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Electricity price forecasting has become an important area of research in the aftermath
of the worldwide deregulation of the power industry that launched competitive
electricity markets now embracing all market participants including generation and
retail companies, transmission network providers, and market managers.

Based on the needs of the market, a variety of approaches forecasting day-ahead
electricity prices have been proposed over the last decades. However, most of the
existing approaches are reasonably effective for normal range prices but disregard price
spike events, which are caused by a number of complex factors and occur during
periods of market stress.

In the early research, price spikes were truncated before application of the forecasting
model to reduce the influence of such observations on the estimation of the model
parameters; otherwise, a very large forecast error would be generated on price spike
occasions. Electricity price spikes, however, are significant for energy market
participants to stay competitive in a market. Accurate price spike forecasting is
important for generation companies to strategically bid into the market and to optimally
manage their assets; for retailer companies, since they cannot pass the spikes onto final
customers, and finally, for market managers to provide better management and planning
for the energy market.

This doctoral thesis aims at deriving a methodology able to accurately predict not only
the day-ahead electricity prices within the normal range but also the price spikes. The
Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and
its structure is studied in detail.

It is almost universally agreed in the forecasting literature that no single method is best
in every situation. Since the real-world problems are often complex in nature, no single
model is able to capture different patterns equally well. Therefore, a hybrid
methodology that enhances the modeling capabilities appears to be a possibly
productive strategy for practical use when electricity prices are predicted.

The price forecasting methodology is proposed through a hybrid model applied to the
price forecasting in the Finnish day-ahead energy market. The iterative search procedure



employed within the methodology is developed to tune the model parameters and select
the optimal input set of the explanatory variables.

The numerical studies show that the proposed methodology has more accurate behavior
than all other examined methods most recently applied to case studies of energy markets
in different countries. The obtained results can be considered as providing extensive and
useful information for participants of the day-ahead energy market, who have limited
and uncertain information for price prediction to set up an optimal short-term operation
portfolio.

Although the focus of this work is primarily on the Finnish price area of Nord Pool
Spot, given the result of this work, it is very likely that the same methodology will give
good results when forecasting the prices on energy markets of other countries.

Keywords: day-ahead electricity prices, price spikes, feature selection, hybrid
methodology
UDC 621.3:658.8.011.1:338.534:51.001.57:519.2
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1 Introduction

This chapter provides a basic background for the study addressed in this doctoral
thesis. The motivation for the work is presented and previous works in the field are
reviewed. The time framework for a day-ahead energy market of Nord Pool Spot is
introduced. Finally, the outline of the work is given and the main scientific
contributions are identified.

1.1. Motivation and background

The power markets worldwide have been strictly regulated during the most part of the
20" century, but over the last decades, they have undergone a significant restructuring
and deregulation.

Before deregulation, that is, within vertically integrated power systems, electricity
prices were usually regulated and the consumers were offered predetermined tariffs. The
attempts to design well-functioning competitive markets that give players the correct
incentives were supposed to improve production efficiency and limit market power,
since in competitive electricity markets, participants have the option of trading
electricity. Hence, in deregulated electricity markets, more freedom is left to the players.

One of the most pertinent questions for deregulation programs, in the light of the key
objectives such as reducing electricity prices while keeping the lights on, is how to
arrange the electricity trading between the generators and the buyers in the wholesale
market. There is no ready-made answer to this question as there are different electricity
market structures and regulatory policies in different countries. It is possible, however,



18 Introduction

to identify two main market arrangements from the several models implemented around
the world, namely the power pool and bilateral contract in parallel to a voluntary power
exchange (Barroso et al., 2009).

Companies acting on the power exchange require accurate electricity price forecasts to
have an opportunity to optimize the use of their portfolio by bidding or hedging against
price volatility in order to get the highest possible profit. For example, generating
companies acting on the power exchange compete with each other in serving the
consumers' demand and have the opportunity to optimize the use of their production
portfolio by pricing and bidding their available production capacity into the market. On
the other hand, demand-side participants look for feasible options to avoid the high
electricity market prices during peak hours. Moreover, price forecasts are of great
importance for system operators, who are responsible for keeping the grid in balance.
Besides, market participants are interested not only in price prediction but also in
knowing the uncertainty of the forecast, which plays a significant role in decision
making.

Certain unique characteristics of electricity markets make the electricity price
forecasting more complex than the price forecasting of other commodities. Electric
power cannot be stored economically, and further, transmission congestion influences
the exchange of power. Unlike electricity demand series, electricity price series can
exhibit variable means, major volatility, and significant outliers. Because of the extreme
volatility reflected in price spikes, electricity price modeling and forecasting face a
number of challenges. Thus, applications used to forecast the prices of other
commodities are only of limited validity in electricity price forecasting and may
produce large errors.

The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market.
The prices in the Nordic energy market are highly volatile but are not purely stochastic
and, therefore, can be explained, at least partly, by background variables. Drivers
affecting the prices on the market are, for example, temperature and wind power
forecasts, as well as power plant availability and transmission congestions. Electricity
prices on the Nord Pool Spot market are, in the long run, significantly influenced by the
water level in the reservoirs of the Norwegian and Swedish hydropower plants.

With a growing proportion of energy trading being carried out on Nord Pool Spot and
with the expanding geographical areas that this power exchange covers, the need for
advanced market price forecasting methods has increased. Thus, prior information on
market price fluctuations is a crucial concern for market participants. Short-term
operation scheduling in a competitive electricity market is a challenging task because of
the uncertainty associated with the future electricity prices. This approach is particularly
efficient if the price forecast is of a high accuracy.

This doctoral thesis addresses the issue of forecasting day-ahead electricity market
prices through development a forecasting model where an optimal input feature set and
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model parameter setting are analytically selected to predict not only prices within the
normal range but also price spikes.

1.2. Objectives of the thesis
The objectives of the thesis are:

e to review a structure of a selected case market;
to detect a set of candidate explanatory variables that are probably influencing the
day-ahead electricity price volatility and spikes;

e to investigate models built on classical (e.g. time series, stochastic, regime-
switching), modern (e.g. neural networks), and hybrid (e.g. classical time series
plus neural networks) approaches recently applied to case studies of price
forecasting on day-ahead energy markets in different countries;

e to examine existing feature selection techniques and construct their combinations to
find the best feature selection approach resulting in the highest price forecasting
accuracy;

o to derive the methodology for the analysis and prediction of day-ahead electricity
price signals within not only the normal range but also price spikes;

o to verify the methodology on actual data extracted for a case market, and
to apply the obtained price forecasts to a short-term scheduling of a single market
consumer.

1.3. Previous work

Electricity market price forecasting is a relatively new area of research, unlike the
electricity demand forecasting problem (Hippert et al., 2001). Based on the needs of the
market, a variety of approaches to forecast electricity prices have been proposed over
the last decades.

The first group of models applied to electricity price forecasting within the context of
competitive electricity markets is based on simulation of power system equipment
(transmission congestions, losses, etc.) and the related cost information (marginal
generation costs, heat rates, or fuel efficiencies) (Bastian et al., 1999; Fu and Li, 2006).
A major drawback of this approach is the requirement of a large amount of real-time
data on the existing equipment. Nevertheless, the simulation methods presented could
very well be effective if used by market operators and regulators, who have the
authority to collect precise equipment and operational information.

The second group is game-theory-based models, which focus on the impact of bidder
strategic behavior on electricity prices. It has been stated that electricity market prices
are closely related to the bidding and pricing strategies of the market participants (Guan
et al., 2001; Bajpai and Singh, 2004; Chandarasupsang et al., 2007; Sadeh et al.,2009).
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The third approach is based on stochastic modeling. A modified version of the
geometric Brownian motion was proposed as a jump diffusion model for the stochastic
modeling of electricity prices (Barlow, 2002). The robustness of various diffusion
models in the case of electricity prices has been evaluated in (Barz and Johnson, 1998).
The main conclusion was that the geometrical mean reverting jump-diffusion models
provide the best performance and that all models without jumps appear inappropriate for
modeling electricity prices. It should be noted that the main disadvantage of the
stochastic modeling approaches arises from difficulties involved in incorporating
physical characteristics of power systems, such as losses and transmission congestions,
into mathematical (financial) models, which may produce a significant mismatch
between the model output and the actual power market.

The fourth approach is based on time series models and includes two major branches:
regression-based models and artificial intelligence (Al) models such as neural networks
(NN) and fuzzy logic. Regression models are considered to be functions of past price
observations and exogenous explanatory variables such as electricity demand and
meteorological conditions. Much work has been done on electricity price forecasting
with an autoregressive moving average (ARMA) approach, transfer function, and
dynamic regression (Nogales et al., 2002; Contreras et al., 2003). To overcome the
restrictions of linear models and to account for nonlinear patterns observed in real
problems, several classes of nonlinear models have been proposed. These include
threshold autoregressive (TAR-type) models (Robinson, 2000; Rambharat et al., 2005)
and an autoregressive conditional heteroscedasticity (ARCH) model by Engle (Engle,
1987) and its extended version GARCH (Bollerslev, 1986; Garcia et al., 2005;
Karandikar, 2009). More recently, Al models have been suggested as an alternative to
the above mentioned regression-based forecasting models. Among Al models, NNs
with different structures and training algorithms have been applied to electricity price
forecasting (Szkuta, 1999; Nasr et al., 2001; Zhang, 2003; Zhang and Qi, 2005;
Amjady, 2006; Taylor, 2006, Cataldo et al., 2007; Mandal et al., 2007; He and Bo,
2009). The main strength of Al models is their flexible nonlinear modeling capability.

Linear-based models and nonlinear models have both achieved successes in their own
linear or nonlinear domains. However, none of them is a universal model that is suitable
for all circumstances. For example, the approximation of ARMA models to complex
nonlinear problems may not be adequate, and the use of NNs to model linear problems
has yielded mixed results. Since it is difficult to thoroughly know the characteristics of
the data in a real problem, a hybrid methodology that has both linear and nonlinear
modeling capabilities would appear to be a possibly productive strategy for practical
use. It is almost universally agreed in the forecasting literature that no single method is
best in every situation; largely due to the fact that real-world problems are often
complex in nature, and no single model is able to capture different patterns equally well.
By combining different models, different aspects of the underlying patterns may be
captured. Researchers have compared various adaptive and nonadaptive linear and
potentially nonlinear models and concluded that hybrid models consisting of
multivariate adaptive linear and nonlinear models outperform other models for many
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variables (Swanson and White, 1997). A model combining NN and ARMA has been
developed (Tseng et al., 2002). The model outperformed single ARMA and NN in
terms of performance accuracy measures. A hybrid model for day-ahead price
forecasting, composed of linear and nonlinear relationships of prices and explanatory
variables such as electricity demand was developed (Wu and Shahidehpour, 2010). A
day-ahead price forecasting model was implemented by a hybrid intelligent system
composing of a NN model and a genetic algorithm with an enhanced stochastic search
procedure (Amjady and Hemmati, 2007).

Most of the existing approaches forecasting electricity prices are reasonably effective
for normal range electricity prices but disregard price spike events, which are caused by
a number of complex factors and occur during periods of market stress. These stressed
market situations are associated with extreme meteorological events, unusually high
demand or, more often, unexpected shortfalls in supply, caused for example by
generator failures (Becker et al., 2007). In the early research, price spikes were
truncated before application of the forecasting model to reduce the influence of such
observations on the estimation of the model parameters; otherwise, a very large forecast
error would be generated on price spike occasions (Yamin et al., 2004; Rodriguez et al.,
2004; Weron, 2006).

In addition to a normal price behavior analysis, an improved analysis of spikes is
important for market participants to stay competitive in a competitive market. GARCH
was tested to simulate price spikes in an original price series (Keles, 2012). Spikes
were incorporated into a Markov-switching model by proposing different regimes;
regular and spiky (Becker et al., 2007). Spikes were introduced into diffusion models by
the addition of a Poisson jump component with time varying parameters (Jabtonska et
al., 2011). Data mining techniques have been applied to the spike forecasting problem
(Lu et al., 2005; Zhao et al., 2007a). Most of the approaches proposed for the problem
of price spike forecasting were not able to produce spikes with heights and occasions
usually observed in an original price series.

Most of the work on electricity market price forecasting is concentrated on improving
forecast accuracy rather than the effects of price forecast inaccuracy on market
participants. Only a few approaches have been reported in the literature to deal with the
problem of future price uncertainty in operation planning in competitive environments
(Plazas et al., 2005; Carrion et al., 2007; Li et al., 2007). The obtained price forecasts
were used in scenario-based techniques employed to derive optimal operational
strategies (Zareipor et al., 2010).

1.4. Forecasting time framework

In most cases, the analysis presented in this work relies on hourly data. When hourly
observations are not available, or for simplicity, average daily or weekly values are
entered.
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The time framework to forecast the electricity prices in the Nord Pool Spot day-ahead
energy market is illustrated in Figure 1.1 and explained below.

The day-ahead price forecast for day D is required on day D-1 (bidding: 12:00 CET). As
soon as the noon deadline to submit bids has passed, all purchase and sell orders are
aggregated into two curves for each delivery hour of day D; an aggregate demand curve
and an aggregate supply curve. The system price for each hour of day D is determined
by the intersection of the aggregate supply and demand curves, which represent all bids
and offers for the entire Nordic region and are published by the system operator on day
D-1 (clearing: between 12:30 and 13:00 CET). Hence, actual price data up to 24 hours
of day D-1 are available on day D-2. Therefore, when bidding for day D, price data up
to hour 24 of day D-1 are considered known. As a result, the actual forecast of day-
ahead prices for day D can take place between the clearing hour for day D-1 of day D-2
and the bidding hour for day D of day D-1. A detailed description of how a day-ahead
market in the Nordic region works can be found in (Nord Pool Spot, 2013a).

Bidding for Bidding for Bidding for
day D-1 day D day D+1

-------------- O O N

Forecast period Forecast period
for day D 5 for day D+1 5
< > | > (e _——
Clearing for Clearing for Clearing for
day D-1 day D day D+1

Figure 1.1. Time framework to forecast market prices in the Nord Pool Spot day-ahead energy
market.

In multistep ahead prediction, the predicted price value of the current step is used to
determine its value in the next step, and this cycle is repeated until the price values of
the whole forecast horizon are predicted.

1.5. Scientific contribution

A day-ahead electricity price forecasting model is developed. The main contributions
are shortly as follows:
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o Classical and most recently used forecasting methodologies and their
combinations are surveyed and applied to price prediction in a case energy
market.

o Different feature selection techniques and their combinations are studied. The
technique (combination of techniques) resulting in the most accurate price
forecasting is selected.

o The forecasting methodology that is able to predict both normal range prices and
price spikes with a high accuracy is proposed.

e The obtained price forecast is applied to produce an optimal short-term
operation scheduling of a single market costumer.

1.6. Outline of the thesis

Chapter 2 describes the deregulated electricity markets in the Nordic region. The
structure and characteristics of the electricity supply and demand in the Nordic market,
the functioning of the power exchange Nord Pool Spot, and the formation of the day-
ahead electricity prices are introduced.

Chapter 3 discusses the application of the classical time series approaches, stochastic
and regime-switching processes to deal with the problem of day-ahead price forecasting.

Chapter 4 presents the application of a NN model as an example of modern nonlinear
approaches. A hybrid methodology implying a merging of classical and modern
approaches for separate normal range price and price spike forecasts is introduced.

Chapter 5 describes the process of tuning the model parameters and selection of an
optimal input set through an iterative search procedure. A hybrid methodology for
simultaneous prediction of price and demand in the day-ahead energy market is
presented.

Chapter 6 presents a novel iterative forecasting methodology with separate normal price
and price spike forecasting frameworks. This methodology is built on the findings made
within the research and implemented as a combination of different forecasting engines.

Chapter 7 provides discussion and future prospects.
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2 Nordic electricity market

This chapter gives an insight into the electricity market structure of the Nordic
countries. Section 2.1 reviews the reasons behind the process of electricity market
deregulation. Section 2.2 presents the main features of electricity to distinguish it from
other commodities. Section 2.3 introduces the structure of the Nordic electricity market
and the principles of a day-ahead electricity price formation.In Sections 2.4-2.5,
statistics for electricity generation and consumption in the Nordic region are presented.

2.1 Deregulation

Generation, transmission, and distribution of electrical energy require huge capital
investments for operation, maintenance, and expansion (Yan, 2009). In some countries,
crown corporations were established and given a monopoly of generation, transmission,
and distribution of electrical energy within prespecified geographical boundaries. Such
a monopoly structure guaranteed a decent return on the huge investment that a single
entity or a crown corporation would typically make.

Regulation became part of the electricity industry to protect the consumer from the
inevitable consequences of a monopoly industry. However, the regulated electricity
market is still a monopoly but watched by the government. In a regulated electric
market, that is, in a vertically integrated system, local consumers have no other choice
for electricity service but the local provider, and therefore, the electricity price is high
and services are usually limited.
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In the late 1970s, Chile was the first country to introduce competitive forces into the
electricity market. This gradually led other countries to consider the option of a
deregulated electricity market (Wolak, 1997). Deregulation refers to the reduction or
elimination of government control allowing the generation and retail to be competitive
while the transmission is kept under government control. The reason to keep the
transmission sector under regulation is to establish a fair competitive environment
where all competitors have equal access to the transmission network. In a deregulated
market, instead of only one generation provider in a local area, there is a humber of
generation providers. Therefore, consumers have many options for their electricity
providers and development of an optimal operation portfolio.

2.2 Electricity as a commodity

There are certain features of electricity that set it apart from an ordinary commodity and
consequently, result in special power system economics. Electricity cannot be stored in
economically considerable quantities. As a continuous flow, electric energy has to be
consumed at the same time as it is produced. Therefore, there must be an instant balance
between electricity supply and demand in the electricity market. Thus, while the store
affects the aggregate demand for the majority of commodities, this effect does not exist
for electric energy. The nonstorability of electricity also leads to the requirement of
reserve capacity in an electric power system.

One of the key features of electricity as a commodity is the necessity for the electric
energy transmission infrastructure, that is, an electric power network. From that point of
view, electricity may be considered a network-based commodity.

Electric energy is uniform by nature; it is a commodity that cannot practically be
differentiated in terms of product or brand as in the classic economic theory. Electric
energy can be differentiated by different sources of origin (e.g. hydro, nuclear, thermo
power), voltage level, and power quality characteristics (e.g. voltage and frequency
deviations, reliability of supply); yet there are no physical means by which a producer
that actually generated a unit of electricity (a kWh) delivered to a consumer can be
recognized.

As an essential commodity, electricity is characterized by a relatively inelastic demand.
This means that if the price for electricity suddenly doubles, the demand for electricity
will not considerably decrease because of the absence of substitute goods.

2.3 Structure of the Nordic electricity market and price formation

The Nordic region has considerable experience in deregulated electricity markets. The
Nordic electricity market was formed in 1993 in conjunction with the deregulation of
the electricity markets in the region. The derivatives and energy markets were separated
in 2002 to establish the power exchange Nord Pool Spot, which currently operates in
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Norway, Denmark, Sweden, Finland, Estonia, Lithuania, and Latvia (Nord Pool Spot,
2013b).

The main objective of Nord Pool Spot is to balance the generation of electricity with the
electricity demand, precisely and at an optimal price, that is, by equilibrium point
trading. The optimal price represents the cost of producing one kwWh of power from the
most expensive source needing to be employed in order to balance the system. Two
different physical operation markets are organized in Nord Pool Spot: Elspot and Elbas.

2.3.1 Elspot market

The Elspot market is the day-ahead energy market, where market participants submit
bids for sale or purchase of electricity in the next day’s 24-hour period. It is possible to
submit hourly bids, block bids, and flexible hourly bids in the Elspot market. All bids
consist of a price and a volume. The hourly bid specifies the amount of electricity a
participant wishes to buy or sell at different prices in a certain hour. The hourly bid sets
at least the highest buying or selling volume and a price limit for it, and the lowest
buying or selling volume and a price limit for it. The bid may include up to 62 price
steps in addition to the minimum and maximum price limits set by Nord Pool Spot.
Electricity volumes between each adjacent pair of submitted price steps are linearly
interpolated by Nord Pool Spot.

The participants send their bids for the following operation day before deadline at 12:00
CET. Once the market prices have been announced, the market participants receive a
notification of the accepted bids and the hourly commitments of the following operation
day.

2.3.2  System price

After the daily trading cycle in the Elspot market, the day-ahead system price is
calculated for the following day. This price is transparent, liquid, and equal for all
market participants. The system price can be used as a reference price for any financial
electricity market contracts. The system price is formed at every hour of the following
day. To get these hourly system prices, hourly demand and supply curves are built by
combining all the selling and buying bids for each hour of the following day. The
system price is obtained as the point where the demand and supply curves intersect.
Figure 2.1 qualitatively shows the aggregated supply and demand curves.

The aggregated supply curve is presented in the chart with different power generation
methods. The width of the bars corresponds to the generation capacity of each
production form. The shaded areas illustrate the increase in the production costs of
electricity caused by the price of emission allowances. The curve has various steps as a
result of different costs of individual generation forms. If the demand intersects the
supply curve, for example, in the coal condensing part of the curve, then hydro, nuclear
power, combined heat and power (CHP), and coal condensing are used to meet the
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electricity demand. In the system price calculation, the possible restrictions for the
transmission capacity between different geographical areas of the Nordic countries are
left out. In other words, the system price is formed with the assumption that the
transmission capacities between Norway, Sweden, Finland, Denmark, Estonia,
Lithuania, and Latvia are infinite. This is the reason why the system price is also
denoted "the unconstrained market clearing price" that balances the sale and purchase in
the exchange area.
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Figure 2.1. Formation of the day-ahead system price.

2.3.3 Areaprice

The total Nordic market is divided into 15 bidding areas: five in Norway, four in
Sweden, two in Denmark, one in Finland, Estonia, Lithuania, and Latvia. Figure 2.2
presents the current geographic structure of the Nord Pool Spot market with a division
into possible price areas when grid congestions occur.
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Figure 2.2. Nord Pool Spot price areas (source: Nord Pool Spot, 2013c).

An insufficient grid capacity is an obstacle for a uniform price for the whole Nordic
region. An area price is formed on the basis of the demand and supply curves
aggregated for the specific bidding area taking into account the transmission capacity
between different bidding areas.

For the sake of simplicity, the formation of the area price in a market composed of two
market areas is considered. The principle is the same for the actual fifteen bidding areas
in the Nordic electricity market. In Figure 2.3, area level supply/demand curves for two
areas are shown.

There is large overproduction in area A and short supply in area B when the electricity
price is equal to the system price. If the amount of required electricity import to area B
from area A is more than the transmission capacity, it is not possible to completely meet
the overdemand in area B. In this case, the supply curve (area B) is transferred the
amount of the transmission capacity to the right. Area price is read on the vertical axis at
the intersection of the demand curve and the new supply curve. As a result, the price in
area B is higher than the system price. In the overproduction area A, the situation is
similar. If the amount of desirable export is over the transmission capacity, the area
price for area A is set below the system price. The import to area with a production
deficit equals the export from the area with excess supply.
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Figure 2.3. Formation of the area price in a two-area market.

If the transmission flow in the system price equilibrium does not exceed the available
physical transmission capacity, the area prices are equal to the system price. The
Finnish day-ahead area prices are equal to the day-ahead system prices in most cases
over the period 1999-2013 (see Figure 2.4).
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Figure 2.4. System prices versus area prices (in Finland) over the period 1999-2013 (weekly
averages) (source: Nord Pool Spot, 2013d).



30 Nordic electricity market

2.3.4 Elbas market

Some of the market and physical processes taking place up to the physical delivery after
the Elspot market results have been settled should be considered in more detail. The
time period between the physical delivery hour and the Elspot price settlement is long
(36 hours at the most). There are many factors causing a change in the consumption and
the generation situation, and thus, a market player needs an opportunity of trading
during these hours. The Elbas market is an intraday continuous real-time physical
market for electric power trading 24 hours a day, 365 days a year. The Elbas market is
used to match the supply and demand up to one hour prior to the delivery in the case of
unexpected situations or changes after the Elspot market trading.

2.3.5 Regulation power market

The regulating or balance power market is a tool for the Nordic transmission system
operators (TSOs) to maintain the system balance between electricity production and
consumption in real time. The balance between electricity production and consumption
is described by the power system frequency. With the help of the regulating power
market, a system operator can adjust the production or load based on the operational
situation whenever necessary. There are two types of participants in the balance market.
The first one is the active participants, the second one is the passive participants.

The active participants are producers or consumers who have an opportunity to regulate
their generation or consumption in case of a request from the TSOs. There are some
requirements for the active participants who operate in the balance market for the
regulation of generation or consumption.

The holders of production or loads have an opportunity to submit bids for the regulating
power market. The volumes of the bids are based on the holder’s capacity that can be
regulated. The balance providers get a right to participate in the regulating power
market according to the balance service agreement. Other holders of capacity can also
participate in the regulating market through their balance provider or by signing a
separate regulating power market agreement with the TSO. There is a limit for the
volume that is given in the bids and the responding time for regulation. The regulating
bids shall be submitted to the TSO no later than 30 minutes before the operational hour.
The minimum volume of the regulating bid is 10 MW, which should be implemented in
10 minutes after the request. In other words, prior to maintaining the physical balance,
that is, balance regulation, the TSO regularly accepts bids, in other words, volume
(power in MW) and price, from balance providers who are willing to quickly (within 10
minutes) increase or decrease their level of production or consumption (Fingrid, 2013a).

The regulation price is determined in accordance with the most expensive measure
taken during upward regulation (the balance service purchases electricity), or the
cheapest measure taken during downward regulation (the balance service sells
electricity) applied during the hour. In other words, the up-regulation price is formed
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based on the price of the most expensive up-regulation used, but at the least the price for
the price area. All balance providers who were requested by the TSO for up-regulation
during the hour obtain a price for the agreed energy in accordance with the up-
regulation price. The down-regulation price is formed based on the price of the cheapest
down-regulation used, but at the most the price for the price area. All balance providers
who were requested by the TSO for down-regulation during the hour pay the down-
regulation price for the agreed energy. The final regulation price applies to all balance
providers who were selected to regulate the balance upwards or downwards.

2.3.6  Financial market

The Nordic financial market allows trading of financial contracts such as forward and
futures with delivery periods up to six years in advance. None of these contracts entails
physical delivery, and they are all settled in cash against the system price in the day-
ahead market.

The system price plays a key role in the Nordic financial market. The majority of the
standard financial contracts are settled by comparing the average system price for the
period in question with the hedge price stated in the contract. There is mutual insurance
in alliance to obligations that both parties have taken out. The difference in prices is
multiplied by the volume in the contract, and this amount of money is transferred
between the parties of the financial contract. However, not all financial contracts are
settled against the system price, but there are also financial contracts with reference to
the specific area prices.

2.4  Electricity demand

The total energy consumption in the Nordic countries can be divided into several user
groups. The main groups are industry, housing, transport, and agriculture. Figure 2.5a
introduces the structure of electricity consumption in the Nordic market in 2010, when
the total energy consumption was 1 177 TWh, which is equal to about 8% of the energy
consumption in the EU-27 (International Energy Agency, 2012).

Each consumer group can be characterized by its own demand profile, the shape of
which typically slowly varies over time. The most stable electricity demand is caused
by the energy-intensive industry sector. The reason for this is that the industrial plants
operate continuously throughout the year with the exception of short interruptions. The
electricity demand of the household sector instead is not stable through the year. As
winters are often cold in the Nordic area, a household's electricity consumption is
notably higher in winter when electric heating is widely used. In summer, the household
demand for electricity is rather low as summers in the Nordic region are mild, and
consequently, there is little need for air-conditioning. For the sake of visibility, Figures
2.6 and 2.7 present the relation between prices, total electricity consumption and
opposite average values of temperature in the Nordic region since there is an explicit
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negative correlation between temperature and prices, and temperature and electricity
consumption.

a) x10°

Other (incl. agriculture and fishing)

I:linduslry
[ Transport
14 I Housing
Industry I Other
Housin
Transport I
0

Denmark Finland Norway Sweden

Consumption, [TJ]
L s
5 0’ ﬁ o N

»

Figure 2.5. a) Nordic energy consumption by sector, 2010; b) Nordic energy consumption by
sector and country, 2010 (source: International Energy Agency, 2012).

The public sector is mostly composed of transport and services, and its demand is
significantly higher on weekdays compared with weekends. Electricity consumption of
this sector decreases considerably during holidays.

The Nordic electricity market is presented by the electricity markets of Norway,
Sweden, Finland, and Denmark. Each of these countries has quite similar demand
characteristics (see Figure 2.5b). In Finland and Sweden, the forest-based industry is
highly important. Metal manufacturing is of particular importance in Norway. The cold
climate, combined with a history of low-cost and easy access to electricity, has resulted
in high rates of electricity consumption for heating, particularly in Norway, Sweden,
and Finland.

Despite having a relatively decarbonized electricity supply, the Nordic region has
slightly higher per capita greenhouse gas emissions than other industrialized countries
in Europe and Asia. This is due in part to the cold climate and prevalence of energy-
intensive industry. The Nordic countries have set ambitious targets for emissions
reductions by 2050.
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Figure 2.6. Nord Pool Spot day-ahead system prices versus temperature over the period 1999—
2013 (source: Weather Underground, 2013; Nord Pool Spot, 2013d).
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Figure 2.7. Total electricity consumption in the Nordic region versus temperature over the
period 1999-2013 (source: Weather Underground, 2013; Nord Pool Spot, 2013d).
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2.5 Electricity supply

Hydropower, nuclear power, conventional condensing power, CHP, and wind power
may be considered the most important forms of electricity generation in the Nordic
region.

A third of the energy supply in the Nordic region comes from renewable sources. The
largest of these are biomass and waste, which are used to generate electricity, heat, and
transport fuels in Sweden, Finland, and Denmark (see Figure 2.8a). Renewable
electricity in the region is also generated from hydropower in Norway, as well as a
growing share of wind power. With nuclear power in Sweden and Finland, almost half
of the region’s energy is CO2-free. Oil is still the largest single energy source, because
of its central role as a transport fuel.
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Figure 2.8. a) Nordic total primary energy supply 2011; b) Nordic electricity production 2011
(source: International Energy Agency, 2012).

As a whole, the Nordic electrical system is hydro dominant. More than a half of the
overall electricity consumption is covered with hydropower generation (see Figure 2.8
b). The amount of hydropower fluctuates from year to year depending on the annual
inflow that is determined by precipitation and the amount of melting snow. So, the
annual energy available in the Nordic electrical system varies with the fluctuation of the
annual water level.

Biomass is burned in CHPs across Finland and Sweden, while Denmark has the highest
share of wind power in the world (see Figure 2.9).
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Figure 2.9. Electricity production 2011 (source: International Energy Agency, 2012).

Individually, the Nordic countries have very different, but complementary electricity
mixes. This is made possible by the common Nordic grid connecting Norway, Sweden,
Finland, and Denmark.

Since over a half of the generation capacity in the Nordic market is based on hydro
units, a factor representing hydro reservoir in the area can be considered to determine
the electricity price. In the long-run, however, electricity prices are more correlated with
the variation in the hydro reservoir content than the absolute value of this variable
(Jabtonska et al., 2012). The time series of both the day-ahead system price and the
deviation of the Scandinavian hydrological situation from normal are plotted in Figure
2.10. The deviation is calculated as the difference between the mean value indicated as
the average between the minimum and maximum possible hydro storage over the last
10-year history and the hydrological situation in a given week. The Nordic market has
shown that the deviations of water levels from normal have been clearly reflected in the
electricity day-ahead prices till 2005 when the emissions trading of the EU was
introduced.
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Figure 2.10. System prices versus deviation of the hydrological situation over the period 1999-
2010 (source: Nord Pool Spot, 2013d).
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3 Classical approaches to the modelling and forecasting
of electricity prices

This chapter reviews a number of classical models and their application to the Finnish
day-ahead electricity price behavior simulation and forecasting. In particular, Section
3.1 gives a basic statistic of prices over the last decade. Section 3.2 introduces
techniques to define spike samples within a given series. Sections 3.3-3.4 discuss
deterministic factors that have an impact on day-ahead electricity prices and propose a
multivariate linear regression model with varying parameter estimates. Section 3.5
presents details and application of ARMA-based models. In Section 3.6, the mean-
reverting Ornstein-Uhlenbeck model is presented, with both white and colored noise.
ARMA-based and mean-reverting models both enhanced with a regime-switching
technique are presented in Section 3.7.

3.1 Basic statistics of the Finnish day-ahead electricity prices

The Finnish day-ahead electricity prices over the period from 1 Jan 1999 to 31 Dec
2010 are illustrated in Figure 3.1 a. A first look to Figure 3.1a reveals a quite erratic
behavior of the day-ahead prices. The series is clearly nonstationary, that is, its mean
value does not remain constant over time. The price log-return series is used to get
stationarity and based upon the following formula

X, (6D

h-1

r,=In

where ry, is return for any time h, X, is the price value at moment h, X1 is the price
value at moment h-1. The variance in the series is not constant, which is clearly seen in
Figure 3.1b representing the price log-returns. This feature is called heteroscedasticity.
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Both the original prices and the price log-returns have evident spikes and mean
reversion characteristics. The presence of spikes and mean-reversion is generally
explained by the use of expensive generators entering the market when the demand
increases (see Figure 2.1). Similarly, a decrease in demand will cause the prices to
decrease when expensive generators leave the market.
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Figure 3.1. a) Original prices; b) Price log-returns; c) Histogram of the original prices; d)
Histogram of the price log-returns.

The values of the most important distribution parameters of both the price and log-
return series are collected in Table 3.1. With a mean value of 32.55 euro/MWh, the
original price series reached maximum and minimum values of 1400.1 euro/MWh and 0
euro/MWh, respectively, during the sample period. This shows a huge spread of
magnitudes over the given sample period. On the other hand, the returns seem to be of a
relatively small range when compared with the prices, but this is a result of logarithmic
operation. The prices for the winter and fall seasons show very similar mean values
which, in turn, are higher than the price mean values for the spring and summer seasons.
The standard deviations of sample prices show that the prices of the winter season are at
least twice as volatile as those of the three other seasons.

In general, comparing the given probability distributions of both the prices and the price
log-returns with the normal probability distribution, it is easily seen that neither the
prices nor the log-returns follow the normal distribution. The original prices and price
log-returns series show very high leptokurtosis (see Figure 3.1c, 3.1d). It indicates that
extremely low and high values of the series have a much higher probability of
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occurrence than those values that are due to a normal distribution with the same
variance. The degree of asymmetry of the original prices and the price log-returns is not
as high as the leptokurtosis. Both the series are positively skewed.

Table 3.1. Basic statistics of the prices and the price log-returns.

Original prices, [euro/MWHh] Price log returns
All seasons ~ Winter ~ Spring  Summer Fall All seasons

Mean 32.95 36.89 28.49 31.35 35.16 0.00
Std 22.61 35.77 13.55 17.18 16.01 0.11
Maximum 1400.11 1400.11 14952 300.04 199.90 4.74
Minimum 0.00 3.87 0.28 0.00 2.19 -3.60
Skewness 18.87 18.70 0.79 1.64 0.95 1.79

Kurtosis 940.98 589.89 4.24 14.80 5.01 120.39

The interdependencies in the price series are verified. The autocorrelation functions
(ACF) and the partial autocorrelation functions (PACF) of both the original prices and
the price log-returns are plotted (see Figure 3.2).
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Figure 3.2. ACF (top) and PACF (bottom) of the prices.

The ACF of the prices seem to die out very slowly, whereas the PACF plot reveals a
very significant spike at lag 1. The price log-returns are significantly positively



40 Classical approaches to the modelling and forecasting of electricity prices

autocorrelated at several lags multiple of 24 indicating strong seasonal patterns (see
Figure 3.3).
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Figure 3.3. ACF (top) and PACF (bottom) for the price log-returns.

3.2 Electricity price spikes

For the purposes of the study of price spikes, a spike definition is formulated. A price
spike can be defined as a price that surpasses a specified threshold. However, the main
guestions are how high the threshold should be and whether the threshold should have a
fixed or time-dependent value. Specification of the threshold characteristics is a
challenging task. Some authors suggest the use of fixed log-price change thresholds
(Bierbraurer et al., 2004), a varying original or log-price range threshold (Cartea and
Figueroa, 2005), or a fixed original price range threshold (Amjady and Keynia, 2010).

It is advisable to use a varying threshold value since the very volatile character of
electricity prices usually requires the use of a varying threshold instead of one global
value to cut off global outliers. Two different approaches to define spikes within a given
series are applied within the study:

e A varying threshold is iteratively calculated. The whole given series is filtered with
values that are out of the range defined by the mean value p and the n time standard
deviation o of the whole given series at the specific iteration as [4-n-o p+n-c]. On the
second iteration, the corresponding mean value and standard deviation of the
remaining series is again calculated: those values that are now out of the range are
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filtered again. The process is repeated until no further values can be filtered. Then, a
spike value is calculated as a difference between the corresponding values of original
and adjusted series and considered as upper or lower spikes.

o A time-varying threshold is calculated as was proposed in one of the previous studies
(Jabtonska, 2008). Further, a spike is understood as an observation that is out of the
range defined by the mean value p and the n time standard deviation ¢ of the
neighborhood data of the specific length w as [p-n-c p+n.clw. Here, the
neighborhood data are understood as a set of observations before and after the given
observation. Therefore, very high and very low values of the given series can be
indicated and considered as upper or lower spikes, respectively. Then, a spike value
is calculated as a difference between the given observation (defined as a spike) and
the mean value p of the corresponding neighborhood interval of length w.

Since the importance (i.e. economic impact) of upper price spikes for market
participants is much higher than that of lower spikes, in the further study, only upper
price spikes are considered with a few exceptions (see Section 3.7).

Figure 3.4 shows the results obtained when the two above-mentioned spike-defining
approaches are used. As an example, upper price spikes are extracted given n = 3 and w
= 6 months (4380 hours). The clustering character of the price spikes is visible.
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Figure 3.4. Spike samples extracted from the original hourly prices of the year 2010 when
iterative (top) and time-varying (bottom) thresholds are used.
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For both approaches, the spike size distributions are constructed and plotted in Figure
3.5. Moreover, the empirical normalized histograms are compared with an exponential
distribution having a parameter A (red curve in Figure 3.5) equal to the mean value of
the extracted spikes. As can be seen, the magnitude of spikes can be roughly
approximated by an exponential distribution.

x10° a) x10° b)

200 400 600 800 10001200 200 400 600 800 1000 1200
Spike magnitude, [euro/MWh] Spike magnitude, [euro/MWh]

Figure 3.5. Distribution of spike magnitude in the original hourly prices of the year 2010
obtained by the approaches using a) iterative threshold given n = 3 and b) time-varying
threshold given n = 3 and w = 4380 hours.

3.3 Deterministic factors

Prices in the electricity market are highly volatile but are not purely stochastic and,
therefore, can be explained, at least partly, by background information. As mentioned,
electricity prices are influenced by many factors, such as historical prices, electricity
demand, weather conditions, imports, generation outages, and operational reserves
(Catalao, 2007). Some of the factors are more important than others.

3.3.1 Trend and seasonality

It is clearly seen that the Finnish day-ahead electricity prices exhibit different types of
periodicity (see Section 3.1). They mostly arise as a result of an electricity demand
change under specific climate conditions, such as temperature and the number of
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daylight hours. Distinguishing between on-peak and off-peak electricity prices, or
among prices corresponding to different time periods, such as seasons, is indeed
important in power markets (Lucia and Schwarz, 2000). In some countries, also the
supply side shows seasonal variations in output. Hydro units, for example, are heavily
dependent on precipitation and snow melting, which varies from season to season.
These seasonal fluctuations in demand and supply translate into seasonal behavior of
electricity prices, and day-ahead electricity prices in particular (Weron, 2006).

As a result, the prices of the Finnish day-ahead energy market are known to have three
main types of periodicity: daily, weekly, and annual. The first two types are due to
regular variations in demand between different hours of the day (morning and evening
peaks) and different days of the week (business day—weekend structure). The latter type
of periodicity reveals long-term annual fluctuations; high prices in wintertime and low
prices during the summer.

The functional relationship between these components can assume different forms. The
classical decomposition in which a series is seen as the sum or product of trend,
seasonal, and irregular components may be considered. Hence, there are two main
options for a decomposition model:

X, =T,-S, -, (multiplicative) (3.2)
or
X, =T, +S, +1, (additive) (3.3)

where X is the original data, Ty stands for the trend, and S, and Iy for the seasonal and
irregular components at moment h, respectively.

These approaches allow separation of the underlying patterns in the data series from the
irregular components.

The above-mentioned deterministic components are modeled with the help of functions.
The parameters of the functions are estimated from historical data. One of the
approaches to account for both an annual price fluctuation and a trend can be given as a
sinusoid with a linear trend (Weron, 2006):

(3.4)

S = AsinZ_(h+B))+C-h+D
8760

annual ,h

The estimates of the parameters A, B, C, and D at moment h can be obtained through a
least squares fit (LSQ).

After removing the trend and the annual seasonality, the remaining series is used for the
hourly/weekly seasonal cycles. A very simple method, which, in many cases, produces
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good results consists of finding the “average” day (or any other detected period). The
average may be taken to be the arithmetic mean or the median, that is, the 0.5 quantile.
In the latter case, single large spikes do not influence the average very much as the
median is more robust to outliers than the arithmetic mean (Weron, 2006). The idea is to
rearrange the corresponding time series into a matrix with rows of length H (e.g. 24
element rows for a daily period detected in the hourly data; 168 element rows for a
weekly period, etc.) and take the arithmetic mean or median of the data in each column.
Then, for a given seasonality of length L, its respective seasonal indices are calculated
as the following mean or median values. For the mean:

Sh :E(Sh’Sh+H1Sh+2H7""Sh+vH) (3:5)

where h = 1,..,H and v is the number of all corresponding seasonal cycles within the
total data horizon.

As mentioned above, intra-day and intra-week regular patterns are mainly determined
by business activity, and they might change along the year following changes in the
electricity demand across seasons. Figure 3.6 displays the average weekly seasonal
cycle throughout sample prices over the period from 1 Jan 1999 until 31 Dec 2012,
There is a clear difference in the shapes and mean levels between weekdays and
weekends. The days of the week, in turn, are divided into weekdays, weekends, and
holidays (see Figure 3.7). The following holidays in Finland are taken into account:
Midsummer Day, Epiphany (6 Jan), May Day, Ascension Day, Christmas, New Year,
and Independence Day (6 Dec).
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Figure 3.6. Hourly average pattern throughout the week for the period 1999-2012.
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Figure 3.7. Hourly average patterns for working days, weekends, and holidays for the period
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The average price pattern for weekdays indicates higher prices during peak hours
(08:00-12:00 and 17:00-20:00) especially over a winter season (see Figure 3.8). The
shapes and mean values of weekend/holiday patterns are notably smoother and lower,

respectively.
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The irregular component of a given price series can be calculated by extracting from the
seasonally adjusted series. Afterwards, different methods can be applied for the
irregular component of the electricity price process to simulate and forecast the given
series.

3.3.2 External factors affecting the electricity prices in the Nordic region

It is widely known that the winter in the Nordic countries is often very cold. Electricity
demand is higher when the atmospheric temperature rises or falls from a base
“comfortable” level; temperature-dependent demand variations are more extreme if the
humidity is higher, since moisture increases the heat retention capability of air (Willis,
2002). Atmospheric pressure variations generally cause air temperature variations, and
as a consequence, demand variations. The effect of temperature and other weather-
related variables can be incorporated in the electricity demand.

The level in the water reservoirs in the Nordic region is at minimum before the spring
flood. Whole electricity demand cannot be covered by cheap hydroelectric power, and
more expensive means of production must be used. Therefore, in order to understand
the market state, instead of the overall generation capacity, the production capacity of
different technologies such as hydro, thermal, and nuclear may be considered.

A part of the total electricity generation and consumption structures can be combined
into nonbase electricity demand (Calmarza and de la Fuente, 2002). As can be seen in
Figure 3.9, the hydro and nuclear power productions are rather constant and, therefore,
show a low correlation with electricity prices in the short-run. The nonbase electricity
demand is obtained by subtraction of the nuclear power and hydro power generation
from the total electricity demand. The new explanatory variable is the part of the total
electricity demand that is not covered by the base generation consisting of nuclear and
hydro power generation.

Formally, in hourly resolution, the explanatory variable is defined as:

Nonbase Demand(h) = System Demand(h) - Hydro power(h) - Nuclear (3.6)
power(h)

where h =1,...,24 (hour of a day).

The value of the nonbase electricity demand is high if the total electricity demand is
high or there is a lack of base generation (the values of hydro or/and nuclear power
generation are low). The value of the nonbase electricity demand is low if the electricity
demand is low or there is a high level of hydro and/or nuclear power generation. This
explanatory variable covers all possible cases and presents an adequate hourly variation.

A transmission capacity excess or surplus is another important factor influencing the
electricity price development. Two regimes of the system can be considered, where one
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of the regimes is the regular regime and the other one, the nonregular regime, is the
capacity-limited regime existing when the total available transmission capacity is not
able to cover the required capacity.
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Figure 3.9. Structure of the Finnish energy production during the period 2006—-20009.

Unit outage information, although clearly of importance, is not usually considered in the
study because it is generally proprietary and not available to all market participants in
real time.

3.4 Linear regression

To characterize the impact of selected independent variables (deterministic factors) on a
dependent variable (price), a regression model can be considered. A simple linear
regression model is selected for the problem of forecasting because of its capability of
estimating time series. Its fast convergence (approach to results) using a limited number
of available observations validates this choice. The three sets of variables involved in a
regression model are:

o the dependent variable X to be predicted by the model,
¢ independent predictor(s) V, and
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o unknown parameters £ to be estimated.
Linear regression forecasting models are generally in the following format

X, =V,B+e, 3.7
where X, is the value to be predicted at time h, Vi, = (1,vap,..., Vkn) iS @ vector of k

explanatory variables at time h, = (b, f1,...,5¢) is the vector of coefficients, and &, is a
random error term at time h, h=1,...,H.

The most common way to find the model parameters () is to construct LSQ function
L(ﬂ)=ZL(Xh —(V, - B))? considered as the difference between the forecasted and
actual values to be minimized.

The standard assumptions of the time series regression are:

o E(an) =0,
o CoVv(an&) =0, 0<t<h, i.e., the residuals are not autocorrelated, and
o Var(en) =62 < w,i.e., the residuals are homoscedastic with a finite variance.

3.4.1 Forecast evaluation methods

Several evaluation criteria may be used to examine the accuracy of the results obtained
from a forecasting model. Mean square error (MSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE) were frequently considered to evaluate the
performance of the forecast results in the literature.

The evaluation criteria are listed below:

Ho » 3.8
MSE = > (X,— X,)*/H (3:8)
h=1
oo 3.9
MAE = Y| X, X, |/H 3.9)
h=1
H (3.10)

MAPE :[ZD X,— X, |/xh}/ Hj-lOO%

h=1
Here X, is the predicted value at time h, Xy is the actual value at time h, and H is the
number of predictions.

The main disadvantage of the MAPE criteria is the adverse effect accruing from small
actual values. If the actual value is small, Eq. (3.10) will contribute large terms to the
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MAPE even if the difference between the actual and forecast values is small. Therefore,
in some cases, the use of an adapted MAPE (AMAPE) is preferred:

H

A H
AMAPE :(ZD Xo= Xy 1O X, H)}/ H]~100%
h=1

h=1

(3.11)

In the further study, MAPE and AMAPE criteria are generally used with one exception
when MSE and MAE are also given (see Appendix D.5).

3.4.2 Regression model building

A significant relationship between two or more variables may simply mean that they are
following the same trend without any further underlying relationship between them, a
phenomenon more commonly known as spurious correlation. Therefore, before
estimating the desired model, the price series and the explanatory variables are initially
detrended and deseasonalized through the series decomposition. When having the
dependent and independent variables properly aligned, LSQ optimal regression model is
estimated (Jablonska et al., 2012).

As an example, the regression model is estimated using the Finnish day-ahead
electricity prices over the period from 1 Jan 2006 to 31 Dec 2009 to forecast prices 24
hours ahead. Selected explanatory variables are the nonbase electricity demand and the
total electricity net import in Finland (Fingrid, 2013b). Here, the actual values of
independent variables are used.

It should be borne in mind that the price series have local trends since market conditions
evolve with time and, hence, the use of a long training period may result in significant
inaccuracies. Therefore, the fit of the regression model is preferred not to be done
globally on the whole data set at once, but in a moving regression fashion. Such a
forecasting strategy provides an opportunity to account for more local trends dependent
on other variables not available for the study and, therefore, being still consistent after
the series decomposition is done. On the other hand, when a very short training interval
is used, the model may not capture essential features of the considered series. Hence,
selection of an appropriate training interval for a forecasting model is a challenging task
and usually depends on the price characteristics of a case market.

In the experiment, every day historical price data of a specific horizon are used to
estimate the model parameters and project the resulting prices 24 hours ahead. The
prices of three years over the period from 1 Jan 2007 to 31 Dec 2009 are used as a test
set. Table 3.2 presents numerical results obtained from the regression models using
different horizons of a moving training period. As can be seen from Table 3.2, the best
forecasting performance corresponds to the regression model with a moving training
period of two months and results in MAPE value of 14.65%. The price forecast path
produced by the regression model with a moving training period of two months is
presented against the realized prices over the test interval in Figure 3.10a. The
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respective residual series are given. The moving regression parameter estimates for the
normalized values of the nonbase demand and the net import are illustrated in Figures
3.10b, c.

Table 3.2. Residual statistics for moving regression forecasting.

Training Mean Std Skewness Kurtosis MAPE,
interval [%]
length

One month 1.15 7.15 -0.80 16.13 18.82

Two months 0.69 7.81 -0.18 8.12 14.65
Six months 0.03 8.00 -0.26 10.77 16.98

One year 0.40 8.75 -0.78 9.12 21.28

As can be seen, the moving regression parameter estimates differ over the modeling
period. The electricity prices rise since there are a high nonbase electricity demand and
a lack of import of cheap electricity mainly transferred from Russia.
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Figure 3.10. a) Moving regression forecasting; b) Nonbase demand; c) Net import.
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3.4.3 Summary

Overall, a multivariate linear regression approach is not sufficient for modeling and
forecasting actual electricity price behavior mainly because of its inability to capture the
nonlinear characteristics of real prices. The residuals obtained from the regression
model fit are prone to outliers and present a nonconstant mean level over the testing
period (see Figure 3.10 a)).

3.5 The Box-Jenkins methodology

A time series is a sequence of data points at regular intervals (hourly, daily, monthly,
annually). Provided that electricity prices are mean reverting, the Box-Jenkins
methodology is used (Box and Jenkins, 1970). The Box-Jenkins model alters the time
series to make it stationary. Besides a decomposition approach, the model is able to pick
out trends from the time series itself, typically using autoregression (AR), moving
average (MA), and seasonal differencing.

3.5.1 ARMA model

An autoregressive (AR) model attempts to model the current observation based on the
previous realizations of a given process. An AR model of order p is denoted by AR(p).
The AR(p) model for a stationary time series {Xn |[h=1,2,...,H} is defined as:

Xh=(plxh.1+ ¢2Xh.2+...+ gopxh.p+ah (3.12)

where ¢ are the AR coefficients, a, is the error term {a,}~WN(0,6%), and a is
uncorrelated with a; for all h<t.

A moving average (MA) model is a linear regression of the current value of the series
against the previous values of process errors. The MA model of order g is denoted by
MA(q):

Xh=618n1+ 02ah2+...+ 6 g@n-qtan (3.13)
where o are the MA coefficients and ay is the error term {a,}~WN(0,6?).
ARMA is a combination of the AR and MA models. The model is then referred to as
the ARMA(p,q), where p and q are the orders of the AR and MA models, respectively.
The ARMA(p,q) is defined as:

Xh-¢1Xh_1-¢2Xh_2-...- (prh_p = 0181t 02an2t...F 0qangtan (3.14)

where all the terms have the previous meanings.
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By using another time series that is known to covariate with the data under
consideration, one can improve the prediction performance of the future values. The
addition of an external input to a model is called using an exogenous variable in the
time series modeling process. An ARMA(p,q) model with an exogenous factor is
denoted by ARMAX(p,q,b):

p q b
X, = ZQDi X+ zgiah—i + zniuh—nl +a;, (3.15)
) i1 i

where b and #; are referred to as the lag and the coefficient of the exogenous variable
Uhi+1.

If a given time series shows evidence of nonstationarity (trend, seasonality), initial
differencing can be applied to remove the nonstationary characteristics. The model is,
then, referred to as an integrated autoregressive moving average (ARIMA) or a seasonal
ARIMA (SARIMA). The differenced time series is produced by subtracting the time
series with lagged values from itself, the first-order lag operator is defined as

X, =X, =00-B)X, (3.16)
where B is the backward shift operator BX,=Xp-1

The differencing operator can be applied several times if necessary to obtain a
stationary time series. When dealing with seasonal data it is preferred to use a seasonal
differencing operator:

X, —X,_s =@-B%)X, (3.17)
where S is the period of the seasonal data.

For nonnegative integers d and Ds, the series Xp is a SARIMA(p,d,q)(P,Ds,Q) process
with a period S if the differenced series Y,= (1-B)*(1-B%)™X, is an ARMA process
defined by

9,(B)®,(B®)Y, =0,(B)6,(B*)a, (3.18)

where pp(B)= (1- 1B- p2B%...- p,B), 04(B)= (1+ 01B+0,B*+...+0,B) are the regular,
and @p(B%)= (1- @1B%- B,B%-...- ®eB™), 6o(B%)= (1+6,B°+6:B>+...+ 6oBY), are
the seasonal polynomials in B, p,q are regular orders of the AR and MA polynomials,
P,Q are seasonal orders of the AR and MA polynomials, d is the number of regular
differences, and Ds is the number of seasonal differences.
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3.5.2  Preparing Box-Jenkins models

The Box-Jenkins approach uses an iterative model building strategy consisting of four
steps. In the first step, the structure of the model is identified. Application of the ACF
and PACF of the sample data is a basic tool to identify the order of the ARMA best
model, which is then estimated by the maximum likelihood (ML) method in the second
step. Description of the ML estimation method is given in Appendix A. The parameters
of the model are estimated such that an overall measure of errors is minimized. The
goodness-of-fit is tested on the estimated model residuals in the third step. If the model
is not adequate, a new tentative model should be identified. Forecast future outcomes
are obtained in the fourth step (Box and Jenkins, 1970).

When evaluating different models, it is important to be able to deduce which of the
competing models best fits the data. The Akaike Information Criterion (AIC) is a
measure that is used to compare models with each other; the AIC rewards models for a
good fit and penalizes models for complexity. The AIC is defined as follows:

3.19
AIC =2k J{In[RSSH (429

nobs

where Kk is the number of free parameters, ngps is the total number of observations, and
RSS is the residual sum of squares.

Bayesian information criterion (BIC) is closely related to the AIC but has a larger
penalty term than in the AIC:

BIC =n,, In(c?) +kIn(n,,) (3.20)
where k and ngss have the previous meaning and o° is the error variance.

For both approaches, the aim is to choose the model order that provides the minimum
values of AIC and BIC.

3.5.3 ARCH/GARCH modeling

ARMA-based models are used in many applied problems. The basic assumptions of the
error terms of the models include zero mean and constant variance. In practice, the
homoscedasticity assumption of constant variance sometimes does not hold. Such time
series are called heteroscedastic. Thus, when the error terms are autocorrelated, the ML
estimator of the ARMA model coefficients is no longer asymptotically unbiased and
consistent. It is agreed that the electricity price time series present nonconstant
deviations over time as demonstrated in Figure 3.1. Hence, the autoregressive
conditional heteroscedasticity (ARCH) model was introduced (Engle, 1987). In this
model, the conditional error variance &° is considered as time dependent ARCH(r):
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r 3.21
o) =C+) aa, 2 attime hh=123. H (3:21)

i=1

where a, = &o” is an error term produced by ARMA at time h, & = N(0,1) and C is a
variance constant.

As g, is white noise, which is assumed to be normally distributed, a, will also be
normally distributed with a zero mean and the variance 2. In practical applications, the
current variance sometimes appears to be dependent not only on past squared
disturbances, but also on the past variance of the errors. Such an extended model was
introduced and comes as a GARCH(r,s) model (Bollerslev, 1986):

r S . 3.22
o, =C+Y aa, *+) Bo,’ attime hh=123.. H (3.22)

i=1 i=1

The application of a GARCH model is an iterative procedure similar to the ARMA
procedure and includes iteratively: order determination, parameter estimation, and
model diagnostic checking.

3.5.4  Price modeling and forecasting with SARIMA+GARCH

The process of ARMA-based model building is presented. The model adequacy and
forecasting accuracy are evaluated with actual data from the Finnish day-ahead energy
market of Nord Pool Spot. The main attention is focused on a particular period of
hourly real-time electricity prices during the period from 16 Sep 2009 to 21 Nov 2009.
The whole data set is divided into training (60 days) and testing (7 days) sets. Hence,
the moving 24 hours ahead out-of-sample forecasts are generated from the estimated
models over the testing period from 15 Nov 2009 to 21 Nov 2009.

A preliminary inspection of the ACF and PACF of the corresponding price log-returns
indicates the presence of seasonality with respect to the hourly electricity prices (see
Figure 3.11).

Besides the ACF/PACF analysis, the AIC and BIC values are estimated for a tentative
model. Examples of model structures and their respective AIC/BIC values are presented
in Table 3.3.

Given that the ARMA modeling process requires a stationary time series, nonseasonal
first differencing and seasonal differencing of the twenty-fourth order are needed to
render the electricity prices. A further examination of the ACF/PACF of the resulting
stationary time series on electricity prices, and the AIC/BIC values of the corresponding
residuals (see Table 3.3) indicated the following SARIMA specification:

(1-B)(1-B)**(1-¢1B) (1-®1B*- @,B'*®)price, =(1+60,B)(1+6:B*)ay (3.23)
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The model diagnostics obtained for the SARIMA model given in Eqg. (3.23) is reported
in the second column of Table 3.4. The corresponding coefficients of the model
parameter estimates and their standard errors are presented in Appendix B. The
residuals are free of serial correlation based on the chi-square Ljung-Box Q-statistics.
However, the chi-square test statistic for autoregressive conditional heteroscedasticity is
statistically significant at the 5% level. The invertibility conditions for the respective
nonseasonal and seasonal terms are satisfied.
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Figure 3.11. a) ACF of the price log-returns; b) PACF of the price log-returns.

Table 3.3. AIC/BIC results for ARMA based models estimated on the training set.

Model AIC BIC
ARMA(1,1) 4603 4616
ARIMA(L,1,1) 4602 4616
SARIMA(L,1,1)(1,1,1)2 4240 4265
SARIMA(L,1,1)((1,7),1,1)24 4195 4224
SARIMA(L,1,1)(1,1,(1,7))24 4235 4264

SARIMA(L,1,1)((1,7),1,(1,7))24 4196 4230
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To recognize the presence of the autoregressive conditional heteroscedasticity in the
residuals, a SARIMA+GARCH model is estimated. The AIC/BIC values are compared
for an extensive range of different SARIMA+GARCH models. Examples of model
structures and their corresponding AIC/BIC values are given in Table 3.5.

Table 3.4. Model diagnostics and MAPE values for SARIMA and SARIMA+GARCH models
estimated for original and adjusted price series.

Original price series Adjusted price series
Model SARIMA SARIMA(1,1,0) SARIMA(1,1,1) SARIMA
diagnostics: (1,1,2) (7,1,1)24 ((1,7),1,1)24 (1,1,0)(7,1,1)24
((1,7,11)24 + GARCH(1,1) +GARCH(1,1)
LBo 59.21 64.32 66.08 66.79
[0.11] [0.06] [0.06] [0.06]
ARCH 156.17 97.12 104.34 66.79
[0.00] [0.00] [0.00] [0.06]
MAPE, [%] 5.83 4.62 4.05 3.65

Notes: Probability values are reported in brackets. LBq is the Ljung-Box Q-statistic to test for serial
correlation in the residuals. ARCH tests for autoregressive conditional heteroscedasticity in the residuals.

The methodology results in the following SARIMA+GARCH model:

(1-B)(1-B)*(1-¢1B)(1-@1B**- @,B'*®)pricen= (1+6:B**)a (3.24)

1

L 3.25
c,l=C+ aa, *+) Bo, [, attime h,h=123.. H (3.29
1

i=1

The third column of Table 3.4 reports the model diagnostics obtained for the
SARIMA+GARCH given in Egs.(3.24)—(3.25). The residuals are free of both serial
correlation but still indicate presence of the heteroscedasticity at the 5% level. All the
model parameter estimates are statistically significant at the 5% level (see Appendix B).

To limit the volatility of the given price series, electricity price spikes are extracted
from the original price series with parameters w = 720 hours; n = 3 (see Section 3.2).
The proposed SARIMA/SARIMA+GARCH models are estimated on the adjusted price
series. The results of the models are reported in the fourth and fifth columns of Table
3.5. As can be seen, the residuals are free of both serial correlation and autoregressive
conditional heteroscedasticity for the case of SARIMA+GARCH model estimated on
the adjusted price series. The model parameter estimates are all statistically significant
at the 5% level and presented in Appendix B.

In order to assess the ability of the models to capture the actual behavior of prices the
forecasted price curves are presented against original ones (see Figure 3.12). The MAPE



3.5 The Box-Jenkins methodology 57

values

used to examine the forecasting performance of the models over the testing

period are reported in Table 3.4.

Table 3.5. Obtained results of AIC/BIC for SARIMA+GARCH models estimated on the

training set.
Model AIC BIC
SARIMA(0,1,0)(7,1,1)24+GARCH(1,1) 3879 3898
SARIMA(1,1,1)((1,7),1,1)2.+GARCH(1,1) 3872 3901
SARIMA(1,1,0)((1,7),1,1),4.+GARCH(1,1) 3865 3889

Truncation of the spikes before application of the forecasting model helps to reduce the
influence of such observations on the estimation of the method parameters. Such a
strategy results in an improvement in the model forecasting performance over the

testing

period, which supports the previous studies (see Figure 3.12). However, this

finding is mainly reasonable for the case when no spikes exist on the forecast period.
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Figure 3.12. SARIMA+GARCH one-day ahead forecast over the period 15 Nov 2009 — 21

Nov 20009.
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3.5.5 Summary

It is shown that accurate prediction of day-ahead electricity prices with (S)AR(I)MA/
(S)AR(INIMA+GARCH models is not generally possible because of the inability of the
models to estimate high volatility and spike clustering presented in the original price
time series. Therefore, to avoid an undesirable effect of the presence of spike samples in
the training data set, those samples should be extracted from the corresponding set.
Further, a possible approach to capture the actual price behavior would be a separate
prediction of adjusted price series and spikes with the use of different forecasting
engines.

3.6 Stochastic differential equations — Ornstein-Uhlenbeck process

One of the approaches to model electricity prices is based on stochastic modeling. A
stochastic process is a family of random variables X(h,w) of two variables heH, w e Q
on a common probability space (Q,F,P), which assumes real values and is P-measurable
as a function of w for a fixed h. The parameter h is interpreted as time, with H being a
time interval and X(h,-) represents a random variable on the above probability space Q,
while X(-, ) is called a sample path or trajectory of the stochastic process.

3.6.1 Stochastic process

A stochastic process (Wh);so is defined as Brownian motion (BM) if has the following
characteristics:

o W,=0, that is, BM starts at zero.

o (W) is a process with homogeneous and independent increments, i.e.,
distribution of future changes does not depend on past realizations.

o Any increment Wp-W; is normally distributed with a mean zero and the variance h-t,
0<t<h, i.e., the variance increases linearly with the length of time interval.

e The paths of (W), are continuous but nowhere differentiable.

3.6.2  Ornstein-Uhlenbeck process

The mean-reversion (MR) process is one of the most applied stochastic processes to
simulate electricity prices (Gibson and Schwartz, 1990; Hirsch, 2009; Most and Keles ,
2010). Therefore, it can be considered an alternative to the Box-Jenkins time series
models. The MR process called Ornstein-Uhlenbeck (OU) (Uhlenbeck and Ornstein,
1930) can be formulated for the price changes with the following stochastic differential
equation (SDE):

dX, =k(p—X,)dh +cdW, (3.26)
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The first term k(u-X,) of Eq. (3.26) describes the drift component. The parameter k
determines the reversion rate of the stochastic process to its long-term mean p. The
essence of the mean-reversion concept for the case of a price time series is the
assumption that any stochastic price fluctuations are temporary and the price will tend
to move to the mean price over time. As mentioned above, in the electricity markets, the
price fluctuations and the mean reversion are generally explained by entering expensive
generators as a result of an extreme meteorological situation, power plant outages and
transmission congestions.

The second term odW,, corresponds to the standard Brownian motion. The stochastic
driver is the Wiener process movement dWi- e,dh'?, where &, is a standard normally
distributed random variable.

3.6.3 Calibration of SDE

The SDE is solved by Euler discretization (Lari-Lavassani et al., 2001), applying Ito’s
Lemma with the following exact solution (Karatzas and Shreve, 2000):

1_ g2 (3.27)

Xh+1 = Xh-e_k6+u<1— e_k6)+0 T‘gh’ Sh ~ N(O,l)

The substitutions a=e™, b=p(1-€™),o, = o+/(1-e?*)/2k and lead to the equation

Xh+1 = aXp+b+a, en~N(U,0.) Whereas & is the time difference between h and h+1, here
one hour.

The parameters a,b,o. are determined by ML or LSQ. The resubstitution of the
parameters a,b,c. results in the original parameters of the exact solution k,u,0. With the
help of the estimated parameters, the exact solution of the SDE is applied to generate
the price path.

3.6.4  OU process to simulate electricity prices

In the first step, prices are logarithmized and the price logs are passed to the simulation
tool instead of the prices themselves. The logarithm is used as it limits the volatility and
leads to a variance stabilization. Since the electricity prices display typical patterns, the
models developed to describe the behavior of electricity prices should capture the
deterministic components (trend, daily, weekly, and annual cycles) of electricity prices.

The deterministic patterns (daily, weekly, annual seasonality) are removed from the log-
price series. The remaining stochastic component is then used to estimate the
parameters of the corresponding stochastic process. Finally, the deterministic
components are added to the simulated stochastic component, and then, the simulated
price logs are retransformed receiving a simulated price path.
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Model parameter estimates are calculated for the stochastic component extracted from
the logarithmized Finnish day-ahead electricity prices of the years 2007-2009. At a
closer inspection of Figure 3.13 it becomes evident that the simulated price path partly
follows the actual series. Rather, this is a consequence of the excessive "jumpiness"” of
an optimal mean-reverting model. The residuals emerging from this optimal mean
reverting model are normally distributed. Since an Ornstein-Uhlenbeck model is always
normally distributed by definition, this property is transferred to the model residuals
when there are frequent spikes in the simulated series that do not coincide with the
spikes in the actual series (Naeem, 2009).
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Figure 3.13. Ornstein-Uhlenbeck simulation (left) and normalized histogram of the model
residuals with normal distribution (right).

Relevant statistics of the original and simulated prices are collected in Table 3.6. To
achieve a more robust result, an expected value for the measurements is determined
based on 50 simulations for the OU process.

It should be concluded that the conventional mean-reverting Ornstein-Uhlenbeck model,
even when calibrated optimally with the actual electricity market prices, is not able to
capture the statistical characteristics of the actual series.
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Table 3.6. Basic statistics for original Finnish day-ahead electricity prices and price paths
simulated by the Ornstein-Uhlenbeck process.

Original prices, [euro/MWh] Simulated prices, [euro/MWh]

Mean 39.67 40.01
Std 15.64 17.33
Skewness 0.86 1.22
Kurtosis 3.93 5.49

Maximum 150.30 162.62
Minimum 0.34 8.64

3.6.5 OU process with colored noise

The mean-reversion process driven by an exponential colored noise can be formulated
for the price changes with the following SDE (Mtunya, 2010):

dX, = k(- X,)dh + o¢,dh (3.28)

The terms of Eq. (3.28) have the same meanings as in Eq. (3.26), ¢ is an exponentially
colored noise process generated to mimic the behavior of both the spikes and the usual
volatility of the prices. The colored noise process ¢, produces a sequence of correlated
random variables {(hi), {(h,),... with the same standard deviation in each. Colored noise
is a Gaussian process, and it is well known that this process can be completely
described by their mean and covariance functions (Arnold, 1974).

The Ornstein-Uhlenbeck process is extended and repeatedly integrated to obtain the
colored noise of the first and second orders forcing along the series:

2,0 =~ £,(R)dn + W, (3.29)

d¢,(h) = —%:z(h)dh +%a2§1(h)dh (3.30)

where 1 is the correlation time for colored noise (in the case of hourly data t = 24,
indicating price hourly seasonality); a1 and o, are the diffusion constants; Wy is a
Wiener process with dW,~N(0,dh).

The system of Egs. (3.29)—(3.30), with {(0)=0 (i.e., starting with no noise) and t<h, has
the following solutions:

n o (3.31)
gl(h):alje i th
0
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1 n 0w (3.32)
¢, (h) =;a1a2je = (h—t)dw,
0

All the relevant process parameters are estimated by the ML methodology. The system
of Egs. (3.31)—(3.32) generates a stationary, zero-mean, correlated Gaussian process
&(h). The generated colored noise process (3(h) is applied to Eq. (3.28) to model the
price. Therefore, the mean-reverting log-price equation is as

dX, = k(- X,)dh+o¢,dh (3.33)

With the use of colored noise forces, the correlation of the noise terms that influence the
price time series is modeled more accurately, and it becomes possible to take into
account the spiking characteristics and volatility clustering of the prices.

3.6.6  OU process with colored noise to simulate electricity prices

Prices are logarithmized and deterministic patters are removed. The corresponding
stochastic component of the price logs are passed to the simulation tool, deterministic
patterns are added, and the simulated price logs are retransformed receiving a simulated
price path. Simulation of the Finnish day-ahead electricity prices of the years 2007-
2009 with the use of the MR process driven by an exponential colored noise is
presented in Figure 3.14.

The relevant statistics of the original and simulated prices based on 50 simulations are
collected in Table 3.7.

Table 3.7. Basic statistics for the original Finnish day-ahead electricity prices and price paths
simulated by the Ornstein-Uhlenbeck process with colored noise.

Original prices, [euro/MWh] Simulated prices, [euro/MWh]

Mean 39.67 41.97
Std 15.64 21.80
Skewness 0.86 1.26
Kurtosis 3.93 5.26

Maximum 150.30 182.47

Minimum 0.34 5.89
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Figure 3.14. Ornstein-Uhlenbeck with colored noise simulation (left) and normalized histogram
of the model residuals with normal distribution (right).

The process driven by colored noise produces prominent spike groups. However, the
trajectory of the price path simulated by the process with colored noise partly captures
the original price behavior. As can be seen in Figure 3.14, the spike groups are clustered
and usually exist more often and for a longer time period than in actual case.

3.7 Regime-switching model

Different models based on MR, ARMA, and GARCH processes applied to the
electricity price modeling and simulation are evaluated and compared.

As in the previous section, the simulation of electricity prices is formed on an extended
modeling approach considering both stochastic and deterministic components of the
price process derived from the Finnish day-ahead energy market of Nord Pool Spot.
First, the deterministic components are modeled and removed from logarithmized
historical price series. The resulting stochastic residuals are then used to estimate the
parameters of each stochastic process.
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As the presence of spikes is one of the main characteristics of electricity prices, a
regime-switching approach is applied to distinguish the nonspiky and spiky behavior of
prices. Both upper) and lower spikes of a given series are considered. Finally,
deterministic patterns are added to the simulated stochastic component. The forecasting
methodology is illustrated in Figure 3.15.

A regime-switching approach is implemented into the forecasting model to simulate the
transition of prices between the normal and spike regimes. To combine the different
regimes with a common approach, transition probabilities between the regimes and
probabilities remaining in the same regime are calculated based on historical data.
Therefore, if regime 1 is the normal regime, regime 2 is the upper jump regime, and
regime 3 is the lower spike regime, respectively. Then, the matrix of transition would
come as:

P P Pis
T= P Py Py (3.34)
Pai Ps  Psg

The rows of the matrix sum up to one. All cases of the transition matrix are as follows:

o |fthe process is in regime 1,
O it can remain in the normal regime (p11),
0 it can move into the upper jump regime (pi2), or
O it can move into the lower jump regime (pis).
o If the process is in regime 2,
O it can move into the normal regime (p21),
0 it can remain in the upper jump regime (pzz), or
0 it can (not) move into the lower regime (p2s). p23s=0 is plausible for electricity
prices, and it can be observed from historical data.
o If the process is in regime 3,
0 it can move into the normal regime (ps1),
0 it can (not) move into the upper regime (psz), or
O it can remain in the lower jump regime (pss).

The upper jumps are iteratively defined as values above the level u+3-c, while the lower
jumps are defined as values that are below the level p-3-6. Here, i and o are the mean
and variance values of a corresponding stochastic component of historical prices (see
Section 3.2). The regime-switching model for the upper and lower spikes is separately
applied for working and nonworking days of different yearly seasons and the transition
probabilities are determined for each case, as the number of jumps and the length of
jump groups can differ for different day types.
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Figure 3.15. Flowchart of the proposed forecasting methodology.

Historical price market data from the period of 1 Jan 2002 to 31 Dec 2009 show that
negative spikes are mostly observed in the night and morning hours. The distribution of
lower spikes over the week and year has a maximum on Sundays from May to July and
on December, respectively (see Figure 3.16). To sum up, the lower spikes have
appeared so far during Sundays, the off-peak period, which comprises the time between
00:00 and 08:00 hours, summer, and partly in the winter seasons of the year.
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Figure 3.16. Normalized histograms of the occurrence of lower price spikes in the Finnish day-
ahead energy market of the years 2002-2009 on different hours, days of the week, and months.

On the other hand, the upper spikes are mostly observed in the day hours (see Figure
3.17). The distribution of upper spikes over the week is observed almost uniformly over
the working days. The distribution of upper spikes over the year is mostly observed
during winter months. To sum up, the upper spikes have appeared during all working
days, the on-peak hour period, which comprises the time between 09:00-12:00 and
15:00-19:00 hours on weekdays, and in the winter season of the year.

Spike magnitudes (spikeupper / SPikeiower) are sampled from the empirical distribution
functions obtained from historical data. The sampled spike heights are added to a
simulated normal regime in the case of the upper spike regime, and subtracted in the
case of the lower regime. The spike regime can be described for a time point h+1 as:

xupper_spike,h+1 =>(normal,h+l + spikeupper,hﬂ (3-35)
xlower_spike,h+1 = xnormal,h+1 - Spikelower,hﬂ- (3-36)

For example, if a MR process is used for the normal regime, the upper regime is
modeled as:
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Figure 3.17. Normalized histograms of the occurrence of upper price spikes in the Finnish day-
ahead energy market of the years 2002—2009 on different hours, days of the week, and months.

Afterwards, the deterministic components are added again to the stochastic component;
the logarithmic simulated path is retransformed to the original range to receive the
simulated electricity prices.

The weekly and daily price cycles are very important, as the ACF for the price series
shows considerable autocorrelation between the values of the same hours of different
days and between the same days of different weeks (see Figure 3.18a). The detrended
and deseasonalized price series obtained from the original price is not periodic, even
though it still displays some patterns (see Figure 3.18 a,b). As one of the approaches to
capture the characteristics of the detrended/deseasonalized series, an ARMA(2,1) model
is implemented. Figure 3.18c shows the PACF of the residual series after the
ARMA(2,1) model is fitted to the detrended/deseasonalized series. It can be concluded
that the model adequately captures the patterns of the data. The PACF values of the
squared residuals at several lags are larger than the bounds, which suggests that the
residual series have a condition heteroscedasticity (see Figure 3.18d). Finally,
ARMA(2,1)+GARCH(1,1) is obtained to model the given process.
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Figure 3.18. a) ACF of the price logs before and after detrending/deseasonalizing; b) PACF of
the price logs after detrending/deseasonalizing; ¢) PACF of the residuals obtained from the
ARMA(2,1); d) PACF of the squared residuals obtained from the ARMA(2,1).

After calibrating the models, a number of experiments are carried out to evaluate the
goodness-of-fit of each model for an in-sample price path simulation. Figure 3.19
presents single simulated price paths obtained from the MR, GARCH, SARIMA, and
ARMA+GARCH models. Based on a general graphical comparison, the results prove to
resemble well the true data behavior. The simulated electricity price curves capture
daily, weekly, and annual cycles. This is generally caused by the initial removal and
addition of the above-mentioned deterministic components before the MR, GARCH,
and ARMA+GARCH models are implemented. The SARIMA model adequately
captures seasonal patterns to simulate real prices. Price jumps are also generated within
the simulated price paths. The MR property is well captured by the models.

Besides the visual investigation, a more detailed statistical comparison of the prices
simulated by one of the models with respect to the true series is performed. Table 3.8
presents statistical measurements for simulated price paths obtained from the MR model
and original price series. To achieve a more robust result, an expected value for the
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measurements is determined based on 50 simulations for the MR model. It can be

clearly seen that all the statistical measurements of simulated prices are close to the
original prices.
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Figure 3.19. Simulated and original Finnish day-ahead electricity prices of the years 2002—-20009.

After the in-sample analysis of the model performances, out-of-sample simulations are
carried out for the models with regime-switching and preliminary data detrending/
deseasonalizing and without regime-switching (no r/s) and deterending/ deseasonalizing
(no seas.). The out-of-sample simulations are run for the period of the first month of the
year 2010 and the outcomes are compared with the original prices (see Figure 3.20).
The corresponding distributions of the simulated prices with respect to the original
prices can be found in Appendix C.
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Table 3.8. Basic statistics for original and simulated prices and price spikes in the Finnish day-

ahead energy market of the years 2002-2009.

Number Mean Std Skewness Kurtosis
Original normal 67025 35.53 13.46 1.22 4.80
prices
Simulated 66989 35.78 14.09 1.20 4.58
normal prices
Original upper 1456 73.14 67.01 13.87 258.33
spikes
Simulated 1477 70.52 75.00 15.02 283.04
upper spikes
Original lower 1647 19.05 9.10 0.91 4.43
spikes
Simulated 1662 17.71 12.26 0.94 4.37
lower spikes
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Figure 3.20. Out-of-sample simulated price curves versus the original price curve.
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In addition to the graphical comparison of the simulated and historical price paths,
MAPE values are calculated for the sorted simulated and real price paths. Table 3.9
shows the expected MAPE values of the out-of-sample analysis when 50 forecasts are
carried out.

Table 3.9. Out-of-sample MAPE measures for the different stochastic models for the Finnish
day-ahead energy market of the year 2010.

Model MAPE, [%]
MR 15.57
MR no seas. 38.15
MR no r/s. 24.35
ARMA(2,1) 13.74
GARCH(1,1) nor/s. 16.17
ARMA(2,1)+GARCH(1,1) 12.84
SARIMA(1,1,1)(1,1,1)24 no seas. 17.81

3.7.1 Summary

A comparison of the results obtained by the models combining regime-switching and
decomposition (i.e. detrending/deseasonalizing) techniques with the model results
without those techniques showed that the impact of the techniques is very clear. The
analysis of the price paths generated by the models without the regime-switching
technique makes clear that not only the volatility of the price paths is not well-fitted, but
also jumps are not adequately produced. Even the GARCH process, the only method
that can handle heteroscedasticity, cannot incorporate jumps with a height that is usually
observed in historical prices and generates volatile price paths higher than the historical
ones.

The analysis pointed out that a difference filter used within the SARIMA process cannot
remove and add deterministic elements accurately for out-of-sample price modeling.
Therefore, a separate treatment of the deterministic elements is more effective.

An evaluation of the different models showed that the ARMA/ARMA+GARCH
processes enhanced with the regime switching and decomposition techniques
outperform other examined processes in fitting the daily and weekly movements and
especially the stochastic volatility. These results can be improved by introducing
fundamental data (e.g. electricity demand, generation capacity, fuel prices) to the model
(e.g. ARMAX) when distinctive structural changes can be captured. Before estimating
an ARMAX model, the fundamental data are initially detrended/deseasonalized to have
them treated analogically to the deterended/deseasonalized prices.
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4 Combination of classical and modern forecasting
approaches

The adoption of approaches combining several forecasting models has been advocated
in the previous section as a way to improve the forecasting accuracy, as by combining
different models, different aspects of the underlying series patterns can be captured. In
Section 4.1 the neural network is discussed. A hybrid methodology for the prediction of
both normal range electricity market prices and price spikes is presented in Section 4.2.

41 NN

Regression models (Nogales et al., 2002), AR models (Fosso et al., 1999), ARIMA
models (Contreras et al., 2003), and financial market models, that is, geometrical mean-
reverting models (Barlow, 2002) are the classical techniques where an exact model of
the system is built and the solution is found by using algorithms that consider the
physical phenomena governing the process. These approaches require a lot of
information, and the computational costs are very high (Cataldo, 2007). Most of the
classical models are not able to adequately capture the nonlinearity of the real price
behavior. To solve this problem, modern computing techniques have been proposed for
electricity price forecasting. The modern computing techniques, namely Al techniques,
do not model the system; instead, they find an appropriate mapping between the several
inputs and the target variable, usually learned from historical examples, thus being
computationally more efficient.
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NN model is one of the most popular modern computing techniques implemented for
electricity price prediction (Aggarwal et al., 2009). NNs are simple but powerful and
flexible tools for forecasting, provided that there are enough data for training, an
adequate selection of the input—output samples, an appropriate number of hidden units,
and enough computational resources available (Cataldo et al., 2007). NNs are able to
capture the autocorrelation structure in a time series even if the underlying law
governing the series is unknown or too complex to describe. NNs are highly
interconnected simple processing units designed to imitate the way the human brain
performs a particular task. Each of those units, also called neurons, forms a weighted
sum of its inputs, to which a constant term called bias is added. This sum is then passed
through a transfer function (e.g. linear, sigmoid, or hyperbolic tangent) (Cataldo et al.,
2009). Figure 4.1 shows the internal structure of a neuron.

X1
. I e

Figure 4.1. Structure of a neuron.

Multilayer perceptrons (MLPs) are the best known and most widely used kind of NN
(Aggarwal et al., 2009). Perceptrons are arranged in layers with no connections inside a
layer, and each layer is fully connected to the preceding and following layers without
loops. The first and last layers are called input and output layers, respectively. Other
layers are hidden layers. According to Kolmogorov’s theorem, NN can solve a problem
by using one hidden layer provided that it has a proper number of hidden neurons (Ny)
(Haykin, 1994). Figure 4.2 shows the architecture of a generic three-layered feed-
forward NN model that has been most commonly used by researchers to forecast
electricity prices (Aggarwal, 2009).
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Input Layer Hidden Layer Output Layer

Figure 4.2. Example of a three-layered feed-forward NN model with a single output unit.

The procedure for developing NNs is as follows: data preprocessing, definition of the
architecture and parameters, weight initialization, training until the stopping criterion is
reached (the number of iterations, the sum of squares of error is lower than a
predetermined value), finding the network with the minimum forecasting error on a
validation data set, and forecasting future outcomes. The common NN learning
algorithm is the backpropagation. It is a steepest descent algorithm minimizing the sum
of squared errors by adjusting the weights and biases in each NN’s layer.

Three-layered feed-forward NNs with sigmoid and linear transfer functions in the
hidden and output layers are implemented within the study. The Levenberg-Marquardt
(LM) algorithm, which is an advanced optimization algorithm and more efficient than
the usual backpropogation is mainly used in this study for training NNs. General
principles of operating the backpropagation and LM algorithms are given in the
literature (Yan, 2009).

It should be kept in mind that if there are too few neurons, the network will not be
flexible enough to model the data well and, on the other hand, if there are too many
neurons, the network may overfit the data. Typically, the number of units in the hidden
layer is chosen by trial and error, selecting a few alternatives, and then running
simulations to find the one with the best results.

NNs and ARMA models are often compared with mixed conclusions in terms of
forecasting capacity. A comparison of the NNs and the ARMA models to forecast
commodity prices showed that the NN forecasts were more accurate than the ARMA
forecasts (Kohzadi et al., 1996; Cataldo et al., 2007). Methodologies that combine NNs
and ARMA models have also been proposed to take advantage of the unique strength of
each model in linear and nonlinear modeling (Tseng et al., 2002; Zhang, 2003; Wu and
Shahidehpour, 2010).
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4.2 Hybrid electricity price forecasting model

As mentioned above, linear- and nonlinear-based models have both achieved successes
in their own linear or nonlinear domains. However, none of them is a universal model
that is suitable for all circumstances. Since it is difficult to thoroughly know the
characteristics of the data in a real problem, a hybrid methodology that has both linear
and nonlinear modeling capabilities would appear to be a possibly productive strategy
for practical use.

Combinations of modern computational intelligence (CI) methods and classical methods
or several Cl methods have been proposed (Liao, 2007; Wu and Shahidehpour, 2010).
Researchers have compared various adaptive and nonadaptive linear and potentially
nonlinear models and concluded that the models combining multivariate adaptive linear
and nonlinear models outperform other models for many variables (Swanson and White,
1997).

Moreover, while most of the existing hybrid and nonhybrid approaches to forecast
electricity prices are reasonably effective for normal range electricity prices, they
disregard price spike events. The superiority of separate normal price and price spike
forecasting has been advocated in Section 3.7.

A hybrid electricity price forecasting model is proposed where the electricity price time
series is analyzed in two parts, that is, normal behavior and spiky behavior. The
proposed hybrid model consists of two modules, which are used, respectively, to predict
electricity prices within a normal range and price spikes up to one week ahead (Voronin
et al., 2013a).

4.2.1 Forecasting strategy

An ARMA-based model is used to catch the linear relationship between the normal
range price series and the explanatory variables, a GARCH model is used to unveil the
heteroscedastic character of residuals, and a NN model is applied to present the
nonlinear impact of the explanatory variables on electricity prices of normal range and
to improve predictions obtained from the ARMA-based model. The probability of a
price spike occurrence and the height of a price spike are produced by two different
forecasting engines. Then, forecasts of normal range prices and price spikes are
generated to form an overall price forecast up to one week ahead.

Two previously mentioned competing approaches to handle trend and seasonality
presented in price series are considered and implemented to predict prices of normal
range. In the first approach, the trend and seasonality terms are directly captured by the
forecasting model (i.e., SARIMA). Another approach to handle trend and seasonality in
time series is the application of time series decomposition (see Section 3.3.1).
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The proposed methodology of the hybrid system can be summarized by the following
step-by-step algorithm, shown also in Figure 4.3:

1. The original price time series is statistically divided into a normal range price set
and a spikes set by the method introduced in Section 3.2 applying the specific
values of n and w.

2. Both the produced data sets are analyzed and predicted independently through a
normal range and price spike modules. The corresponding module is activated
according to an output obtained from the price spike occurrence predictor, based on
a Gaussian Mixture model (GMM). A GMM based on a Bayesian classifier
approximates the probability density function of electricity prices and classifies the
given test samples as nonspike or spike. The superiority of a GMM over a Naive
Bayesian classifier is discussed and a mathematical description of a GMM s given
in Appendix D (see Section D.1).

3. If the given test sample is classified as a nonspike, the normal range price
prediction module is activated.

3.1. Depending on the type of data, that is, raw or decomposed, the SARIMAX or
ARMAX model is applied to forecast the normal range prices, and the GARCH
model is used to present the heteroscedastic characteristics of the corresponding
residuals, resulting in a SARIMAX+GARCH or ARMAX+GARCH model.

3.2. Three-layered NN is applied to present the nonlinear, nonstationary impact of the
explanatory variables on electricity prices. The set of inputs for the NN includes
both historical and forecasted variables produced by ARMA-based models. Such a
strategy aims to improve the price predictions through a combination of linear and
nonlinear forecasting techniques.

4. If the given test sample is classified as a spike, the price spike prediction module is
activated.

4.1. The magnitude of a price spike is produced by a K-Nearest Neighbor (KNN)
model. A KNN model has been previously applied to predict the magnitude of
price spikes with promising results (Lu et al., 2005; Zhao et al., 2007a). A
mathematical description of a KNN model is given in Appendix D (see Section
D.2).

5. The final output is the overall electricity price forecast consisting of a normal range
price and price spike forecasts. Evaluation of the hybrid model is implemented
separately for normal range prices and price spike modules.

The model is calibrated and evaluated with the Finnish daily day-ahead energy prices of
Nord Pool Spot for the period from 1 Jan 2006 to 31 Dec 2009. The use of daily average
prices to evaluate the forecasting methodology is motivated by the search for the most
appropriate and simple possible model relating day-ahead electricity price
characteristics and price spike occurrences to a limited number of exogenous factors.
The use of average daily data simplifies the modeling of seasonal components of the
series, and the influence of important driving factors are more easily captured in terms
of the available data. Moreover, the use of average daily data significantly reduces the
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computational costs when a number of different forecasting techniques is tested to select
the most accurate approach and the set of external variables.

In the methodology, the whole data are divided into two sets: the training data set and
the testing data set. Taking into account data resolution, the daily day-ahead electricity
prices of the three years from 1 Jan 2006 to 31 Dec 2008 are used as the initial training
data set. The data of one year, from 1 Jan 2009 to 31 Dec 2009, are used as the testing
data set. The training interval is shifted and the values of the model parameters are re-
estimated in a moving fashion, that is, at each step of forecasting. By using the models
obtained, the prices are predicted on the testing data set of a length up to seven days.
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Figure 4.3. Flowchart of the proposed forecasting methodology.

4.2.2 Normal price module

Electricity demand and base generation are united into the nonbase electricity demand
and used as an exogenous factor in the SARIMAX/ARMAX+GARCH model of the
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normal price module. Figure 4.4 shows the relationship between the nonbase electricity
demand and the Finnish daily day-ahead electricity prices over the period from 1 Jan
2006 to 31 Dec 2009.
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Figure 4.4. Finnish daily day-ahead electricity prices and nonbase electricity demand.

Then, the combined model of the normal price module is implemented on raw or
decomposed data as SARIMAX+GARCH+NN or ARMAX+GARCH+NN,
respectively. The structures of the implemented SARIMAX/ARMAX+GARCH models
and their respective parameter estimates are reported in Appendix D (see Section D.3).
When daily day-ahead electricity prices are predicted, the total electricity demand and
generation (i.e., internal supply) values are forecasted by the SARIMA model (Taylor,
2006). The values of hydro and nuclear power generation are forecasted by a simple
random walk model described in Appendix D (see Section D.4).

The selection of input features fed to the NN is mainly based on past experience in the
study. Here, along with the forecasted price and demand values, the historical price and
demand data are applied as the inputs for the NN to indicate the trend and weekly
periodicity of a given series. Thus, there are six neurons in the input layer of the NN of
the combined model to predict the price value on a single test day D: a
SARIMAX+GARCH/ARMAX+GARCH model price prediction on day D; a historical
price on day D-1; a historical price on day D-7; a historical price on day D-14; a
nonbase electricity demand on day D, and a nonbase electricity demand on day D-1.

Besides the proposed combined model, other models implemented to predict normal
range prices are examined: a random walk model (as a benchmarking model), an
ARMA/SARIMA+GARCH model, an ARMAX/SARIMAX+GARCH model, and an
NN (for original and decomposed data). Here, two ARMA-based models without an
external variable (ARMA/SARIMA+GARCH) are used to check whether the inclusion
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of the nonbase electricity demand in the price forecasting model could result in a
significant improvement in the forecasting performance.

4.2.3  Price spike module

Given n = 3 and w = 90 days, the thus defined price spikes are extracted from the
original price series, as shown in Figure 4.5.

Table 4.1 shows the basic distribution parameters for prices and spikes. It can be seen
from the number of spikes (Nspike) that the spikes constitute less than 1.5% of all the
daily prices. However, their magnitude and unexpectedness cause them to have a
disproportionate significance in the electricity markets. The statistics show that there is
zero probability of an electricity price spike during weekends and holidays.

Table 4.1. Basic statistics for normal prices and price spikes over the period 2006-20009.

Number of Mean  Std  Skewness Kurtosis Weekday, Weekend/

observations Nspike Holiday,
Nspike
Normal 1436 41.26 13.28 0.55 291 — —
Spikes 25 71.86 41.88 3.26 14.65 25 0
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Figure 4.5. a) Original Finnish daily day-ahead electricity prices for the period 1 Jan 2006-31
Dec 2009; b) extracted price spikes.
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In an ideal competitive electricity market, price spikes occur only when the demand
exceeds supply. Most electricity markets, however, are not ideally competitive.
Therefore, price spikes may take place even when the supply completely covers the
demand. The set of attributes selected to determine the probability of price spike
occurrence and its magnitude are given below:

o SDI. This study uses the composite relationship between electricity price, demand,
and supply that was proposed in (Lu et al., 2005) and presented as a supply-demand
balance index (SDI). The SDI on a single day D is defined in Eq. 4.1:

SDI (D) = (Supply(D) — Demand (D)) / Demand (D) -100% 4.1)

where Demand(D) is the market demand on day D, and Supply(D) is the electricity
supply on day D.

e Nonbase electricity demand. The importance of electricity demand for electricity
price forecasting was discussed in Section 3.3.2.

e Temperature. Atmospheric temperature is chosen as a main indicator of weather
extremity in the electricity price spike study. The main electricity consumption
areas in Finland are the south and central regions (Statistics Finland, 2012), and the
temperature data for the city of Helsinki are used because the geographical location
of the city indicates a temperature that is relevant to overall electricity consumption
in the country. Temperature data forecasted for the city of Helsinki are available on
the Weather Underground web site (Weather Underground, 2012).

e Elspot capacity-flow difference. Power transfer constraints for electricity come in
the form of a capacity limit on the transmission lines and the transmission losses,
which can make it impossible or uneconomical to transfer electricity in certain
regions (Lucia and Schwarz, 2000).

Two regimes of the Finnish electricity system are considered. One of the regimes is
the regular regime; the other, the nonregular regime, is the capacity-limited regime
and exists when the difference between the total Elspot power flow and the total
Elspot capacity to Finland is close to zero. Congestion and thus extreme price
changes are more likely to occur when the difference between the total Elspot
power flow and the total Elspot capacity is small.

The total Elspot power flow and the total Elspot capacity to Finland were calculated
as a daily sum of the Elspot net exchange and Elspot capacities from Sweden,
Norway, and Estonia to Finland, respectively. The power flow data and the
generation and demand data for the Finnish electricity system are provided by
Fingrid, the company responsible for the high-voltage electricity transmission in
Finland (Fingrid, 2013b). The Elspot power flow and capacity data for day D-1 are
published by the TSO and are available on day D-2. Therefore, to forecast the flow
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and capacity for day D, the flow and capacity data of day D-1 are considered
known. The Elspot power flow data have strong seasonal patterns, which can be
captured by SARIMA. The Elspot capacity is rather constant during the whole
week.

o Temporal effect. In addition to the physical factors given above, the day status of
the sample needs to be implemented into the forecasting model (similarly to the
model presented in Section 3.7). The whole data set was divided into weekdays,
weekends, and holidays of different yearly seasons.

The distribution of the prices versus the chosen driving factors is shown in Figure 4.6.
Note that the factors cannot exactly determine the occurrence of spikes. The Gaussian

Mixture model predicts spikes by evaluating their occurrence probability. The inputs of
the model are not necessarily the determinants of spikes.
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Figure 4.6. Scatter plots of the prices versus potential price spike driving factors.

One modification is implemented within the GMM model. The probability of spike
occurrence is calculated for every input vector and then compared with a predetermined
threshold denoted as V. If the probability is larger than the threshold, a spike is
predicted to occur, regardless of whether this probability is larger than the probability of
nonspike occurrence. This modification is performed because the price spike prediction
problem is a serious imbalanced classification problem (i.e., some classes have many
more samples than other classes) (Zhao et al., 2007a). In fact, the probability of spikes
is less than the probability of nonspikes on most occasions. Many spikes occur when
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their occurrence probabilities are smaller than 50%. Without setting a threshold smaller
than 50%, many spikes will be misclassified. The threshold can be determined by
historical data. A Bayesian-based classifier considering prior information, that is, prior
class probability, tends to be less prone to problems regarding sample class imbalance.

4.2.4  Normal range price forecasting results

The performance of the proposed combined model applying raw and decomposed data
is compared with the performance of the previously mentioned seven models predicting
normal range prices up to one week ahead. Figure 4.7 summarizes the statistical
measures in terms of AMAPE that characterize the prediction accuracy of the different
models studied. In addition to Figure 4.7, their MAE, MSE, and AMAPE values
corresponding to different forecasting horizons are given in Appendix D (see Section
D.5).
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Figure 4.7. AMAPE results plotted against lead time.

Figure 4.7 shows that the naive benchmark model (random walk model) was
substantially outperformed by all the other methods at all lead times. The
SARIMA+GARCH model implemented on raw data has the poorest performance of the
other models at all lead times, except for a lead time of one day when it shows a very
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similar performance to the NNs. The figure, furthermore, shows that the models using
decomposed data as an input performed better than the analogical models trained on
original data. For the ARMA-based methods, the decomposing preprocessing technique
is more effective than the direct entering of trend and seasonal terms into a model. It
supports the previous findings (see Section 3.7). The NNs built with detrended and
deseasonalized data can produce significantly more accurate forecasts than with the
original data. This result suggests that NNs built on raw data are unable to adequately
learn seasonality and trend; a finding that refers to previous studies on NNs (Nelson et
al., 1999; Zhang and Qi, 2005). It is unsurprising that the performance of the
SARIMA+GARCH and ARMA+GARCH models was much improved after the
inclusion of exogenous factor information, resulting in SARIMAX+GARCH and
ARMAX+GARCH models, respectively. The performance of the NNs relative to the
ARMA-based models was worse, which differs from the work in (Zhang and Qi, 2005).
A possible explanation could be that the specific characteristics of the initial price time
series have become more linear after the transformation of hourly data into daily data
and spikes elimination. Moreover, the forecasted values of prices on day D-1 were used
as an input to the NNs for the multistep predictions. In a nonlinear model, errors might
be spread significantly. It must be noted that if a particular NN fails to produce good
results, this does not indicate that NNs in general are poor predictors because a different
specification of the NN could have performed better (Taylor, 2006). Problems may arise
from the difficult tune-up of the NN algorithms, which need validation of the model by
the number of hidden layers, and the number of neurons in the input and hidden layers
(Conejo et al, 2005a). Of the remaining models, the combined model applying
decomposed data performed considerably better than all the other models. Therefore,
the combined model with decomposed data is used as the normal range price prediction
module of the hybrid model.

Figure 4.8 focuses more closely on the AMAPE results for lead times of one and seven
days for the two best models, that is, ARMAX+GARCH and the combined model with
decomposed data, against the day of the week. Both techniques have relatively poor
AMAPE results for Sundays and Mondays. This problem may arise from the model
algorithm used. The price depends on the time of day and whether it is a weekday or
weekend. Weekdays and weekends have substantially different characteristics in terms
of electricity price distribution. Some authors divide the whole data set into weekday
and weekend data sets to build different models for each data set (Wu and
Shahidehpour, 2010; Wang and Ramsay, 1998; Gao et al., 2000) whereas others just
report results for models fitted and evaluated on weekday observations only (Lora et al.,
2002). In this study a division of data into weekdays and weekends was not performed
when normal range prices were predicted. Therefore, it would seem that all the models
have been somewhat challenged by being evaluated and tested on data with slightly
different intraweek seasonal characteristics. In this context, the robustness of the models
becomes important.
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Figure 4.8. AMAPE results for the lead time of one and seven days plotted against the day of
week.

4.2.5 Price spike forecasting results

It is important to define reliable measures to assess the performance of the classification
model when the occurrence of spikes is predicted. Some classification performance
measures have been proposed in (Lu et al., 2005). A standard performance measure of a
classification is the estimate of the probability of correct classification:

Classifier accuracy = (N, 5 /N)-100% (4.2)
where Neorr_ann is the number of correctly classified patterns, and N is the total number of
patterns.

This measure is robust for many classification problems but not for the problem under
discussion here. Since the data in the problem are extremely unbalanced, the value of
the measure will remain high even if all the spikes are misclassified. Thus, other
classification performance measures, namely, spike prediction accuracy and spike
prediction confidence, are proposed to solve this problem.

Spike prediction accuracy is a ratio of the number of correctly classified spikes Neorr t0
the number of actual spikes Ngpikes in terms of percentage:
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Spike prediction accuracy =(N,,,, / N..) -100% (4.3)

spikes
This measure was introduced because the ability to correctly predict spike occurrence is
the subject of greatest concern.

Spike prediction confidence is another measure that aims to account for the
uncertainties and risks carried within the forecast. Spike prediction confidence is
described as

Spike prediction confidence = (N, /N )-100% (4.4)

as_ spikes
where Neorr is the number of correctly classified spikes and Nas_spikes iS the number of
observations classified as spikes. As the classifier may misclassify some nonspikes as
spikes, this definition is used to assess the percentile in which the classifier makes this
kind of a mistake. These measures are used within the thesis to estimate the
classification performance of the price spike forecasting models.

Actual electricity price spikes and estimated probabilities of the spike occurrence
obtained from the GMM model for a lead time of one day and seven days are shown in
Figures 4.9-4.10, respectively. The spike threshold resulting in the best overall
performance of the model on a validation set is determined as 38%.

Classifier accuracy, spike prediction accuracy, and spike prediction confidence values
decline as the forecasting horizon increases. The spike prediction accuracy and spike
prediction confidence values vary between 60-80% and 50-60% respectively,
depending on the forecasting horizon (see Table 4.2). Of the five spikes in the testing
data set, four of them were predicted by the model for a lead time of one day, and three
of five spikes were predicted for a lead time of seven days.

Values of the three closest samples were selected to determine the unknown value of a
price spike by the KNN. Table 4.3 shows that most of the error rates of the price spike
value forecast are less than 35% for the lead times of one and seven days, with only one
case close to 70%. The forecast error for this particular day can easily be understood
given that the actual price is much higher than the historical average price spike. In fact,
other forecasted price spike values are close enough to the real values to provide useful
information for practitioners.

The output values of the spike forecasting model partially indicate the robustness of this
model because of the small number of spiky observations in the testing data set. The
model robustness and the stability of the model to changes in the training data may be
assessed by cross-testing. Here, the aim is to estimate how accurately the predictive
model would perform in practice. In cross-testing, the original sample is randomly
portioned into training and testing subsamples of a specific size. This parting process is
independently repeated T times to yield T portioned data sets, which are treated as
independent sets. The cross-testing estimates matrix of the model performance measures
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for the testing data set, denoted O, is merely the mean matrix of the T estimates on
the individual testing data sets executed by the data parting

ﬁ*() _ li ﬁ*(tp) (45)
T

tp=l

where Q™ is a matrix of the model performance measures for the testing set on the
portioned sample tj.
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Figure 4.9. Actual electricity price spikes for the period 1 Jan 2009-31 Dec 2009 of the Finnish
day-ahead energy market.
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Figure 4.10. Forecasted probability of spikes for a lead time of one day and seven days for the
period 1 Jan 2009-31 Dec 2009 of the Finnish day-ahead energy market.
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Table 4.2. Accuracy and confidence of the probability model on the testing data for lead times
of one and seven days.

Horizon Classifier accuracy, [%]  Spike accuracy, [%]  Spike confidence, [%]
1 98.63 80.00 57.14
7 98.36 60.00 50.00

Table 4.3. Comparison between the actual and price spike values forecasted by the KNN on the
testing data for lead times of one and seven days.

Horizon Spike number Forecasted price, Original price, Forecast
[euro/MWHh] [euro/MWh] error, [%]
1 1 38.11 44.45 14.40
2 59.40 79.12 24.92
3 51.04 65.30 21.47
4 65.20 56.35 15.71
5 88.57 251.04 64.71
Mean: 28.56
7 1 34.16 44.45 23.15
2 53.46 79.12 32.43
3 48.57 65.30 25.62
4 61.34 56.35 8.85
5 73.14 251.04 70.86
Mean: 31.65

At the cross-testing stage, the robustness of the model is checked on testing data sets of
a specific size. The whole data set from 1 Jan 2006 to 31 Dec 2009 (see Figure 4.4) is
randomly divided into training data sets and testing data sets T times. The model is
fitted by using the training data set, and by using the model obtained, the values are
predicted seven days ahead on the testing set of specific length. Note, that in this study
it was opted not to re-specify or re-estimate the model values at each step of forecasting.
This action gives an opportunity to compare the performance of the model using the
specific size of the training and testing data sets.

The seemingly not high rate in the values of the spike prediction accuracy and
confidence for the probability model and the relatively high error values for the KNN
model are mainly due to the very limited number of price spike events in the historical
data (1.5% of the whole sample). The values were obtained with insufficient data
containing spikes. Many stochastic events causing spikes could not be considered in the
model. Tables 4.4 and 4.5 suggest that further training with historical data would
improve accuracy and confidence of the models. The spike prediction accuracy using
the proposed probability model is above 50% for the testing data set of seven days,
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which means that more than 50% of spikes can be predicted. In the light of the fact that
price spikes are highly stochastic, the achieved forecast accuracy level is sufficient to
provide market participants with an ability to anticipate price spikes.

Table 4.4 and Table 4.5 show the results of the performance measures of the GMM and
KNN for testing data sets of a specific size after T=500 simulations of the cross-testing:

Table 4.4. Accuracy and confidence of the GMM on randomly selected testing data sets of a
specific size after T = 500 simulations.

Length of a testing data set, [days]

365 180 30 7
Classifier accuracy, [%] 98.53 97.27 96.61 91.64
Spike prediction accuracy, [%] 41.01 43.45 48.76 57.82
Spike prediction confidence, [%] 29.24 31.34 36.93 45.46

Table 4.5. Error value of the KNN on randomly selected testing data sets of a specific size after
T =500 simulations.

Length of a testing data set, [days]
365 180 30 7
Error value, [%] 33.75 28.17 22.35 18.23

4.2.6  Overall price prediction

Integration of the spike occurrence probability and value forecasting results with the
normal range price forecasting results obtained from the combined model
(ARMAX+GARCH+NN) with decomposed data (the best performing normal range
price model) gives a complete electricity price forecast. The forecasted normal range
prices, the probability of price spike occurrence, and a complete electricity price
forecast for a lead time of one day are shown in Figures 4.11-4.13, respectively.
Obviously, without the spike occurrence and spike value predictors, the performance of
the normal range price forecasting model deteriorates when spikes occur.
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Figure 4.12. Forecasted probability of spike occurrence for a lead time of one day for
the period Jul 2009- Dec 2009 of the Finnish day-ahead energy market.
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Figure 4.13. Complete electricity price forecast (ARMAX+GARCH+NN) + (GMM + KNN))
for a lead time of one day for the period Jul 2009—-Dec 2009 of the Finnish day-ahead energy

market.
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4.2.7 Summary

Coupling of the normal price range prediction and the price spike prediction provides
valuable information about the electricity market and gives the market participants an
ability to manage their risks. Hence, when applied in addition to the normal range price
forecast, the proposed price spike forecast method can provide practically useful and
reasonably accurate forecasts, enhancing the applicability of price forecasts in the
actions of electricity market participants. In the light of the fact that price spikes are
highly stochastic, the achieved spike forecast accuracy level is acceptable. Further
training with historical data would improve the accuracy.

The forecasting principle implying separate normal price and price spike prediction is
utilized in further study presented in Chapter 6.
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5 Tuning of the forecasting model parameters

Most of the previous studies have utilized past experience in selecting parameter
settings and the input variables for the forecasting model to be applied. However, as
each market has characteristics of its own, the choice of the corresponding relevant
factors and model parameters is still an open area of research. A two-step feature
selection algorithm is introduced in Section 5.1. The search procedure to tune the
parameter settings and obtain the best inputs for a particular forecasting model is
proposed and implemented for different forecasting engines in Section 5.2. Section 5.3
presents a hybrid forecasting method for simultaneous prediction of price and demand
in the day-ahead energy market.

5.1 Feature selection

Feature selection is a process commonly used in forecasting model learning, wherein a
subset of features available from data is selected for the application of a learning
algorithm. Among different factors that may have an impact on the prices, the most
informative ones have to be identified. In previous works (see Chapter 4), past
experience in the study of different markets was utilized to select input features for a
forecasting model. These selected inputs were based on daily and weekly periodicity
and trend of the electricity price signal, and there was no reasonable proof. Obviously,
this selection method is not efficient because of the complex time-dependent behavior
of electricity prices and the large number of effective input features.

A set of factors that affect prices in the Finnish day-ahead energy market can be very
extensive. Thus, there may be irrelevant and redundant inputs in the set of inputs, which
can mislead the forecast engine. It is necessary to refine the initial set of potential inputs
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such that a subset of the most effective inputs is selected for the forecast engine
(Amjady and Keynia, 2010). An analytical method that can select a minimum set of the
most effective input features for day-ahead price prediction is very valuable.

To get the subset of the most effective input features, the relevance-redundancy feature
selection algorithm is used. The ability to filter out redundant information from the set
of candidate features is the benefit of this procedure versus a simple calculation of a
relevance value between the target and explanatory variables (Yu and Liu, 2004).

In the relevance-redundancy feature selection algorithm, SET: = {Xi,Xz,...,.X} IS
supposed as a set of candidate inputs. In the first step (i.e., relevance filtration), a
relevance value between each candidate input x; € SET; and the target y (continuous or
binary) is computed as RV(x;,y). If an absolute relevance value between the candidate
input and the target is greater than a prespecified value Vi, this candidate feature is
retained for further processing; otherwise, it is filtered out

abs(RV(xi,y))>Vi, 1<i <k (5.1)

In the second step (i.e., redundancy filtration), the set of the retained candidate inputs is
supposed as SET, < SET;. For any two retained candidate inputs X, X, € SET,, a
relevance value between those candidate inputs is computed as RV(Xa, Xp) and supposed
as the redundancy measure. If the absolute redundancy measure between any two
candidate inputs (X, and xp) is smaller than a prespecified value V, both inputs are
retained; otherwise, only the input with the largest relevance value with respect to the
target (RV(Xa,y) or RV(xy,y) ) is retained. For instance, if for X, X, € SET>,

abs(RV(Xa,Xp))>Va, 1<a,b<k, a#b (5.2)

The redundancy filtering process is repeated for all candidate inputs of SET,, until no
redundancy measure becomes greater than V,, then the subset of candidate inputs SET3
c SET, that has passed the redundancy filter is finally selected as the optimal inputs by
the proposed relevance-redundancy feature selection algorithm.

Several feature selection techniques are applied in the study to calculate a relevance
value between given variables in the proposed feature selection algorithm. The first
considered feature selection technique often used for a day-ahead electricity price
forecasting is a simple linear correlation (Moghram and Rahman, 1989; Rodriguez and
Anders, 2004; Amjady and Keynia, 2008; Vahidinasab et al., 2008). Linear correlation
analysis is widely used for the feature selection; however, it is a linear technique and,
therefore, often cannot consider the nonlinearities of the original price signal. Thus, to
validate the weakness of the linear based techniques, sequential feature selection based
on linear regression is considered as another linear based technique and put among the
competing feature selection approaches (Rickstiel3, 2011). Then, a group of feature
selection techniques based on nonlinear approaches is considered. These techniques are
mutual information (MI) criterion, Relief, and KNN (see Appendixes D and E). The
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above-mentioned feature selection techniques and their combinations are examined to
find the best approach resulting in the highest accuracy when prices are predicted.

5.2 Proposed search procedure to tune the model parameters

As mentioned above, efficiency of a forecasting model is highly dependent on the
correct setting of its adjustable parameters and selected inputs. The following search
procedure aims at finding the optimal setting parameters of a forecasting model
including threshold values (Vi and V) for the proposed relevance-redundancy feature
selection algorithm.

For instance, the proposed search procedure has three main adjustable parameters when
a three-layered NN is used as a forecasting engine: Ny of the NN and two threshold
parameters V; and V; for the relevance and redundancy filters, respectively. Here, an
iterative search procedure is carried out, which can automatically adjust the above-
mentioned parameters with a minimum reliance on the heuristics. The procedure is
outlined below and shown also in Figure 5.1:

1) Set initial values of Ny, V1 and V2.

2) By the selected inputs, training samples are constructed. The NN is trained and the
corresponding validation error (e.g. AMAPE) is evaluated and stored. Here, the
validation set is extracted from the training sample and kept hidden to the model
during its training period and is being used to examine the model predictability.

For the sake of having an adequate validation set (accurate representative of a
forecast horizon), a day before a forecast day is used as a validation set. However, if
a selected “day before” has a status (nonworking/working day) different from the
status of a forecasting day, the historically last day having the status same as the
forecasting day is used as a validation set. This modification is made to distinguish
the working and nonworking day patterns within a forecasting model.

3) Each adjustable parameter is varied in turn at a neighborhood around its previously
selected value, while two remaining parameters are kept constant. A fixed radius of
neighborhood (e.g. = 25 % of the previously selected value) is considered in the local
search. For instance, if Ny is varied with the unit step and its previously selected
value is 8, then the NN is trained with Ny, = {6,7,8,9,10}. Therefore, for each value of
the varied parameter in the neighborhood, training of the NN is repeated and
validation error is evaluated and stored. The value of the varied parameter resulting
in the least validation error is selected and fixed.

When only the first cycle of the variation is executed (i.e. all adjustable parameters
are varied once), this cycle is repeated again. This modification is made to avoid a
local minimum trap in the search procedure. Therefore, if the procedure misses the
optimum solution in one cycle, it may find the optimum point in the next cycle.
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4) If the selected values of Ny, V1, and V; obtained after two consequent cycles are the
same, the iterative search procedure is terminated. Otherwise, go back to step 3.
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Figure 5.1. Search procedure.
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5.2.1 Tuning NN parameters

The proposed search procedure is implemented within a forecasting model to obtain the
optimal input set and tune the model parameters to predict prices in the Finnish day-
ahead energy market on a single day.

To take into account the short-run trend and the seasonal patterns (daily and weekly) of
electricity price time series, historical price data of about one week before a forecast day
are considered to construct a set of candidate inputs. If the period of the study is
extended further, the results are not affected seriously, that is, the relation of the current
price with the price of much more than one week ago is very small (Vahidinasab et al.,
2008). Finally, there is a certain number of candidate inputs for target price at hour h
(pricen) of the forecasting day: {pricen.1,..., priCen-200}-

Now, the training period must be selected. If the functional relationships of a signal
vary slowly with time, a long history of the signal can be considered as the training
period resulting in a large number of training samples. However, as mentioned in
Section 3.4.2, the market conditions evolve with time and, hence, the use of a long
training period for the price forecasting model may result in significant inaccuracies. On
the other hand, if the training period is selected to be very short, a forecasting model
cannot derive functional relationships of prices because of the small number of training
samples. In Section 3.4.2 the period of 60 days has been selected to train the forecasting
model. The last 50 days have been proposed as the training period for the electricity
day-ahead price forecasting by other researchers (Conejo et al., 2005a; Conejo et al.,
2005b; Vahidinasab et al., 2008; Shafie-khan, 2011). The training period of 50 days is
used here to train the NN. Thus, the historical prices of the Finnish day-ahead energy
market over the period from 8 Sep 2008 to 5 Nov 2008 are used to predict prices on a
single day, 6 Nov 2008. Validation data set is extracted from the training period as a
day before the forecasting day, that is, 5 Nov 2008 (see Figure 5.2).

Linear correlation is used as a relevance measure within the proposed relevance-
redundancy feature selection algorithm. Within the proposed search procedure, the NN
is applied having a different number of neurons (Nn:{1,2,...,40}) in the hidden layer,
while the remaining parameters (V1, V>) are kept constant (see Figure 5.3). Here, a wide
neighborhood range of Ny is used for more clarity. For the neurons numbered from 1 to
4, the AMAPE for the validation set has the smallest values. For the neurons numbered
higher than 5, the behavior of the NN is unstable. The proposed number of neurons to
be used is selected as three.

Similarly, the values of V; and V; are varied in turn. In Figure 5.4, the set of V; is
{0.40...0.80} and the set of V, is {0.60...0.95}. The number of neurons is kept
constant. It can be seen that the best result is given for V; = 0.61 and V, = 0.85 when the
AMAPE on the validation set is equal to 2.45%.
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Figure 5.4. Validation error (AMAPE) versus V; and V,. Nyis kept constant.

For a better illustration of the relevance-redundancy filtering process, its sample results
are presented in Appendix F (see Figure F.1 and Table F.1-2).

The finally retained inputs are pricen.s, pricen.s, Pricen.24, pricen.zs, Pricen.as, pricenyz,
pricengs, Pricen.144, Pricen-es, and pricen.192. These retained inputs indicate a short-run

trend (pricen-1), daily periodicity (pricen4), and weekly periodicity (pricen-ies).

The original and predicted price curves obtained from the forecasting model are
presented for a single test day, 6 Nov 2008, of the Finnish day-ahead energy market in
Figure 5.5. As can be seen, the forecast curve acceptably follows the actual one. The
corresponding AMAPE is 2.02%.
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Figure 5.5. Original and predicted prices for a single test day 6 Nov 2008.
5.2.2 Linear and nonlinear feature selection techniques

The forecasting performance of different forecasting engines applying different feature
selection techniques is examined in this section. Four test weeks corresponding to the
four seasons of the years 2009-2010 from the Finnish day-ahead energy market are
considered. The four weeks, 15 Feb to 21 Feb, 15 May to 21 May, 15 Aug to 21 Aug,
15 Nov to 21 Nov (months 2, 5, 8 and 11), are approximately in the middle week of
each season. Therefore, in the context of this study, it is assumed that these week results
are reasonably accurate for a study spanning one whole year. This way, representative
results for the whole certain year are provided (Conejo et al., 2005b; Cataldo et al.,
2007; Amjady and Keynia, 2008; Vahidinasab et al., 2008; Shafie-khah et al., 2011).
Three different forecast engines merged with five feature selection techniques and their
combinations are examined. The selected forecasting engines are three-layered NN,
Relevance Vector Machine (RVM), and Random Forest (RF) regression (see Appendix
G, Section G.1 and G.2). These engines are chosen because they have been previously
used in several other applications with promising results (Zhang and Qi, 2005; Cataldo
et al., 2007; Nelson et al., 1999; Meng et al., 2009; Niu et al., 2009; Mori and Awata,
2007; Breiman, 1984). For the sake of a fair comparison, historical price data up to 200
hours before a forecast hour are considered to construct a set of candidate inputs, and
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the last 50 days before a forecasting day are used as a training period for each
forecasting engine.

Heuristic method is among the examined feature selection techniques. It implies
selection of specific inputs for a forecasting engine with a criterion based on past
experience in the study (Contreras et al., 2003; Nogales, 2002). In this case, previous
price values indicating trend (lags 1-2), daily (lags 24, 48, 72), and weekly seasonality
(lag 168) are directly passed to a forecasting engine.

AMAPE values of the NN model producing price forecasts for the years 2009-2010 are
presented in Tables 5.1-5.2. The respective AMAPE values for the RVM and RF are
given in Appendix G (see Section G.3).

The following observations can be seen from Tables 5.1-5.2:

o The feature selection techniques consisting of both relevance and redundancy filters
outperform the feature selection techniques having only a relevance filter for all the
considered forecasting engines.

o The models applying nonlinear feature selection techniques (i.e. Ml, Relief, KNN)
perform better than the models merged with linear feature selection techniques (i.e.
linear correlation, sequential feature selection based linear regression) when the
prices of the year 2010 are predicted. The performance of these models is close
enough for the price data of the year 2009, since the price series of the year 2009
has a relatively lower volatility with respect to the prices of the year 2010.
Therefore, the superiority of the feature selection based on a nonlinear technique
becomes obvious when it is implemented on a highly volatile data, and an ability to
capture the nonlinear behavior of given prices is required.

o The heuristic approach indicates the worst performance among the examined
feature selection techniques.

The above-mentioned statements are justified for the RVM and RF forecasting engines
(see Appendix G, Section G.3).

Historical electricity demand data (up to 200 hours before a forecast hour) are put into a
set of candidate inputs and fed to the feature selection engine of the NN to model and
predict the price data of the four weeks. Inclusion of historical electricity demand data
in a set of candidate inputs results in a significant improvement in the forecasting
performance of the NN (see Tables 5.3-5.4).
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Table 5.1. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy
market in the year 2009 produced by the NN employing different feature selection techniques.

Input data: historical prices.

Feature selection technique

Test week Linear Relief/ MI/ KNN/ Sequential
Corr./] — — — — selection
Fall 5.63 5.12 5.42 5.85 5.72
Summer 10.65 11.04 10.34 10.61 11.75
Spring 6.10 5.57 6.05 5.57 8.68
Winter 6.81 7.06 6.45 6.94 7.69
Average 7.30 7.19 7.07 7.24 8.46
Linear MI/ Relief/ Relief/ Heuristic
Corr./ Mi Linear MI
Linear Corr. Corr.
Fall 4.75 4.90 4.63 4.63 5.59
Summer 9.43 9.11 10.55 10.42 10.86
Spring 5.45 5.57 5.73 5.08 8.34
Winter 4.70 4.83 5.19 5.10 7.30
Average 6.08 6.10 6.52 6.30 8.02

Table 5.2. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy
market in the year 2010 produced by the NN employing different feature selection techniques.

Input data: historical prices.

Test week Linear

Feature selection technique

Relief/ M/ KNN/ Sequential
Corr./ — — — — selection

Fall 3.33 3.68 3.28 291 6.16
Summer 6.53 5.97 6.31 5.48 5.49
Spring 9.01 8.88 8.73 8.47 7.67
Winter 21.74 18.72 17.96 19.88 19.81
Average 10.15 9.31 9.07 9.19 9.78

Linear Corr. MlI/ Relief/ Relief/ Heuristic
/ Linear Ml Linear Ml
Corr. Corr.

Fall 2.42 3.01 3.37 2.92 5.18
Summer 5.51 4.64 5.32 5.35 7.73
Spring 8.13 7.59 6.99 7.89 8.86
Winter 15.32 14.54 17.87 15.22 21.54
Average 7.85 7.45 8.38 7.65 10.83
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Table 5.3. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy
market in the year 2009 produced by the NN employing different feature selection techniques.

Input data: historical prices and demand.

Test week

Linear

Feature selection technique

Relief/ M/ KNN/ Sequential
Corr./] — — — — selection
Fall 5.43 5.16 5.25 5.63 5.46
Summer 9.99 10.47 9.67 10.03 10.93
Spring 5.64 7.68 5.79 6.05 6.15
Winter 6.05 4.60 6.24 5.23 4.88
Average 6.78 6.98 6.74 6.74 7.11
Linear MlI/ Relief / Relief/ Heuristic
Corr./ Ml Linear Ml
Linear Corr. Corr.
Fall 4.64 4,52 4.98 4.65 5.51
Summer 9.58 9.69 10.02 9.79 10.48
Spring 5.31 5.30 6.14 5.98 7.37
Winter 4.58 5.01 4.98 5.01 5.99
Average 6.03 6.13 6.53 6.33 7.34

Table 5.4. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy

market in the year 2010 produced by the NN employing different feature selection techniques.
Input data: historical prices and demand.

Test week

Linear

Feature selection technique

Relief/ MI/ KNN/ Sequential
Corr./ — — — — selection

Fall 3.36 3.30 3.03 3.79 3.44
Summer 6.53 5.98 5.29 5.60 5.81
Spring 6.77 6.35 6.84 7.01 10.57
Winter 20.21 17.31 15.77 16.05 16.84
Average 9.22 8.24 7.73 8.12 9.17

Linear Ml/ Relief / Relief/ Heuristic
Corr./ Ml Linear Ml
Linear Corr. Corr.

Fall 2.77 2.34 3.01 2.58 3.09
Summer 5.15 3.25 4.09 3.47 6.27
Spring 6.47 6.20 7.66 6.40 8.37
Winter 15.54 13.57 15.10 14.55 22.38
Average 7.48 6.34 7.47 6.75 10.03
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5.3 Simultaneous forecasting electricity prices and demand

It is very useful for a market participant to be able to predict electricity demand and
prices simultaneously because demand and prices are intertwined activities in electricity
markets (Aggarwal, 2009). In many studies, it is assumed that actual values of
electricity demand are known when day-ahead electricity prices are forecasted (Wu and
Shahidehpour, 2010; Amjady and Keynia, 2008; Nogales et al., 2002), and therefore,
the effect on the price forecast accuracy of uncertainty in the demand forecast has been
ignored.

In the experiments given in Section 5.2.2, actual values of electricity demand were used
to forecast day-ahead electricity prices. However, such a strategy is not suitable for a
real-life problem as realized electricity demand values are not known for a day-ahead
market at the moment when the prices are predicted. Some authors have used the
projected demand of TSO of the concerned electricity market as an input variable, while
a few have predicted the demand first and then used it as an input variable for the price-
forecasting model (Georgolakis, 2006; Mandal et al., 2006).

In deregulated markets, the system demand may be significantly affected by electricity
prices when consumers are encouraged to use less energy during peak hours. In other
words, variability in the electricity price can influence the energy-use patterns of the
consumers. As mentioned above, actual values of electricity demand were used when
day-ahead prices were predicted. Moreover, the same assumption was used for
electricity demand forecasting, when the electricity demand was dependent on actual
values of prices rather than their predicted values (Yun et al., 2008; Niu et al., 2009).

The methodology presented in this section uses a hybrid wavelet transform combined
with SARIMA and a three-layered NN to implement simultaneous demand and price
forecasting processes in the day-ahead energy market. The proposed methodology is
better adapted to actual conditions of an energy market since the forecast features for
price and demand are not assumed known values but are predicted by the model, thus
accounting for the interactions of the demand and price forecast processes (Voronin and
Partanen, 2013b). The forecasting performance evaluation applied actual hourly data of
the four weeks in the Finnish day-ahead energy market of the year 2009, corresponding
to four seasons, as in the previous section.

5.3.1 Wauvelet transform

When using classical statistical techniques, a stationary process is assumed for the data.
For electricity demand and price time series, the assumption of stationarity usually has
to be rejected. One of the ways to capture localized trending in the series is to apply
models with time-varying parameters (Granger, 2008). Another way to deal with
nonstationarity is the use of mathematical transformations of an initial series. In many
cases, information that cannot be readily seen in the time domain can be obtained in the
frequency domain. Fourier transform (FT) is probably the most popular transform and is



5.3 Simultaneous forecasting electricity prices and demand 103

used in many different areas, including many branches of engineering. However, no
time information is available in the Fourier transformed signal, in other words, it is not
clear where the time specific spectral components appear. The short-time Fourier
transform (STFT) gives time information by dividing the signal into small enough
segments so that these segments of the signal can be assumed to be stationary. For this
purpose, a window function is chosen. The width of this window must be equal to the
segment of the signal where its stationarity is valid. Depending on the window length,
STFT gives a poor time resolution and a good frequency resolution, or vice versa. The
wavelet transform (WT) was developed as an alternative approach to STFT to overcome
the resolution problem (Olkkonen, 2011). Implicitly, wavelets have a window that
automatically adapts itself to give an appropriate resolution. The basic concept in the
wavelet analysis begins with the selection of a proper wavelet (mother wavelet) and an
analysis of its translated and dilated versions (Galli, 1996). A wavelet can be defined as
a function w(h) with a zero mean.

+® 5.3
jv/(h)dh =0 3)

A signal can be decomposed into many series of wavelets:

1 h-b" (54)
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where the scale parameter a” controls the spread (dilation) of the wavelet and the
translation factor b~ determines its central position. Thus, the continuous WT Wgxp« 0f
the signal f(h) with respect to a wavelet ya«p is given by:
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A w,, coefficient represents how well the original signal f(h) and the scaled/translated
mother wavelet match. Since the continuous WT is achieved by continuously scaling
and translating the mother wavelet, substantial redundant information is generated.
Therefore, instead of doing that, the mother wavelet can be scaled and translated using
certain scales and positions usually based on powers of two (Conejo et al., 2005b; Reis
and Alves, 2005). This scheme is more efficient and as accurate as the continuous WT.
It is known as the discrete WT:

) H <1 h-—m-2'
wo =2 S o [ L0
h=0

(5.6)
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where H is the length of the signal f. The scaling and translation parameters are
functions of the integer variables | and m (a=2' and b = m-2'), h is the discrete time
index, and wi n is the decomposition coefficient corresponding to | and m.

An efficient algorithm to implement the discrete WT using filters has been developed in
(Mallat, 1989). Multiresolution via Mallat’s algorithm is a procedure to obtain
approximations (e.g. Al) and details (e.g. D1) from a given signal f. In the
reconstruction stage, these components can be assembled back into the original signal f’
(see Figure 5.6).

f(original

signal)

Al — D2

Figure 5.6. Multilevel decomposition (top) and reconstruction (bottom) processes.

Multilevel wavelet decomposition is applied to data preprocessing and considered as an
alternative to the previously used time series decomposition technique (see Section
3.3.1). Depending on the selected resolution level, the time series signal is decomposed
into a set of wavelet domain components. This set of components presents a better
behavior (more stable variance and no outliers) than the original price series. Unlike
classical time series decomposition, where deterministic patterns are projected to the
future and used as forecasted values, the obtained wavelet components are more
accurately predicted by the corresponding model.

Hereafter, a Daubechies wavelet of order 5 is used as the mother wavelet to transform
the price and demand series into several wavelet subseries. This wavelet offers an
appropriate trade-off between wavelength and smoothness, resulting in an appropriate
behavior for the price and demand forecast. Similar wavelets have been considered in
previous studies (Conejo et al., 2005b; Tan et al., 2010).Three decomposition levels are
considered, since this describes the price series in a more thorough and meaningful way
(Conejo, et al.,, 2005b). Thus, each of the original price and demand series is
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decomposed and reconstructed into one approximation subseries (general trend
component) and three detail subseries (high-frequency components).

5.3.2  Forecasting time framework

The time framework to simultaneously forecast electricity prices and demand in the
day-ahead energy market of Nord Pool Spot is illustrated in Figure 5.7 and explained
below. As mentioned above, the market day-ahead electricity price forecast for day D is
required on day D-1. Actual day-ahead price data up to 24 hours of day D-1 are
published by the TSO and available on day D-2. However, actual demand data for day
D-1 are not available on day D-2.

Biddiﬂg for B]ddlng for
day D-1 day D
L e
L s e R Price forecasted durin:
D-2 D-1/ : b ®
| : FOREC,D \i
‘ 24 hours
Forecast period for | Demand forecasted during
day D (PFOREC,D) ' Proric,p \‘
' 36 hours ‘
Clearing for Clearing for
day D-1 day D

Figure 5.7. Time framework to forecast market prices and demand in the Finnish day-ahead
energy market.

Therefore, when bidding for day D (hour 12 of day D-1), day-ahead price data up to
hour 24 of day D-1 are considered known while demand data are available only up to
hour 12 of day D-1. As a result, the actual forecasts of market day-ahead prices and
demand for day D can take place between the clearing hour for day D-1 of day D-2 and
the bidding hour for day D of day D-1. At least a 36 hours ahead (12 hours of day D-1
plus 24 hours of day D) demand forecast is required to predict prices 24 hours ahead
when bidding for day D.

5.3.3  Forecasting strategy

WT deals with nonstationarity by decomposing the price and demand series into less
volatile components. A linear SARIMA and a three-layered NN are combined to
capture different aspects of the underlying linear and nonlinear patterns of the wavelet
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subseries. The SARIMA model incorporates the cyclicality of the series, which clearly
exhibits hourly and weekly patterns and produces initial day-ahead forecasts for all
wavelet subseries of demand and prices. The proposed relevance-redundancy feature
selection algorithm is performed for the feature selection of each wavelet subseries. The
NN uses the selected inputs to forecast the demand and prices of the next hours.

The proposed simultaneous forecast strategy can be summarized by the following step-
by-step algorithm, shown also in Figure 5.8:

1) Electricity price and demand series are decomposed by WT into approximation
subseries (A3) and three detail subseries (D3, D2, D1).

2) WT+SARIMA models are built to forecast the future values of the price and
demand wavelet subseries.

3) The set of candidate inputs for each subseries is constructed, including lagged and
predicted features of both the wavelet and time domains. Although the wavelet
components are obtained by the decomposition of the price and demand signals, the
past values of the original price and demand series are considered among the
candidate inputs of each wavelet component, since it is still possible that some
characteristics of the price and demand signals are better highlighted in the original
time domain (Amjady, 2008). Taking into account the short-run trend, and daily
and weekly periodicity of the electricity and demand time series, their lagged
values up to about one week are considered among the candidate inputs. Finally,
the candidate inputs for each subseries of demand and price include lagged values
of these subseries, original price or demand lagged up to 200 hours before a
forecast hour, and price and demand values of these subseries forecasted by the
WT+SARIMA model. For the sake of clarity, prices and demand wavelet
components predicted by the WT+SARIMA model are additionally indexed as
“SARIMA”. For instance, the approximation price wavelet component value
predicted by the WT+SARIMA at hour h is denoted A3sarima_pricer. There are the
602 candidate inputs to predict the approximation price wavelet subseries at hour h
(A3price,h):{A35ARIMA_price,h, A3price,h—l, reny A3price,h—200, priceh—ly veny pficeh-zoo,
A3SARIMA_demand,hy A3demand,h—1, reey A3demand,h—200}-

4) An iterative search procedure introduced in Section 5.2 is carried out. The
procedure automatically adjusts V; and V, of the relevance-redundancy feature
selection algorithm and Nj, of the NNs for each subseries in order to minimize the
forecasting error on a validation data set.

5) Given adjusted V1 and V; values, the inputs are selected. With the selected Ny, the
NNs are trained by their respective training samples and separately predict the price
and demand subseries of the next hours.

In multistep ahead prediction, the predicted price and demand values of the current step
are used to determine their values in the next step up to hour 24 of the forecasting day.
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Figure 5.8. Flowchart of the proposed forecasting methodology.

5.3.4  Training phase

To commence the training phase of the proposed forecast strategy, the training periods
of the WT+SARIMA and NN models are first determined. Intervals of 50 days (1200 h)
for both WT+SARIMA and NN are considered resulting in two consequent equal
training periods.

First, a day denoted by D is considered in the training period of the NN (second training
interval) and the values of price wavelet subseries for this day are assumed unknown. In
the case of demand forecasting, the values of the demand wavelet subseries for day D
plus 12 after bidding hours of day D-1 are assumed unknown. The WT+SARIMA
models are trained by the historical data of the 50 days preceding hour 1 of day D or
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bidding hour of day D-1 and predict hourly price and demand subseries of day D,
respectively. To improve the performance of the WT+SARIMA forecast process for
each day of the second training period (D = 1,...,50), the WT+SARIMA models are
trained in a moving fashion, that is, by the immediately previous 50-day period. This
process is repeated until price and demand subseries forecasts of the WT+SARIMA
models are obtained for all days of the training period of the NN model. The selected
samples of the validation period (i.e., the 24 hours before the forecast day for the price
forecasting and the 36 hours before the forecast horizon of the demand forecasting) are
removed from the training set of the NN model. Then, the NN model is trained by the
remaining selected samples, and the hourly demand and price values of the forecast day
are predicted.

The plots of price, demand, and their wavelet components A3, D3, D2, and D1 in one of
the four time intervals used in the study are shown in Figs. 5.9-5.11, respectively.
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Figure 5.9. Plot of price (top) and demand (bottom) for the Finnish day-ahead energy market of
the year 2009.

For each day-ahead forecast over the test week, the overall time interval consists of a
forecast day, the first training period for the WT+SARIMA, and the second training
period (with a validation interval) for the NN (see Figures 5.10-5.11).
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Figure 5.10. Plot of the price components A3, D3, D2, and D1 for the first forecast day of the
fall test week (from 15 Nov to 21 Nov 2009).
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Figure 5.11. Plot of the demand wavelet components A3, D3, D2, and D1 for the first forecast
day of the fall test week (from 15 Nov to 21 Nov 2009).
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5.3.5 Numerical results

The results obtained of the relevance-redundancy linear correlation based feature
selection algorithm for price and demand forecasting for the first fall test day, that is, 15
Nov 2009 are presented in Tables 5.5-5.6. The values selected for Ny, Vi, and V; of
each wavelet component for the first day of the fall test week are shown in the second,
third, and fourth columns of Tables 5.5-5.6. From the obtained results, the forecast
features (for both price and demand) produced by the WT+SARIMA model are always
among the selected features for the A3 and D3 subseries of price and demand. For the
approximation components of price and demand, inputs indicating the effect of short-
run trend (A3pricer-1, A3demand,n-1), daily periodicity (A3pricen-25, A3demand,n-23), and weekly
periodicity (A3pricen-167, A3demand,n-167, PriCen.169, demandn.167) can also be seen from the
obtained results.

Table 5.5-5.6 also show that the dependency of the price and demand wavelet
components on the exogenous variables decreases from A3 to D1.

Table 5.5. Inputs selected by the two-step feature selection analysis for the four wavelet price
components (the first day of the fall test week).

Variable Nh V1 V, Selected candidates

A3price,h 6 0.63 0.83 A3SARIMA_price,h, A3SARIMA_demand,h, A3price,h—1,
A3price,h—2, A3price,h—6, A3price,h—21, A3price,h—25,
A3price,h—165, A3price,h—167, A3price,h—169, A3price,h—
170, A3demand,h—4, A3demand,h—22, A3demand,h—142,
A3demand,h—146, A3demand,h—167, A3demand,h-170,
A3 demand,n-172, A3demand h-194, PriCen-169, Pricen-17o

D3price,h 9 0.59 0.84 D35ARIMA_price,h, D38ARIMA_demand,h, D3price,h—1,
D3price,h-23, D3price,h-l44, D3price,h-167, D3price,h-168,
D3price,h-1691 D3price,h-192, D3demand,h-l44,
DSdemand,h-l69

D2price,h 5 0.47 0.75 DZSARIMA_price,h, szrice,h-l, D2price,h-144, D2price,h-
168, D2price,n-192

Dlprice,h 11 0.16 0.85 DlSARIMA_price,ha Dlprice,h-B, Dlprice,h-24, Dlprice,h-
48, Dlprice,h-72a Dlprice,h-%, Dlprice,h-lZO

The results obtained of the relevance-redundancy correlation based feature selection for
the approximation subseries of price and demand for the first day of the fall test week,
that is, 15 Nov 2009 can be found in Appendix H (see Section H.1).
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Table 5.6. Inputs selected by the two-step feature selection analysis for the four wavelet demand
components (the first day of the fall test week).

Variable Nn Vi V, Selected candidates

A3demand,h 11 0.53 0.63 A3SARIMA_demand,h, A3SARIMA_price,h, A3demand, h-1,
A3demand,h-3, A3demand,h—4, A3demand,h—20: A3demand,h-
48, A3demand,h—94, A3demand,h—140, A3demand,h-167,
A3price,h-1y A3price,h-37 A3price,h-142, A3price,h-1447
A3price,h—145, A3price,h—167, demandh—lAG,
demand.163, demandy.1g7

D3demand,h 9 0.56 0.70 D3SARIMA_demand,hy D3SARIMA_price,h, D3demand,h-13,
D3demand,h-37; D3demand,h-7l, D3demand,h-97.
D3demand,h-108| D3demand,h-lZly D3demand,h-168.
D3price,h-23a D3price,h-47a D3price,h-71, D3price,h-156y
D3price,h-l79

D2gemandh 9 071 0.80  D2sariMA_demand,hy D2 demand,h-36: D2 demand -8, D2
demand,h-120, D2 demand,h-156, D2 demand,h-180

Dldemand,h 5 0.68 0.80 D]-SARIMA demand,hs Dldemand,h—L Dldemand,h—24

In order to illustrate graphically the accuracy of the price and demand forecasts of the
proposed strategy, the forecasts and actual signals for the four test weeks of the Finnish
day-ahead energy market of the year 2009 are shown in Figures 5.12-5.15. As can be
seen, the forecast curves acceptably follow the actual curves of both prices and demand
for all the four test weeks.
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Figure 5.12. Original and predicted price (left) and demand (right) curves for the fall test
week of the Finnish day-ahead energy market of the year 2009.
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Figure 5.13. Original and predicted price (left) and demand (right) curves for the winter test
week of the Finnish day-ahead energy market of the year 2009.
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Figure 5.14. Original and predicted price (left) and demand (right) curves for the spring test
week of the Finnish day-ahead energy market of the year 20009.
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Figure 5.15. Original and predicted price (left) and demand (right) curves for the summer test
week of the Finnish day-ahead energy market of the year 2009.
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Only a few studies have considered price and demand forecasting in the Finnish day-
ahead energy market, and it was not possible to find price and demand forecast methods
considering the above-mentioned four test weeks in the literature. Therefore, the
proposed method is compared with some of the most recent price and demand forecast
techniques applied to case studies of energy markets of other countries: SARIMA
(Taylor, 2006; Contreras et al., 2003; Nogales et al., 2002), WT+SARIMA (Conejo et
al., 2005b; Tan, 2010), NNs with different training algorithms (Taylor, 2006,
Bhattacharyya and Thanh, 2003; Cavallaro, 2005; Nasr et al., 2001; Mandal et al.,
2007; Szkuta, 1999; He and Bo, 2009), and WT+NN (Shafie-khah , 2011, Chen et
al.,2010).

AMAPE values of the proposed method and five other forecast techniques for the four
weeks corresponding to the four seasons of the year 2009 in the Finnish day-ahead
energy market are presented in Table 5.7. Particle Swarm Optimization (PSO) is
another learning algorithm for NNs. As can be seen from the tables, the NN(PSO)
model results are close to those of NN(LM). A detailed mathematical description of the
algorithm to train the NN by the PSO method can be found in (He and Bo, 2009). In the
WT+NN(LM) model, WT is used to decompose the price and demand series into less
volatile components; separate NNs with the LM learning algorithm are applied for each
component. For a fair comparison, NN(LM), NN(PSO), and WT+NN(LM) have a
feature selection analysis based on the proposed two-step feature selection. The target
variables of the feature selection technique for the NN(LM) and the NN(PSO) models
are the original price and demand signals, respectively, while the feature selection
technique is executed for each wavelet component in the WT+NN(LM) model and in
the proposed method. It also should be noted that in the set of candidate inputs of the
alternative models examined, no variables are predicted beforehand by the models.

Table 5.7. AMAPE in percent (%) for the price/demand forecast of the four test weeks of the
Finnish day-ahead energy market in the year 2009.

Test SARIMA WT+ NN(LM) NN(PSO) WT+ NN  Proposed
week SARIMA (LM) method

Winter  5.19/1.60 4.27/1.55  4.70/2.45 525/3.09 5.16/1.81 3.93/1.19
Spring 5.76/3.34  4.69/2.31  5.45/2.57 6.01/3.35  4.85/2.36 4.17/1.98
Summer 13.08/2.08 7.49/1.65 9.43/3.42 11.05/3.99 9.13/2.22  6.81/1.89
Fall 5.83/1.93 3.28/1.76  4.75/3.29 5.87/3.97  4.30/2.14 3.01/2.09
Aver. 7.47/2.24 4.93/1.82 6.08/2.93  7.05/3.60 5.86/2.13  4.48/1.79

As seen from Table 5.7, on the basis of the AMAPE values, the proposed strategy
outperforms the other examined methods in all four test weeks. Table 5.7 shows that for
the demand forecast, the WT+SARIMA model has lower AMAPE values than the
proposed strategy in the summer and fall test weeks. However, the average of the
AMAPE values of the proposed strategy is lower than that of all other techniques
(indicated in the last row of Table 5.7). The accuracy improvement of the proposed
method for price prediction with respect to SARIMA, WT+SARIMA, NN(LM),
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NN(PSO), and WT+NN(LM) in terms of average AMAPE is 40.03% (1-4.48/7.47),
9.13% (1-4.48/4.93), 26.32% (1-4.48/6.08), 36.45% (1-4.48/7.05), and 23.55% (1-
4.48/5.86), respectively. The corresponding improvement in the average AMAPEs for
demand forecasting is 20.09% (1-1.79/2.24), 1.65% (1-1.79/1.82), 38.91% (1-
1.79/2.93), 50.27% (1-1.79/3.60), and 15.96% (1-1.79/2.13).

From the results presented in Table 5.7, it can be seen that the use of WT decomposition
results in an improvement in the model accuracy. These improvements for SARIMA in
comparison with WT+SARIMA in terms of average AMAPE are 34.00% (1-4.93/7.47)
and 18.75% (1-1.82/2.24) for the price and demand forecasts, respectively. For
NN(LM) in comparison with WT+NN(LM) these values are 3.62% (1-5.86/6.08) and
27.30% (1-2.13/2.93) for price and demand forecasts, respectively.

The results for both price and demand forecasts also confirm the efficiency of the hybrid
methodology with linear and nonlinear modeling capabilities. Furthermore, it should be
noted that the results given in Table 5.7 show that the performance of models based
only on a nonlinear framework was worse compared with the ARMA-based models. A
possible explanation could be that the certain characteristics of the initial demand time
are more linear than those of the price time series.

To demonstrate the efficiency of the proposed methodology over a longer period, a
detailed representation of the performance of the price and demand forecast strategy for
all the weeks of 2009 is shown in Appendix H (see Section H.2).

The running time required for the setup of the proposed simultaneous price and demand
forecasting strategy including the training and prediction phases of WT+SARIMA to
forecast price and demand for each day of the second training interval (50 days), the
relevance-redundancy feature selection processes, the tuning of the adjustable model
parameters, the training of the NNs, and the generation of price and demand forecasts
for the first forecasting day is about 11 h 40 min on the personal computer with an Intel
Core i5 2.40 GHz processor and 3.24 GB RAM. For the next forecast days, the total
computation time for the training of the proposed strategy and the generation of price
and demand forecasts 24 and 36 hours ahead, respectively, is about one hour since the
price and demand predictions generated by WT+SARIMA become available. Therefore,
the running time of the proposed strategy is considered sensible (except for the first
forecast day) for day-ahead energy market operation. The overall average running times
for SARIMA, WT+SARIMA, NN(LM), NN(PSO), WT+NN(LM) to generate a price or
demand prediction for the forecast day are about 3 min, 7 min, 8 min, 10 min, and 23
min measured on the same hardware. All computer codes are provided by the
MATLAB and R software packages. As can be seen, the running time to set up the
competitive methods is lower than the setup of the proposed strategy. However, the
prediction accuracy is a crucial concern for a forecasting method (as far as the
computation time is reasonable).
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5.3.6  Summary

The methodology consisting of SARIMA and NN frameworks is able to explain
intermittent high volatility in prices by incorporating the effect of demand pressure.
Moreover, frequency components obtained by WT are separately predicted. Such a
strategy was supposed to improve an overall forecasting performance and, in particular,
spikes in the series since there is a high correlation between price spikes and high-
frequency wavelet components of the price signal spectrum. The proposed methodology
generally outperforms other alternative forecasting methods because of its ability to
capture different essential features of the given time series and incorporate interactions
between demand and price forecasting processes being better adapted to the actual
conditions of the energy market.

The methodology can produce acceptable results over a longer period of a calendar
year. However, the methodology that typically predicts normal price behavior fairly
well does not capture anomalous behavior (when prices increase rapidly and
unexpectedly) to the full. The drawback of the proposed methodology can be clearly
observed in Figures 5.13 and 5.15, and additionally, in Figure 5.16 where the predicted
and actual prices of the selected weeks of the year 2009 are presented.

120

......... Original
Predicted

......... Original

110 Predicted
100 | 110
90 | 100/
80

70

60

Price, [euro/MWh]
o
3

50+

wh £ %

3of |

20 40 60 80 100 120 140 160 20 40

60 80 100 120 140 160
Hour

Hour

Figure 5.16. Original and predicted prices of week 32 (left) and week 49 (right) of the Finnish
day-ahead energy market of the year 2009.

In the light of the findings obtained in Chapters 4-5, an approach separately predicting
normal price behavior and price spikes becomes more preferable because of its main
ability to use different forecasting engines (for normal prices and price spikes). Such a
strategy provides an opportunity to train forecasting models more effectively while the
nonseparate methodology should learn the behavior of both normal prices and price
spikes. A forecasting methodology for separate treatment of hourly normal prices and
price spikes in the day-ahead energy market is extended in the further study.
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6 Iterative day-ahead price prediction with separate
normal range price and price spike forecasting
frameworks

This chapter introduces the day-ahead electricity price forecasting methodology based
on an iterative strategy implemented as a combination of two modules separately
applied to normal price and price spike prediction. The methodology is intended to
capture all essential features of electricity price series, and it produces forecasts of not
only normal range prices of high accuracy but of also price spikes. The methodology is
built on the findings made within the study and implemented as a combination of
different forecasting techniques.

6.1 Description of the forecasting methodology

Similarly to the hybrid model presented in Section 4.2, the new proposed methodology
consists of two modules to separately predict normal range prices and price spikes. The
normal price module is a mixture of WT, linear SARIMA and nonlinear NN. In the
price spike module, the probability of a price spike occurrence is produced by a
compound classifier in which three single classification techniques are used jointly to
make a decision. Combined with the spike value prediction technique (KNN model), the
output from the price spike module aims at providing a comprehensive price spike
forecast. The best inputs and optimal parameter settings for forecasting engines of both
modules are chosen by the proposed relevance-redundancy feature selection algorithm
and the search procedure. The overall electricity price forecast is formed as combined
normal price and spike forecasts.
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6.2 Electricity price spike extraction

Given n = 3 and w = 6 months (4380 hours), the thus defined price spikes are extracted
from the original price series of the Finnish energy market of Nord Pool over the period
1 Jan 2009 — 31 Dec 2010 (see Figure 6.1).
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Figure 6.1. a) Original Finnish day-ahead prices over the period 1 Jan 2009-31 Dec 2010; b)
extracted price spikes.

Table 6.1 shows the basic distribution parameters for normal prices and spikes in the
Finnish energy market of the years 2009-2010.
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Table 6.1. Basic statistics for normal prices and price spikes over the period 2009-2010

Number of  Mean Std Skewness  Kurtosis
observations
Normal prices 17324 44.62 15.77 9.65 1.88
Spikes 196 24098 256.68 13.61 3.30

6.3 Compound classifier

As previously, the problem of the price spike occurrence prediction is stated as a
classification problem that can be solved by a pattern recognition framework. The
results of the experimental assessment of the different classification designs are
supposed to be the basis for choosing one of the classifiers as a final solution to the
problem. It had been observed that even if one of the designs did yield the best
performance, the sets of patterns misclassified by the different classifiers would not
necessarily overlap. This suggests that different classifier designs potentially offer
complementary information about the patterns to be classified, which could be
harnessed to improve the performance of the selected classifier. The idea behind the use
of the compound classifier presented in this study is to avoid reliance on a single
classifier. Instead, a set of proposed classifiers is used for decision making by
combining their individual opinions to derive a consensus decision. Various classifier
combination schemes have been devised, and it has been experimentally demonstrated
that some of them consistently outperform a single best classifier (Kittler et al., 1998).

To enhance the accuracy and confidence of the price spike occurrence prediction, the
compound classifier composed of three different single classifiers is used within the
proposed forecasting methodology. The majority vote rule is applied to get an overall
output (spike/non-spike) from the compound classifier (Kittler et al., 1998). Here, the
votes received from the individual classifiers are simply counted. The class that receives
the largest number of votes is then selected as the consensus (majority) decision.

The three individual classifiers used together in the compound classifier are a
probabilistic neural network (PNN), RF, and RVM. These methods are chosen because
they provide probabilistic output (probability of class membership e.g. probability of
spike occurrence). The methods have been previously applied to several other
applications with promising results (Amjady and Keynia, 2010; Meng et al., 2009;
Huang et al., 2012). Description of the PNN is given in Appendix | (see Section 1.1).
The output from each classifier is modified by introducing a predetermined probability
threshold value V, as described in Section 4.2.3.
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6.4 Construction of the candidate input set

6.4.1 Price spike forecasting: probability of spike occurrence
The set of candidate inputs selected for the compound classifier is given below:
Historical prices of both time and wavelet domains

Historical prices of original range, approximation price wavelet component (A3price),
and detail price wavelet component of the highest frequency (D1pice), all lagged up to
200 hours before a forecast hour, are among the candidate inputs for the compound
classifier. Here, a high relation of a spiky price series with the original price series and
the above-mentioned price wavelet components is assumed (Amjady and Keynia,
2010).

Electricity demand and supply

Besides the historical price data, electricity demand and supply are among the set of
candidate inputs for the price spike forecasting since the relations of these variables are
known to drive the movement in the price spikes to a large extent (Zhao et al., 2007b).
Therefore, total electricity generation (i.e. internal supply) and electricity demand in
Finland, both lagged up to 200 hours before a forecast hour, are selected as candidate
inputs for the compound classifier. As mentioned above, reliable forecasts of the
demand and supply are highly required. To decrease the overall computational costs
within the proposed methodology, it was opted not to simultaneously predict electricity
demand/supply and prices as proposed in Section 5.3. Instead, the WT+SARIMA
approach, proposed as one of the competitive approaches in Section 5.3 for electricity
demand forecasting, is implemented here as a side forecasting model to separately
predict demand and supply.

Temporal effect

Hourly (hour_index), daily (day_index), and seasonally (season_index) indices are
considered as parameters to indicate the temporal effect when price spikes are predicted.

The SARIMA model is used as a model producing an initial forecast for the compound
classifier and provides preliminary day-ahead forecasts for all price wavelet subseries.

Finally, the set of candidate inputs for both the compound classifier and the KNN model
of the proposed method includes both historical and forecasted features of both wavelet
and time domains. For instance, the 1008 candidate inputs to predict price spike
occurrence at hour h are {pricesariman, Priceni...,pricnzoo, demands,...,demands-oo,
SUpp|Yh,--, SUPPWh-zoo, A3$ARIMA_price,h, A3price,h—l,---,A3price,h—2001 DlSARIMA_price,h, Dlprice,h—l
-y D1pricen-200, hOur_indexy, day_indexy, season_indexn}.
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It should be noted that within the methodology, the effect of weather variation is
incorporated in the electricity demand unlike in the hybrid model presented in Section
4.2 where the temperature data were directly passed to the spike forecasting module.
Moreover, the Elspot capacity-flow difference variable is not considered among the
candidate inputs to relate price spikes as additional experiments have indicated
inefficiency of this variable within the short-term forecasting (i.e. low relation to spike
occurrence).

6.4.2  Price spike forecasting: spike magnitude

If the forecast sample is classified by the compound classifier as a spike, the price spike
module is activated. The target set to train the KNN model is formed by the price spike
samples extracted from the original training price series. The KNN model uses the set of
candidate inputs similar to the one utilized for the compound classifier.

6.4.3  Normal range price forecasting

If the forecast sample is classified as a non-spike, the normal price module is activated.
All electricity price spikes are extracted from the original training price series and
replaced by the corresponding mean price value to form new normal price series. The
set of candidate inputs for the model to predict normal prices (i.e. NN), is similar to the
one used within the model to predict prices presented in Section 5.3. The SARIMA
model produces preliminary day-ahead forecasts for all subseries of the normal price
series. The 602 candidate inputs to predict an approximation normal price wavelet
Component at hour h (A3price,h) are {A3SARIMA_price, A3price,h—l,---, A3price,h—200, A3demand,h
y+++» A3demand h-200, PriCeh-1, ..., pricen-z00}-

6.5 Forecasting strategy

The proposed forecast strategy can be summarized by the following step-by-step
algorithm shown also in Figure 6.2:

1) An electricity price time series is decomposed by the wavelet transform into one
approximation subseries (A3uice) and three detailed subseries (D3prices D2price,
Dlprice)-

2) WT+SARIMA'’s are built to produce an initial forecast to predict the future values
of the price wavelet subseries 24 hours ahead.

3) The compound classifier is activated.

3.1. The set of candidate inputs for each classification approach of the compound
classifier is constructed.

3.2. Values of the thresholds (Vo, V1, V2) plus corresponding value of a classifier
parameter are fine-tuned for each single classifier on the validation data set by
the proposed search procedure. Spread values for the Gaussian radial basis
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4)

5)

6)

7)

function (RBF) (orvm, opnn) and the number of trees (Nyee) are the specific
tuned parameters for the RVM, PNN, and RF, respectively.

3.3. With the selected values, each classification approach of the compound
classifier is trained and predicts the price spike occurrence possibility 24 hours
ahead.

3.4. A final output from the compound classifier is formed as an overall output from
all three single classifiers in a majority voting scheme.

For all test samples forecasted by the compound classifier as nonspikes, the normal

price prediction module is activated.

4.1. All spike samples are extracted from the original training price series. The new
adjusted normal price series is decomposed into four wavelet components.

4.2. WT+SARIMA'’s are built to forecast the future values of the normal price
wavelet subseries 24 hours ahead.

4.3. The set of candidate inputs to predict each normal price wavelet subseries by
the NN model is constructed.

4.4. The threshold values (V1, V2) and Ny of NNs to predict each normal price
wavelet subseries are fine-tuned on the validation data set by the proposed
search procedure.

4.5. With the selected values, NNs are trained and predict the normal price wavelet
subseries 24 hours ahead.

For all test samples forecasted as spikes, the price spike module is activated.

5.1. All spike samples extracted from the original training price series are formed
into price spike series used as targets to train the KNN model.

5.2. The set of candidate inputs to predict spike value by the KNN model is
constructed.

5.3. The threshold values (V1, V) and the number of neighbor samples (K) for the
KNN approach are fine-tuned on the validation data set by the search
procedure.

5.4. With the selected values, the KNN model is trained and predicts the price spike
value of the test sample.

The overall electricity price forecast is formed as a joint output from the normal
price and price spike modules.
The overall price forecast replaces the predictions produced by the initial
forecasting model for the current forecast day (step 2), since it is expected that
electricity prices predicted by the separate forecasting frameworks have more
accuracy and thus have more relevance with actual values of price. After
replacement, the forecasting cycle is repeated as shown in Figure 6.2 until no
difference in the overall electricity price forecast output of two successive iteration
steps is observed.

6.6 Training and validation phases

The training periods for the forecasting models of the normal price and price spike
modules are different. As previously proposed, a 50-day period preceding the forecast
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day to train NNs of the normal price module is considered. There are only a few price
spike samples in the whole data set (see Table 6.1). Unlike normal price prediction, in
order to get a sufficient number of spike samples to train the models of the price spike
module, a longer price series period is required. Hence, 365 days preceding the forecast
day are considered for the price spike prediction (the compound classifier and the KNN
model).

Since the forecasting models of the normal price and price spike modules have the
inputs preliminarily predicted by other models (i.e. WT+SARIMA), their training
periods are extended to comprise two consecutive training periods: the moving training
period for the preliminary model and the training period of the main model. Then, to
predict normal prices or price spikes, a day denoted by D is considered in the
corresponding second training period.
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PRICE DATA FORECASTED DATA OF
I EXTERNAL FACTORS
WT DETERMINATION OF WT FOR
PRICE SPIIKES DEMAND TIME
T SERIES
v
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1
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1 SERIES TIME SERIES
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i ! ]
1 | wT
1 KNN l
1
1 I | WT+SARIMA ‘
! PRICE SPIKE |
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i |
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Figure 6.2. Flowchart of the proposed forecasting methodology.
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The values of prices for day D are assumed unknown. The preliminary WT+SARIMA
models are trained by the historical data of the 50 days preceding hour 1 of day D and
predict the price wavelet subseries of day D. To improve the performance of the
WT+SARIMA forecast process for each day of the second training period (D = 1,..,50
for NNs or D = 1,...,365 for the price spike module), the WT+SARIMA models are
trained by the immediately previous 50-day period. This process is repeated until
forecasts from the WT+SARIMA models are obtained for all days of the corresponding
second training period (see Figure 6.3).

365 days training period of the price spike module
N

50 days training |

period of NN of 1

the normal price !

module :

50 days training
period of

WT+SARIMA

Moving 50 days
training period of
WT+SARIMA

Forecast day

Figure 6.3. Historical data required for the training of the normal price and price spike modules.

The 24 hours price data before the forecast day are removed from the training set of the
NNs of the normal price module and used as the validation set. Then, the NNs are
trained by the remaining training samples. Adjusted parameters are fine-tuned on the
validation set.

For the price spike module, all tuned parameters of the respective approaches are fine-
tuned by a 10-fold cross-validation technique applied to the whole training data set
(Arlot and Celisse, 2010).

6.7 Numerical results

For examination of the proposed method, the actual hourly data of the Finnish day-
ahead energy market are considered. The electricity price, demand, and supply historical
data during November 2008-December 2009 are used to establish the training data
sample set. The data over the period 1 Jan 2010- 31 Dec 2010 are used as the test set.

The results obtained of the two-step MI based feature selection algorithm for the
compound classifier, the KNN model, and the NN model to predict prices in the Finnish
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day-ahead energy market for each hour of a single day, 5 Jan 2010, are presented in
Tables 6.2-6.3.

Since electricity price spikes have a very volatile stochastic nature with respect to the
normal price time series, the regular and periodic behavior of the price spikes are not so
obvious. As can be seen in Table 6.2, no features related to the periodic behavior are
obtained by the feature selection algorithm.

Table 6.2. Inputs selected by the two-step feature selection analysis for the three classification
approaches of the compound classifier and the KNN model.

Engine Vo Vi V,  Parameter Selected candidates

RVM 0.43 0.46 0.64 ORVM = 0.13 A3SARIMA_price,hy A3price,h-ly A3price,h-2,
A3price,h-4, A3price,h-5, A3price,h-6, A3price,h-7,
DlSARIMA_price,hy Dlprice,h-l; Dlprice,h-Za
D1price,n-3,priCen., pricen.y, pricen.s, pricen.s,
demandy, demandy.2, demandh.4s, demand.
72,5Upplyn, hour_indexy,, day_indexs,

PNN 0.47 0.50 0.78 OPNN = 0.03 A3 SARIMA_price,hy A3price,h—ly A3price,h-2,
A3price,h-3a A3price,h-4| A3price,h-5| A3price,h-6;
A3price,h»22; Dlpricefarima,h, Dlprice,h—l,
Dlprice,h»z, Dlprice,h—3, Dlprice,h—4, Dlprice,h—S,
pricen.2, pricens, pricens, demands.,
demandh-21, demandn-z, SUpplyn-2,
hour_index,, day_indexy, season_indexx

RF 0.42 0.48 061 Ntree= 100 A3 SARIMA _price,hy A3price,h—1, A3price,h—2,

A3price,h¢11 A3price,h—5, A3price,h—6, A3price,h—7,
Dlprice,h—L Dlprice,h—zl Dlprice,h—3, priceh—l,
pricén2, Pricen-z, PriCen-4, PriCens,
demandy, demandn.4, demandp-19, demand.
s9, demands.73, hour_indexy, day_indexp

KNN 0.45 0.56 K=3 A3 SARIMA_price,hs A3price,h—2; A3price,h—9,
A3price,h-15, A3price, h-21, Dlprice, h-2, Dlprice,h-S,
Dlprice, h-7, Dlprice, h-8; Dlprice, h-16, PriCeh-l,
pricen.s, pricen.7, pricensz, demandn.igo,
hour_index,, day_indexy, season_indexy

The variables of the short-run trend (A3pricen-1, D3pricen2), daily periodicity (A3priceh-25,
D3pricen-24), and weekly periodicity (A3pricen-169, A3demand,h-169) are among the selected
input features to forecast normal price wavelet components (see Table 6.3). The
dependency of the normal price wavelet components on the exogenous variables
decreases from A3price t0 D1pyrice.

The overall accuracy of the proposed method is compared with some of the most
popular price forecast techniques applied to case studies of energy markets of other
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countries: SARIMA (Contreras et al., 2003; Nogales et al., 2002; Taylor et al., 2006);
WT+SARIMA (Conejo et al., 2005b; Tan et al., 2010); NN (Zhang and Qi, 2005;
Taylor et al., 2006), and WT+NN (Safie-khan et al., 2011). Additionally,
WT+SARIMA+NN, which has not been found in the literature is among competitive
techniques.

Table 6.3. Inputs selected by the two-step feature selection analysis for the normal price wavelet
components.

Variable Ny ViV, Selected candidates

A3price,h 4 052 071 A3SARIMA_price,hy A3price,h—l, A3price,h—3, A3price,h—4,
A3price,h—16, A3price,h—21, A3price,h-25; A3price,h-72; A3price,h—
97, A3price,h-121,A3price,h-1441 A3price,h-169, A?’demand,h-&
A3demand,h-10, Asdemand,h-ll, A3demand,h-42, A3demand,h-911
A3demand,h-98| A3demand,h-1411 A3demand,h-169, priceh-72,
pricen.gs, Pricen-g7, Pricen-i2o

D3price,h 7 047 081 DSSARIMA_price,h; DSprice,h-l, D3price,h-2, D3price,h-11,
D3price,h-24, D3price,h-48; DSprice,h-GO. D3price,h-96; Dsdemand,h-
12, D3demand,h—47, D3demand,h—7l; D3demand,h—l43

szrice,h 4 041 0.74 DZSARIMA_price,h; D2price,h-l, szrice,h-7a D2price,h-8|
D2price,h—24

Dlprice,h 6 0.15 0.85 DlSARIMAﬁprice,h, Dlprice,h—6, Dlprice,h—24, Dlprice,h—Soy
Dlprice,h—48, Dlprice,h—72; Dlprice,h—94; Dlprice,h—lzo, Dlprice,h—
157

To demonstrate the efficiency of the proposed methodology, the results obtained for the
Finnish day-ahead energy market in the year 2010 are shown in Table 6.4 with the
corresponding results obtained from five other competing prediction techniques.

Table 6.4. AMAPE in percent (%) obtained by different prediction techniques for price
forecasts in the Finnish energy market of the year 2010.

SARIMA WT + NN WT+NN WT+ Proposed
SARIMA SARIMA+NN  method
Normal 10.53 7.53 8.17 8.01 7.18 5.89
price
Price 55.76 40.51 46.33 44.22 37.72 32.91
spikes
Overall 14.93 10.03 12.52 11.98 9.66 8.08

For a fair comparison, NN, WT+NN, and WT+SARIMA+NN have historical and
forecasted demand data among the candidate inputs. A feature selection analysis based
on the proposed relevance-redundancy filtration is made for all the examined models.
The adjustable parameters of the competing models are fine-tuned on the basis of the
proposed search procedure. It should be noted that among the alternative examined
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models, only the WT+SARIMA+NN model has preliminarily predicted prices in its set
of candidate inputs; that is, the NN part of the WT+SARIMA+NN model uses
predictions from SARIMA as the candidate input.

As seen from Table 6.4, the AMAPE values corresponding to the proposed strategy are
lower than the values obtained from other examined methods. The accuracy
improvement of the proposed method with respect to SARIMA, WT+SARIMA, NN,
WT+NN, and WT+SARIMA+NN in terms of AMAPE is 45.88% (1-8.08/14.93),
19.44% (1-8.08/10.03), 35.46%(1-8.08/12.52), 32.55% (1-8.08/11.98), and 16.36%(1-
8.08/9.66), respectively. It can also be seen that the use of WT results in an
improvement in the model accuracy. This improvement in SARIMA in comparison with
WT+SARIMA in terms of AMAPE is 32.82% (1-10.03/14.93). For NN in comparison
with WT+NN, this value is 4.31% (1-11.98/12.52). The results also confirm the
efficiency of the hybrid methodology with linear and nonlinear modeling capabilities
(WT+NN versus WT+SARIMA+NN) where the improvement is 19.37% (1-
9.66/11.98).

It is expected that the implementation of the proposed iteration strategy increases the
accuracy of the overall price prediction. Detailed results of the proposed iteration
strategy for the four test weeks of the Finnish day-ahead energy market of the year 2010
are shown in Table 6.5. These test weeks are related to dates 1-7 Jan 2010, 8-14 Jan
2010, 29 Jan—4 Feb 2010, and 5-11 Feb 2010, respectively, and indicate periods of high
volatility in the price series. Iteration 0 in Table 6.5 represents the results obtained from
the initial forecasting model (i.e., the WT+SARIMA model).

Table 6.5. Accuracy of the proposed iteration procedure in terms of AMAPE (%) for the four
test weeks in the Finnish day-ahead energy market of the year 2010.

Iteration

number Week1 Week?2 Week5 Week7
0 17.46 37.27 13.49 10.87
1 12.56 26.24 7.96 6.93
2 9.50 25.16 7.24 6.81
3 9.41 6.59

As seen from Table 6.5, the iteration procedure converges in at most of the three cycles,
and the prediction error for the four test weeks at the end of the iterative forecast
process with respect to Iteration 1 is improved by 13% on average.

In addition, the performance of the proposed compound classifier is compared with each
single classifier of the compound classifier and other techniques recently used for price
spike occurrence prediction: Naive Bayesian (Zhao et al., 2007a), SVM (Zhao et al.,
2007a), PNN (Amjady and Keynia, 2010), RVM (Meng et al., 2009), and RF (Huang et
al., 2012). The total number of the price spike samples extracted from the test period is
182. Napikes, Neorr, @nd Nas_spikes fOr the Finnish day-ahead energy market of the year 2010
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are presented in the second, third, and fourth columns of Table 6.6, respectively. Spike
prediction accuracy and confidence are given in the fifth and sixth columns of Table
6.6. For a fair comparison, the candidate input sets of all alternative classifiers are
similar to the set of candidate inputs of the compound classifier. Optimal settings are
selected and the candidate input set is refined for each examined classifier on the basis
of the proposed search procedure. All preliminarily predicted price variables that are
among the input sets of each competing classifier are predicted by the WT+SARIMA
model.

To justify the proposed iteration strategy particularly for the price spike occurrence
prediction, Neorr and Nas spikes, the classifier accuracy and confidence measures obtained
from the compound classifier on the final iteration step of the proposed methodology
are shown in the seventh, eighth, ninth, and tenth columns of Table 6.6, respectively.

Table 6.6. Ncorr and Nas_spikes, Classifier accuracy and confidence for price spike classification.

WT+SARIMA as the initial Final iteration step of the
forecasting model proposed
methodology

Engine Nspikes Ncorr Nas_spikes ACC-, Conf-; Ncorr Nas_spikes ACC-! COﬂf.,

(%] [%] %] [%]
Bayes 124 247 68.13 50.20
SVM 120 174 65.93 68.79
PNN 112 155 61.54 7226 147 161 80.77 91.30
RVM 182 119 168 65.38 70.83 163 190 89.56 85.79
RF 122 166 67.03 71.08 152 179 83.51 84.92
Comp-d 122 152 67.03 77.63 162 174 89.01 93.10

The results given in Table 6.6 indicate that the use of the iteration strategy results in a
notable accuracy improvement of the price spike occurrence prediction. Table 6.6 also
shows that the compound classifier performs better than all single classifiers. Only the
RVM has a slightly better spike prediction accuracy than the compound classifier, while
the compound classifier has a considerably better spike prediction confidence than the
RVM.

Further, the set of test price spike samples are divided according to their original price
value intervals. Large price spikes with price values varying between 300 and 1500
euro/MWh constitute around 15% of all the spike samples. Because of their values and
stochastic character, such spikes are extremely important for market participants. The
results obtained from each classifier and the compound classifier itself on the final
iteration step of the proposed methodology for the Finnish day-ahead energy market of
the year 2010 are shown in Table 6.7. All the classifiers presented in Table 6.7 are able
to correctly discriminate all the large spike samples over the test period. The price
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prediction accuracy of the examined classifiers varies in prediction of price spike
samples between 85 and 300 euro/MWh.

Table 6.7. Results obtained from the compound classifier for different price spike intervals in
the Finnish day-ahead energy market of the year 2010.

Original price Nspikes Neorr
interval,

[euro/MWh] PNN RVM RF Compound
85 -150 66 50 55 53 55
150 -300 87 68 79 70 78
300 -500 18 18 18 18 18

500 -1000 1 1 1 1 1

1000 -1500 10 10 10 10 10

TOTAL 182 147 163 152 162

For a more detailed representation of the performance of the proposed overall price
forecast strategy and separately for the price spike occurrence on the whole test year,
their results for all the weeks of the 2010 are shown in Table 6.8. There are six
measures given for all test weeks of the Finnish day-ahead energy market of the year
2010: the overall AMAPE, Ngpikes, Ncor, Nas_spikes: the classifier accuracy and confidence
of the compound classifier.

Table 6.8. Results obtained from the proposed forecasting methodology for each week of the
year 2010.

Week 1 2 3 4
AMAPE, [%] 9.41 25.16 6.31 5.75
Nspikes/Neorr/ Nas_spikes 23/21/22 22/22/22 0/0/0 9/8/8
Acc./Conf, [%] 91.30/95.45 100/100 - 88.89/100
Week 5 6 7 8
AMAPE, [%] 7.24 451 6.59 30.75
Nspikes/Ncorr! Nas_spikes T 1/0/0 5/5/5 44/39/39
Acc./Conf, [%] 100/100 0/- 100/100 77.27/97.14
Week 9 10 11 12
AMAPE, [%] 6.49 6.11 4.76 3.55
Nspikes/Ncorr/ Nas spikes 2/2/2 0/0/0 0/0/1 0/0/1
Acc./Conf, [%] 100/100 - -/0 -0
Week 13 14 15 16
AMAPE, [%] 2.84 2.99 3.31 5.07
Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0
Acc./Conf, [%] - - - -
Week 17 18 19 20

AMAPE, [%] 6.11 6.88 7.43 15.51
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Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0
Acc./Conf, [%] - - - -

Week 21 22 23 24
AMAPE, [%] 6.35 8.03 7.23 6.46
Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0
Acc./Conf, [%] - - - -
Week 25 26 27 28
AMAPE, [%] 6.15 7.23 4.26 12.82
Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/0 orrf7
Acc./Conf, [%] - - - 77.78/100
Week 29 30 31 32
AMAPE, [%] 4.56 5.38 7.58 6.34
Nspikes/Ncorr! Nas_spikes 0/0/2 0/0/0 0/0/0 0/0/0
Acc./Conf, [%] -/0 - - -
Week 33 34 35 36
AMAPE, [%] 3.06 3.14 4.99 2.19
Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0
Acc./Conf, [%] - - - -
Week 37 38 39 40
AMAPE, [%] 3.64 2.65 3.64 2.43
Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0
Acc./Conf, [%] - - - -
Week 41 42 43 44
AMAPE, [%] 3.83 4.09 5.91 3.14
Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/1 0/0/0
Acc./Conf, [%] - - - -
Week 45 46 47 48
AMAPE, [%] 2.26 2.83 4.03 17.12
Nspikes/Ncorr! Nas_spikes 0/0/0 0/0/0 0/0/0 12/7/8
Acc./Conf, [%] - - - 58.33/87.50
Week 49 50 51 52
AMAPE, [%] 8.37 11.02 5.70 4.22
Nspikes/Ncorr! Nas_spikes 3/3/3 35/33/34 9/8/11 0/0/1
Acc./Conf, [%] 100/100 82.86/96.67  88.89/72.73 -/0

As can be seen from Table 6.8, the price forecasts of the weeks related to a winter
season (December—February), that is, the weeks 1-8 and 48-52 of the year 2010, have a
relatively higher prediction error compared with the price forecasts related to other
seasons. It is unsurprising that the performance of the proposed forecasting
methodology is worse during the winter season because of the extreme price volatility
reflected in price spikes, which is caused by a number of complex factors and which
takes place during periods of market stress. These stressed market situations are
generally associated with extreme meteorological events and unusually high demand.
However, in the light of the fact that the occurrence of price spikes typical in the winter
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period is predicted by the proposed methodology with high confidence, the achieved
overall forecast accuracy level is fairly good and provides market participants with an
ability to analyze price spike probabilities and thus manage their risks.

In order to graphically illustrate performance of the proposed forecasting methodology,
the prediction performance and actual signals for the four test weeks of the year 2010,
corresponding to the four seasons are shown in Figure 6.4.
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Figure 6.4. Original and predicted prices for the four test weeks of the Finnish day-ahead energy
market of the year 2010: (a) Winter week; (b) Spring week; (c) Summer week; (d) Fall week.

The four weeks, a winter week (12 Feb to 18 Feb), a spring week (14 May to 20 May), a
summer week (13 Aug to 19 Aug), a fall week (12 Nov to 18 Nov), were considered
representative for a study spanning one whole year. All the forecast price curves
acceptably follow the actual ones. The proposed methodology based on a hybrid
iterative strategy is able to capture the essential features of the given price time series:
nonconstant mean, cyclicality, exhibiting daily and weekly patterns, major volatility,
and significant outliers.
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Additionally, to emphasize the ability of the proposed methodology to capture spikes in
the price series, Figure 6.5 presents forecasting results from the proposed methodology
for the four selected spiky weeks (weeks 1, 2, 5, and 28 in Table 6.8). The forecasting
performance of the competing approaches for these weeks is shown in Appendix | (see
Section 1.2).
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Figure 6.5. Original and predicted prices for the four weeks with prominent spikes of the
Finnish day-ahead energy market of the year 2010: (a) Week 1; (b) Week 2; (c) Week 5; (d)
Week 28.

It should be noted that many other exogenous variables can be considered in candidate
input sets for feature selection, such as fuel costs and some meteorological information,
but this is a topic for future research. Moreover, there is a clear need for a more accurate
method for price spike value prediction.

The total running time to set up the proposed separate forecasting strategy including its
normal price module, price spike module, and iterative prediction process for the first
forecast day is about 42 hours since price predictions produced by the initial forecasting
model are required over the period up to 365 days. Similarly, in the previously proposed
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forecasting strategy, simultaneously predicting price and demand (see Chapter 5), the
running time of the training and prediction procedures for the next forecast days after
the first one is significantly lower (about 50 min) and considered suitable for day-ahead
energy market operation. All the competitive nonseparate forecasting approaches
examined for price prediction have lower computation costs than the proposed separate
forecasting strategy but are outperformed by the proposed strategy in terms of
forecasting accuracy. The PNN and RVM classifiers of the compound classifier have
relatively lower computational costs than the alternative back-propagation NN and
SVM, respectively. The training process of the PNN is carried out through one run of
each training sample unlike the back-propagation algorithm. The RVM is faster than the
SVM in decision speed, as the RVM has a much sparser structure (the number of
relevant vectors versus the number of support vectors). The computation times to set up
the proposed and competitive forecasting strategies are measured on a hardware
including Intel Core i5 2.40 GHz processor and 3.24 GB RAM. All computer codes are
provided by the MATLAB and R software packages.

6.8 Summary

The proposed methodology is able to capture high volatility of prices to distinctly
distinguish normal prices and price spikes when the overall price path is forecasted. By
providing such ability, the proposed methodology significantly outperforms all other
competing approaches examined in the study. Thus, the proposed methodology can be
applied to the entire Nordic market and deregulated markets in other countries to
provide extensive and useful information for the participants of the energy market, who
have limited and uncertain information for price prediction.
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7 Conclusions

7.1 Summary and conclusions

The main purpose of this thesis was to present a model able to predict not only day-
ahead electricity prices within the normal range with a high degree of accuracy but also
price spikes. The structure of a case market, which is selected to be the day-ahead
Nordic energy market (Nord Pool Spot) and, particularly, the Finnish day-ahead energy
market, is studied in detail, and then, a set of potential explanatory factors that may
influence the price behavior in the Nordic electricity market are stated.

A wide range of market data from the Nord Pool Spot over the period from 1 Jan 1999
to 31 Dec 2012 were investigated and statistically analyzed. The existing seasonal
patterns and the remaining stochastic component were extracted with the help of a
decomposition technique for further analysis.

Various classical and more elaborate modern approaches were developed to relate the
electricity market price behavior in the Finnish day-ahead energy market. A linear
multiple moving regression model was examined with different lengths of training
periods to predict day-ahead prices. Residuals obtained from the regression model fit
were prone to outliers and presented nonconstant mean level and high spikes over the
testing period.

Next, the Box-Jenkins models were presented to relate the electricity price behavior by
altering the given series to make it stationary. It was shown that the Box-Jenkins
models were unable to estimate high volatility and spike clustering presented in the
original price series. A difference filter used within the Box-Jenkins model was not able
to remove and add deterministic elements of original price series accurately for out-of-
sample modeling. Therefore, separate treatment of the deterministic elements through a
decomposition model was proposed as more effective technique.

MR financial stochastic models based on Ornstein-Uhlenbeck approach, even when
optimally calibrated with the real day-ahead electricity market prices, were not able to
capture the statistical characteristics of the real series.

Following the aforementioned conclusions, spike samples were extracted from the
corresponding data set to avoid the undesirable effect of those samples on the parameter
estimates in the models. Further, it was suggested to implement a separate prediction of
adjusted price series (when spikes were extracted) and price spikes with the use of
different forecasting engines.

The Box-Jenkins and MR models enhanced with the regime switching approach were
presented as common tools to model day-ahead electricity prices. The regime-switching
model for the spike process was applied to working and nonworking days of different
seasons and the transition probabilities were determined for each case, as the number of
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spikes and the length of spike groups could differ for different day types. The impact of
the regime-switching was very clear when comparing the results of the models
combining the regime-switching with the corresponding results obtained from the
models without the regime-switching.

Then, an electricity price forecasting model implemented as a combination of classical
and modern forecasting approaches was presented to analyze electricity price time
series in two parts; normal behavior and spiky behavior. The Box-Jenkins models were
combined with the NN to capture linear and nonlinear relationships between the normal
range price series and the selected explanatory variables. The probability of a price
spike occurrence and the value of a price spike were produced by two different
forecasting engines (GMM and KNN). Selection of explanatory variables and model
parameters to predict both normal range prices and price spikes was based on heuristics.
It has been shown that when applied in addition to the normal range price forecast, the
proposed price spike forecast method could provide practically useful and reasonably
accurate forecasts, thereby enhancing the applicability of the price forecasts in the
actions of electricity market participants. However, the feature selection process based
on heuristics and past experience was found inappropriate for accurate price forecasting
since each electricity market has characteristics of its own.

The two-step feature selection algorithm was proposed to refine the set of candidate
inputs such that a subset of the most effective inputs was selected for the forecast
engine. Besides the simple calculation of the corresponding relevance value between the
target and candidate inputs, the problem of the presence of excessive information in the
set of candidate inputs was solved by adding the filter removing redundant information
from the set of candidate inputs. Several linear and non-linear statistical techniques
were used to calculate the relevance value between the given variables within the
proposed feature selection algorithm. The performance of different forecasting engines
given by different feature selection techniques was examined. It was shown that the
feature selection techniques consisting of both relevance and redundancy filters
outperformed the feature selection techniques having only a relevance filter for all the
considered forecasting engines. Moreover, the models applying feature selection
techniques that were able to consider the nonlinearities of the price signal performed
significantly better than those models merged with linear feature selection techniques.
The heuristic approach that was among the examined feature selection techniques
indicated the worst performance for all the considered forecasting engines.

The importance of the correct parameter setting for any forecasting model was
addressed in the thesis. Hence, the search procedure implemented to find the optimal
setting model parameters including the thresholds for the proposed two-stage feature
selection algorithm was proposed.

The study showed that besides past price values, inclusion of fundamental data (e.g.
electricity demand) in a forecasting model could significantly improve a forecasting
performance. In some past studies, actual values of fundamental data were used to
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forecast prices. However, such a strategy was shown to be not suitable for a real-life
problem as realized values of fundamental data were not known for a day-ahead market
at the moment when the prices were predicted. The thesis addressed the mutual effect of
price and demand in the deregulated markets where not only the system demand
influences the prices but the system demand may be significantly affected by the
electricity prices when consumers are encouraged to use less energy during peak hours.
To incorporate the above-mentioned mutual effect in the forecasting model, a
methodology was proposed that simultaneously predicted the electricity demand and
prices in the day-ahead energy market. The proposed methodology was better adapted
to actual conditions in an energy market since the forecast features for price and demand
were not assumed known values but were predicted by the model, thus accounting for
the interactions of the demand and price forecast processes. A WT approach was
applied within the proposed methodology to data pre-processing and considered as an
alternative to the previously applied time series decomposition technique. The
corresponding frequency components obtained by WT were separately predicted by the
combined SARIMA and NN. Such a strategy was supposed to improve the overall
forecasting performance and, in particular, spikes in the series without a separate normal
and spiky price prediction since there was a high correlation between the price spikes
and high-frequency wavelet components of the price signal spectrum. The best input set
and model parameter settings were selected by the proposed search procedure and the
relevance-redundancy feature selection algorithm. The methodology outcomes showed
that the proposed forecasting strategy was able to achieve more accurate predictions
than separate frameworks recently used for the case study of electricity price
forecasting. However, the proposed methodology still suffered from its inability to
capture anomalous price behavior (when prices increased rapidly and unexpectedly) to
the full.

In the light of the findings obtained along the study, separate normal price and price
spike forecasting was found to be the most preferable approach owing to its main ability
to train forecasting models more effectively while the nonseparate methodology should
learn the behavior of both normal prices and price spikes.

The novel methodology based on an iterative forecasting strategy, implemented as a
combination of two modules separately applied to normal price and price spike
prediction, was presented. The normal price module employed the previously applied
forecasting technique that was a mixture of WT, linear SARIMA and nonlinear NN. As
previously, the price spike module was a combination of the spike probability and the
spike value forecasting models. However, the spike probability model was implemented
on basis of three single classification techniques used jointly to make a final decision.
Selection of the best input set and parameter settings for the models employed within
the methodology was implemented by the proposed search procedure and the relevance-
redundancy feature selection algorithm. It has been shown that the use of the proposed
iteration strategy significantly increases the accuracy of the overall price prediction and,
in particular, price spikes. The methodology was examined for price prediction and
resulted in the best forecasting performance when it was compared with some of the
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most popular and recently used frameworks for price prediction and separately for price
spike occurrence prediction.

The proposed methodology was suggested to be applied to the entire Nordic market and
deregulated markets in other countries since it was able to capture different distinct
features of the given price time series and incorporate the iteration strategy separately to
predict normal prices and price spikes.

Prior information on market price fluctuations is a crucial concern for market
participants. An energy producer will benefit from having such information, as it allows
developing an optimal production schedule subject to the producer’s marginal costs.
The generated price forecast can be used for the development of an optimal short-term
operation portfolio. Development of an optimal short-term operation portfolio of a
single market customer, that is, a CHP power plant, the given price forecast was
considered in Appendix J. In this case, two price forecasts of different accuracies were
examined and the associated economic impacts were studied.

7.2 Contributions

The focus of this thesis is on developing the most accurate day-ahead energy market
price forecasting model that is able to predict not only normal prices but also price
spikes and that is feasible from the market participants’ viewpoint. The following are
the main contributions of the thesis:

1. A survey of current linear and nonlinear forecasting methodologies and their
applications to price prediction in the day-ahead energy market of Finland is
presented.

2. Two-step feature selection algorithm is applied to refine the set of candidate
inputs for a forecasting model by extracting nonrelevant and redundant
information from the set of candidate inputs.

3. The search procedure to obtain an optimal set of input features and adjustable
parameter settings for a forecasting model is proposed.

4. The forecasting methodology separately predicting normal prices and price
spikes is claimed as the most accurate approach to relate actual price behavior
on a day-ahead energy market.

5. The model simultaneously predicting electricity demand and prices on a day-
ahead energy market is implemented. It is better adapted to actual conditions of
an energy market as forecast features for price and demand are not assumed
known values but are predicted within the model thus accounting for the
interactions of the demand and price forecast processes.

6. The novel forecasting methodology based on iterative strategy implemented as
a combination of two modules separately applied to normal price and price
spike prediction is proposed and implemented. The two modules are built on a
hybrid approach and implemented as a mixture of different models. A set of
experiments have shown that the proposed methodology is able to capture
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essential features of the real price series and significantly outperforms the most
popular and recently used frameworks for price prediction in a day-ahead
energy market.

7. The application of a price forecast with different levels of accuracy is examined
to obtain an optimal short-term operation scheduling of a single market
customer.

7.3  Suggestions for future work

Based on the research work presented and discussed in this thesis, further research may
be pursued on the following subjects:

e Construction of an interface between different pieces of forecasting software
packages used to implement the proposed forecasting methodology. It could
make the forecasting model more easy and practical to use by researchers and
software users.

o The effect of other variables (besides electricity demand/supply) when integrated
into the proposed price forecasting methodology is a topic of future research.
These include fuel costs, regulatory constraints etc.

e Development of a more accurate method for price spike value prediction. The
possible methods that could be based on NNs or RVM regression approaches
can be considered in the future work.

e Study on the application of price forecasts for short-term operation scheduling of
actual market participants. Investigate the energy costs sensitivity to price
forecast accuracy across different market participants.

o Application of the proposed forecasting methodology to after-spot energy
markets (Elbas market).

e Investigation of the effect of market power and supplier bid behavior on the
market price formation.
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Appendix A: ML estimation

ML estimation is a method for estimating the parameters of a statistical model. The ML
method views the parameters as quantities whose values are fixed but unknown. The
best estimate of their value is defined to be the one that maximizes the probability of
obtaining the samples actually observed. Suppose there are n data sets Xy, X,..., Xn With
the samples in x; having been drawn independently according to the probability law

p(xl,XQ,...,xn|9). Such samples are independent and identically distributed (i.i.d.)

random variables. The probability law P(X;,X,,..., X, |6) is assumed to have a known
parametric form. Because the samples are drawn independently, one can obtain

f Al
P06 X %,10) = [ ] PO 16) -

p(xl,xz,..., X | 0) is called the likelihood of @ with respect to the set of samples. The

ML estimate of O is, by definition, the value @ that maximizes P(X,X,,...,X,|6).
Therefore, the estimate corresponds to the value O that best agrees with or supports the
actually observed training samples.

It is usually easier to work with the logarithm of the likelihood than with the likelihood
itself. Function 1(8] X, %,,...,X,) is defined as the log-likelihood function:

1O]%, %10 %) =IN P(X, X, .0, X, | 0) (A2)

thus
n A.3
1015, %,%) = 310 B, 10) (A3)

and
(A.4)

V=>V,Inp(x6).
k=1

Thus, a set of necessary conditions for the ML estimate for € can be obtained from the
set of equations

V,1=0 (A5)



150

Appendix B: Parameter estimations of SARIMA+GARCH

All the coefficients are statistically significant at the 5% level.

Table B.1. Parameter coefficients of the SARIMA and SARIMA+GARCH models estimated for
original and adjusted price series for the Finnish day ahead energy market from 16 Sep 2009 to
14 Nov 2009.

Original data Adjusted data
Model SARIMA(1,1,1) SARIMA(1,1,0) SARIMA(1,1,1) SARIMA(1,1,0)
parame- ((1!7)11,1)24 ((117)1111)24+ ((117)1111)24 (117)!111)24+

ters GARCH(1,1) GARCH(1,1)
o1 0.62 0.14 0.67 0.08
(0.02) (0.05) (0.04) (0.03)
0] 0.10 0.08 0.11 0.09
(0.02) (0.02) (0.02) (0.02)
D, 0.24 0.13 0.26 0.13
(0.01) (0.01) (0.02) (0.02)
o1 -0.89 -0.89
(0.02) (0.03)
61 -0.85 -0.83 -0.81 -0.85
(0.02) (0.01) (0.02) (0.01)
Variance
equation:
C 241 0.48
(0.11) (0.03)
a 0.26 0.69
(0.03) (0.05)
B 0.09 0.30
(0.02) (0.01)

Notes: Standard errors are given in parenthesis
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Appendix C: Distributions of simulated price paths

Figure C.1 indicates number of price values (Y-axis) that hit within the specific price

interval (X-axis).
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Figure C.1. Distributions of out-of-sample simulated price paths and original prices.
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Appendix D: Hybrid electricity price forecasting model

D.1GMM

When the probability density function (pdf) that describes the data points in a class is
not known, it has to be estimated prior to the application of the Bayesian classifier. An
arbitrary pdf can be modeled as a linear combination (weighted sum) of several pdfs.
Therefore, if a high number of component distributions are used, any distribution can be
approximated (Theodoridis and Koutroumbas, 2010). The probability density function
for the samples is then given by

prob(x|A) = i prob(x | &,%,)P,; (D.1)

where x is a V-dimensional continuous-valued data vector (i.e., measurement of
features), Pwi,i = 1,...,M, are the mixture weights, and prob(x|u;,>}), i=1,..,M, are the
component Gaussian densities. Each component density is a V-variate Gaussian
function of the form,

(D.2)

1 1 N
P"Ob(x|M:Zi):WeXP{—E(X—M) Z (X—M)}

with the mean vector ; and the covariance matrix Y ;. The mixture weights satisfy the
constraintz:i1 P,(w)=1. The complete Gaussian Mixture model (GMM) is

parameterized by the mean vectors, covariance matrices, and mixture weights from all
the component densities. These parameters are represented as

A={P (@) 4,5} i=1...M (D.3)

Several techniques are available for estimating the parameters of the GMM. By far, the
most popular and well-established method is the ML estimation. For a sequence of n
training vectors X={x,...,X}, the GMM likelihood, assuming independence between the
vectors, can be written as

prob(X |A) = ﬁ prob(x, | A) (O-4)

i=1

This expression is a nonlinear function of the parametersA, and direct maximization is
not possible. However, ML parameter estimates can be obtained iteratively using a
special case of the expectation-maximization (EM) algorithm. The basic idea of the EM

algorithm s, beginning with an initial model A, to estimate a new model A such that
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prob(X |Z) > prob(X | A) .The new model then becomes the initial model for the next

iteration, and the process is repeated until some convergence threshold is reached. The
EM algorithm for GMM was described in (Reynolds, 2005).

Predicting the occurrence of a spike is a typical binary classification problem. The
factors relevant to spikes can be considered the dimensions of the input vector
X={x1,...,X} at each time point h where x;, i =1,2,...,k is the value of a relevant factor.
The object is to determine the label y for every input vector, where

1, non — spike (D.5)
-1, spike

and y denotes whether a spike will occur.

A GMM based on a Bayesian classification algorithm is used to mine the database to
find out the internal relationships between the electricity price spikes and the external
factors. Basically, for a given input vector X={xi,...xs} and its class label
y € {c1,Cy,...,C} the probability classifier calculates the probability that X belongs to
class ci fori =1,2,....k. X is labeled as class c;, which has the largest probability.

D.2 KNN

KNN is a nonparametric technique. It stores all available cases and predicts the
numerical target based on a similarity measure (e.g. distance functions). If the KNN is
used for feature selection, K points in a given feature set X that are nearest to each point
in the numerical target set are used. If the KNN is used for regression, the sum of
weighted values of the K closest samples is computed as the unknown sample’s value.

The distance metric from an unknown sample or a given target Z = {z,,...,z} to the
neighboring sample or feature set X = {x,...,Xc} is determined by the Euclidian distance
between two real-valued vectors as given in Eq. (D.6)

k (D.6)
dist(X,Z2) = /Z(xi -z,)?

where k is a vector dimensionality.

D.3 Parameter estimations of ARMA+GARCH based models

Structures of proposed models are given below. All data are in daily resolution.

SARIMAX+(GARCH):
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(1-,B)(1~B)(1~B") price, =17,U, , gara » 1~ B)L-B") + (1+6,B)(1+6,B")a, (D.7)

ARMAX+(GARCH):
(1-B—¢,B" —¢,B") pricey™™ ™ = U T | +(L+6B")a, (D.8)

GARCH (for both SARIMAX+GARCH/ARMAX+GARCH models):

1 1 ) D.9
o =C+y aa >+ Bo,’a,~N(0,0%) attime hh=12,3. H (0-9)
i=1 i=1

The second and third columns of Table D.1 report the results of estimating (D.7-D.9).

Table D.1. ARMAX+GARCH based models obtained from the initial training data set.

SARIMAX + GARCH(1,1)  ARMAX + GARCH(1,1)

01 0.31 0.85
(0.07) (0.03)
07 0.72
(0.04)
¢s -0.58
(0.05)
M 0.01 0.50
(0.00) (0.05)
01 -0.67 -0.64
(0.06) (0.06)
0, -0.84
(0.02)
Variance equation:
C 2.29 0.00
0.14) (0.000)
a 0.41 0.68
(0.05) (0.07)
B 0.39 0.16
(0.04) (0.04)
Model diagnostics:
LBo 26.41 29.00
[0.20] [0.11]
ARCH 0.56 0.89
[0.46] [0.35]

Notes: Standard errors are given in parentheses and probability values in square brackets. LBqis
the Ljung-Box Q-statistic to test for serial correlation in the residuals. ARCH tests for
autoregressive conditional heteroscedasticity in the residuals.
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D.4 Random walk model

The random walk was implemented as the naive method since it is the most widely used
and simplest naive benchmark method in forecasting studies. The random walk forecast
function is given as

X, =X, attime h,h=1,273,..,H (D.10)

where Xp and Xj.1 can be considered price values at time h and h-1, respectively.

D.5 Performance measurements for the normal range price models

Table D.2. Performance measurements of the models predicting a normal range price up to
seven days ahead.

Horizon, [days] MSE MAE AMAPE, [%]

Naive benchmark 1 15.27 2.70 7.43
2 18.67 3.12 8.60

3 20.84 3.34 9.19

4 26.14 3.68 10.15

5 26.30 3.69 10.18

6 26.20 3.65 10.16

7 26.44 3.73 10.29

SARIMA+GARCH 1 8.14 2.09 5.76
2 10.55 2.53 6.96

3 11.69 2.67 7.36

4 15.13 2.92 8.05

5 17.90 3.18 8.76

6 19.43 3.32 9.15

7 22.44 351 9.66

SARIMAX+GARCH 1 7.35 2.00 5.51
2 8.57 2.23 6.15

3 8.96 2.28 6.29

4 10.97 2.42 6.67

5 12,51 2.65 7.30

6 13.95 2.82 7.77

7 16.56 2.95 8.14

ARMA+GARCH* 1 6.30 1.94 5.34
2 7.41 2.10 5.80

3 8.09 2.17 5.97

4 8.53 2.27 6.25

5 8.83 2.29 6.38

6 9.67 2.39 6.63

7 9.76 2.40 6.75

ARMAX+GARCH* 1 6.02 1.90 5.23
2 6.87 2.00 5.50

3 7.00 2.02 5.57
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4 7.18 2.05 5.87

5 8.36 2.23 6.14

6 8.75 2.27 6.37

7 8.79 231 6.47

NN with raw data 1 10.14 2.14 5.89
2 10.55 2.34 6.46

3 10.80 2.45 6.76

4 11.62 2.55 7.03

5 14.33 2.78 7.68

6 14.98 2.88 7.95

7 15.73 3.00 8.27

NN with 1 7.09 2.08 5.73
decomposed data 2 7.91 2.20 6.05
3 8.83 2.27 6.25

4 9.19 2.38 6.55

5 9.92 2.48 6.82

6 11.13 2.56 7.08

7 11.16 2.64 7.27

Combined with raw 1 7.41 1.96 5.40
data 2 8.34 2.17 5.97

3 8.56 2.19 6.05

4 11.20 2.35 6.49

5 11.48 2.51 6.92

6 13.23 2.67 7.35

7 13.70 2.78 7.66

Combined with 1 6.01 1.89 5.20
decomposed data 2 6.58 1.95 5.36
3 6.63 1.97 5.39

4 7.18 2.05 5.63

5 7.70 2.14 5.82

6 8.16 2.16 5.95

7 8.24 2.22 6.04

Notes: *Models tested by decomposed data.
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Appendix E: Feature selection techniques

E.1 Ml

A quantity called entropy is defined for any probability distribution. The entropy of a
random variable is a measure of the uncertainty of the random variable; it is a measure
of the amount of information required on the average to describe the random variable.
Entropy then becomes the self-information of a random variable. The notion of entropy
can be extended to define MI, which is a measure of the amount of information one
random variable contains about another. Ml is a special case of a more general quantity
called relative entropy, which is a measure of the distance between two probability
distributions (Cover and Thomas, 1991). The entropy H(X) of a discrete random
variable X with values Xi, X,,..., X¢ and probabilities P(X1), P(X2),..., P(Xy),
respectively, is defined as follows:

k E.1
H(X) = =2 P(X)log,(P(X,)). (ED)

The joint entropy H(X,Y) of a pair of discrete random variables (X,Y) with a joint
distribution P(X,Y) is defined as

H(X.Y) =—Zi P(X;,Y))log,(P(X,,Y)))- (E-2)

k
i=1 j=1

One can define the conditional entropy H(Y/X) of a random variable given by another as
the expected value of the entropies of the conditional distributions P(Y/X), averaged
over the conditioning random variable. Therefore, the conditional entropy H(Y/X)
guantifies the remaining uncertainty of Y, when X is known. The conditional entropy is
defined as follows:

H(Y/X):iP(Xi)H(Y/X = X,)

i=1

) N (E.3)
=Y POX)YP(Y, / X,)log, (P(Y, / X,)

— 3 S P(X,Y ) l0g,(PY, 1 X))

k
i=1 j=1

Ml is introduced as a measure of the amount of information that one random variable
contains about another random variable. It is the reduction in the uncertainty of one
random variable due to the knowledge of the other. Therefore, the mutual information
1(X,Y) is the information found commonly in two random variables X and Y with a joint
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probability mass function P(X,Y) and marginal probability mass functions P(X) and
P(Y), and can be defined as:

K m P(X,.Y)) (E.4)

|(X,Y)=ZZP(xi,YJ)|ogZW.

Thus, MI of a random variable with itself is the entropy of the random variable. This is
the reason why entropy is sometimes referred to as self-information. The relationship
between H(X), H(Y), H(X,Y), H(X/Y), H(Y/X), and MI(X,Y) is expressed in a Venn
diagram (see Figure E.1). MI(X,Y) corresponds to the intersection of the information in
X with the information in Y.

H(X)Y)

H(X) H(Y)

Figure E.1. Relationship between entropy and M.

E.2 Relief

A problem of estimating the quality of attributes (features) is an important issue in the
machine learning when a sufficient subset of features to describe the target concept is
selected. Relief is a nonlinear technique that is able to detect conditional dependencies
between attributes and provide a unified view on the attribute estimation in regression
and classification (Robnik-Sikonja and Kononenko, 2003).

The original Relief algorithm considering two-class problems is used to estimate the
quality of attributes according to how well their values distinguish between the
instances that are near to each other (Kira and Rendell, 1992).

For that purpose, given a randomly selected instance X, Relief searches for its two
nearest neighbors based on the Euclidian distance measure: one from the same class,
called nearest hit Hpearest, and the other from a different class, called nearest miss
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Mrearest. In the Relief algorithm, the weight of the i feature W; is updated according to
the following equation:

W, =W+ | XD MO (X)]|-|XO-HE (X)], i=12,..,1 (E.5)

where X® is the i" attribute (feature) of the sample X; Mnearest” and Hnearest are the it
features of the nearest miss and the nearest hit of the sample X, respectively, and | is the
number of candidate input features.

Therefore, a feature’s weight is updated according to how well its values distinguish the
sample from its nearest hit and nearest miss. A feature will receive a high weight if it
differentiates between samples from opposite classes and has the same value for the
samples of the same class (Robnik-Sikonja and Kononenko, 2003). The cycle is
repeated for all randomly selected samples, and then, the candidate features are ranked
according to the finally obtained weight values.

The original Relief algorithm is limited to two-class problems and becomes
inappropriate for a problem of electricity price forecasting where the price value Y is
continuous. The difference from the original Relief to adapt it to the regression problem
is that, instead of one nearest hit and one nearest miss, Relief uses K nearest hits and
misses and averages their contribution to Wi.

Relief’s estimate W; of the quality of the i" attribute is an approximation of the
following difference of probabilities (Kononenko, 1994):

W, = P(diff value of i" feature /nearest sample from diff .class) (E.6)

— P(diff value of i" feature/nearest sample from same.class)
Then, instead of requiring the exact knowledge of whether two samples belong to the
same class or not, a kind of probability that the price values Y of two samples are

different is introduced. This probability can be modeled with the relative distance
between the price value Y (class) of two samples.

Eqg. (E.6) can be reformulated, so it can be directly evaluated using the probability that
the price values Y of two samples are different:

Py = P(diff . value of i" feature/nearest samples) (E7)
Py v = P(diff. value of Y /nearest samples) (E.8)
Pur vian i = P(diff. value of Y /diff. value of i featureand nearest samples)  (E.9)

and from Eq. (E.6) according to Bayes’ rule:
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W, = Pdiff _Y/diff _i Pdiff i (l_ Pdiff _Y/diff _i ) Pdiff i (E.lO)
I Pdiﬁ Y 1- Pdiff %

The algorithm to estimate W; by approximating terms defined by Egs (E.7)—(E.9) can be
found in (Robnik-Sikonja and Kononenko, 2003).

Relief-based algorithms have been recommended for feature selection when
classification or regression approaches are adopted (Kononenko, 1994; Robnik-Sikonja,
Kononenko, 2003).
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Appendix F: Two-step feature selection algorithm

Relevance values are calculated for the target variable (price) and each candidate
feature. Further, all candidate features with a relevance value (with respect to the target
feature) > V; (0.61) are selected by the relevancy filter (see Figure F.1 and Table F.1).
The selected features indicate the short-run trend (pricen.a, pricenz, pricens, pricen.a),
and the daily (pricen-24) and weekly periodicity (pricen.1ss) Of the price series.

16 Relevance Value ! ' ‘
Relevance Threshold
0.8 8
s

[0y ql
2 ¢
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= 0.6] ~
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> 0.4 i
©
(14
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Figure. F.1.Relevance values between the candidate inputs and the target variable.

The results obtained when the redundancy filter is implemented are presented in Table
F.2. Competing candidate inputs, their mutual relevance values (correlation coefficient),
relevance values between each candidate input and a target variable (correlation
coefficient), and the removed inputs are presented in Table F.2.
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Table F.1. Results obtained when the relevance filter is implemented.

Selected input Correlation coefficient
pricen1 0.94
pricen- 0.85
pricen-s 0.75
pricen.s 0.67
pricen-2: 0.64
pricen.22 0.71
pricen-2s 0.76
pricen 4 0.79
pricen-zs 0.75
pricen.26 0.68
pricenaz 0.66
pricen.ss 0.68
pricen.g 0.65
pricen.71 0.66
pricen.72 0.69
pricen.7s 0.66
pricen.os 0.64
pricen.os 0.66
pricen.g7 0.62

pricen-120 0.63
priceh.143 0.66
pricen.144 0.69
pricen-14s 0.66
pricen.165 0.62
priceh.lae 0.70
pricen.167 0.77
pricen-ies 0.80
pricen-1s9 0.76
priCeh.17o 0.69
pricen.191 0.65
pricen.192 0.66

pricen.193 0.62
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Table F.2. Results obtained when the redundancy filter is implemented.

Candidate Candidate RV(Xa, Xb) RV(Xa,Y) RV(xa,y) Removed

input X, input X

pricena pricen- 0.94 0.94 0.85 pricen-

pricens pricen.s 0.94 0.75 0.67 pricen.s

pricen-2: pricen-22 0.94 0.64 0.71 pricen-21
pricen.2» pricen.2s 0.94 0.71 0.76 pricen.2;
pricen-2s pricen-24 0.94 0.76 0.79 pricen-2s
pricenos pricen.zs 0.94 0.79 0.75 pricen.os
pricen.47 pricen.ss 0.94 0.66 0.68 pricen.47
pricen.ss pricen.4g 0.94 0.68 0.65 pricen.4g
pricen.71 pricen.7z 0.94 0.66 0.69 pricen.71
pricen.7z pricen.7s 0.94 0.69 0.66 pricen.7s
pricen.gs pricen.gs 0.94 0.64 0.66 pricen.gs
pricen.gs pricen.g7 0.94 0.66 0.62 pricen.g7
pricen-143 pricen-144 0.94 0.66 0.69 pricen.143
pricen-144 pricen.145 0.94 0.69 0.66 pricen.145
pricen-165 pricen-166 0.94 0.62 0.70 pricen.165
pricen-166 pricen.167 0.94 0.70 0.77 pricen.166
pricen-167 pricen.16s 0.94 0.77 0.80 pricen.167
pricen-16s pricen-169 0.94 0.80 0.76 pricen-169
pricen-191 pricen.192 0.94 0.65 0.66 pricen.191

pricen.192 pricen.193 0.94 0.66 0.62 pricen.103
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Appendix G: RVM and RF forecasting engines

G.1RVM

Relevance vector machine (RVM), a statistical learning technique based on the
Bayesian estimation theory, is developed for regression and classification problems. A
detailed mathematical description of the RVM is given in (Tipping, 2001).

Note that in most of real-world problems, the training data are not linearly separable.
The method to deal with nonlinear data is to use a map function to map the training data
from the input space into some high-dimensional feature space so that they will become
linearly separable in the feature space. The related kernel function is used to avoid
explicit knowledge of the high-dimensional mapping (Vapnik, 1995). A Gaussian RBF
kernel with its specific value of spread orym is selected for the application of RVM
(Meng et al., 2009).

G.2RF

RF produces a forest of a specific number of decision trees (Niee) Whose predictions are
combined to make an overall prediction for the forest. Bagging is a method to develop
improved estimating class probabilities from the decision tree classification algorithm.

Mathematical description of the decision tree and the bagging method can be found in
(Breiman, 1984; Provost et al., 2000; Ali et al., 2012).
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G.3 RVM and RF with different feature selection techniques

Table G1. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy

market in the year 2009 produced by the RVM employing different feature selection techniques.
Input data: historical prices.

Feature selection technique

Test week Relief/ MI/

Linear

KNN/ Sequential
Corr./] — — — — selection
Fall 5.38 5.01 5.20 6.01 5.88
Summer 9.97 10.55 10.13 10.83 11.25
Spring 6.21 6.54 6.01 5.99 6.89
Winter 6.02 7.01 6.13 6.88 7.20
Average 6.90 7.28 6.87 7.43 7.81
Linear Corr. MlI/ Relief/ Relief / Heuristic
/ Linear Mi Linear Corr. Mi
Corr.
Fall 4.69 4,78 4.86 481 5.81
Summer 9.38 9.27 10.37 10.05 10.57
Spring 5.87 5.94 531 4.99 8.52
Winter 5.21 5.03 5.47 5.25 7.48
Average 6.29 6.26 6.50 6.28 8.10

Table G.2. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy

market in the year 2010 produced by the RVM employing different feature selection techniques.
Input data: historical prices.

Feature selection technique

Test week Linear Relief / M1/ KNN/ Sequential
Corr. | — — — — selection
Fall 3.22 3.50 2.66 3.15 4.99
Summer 5.64 6.02 5.23 5.79 5.66
Spring 8.79 9.03 8.90 8.81 8.13
Winter 23.77 19.88 20.66 19.05 18.90
Average 10.36 9.61 9.36 9.20 9.42
Linear Corr. M1/ Relief / Relief/ Heuristic
/ Linear Mi Linear Mi
Corr. Corr.
Fall 2.64 2.54 3.03 3.17 3.05
Summer 4.79 4.40 5.64 6.96 7.05
Spring 8.58 7.23 8.83 8.71 9.13
Winter 19.00 17.86 19.19 18.32 26.86
Average 8.75 8.03 9.17 9.29 11.52
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Table G3. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy

market in the year 2009 produced by the RF regression employing different feature selection
techniques. Input data: historical prices.

Test week Linear Corr. /

Feature selection technique

Relief/ Ml KNN/ Sequential
— — — — selection

Fall 5.56 5.98 5.47 5.80 5.68
Summer 9.26 9.90 9.29 9.93 10.15
Spring 5.99 6.10 5.68 5.99 6.10
Winter 6.09 6.29 6.00 6.10 6.89
Average 6.73 7.07 6.61 6.96 7.13

Linear Corr. / M1/ Relief / Relief / Heuristic
Linear Corr. Ml Linear Ml
Corr.

Fall 4,50 4.63 5.06 5.31 5.93
Summer 8.95 9.19 9.31 10.28 10.22
Spring 5.63 5.63 5.59 5.76 7.12
Winter 5.77 5.52 5.30 5.67 6.25
Average 6.21 6.24 6.32 6.76 7.38

Table G4. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy
market in the year 2010 produced by the RF regression employing different feature selection
techniques. Input data: historical prices.

Test week Linear Corr. /

Feature selection technique

Relief/ MI/ KNN/ Sequential
— — — — selection

Fall 3.08 3.12 2.68 3.44 3.73
Summer 6.90 5.17 4.68 4,76 6.06
Spring 10.03 9.63 9.23 9.05 9.33
Winter 17.24 18.01 16.89 17.25 17.96
Average 9.31 8.98 8.37 8.63 9.27

Linear Corr. / M1/ Relief / Relief / Heuristic
Linear Corr. Ml Linear Ml
Corr.

Fall 2.66 2.53 3.13 3.17 3.03
Summer 5.64 4.45 5.79 4.96 6.76
Spring 9.14 8.47 8.83 8.71 9.74
Winter 16.60 14.59 16.45 16.32 23.15
Average 8.51 7.51 8.55 8.29 10.67
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Appendix H: Simultaneous price and demand forecasting

H.1 Inputs selected by the two-step feature selection

The selected inputs and their ranked correlation coefficients (with respect to the target
variable) are given for price and demand prediction (see Table H.1).

Table H.1. Feature selection results for the approximation wavelet subseries of price and
demand for 15 Nov 2009 in the Finnish day-ahead energy market.

Selected features for the Selected features for the
approximation subseries of price at approximation subseries of demand
hour h at hour h
Selected inputs Correlation Selected inputs Correlation

coefficient coefficient
A3price,h-l 0.99 A3demand, h-1 0.99
A3price,h—2 0.97 A3SARIMA_demand,h 0.97
A3sARIMA price 0.82 A3demand, h-167 0.92
A3$ARIMA_demand,h 0.79 A3demand, h-3 0.87
A3demand,h-167 0.77 demandh.167 0.83
A3price,h—l70 0.74 A3demand, h-4 0.79
A3price,h—167 0.73 demands_167 0.83
A3price,h-169 0.73 demandh.146 0.69
A?’price,h-ZS 0.71 A3price,h-145 0.66
A3demand,h—170 0.69 A3price,h-144 0.66
A3demand,h-172 0.68 A3sARIMA price,h 0.62
A3price,h—21 0.67 A3price,h—1 0.62
A3demand,h—146 0.66 A3price,h—l42 0.59
A3demand,h-194 0.66 A3demand, h-48 0.59
A3gemand h-142 0.66 A3gemand, h-20 0.59
pricen.-1e9 0.66 A3demand, h-140 0.55
A3demand,h—22 065 A3price, h-167 055
A3demand,h—4 0.64 A3price,h-3 0.55
priceh_m 0.64 A3demand, h-94 0.54
A3price,h-6 0.63 demandh.153 0.54

A3price,h-165 0.63
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H.2 Model performance for a period of one year

Table H.2. Results of the proposed simultaneous price and demand forecasts for all 52 weeks of
the year 2009 in the Finnish day-ahead energy market.

Week 1 2 3 4 5 6
AMAPE 5.08/4.02 4.45/2.72 5.76/2.09 3.20/1.84 2.88/0.99 3.78/1.65
Week 7 8 9 10 11 12
AMAPE 4.17/1.25 3.66/1.17 2.48/1.18 5.10/2.17 3.59/1.56 2.93/1.60
Week 13 14 15 16 17 18
AMAPE 597/1.74 3.38/1.31 5.68/3.91 6.43/2.89 5.79/1.90 7.07/2.17
Week 19 20 21 22 23 24
AMAPE 6.20/1.68 4.17/1.98 6.35/3.71 7.10/2.94 4.46/1.40 5.40/2.33
Week 25 26 27 28 29 30
AMAPE 6.20/4.04 3.97/2.69 5.93/0.87 4.45/1.39 5.58/1.60 8.06/1.61
Week 31 32 33 34 35 36
AMAPE 7.25/2.13 6.58/1.85 6.34/1.91 6.86/1.05 5.49/0.98 6.14/0.95
Week 37 38 39 40 41 42
AMAPE 5.00/1.16 4.49/1.12 4.96/1.14 5.87/1.81 4.89/1.73 3.27/1.73
Week 43 44 45 46 47 48
AMAPE 2.55/1.96 3.85/2.79 1.92/2.05 3.18/1.85 2.61/2.16 3.82/1.39
Week 49 50 51 52

AMAPE 7.22/1.55 6.38/2.22 8.73/2.86 7.09/2.77

Average of price AMAPEs = 5.07%; Average of demand AMAPEs = 1.95%

Table H.2 shows that the AMAPE values for all 52 weeks of the year 2009 are close to
the AMAPE values of the four considered test weeks. The averages of the AMAPEs for
the 52 weeks are slightly higher than or similar to the averages of the AMAPEs of the
four test weeks for both the price (5.07% versus 4.48%) and the demand (1.95% versus
1.79%).
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Appendix I: Iterative forecasting methodology with
separate normal price and price spike frameworks

I.1 PNN

Probabilistic neural networks (PNN) are a kind of a radial basis network suitable for
classification problems. A PNN is closely related to the Parzen window probability
density function estimator (Duda et al., 2001). A PNN is organized into a multilayered
feed-forward network with four layers: an input layer (set of measurements), a pattern
layer (the Gaussian functions), a summation layer (average operation of the outputs
from the second layer for each class), and an output layer (a vote, selecting the largest
value). Mathematical details of PNN can be found in (Specht, 1988). The spread of a
Gaussin RBF opny is an adjustable parameter of the PNN. If the spread is close to zero,
the network acts as a nearest neighbor classifier. As the spread becomes larger, the
designed network takes into account several nearby design vectors.

|.2 Forecasting performance of competing approaches

Forecasted price curves obtained from SARIMA, WT+SARIMA, WT+NN, and
WT+SARIMA+NN models for the four spiky weeks of the year 2010 in the Finnish
day-ahead energy market are presented in Figures 1.1-1.4, respectively.
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Figure 1.1. SARIMA: (a) Week 1; (b) Week 2; (c) Week 5; (d) Week 28.
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Appendix J: Short-term operation planning

The support decision-making tool generating an optimal production schedule and
bidding strategy for a demand-side market customer based on the electricity price
forecast is discussed.

Scheduling of the demand-side market participants’ operation is formulated as an
optimization problem, which is solved to minimize the expected energy costs of the
market participant. The problem of minimizing electricity costs over the next 24 hours
for a demand-side market participant can be given as:

_ 24 (.1)
min Cost = hzﬂ price, - P,

where Py is the net power purchased from the market at hour h and pricey, is the market
price at hour h. It should be noted that Eq. J.1 is subject to technical constraints (e.g.
generation constraints, transmission constraints).

In a real case, when the optimization problem to schedule day-ahead operation has to be
solved, realized electricity market prices are not known. Therefore, price forecasts
generated from the corresponding forecasting model are given as the expected day-
ahead prices and considered in Eq. J.1 as the realized market prices.

A demand-side market customer considered in this study is presented as a typical CHP
industry process having own on-site generation and both thermal and electrical energy
demand. The thermal and electrical energy demand profiles are assumed to be known
for an operational day (see Figure J.1).

The real case of CHP power plant operation within an electricity market environment
can be presented as in Figure J.2.

Therefore, the optimization objective function can be given as:

i 24 ) 24 . 24 i J.2
min Cost= hZlCosthF’“’d“C“O“ + hzl price,°re - Pdeort — Zh price,°re - PExeort (02)
- — &

where Cost,”°%1" = 300+40. (P, + P,F*")+0.002:( P, + PyF*")? (euro/hour)
is assumed to be an approximation of the total production costs based on the amount of
generated heat and electrical energy at hour h; price, is the forecasted market price
at hour h; P, is the heat energy generated by CHP; P, is the electrical energy
generated by CHP; Peisporn ™™™ is the electrical energy imported from the market at hour
h, and Peisporn™ "™ is the electrical energy exported to the market at hour h.
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Figure J.2. Scheme of the CHP power plant operation within an electricity market.

The thermal demand must be met at all hours by the thermal energy produced at the
power plant. The electrical demand must be met either by the energy produced by the
power plant or energy purchased from the market. The energy balance constraints with
added transmission losses are written as:
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PhHeat = Heat, J.3)

pEtectrlocal , pimeert — Electricity, +o/ - (PAmeor )2 (4)
PhEIectr. _ PhEIectr.Iocal " PEEI:ggtu}t] P _(PEElzggth )2 (J.5)
Pé’s‘gg{f] < transmission_limit (J.6)

Péf;gg&l <transmission_limit (-7)

PHeat < phHeat < Pt (1.8)

Pnlﬁfctr. < PhHeat < Pn%:(ctr. J.9)

where Heat; and Electricity; are the hourly thermal electrical demand, respectively;

piEtectriocal g the electric power from the power plant supplying local electricity demand
s Heat Heat Electr. lectr. s : e

at hour i; Pmin = Pmax s Pmin ", Prmax are the heat/electricity generation limits of

the CHP power plant, and o/®® is the transmission loss coefficient.

To maintain the CO; emissions produced by the CHP power plant, a certain constraint
on the volume of the produced CO; is given as:

24
Cco Heat Electr.
2.
a th(Ph +P )<CO, Limit

(3.10)

where 0% is the coefficient indicating the volume of CO; (ton) produced per MWh of
energy generated by the CHP power plant; CO Limit is the specified limit of CO,
produced (ton/day).

With the thermal and electrical demand profiles of the CHP power plant, the
optimization problem has been solved for a CHP power plant operating within the
Finnish day-ahead energy market on a single day, 15 Feb 2010. The values of o'®*
a®®?, CO Limt are considered to be 0.0012, 0.43 (ton/MWh), 100 (ton/day),
respectively. The energy import/export/generation schedules of the CHP power plant
(presented as in Figure J.2) for a single test day when using actual prices and two
different price forecasts of low and high accuracy are shown in Figures J.3-J.4. Here,
the forecasts of high and low accuracy correspond to price forecasts produced by the
proposed separate forecasting methodology and simple SARIMA, respectively. These
two forecasting models are considered in Chapter 6 of the doctoral thesis.
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Figure J.3. Energy scheduling of the CHP power plant during a single day, 15 Feb 2010, based
on the price forecast obtained from the separate forecasting methodology proposed.
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The total CHP costs based on three different market price paths are presented in Table
J.1

Table J.1. The total CHP power plant costs when using actual market prices and two
different price forecasts for a single day, 15 Feb 2010.

Actual costs, [euro] Estimated costs when using  Estimated costs when using
the proposed separate the SARIMA model, [euro]
methodology, [euro]

19542 19700 20153

The cost deviation information aims at evaluating the overall economic impact of using
the specific market price forecast in the operation scheduling of the specific market
participant. The cost deviation is based upon the following relation

Cost Deviation - Estimated Costs—Actual costs 100% (0.1

Estimated Costs
Therefore, the cost deviation values can only be calculated after the realized market
prices are available. Cost deviations (%) (related to the actual power plant costs
corresponding to the ideal schedules) and AMAPE (%) values when two different price
forecasts used are illustrated in Figure J.5.
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Figure J.5. Cost deviations of the CHP power plant and the AMAPE values when two different
price forecasts are used for a single day, 15 Feb 2010.

In this study, scheduling of the next-day operation of the CHP power plant based on the
24 hours ahead electricity price forecasts of low and high accuracy is described. As
demonstrated, the electricity market price forecast can be effectively employed to
schedule the operation 24 hours ahead. Linear correlation between the forecast error
measures and the corresponding cost deviations exists.
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