability for the equation (115):

2π∫
0

(−ω2
~̇

1φ+ C~φ1 +K(~φ1, ~φ2) +K(~φ2, ~φ1), ~ψ)e
−iτdτ = 0 (131)

Find K(~φ1, ~φ2) and K(~φ2, ~φ1):

K(~φ2, ~φ1) =


iα2~ϕe

iτ − iα1 ~ϕ∗e
−iτ

α2~ϕe
iτ + α1 ~ϕ∗e

−iτ

− 2α2
1

a+4π2 cos(2πx)− 2α2
1

a

,

iα1~ϕe
iτ − iα1 ~ϕ∗e

−iτ

α1~ϕe
iτ + α1 ~ϕ∗e

−iτ

0



=


0

0

−4α1α2

 cos2(πx) (132)
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K(~φ1, ~φ2) =


iα1~ϕe

iτ − iα1 ~ϕ∗e
−iτ

α1~ϕe
iτ + α1 ~ϕ∗e

−iτ

0

,

iα2~ϕe
iτ − iα1 ~ϕ∗e

−iτ

α2~ϕe
iτ + α1 ~ϕ∗e

−iτ

− 2α2
1

a+4π2 cos(2πx)− 2α2
1

a



=


(eiτ − e−iτ )(− 1

a+4π2 cos(2πx)− 1
a
)2iα3

1cos(πx)

(eiτ + e−iτ )(− 1
a+4π2 cos(2πx)− 1

a
)2α3

1cos(πx)

−4α1α2 cos
2(πx)

 (133)

By performing the calculations, we will get:

2π∫
0

(−ω2
~̇

1φ+C~φ1+K(~φ1, ~φ2)+K(~φ2, ~φ1), ~ψ)e
−iτdτ =

2π∫
0

(−ω2iα1~ϕe
iτ+Cα1~ϕe

iτ+

c.j.−

− ( 1
a+4π2 cos(2πx)− 1

a
)2α3

1cos(πx)e
iτ + ..., ~ψ)e−iτdτ =

2π∫
0

(−ω2iα1 + 2α1 −

−
1∫
0

( 1
a+4π2 cos(2πx)− 1

a
)2α3

1cos
2(πx)dxdτ = 2π(−ω2iα1 + 2α1 − α3

1
3a+8π

2a(a+4π)
)

By splitting up this expression into real and imaginary part, we get:

α2
1 =

4a(a+ 4π)

3a+ 8π
, ω2 = 0

Finally we have the solutions:

 ~φ = 3.07ε(eiτ ~ϕ+ c.j.) +O(ε2)

ω = 1 +O(ε3)
(134)

5 Numerical experiments

In this section we will discuss the results of the numerical experiments, which
were performed in order to support our theoretical results. Our main purpose
is to visualise the results, obtained in the previous sections and to give graph-
ical explanations of the phenomena, which appear in the system under study.
MATLAB software is being used for numerical computations.
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5.1 Dirichlet boundary conditions

5.1.1 The behaviour of the system when µ < µcr

However, when µ < a, there will be no self-oscillations in the system. The
solutions of the system will decay to zero, when t→ +∞.

In the following figures we show the results of numerical simulation. Here we
have taken µ < a. Initial conditions for u(x, t), v(x, t) and w(x, t) are taken
from asymptotic. We will show only the solution for u(x, t), because v(x, t)
and w(x, t) behaves in the similar way.

Figure 15: The numerical solution when µ = a− 0.01
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Figure 16: The numerical solution when µ = a− 0.05

Figure 17: The numerical solution when µ = a− 0.1

We can see from the figures, that the solution decays to zero and that the
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speed of decay is increasing when µ↘ 0.

5.1.2 The behavior of the system when µ > µcr

Now we will perform several simulations in the case when µ > a and the
self-oscillations are presented in the system. We will illustrate the stability
of the periodic mode. We will fix µ = a + 0.1 and perform several numerical
simulations with different initial conditions. On the following figures we plot
the results.

Figure 18: The numerical solution when u0(x) = v0(x) = x(1− x)
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Figure 19: The numerical solution when u0(x) = v0(x) = 0.5− |x− 0.5|

We observe from this figures, that the solutions with different initial conditions
tends to the stable periodic solution, approximated earlier, when t→ +∞.

5.2 Neumann boundary conditions

5.2.1 The behaviour of the system when µ < µcr

Again, we consider our system in the case when µ < 0. In the following figures
we show the results of numerical simulation Initial conditions for u(x, t) are
taken from asymptotic. We will again show only the solution for u(x, t).
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Figure 20: The numerical solution when µ = −0.1

Figure 21: The numerical solution when µ = −0.2



5 NUMERICAL EXPERIMENTS 53

Figure 22: The numerical solution when µ = −0.3

In this case we can see again that the solution tends to zero when t → +∞.

5.2.2 The behavior of the system when µ > µcr

Here we will perform several numerical experiments in the case when µ > 0.
We will illustrate the stability of the periodic mode. Perform several numerical
simulations with different initial conditions. On the following figures the results
are presented.
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Figure 23: The numerical solution when u0(x) = 0.3 sin(x)

Figure 24: The numerical solution when u0(x) = v0(x) = x(1− x)
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Figure 25: The numerical solution when u0(x) = v0(x) = 0.5− |x− 0.5|

We observe that all considered solutions tends to the stable periodic solution
when t→ + ∞.

6 CONCLUSIONS

In the course of the present work we have performed the analysis of the bifur-
cations in the spatially distributed Langford system. We have seen that the
diffusion in general slows down the frequency of self-oscillations. However, in
several special cases of boundary conditions (for example, Neumann boundary
conditions), it has no influence on the periodic mode at all. We have found
out that the soft loss of stability takes place in the system, which means that
a stable limit cycle appears in the system when the equilibrium x = ων loses
the stability.

In the case of Dirichlet boundary conditions and Neumann boundary condi-
tions with additional requirement of zero average,a spatially inhomogeneous
periodic mode exists in the system. In that case, the frequency of self-oscillations
is lowered by the diffusion. The soft loss of stability takes place in this case in
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the system as well.

Several numerical experiments were performed in order to support the theoret-
ical results. The case when the parameter value is near the critical value was
investigated numerically as well. The simulations were performed in the case
of Dirichlet and Neumann boundary conditions. However, when the value of
the parameter is significantly greater than critical, the behaviour of the system
becomes difficult for the analysis by both analytical and numerical methods.
It seems that the system begin to show quasiperiodical oscillations and then
chaotic motions start to appear in the system. This case could be investigated
further in more detail.
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