
Lappeenranta University of Technology
Faculty of Technology Management
Degree Program in Information Technology

Bachelor’s Thesis

Petteri Pekonen

DESIGN AND IMPLEMENTATION OF ROBOT GRIPPER
INTERFACE

Examiners: Jarmo Ilonen D.Sc. (Tech.)

Supervisor: Jarmo Ilonen D.Sc. (Tech.)

ABSTRACT

Lappeenranta University of Technology
Faculty of Technology Management
Degree Program in Information Technology

Petteri Pekonen

Design and implementation of robot gripper interface

Bachelor’s Thesis

2012

36 pages, 15 figures, 4 table, and 3 appendices .

Examiners: Jarmo Ilonen D.Sc. (Tech.)

Keywords: Interface, Robotics, Grasping, Gripper, Robotiq

This thesis presents a design for an asynchronous interface to Robotiq adaptive gripper
s-model. Designed interface is a communication layer that works on top of modbus layer.
The design contains function definitions, finite state machine and exceptions. The design
was not fully implemented but enough was so that it can be used. The implementation
was done with c++ in linux environment. Additionally to the implementation a simple
demo program was made to show the interface is used. Also grippers closing speed and
force were measured. There is also a brief introduction into robotics and robot grasping.

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto
Teknistaloudellinen tiedekunta
Tietotekniikan koulutusohjelma

Petteri Pekonen

Robottikäden ohjelmointirajapinnan suunnittelu ja toteutus

Kanditaatintyö

2012

36 sivua, 15 kuvaa, 4 taulukko ja 3 liitettä .

Tarkastajat: TkT Jarmo Ilonen

Hakusanat: Käyttöliitymä, Robotiikka, Tartunta, Tartuin, Robotiq

Tässä työssä esitellään asynkrooninen käyttöliittymä Robotiq adaptive gripper s-model
robottikäteen. Käyttöliittymä on kommunikaatiokerros, joka toimii modbus-kerroksen pääl-
lä. Suunnitelma sisältää funktiomäärittelyt, tilakoneen ja poikkeukset. Suunnitelmasta
toteutettiin tarpeeksi, että käyttöliittymää voidaan käyttää. Toteutus tehtiin c++ kielellä
linux-ympäristössä. Toteutuksen lisäksi yksinkertainen demo tehtiin näyttämään, miten
käyttöliittymää käytetään. Näiden lisäksi Käden sulkemisnopeus ja -voima mitattiin. Työ
sisältää myös lyhyen esittelyn robotiikasta ja robottitarttumisesta.

4

CONTENTS

1 INTRODUCTION 7
1.1 Backround . 7
1.2 Objectives and Restrictions . 7
1.3 Structure of the Thesis . 8

2 THEORY 9
2.1 Robotics . 9
2.2 Grasping . 9
2.3 The gripper . 10
2.4 What is interface/ definition of interface 11

3 DESIGN 12
3.1 Protocol stack . 12
3.2 State machine . 12
3.3 interface/functions . 15

3.3.1 RobotiqHand class . 15
3.3.2 RobotiqStatus class . 15

3.4 Exceptions . 18

4 IMPLEMENTATION 19
4.1 RobotiqHand class . 19
4.2 RobotiqStatus class . 20

5 DEMO 22

6 MEASUREMENTS 23
6.1 Speed . 23
6.2 Force . 24

7 DISCUSSION 29
7.1 Future Work . 29

8 CONCLUSIONS 30

REFERENCES 31

APPENDICES
Appendix 1: Speed measurements
Appendix 2: Force measurements

5

Appendix 3: gripper registers

6

ABBREVIATIONS AND SYMBOLS
ms millisecond
API Application Programming Interface
FSM Finite State Machine

7

1 INTRODUCTION

This bachelors thesis was done in department of information technology in Lappeenranta
university of technology. The goal of this thesis was to design and implement a robot
gripper interface for Robotiq adaptive gripper S-model.

1.1 Backround

Department of information technology in Lappeenranta university of technology has ob-
tained a new robot gripper. It has been obtained because department does robot grasping
and manipulation research. Department has special interest in sensor based robot manip-
ulation research. In sensor based manipulation one wants to be able to adjust speeds and
forces as much as possible. This way it is possible to grasp weak objects and improve
the grip during grasping. New gripper gives possibility to this but the only interface is
modbus interface. To make use of gripper easier a new interface is needed. This new
interface will hide modbus interface and simplifies the use of gripper.

1.2 Objectives and Restrictions

The objective of this thesis is to design and implement an interface to the robotiq adaptive
gripper. The interface will become part of the open source library itlabcpp. The definitions
of usable functions of the interface will be done in cooperation with few future users.
Programming will be done with c++ programming language in linux environment. The
interface will be asynchronous so that even in error situations it will not block the program
using it. The interface will use modbus protocol to communicate with the gripper. In this
case modbus works on top of ethernet. The gripper updates its status every 5ms so the
interface should also retrieve gripper status info every 5ms. Also some kind of demo
program will be made to show how the interface is used.

The interface uses values between 0 and 255 to indicate speed and force. The relationship
between these values and physical quantities is not known. There for these relationships
need to be defined by measurements.

8

1.3 Structure of the Thesis

As a theory part section 2 contains short introduction into robotics and robot grasping. It
also introduces core concepts and the gripper that is being used. In section 3 the design of
the interface layer is presented. Section 4 contains what of the design was implemented
and how public functions were implemented. Section 5 contains details about the demon-
stration program. Section 6 contains the speed and force measurements that were made
as a part of this thesis. Section 7 has discussion and Section 8 has conclusions.

9

2 THEORY

This chapter provides a brief introduction into robotics and robot grasping. It also intro-
duces the used gripper and defines some core concepts in this thesis.

2.1 Robotics

The term robot comes from a play "Rossum’s Universal Robots" written by Czech play-
wright Karel Čapek in 1920. But the research field of robotics did not come about until
the middle of twentieth century. That is when there were advances in research of arti-
ficial intelligence, mechanics, controls, computers and electronics. The first computer
controlled robots were made in the mid-to-late twentieth century after the development of
integrated circuits, digital computers and miniaturized components. These were industrial
robots.In the 1980s a new kind of robots were made. These were mobile robots that had
some way to move around and sense the enviroment. In todays world robots are used in
many places. These places include industrial manufacturing, healthcare, transportation
and exploration of deep space and sea.[1]

A robotics researcher has to have a understanding of many different topics. These fun-
damental topics include kinematics, dynamics, mechanical design and actuation, sensing
and estimation, motion planning, motion control, force control, robotic system architec-
tures and programming and reasoning methods for task planning and learning.[1]

2.2 Grasping

Human hand has three main functions. Those are to explore, to restrain objects and to
manipulate objects [2]. The first one is researched under topic of haptics. Robot grasping
on the other hand is attempting to understand and emulate the latter two. The work of
Asada and Hanafusa [3] and Salisbury’s first attempts to create three fingered robotic
hand [4] can be considered the start of the field of robot grasping [2].

There is two types of grasping. A fingertip grasping and an enveloping grasping [5]. In
fingertip grasping distal phalanges are used for grasping. This is usually used for finer
manipulation. An enveloping grasp is where fingers surround the object. An enveloping
grasp is more stable and can grasp heavier objects [6].

10

There is also two closure types. These are force closure and form closure. The grasp
is force closure if contacts can exert any force and moment and that the objects motion
is resisted [7]. Form closure means that grasp can resist any external force and moment
applied to grasped object [8].

There is many other research areas in robot grasping. One of those is force analysis to
choose grasp forces to minimize slippage [2]. This is closely related to grasp stability
research. There is also research into hand dynamics and kinematics [2]. There is also
some research into grasping multiple objects at the same time [9]. Grasp performance
measurements have also been developed to help in grasp planning [10].

2.3 The gripper

The gripper used is three fingered robotiq adaptive gripper[Fig 1] s-model. Each finger has
three joints. The gripper can automatically adapt to the shape of an object it is grasping.
The closing speed and force can be adjusted. It is also possible to do partial closing or
opening with the gripper. The gripper also sends feedback from grasping.

Figure 1. Robotiq adaptive gripper s-model[11].

The gripper has four build-in modes[Fig 2]. These modes are basic mode, wide mode,
pinch mode and scissor mode. In basic mode the gripper closes by moving all three fingers
so that finger a goes between fingers b and c. This allows grasping of different kinds of
objects. Wide mode is almost same as basic mode but fingers b and c are as far away from
each other as possible. In pinch mode fingers b and c are very near of each other. This
makes encompassing the object impossible, because grasping is done with finger tips.
This allows picking up small objects that have to be picked precisely. In scissor mode
objects are picked with only fingers b and c. This is done by moving them laterally. This
mode is not very powerful but it is precise.

11

Figure 2. The four build-in modes of the gripper[11].

It is also possible not to use any of the four build-in modes but to use individual finger
control. This allows opening and closing of each finger with out moving other fingers. It
also allows to set the speed and force for each finger individually.

2.4 What is interface/ definition of interface

In this work interface refers to an API(Application Programming Interface). Interface is
a set on function, constants and rules that do not change. Interface provides easier to
use functions to a given resource than using it directly. Interface also provides a layer
of abstraction so that if the given resource is changed the implementation can also be
changed so that programs using the interface are not effected in anyway.

12

3 DESIGN

The API(Application Programming Interface) function definitions were done in coop-
eration with Ville Kyrki, Jarmo Ilonen and Janne Laaksonen. It was decided that only
individual finger control would be used instead of built-in modes. We did not want to cre-
ate separate functions for each finger. For this reason we decided to use integer constants
to tell which finger is being given a command. Then we wanted to be able to give com-
mands to multiple fingers at the same time so constant were designed to work in mask.
It was also decided that this interface would follow a singleton design pattern [12]. This
means that there can be only a single interface object within a single program.

The interface layers structure[Fig 3] contains a separate communication thread [13], be-
cause of the requirement that none of the functions may block. In this structure API
functions change shared data. Communication thread then check this shared data and
communicates with the gripper according to commands. Communication thread then also
changes the shared data to give response.

Figure 3. The structure of the interface layer.

3.1 Protocol stack

From the protocol stack[Fig 4] we can see that this interface is used to manipulate the
grippers registers. A modbus protocol, which is an industrial standard[14], is used for
actual data transfer. In this work free libmodbus is used as modbus implementation [15].

3.2 State machine

The picture[Fig 5] contains the full FSM(finite state machine) diagram of the interface.
Not all of these states have been implemented. To make state machine diagram easier

13

Figure 4. The protocol stack.

to read non-standard "any state" state symbol has been used instead of drawing an arrow
from every state.

The FSM contains few additional do states because of the requirement that functions may
not block. This is because the actual message sending and receiving is done in separate
thread. So these do states indicate for this thread that it should do something. For example
it should send some particular message.

disconnected: This state indicates that there is no connection to the gripper. This can
be because no connection has been formed or existing connection was lost. This is also
starting state.

do_activation: This state indicates that the interface should send activation signal to the
gripper.

wf_activation: This state indicates that the interface is waiting for the gripper to finish
it’s activation routine.

running_idle: This state indicates that is running normally and accepts set commands.

running_cc: This state is basically same as running_idle but indicates that a command
has been given and should be send to the gripper.

fault: This state means that the gripper is giving a fault status.

do_atr: This state indicates that the interface should send automatic release signal to the
gripper.

wf_atr: This state indicates that the interface is waiting for the gripper to finish automatic

14

Figure 5. Full designed FSM.

15

release.

atr_done: This state indicates that automatic release has been completed.

do_reset: This state indicates that the interface should send reset signal to the gripper.

wf_reset: This state indicates that the interface is waiting for the gripper to finish reset.

do_shutdown: This state indicates that the interface should do shutdown routine. Once
shutdown routine is finished state is changed to shutdown. In this state the interface does
not accept any commands.

shutdown: This indicates that the interface has been shutdown.

3.3 interface/functions

The interface has two classes that the user will use. The RobotiqHand class and the
RobotiqStatus class. RobotiqHand class is used to control the gripper. RobotiqStatus
class contains grippers status information.

3.3.1 RobotiqHand class

RobotiqHand class is the main class of the interface. It handles user commands and
delivers them to the gripper. This class contains the FSM and a separate thread, that
handles communication between the gripper and the interface. Following tables contains
all designed public functions[Tab 1] and constants[Tab 2] of the RobotiqHand class.

3.3.2 RobotiqStatus class

RobotiqStatus class contains gripper status information. It also contains functions and
constants to interpret the status information more easily. Following tables contains all
designed public functions[Tab 3] and constants[Tab 4] of the RobotiqStatus class.

16

Table 1. Interface functions.

Function
name

Parameters Description

setPosition int pos, int mask moves the fingers given in mask to given position.
setSpeed int speed, int mask sets the moving speed of the fingers given in mask.
setForce int force, int mask sets the moving force of the fingers given in mask.
isActivated checks if gripper is activated and ready for com-

mands.
isReset checks if gripper is in reset state.
isMoving checks if gripper has finished moving command.
getStatus Returns most recent RobotiqStatus object.
atr Does automatic release. This is only allowed in fault

state.
reset Resets the gripper.
start Initializes gripper interface. This has to be called be-

fore interface can be used
stop Stops the gripper and internal thread.

Table 2. Interface constant.

Constant name Value Description
FINGERA 0x1 This is used in mask of set functions for finger A.
FINGERA 0x2 This is used in mask of set functions for finger B.
FINGERA 0x4 This is used in mask of set functions for finger C.
SCISSOR 0x8 This is used in mask of set functions for scissor.
OPEN 0 Constant for setPosition function for opening gripper.
CLOSED 255 Constant for setPosition function for closing gripper.
WIDTH_NORMAL 100 Meant to used in setPosition function to move scissor.
WIDTH_WIDE 0 Meant to used in setPosition function to move scissor.
WIDTH_PINCH 255 Meant to used in setPosition function to move scissor.
SPEED_MAX 255 Maximum speed for setSpeed function.
SPEED_MIN 0 Minimum speed for setSpeed function.
FORCE_MAX 255 Maximum force for setForce function.
FORCE_MIN 0 Minimum force for setForce function.

17

Table 3. Status functions.

Function name Parameters Description
getFingerStatus int finger Has finger stopped due to a contact.
getFingerPos int finger Current position of a finger.
getFingerReqPos int finger Requested position of a finger.
getFingerForce int finger Electric current used at the moment.
getFaultStatus Use fault constants for interpretation
isActivated checks if gripper is activated and ready for commands.
isReset checks if gripper is in reset state.
isMoving Use the one from RobotiqHand class.

Table 4. Status constant.

Constant name Value Description
FINGERA 0x1 Finger A constant for get functions.
FINGERA 0x2 Finger B constant for get functions.
FINGERA 0x4 Finger C constant for get functions.
SCISSOR 0x8 Scissor constant for get functions.
FINGER_IN_MOTION 0x00
FINGER_CONTACT_OPENING 0x02 finger has stopped due to contact

while opening.
FINGER_CONTACT_CLOSING 0x01 finger has stopped due to contact

while closing.
FINGER_AT_POS 0x03 finger is at requested position.
FAULT_NONE 0x00 finger is at requested position.
FAULT_DELAYED_ACTIVATION 0x05 Activation must be completed prior

to action.
FAULT_DELAYED_MODE_CHANGE 0x06 Mode change must be completed

prior to action.
FAULT_ACTIVATION_NEEDED 0x07 The activation bit must be set prior

to action.
FAULT_COM_CHIP_NOT_READY 0x09 Mode change must be completed

prior to action.
FAULT_CHANGE_MODE_MINOR 0x0A interferences detected on Scissor

(under 20 sec).
FAULT_ATR 0x0B Automatic release in progress.
FAULT_ACTIVATION 0x0D Activation fault, verify that no in-

terference or other error occured.
FAULT_CHANGE_MODE_MAJOR 0x0E interferences detected on Scissor

(over 20 sec).
FAULT_ATR_COMPLETE 0x0F Automatic release completed. Re-

set and activation is required.

18

3.4 Exceptions

The interface can throw exceptions[Fig 6] when there is an error that requires an ac-
tion from the user. The user can be a program. All of these exception are derived from
the RobotiqException base exception class. There are two main branches of exceptions.
These are state exceptions and connection exceptions. Both branches have few more spe-
cific exceptions.

Figure 6. The inheritance hierarchy of exception classes.

19

4 IMPLEMENTATION

Not everything from design were implemented. This can be seen in the implemented
FSM[Fig 7] as it does not contain states for atr and reset functionality. These were left
out of implementation because they were deemed unnecessary for now.

Figure 7. Implemented FSM.

4.1 RobotiqHand class

This section explains how some of the functions of the Robotiqhand class were imple-
mented. Atr and reset functions were not implemented. Appendix[App 3] contains regis-
ter mapping, but not full explanation of them.

set functions: These functions update interface layers internal copy of the grippers regis-
ter. After this update it changes state so that the updated register is send to the gripper.

isActivated: This function return true if register gIMC is 0b11. This means that activation
or mode change is completed.

20

isReset:This function return true if register gIMC is 0b00. This means that the gripper
is in reset (or automatic release) state. Reset state needs activation before gripper can be
used again.

isMoving: This function returns true if the most recent Roboticstatus objects ismoving
function returns true. Because there is some delay between giving move command and
sending the command, this function also return true if command has not been send. Com-
mand delivery is checked by two things. First if current state is running_cc meaning that
commands need to be sended. Second by comparing internal copy of requested positions
to the most recent Roboticstatus objects requested positions.

start: At first this function creates a connection to the gripper. Then the gripper is ac-
tivated by sending rACT bit. At the same time individual finger and scissor control is
enabled by rICF and rICS bits and the gripper is stopped by rGTO bit, which does not
stop activation. The function then waits for activation to finish. After that it starts the
communication thread and waits for it to start.

stop: This function changes current state to do_shutdown and waits for the communica-
tion thread to end. The communication thread ends after stopping the gripper by rGTO
bit.

4.2 RobotiqStatus class

This section descripes how functions of the RobotiqStatus class work. Appendix[App 3]
contains register mapping, but not full explanation of them.

get finger functions: These return appropriate register values directly.

getFaultStatus: This function returns gFLT bits directly. Compare this to given constants
to get details about the fault.

isMoving: This function checks if gSTA is 0b00. This means that the gripper is in motion
towards requested position.

isActivated:This function checks if gIMC is 0b11. This means that activation and mode
change are completed.

21

isReset:This function checks if gIMC is 0b00. This means that the gripper is in reset (or
automatic release) state. See fault status if the gripper is activated.

22

5 DEMO

As a part of this thesis a demo program was made. The purpose of this demo is to show
how interface is used. Because of this purpose a the demo was designed so that it was
informative for programmers instead of showy movements.

The demo program has four parts. These parts are basic open and close movements,
changing speed, changing force and status information. Basic open and close movements
contains pinch, wide, normal and scissor movements. Changing speed shows how to
change speed for individual fingers or multiple fingers at the same time. Changing force
is basically same as speed but force is changed instead of speed. Status information shows
how to check finger status and how to get current data that translates to force. It also shows
how to check fault state.

23

6 MEASUREMENTS

The interface uses values between 0 and 255 for speeds and forces. It is part of this thesis
to measure what these values are in physical quantity.

6.1 Speed

The time between giving close command to interface and interfaces ismoving function
returning false was measured. This gives a close approximate of grippers closing speed
for given speed value. The value is not exact because it includes network delay and maybe
small delay before interface sends the command. Measurements were made in order from
slowest to fastest.

Because these measurement include small errors three runs were made. Each run mea-
sures values starting from zero and every fourth value from there on. The picture [Fig 8]
contains a plot of average values from these three measuring runs. Results show that
speed is not linear. Instead the speed increase decreases with higher values.

Figure 8. Graph of gripper’s closing speed.

24

6.2 Force

Force was measured by grasping a scale with different force values. Scale measures mass
from the force gravity causes to it. Therefor scale can also be used to measure force.
Equation 1 was used to convert scale reading to force.

F = mg (1)

Where m is the value read from scale and g is 9.81m/s2.

To eliminate the effect of gravity scale was mounted vertically[Fig 9]. The gripper then
grasped it from above. After gripper had stopped value from scale was read manually.
This produced some errors to data because value on scale always dropped after gripper
had stopped. For this reason values from scale were recorded with varying precision.
Sometimes first seen hundred was recorded sometimes first ten. The scale used has max-
imum value at a bit over 3000 grams. Because of this sometimes scale gave errors during
measurements.

Figure 9. Force measuring setup.

Three measuring runs were made. Each run measured every 25th value starting from zero.
Values were measured starting from zero and going up by 50 and then starting from 225
and going down by 50. The picture [Fig 10] contains a plot of average values from these
three measuring runs. Results seemed to be almost same for every force value. There
were few random low values.

Because this setup produced unreliable results it was improved by placing a piece of
foam between the scale and fingers[Fig 11]. This allows more time and space for gradual
increase of force.

Three measuring runs were made in same way as before. This time the values from the
scale[Fig 12] were much more as expected. They were generally increasing as force value

25

Figure 10. Force measurements.

Figure 11. Force measuring setup with foam.

26

was increasing. Even though result were more reliable than on previous setup there was
still sometimes large random variations.

Figure 12. Force measurements with foam.

Because measurements seemed to be unreliable, currents were also recorded. Maximum
currents from a run without a foam[Fig 13] show a relation between maximum current
and force. Maximum Currents from a run with a foam[Fig 14] show a relation between
maximum currents of fingers b and c and force. This is because fingers b and c were
pressing the foam.

Timelines of currents with and without foam[Fig 15] show why results were better with
foam. Without foam the currents peak almost instantly. Where as with foam currents have
some time to reach their peaks thus allowing better results.

27

Figure 13. Relationship between current and force from second run without foam.

Figure 14. Relationship between current and force from first run with foam.

28

Figure 15. Timelines of current from a run with and without foam.

29

7 DISCUSSION

The two main goals of the interface were to hide register manipulation behind easy to
use functions and to have non blocking functions. Non blocking functions were neces-
sary because the interface would be used inside robot control program and could produce
real danger if it would freeze the program. To Make the functions non blocking a sepa-
rate communication thread was used. Thread was used because it is easiest method and
libmodbus doesn’t have asynchronous communication mode [15].

The four build-in modes were not used. This is because individual finger control was
needed, because the gripper would be used in sensor based manipulation research. This
requires the ability to adjust speed and force as much as possible. Changing build-in
modes would also result in gripper movement that would not necessary be wanted. Be-
cause of this the build-in modes were simulated using individual finger control.

After deciding only to use individual finger control it was decided that we would use
functions with a parameter to indicate which fingers it is are affected. This was done
because we didn’t want to have too many functions by having separate function for each
finger.

The atr and reset parts of the fsm were left out of the implementation, because they are
not needed in normal operations. The other reason was that they can be added later if
needed.

7.1 Future Work

There is several things that were left for future work. First of all fault recovery. Some
faults can be cleared without resetting. This leads to the second thing, which is reset.
Also automatic release functionality was left for future work, because it was not needed
yet. A possibility to reconnect should be made. With reconnect one should also think if
interface should try reconnecting automatically. It is also necessary to think if interface
should perform activation after reconnecting, especially in automatic reconnect.

30

8 CONCLUSIONS

Because the interface was required to be asynchronous, the state machine has some extra
states. These extra states are used in communication between API and communication
thead. The parts of the interface that were implemented are working. The parts that
weren’t implemented were parts that are not needed in normal operations. Implementation
is now part of the itlabcpp library.

Measuring speed was rather simple and it went well. measuring force turned out to be
a bit tricky. A scale was used to measure the grasping force. The problem was that the
value on scale started to drop as soon as gripper stopped. Also softness had to be added
to the scale to get any kind of meaningful results.

31

REFERENCES

[1] Bruno Siciliano and Oussama Khatib. Handbook of Robotics, chapter 1 Introduction,
pages 1–4. Springer, 2008.

[2] Antonio Bicchi and Vijay Kumar. Robotic grasping and contanct: A review. In IEEE

International Conference on Robotics and Automation, volume 1, pages 348–353,
2000.

[3] H. Asada. Studies on prehension and handling by robot hands with elastic fingers.
Ph.d. dissertation, Kyoto University, Kyoto, Japan, Apr 1979.

[4] Mason M.T and Salisbury J.K. Jr. Robot hands and the mechanics of manipulation.
The MIT Press, Cambridge, MA, USA, 1985.

[5] Jeffrey Coates Trinkle. The Mechanics and Panning of Enveloping Grasps. a dis-
sertation, University of Pennsylvania, Jan 1987.

[6] Makoto Kaneko, Yutaka Hino, and Toshio Tsuji. On three phases for achieving
enveloping grasps - inspired by human grasping. In IEEE International Conference

on Robotics and Automation, pages 385–390, 1997.

[7] Van-Duc Nguyen. Constructing force-closure grasps. In IEEE International Con-

ference on Robotics and Automation., volume 3, pages 1368–1373, 1986.

[8] Yun-Hui Liu. Computing n-finger form-closure grasps on polygonal objects. The

International Journal of Robotics Research, 19(2):149–158, Feb 2000.

[9] Kensuke Harada and Makoto Kaneko. Enveloping grasp for multiple obj’ects. In
International Conference on Robotics & Automation, volume 3, pages 2409 – 2415,
1998.

[10] Farzad Cheraghpour, S. Ali A. Moosavian, and Ali Nahvi. Multiple aspect grasp
performance index for cooperative object manipulation tasks. In International Con-

ference on Advanced Intelligent Mechatronics, pages 386 – 391, 2009.

[11] Robotiq inc. Robotiq adaptive gripper instruction manual, 111031 edition, 2011.

[12] Implementing the singleton pattern in c#, http://csharpindepth.com/articles/general/singleton.aspx,
Retrieved 21.08.2012.

[13] Daniel Robbins. Posix threads explained,
http://www.ibm.com/developerworks/linux/library/l-posix1/index.html, Retrieved
21.08.2012.

32

[14] Max Felser. Real-time ethernet - industry prospective. PROCEEDINGS OF THE

IEEE, 93(6):1118–1129, June 2005.

[15] libmodbus, http://libmodbus.org, Retrieved 19.08.2012.

Appendix 1. Speed measurements

Table A1.1. Speed measurements in milliseconds.

Value Run 1 Run 2 Run 3 Value Run 1 Run 2 Run 3
0 10021 10021 10021 132 3402 3387 3397
4 9536 9536 9562 136 3326 3315 3326
8 9001 9031 8976 140 3239 3244 3261
12 8546 8546 8560 144 3201 3194 3194
16 8111 8116 8156 148 3154 3123 3143
20 7727 7733 7773 152 3083 3088 3104
24 7367 7344 7357 156 3027 3038 3042
28 7049 7080 7065 160 2967 2973 2982
32 6798 6792 6798 164 2901 2932 2947
36 6509 6536 6540 168 2865 2871 2885
40 6271 6266 6278 172 2850 2831 2811
44 6023 6049 6064 176 2770 2789 2760
48 5848 5807 5848 180 2740 2755 2750
52 5600 5655 5650 184 2720 2704 2704
56 5454 5458 5479 188 2648 2654 2674
60 5273 5281 5270 192 2612 2633 2609
64 5115 5130 5134 196 2588 2587 2569
68 4928 4984 4978 200 2542 2557 2548
72 4807 4841 4827 204 2513 2491 2502
76 4674 4695 4695 208 2473 2456 2502
80 4548 4574 4583 212 2462 2446 2452
84 4442 4443 4441 216 2395 2405 2427
88 4306 4336 4331 220 2390 2385 2406
92 4226 4225 4225 224 2344 2365 2350
96 4099 4118 4119 228 2314 2310 2339
100 3989 4017 4043 232 2295 2294 2299
104 3912 3942 3939 236 2280 2274 2274
108 3795 3831 3845 240 2238 2238 2239
112 3766 3765 3745 244 2218 2214 2233
116 3680 3675 3675 248 2183 2188 2193
120 3578 3593 3593 252 2173 2183 2162
124 3487 3539 3518 255 2097 2122 2137
128 3446 3453 3467

(continues)

Appendix 1. Speed measurements

Appendix 2. Force measurements

Table A2.1. Force measurements with foam

value Run 1(g) Run 2(g) Run 3(g)
0 630 650 570
25 500 530 550
50 900 930 950
75 900 1600 1840
100 1300 1250 1250
125 1900 1110 1160
150 1600 1760 1830
175 2100 2520 2500
200 2000 2350 2410
225 2500 2510 2530
250 2600 2510 2540

Table A2.2. Force measurements without foam

value Run 1(g) Run 2(g) Run 3(g)
0 1930 3000 2930
25 2920 1500 3000
50 3000 2950 2900
75 2900 2320 3000
100 2400 2850 2830
125 2950 2880 3000
150 2600 2440 2900
175 2940 2920 3000
200 2850 2960 2850
225 3000 2900 2970
250 3000 2900 2930

Appendix 3. gripper registers

Table A3.1. Gripper registers

request
Byte name Bit name

Action request

0 rACT
1 rMOD
2
3 rGTO
4 rATR
5-7 rRS0

Gripper options

0 rGLV
1 rAAC
2 rICF
3 rICS
4-7 rRS1

Gripper options 2 0-7 rRS2
Position request A 0-7 rPRA
Speed A 0-7 rSPA
Force A 0-7 rFRA
Position request B 0-7 rPRB
Speed B 0-7 rSPB
Force B 0-7 rFRB
Position request B 0-7 rPRB
Speed B 0-7 rSPB
Force B 0-7 rFRB
Position request C 0-7 rPRC
Speed C 0-7 rSPC
Force C 0-7 rFRC
Pos req scissor 0-7 rPRS
Speed scissor 0-7 rSPS
Force scissor 0-7 rFRS

status
Byte name Bit name

Gripper status

0 gACT
1 gMOD
2
3 gGTO
4 gIMC
5
6 gSTA
7

Object status

0 gDTA
1
2 gDTB
3
4 gDTC
5
6 gDTS
7

Fault status
0-3 gFLT
4-7 gRS1

Pos. req. A echo 0-7 gPRA
Position A 0-7 gPOA
Current A 0-7 gCUA
Pos. req. B echo 0-7 gPRB
Position B 0-7 gPOB
Current B 0-7 gCUB
Pos. req. C echo 0-7 gPRC
Position C 0-7 gPOC
Current C 0-7 gCUC
Pos. req. scissor echo 0-7 gPRS
Position scissor 0-7 gPOS
Current scissor 0-7 gCUS

	INTRODUCTION
	Backround
	Objectives and Restrictions
	Structure of the Thesis

	THEORY
	Robotics
	Grasping
	The gripper
	What is interface/ definition of interface

	DESIGN
	Protocol stack
	State machine
	interface/functions
	RobotiqHand class
	RobotiqStatus class

	Exceptions

	IMPLEMENTATION
	RobotiqHand class
	RobotiqStatus class

	DEMO
	MEASUREMENTS
	Speed
	Force

	DISCUSSION
	Future Work

	CONCLUSIONS
	REFERENCES

