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Electricity price forecasting has become an important area of research in the aftermath 
of the worldwide deregulation of the power industry that launched competitive 
electricity markets now embracing all market participants including generation and 
retail companies, transmission network providers, and market managers. 

Based on the needs of the market, a variety of approaches forecasting day-ahead 
electricity  prices  have  been  proposed  over  the  last  decades.  However,  most  of  the
existing approaches are reasonably effective for normal range prices but disregard price 
spike events, which are caused by a number of complex factors and occur during 
periods of market stress.  

In the early research, price spikes were truncated before application of the forecasting 
model to reduce the influence of such observations on the estimation of the model 
parameters; otherwise, a very large forecast error would be generated on price spike 
occasions. Electricity price spikes, however, are significant for energy market 
participants to stay competitive in a market. Accurate price spike forecasting is 
important for generation companies to strategically bid into the market and to optimally 
manage their assets; for retailer companies, since they cannot pass the spikes onto final 
customers, and finally, for market managers to provide better management and planning 
for the energy market.   

This doctoral thesis aims at deriving a methodology able to accurately predict not only 
the day-ahead electricity prices within the normal range but also the price spikes. The 
Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and 
its structure is studied in detail. 

It is almost universally agreed in the forecasting literature that no single method is best 
in every situation. Since the real-world problems are often complex in nature, no single 
model is able to capture different patterns equally well. Therefore, a hybrid 
methodology that enhances the modeling capabilities appears to be a possibly 
productive strategy for practical use when electricity prices are predicted. 

The price forecasting methodology is proposed through a hybrid model applied to the 
price forecasting in the Finnish day-ahead energy market. The iterative search procedure 



employed within the methodology is developed to tune the model parameters and select 
the optimal input set of the explanatory variables. 

The numerical studies show that the proposed methodology has more accurate behavior 
than all other examined methods most recently applied to case studies of energy markets 
in different countries. The obtained results can be considered as providing extensive and 
useful information for participants of the day-ahead energy market, who have limited 
and uncertain information for price prediction to set up an optimal short-term operation 
portfolio. 

Although the focus of this work is primarily on the Finnish price area of Nord Pool 
Spot, given the result of this work, it is very likely that the same methodology will give 
good results when forecasting the prices on energy markets of other countries. 

Keywords: day-ahead electricity prices, price spikes, feature selection, hybrid 
methodology 
UDC 621.3:658.8.011.1:338.534:51.001.57:519.2 
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This chapter provides a basic background for the study addressed in this doctoral 
thesis. The motivation for the work is presented and previous works in the field are 
reviewed. The time framework for a day-ahead energy market of Nord Pool Spot is 
introduced. Finally, the outline of the work is given and the main scientific 
contributions are identified. 

1.1. Motivation and background 

The power markets worldwide have been strictly regulated during the most part of the 
20th century, but over the last decades, they have undergone a significant restructuring 
and deregulation.   

Before deregulation, that is, within vertically integrated power systems, electricity 
prices were usually regulated and the consumers were offered predetermined tariffs. The 
attempts to design well-functioning competitive markets that give players the correct 
incentives were supposed to improve production efficiency and limit market power, 
since in competitive electricity markets, participants have the option of trading 
electricity. Hence, in deregulated electricity markets, more freedom is left to the players.  

One of the most pertinent questions for deregulation programs, in the light of the key 
objectives such as reducing electricity prices while keeping the lights on, is how to 
arrange the electricity trading between the generators and the buyers in the wholesale 
market. There is no ready-made answer to this question as there are different electricity 
market structures and regulatory policies in different countries. It is possible, however, 
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to identify two main market arrangements from the several models implemented around 
the world, namely the power pool and bilateral contract in parallel to a voluntary power 
exchange (Barroso et al., 2009).  

Companies acting on the power exchange require accurate electricity price forecasts to 
have an opportunity to optimize the use of their portfolio by bidding or hedging against 
price volatility in order to get the highest possible profit. For example, generating 
companies acting on the power exchange compete with each other in serving the 
consumers' demand and have the opportunity to optimize the use of their production 
portfolio by pricing and bidding their available production capacity into the market. On 
the other hand, demand-side participants look for feasible options to avoid the high 
electricity market prices during peak hours. Moreover, price forecasts are of great 
importance for system operators, who are responsible for keeping the grid in balance. 
Besides, market participants are interested not only in price prediction but also in 
knowing the uncertainty of the forecast, which plays a significant role in decision 
making.  

Certain unique characteristics of electricity markets make the electricity price 
forecasting more complex than the price forecasting of other commodities. Electric 
power cannot be stored economically, and further, transmission congestion influences 
the exchange of power. Unlike electricity demand series, electricity price series can 
exhibit variable means, major volatility, and significant outliers. Because of the extreme 
volatility reflected in price spikes, electricity price modeling and forecasting face a 
number of challenges. Thus, applications used to forecast the prices of other 
commodities are only of limited validity in electricity price forecasting and may 
produce large errors. 

The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market. 
The prices in the Nordic energy market are highly volatile but are not purely stochastic 
and, therefore, can be explained, at least partly, by background variables. Drivers 
affecting  the  prices  on  the  market  are,  for  example,  temperature  and  wind  power  
forecasts, as well as power plant availability and transmission congestions. Electricity 
prices on the Nord Pool Spot market are, in the long run, significantly influenced by the 
water level in the reservoirs of the Norwegian and Swedish hydropower plants.  

With a growing proportion of energy trading being carried out on Nord Pool Spot and 
with the expanding geographical areas that this power exchange covers, the need for 
advanced market price forecasting methods has increased. Thus, prior information on 
market price fluctuations is a crucial concern for market participants. Short-term 
operation scheduling in a competitive electricity market is a challenging task because of 
the uncertainty associated with the future electricity prices. This approach is particularly 
efficient if the price forecast is of a high accuracy.  
 
This doctoral thesis addresses the issue of forecasting day-ahead electricity market 
prices through development a forecasting model where an optimal input feature set and 
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model parameter setting are analytically selected to predict not only prices within the 
normal range but also price spikes.  

1.2. Objectives of the thesis 

The objectives of the thesis are: 

 to review a structure of a selected case market; 
 to detect a set of candidate explanatory variables that are probably influencing the 

day-ahead electricity price volatility and spikes; 
 to investigate models built on classical (e.g. time series, stochastic, regime-

switching), modern (e.g. neural networks), and hybrid (e.g. classical time series 
plus neural networks) approaches recently applied to case studies of price 
forecasting on day-ahead energy markets in different countries;  

 to examine existing feature selection techniques and construct their combinations to 
find the best feature selection approach resulting in the highest price forecasting 
accuracy; 

 to derive the methodology for the analysis and prediction of day-ahead electricity 
price signals within not only the normal range but also price spikes;  

 to verify the methodology on actual data extracted for a case market, and   
 to apply the obtained price forecasts to a short-term scheduling of a single market 

consumer. 

1.3. Previous work 

Electricity market price forecasting is a relatively new area of research, unlike the 
electricity demand forecasting problem (Hippert et al., 2001). Based on the needs of the 
market, a variety of approaches to forecast electricity prices have been proposed over 
the last decades. 

The first group of models applied to electricity price forecasting within the context of 
competitive electricity markets is based on simulation of power system equipment 
(transmission congestions, losses, etc.) and the related cost information (marginal 
generation costs, heat rates, or fuel efficiencies) (Bastian et al., 1999; Fu and Li, 2006). 
A major  drawback  of  this  approach  is  the  requirement  of  a  large  amount  of  real-time 
data on the existing equipment. Nevertheless, the simulation methods presented could 
very well be effective if used by market operators and regulators, who have the 
authority to collect precise equipment and operational information. 

The second group is game-theory-based models, which focus on the impact of bidder 
strategic behavior on electricity prices. It has been stated that electricity market prices 
are closely related to the bidding and pricing strategies of the market participants (Guan 
et al., 2001; Bajpai and Singh, 2004; Chandarasupsang et al., 2007; Sadeh et al.,2009). 
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The third approach is based on stochastic modeling. A modified version of the 
geometric Brownian motion was proposed as a jump diffusion model for the stochastic 
modeling of electricity prices (Barlow, 2002). The robustness of various diffusion 
models in the case of electricity prices has been evaluated in (Barz and Johnson, 1998). 
The main conclusion was that the geometrical mean reverting jump-diffusion models 
provide the best performance and that all models without jumps appear inappropriate for 
modeling electricity prices. It should be noted that the main disadvantage of the 
stochastic modeling approaches arises from difficulties involved in incorporating 
physical characteristics of power systems, such as losses and transmission congestions, 
into mathematical (financial) models, which may produce a significant mismatch 
between the model output and the actual power market. 

The fourth approach is based on time series models and includes two major branches: 
regression-based models and artificial intelligence (AI) models such as neural networks 
(NN) and fuzzy logic. Regression models are considered to be functions of past price 
observations and exogenous explanatory variables such as electricity demand and 
meteorological conditions. Much work has been done on electricity price forecasting 
with an autoregressive moving average (ARMA) approach, transfer function, and 
dynamic regression (Nogales et al., 2002; Contreras et al., 2003). To overcome the 
restrictions of linear models and to account for nonlinear patterns observed in real 
problems, several classes of nonlinear models have been proposed. These include 
threshold autoregressive (TAR-type) models (Robinson, 2000; Rambharat et al., 2005) 
and an autoregressive conditional heteroscedasticity (ARCH) model by Engle (Engle, 
1987) and its extended version GARCH (Bollerslev, 1986; Garcia et al., 2005; 
Karandikar, 2009). More recently, AI models have been suggested as an alternative to 
the above mentioned regression-based forecasting models. Among AI models, NNs 
with different structures and training algorithms have been applied to electricity price 
forecasting (Szkuta, 1999; Nasr et al., 2001; Zhang, 2003; Zhang and Qi, 2005; 
Amjady, 2006; Taylor, 2006, Catalão et al., 2007; Mandal et al., 2007; He and Bo, 
2009). The main strength of AI models is their flexible nonlinear modeling capability.  

Linear-based models and nonlinear models have both achieved successes in their own 
linear or nonlinear domains. However, none of them is a universal model that is suitable 
for all circumstances. For example, the approximation of ARMA models to complex 
nonlinear problems may not be adequate, and the use of NNs to model linear problems 
has yielded mixed results. Since it is difficult to thoroughly know the characteristics of 
the data in a real problem, a hybrid methodology that has both linear and nonlinear 
modeling capabilities would appear to be a possibly productive strategy for practical 
use. It is almost universally agreed in the forecasting literature that no single method is 
best in every situation; largely due to the fact that real-world problems are often 
complex in nature, and no single model is able to capture different patterns equally well. 
By combining different models, different aspects of the underlying patterns may be 
captured. Researchers have compared various adaptive and nonadaptive linear and 
potentially nonlinear models and concluded that hybrid models consisting of 
multivariate adaptive linear and nonlinear models outperform other models for many 
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variables (Swanson and White, 1997). A model combining NN and ARMA has been 
developed (Tseng et al., 2002). The model outperformed single ARMA and NN in 
terms of performance accuracy measures. A hybrid model for day-ahead price 
forecasting, composed of linear and nonlinear relationships of prices and explanatory 
variables such as electricity demand was developed (Wu and Shahidehpour, 2010). A 
day-ahead price forecasting model was implemented by a hybrid intelligent system 
composing of a NN model and a genetic algorithm with an enhanced stochastic search 
procedure (Amjady and Hemmati, 2007).  

Most of the existing approaches forecasting electricity prices are reasonably effective 
for normal range electricity prices but disregard price spike events, which are caused by 
a number of complex factors and occur during periods of market stress. These stressed 
market situations are associated with extreme meteorological events, unusually high 
demand or, more often, unexpected shortfalls in supply, caused for example by 
generator failures (Becker et al., 2007). In the early research, price spikes were 
truncated before application of the forecasting model to reduce the influence of such 
observations on the estimation of the model parameters; otherwise, a very large forecast 
error would be generated on price spike occasions (Yamin et al., 2004; Rodriguez et al., 
2004; Weron, 2006).  

In addition to a normal price behavior analysis, an improved analysis of spikes is 
important for market participants to stay competitive in a competitive market. GARCH 
was tested to simulate price spikes in an original price series (Keles, 2012).  Spikes 
were incorporated into a Markov-switching model by proposing different regimes; 
regular and spiky (Becker et al., 2007). Spikes were introduced into diffusion models by 
the addition of a Poisson jump component with time varying parameters (Jab ska et 
al., 2011). Data mining techniques have been applied to the spike forecasting problem 
(Lu et al., 2005; Zhao et al., 2007a). Most of the approaches proposed for the problem 
of price spike forecasting were not able to produce spikes with heights and occasions 
usually observed in an original price series.  

Most of the work on electricity market price forecasting is concentrated on improving 
forecast accuracy rather than the effects of price forecast inaccuracy on market 
participants.  Only a few approaches have been reported in the literature to deal with the 
problem of future price uncertainty in operation planning in competitive environments 
(Plazas et al., 2005; Carrion et al., 2007; Li et al., 2007). The obtained price forecasts 
were used in scenario-based techniques employed to derive optimal operational 
strategies (Zareipor et al., 2010).  

1.4. Forecasting time framework 

In most cases, the analysis presented in this work relies on hourly data. When hourly 
observations are not available, or for simplicity, average daily or weekly values are 
entered. 
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The time framework to forecast the electricity prices in the Nord Pool Spot day-ahead 
energy market is illustrated in Figure 1.1 and explained below.  

The day-ahead price forecast for day D is required on day D-1 (bidding: 12:00 CET). As 
soon as the noon deadline to submit bids has passed, all purchase and sell orders are 
aggregated into two curves for each delivery hour of day D; an aggregate demand curve 
and an aggregate supply curve. The system price for each hour of day D is determined 
by the intersection of the aggregate supply and demand curves, which represent all bids 
and offers for the entire Nordic region and are published by the system operator on day 
D-1 (clearing: between 12:30 and 13:00 CET). Hence, actual price data up to 24 hours 
of day D-1 are available on day D-2. Therefore, when bidding for day D, price data up 
to hour 24 of  day  D-1  are  considered  known.  As  a  result,  the  actual  forecast  of  day-
ahead prices for day D can take place between the clearing hour for day D-1 of day D-2 
and the bidding hour for day D of day D-1. A detailed description of how a day-ahead 
market in the Nordic region works can be found in (Nord Pool Spot, 2013a). 

 

Figure 1.1. Time framework to forecast market prices in the Nord Pool Spot day-ahead energy 
market.  

In  multistep  ahead  prediction,  the  predicted  price  value  of  the  current  step  is  used  to  
determine its value in the next step, and this cycle is repeated until the price values of 
the whole forecast horizon are predicted.  

1.5. Scientific contribution 

A day-ahead electricity price forecasting model is developed. The main contributions 
are shortly as follows: 
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 Classical and most recently used forecasting methodologies and their 
combinations are surveyed and applied to price prediction in a case energy 
market. 

 Different feature selection techniques and their combinations are studied. The 
technique (combination of techniques) resulting in the most accurate price 
forecasting is selected. 

 The forecasting methodology that is able to predict both normal range prices and 
price spikes with a high accuracy is proposed. 

 The obtained price forecast is applied to produce an optimal short-term 
operation scheduling of a single market costumer. 

1.6. Outline of the thesis 

Chapter 2 describes the deregulated electricity markets in the Nordic region. The 
structure and characteristics of the electricity supply and demand in the Nordic market, 
the functioning of the power exchange Nord Pool Spot, and the formation of the day-
ahead electricity prices are introduced. 

Chapter 3 discusses the application of the classical time series approaches, stochastic 
and regime-switching processes to deal with the problem of day-ahead price forecasting. 

Chapter 4 presents the application of a NN model as an example of modern nonlinear 
approaches. A hybrid methodology implying a merging of classical and modern 
approaches for separate normal range price and price spike forecasts is introduced. 

Chapter 5 describes the process of tuning the model parameters and selection of an 
optimal input set through an iterative search procedure. A hybrid methodology for 
simultaneous prediction of price and demand in the day-ahead energy market is 
presented. 

Chapter 6 presents a novel iterative forecasting methodology with separate normal price 
and price spike forecasting frameworks. This methodology is built on the findings made 
within the research and implemented as a combination of different forecasting engines. 

Chapter 7 provides discussion and future prospects. 
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2 Nordic electricity market 
 

 

 

 

 

 

 

 

 

 

 

This chapter gives an insight into the electricity market structure of the Nordic 
countries. Section 2.1 reviews the reasons behind the process of electricity market 
deregulation. Section 2.2 presents the main features of electricity to distinguish it from 
other commodities. Section 2.3 introduces the structure of the Nordic electricity market 
and the principles of a day-ahead electricity price formation.In Sections 2.4–2.5, 
statistics for electricity generation and consumption in the Nordic region are presented.  

2.1 Deregulation 

Generation, transmission, and distribution of electrical energy require huge capital 
investments for operation, maintenance, and expansion (Yan, 2009). In some countries, 
crown corporations were established and given a monopoly of generation, transmission, 
and distribution of electrical energy within prespecified geographical boundaries. Such 
a monopoly structure guaranteed a decent return on the huge investment that a single 
entity or a crown corporation would typically make.  

Regulation became part of the electricity industry to protect the consumer from the 
inevitable consequences of a monopoly industry. However, the regulated electricity 
market is still a monopoly but watched by the government. In a regulated electric 
market, that is, in a vertically integrated system, local consumers have no other choice 
for electricity service but the local provider, and therefore, the electricity price is high 
and services are usually limited.     
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In the late 1970s, Chile was the first country to introduce competitive forces into the 
electricity market. This gradually led other countries to consider the option of a 
deregulated electricity market (Wolak, 1997). Deregulation refers to the reduction or 
elimination of government control allowing the generation and retail to be competitive 
while the transmission is kept under government control. The reason to keep the 
transmission sector under regulation is to establish a fair competitive environment 
where all competitors have equal access to the transmission network. In a deregulated 
market, instead of only one generation provider in a local area, there is a number of 
generation providers. Therefore, consumers have many options for their electricity 
providers and development of an optimal operation portfolio. 

2.2 Electricity as a commodity 

There are certain features of electricity that set it apart from an ordinary commodity and 
consequently, result in special power system economics. Electricity cannot be stored in 
economically considerable quantities. As a continuous flow, electric energy has to be 
consumed at the same time as it is produced. Therefore, there must be an instant balance 
between electricity supply and demand in the electricity market. Thus, while the store 
affects the aggregate demand for the majority of commodities, this effect does not exist 
for electric energy. The nonstorability of electricity also leads to the requirement of 
reserve capacity in an electric power system. 

One of the key features of electricity as a commodity is the necessity for the electric 
energy transmission infrastructure, that is, an electric power network. From that point of 
view, electricity may be considered a network-based commodity. 

Electric energy is uniform by nature; it is a commodity that cannot practically be 
differentiated in terms of product or brand as in the classic economic theory. Electric 
energy can be differentiated by different sources of origin (e.g. hydro, nuclear, thermo 
power), voltage level, and power quality characteristics (e.g. voltage and frequency 
deviations, reliability of supply); yet there are no physical means by which a producer 
that actually generated a unit of electricity (a kWh) delivered to a consumer can be 
recognized. 

As an essential commodity, electricity is characterized by a relatively inelastic demand. 
This means that if the price for electricity suddenly doubles, the demand for electricity 
will not considerably decrease because of the absence of substitute goods. 

2.3 Structure of the Nordic electricity market and price formation 

The Nordic region has considerable experience in deregulated electricity markets. The 
Nordic electricity market was formed in 1993 in conjunction with the deregulation of 
the electricity markets in the region. The derivatives and energy markets were separated 
in 2002 to establish the power exchange Nord Pool Spot, which currently operates in 
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Norway, Denmark, Sweden, Finland, Estonia, Lithuania, and Latvia (Nord Pool Spot, 
2013b).  

The main objective of Nord Pool Spot is to balance the generation of electricity with the 
electricity demand, precisely and at an optimal price, that is, by equilibrium point 
trading. The optimal price represents the cost of producing one kWh of power from the 
most expensive source needing to be employed in order to balance the system. Two 
different physical operation markets are organized in Nord Pool Spot: Elspot and Elbas.  

2.3.1 Elspot market 

The Elspot market is the day-ahead energy market, where market participants submit 
bids for sale or purchase of electricity in the next day’s 24-hour period. It is possible to 
submit hourly bids, block bids, and flexible hourly bids in the Elspot market. All bids 
consist  of  a  price  and  a  volume.  The  hourly  bid  specifies  the  amount  of  electricity  a  
participant wishes to buy or sell at different prices in a certain hour. The hourly bid sets 
at least the highest buying or selling volume and a price limit for it, and the lowest 
buying or selling volume and a price limit for it. The bid may include up to 62 price 
steps in addition to the minimum and maximum price limits set by Nord Pool Spot. 
Electricity volumes between each adjacent pair of submitted price steps are linearly 
interpolated by Nord Pool Spot. 

The participants send their bids for the following operation day before deadline at 12:00 
CET. Once the market prices have been announced, the market participants receive a 
notification of the accepted bids and the hourly commitments of the following operation 
day. 

2.3.2 System price 

After the daily trading cycle in the Elspot market, the day-ahead system price is 
calculated for the following day. This price is transparent, liquid, and equal for all 
market participants. The system price can be used as a reference price for any financial 
electricity market contracts. The system price is formed at every hour of the following 
day. To get these hourly system prices, hourly demand and supply curves are built by 
combining all the selling and buying bids for each hour of the following day. The 
system price is obtained as the point where the demand and supply curves intersect. 
Figure 2.1 qualitatively shows the aggregated supply and demand curves. 

The aggregated supply curve is presented in the chart with different power generation 
methods. The width of the bars corresponds to the generation capacity of each 
production form. The shaded areas illustrate the increase in the production costs of 
electricity caused by the price of emission allowances. The curve has various steps as a 
result of different costs of individual generation forms. If the demand intersects the 
supply curve, for example, in the coal condensing part of the curve, then hydro, nuclear 
power, combined heat and power (CHP), and coal condensing are used to meet the 
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electricity demand. In the system price calculation, the possible restrictions for the 
transmission capacity between different geographical areas of the Nordic countries are 
left out. In other words, the system price is formed with the assumption that the 
transmission capacities between Norway, Sweden, Finland, Denmark, Estonia, 
Lithuania, and Latvia are infinite. This is the reason why the system price is also 
denoted "the unconstrained market clearing price" that balances the sale and purchase in 
the exchange area. 

 

Figure 2.1. Formation of the day-ahead system price. 

2.3.3 Area price 

The total Nordic market is divided into 15 bidding areas: five in Norway, four in 
Sweden, two in Denmark, one in Finland, Estonia, Lithuania, and Latvia. Figure 2.2 
presents the current geographic structure of the Nord Pool Spot market with a division 
into possible price areas when grid congestions occur. 
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Figure 2.2. Nord Pool Spot price areas (source: Nord Pool Spot, 2013c). 

An  insufficient  grid  capacity  is  an  obstacle  for  a  uniform  price  for  the  whole  Nordic  
region. An area price is formed on the basis of the demand and supply curves 
aggregated for the specific bidding area taking into account the transmission capacity 
between different bidding areas. 

For the sake of simplicity, the formation of the area price in a market composed of two 
market areas is considered. The principle is the same for the actual fifteen bidding areas 
in the Nordic electricity market. In Figure 2.3, area level supply/demand curves for two 
areas are shown. 

There is large overproduction in area A and short supply in area B when the electricity 
price is equal to the system price. If the amount of required electricity import to area B 
from area A is more than the transmission capacity, it is not possible to completely meet 
the overdemand in area B. In this case, the supply curve (area B) is transferred the 
amount of the transmission capacity to the right. Area price is read on the vertical axis at 
the intersection of the demand curve and the new supply curve. As a result, the price in 
area B is higher than the system price. In the overproduction area A, the situation is 
similar. If the amount of desirable export is over the transmission capacity, the area 
price for area A is set below the system price. The import to area with a production 
deficit equals the export from the area with excess supply. 
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Figure 2.3. Formation of the area price in a two-area market. 

If the transmission flow in the system price equilibrium does not exceed the available 
physical  transmission  capacity,  the  area  prices  are  equal  to  the  system  price.  The  
Finnish day-ahead area prices are equal to the day-ahead system prices in most cases 
over the period 1999–2013 (see Figure 2.4).   

 

Figure 2.4. System prices versus area prices (in Finland) over the period 1999-2013 (weekly 
averages) (source: Nord Pool Spot, 2013d). 
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2.3.4 Elbas market 

Some of the market and physical processes taking place up to the physical delivery after 
the Elspot market results have been settled should be considered in more detail. The 
time period between the physical delivery hour and the Elspot price settlement is long 
(36 hours at the most). There are many factors causing a change in the consumption and 
the generation situation, and thus, a market player needs an opportunity of trading 
during these hours. The Elbas market is an intraday continuous real-time physical 
market for electric power trading 24 hours a day, 365 days a year. The Elbas market is 
used to match the supply and demand up to one hour prior to the delivery in the case of 
unexpected situations or changes after the Elspot market trading. 

2.3.5 Regulation power market 

The  regulating  or  balance  power  market  is  a  tool  for  the  Nordic  transmission  system  
operators (TSOs) to maintain the system balance between electricity production and 
consumption in real time. The balance between electricity production and consumption 
is described by the power system frequency. With the help of the regulating power 
market,  a  system  operator  can  adjust  the  production  or  load  based  on  the  operational  
situation whenever necessary. There are two types of participants in the balance market. 
The first one is the active participants, the second one is the passive participants.  

The active participants are producers or consumers who have an opportunity to regulate 
their  generation  or  consumption  in  case  of  a  request  from  the  TSOs.  There  are  some  
requirements for the active participants who operate in the balance market for the 
regulation of generation or consumption. 

The holders of production or loads have an opportunity to submit bids for the regulating 
power market. The volumes of the bids are based on the holder’s capacity that can be 
regulated. The balance providers get a right to participate in the regulating power 
market according to the balance service agreement. Other holders of capacity can also 
participate in the regulating market through their balance provider or by signing a 
separate regulating power market agreement with the TSO. There is a limit for the 
volume that is given in the bids and the responding time for regulation. The regulating 
bids shall be submitted to the TSO no later than 30 minutes before the operational hour. 
The minimum volume of the regulating bid is 10 MW, which should be implemented in 
10 minutes after the request. In other words, prior to maintaining the physical balance, 
that is, balance regulation, the TSO regularly accepts bids, in other words, volume 
(power in MW) and price, from balance providers who are willing to quickly (within 10 
minutes) increase or decrease their level of production or consumption (Fingrid, 2013a). 

The regulation price is determined in accordance with the most expensive measure 
taken during upward regulation (the balance service purchases electricity), or the 
cheapest measure taken during downward regulation (the balance service sells 
electricity) applied during the hour. In other words, the up-regulation price is formed 
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based on the price of the most expensive up-regulation used, but at the least the price for 
the price area. All balance providers who were requested by the TSO for up-regulation 
during the hour obtain a price for the agreed energy in accordance with the up-
regulation price. The down-regulation price is formed based on the price of the cheapest 
down-regulation used, but at the most the price for the price area. All balance providers 
who were requested by the TSO for down-regulation during the hour pay the down-
regulation price for the agreed energy. The final regulation price applies to all balance 
providers who were selected to regulate the balance upwards or downwards. 

2.3.6 Financial market 

The Nordic financial market allows trading of financial contracts such as forward and 
futures with delivery periods up to six years in advance. None of these contracts entails 
physical delivery, and they are all settled in cash against the system price in the day-
ahead market.  

The  system price  plays  a  key  role  in  the  Nordic  financial  market.  The  majority  of  the  
standard financial contracts are settled by comparing the average system price for the 
period in question with the hedge price stated in the contract. There is mutual insurance 
in  alliance  to  obligations  that  both  parties  have  taken  out.  The  difference  in  prices  is  
multiplied  by  the  volume  in  the  contract,  and  this  amount  of  money  is  transferred  
between  the  parties  of  the  financial  contract.  However,  not  all  financial  contracts  are  
settled against the system price, but there are also financial contracts with reference to 
the specific area prices.  

2.4 Electricity demand 

The total energy consumption in the Nordic countries can be divided into several user 
groups. The main groups are industry, housing, transport, and agriculture. Figure 2.5a 
introduces the structure of electricity consumption in the Nordic market in 2010, when 
the total energy consumption was 1 177 TWh, which is equal to about 8% of the energy 
consumption in the EU-27 (International Energy Agency, 2012). 

Each consumer group can be characterized by its own demand profile, the shape of 
which typically slowly varies over time. The most stable electricity demand is caused 
by the energy-intensive industry sector. The reason for this is that the industrial plants 
operate continuously throughout the year with the exception of short interruptions. The 
electricity demand of the household sector instead is not stable through the year. As 
winters are often cold in the Nordic area, a household's electricity consumption is 
notably higher in winter when electric heating is widely used. In summer, the household 
demand for electricity is rather low as summers in the Nordic region are mild, and 
consequently, there is little need for air-conditioning. For the sake of visibility, Figures 
2.6 and 2.7 present the relation between prices, total electricity consumption and 
opposite average values of temperature in the Nordic region since there is an explicit 
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negative correlation between temperature and prices, and temperature and electricity 
consumption. 

 

Figure 2.5. a) Nordic energy consumption by sector, 2010; b) Nordic energy consumption by 
sector and country, 2010 (source: International Energy Agency, 2012). 

The public sector is mostly composed of transport and services, and its demand is 
significantly higher on weekdays compared with weekends. Electricity consumption of 
this sector decreases considerably during holidays. 

The Nordic electricity market is presented by the electricity markets of Norway, 
Sweden,  Finland,  and  Denmark.  Each  of  these  countries  has  quite  similar  demand  
characteristics (see Figure 2.5b).  In Finland and Sweden, the forest-based industry is 
highly important. Metal manufacturing is of particular importance in Norway. The cold 
climate, combined with a history of low-cost and easy access to electricity, has resulted 
in high rates of electricity consumption for heating, particularly in Norway, Sweden, 
and Finland.  

Despite having a relatively decarbonized electricity supply, the Nordic region has 
slightly higher per capita greenhouse gas emissions than other industrialized countries 
in Europe and Asia. This is due in part to the cold climate and prevalence of energy-
intensive industry. The Nordic countries have set ambitious targets for emissions 
reductions by 2050. 
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Figure 2.6. Nord Pool Spot day-ahead system prices versus temperature over the period 1999–

2013 (source: Weather Underground, 2013; Nord Pool Spot, 2013d). 
 

 
Figure 2.7. Total electricity consumption in the Nordic region versus temperature over the 

period 1999–2013 (source: Weather Underground, 2013; Nord Pool Spot, 2013d). 
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2.5 Electricity supply 

Hydropower, nuclear power, conventional condensing power, CHP, and wind power 
may be considered the most important forms of electricity generation in the Nordic 
region. 

A third of the energy supply in the Nordic region comes from renewable sources. The 
largest of these are biomass and waste, which are used to generate electricity, heat, and 
transport fuels in Sweden, Finland, and Denmark (see Figure 2.8a). Renewable 
electricity in the region is also generated from hydropower in Norway, as well as a 
growing share of wind power. With nuclear power in Sweden and Finland, almost half 
of the region’s energy is CO2-free. Oil is still the largest single energy source, because 
of its central role as a transport fuel. 

 
 

Figure 2.8. a) Nordic total primary energy supply 2011; b) Nordic electricity production 2011 
(source: International Energy Agency, 2012). 

As  a  whole,  the  Nordic  electrical  system  is  hydro  dominant.  More  than  a  half  of  the  
overall electricity consumption is covered with hydropower generation (see Figure 2.8 
b). The amount of hydropower fluctuates from year to year depending on the annual 
inflow  that  is  determined  by  precipitation  and  the  amount  of  melting  snow.  So,  the  
annual energy available in the Nordic electrical system varies with the fluctuation of the 
annual water level. 

Biomass is burned in CHPs across Finland and Sweden, while Denmark has the highest 
share of wind power in the world (see Figure 2.9). 
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Figure 2.9. Electricity production 2011 (source: International Energy Agency, 2012). 

 

Individually, the Nordic countries have very different, but complementary electricity 
mixes. This is made possible by the common Nordic grid connecting Norway, Sweden, 
Finland, and Denmark. 

Since over a half of the generation capacity in the Nordic market is based on hydro 
units, a factor representing hydro reservoir in the area can be considered to determine 
the electricity price. In the long-run, however, electricity prices are more correlated with 
the variation in the hydro reservoir content than the absolute value of this variable 
(Jab ska et al., 2012). The time series of both the day-ahead system price and the 
deviation of the Scandinavian hydrological situation from normal are plotted in Figure 
2.10. The deviation is calculated as the difference between the mean value indicated as 
the average between the minimum and maximum possible hydro storage over the last 
10-year history and the hydrological situation in a given week. The Nordic market has 
shown that the deviations of water levels from normal have been clearly reflected in the 
electricity  day-ahead  prices  till  2005  when  the  emissions  trading  of  the  EU  was  
introduced. 
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Figure 2.10. System prices versus deviation of the hydrological situation over the period 1999-

2010 (source: Nord Pool Spot, 2013d). 
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3 Classical approaches to the modelling and forecasting 
of electricity prices 

 

 

 

 

 

 

 

 

This chapter reviews a number of classical models and their application to the Finnish 
day-ahead electricity price behavior simulation and forecasting. In particular, Section 
3.1 gives a basic statistic of prices over the last decade.  Section 3.2 introduces 
techniques to define spike samples within a given series. Sections 3.3–3.4 discuss 
deterministic factors that have an impact on day-ahead electricity prices and propose a 
multivariate linear regression model with varying parameter estimates. Section 3.5 
presents details and application of ARMA-based models. In Section 3.6, the mean-
reverting Ornstein-Uhlenbeck model is presented, with both white and colored noise. 
ARMA-based and mean-reverting models both enhanced with a regime-switching 
technique are presented in Section 3.7.  

3.1 Basic statistics of the Finnish day-ahead electricity prices  

The Finnish day-ahead electricity prices over the period from 1 Jan 1999 to 31 Dec 
2010 are illustrated in Figure 3.1 a. A first look to Figure 3.1a reveals a quite erratic 
behavior of the day-ahead prices. The series is clearly nonstationary, that is, its mean 
value does not remain constant over time. The price log-return series is used to get 
stationarity and based upon the following formula 

       
1

ln h
h

h

Xr
X

 
(3.1) 

where rh is return for any time h, Xh is  the  price  value  at  moment  h,  Xh-1 is  the  price  
value at moment h-1. The variance in the series is not constant, which is clearly seen in 
Figure 3.1b representing the price log-returns. This feature is called heteroscedasticity. 
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Both the original prices and the price log-returns have evident spikes and mean 
reversion characteristics. The presence of spikes and mean-reversion is generally 
explained by the use of expensive generators entering the market when the demand 
increases (see Figure 2.1). Similarly, a decrease in demand will cause the prices to 
decrease when expensive generators leave the market. 

 
Figure 3.1. a) Original prices; b) Price log-returns; c) Histogram of the original prices; d) 
Histogram of the price log-returns. 
 
The values of the most important distribution parameters of both the price and log-
return series are collected in Table 3.1. With a mean value of 32.55 euro/MWh, the 
original price series reached maximum and minimum values of 1400.1 euro/MWh and 0 
euro/MWh, respectively, during the sample period. This shows a huge spread of 
magnitudes over the given sample period. On the other hand, the returns seem to be of a 
relatively small range when compared with the prices, but this is a result of logarithmic 
operation. The prices for the winter and fall seasons show very similar mean values 
which, in turn, are higher than the price mean values for the spring and summer seasons. 
The standard deviations of sample prices show that the prices of the winter season are at 
least twice as volatile as those of the three other seasons.   

In general, comparing the given probability distributions of both the prices and the price 
log-returns with the normal probability distribution, it is easily seen that neither the 
prices nor the log-returns follow the normal distribution. The original prices and price 
log-returns series show very high leptokurtosis (see Figure 3.1c, 3.1d). It indicates that 
extremely low and high values of the series have a much higher probability of 
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occurrence  than  those  values  that  are  due  to  a  normal  distribution  with  the  same  
variance. The degree of asymmetry of the original prices and the price log-returns is not 
as high as the leptokurtosis. Both the series are positively skewed.  

Table 3.1. Basic statistics of the prices and the price log-returns. 

 Original prices, [euro/MWh] Price log returns 
 All seasons Winter Spring Summer Fall All seasons 

Mean 32.95 36.89 28.49 31.35 35.16 0.00 
Std 22.61 35.77 13.55 17.18 16.01 0.11 

Maximum 1400.11 1400.11 149.52 300.04 199.90 4.74 
Minimum 0.00 3.87 0.28 0.00 2.19 -3.60 
Skewness 18.87 18.70 0.79 1.64 0.95 1.79 
Kurtosis 940.98 589.89 4.24 14.80 5.01 120.39 

 
The interdependencies in the price series are verified. The autocorrelation functions 
(ACF) and the partial autocorrelation functions (PACF) of both the original prices and 
the price log-returns are plotted (see Figure 3.2).  

 

Figure 3.2. ACF (top) and PACF (bottom) of the prices. 

The ACF of  the  prices  seem to  die  out  very  slowly,  whereas  the  PACF plot  reveals  a  
very significant spike at lag 1. The price log-returns are significantly positively 
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autocorrelated at several lags multiple of 24 indicating strong seasonal patterns (see 
Figure 3.3).  

 

Figure 3.3. ACF (top) and PACF (bottom) for the price log-returns. 

3.2 Electricity price spikes 

For the purposes of the study of price spikes, a spike definition is formulated. A price 
spike can be defined as a price that surpasses a specified threshold. However, the main 
questions are how high the threshold should be and whether the threshold should have a 
fixed or time-dependent value. Specification of the threshold characteristics is a 
challenging task. Some authors suggest the use of fixed log-price change thresholds 
(Bierbraurer et al., 2004), a varying original or log-price range threshold (Cartea and 
Figueroa, 2005), or a fixed original price range threshold (Amjady and Keynia, 2010).  

It is advisable to use a varying threshold value since the very volatile character of 
electricity prices usually requires the use of a varying threshold instead of one global 
value to cut off global outliers. Two different approaches to define spikes within a given 
series are applied within the study: 

 A varying threshold is iteratively calculated. The whole given series is filtered with 
values that are out of the range defined by the mean value µ and the n time standard 
deviation  of the whole given series at the specific iteration as [µ-n·  µ+n· ]. On the 
second iteration, the corresponding mean value and standard deviation of the 
remaining series is again calculated: those values that are now out of the range are 
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filtered again. The process is repeated until no further values can be filtered. Then, a 
spike value is calculated as a difference between the corresponding values of original 
and adjusted series and considered as upper or lower spikes.  

 A time-varying threshold is calculated as was proposed in one of the previous studies 
(Jab ska, 2008).  Further, a spike is understood as an observation that is out of the 
range defined by the mean value µ and the n time standard deviation  of the 
neighborhood data of the specific length w as [µ-n·  µ+n· ]w. Here, the 
neighborhood data are understood as a set of observations before and after the given 
observation. Therefore, very high and very low values of the given series can be 
indicated and considered as upper or lower spikes, respectively. Then, a spike value 
is calculated as a difference between the given observation (defined as a spike) and 
the mean value µ of the corresponding neighborhood interval of length w. 

Since the importance (i.e. economic impact) of upper price spikes for market 
participants is much higher than that of lower spikes, in the further study, only upper 
price spikes are considered with a few exceptions (see Section 3.7).  

Figure 3.4 shows the results obtained when the two above-mentioned spike-defining 
approaches are used. As an example, upper price spikes are extracted given n = 3 and w 
= 6 months (4380 hours). The clustering character of the price spikes is visible.  

 

Figure 3.4. Spike samples extracted from the original hourly prices of the year 2010 when 
iterative (top) and time-varying (bottom) thresholds are used. 
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For both approaches, the spike size distributions are constructed and plotted in Figure 
3.5. Moreover, the empirical normalized histograms are compared with an exponential 
distribution having a parameter  (red curve in Figure 3.5) equal to the mean value of 
the extracted spikes. As can be seen, the magnitude of spikes can be roughly 
approximated by an exponential distribution. 

 

Figure 3.5. Distribution of spike magnitude in the original hourly prices of the year 2010 
obtained by the approaches using a) iterative threshold given n = 3 and b) time-varying 

threshold given n = 3 and w = 4380 hours. 

3.3 Deterministic factors 

Prices in the electricity market are highly volatile but are not purely stochastic and, 
therefore, can be explained, at least partly, by background information. As mentioned, 
electricity prices are influenced by many factors, such as historical prices, electricity 
demand, weather conditions, imports, generation outages, and operational reserves 
(Catalão, 2007). Some of the factors are more important than others. 

3.3.1 Trend and seasonality 

It is clearly seen that the Finnish day-ahead electricity prices exhibit different types of 
periodicity  (see  Section  3.1).  They  mostly  arise  as  a  result  of  an  electricity  demand  
change under specific climate conditions, such as temperature and the number of 
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daylight hours. Distinguishing between on-peak and off-peak electricity prices, or 
among prices corresponding to different time periods, such as seasons, is indeed 
important in power markets (Lucia and Schwarz, 2000). In some countries, also the 
supply side shows seasonal variations in output. Hydro units, for example, are heavily 
dependent on precipitation and snow melting, which varies from season to season. 
These seasonal fluctuations in demand and supply translate into seasonal behavior of 
electricity prices, and day-ahead electricity prices in particular (Weron, 2006). 

As a result, the prices of the Finnish day-ahead energy market are known to have three 
main types of periodicity: daily, weekly, and annual. The first two types are due to 
regular variations in demand between different hours of the day (morning and evening 
peaks) and different days of the week (business day–weekend structure). The latter type 
of periodicity reveals long-term annual fluctuations; high prices in wintertime and low 
prices during the summer. 

The functional relationship between these components can assume different forms. The 
classical decomposition in which a series is seen as the sum or product of trend, 
seasonal, and irregular components may be considered. Hence, there are two main 
options for a decomposition model:  

       h h h hX T S I  (multiplicative) (3.2) 

or 

h h h hX T S I  (additive) (3.3) 

where Xh is the original data, Th stands for the trend, and Sh  and Ih for the seasonal and 
irregular components at moment h, respectively.    

These approaches allow separation of the underlying patterns in the data series from the 
irregular components.   

The above-mentioned deterministic components are modeled with the help of functions. 
The  parameters  of  the  functions  are  estimated  from  historical  data.  One  of  the  
approaches to account for both an annual price fluctuation and a trend can be given as a 
sinusoid with a linear trend (Weron, 2006): 

,
2sin( ( ))

8760annual hS A h B C h D  
(3.4) 

The estimates of the parameters A, B, C, and D at moment h can be obtained through a 
least squares fit (LSQ).  

After removing the trend and the annual seasonality, the remaining series is used for the 
hourly/weekly seasonal cycles. A very simple method, which, in many cases, produces 
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good results consists of finding the “average” day (or any other detected period). The 
average may be taken to be the arithmetic mean or the median, that is, the 0.5 quantile. 
In the latter case, single large spikes do not influence the average very much as the 
median is more robust to outliers than the arithmetic mean (Weron, 2006). The idea is to 
rearrange the corresponding time series into a matrix with rows of length H (e.g. 24 
element rows for a daily period detected in the hourly data; 168 element rows for a 
weekly period, etc.) and take the arithmetic mean or median of the data in each column. 
Then, for a given seasonality of length L, its respective seasonal indices are calculated 
as the following mean or median values. For the mean: 

2( , , ,..., )h h h H h H h vHS S S S S  (3.5) 

where h = 1,..,H and v is  the  number  of  all  corresponding  seasonal  cycles  within  the  
total data horizon.  

As mentioned above, intra-day and intra-week regular patterns are mainly determined 
by business activity, and they might change along the year following changes in the 
electricity demand across seasons. Figure 3.6 displays the average weekly seasonal 
cycle throughout sample prices over the period from 1 Jan 1999 until 31 Dec 2012. 
There is a clear difference in the shapes and mean levels between weekdays and 
weekends. The days of the week, in turn, are divided into weekdays, weekends, and 
holidays (see Figure 3.7). The following holidays in Finland are taken into account: 
Midsummer Day, Epiphany (6 Jan), May Day, Ascension Day, Christmas, New Year, 
and Independence Day (6 Dec).  

 

Figure 3.6. Hourly average pattern throughout the week for the period 1999–2012. 
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Figure 3.7. Hourly average patterns for working days, weekends, and holidays for the period 
1999–2012. 

The average price pattern for weekdays indicates higher prices during peak hours 
(08:00–12:00 and 17:00–20:00) especially over a winter season (see Figure 3.8). The 
shapes and mean values of weekend/holiday patterns are notably smoother and lower, 
respectively.  

 

Figure 3.8. Hourly average patterns for weekdays, weekends, and holidays across seasons for 
the period 1999–2012.  
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The irregular component of a given price series can be calculated by extracting from the 
seasonally adjusted series. Afterwards, different methods can be applied for the 
irregular component of the electricity price process to simulate and forecast the given 
series.  

3.3.2 External factors affecting the electricity prices in the Nordic region 

It is widely known that the winter in the Nordic countries is often very cold. Electricity 
demand is higher when the atmospheric temperature rises or falls from a base 
“comfortable” level; temperature-dependent demand variations are more extreme if the 
humidity is higher, since moisture increases the heat retention capability of air (Willis, 
2002). Atmospheric pressure variations generally cause air temperature variations, and 
as a consequence, demand variations. The effect of temperature and other weather-
related variables can be incorporated in the electricity demand.  

The level in the water reservoirs in the Nordic region is at minimum before the spring 
flood. Whole electricity demand cannot be covered by cheap hydroelectric power, and 
more expensive means of production must be used. Therefore, in order to understand 
the market state, instead of the overall generation capacity, the production capacity of 
different technologies such as hydro, thermal, and nuclear may be considered.  

A part of the total electricity generation and consumption structures can be combined 
into nonbase electricity demand (Calmarza and de la Fuente, 2002). As can be seen in 
Figure 3.9, the hydro and nuclear power productions are rather constant and, therefore, 
show a low correlation with electricity prices in the short-run. The nonbase electricity 
demand is obtained by subtraction of the nuclear power and hydro power generation 
from the total electricity demand. The new explanatory variable is the part of the total 
electricity demand that is not covered by the base generation consisting of nuclear and 
hydro power generation. 

Formally, in hourly resolution, the explanatory variable is defined as: 

Nonbase Demand(h) = System Demand(h) - Hydro power(h) - Nuclear            
power(h) 

      (3.6) 

where h = 1,…,24 (hour of a day).     

The value of the nonbase electricity demand is high if the total electricity demand is 
high or there is a lack of base generation (the values of hydro or/and nuclear power 
generation are low). The value of the nonbase electricity demand is low if the electricity 
demand is low or there is a high level of hydro and/or nuclear power generation. This 
explanatory variable covers all possible cases and presents an adequate hourly variation. 

A transmission capacity excess or surplus is another important factor influencing the 
electricity price development. Two regimes of the system can be considered, where one 
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of  the  regimes  is  the  regular  regime  and  the  other  one,  the  nonregular  regime,  is  the  
capacity-limited regime existing when the total available transmission capacity is not 
able to cover the required capacity. 

 

Figure 3.9. Structure of the Finnish energy production during the period 2006–2009. 

Unit outage information, although clearly of importance, is not usually considered in the 
study because it is generally proprietary and not available to all market participants in 
real time.  

3.4 Linear regression 

To characterize the impact of selected independent variables (deterministic factors) on a 
dependent variable (price), a regression model can be considered. A simple linear 
regression model is selected for the problem of forecasting because of its capability of 
estimating time series. Its fast convergence (approach to results) using a limited number 
of available observations validates this choice. The three sets of variables involved in a 
regression model are: 

 the dependent variable X to be predicted by the model, 
 independent predictor(s) V, and 
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 unknown parameters  to be estimated. 

Linear regression forecasting models are generally in the following format 

hh hVX  (3.7) 

where hX  is the value to be predicted at time h, Vh =  (1,v1h,…, vkh) is a vector of k 
explanatory variables at time h,  = ( 0, 1,…, k) is the vector of coefficients, and h is a 
random error term at time h, h = 1,…,H.  

The most common way to find the model parameters ( )  is  to construct LSQ function 
2

1
( ) ( ( ))H

h hh
L X V considered as the difference between the forecasted and 
actual values to be minimized.  

The standard assumptions of the time series regression are: 

 E( h) = 0, 
 Cov( h, t) = 0, 0  t<h, i.e., the residuals are not autocorrelated, and 
 Var( h) = 2 < ,i.e., the residuals are homoscedastic with a finite variance.            

3.4.1 Forecast evaluation methods 

Several evaluation criteria may be used to examine the accuracy of the results obtained 
from a forecasting model. Mean square error (MSE), mean absolute error (MAE), and 
mean absolute percentage error (MAPE) were frequently considered to evaluate the 
performance of the forecast results in the literature. 

The evaluation criteria are listed below: 

2

1

( ) /
H

h h
h

MSE X X H  
(3.8) 

1

| | /
H

h h
h

MAE X X H  
(3.9) 

1

| | / / 100%
H

h h h
h

MAPE X X X H  
(3.10) 

Here hX  is the predicted value at time h, Xh is the actual value at time h, and H is the 
number of predictions. 

The main disadvantage of the MAPE criteria is the adverse effect accruing from small 
actual values. If the actual value is small, Eq. (3.10) will contribute large terms to the 
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MAPE even if the difference between the actual and forecast values is small. Therefore, 
in some cases, the use of an adapted MAPE (AMAPE) is preferred: 

1 1
| | /( / ) / 100%

H H

h h h
h h

AMAPE X X X H H  
(3.11) 

In the further study, MAPE and AMAPE criteria are generally used with one exception 
when MSE and MAE are also given (see Appendix D.5). 

3.4.2 Regression model building 

A significant relationship between two or more variables may simply mean that they are 
following the same trend without any further underlying relationship between them, a 
phenomenon more commonly known as spurious correlation. Therefore, before 
estimating the desired model, the price series and the explanatory variables are initially 
detrended and deseasonalized through the series decomposition. When having the 
dependent and independent variables properly aligned, LSQ optimal regression model is 
estimated (Jab ska et al., 2012).  

As an example, the regression model is estimated using the Finnish day-ahead 
electricity prices over the period from 1 Jan 2006 to 31 Dec 2009 to forecast prices 24 
hours ahead. Selected explanatory variables are the nonbase electricity demand and the 
total electricity net import in Finland (Fingrid, 2013b). Here, the actual values of 
independent variables are used. 

It should be borne in mind that the price series have local trends since market conditions 
evolve with time and, hence, the use of a long training period may result in significant 
inaccuracies. Therefore, the fit of the regression model is preferred not to be done 
globally on the whole data set at once, but in a moving regression fashion. Such a 
forecasting strategy provides an opportunity to account for more local trends dependent 
on other variables not available for the study and, therefore, being still consistent after 
the series decomposition is done. On the other hand, when a very short training interval 
is used, the model may not capture essential features of the considered series. Hence, 
selection of an appropriate training interval for a forecasting model is a challenging task 
and usually depends on the price characteristics of a case market.    

In the experiment, every day historical price data of a specific horizon are used to 
estimate the model parameters and project the resulting prices 24 hours ahead. The 
prices of three years over the period from 1 Jan 2007 to 31 Dec 2009 are used as a test 
set. Table 3.2 presents numerical results obtained from the regression models using 
different horizons of a moving training period. As can be seen from Table 3.2, the best 
forecasting performance corresponds to the regression model with a moving training 
period of two months and results in MAPE value of 14.65%. The price forecast path 
produced by the regression model with a moving training period of two months is 
presented against the realized prices over the test interval in Figure 3.10a. The 
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respective residual series are given. The moving regression parameter estimates for the 
normalized values of the nonbase demand and the net import  are illustrated in Figures 
3.10b, c. 

Table 3.2. Residual statistics for moving regression forecasting. 
 

Training 
interval 
length 

Mean Std Skewness Kurtosis MAPE, 
[%] 

One month 1.15 7.15 -0.80 16.13 18.82 
Two months 0.69 7.81 -0.18 8.12 14.65 
Six months 0.03 8.00 -0.26 10.77 16.98 
One year 0.40 8.75 -0.78 9.12 21.28 

 
As can be seen, the moving regression parameter estimates differ over the modeling 
period. The electricity prices rise since there are a high nonbase electricity demand and 
a lack of import of cheap electricity mainly transferred from Russia.   

 

Figure 3.10.  a) Moving regression forecasting; b) Nonbase demand; c) Net import. 
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3.4.3 Summary 

Overall, a multivariate linear regression approach is not sufficient for modeling and 
forecasting actual electricity price behavior mainly because of its inability to capture the 
nonlinear characteristics of real prices. The residuals obtained from the regression 
model  fit  are  prone  to  outliers  and  present  a  nonconstant  mean  level  over  the  testing  
period (see Figure 3.10 a)).  

3.5 The Box-Jenkins methodology 

A time series is a sequence of data points at regular intervals (hourly, daily, monthly, 
annually). Provided that electricity prices are mean reverting, the Box-Jenkins 
methodology is used (Box and Jenkins, 1970). The Box-Jenkins model alters the time 
series to make it stationary. Besides a decomposition approach, the model is able to pick 
out trends from the time series itself, typically using autoregression (AR), moving 
average (MA), and seasonal differencing.  

3.5.1 ARMA model 

An autoregressive (AR) model attempts to model the current observation based on the 
previous realizations of a given process. An AR model of order p is denoted by AR(p). 
The AR(p) model for a stationary time series {Xh |h=1,2,…,H} is defined as: 

Xh 1Xh-1+ 2Xh-2+…+ pXh-p+ah (3.12) 

where  are the AR coefficients, ah is the error term {ah}~WN(0, 2), and ah is 
uncorrelated with at for all h<t.  

A moving average (MA) model is a linear regression of the current value of the series 
against the previous values of process errors. The MA model of order q is  denoted by 
MA(q): 

Xh 1ah-1+ 2ah-2+…+  qah-q+ah (3.13) 

where  are the MA coefficients and ah is the error term {ah}~WN(0, 2). 

ARMA is a combination of the AR and MA models.  The model is  then referred to as 
the ARMA(p,q), where p and q are the orders of the AR and MA models, respectively. 
The ARMA(p,q) is defined as: 

Xh 1Xh-1 2Xh-2-…- pXh-p = 1ah-1+ 2ah-2+…+ qah-q+ah (3.14) 

where all the terms have the previous meanings.  
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By using another time series that is known to covariate with the data under 
consideration, one can improve the prediction performance of the future values. The 
addition of an external input to a model is called using an exogenous variable in the 
time series modeling process. An ARMA(p,q) model with an exogenous factor is 
denoted by ARMAX(p,q,b): 
 

1 
1 1 1

 
p q b

h i h i i h i i h i h
i i i

X X a U a  
 

(3.15) 

where b and i are referred to as the lag and the coefficient of the exogenous variable 
Uh-i+1. 

If a given time series shows evidence of nonstationarity (trend, seasonality), initial 
differencing can be applied to remove the nonstationary characteristics. The model is, 
then, referred to as an integrated autoregressive moving average (ARIMA) or a seasonal 
ARIMA (SARIMA). The differenced time series is produced by subtracting the time 
series with lagged values from itself, the first-order lag operator is defined as   

1 (1 )h h hX X B X  (3.16) 

where B is the backward shift operator BXh=Xh-1 

The differencing operator can be applied several times if necessary to obtain a 
stationary time series. When dealing with seasonal data it is preferred to use a seasonal 
differencing operator: 

(1 )S
h h S hX X B X  (3.17) 

where S is the period of the seasonal data. 

For nonnegative integers d and DS, the series Xh is a SARIMA(p,d,q)(P,DS,Q) process 
with a period S if the differenced series Yh= (1-B)d(1-BS)DsXh is an ARMA process 
defined by  

( ) ( )S
p P h q Q

S
hB B Y B B a  (3.18) 

where p(B)= (1- 1B- 2B2-…- pBp), q(B)= (1+ 1B+ 2B2+…+ qBq) are the regular, 
and P(BS)= (1- 1BS- 2B2S-…- PBPS), Q(BS)= (1+ 1BS+ 2B2S+…+ QBQS), are 
the seasonal polynomials in B, p,q are regular orders of the AR and MA polynomials, 
P,Q are seasonal orders of the AR and MA polynomials, d is the number of regular 
differences, and DS is the number of seasonal differences. 
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3.5.2 Preparing Box-Jenkins models 

The Box-Jenkins approach uses an iterative model building strategy consisting of four 
steps. In the first step, the structure of the model is identified. Application of the ACF 
and  PACF  of  the  sample  data  is  a  basic  tool  to  identify  the  order  of  the  ARMA  best  
model, which is then estimated by the maximum likelihood (ML) method in the second 
step.  Description of the ML estimation method is given in Appendix A. The parameters 
of the model are estimated such that an overall measure of errors is minimized. The 
goodness-of-fit is tested on the estimated model residuals in the third step. If the model 
is not adequate, a new tentative model should be identified. Forecast future outcomes 
are obtained in the fourth step (Box and Jenkins, 1970).  

When evaluating different models, it is important to be able to deduce which of the 
competing  models  best  fits  the  data.  The  Akaike  Information  Criterion  (AIC)  is  a  
measure that is used to compare models with each other; the AIC rewards models for a 
good fit and penalizes models for complexity. The AIC is defined as follows: 

2 ln
obs

RSSAIC k
n

 
(3.19) 

where k is the number of free parameters, nobs is the total number of observations, and 
RSS is the residual sum of squares. 

Bayesian information criterion (BIC) is closely related to the AIC but has a larger 
penalty term than in the AIC: 

2ln( ) ln( )obs obsBIC n k n  (3.20) 

where k and nobs have the previous meaning and 2 is the error variance.  

For both approaches, the aim is to choose the model order that provides the minimum 
values of AIC and BIC. 

3.5.3 ARCH/GARCH modeling 

ARMA-based models are used in many applied problems. The basic assumptions of the 
error terms of the models include zero mean and constant variance. In practice, the 
homoscedasticity assumption of constant variance sometimes does not hold. Such time 
series are called heteroscedastic. Thus, when the error terms are autocorrelated, the ML 
estimator of the ARMA model coefficients is no longer asymptotically unbiased and 
consistent. It is agreed that the electricity price time series present nonconstant 
deviations over time as demonstrated in Figure 3.1. Hence, the autoregressive 
conditional heteroscedasticity (ARCH) model was introduced (Engle, 1987). In this 
model, the conditional error variance 2 is considered as time dependent ARCH(r): 
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2 2

1

, at time , 1,2,3,...,
r

h i h i
i

C a h h H  
(3.21) 

where ah = h
2 is an error term produced by ARMA at time h, h = N(0,1) and C is  a 

variance constant. 

As h is white noise, which is assumed to be normally distributed, ah will also be 
normally distributed with a zero mean and the variance 2. In practical applications, the 
current variance sometimes appears to be dependent not only on past squared 
disturbances, but also on the past variance of the errors. Such an extended model was 
introduced and comes as a GARCH(r,s) model (Bollerslev, 1986): 

2 2 2

1 1

, at time , 1,2,3,...,
r s

h i h i i h i
i i

C a h h H  
(3.22) 

The application of a GARCH model is an iterative procedure similar to the ARMA 
procedure and includes iteratively: order determination, parameter estimation, and 
model diagnostic checking. 

3.5.4 Price modeling and forecasting with SARIMA+GARCH 

The process of ARMA-based model building is presented. The model adequacy and 
forecasting accuracy are evaluated with actual data from the Finnish day-ahead energy 
market of Nord Pool Spot. The main attention is focused on a particular period of 
hourly real-time electricity prices during the period from 16 Sep 2009 to 21 Nov 2009.  
The whole data set is divided into training (60 days) and testing (7 days) sets. Hence, 
the moving 24 hours ahead out-of-sample forecasts are generated from the estimated 
models over the testing period from 15 Nov 2009 to 21 Nov 2009.  

A preliminary inspection of the ACF and PACF of the corresponding price log-returns 
indicates  the  presence  of  seasonality  with  respect  to  the  hourly  electricity  prices  (see  
Figure 3.11). 

Besides the ACF/PACF analysis, the AIC and BIC values are estimated for a tentative 
model. Examples of model structures and their respective AIC/BIC values are presented 
in Table 3.3.  

Given that the ARMA modeling process requires a stationary time series, nonseasonal 
first differencing and seasonal differencing of the twenty-fourth order are needed to 
render the electricity prices. A further examination of the ACF/PACF of the resulting 
stationary time series on electricity prices, and the AIC/BIC values of the corresponding 
residuals (see Table 3.3) indicated the following SARIMA specification: 

(1-B)(1-B)24(1- 1B)(1- 1B24- 2B168)priceh =(1+ 1B)(1+ 1B24)ah
 (3.23) 
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The model diagnostics obtained for the SARIMA model given in Eq. (3.23) is reported 
in the second column of Table 3.4. The corresponding coefficients of the model 
parameter estimates and their standard errors are presented in Appendix B. The 
residuals are free of serial correlation based on the chi-square Ljung-Box Q-statistics. 
However, the chi-square test statistic for autoregressive conditional heteroscedasticity is 
statistically significant at the 5% level. The invertibility conditions for the respective 
nonseasonal and seasonal terms are satisfied.  

 
Figure 3.11. a) ACF of the price log-returns; b) PACF of the price log-returns. 

 

Table 3.3. AIC/BIC results for ARMA based models estimated on the training set. 
 

Model AIC BIC 
ARMA(1,1) 4603 4616 

ARIMA(1,1,1) 4602 4616 
SARIMA(1,1,1)(1,1,1)24 4240 4265 

SARIMA(1,1,1)((1,7),1,1)24 4195 4224 
SARIMA(1,1,1)(1,1,(1,7))24 4235 4264 

SARIMA(1,1,1)((1,7),1,(1,7))24 4196 4230 
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To recognize the presence of the autoregressive conditional heteroscedasticity in the 
residuals, a SARIMA+GARCH model is estimated. The AIC/BIC values are compared 
for  an  extensive  range  of  different  SARIMA+GARCH  models.  Examples  of  model  
structures and their corresponding AIC/BIC values are given in Table 3.5. 

Table 3.4. Model diagnostics and MAPE values for SARIMA and SARIMA+GARCH models 
estimated for original and adjusted price series. 

 
 Original price series Adjusted price series 

Model 
diagnostics: 

SARIMA 
(1,1,1) 

((1,7),1,1)24 

SARIMA(1,1,0) 
(7,1,1)24                

+ GARCH(1,1) 

SARIMA(1,1,1) 
((1,7),1,1)24 

SARIMA 
(1,1,0)(7,1,1)24 
+GARCH(1,1) 

LBQ 59.21 64.32 66.08 66.79 
 [0.11] [0.06] [0.06] [0.06] 

ARCH 156.17 97.12 104.34 66.79 
 [0.00] [0.00] [0.00] [0.06] 

MAPE, [%] 5.83 4.62 4.05 3.65 
 
Notes: Probability values are reported in brackets. LBQ is the Ljung-Box Q-statistic to test for serial 
correlation in the residuals. ARCH tests for autoregressive conditional heteroscedasticity in the residuals. 
 
 The methodology results in the following SARIMA+GARCH model: 

(1-B)(1-B)24(1- 1B)(1- 1B24- 2B168)priceh= (1+ 1B24)ah
 (3.24) 

1 1
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, at time , 1,2,3,...,h i h i i h j

i j
C a h h H  

(3.25) 

The third column of Table 3.4 reports the model diagnostics obtained for the 
SARIMA+GARCH given in Eqs.(3.24)–(3.25). The residuals are free of both serial 
correlation but still indicate presence of the heteroscedasticity at the 5% level.  All the 
model parameter estimates are statistically significant at the 5% level (see Appendix B).   

To limit the volatility of the given price series, electricity price spikes are extracted 
from the original price series with parameters w = 720 hours; n = 3 (see Section 3.2).  
The proposed SARIMA/SARIMA+GARCH models are estimated on the adjusted price 
series.  The results of the models are reported in the fourth and fifth columns of Table 
3.5. As can be seen, the residuals are free of both serial correlation and autoregressive 
conditional heteroscedasticity for the case of SARIMA+GARCH model estimated on 
the adjusted price series. The model parameter estimates are all statistically significant 
at the 5% level and presented in Appendix B.   

In order to assess the ability of the models to capture the actual behavior of prices the 
forecasted price curves are presented against original ones (see Figure 3.12). The MAPE 
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values used to examine the forecasting performance of the models over the testing 
period are reported in Table 3.4. 

Table 3.5. Obtained results of AIC/BIC for SARIMA+GARCH models estimated on the 
training set.  

Model AIC BIC 
SARIMA(0,1,0)(7,1,1)24+GARCH(1,1) 3879 3898 

SARIMA(1,1,1)((1,7),1,1)24+GARCH(1,1) 3872 3901 
SARIMA(1,1,0)((1,7),1,1)24+GARCH(1,1) 3865 3889 

 
Truncation of the spikes before application of the forecasting model helps to reduce the 
influence of such observations on the estimation of the method parameters. Such a 
strategy results in an improvement in the model forecasting performance over the 
testing period, which supports the previous studies (see Figure 3.12). However, this 
finding is mainly reasonable for the case when no spikes exist on the forecast period. 

 
Figure 3.12. SARIMA+GARCH one-day ahead forecast over the period 15 Nov 2009 — 21 

Nov 2009. 
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3.5.5 Summary 

It is shown that accurate prediction of day-ahead electricity prices with (S)AR(I)MA/ 
(S)AR(I)MA+GARCH models is not generally possible because of the inability of the 
models to estimate high volatility and spike clustering presented in the original price 
time series. Therefore, to avoid an undesirable effect of the presence of spike samples in 
the training data set, those samples should be extracted from the corresponding set. 
Further, a possible approach to capture the actual price behavior would be a separate 
prediction of adjusted price series and spikes with the use of different forecasting 
engines.  

3.6 Stochastic differential equations – Ornstein-Uhlenbeck process 

One of the approaches to model electricity prices is based on stochastic modeling. A 
stochastic process is a family of random variables X(h, ) of two variables h H,  
on a common probability space ( ,F,P), which assumes real values and is P-measurable 
as a function of  for a fixed h. The parameter h is interpreted as time, with H being a 
time interval and X(h,·) represents a random variable on the above probability space , 
while X(·, ) is called a sample path or trajectory of the stochastic process.  

3.6.1 Stochastic process 

A stochastic process (Wh) 0 is defined as Brownian motion (BM) if has the following 
characteristics: 

 W0=0, that is, BM starts at zero. 
 (Wh) 0 is a process with homogeneous and independent increments, i.e., 

distribution of future changes does not depend on past realizations. 
 Any increment Wh-Wt is normally distributed with a mean zero and the variance h-t, 

 t<h, i.e., the variance increases linearly with the length of time interval. 
 The paths of (Wh) 0 are continuous but nowhere differentiable. 

3.6.2 Ornstein-Uhlenbeck process  

The mean-reversion (MR) process is one of the most applied stochastic processes to 
simulate electricity prices (Gibson and Schwartz, 1990; Hirsch, 2009; Möst and Keles , 
2010). Therefore, it can be considered an alternative to the Box-Jenkins time series 
models. The MR process called Ornstein-Uhlenbeck (OU) (Uhlenbeck and Ornstein, 
1930) can be formulated for the price changes with the following stochastic differential 
equation (SDE): 

( )h h hdX k µ X dh dW  (3.26) 
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The first term k(µ-Xh) of Eq. (3.26) describes the drift component. The parameter k 
determines the reversion rate of the stochastic process to its long-term mean µ. The 
essence  of  the  mean-reversion  concept  for  the  case  of  a  price  time  series  is  the  
assumption that any stochastic price fluctuations are temporary and the price will tend 
to move to the mean price over time. As mentioned above, in the electricity markets, the 
price fluctuations and the mean reversion are generally explained by entering expensive 
generators as a result of an extreme meteorological situation, power plant outages and 
transmission congestions. 

The second term dWh corresponds to the standard Brownian motion. The stochastic 
driver is the Wiener process movement dWh= hdh1/2, where h is a standard normally 
distributed random variable.  

3.6.3 Calibration of SDE 

The SDE is solved by Euler discretization (Lari-Lavassani et al., 2001), applying Ito’s 
Lemma with the following exact solution (Karatzas and Shreve, 2000): 

2k
k k

1
1 eX X ·e 1 e , (0,1)

2kh h h hµ N  
(3.27) 

The substitutions a=e-k , b=µ(1-e-k ), 2(1 ) / 2ke k  and lead to the equation    
Xh+1 = aXh+b+ h, h N(µ  ) whereas  is the time difference between h and h+1, here 
one hour.  

The parameters a,b,  are determined by ML or LSQ. The resubstitution of the 
parameters a,b,  results in the original parameters of the exact solution k,µ, . With the 
help of the estimated parameters, the exact solution of the SDE is applied to generate 
the price path. 

3.6.4 OU process to simulate electricity prices 

In the first step, prices are logarithmized and the price logs are passed to the simulation 
tool instead of the prices themselves. The logarithm is used as it limits the volatility and 
leads to a variance stabilization. Since the electricity prices display typical patterns, the 
models developed to describe the behavior of electricity prices should capture the 
deterministic components (trend, daily, weekly, and annual cycles) of electricity prices. 

The deterministic patterns (daily, weekly, annual seasonality) are removed from the log-
price series. The remaining stochastic component is then used to estimate the 
parameters of the corresponding stochastic process. Finally, the deterministic 
components are added to the simulated stochastic component, and then, the simulated 
price logs are retransformed receiving a simulated price path. 
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Model parameter estimates are calculated for the stochastic component extracted from 
the logarithmized Finnish day-ahead electricity prices of the years 2007–2009. At a 
closer inspection of Figure 3.13 it becomes evident that the simulated price path partly 
follows the actual series. Rather, this is a consequence of the excessive "jumpiness" of 
an optimal mean-reverting model. The residuals emerging from this optimal mean 
reverting model are normally distributed. Since an Ornstein-Uhlenbeck model is always 
normally distributed by definition, this property is transferred to the model residuals 
when there are frequent spikes in the simulated series that do not coincide with the 
spikes in the actual series (Naeem, 2009). 

 

Figure 3.13. Ornstein-Uhlenbeck simulation (left) and normalized histogram of the model 
residuals with normal distribution (right). 

Relevant  statistics  of  the  original  and  simulated  prices  are  collected  in  Table  3.6.  To  
achieve a more robust result, an expected value for the measurements is determined 
based on 50 simulations for the OU process. 

It should be concluded that the conventional mean-reverting Ornstein-Uhlenbeck model, 
even when calibrated optimally with the actual electricity market prices, is not able to 
capture the statistical characteristics of the actual series. 
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Table 3.6. Basic statistics for original Finnish day-ahead electricity prices and price paths 
simulated by the Ornstein-Uhlenbeck process. 

 Original prices, [euro/MWh] Simulated prices, [euro/MWh] 
Mean 39.67 40.01 
Std 15.64 17.33 

Skewness 0.86 1.22 
Kurtosis 3.93 5.49 

Maximum 150.30 162.62 
Minimum 0.34 8.64 

3.6.5 OU process with colored noise 

The mean-reversion process driven by an exponential colored noise can be formulated 
for the price changes with the following SDE (Mtunya, 2010): 

( )h h hdX k µ X dh dh  (3.28) 

The terms of Eq. (3.28) have the same meanings as in Eq. (3.26), h is an exponentially 
colored noise process generated to mimic the behavior of both the spikes and the usual 
volatility of the prices. The colored noise process h produces a sequence of correlated 
random variables (h1), (h2),… with the same standard deviation in each. Colored noise 
is a Gaussian process, and it is well known that this process can be completely 
described by their mean and covariance functions (Arnold, 1974).  

The Ornstein-Uhlenbeck process is extended and repeatedly integrated to obtain the 
colored noise of the first and second orders forcing along the series: 

1 1 1
1( ) ( ) hd h h dh dW  

(3.29) 

2 2 2 1
1 1( ) ( ) ( )d h h dh h dh  

(3.30) 

where   is  the  correlation  time  for  colored  noise  (in  the  case  of  hourly  data   = 24, 
indicating price hourly seasonality); 1 and 2 are the diffusion constants; Wh is  a  
Wiener process with dWh~N(0,dh). 

The system of Eqs. (3.29)–(3.30), with (0)=0 (i.e., starting with no noise) and t<h, has 
the following solutions: 

( )

1 1
0

( )
h h t

th e dW  
(3.31) 
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( )

2 1 2
0

1( ) ( )
h h t

th e h t dW  
(3.32) 

All the relevant process parameters are estimated by the ML methodology. The system 
of Eqs. (3.31)–(3.32) generates a stationary, zero-mean, correlated Gaussian process 

2(h). The generated colored noise process 2(h) is applied to Eq. (3.28) to model the 
price. Therefore, the mean-reverting log-price equation is as 

2( )h hdX k µ X dh dh  (3.33) 

With the use of colored noise forces, the correlation of the noise terms that influence the 
price time series is modeled more accurately, and it becomes possible to take into 
account the spiking characteristics and volatility clustering of the prices. 

3.6.6 OU process with colored noise to simulate electricity prices 

Prices are logarithmized and deterministic patters are removed. The corresponding 
stochastic component of the price logs are passed to the simulation tool, deterministic 
patterns are added, and the simulated price logs are retransformed receiving a simulated 
price path. Simulation of the Finnish day-ahead electricity prices of the years 2007–
2009 with the use of the MR process driven by an exponential colored noise is 
presented in Figure 3.14.  

The relevant statistics of the original and simulated prices based on 50 simulations are 
collected in Table 3.7.  

Table 3.7. Basic statistics for the original Finnish day-ahead electricity prices and price paths 
simulated by the Ornstein-Uhlenbeck process with colored noise. 

 
 Original prices, [euro/MWh] Simulated prices, [euro/MWh] 

Mean 39.67 41.97 
Std 15.64 21.80 

Skewness 0.86 1.26 
Kurtosis 3.93 5.26 

Maximum 150.30 182.47 
Minimum 0.34 5.89 
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Figure 3.14. Ornstein-Uhlenbeck with colored noise simulation (left) and normalized histogram 
of the model residuals with normal distribution (right). 

The process driven by colored noise produces prominent spike groups. However, the 
trajectory of the price path simulated by the process with colored noise partly captures 
the original price behavior. As can be seen in Figure 3.14, the spike groups are clustered 
and usually exist more often and for a longer time period than in actual case.  

3.7 Regime-switching model 

Different models based on MR, ARMA, and GARCH processes applied to the 
electricity price modeling and simulation are evaluated and compared.  

As in the previous section, the simulation of electricity prices is formed on an extended 
modeling approach considering both stochastic and deterministic components of the 
price process derived from the Finnish day-ahead energy market of Nord Pool Spot. 
First, the deterministic components are modeled and removed from logarithmized 
historical  price  series.  The  resulting  stochastic  residuals  are  then  used  to  estimate  the  
parameters of each stochastic process.  
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As the presence of spikes is one of the main characteristics of electricity prices, a 
regime-switching approach is applied to distinguish the nonspiky and spiky behavior of 
prices. Both upper) and lower spikes of a given series are considered. Finally, 
deterministic patterns are added to the simulated stochastic component. The forecasting 
methodology is illustrated in Figure 3.15. 

A regime-switching approach is implemented into the forecasting model to simulate the 
transition of prices between the normal and spike regimes. To combine the different 
regimes with a common approach, transition probabilities between the regimes and 
probabilities remaining in the same regime are calculated based on historical data.  
Therefore,  if  regime  1  is  the  normal  regime,  regime  2  is  the  upper  jump  regime,  and  
regime 3 is the lower spike regime, respectively. Then, the matrix of transition would 
come as: 

11 12 13

21 22 23

31 32 33

p p p
T p p p

p p p
 

 

(3.34) 

The rows of the matrix sum up to one. All cases of the transition matrix are as follows: 

 If the process is in regime 1, 
o it can remain in the normal regime (p11), 
o it can move into the upper jump regime (p12), or 
o it can move into the lower jump regime (p13). 

 If the process is in regime 2, 
o it can move into the normal regime (p21), 
o it can remain in the upper jump regime (p22), or 
o it can (not) move into the lower regime (p23). p23=0 is plausible for electricity 

prices, and it can be observed from historical data. 
 If the process is in regime 3, 

o it can move into the normal regime (p31), 
o it can (not) move into the upper regime (p32), or 
o it can remain in the lower jump regime (p33). 

The upper jumps are iteratively defined as values above the level µ+3· , while the lower 
jumps are defined as values that are below the level µ-3· . Here, µ and  are the mean 
and variance values of a corresponding stochastic component of historical prices (see 
Section 3.2). The regime-switching model for the upper and lower spikes is separately 
applied for working and nonworking days of different yearly seasons and the transition 
probabilities are determined for each case, as the number of jumps and the length of 
jump groups can differ for different day types. 
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Figure 3.15. Flowchart of the proposed forecasting methodology. 

Historical price market data from the period of 1 Jan 2002 to 31 Dec 2009 show that 
negative spikes are mostly observed in the night and morning hours. The distribution of 
lower spikes over the week and year has a maximum on Sundays from May to July and 
on December, respectively (see Figure 3.16). To sum up, the lower spikes have 
appeared so far during Sundays, the off-peak period, which comprises the time between 
00:00 and 08:00 hours, summer, and partly in the winter seasons of the year. 
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Figure 3.16. Normalized histograms of the occurrence of lower price spikes in the Finnish day-
ahead energy market of the years 2002–2009 on different hours, days of the week, and months. 

On the other hand, the upper spikes are mostly observed in the day hours (see Figure 
3.17). The distribution of upper spikes over the week is observed almost uniformly over 
the working days. The distribution of upper spikes over the year is mostly observed 
during winter months. To sum up, the upper spikes have appeared during all working 
days, the on-peak hour period, which comprises the time between 09:00–12:00 and 
15:00–19:00 hours on weekdays, and in the winter season of the year. 

Spike magnitudes (spikeupper / spikelower) are sampled from the empirical distribution 
functions  obtained  from  historical  data.  The  sampled  spike  heights  are  added  to  a  
simulated  normal  regime  in  the  case  of  the  upper  spike  regime,  and  subtracted  in  the  
case of the lower regime. The spike regime can be described for a time point h+1 as: 

Xupper_spike,h+1 =Xnormal,h+1 + spikeupper,h+1 (3.35) 

Xlower_spike,h+1 = Xnormal,h+1 - spikelower,h+1. (3.36) 

For example, if a MR process is used for the normal regime, the upper regime is 
modeled as: 
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(3.37) 

 

Figure 3.17. Normalized histograms of the occurrence of upper price spikes in the Finnish day-
ahead energy market of the years 2002–2009 on different hours, days of the week, and months. 

Afterwards, the deterministic components are added again to the stochastic component; 
the logarithmic simulated path is retransformed to the original range to receive the 
simulated electricity prices.  

The weekly and daily price cycles are very important, as the ACF for the price series 
shows  considerable  autocorrelation  between  the  values  of  the  same  hours  of  different  
days and between the same days of different weeks (see Figure 3.18a). The detrended 
and  deseasonalized  price  series  obtained  from  the  original  price  is  not  periodic,  even  
though it still displays some patterns (see Figure 3.18 a,b). As one of the approaches to 
capture the characteristics of the detrended/deseasonalized series, an ARMA(2,1) model 
is implemented. Figure 3.18c shows the PACF of the residual series after the 
ARMA(2,1) model is fitted to the detrended/deseasonalized series. It can be concluded 
that the model adequately captures the patterns of the data. The PACF values of the 
squared residuals at several lags are larger than the bounds, which suggests that the 
residual series have a condition heteroscedasticity (see Figure 3.18d). Finally, 
ARMA(2,1)+GARCH(1,1) is obtained to model the given process.    
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Figure 3.18. a) ACF of the price logs before and after detrending/deseasonalizing; b) PACF of 
the price logs after detrending/deseasonalizing; c) PACF of the residuals obtained from the 

ARMA(2,1); d) PACF of the squared residuals obtained from the ARMA(2,1).  

After calibrating the models, a number of experiments are carried out to evaluate the 
goodness-of-fit of each model for an in-sample price path simulation. Figure 3.19 
presents  single  simulated  price  paths  obtained  from the  MR,  GARCH,  SARIMA,  and  
ARMA+GARCH models. Based on a general graphical comparison, the results prove to 
resemble well the true data behavior. The simulated electricity price curves capture 
daily,  weekly,  and  annual  cycles.  This  is  generally  caused  by  the  initial  removal  and  
addition of the above-mentioned deterministic components before the MR, GARCH, 
and ARMA+GARCH models are implemented. The SARIMA model adequately 
captures seasonal patterns to simulate real prices. Price jumps are also generated within 
the simulated price paths. The MR property is well captured by the models. 

Besides the visual investigation, a more detailed statistical comparison of the prices 
simulated by one of the models with respect to the true series is performed. Table 3.8 
presents statistical measurements for simulated price paths obtained from the MR model 
and original price series. To achieve a more robust result, an expected value for the 
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measurements is determined based on 50 simulations for the MR model. It can be 
clearly seen that all the statistical measurements of simulated prices are close to the 
original prices.  

 

Figure 3.19. Simulated and original Finnish day-ahead electricity prices of the years 2002–2009. 

After the in-sample analysis of the model performances, out-of-sample simulations are 
carried out for the models with regime-switching and preliminary data detrending/ 
deseasonalizing and without regime-switching (no r/s) and deterending/ deseasonalizing 
(no seas.). The out-of-sample simulations are run for the period of the first month of the 
year 2010 and the outcomes are compared with the original prices (see Figure 3.20). 
The corresponding distributions of the simulated prices with respect to the original 
prices can be found in Appendix C. 
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Table 3.8. Basic statistics for original and simulated prices and price spikes in the Finnish day-
ahead energy market of the years 2002–2009. 

 Number Mean Std Skewness Kurtosis 
Original normal 

prices 
67025 35.53 13.46 1.22 4.80 

Simulated 
normal prices 

66989 35.78 14.09 1.20 4.58 

Original upper 
spikes 

1456 73.14 67.01 13.87 258.33 

Simulated 
upper spikes 

1477 70.52 75.00 15.02 283.04 

Original lower 
spikes 

1647 19.05 9.10 0.91 4.43 

Simulated 
lower spikes 

1662 17.71 12.26 0.94 4.37 

 

Figure 3.20. Out-of-sample simulated price curves versus the original price curve. 
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In addition to the graphical comparison of the simulated and historical price paths, 
MAPE values are calculated for the sorted simulated and real price paths. Table 3.9 
shows the expected MAPE values of the out-of-sample analysis when 50 forecasts are 
carried out. 

Table 3.9. Out-of-sample MAPE measures for the different stochastic models for the Finnish 
day-ahead energy market of the year 2010.  

Model MAPE, [%] 
MR 15.57 

MR no seas. 38.15 
MR no r/s. 24.35 

ARMA(2,1) 13.74 
GARCH(1,1) no r/s. 16.17 

ARMA(2,1)+GARCH(1,1) 12.84 
SARIMA(1,1,1)(1,1,1)24 no seas. 17.81 

3.7.1 Summary 

A comparison of the results obtained by the models combining regime-switching and 
decomposition (i.e. detrending/deseasonalizing) techniques with the model results 
without those techniques showed that the impact of the techniques is very clear. The 
analysis of the price paths generated by the models without the regime-switching 
technique makes clear that not only the volatility of the price paths is not well-fitted, but 
also jumps are not adequately produced. Even the GARCH process, the only method 
that can handle heteroscedasticity, cannot incorporate jumps with a height that is usually 
observed in historical prices and generates volatile price paths higher than the historical 
ones.  

The analysis pointed out that a difference filter used within the SARIMA process cannot 
remove and add deterministic elements accurately for out-of-sample price modeling. 
Therefore, a separate treatment of the deterministic elements is more effective.  

An  evaluation  of  the  different  models  showed  that  the  ARMA/ARMA+GARCH  
processes enhanced with the regime switching and decomposition techniques 
outperform other examined processes in fitting the daily and weekly movements and 
especially the stochastic volatility. These results can be improved by introducing 
fundamental data (e.g. electricity demand, generation capacity, fuel prices) to the model 
(e.g. ARMAX) when distinctive structural changes can be captured. Before estimating 
an ARMAX model, the fundamental data are initially detrended/deseasonalized to have 
them treated analogically to the deterended/deseasonalized prices.  
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4 Combination of classical and modern forecasting 
approaches 

 

 

 

 

 

 

 

 

 

 

The adoption of approaches combining several forecasting models has been advocated 
in the previous section as a way to improve the forecasting accuracy, as by combining 
different models, different aspects of the underlying series patterns can be captured. In 
Section 4.1 the neural network is discussed. A hybrid methodology for the prediction of 
both normal range electricity market prices and price spikes is presented in Section 4.2. 

4.1 NN 

Regression models (Nogales et al., 2002), AR models (Fosso et al., 1999), ARIMA 
models (Contreras et al., 2003), and financial market models, that is, geometrical mean-
reverting models (Barlow, 2002) are the classical techniques where an exact model of 
the system is built and the solution is found by using algorithms that consider the 
physical phenomena governing the process. These approaches require a lot of 
information, and the computational costs are very high (Catalão, 2007). Most of the 
classical models are not able to adequately capture the nonlinearity of the real price 
behavior. To solve this problem, modern computing techniques have been proposed for 
electricity price forecasting. The modern computing techniques, namely AI techniques, 
do not model the system; instead, they find an appropriate mapping between the several 
inputs and the target variable, usually learned from historical examples, thus being 
computationally more efficient.  
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NN model is one of the most popular modern computing techniques implemented for 
electricity  price  prediction  (Aggarwal  et  al.,  2009).  NNs  are  simple  but  powerful  and  
flexible tools for forecasting, provided that there are enough data for training, an 
adequate selection of the input–output samples, an appropriate number of hidden units, 
and enough computational resources available (Catalão et al., 2007). NNs are able to 
capture the autocorrelation structure in a time series even if the underlying law 
governing the series is unknown or too complex to describe. NNs are highly 
interconnected simple processing units designed to imitate the way the human brain 
performs a particular task. Each of those units, also called neurons, forms a weighted 
sum of its inputs, to which a constant term called bias is added. This sum is then passed 
through a transfer function (e.g. linear, sigmoid, or hyperbolic tangent) (Catalão et al., 
2009). Figure 4.1 shows the internal structure of a neuron.  

 

Figure 4.1. Structure of a neuron. 

Multilayer  perceptrons  (MLPs)  are  the  best  known and  most  widely  used  kind  of  NN 
(Aggarwal et al., 2009). Perceptrons are arranged in layers with no connections inside a 
layer, and each layer is fully connected to the preceding and following layers without 
loops. The first and last layers are called input and output layers, respectively. Other 
layers are hidden layers. According to Kolmogorov’s theorem, NN can solve a problem 
by using one hidden layer provided that it has a proper number of hidden neurons (Nh) 
(Haykin, 1994).  Figure 4.2 shows the architecture of a generic three-layered feed-
forward  NN  model  that  has  been  most  commonly  used  by  researchers  to  forecast  
electricity prices (Aggarwal, 2009). 
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Figure 4.2. Example of a three-layered feed-forward NN model with a single output unit. 

The procedure for developing NNs is as follows: data preprocessing, definition of the 
architecture and parameters, weight initialization, training until the stopping criterion is 
reached (the number of iterations, the sum of squares of error is lower than a 
predetermined value), finding the network with the minimum forecasting error on a 
validation data set, and forecasting future outcomes. The common NN learning 
algorithm is the backpropagation. It is a steepest descent algorithm minimizing the sum 
of squared errors by adjusting the weights and biases in each NN’s layer.   

Three-layered feed-forward NNs with sigmoid and linear transfer functions in the 
hidden and output layers are implemented within the study. The Levenberg-Marquardt 
(LM) algorithm, which is an advanced optimization algorithm and more efficient than 
the usual backpropogation is mainly used in this study for training NNs. General 
principles of operating the backpropagation and LM algorithms are given in the 
literature (Yan, 2009). 

It should be kept in mind that if there are too few neurons, the network will not be 
flexible  enough  to  model  the  data  well  and,  on  the  other  hand,  if  there  are  too  many  
neurons, the network may overfit the data. Typically, the number of units in the hidden 
layer is chosen by trial and error, selecting a few alternatives, and then running 
simulations to find the one with the best results.  

NNs and ARMA models are often compared with mixed conclusions in terms of 
forecasting capacity. A comparison of the NNs and the ARMA models to forecast 
commodity prices showed that the NN forecasts were more accurate than the ARMA 
forecasts (Kohzadi et al., 1996; Catalão et al., 2007). Methodologies that combine NNs 
and ARMA models have also been proposed to take advantage of the unique strength of 
each model in linear and nonlinear modeling (Tseng et al., 2002; Zhang, 2003; Wu and 
Shahidehpour, 2010). 
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4.2 Hybrid electricity price forecasting model  

As mentioned above, linear- and nonlinear-based models have both achieved successes 
in their own linear or nonlinear domains. However, none of them is a universal model 
that is suitable for all circumstances. Since it is difficult to thoroughly know the 
characteristics of the data in a real problem, a hybrid methodology that has both linear 
and nonlinear modeling capabilities would appear to be a possibly productive strategy 
for practical use.  

Combinations of modern computational intelligence (CI) methods and classical methods 
or several CI methods have been proposed (Liao, 2007; Wu and Shahidehpour, 2010). 
Researchers have compared various adaptive and nonadaptive linear and potentially 
nonlinear models and concluded that the models combining multivariate adaptive linear 
and nonlinear models outperform other models for many variables (Swanson and White, 
1997).  

Moreover, while most of the existing hybrid and nonhybrid approaches to forecast 
electricity prices are reasonably effective for normal range electricity prices, they 
disregard price spike events. The superiority of separate normal price and price spike 
forecasting has been advocated in Section 3.7.  

A hybrid electricity price forecasting model is proposed where the electricity price time 
series  is  analyzed  in  two  parts,  that  is,  normal  behavior  and  spiky  behavior.  The  
proposed hybrid model consists of two modules, which are used, respectively, to predict 
electricity prices within a normal range and price spikes up to one week ahead (Voronin 
et al., 2013a).  

4.2.1 Forecasting strategy 

An ARMA-based model is used to catch the linear relationship between the normal 
range price series and the explanatory variables, a GARCH model is used to unveil the 
heteroscedastic character of residuals, and a NN model is applied to present the 
nonlinear impact of the explanatory variables on electricity prices of normal range and 
to improve predictions obtained from the ARMA-based model. The probability of a 
price spike occurrence and the height of a price spike are produced by two different 
forecasting engines. Then, forecasts of normal range prices and price spikes are 
generated to form an overall price forecast up to one week ahead.  

Two previously mentioned competing approaches to handle trend and seasonality 
presented in price series are considered and implemented to predict prices of normal 
range. In the first approach, the trend and seasonality terms are directly captured by the 
forecasting model (i.e., SARIMA). Another approach to handle trend and seasonality in 
time series is the application of time series decomposition (see Section 3.3.1).  
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The proposed methodology of the hybrid system can be summarized by the following 
step-by-step algorithm, shown also in Figure 4.3: 

1. The original price time series is statistically divided into a normal range price set 
and a spikes set by the method introduced in Section 3.2 applying the specific 
values of n and w. 

2. Both the produced data sets are analyzed and predicted independently through a 
normal range and price spike modules. The corresponding module is activated 
according to an output obtained from the price spike occurrence predictor, based on 
a  Gaussian  Mixture  model  (GMM).  A  GMM  based  on  a  Bayesian  classifier  
approximates the probability density function of electricity prices and classifies the 
given  test  samples  as  nonspike  or  spike.  The  superiority  of  a  GMM over  a  Naïve  
Bayesian classifier is discussed and a mathematical description of a GMM is given 
in Appendix D (see Section D.1).  

3. If the given test sample is classified as a nonspike, the normal range price 
prediction module is activated.   

3.1. Depending on the type of data, that is, raw or decomposed, the SARIMAX or 
ARMAX  model  is  applied  to  forecast  the  normal  range  prices,  and  the  GARCH  
model is used to present the heteroscedastic characteristics of the corresponding 
residuals, resulting in a SARIMAX+GARCH or ARMAX+GARCH model. 

3.2. Three-layered NN is applied to present the nonlinear, nonstationary impact of the 
explanatory variables on electricity prices. The set of inputs for the NN includes 
both historical and forecasted variables produced by ARMA-based models. Such a 
strategy aims to improve the price predictions through a combination of linear and 
nonlinear forecasting techniques.  

4. If the given test sample is classified as a spike, the price spike prediction module is 
activated.   

4.1. The magnitude of a price spike is produced by a K-Nearest Neighbor (KNN) 
model.  A KNN model has been previously applied to predict the magnitude of 
price spikes with promising results (Lu et al., 2005; Zhao et al., 2007a). A 
mathematical description of a KNN model is given in Appendix D (see Section 
D.2).   

5. The final output is the overall electricity price forecast consisting of a normal range 
price and price spike forecasts. Evaluation of the hybrid model is implemented 
separately for normal range prices and price spike modules.  

The model is calibrated and evaluated with the Finnish daily day-ahead energy prices of 
Nord Pool Spot for the period from 1 Jan 2006 to 31 Dec 2009. The use of daily average 
prices to evaluate the forecasting methodology is motivated by the search for the most 
appropriate and simple possible model relating day-ahead electricity price 
characteristics and price spike occurrences to a limited number of exogenous factors. 
The  use  of  average  daily  data  simplifies  the  modeling  of  seasonal  components  of  the  
series, and the influence of important driving factors are more easily captured in terms 
of the available data. Moreover, the use of average daily data significantly reduces the 
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computational costs when a number of different forecasting techniques is tested to select 
the most accurate approach and the set of external variables.  

In the methodology, the whole data are divided into two sets: the training data set and 
the testing data set. Taking into account data resolution, the daily day-ahead electricity 
prices of the three years from 1 Jan 2006 to 31 Dec 2008 are used as the initial training 
data set. The data of one year, from 1 Jan 2009 to 31 Dec 2009, are used as the testing 
data set. The training interval is shifted and the values of the model parameters are re-
estimated in a moving fashion, that is, at each step of forecasting. By using the models 
obtained, the prices are predicted on the testing data set of a length up to seven days. 

 

Figure 4.3. Flowchart of the proposed forecasting methodology. 

4.2.2 Normal price module 

Electricity demand and base generation are united into the nonbase electricity demand 
and used as an exogenous factor in the SARIMAX/ARMAX+GARCH model of the 
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normal price module. Figure 4.4 shows the relationship between the nonbase electricity 
demand and the Finnish daily day-ahead electricity prices over the period from 1 Jan 
2006 to 31 Dec 2009.  

 

Figure 4.4. Finnish daily day-ahead electricity prices and nonbase electricity demand. 

Then, the combined model of the normal price module is implemented on raw or 
decomposed data as SARIMAX+GARCH+NN or ARMAX+GARCH+NN, 
respectively.  The structures of the implemented SARIMAX/ARMAX+GARCH models 
and their respective parameter estimates are reported in Appendix D (see Section D.3).  
When daily day-ahead electricity prices are predicted, the total electricity demand and 
generation (i.e., internal supply) values are forecasted by the SARIMA model (Taylor, 
2006). The values of hydro and nuclear power generation are forecasted by a simple 
random walk model described in Appendix D (see Section D.4). 

The selection of input features fed to the NN is mainly based on past experience in the 
study. Here, along with the forecasted price and demand values, the historical price and 
demand  data  are  applied  as  the  inputs  for  the  NN  to  indicate  the  trend  and  weekly  
periodicity of a given series. Thus, there are six neurons in the input layer of the NN of 
the combined model to predict the price value on a single test day D: a 
SARIMAX+GARCH/ARMAX+GARCH model price prediction on day D; a historical 
price on day D-1; a historical price on day D-7; a historical price on day D-14; a 
nonbase electricity demand on day D, and a nonbase electricity demand on day D-1.  

Besides the proposed combined model, other models implemented to predict normal 
range prices are examined: a random walk model (as a benchmarking model), an 
ARMA/SARIMA+GARCH model, an ARMAX/SARIMAX+GARCH model, and an 
NN (for original and decomposed data). Here, two ARMA-based models without an 
external variable (ARMA/SARIMA+GARCH) are used to check whether the inclusion 



4.2 Hybrid electricity price forecasting model 79

of the nonbase electricity demand in the price forecasting model could result in a 
significant improvement in the forecasting performance. 

4.2.3 Price spike module 

Given n = 3 and w = 90 days, the thus defined price spikes are extracted from the 
original price series, as shown in Figure 4.5. 

Table 4.1 shows the basic distribution parameters for prices and spikes.  It  can be seen 
from  the  number  of  spikes  (Nspike)  that  the  spikes  constitute  less  than  1.5%  of  all  the  
daily prices. However, their magnitude and unexpectedness cause them to have a 
disproportionate significance in the electricity markets. The statistics show that there is 
zero probability of an electricity price spike during weekends and holidays. 

Table 4.1. Basic statistics for normal prices and price spikes over the period 2006-2009. 
 

 Number of 
observations 

Mean Std Skewness Kurtosis Weekday, 
Nspike 

Weekend/ 
Holiday, 

Nspike 
Normal  1436 41.26 13.28 0.55 2.91 — — 
Spikes 25 71.86 41.88 3.26 14.65 25 0 
 

 

Figure 4.5.  a) Original Finnish daily day-ahead electricity prices for the period 1 Jan 2006–31 
Dec 2009; b) extracted price spikes. 
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In an ideal competitive electricity market, price spikes occur only when the demand 
exceeds supply. Most electricity markets, however, are not ideally competitive. 
Therefore, price spikes may take place even when the supply completely covers the 
demand. The set of attributes selected to determine the probability of price spike 
occurrence and its magnitude are given below: 

 SDI. This study uses the composite relationship between electricity price, demand, 
and supply that was proposed in (Lu et al., 2005) and presented as a supply-demand 
balance index (SDI). The SDI on a single day D is defined in Eq. 4.1: 

( ) ( ( ) ( )) / ( ) 100%SDI D Supply D Demand D Demand D  (4.1) 

where Demand(D) is the market demand on day D, and Supply(D) is the electricity 
supply on day D. 

 Nonbase electricity demand. The importance of electricity demand for electricity 
price forecasting was discussed in Section 3.3.2.   
 

 Temperature. Atmospheric temperature is chosen as a main indicator of weather 
extremity in the electricity price spike study. The main electricity consumption 
areas in Finland are the south and central regions (Statistics Finland, 2012), and the 
temperature data for the city of Helsinki are used because the geographical location 
of the city indicates a temperature that is relevant to overall electricity consumption 
in the country. Temperature data forecasted for the city of Helsinki are available on 
the Weather Underground web site (Weather Underground, 2012). 

 
 Elspot capacity-flow difference. Power transfer constraints for electricity come in 

the form of a capacity limit on the transmission lines and the transmission losses, 
which can make it impossible or uneconomical to transfer electricity in certain 
regions (Lucia and Schwarz, 2000).  

Two regimes of the Finnish electricity system are considered. One of the regimes is 
the regular regime; the other, the nonregular regime, is the capacity-limited regime 
and  exists  when  the  difference  between  the  total  Elspot  power  flow  and  the  total  
Elspot capacity to Finland is close to zero. Congestion and thus extreme price 
changes are more likely to occur when the difference between the total Elspot 
power flow and the total Elspot capacity is small.  

The total Elspot power flow and the total Elspot capacity to Finland were calculated 
as a daily sum of the Elspot net exchange and Elspot capacities from Sweden, 
Norway, and Estonia to Finland, respectively. The power flow data and the 
generation and demand data for the Finnish electricity system are provided by 
Fingrid, the company responsible for the high-voltage electricity transmission in 
Finland (Fingrid, 2013b). The Elspot power flow and capacity data for day D-1 are 
published by the TSO and are available on day D-2. Therefore, to forecast the flow 
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and capacity for day D, the flow and capacity data of day D-1 are considered 
known.  The  Elspot  power  flow  data  have  strong  seasonal  patterns,  which  can  be  
captured by SARIMA. The Elspot capacity is rather constant during the whole 
week. 

 Temporal effect. In addition to the physical factors given above, the day status of 
the sample needs to be implemented into the forecasting model (similarly to the 
model presented in Section 3.7). The whole data set was divided into weekdays, 
weekends, and holidays of different yearly seasons. 

The distribution of the prices versus the chosen driving factors is shown in Figure 4.6. 

Note that the factors cannot exactly determine the occurrence of spikes. The Gaussian 
Mixture model predicts spikes by evaluating their occurrence probability. The inputs of 
the model are not necessarily the determinants of spikes.  

 

Figure 4.6. Scatter plots of the prices versus potential price spike driving factors. 

One modification is implemented within the GMM model. The probability of spike 
occurrence is calculated for every input vector and then compared with a predetermined 
threshold  denoted  as  V0. If the probability is larger than the threshold, a spike is 
predicted to occur, regardless of whether this probability is larger than the probability of 
nonspike occurrence. This modification is performed because the price spike prediction 
problem is a serious imbalanced classification problem (i.e., some classes have many 
more samples than other classes) (Zhao et al., 2007a). In fact, the probability of spikes 
is less than the probability of nonspikes on most occasions. Many spikes occur when 
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their occurrence probabilities are smaller than 50%. Without setting a threshold smaller 
than 50%, many spikes will be misclassified. The threshold can be determined by 
historical data. A Bayesian-based classifier considering prior information, that is, prior 
class probability, tends to be less prone to problems regarding sample class imbalance.  

4.2.4 Normal range price forecasting results 

The performance of the proposed combined model applying raw and decomposed data 
is compared with the performance of the previously mentioned seven models predicting 
normal range prices up to one week ahead. Figure 4.7 summarizes the statistical 
measures in terms of AMAPE that characterize the prediction accuracy of the different 
models studied. In addition to Figure 4.7, their MAE, MSE, and AMAPE values 
corresponding to different forecasting horizons are given in Appendix D (see Section 
D.5).  

 

Figure 4.7. AMAPE results plotted against lead time. 

Figure 4.7 shows that the naïve benchmark model (random walk model) was 
substantially outperformed by all the other methods at all lead times. The 
SARIMA+GARCH model implemented on raw data has the poorest performance of the 
other models at all lead times, except for a lead time of one day when it shows a very 
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similar performance to the NNs. The figure, furthermore, shows that the models using 
decomposed data as an input performed better than the analogical models trained on 
original data. For the ARMA-based methods, the decomposing preprocessing technique 
is  more  effective  than  the  direct  entering  of  trend  and  seasonal  terms  into  a  model.  It  
supports the previous findings (see Section 3.7). The NNs built with detrended and 
deseasonalized data can produce significantly more accurate forecasts than with the 
original data. This result suggests that NNs built on raw data are unable to adequately 
learn seasonality and trend; a finding that refers to previous studies on NNs (Nelson et 
al., 1999; Zhang and Qi, 2005). It is unsurprising that the performance of the 
SARIMA+GARCH and ARMA+GARCH models was much improved after the 
inclusion of exogenous factor information, resulting in SARIMAX+GARCH and 
ARMAX+GARCH  models,  respectively.  The  performance  of  the  NNs  relative  to  the  
ARMA-based models was worse, which differs from the work in (Zhang and Qi, 2005). 
A possible explanation could be that the specific characteristics of the initial price time 
series have become more linear after the transformation of hourly data into daily data 
and spikes elimination. Moreover, the forecasted values of prices on day D-1 were used 
as an input to the NNs for the multistep predictions. In a nonlinear model, errors might 
be spread significantly. It must be noted that if a particular NN fails to produce good 
results, this does not indicate that NNs in general are poor predictors because a different 
specification of the NN could have performed better (Taylor, 2006). Problems may arise 
from the difficult tune-up of the NN algorithms, which need validation of the model by 
the number of hidden layers, and the number of neurons in the input and hidden layers 
(Conejo et al., 2005a). Of the remaining models, the combined model applying 
decomposed data performed considerably better than all the other models. Therefore, 
the combined model with decomposed data is used as the normal range price prediction 
module of the hybrid model.  

Figure 4.8 focuses more closely on the AMAPE results for lead times of one and seven 
days for the two best models, that is, ARMAX+GARCH and the combined model with 
decomposed data, against the day of the week. Both techniques have relatively poor 
AMAPE results for Sundays and Mondays. This problem may arise from the model 
algorithm used. The price depends on the time of day and whether it is a weekday or 
weekend. Weekdays and weekends have substantially different characteristics in terms 
of  electricity  price  distribution.  Some  authors  divide  the  whole  data  set  into  weekday  
and weekend data sets to build different models for each data set (Wu and 
Shahidehpour, 2010; Wang and Ramsay, 1998; Gao et al., 2000) whereas others just 
report results for models fitted and evaluated on weekday observations only (Lora et al., 
2002). In this study a division of data into weekdays and weekends was not performed 
when normal range prices were predicted. Therefore, it would seem that all the models 
have been somewhat challenged by being evaluated and tested on data with slightly 
different intraweek seasonal characteristics. In this context, the robustness of the models 
becomes important. 
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Figure 4.8. AMAPE results for the lead time of one and seven days plotted against the day of 
week. 

4.2.5 Price spike forecasting results 

It is important to define reliable measures to assess the performance of the classification 
model when the occurrence of spikes is predicted. Some classification performance 
measures have been proposed in (Lu et al., 2005). A standard performance measure of a 
classification is the estimate of the probability of correct classification: 

_( / ) 100%corr allClassifier accuracy N N  (4.2) 

where Ncorr_all is the number of correctly classified patterns, and N is the total number of 
patterns.  

This measure is robust for many classification problems but not for the problem under 
discussion  here.  Since  the  data  in  the  problem are  extremely  unbalanced,  the  value  of  
the measure will remain high even if all the spikes are misclassified. Thus, other 
classification performance measures, namely, spike prediction accuracy and spike 
prediction confidence, are proposed to solve this problem. 

Spike prediction accuracy is a ratio of the number of correctly classified spikes Ncorr to 
the number of actual spikes Nspikes in terms of percentage: 
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( / ) 100%corr spikesSpike prediction accuracy N N  (4.3) 

This measure was introduced because the ability to correctly predict spike occurrence is 
the subject of greatest concern. 

Spike prediction confidence is another measure that aims to account for the 
uncertainties and risks carried within the forecast. Spike prediction confidence is 
described as 

_( / ) 100%corr as spikesSpike prediction confidence N N  (4.4) 

where Ncorr is the number of correctly classified spikes and Nas_spikes is  the  number  of  
observations classified as spikes. As the classifier may misclassify some nonspikes as 
spikes, this definition is used to assess the percentile in which the classifier makes this 
kind of a mistake. These measures are used within the thesis to estimate the 
classification performance of the price spike forecasting models. 

Actual electricity price spikes and estimated probabilities of the spike occurrence 
obtained from the GMM model for a lead time of one day and seven days are shown in 
Figures 4.9–4.10, respectively. The spike threshold resulting in the best overall 
performance of the model on a validation set is determined as 38%.  

Classifier accuracy, spike prediction accuracy, and spike prediction confidence values 
decline as the forecasting horizon increases. The spike prediction accuracy and spike 
prediction confidence values vary between 60–80% and 50–60% respectively, 
depending on the forecasting horizon (see Table 4.2). Of the five spikes in the testing 
data set, four of them were predicted by the model for a lead time of one day, and three 
of five spikes were predicted for a lead time of seven days. 

Values of the three closest samples were selected to determine the unknown value of a 
price spike by the KNN. Table 4.3 shows that most of the error rates of the price spike 
value forecast are less than 35% for the lead times of one and seven days, with only one 
case close to 70%. The forecast error for this particular day can easily be understood 
given that the actual price is much higher than the historical average price spike. In fact, 
other forecasted price spike values are close enough to the real values to provide useful 
information for practitioners. 

The output values of the spike forecasting model partially indicate the robustness of this 
model because of the small number of spiky observations in the testing data set. The 
model robustness and the stability of the model to changes in the training data may be 
assessed by cross-testing. Here, the aim is to estimate how accurately the predictive 
model would perform in practice. In cross-testing, the original sample is randomly 
portioned into training and testing subsamples of a specific size. This parting process is 
independently repeated T times to yield T portioned data sets, which are treated as 
independent sets. The cross-testing estimates matrix of the model performance measures 
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for the testing data set, denoted *(.) , is merely the mean matrix of the T estimates on 
the individual testing data sets executed by the data parting 

*( )*(.)

1

1 p

p

T
t

tT  
(4.5) 

where *( )pt  is a matrix of the model performance measures for the testing set on the 
portioned sample tp.  

 

Figure 4.9. Actual electricity price spikes for the period 1 Jan 2009–31 Dec 2009 of the Finnish 
day-ahead energy market.  

 

Figure 4.10. Forecasted probability of spikes for a lead time of one day and seven days for the 
period 1 Jan 2009–31 Dec 2009 of the Finnish day-ahead energy market.  
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Table 4.2. Accuracy and confidence of the probability model on the testing data for lead times 
of one and seven days. 

Horizon Classifier accuracy, [%] Spike accuracy, [%] Spike confidence, [%] 
1 98.63  80.00 57.14 
7 98.36 60.00 50.00 

Table 4.3. Comparison between the actual and price spike values forecasted by the KNN on the 
testing data for lead times of one and seven days. 

 
Horizon Spike number Forecasted price, 

[euro/MWh] 
Original price, 
[euro/MWh] 

Forecast 
error, [%] 

1 1 38.11 44.45 14.40 
 2 59.40 79.12 24.92 
 3 51.04 65.30 21.47 
 4 65.20 56.35 15.71 
 5 88.57 251.04 64.71 
    Mean: 28.56 
     

 
7 1 34.16 44.45 23.15 
 2 53.46 79.12 32.43 
 3 48.57 65.30 25.62 
 4 61.34 56.35 8.85 
 5 73.14 251.04 70.86 
    Mean: 31.65 

 
At the cross-testing stage, the robustness of the model is checked on testing data sets of 
a specific size. The whole data set from 1 Jan 2006 to 31 Dec 2009 (see Figure 4.4) is 
randomly divided into training data sets and testing data sets T times. The model is 
fitted by using the training data set, and by using the model obtained, the values are 
predicted seven days ahead on the testing set of specific length. Note, that in this study 
it was opted not to re-specify or re-estimate the model values at each step of forecasting. 
This action gives an opportunity to compare the performance of the model using the 
specific size of the training and testing data sets.  

The  seemingly  not  high  rate  in  the  values  of  the  spike  prediction  accuracy  and  
confidence for the probability model and the relatively high error values for the KNN 
model are mainly due to the very limited number of price spike events in the historical 
data  (1.5%  of  the  whole  sample).  The  values  were  obtained  with  insufficient  data  
containing spikes. Many stochastic events causing spikes could not be considered in the 
model. Tables 4.4 and 4.5 suggest that further training with historical data would 
improve accuracy and confidence of the models. The spike prediction accuracy using 
the proposed probability model is above 50% for the testing data set of seven days, 
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which means that more than 50% of spikes can be predicted. In the light of the fact that 
price spikes are highly stochastic, the achieved forecast accuracy level is sufficient to 
provide market participants with an ability to anticipate price spikes. 

Table 4.4 and Table 4.5 show the results of the performance measures of the GMM and 
KNN for testing data sets of a specific size after T=500 simulations of the cross-testing: 

Table 4.4. Accuracy and confidence of the GMM on randomly selected testing data sets of a 
specific size after T = 500 simulations. 

 Length of a testing data set, [days] 
 365  180  30  7  

Classifier accuracy, [%] 98.53 97.27 96.61 91.64 
Spike prediction accuracy, [%] 41.01 43.45     48.76 57.82 

Spike prediction confidence, [%] 29.24 31.34 36.93 45.46 
 

Table 4.5. Error value of the KNN on randomly selected testing data sets of a specific size after 
T = 500 simulations. 

 
 Length of a testing data set, [days] 
 365  180  30  7  

Error value, [%] 33.75 28.17 22.35  18.23 

4.2.6 Overall price prediction 

Integration of the spike occurrence probability and value forecasting results with the 
normal range price forecasting results obtained from the combined model 
(ARMAX+GARCH+NN) with decomposed data (the best performing normal range 
price model) gives a complete electricity price forecast. The forecasted normal range 
prices, the probability of price spike occurrence, and a complete electricity price 
forecast for a lead time of one day are shown in Figures 4.11–4.13, respectively. 
Obviously, without the spike occurrence and spike value predictors, the performance of 
the normal range price forecasting model deteriorates when spikes occur.  
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Figure 4.11. Forecasted normal range prices for a lead time of one day for the period Jul 2009–
Dec 2009 of the Finnish day-ahead energy market.  

 

Figure 4.12. Forecasted probability of spike occurrence for a lead time of one day for 
the period Jul 2009– Dec 2009 of the Finnish day-ahead energy market.  

 

Figure 4.13. Complete electricity price forecast ((ARMAX+GARCH+NN) + (GMM + KNN)) 
for a lead time of one day for the period Jul 2009–Dec 2009 of the Finnish day-ahead energy 

market. 
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4.2.7 Summary 

Coupling of the normal price range prediction and the price spike prediction provides 
valuable information about the electricity market and gives the market participants an 
ability to manage their risks. Hence, when applied in addition to the normal range price 
forecast, the proposed price spike forecast method can provide practically useful and 
reasonably accurate forecasts, enhancing the applicability of price forecasts in the 
actions of electricity market participants. In the light of the fact that price spikes are 
highly stochastic, the achieved spike forecast accuracy level is acceptable. Further 
training with historical data would improve the accuracy. 

The forecasting principle implying separate normal price and price spike prediction is 
utilized in further study presented in Chapter 6.  
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5 Tuning of the forecasting model parameters 
 

 

 

 

 

 

 

 

 

Most of the previous studies have utilized past experience in selecting parameter 
settings and the input variables for the forecasting model to be applied. However, as 
each market has characteristics of its own, the choice of the corresponding relevant 
factors and model parameters is still an open area of research. A two-step feature 
selection algorithm is introduced in Section 5.1. The search procedure to tune the 
parameter settings and obtain the best inputs for a particular forecasting model is 
proposed and implemented for different forecasting engines in Section 5.2. Section 5.3 
presents a hybrid forecasting method for simultaneous prediction of price and demand 
in the day-ahead energy market.  

5.1 Feature selection 

Feature selection is a process commonly used in forecasting model learning, wherein a 
subset of features available from data is selected for the application of a learning 
algorithm. Among different factors that may have an impact on the prices, the most 
informative ones have to be identified. In previous works (see Chapter 4), past 
experience in the study of different markets was utilized to select input features for a 
forecasting model. These selected inputs were based on daily and weekly periodicity 
and trend of the electricity price signal, and there was no reasonable proof. Obviously, 
this selection method is not efficient because of the complex time-dependent behavior 
of electricity prices and the large number of effective input features. 

A set of factors that affect prices in the Finnish day-ahead energy market can be very 
extensive. Thus, there may be irrelevant and redundant inputs in the set of inputs, which 
can mislead the forecast engine. It is necessary to refine the initial set of potential inputs 
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such  that  a  subset  of  the  most  effective  inputs  is  selected  for  the  forecast  engine  
(Amjady and Keynia, 2010). An analytical method that can select a minimum set of the 
most effective input features for day-ahead price prediction is very valuable. 

To get the subset of the most effective input features, the relevance-redundancy feature 
selection algorithm is used. The ability to filter out redundant information from the set 
of candidate features is the benefit of this procedure versus a simple calculation of a 
relevance value between the target and explanatory variables (Yu and Liu, 2004).   

In the relevance-redundancy feature selection algorithm, SET1 = {x1,x2,…,xk} is 
supposed as a set of candidate inputs. In the first step (i.e., relevance filtration), a 
relevance value between each candidate input xi  SET1 and the target y (continuous or 
binary) is computed as RV(xi,y). If an absolute relevance value between the candidate 
input and the target is greater than a prespecified value V1, this candidate feature is 
retained for further processing; otherwise, it is filtered out 

abs(RV(xi,y))>V1, 1  i  k (5.1) 

In the second step (i.e., redundancy filtration), the set of the retained candidate inputs is 
supposed as SET2  SET1. For any two retained candidate inputs xa, xb  SET2, a 
relevance value between those candidate inputs is computed as RV(xa, xb) and supposed 
as the redundancy measure. If the absolute redundancy measure between any two 
candidate inputs (xa and xb) is smaller than a prespecified value V2, both inputs are 
retained; otherwise, only the input with the largest relevance value with respect to the 
target (RV(xa,y) or RV(xb,y) ) is retained. For instance, if for xa, xb  SET2, 

abs(RV(xa,xb))>V2, 1  a,b  k, a b (5.2) 

The redundancy filtering process is repeated for all candidate inputs of SET2, until no 
redundancy measure becomes greater than V2, then the subset of candidate inputs SET3 

 SET2 that has passed the redundancy filter is finally selected as the optimal inputs by 
the proposed relevance-redundancy feature selection algorithm.  

Several feature selection techniques are applied in the study to calculate a relevance 
value between given variables in the proposed feature selection algorithm. The first 
considered feature selection technique often used for a day-ahead electricity price 
forecasting is a simple linear correlation (Moghram and Rahman, 1989; Rodriguez and 
Anders, 2004; Amjady and Keynia, 2008; Vahidinasab et al., 2008). Linear correlation 
analysis is widely used for the feature selection; however, it is a linear technique and, 
therefore, often cannot consider the nonlinearities of the original price signal.  Thus, to 
validate the weakness of the linear based techniques, sequential feature selection based 
on linear regression is considered as another linear based technique and put among the 
competing feature selection approaches (Rückstieß, 2011). Then, a group of feature 
selection techniques based on nonlinear approaches is considered. These techniques are 
mutual information (MI) criterion, Relief, and KNN (see Appendixes D and E). The 
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above-mentioned feature selection techniques and their combinations are examined to 
find the best approach resulting in the highest accuracy when prices are predicted.    

5.2 Proposed search procedure to tune the model parameters 

As mentioned above, efficiency of a forecasting model is highly dependent on the 
correct setting of its adjustable parameters and selected inputs. The following search 
procedure aims at finding the optimal setting parameters of a forecasting model 
including threshold values (V1 and V2) for the proposed relevance-redundancy feature 
selection algorithm.   

For instance, the proposed search procedure has three main adjustable parameters when 
a three-layered NN is used as a forecasting engine: Nh of  the  NN  and  two  threshold  
parameters V1 and  V2 for the relevance and redundancy filters, respectively. Here, an 
iterative search procedure is carried out, which can automatically adjust the above-
mentioned parameters with a minimum reliance on the heuristics. The procedure is 
outlined below and shown also in Figure 5.1: 

1) Set initial values of Nh, V1 and V2. 
 

2) By the selected inputs, training samples are constructed. The NN is trained and the 
corresponding validation error (e.g. AMAPE) is evaluated and stored. Here, the 
validation set is extracted from the training sample and kept hidden to the model 
during its training period and is being used to examine the model predictability.  

For the sake of having an adequate validation set (accurate representative of a 
forecast horizon), a day before a forecast day is used as a validation set. However, if 
a selected “day before” has a status (nonworking/working day) different from the 
status of a forecasting day, the historically last day having the status same as the 
forecasting day is used as a validation set. This modification is made to distinguish 
the working and nonworking day patterns within a forecasting model. 

3) Each adjustable parameter is varied in turn at a neighborhood around its previously 
selected value, while two remaining parameters are kept constant. A fixed radius of 
neighborhood (e.g. ± 25 % of the previously selected value) is considered in the local 
search.  For instance, if Nh is varied with the unit step and its previously selected 
value is 8, then the NN is trained with Nh = {6,7,8,9,10}. Therefore, for each value of 
the varied parameter in the neighborhood, training of the NN is repeated and 
validation error is evaluated and stored. The value of the varied parameter resulting 
in the least validation error is selected and fixed.  

When only the first cycle of the variation is executed (i.e. all adjustable parameters 
are varied once), this cycle is repeated again. This modification is made to avoid a 
local minimum trap in the search procedure. Therefore, if the procedure misses the 
optimum solution in one cycle, it may find the optimum point in the next cycle.   
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4) If the selected values of Nh, V1, and V2 obtained after two consequent cycles are the 
same, the iterative search procedure is terminated. Otherwise, go back to step 3. 

 

Figure 5.1. Search procedure. 
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5.2.1 Tuning NN parameters 

The proposed search procedure is implemented within a forecasting model to obtain the 
optimal input set and tune the model parameters to predict prices in the Finnish day-
ahead energy market on a single day.  

To take into account the short-run trend and the seasonal patterns (daily and weekly) of 
electricity price time series, historical price data of about one week before a forecast day 
are considered to construct a set of candidate inputs. If the period of the study is 
extended further, the results are not affected seriously, that is, the relation of the current 
price with the price of much more than one week ago is very small (Vahidinasab et al., 
2008). Finally, there is a certain number of candidate inputs for target price at hour h 
(priceh) of the forecasting day: {priceh-1,…, priceh-200}.  

Now, the training period must be selected. If the functional relationships of a signal 
vary slowly with time, a long history of the signal can be considered as the training 
period resulting in a large number of training samples. However, as mentioned in 
Section 3.4.2, the market conditions evolve with time and, hence, the use of a long 
training period for the price forecasting model may result in significant inaccuracies. On 
the other hand, if the training period is selected to be very short, a forecasting model 
cannot derive functional relationships of prices because of the small number of training 
samples. In Section 3.4.2 the period of 60 days has been selected to train the forecasting 
model. The last 50 days have been proposed as the training period for the electricity 
day-ahead price forecasting by other researchers (Conejo et al., 2005a; Conejo et al., 
2005b; Vahidinasab et al., 2008; Shafie-khan, 2011). The training period of 50 days is 
used here to train the NN. Thus, the historical prices of the Finnish day-ahead energy 
market over the period from 8 Sep 2008 to 5 Nov 2008 are used to predict prices on a 
single day, 6 Nov 2008. Validation data set is extracted from the training period as a 
day before the forecasting day, that is, 5 Nov 2008 (see Figure 5.2). 

Linear correlation is used as a relevance measure within the proposed relevance-
redundancy feature selection algorithm. Within the proposed search procedure, the NN 
is applied having a different number of neurons (Nh:{1,2,…,40}) in the hidden layer, 
while the remaining parameters (V1, V2) are kept constant (see Figure 5.3). Here, a wide 
neighborhood range of Nh is used for more clarity. For the neurons numbered from 1 to 
4, the AMAPE for the validation set has the smallest values. For the neurons numbered 
higher than 5, the behavior of the NN is unstable. The proposed number of neurons to 
be used is selected as three.  

Similarly,  the  values  of  V1 and  V2 are  varied  in  turn.  In  Figure  5.4,  the  set  of  V1 is 
{0.40…0.80} and the set of V2 is {0.60…0.95}. The number of neurons is kept 
constant. It can be seen that the best result is given for V1 = 0.61 and V2 = 0.85 when the 
AMAPE on the validation set is equal to 2.45%.  
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Figure 5.2. Training (top), validation, and test (bottom) periods for the NN. 

 

Figure 5.3. Validation error (AMAPE) versus Nh. V1 and V2 are kept constant. 
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Figure 5.4. Validation error (AMAPE) versus V1 and V2. Nh is kept constant. 

For a better illustration of the relevance-redundancy filtering process, its sample results 
are presented in Appendix F (see Figure F.1 and Table F.1-2).  

The finally retained inputs are priceh-1, priceh-3, priceh-24, priceh-26, priceh-48, priceh-72, 
priceh-96, priceh-144, priceh-168, and priceh-192. These retained inputs indicate a short-run 
trend (priceh-1), daily periodicity (priceh-24), and weekly periodicity (priceh-168).  

The original and predicted price curves obtained from the forecasting model are 
presented for a single test day, 6 Nov 2008, of the Finnish day-ahead energy market in 
Figure 5.5. As can be seen, the forecast curve acceptably follows the actual one. The 
corresponding AMAPE is 2.02%. 
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Figure 5.5. Original and predicted prices for a single test day 6 Nov 2008. 

5.2.2 Linear and nonlinear feature selection techniques 

The forecasting performance of different forecasting engines applying different feature 
selection techniques is examined in this section. Four test weeks corresponding to the 
four seasons of the years 2009–2010 from the Finnish day-ahead energy market are 
considered.  The four weeks, 15 Feb to 21 Feb, 15 May to 21 May, 15 Aug to 21 Aug, 
15 Nov to 21 Nov (months 2, 5, 8 and 11), are approximately in the middle week of 
each season. Therefore, in the context of this study, it is assumed that these week results 
are reasonably accurate for a study spanning one whole year. This way, representative 
results for the whole certain year are provided (Conejo et al., 2005b; Catalão et al., 
2007; Amjady and Keynia, 2008; Vahidinasab et al., 2008; Shafie-khah et al., 2011). 
Three different forecast engines merged with five feature selection techniques and their 
combinations are examined. The selected forecasting engines are three-layered NN, 
Relevance Vector Machine (RVM), and Random Forest (RF) regression (see Appendix 
G, Section G.1 and G.2). These engines are chosen because they have been previously 
used in several other applications with promising results (Zhang and Qi, 2005; Catalão 
et al., 2007; Nelson et al., 1999; Meng et al., 2009; Niu et al., 2009; Mori and Awata, 
2007; Breiman, 1984). For the sake of a fair comparison, historical price data up to 200 
hours before a forecast hour are considered to construct a set of candidate inputs, and 
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the last 50 days before a forecasting day are used as a training period for each 
forecasting engine. 

Heuristic method is among the examined feature selection techniques. It implies 
selection of specific inputs for a forecasting engine with a criterion based on past 
experience in the study (Contreras et al., 2003; Nogales, 2002). In this case, previous 
price values indicating trend (lags 1–2), daily (lags 24, 48, 72), and weekly seasonality 
(lag 168) are directly passed to a forecasting engine. 

AMAPE values of the NN model producing price forecasts for the years 2009–2010 are 
presented in Tables 5.1–5.2. The respective AMAPE values for the RVM and RF are 
given in Appendix G (see Section G.3). 

The following observations can be seen from Tables 5.1–5.2: 

 The feature selection techniques consisting of both relevance and redundancy filters 
outperform the feature selection techniques having only a relevance filter for all the 
considered forecasting engines. 

 The models applying nonlinear feature selection techniques (i.e. MI, Relief, KNN) 
perform better than the models merged with linear feature selection techniques (i.e. 
linear correlation, sequential feature selection based linear regression) when the 
prices of the year 2010 are predicted. The performance of these models is close 
enough for the price data of the year 2009, since the price series of the year 2009 
has a relatively lower volatility with respect to the prices of the year 2010. 
Therefore, the superiority of the feature selection based on a nonlinear technique 
becomes obvious when it is implemented on a highly volatile data, and an ability to 
capture the nonlinear behavior of given prices is required.  

 The heuristic approach indicates the worst performance among the examined 
feature selection techniques. 

The above-mentioned statements are justified for the RVM and RF forecasting engines 
(see Appendix G, Section G.3). 

Historical electricity demand data (up to 200 hours before a forecast hour) are put into a 
set of candidate inputs and fed to the feature selection engine of the NN to model and 
predict the price data of the four weeks. Inclusion of historical electricity demand data 
in a set of candidate inputs results in a significant improvement in the forecasting 
performance of the NN (see Tables 5.3–5.4).  
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Table 5.1. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2009 produced by the NN employing different feature selection techniques. 
Input data: historical prices. 

 Feature selection technique 
Test week Linear 

Corr./ — 
Relief/            

— 
MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 5.63 5.12 5.42 5.85 5.72 
Summer 10.65 11.04 10.34 10.61 11.75 
Spring 6.10 5.57 6.05 5.57 8.68 
Winter 6.81 7.06 6.45 6.94 7.69 

Average 7.30 7.19 7.07 7.24 8.46 
 Linear 

Corr./ 
Linear Corr. 

MI/            
MI 

Relief/            
Linear 
Corr. 

Relief/            
MI 

Heuristic 

Fall 4.75 4.90 4.63 4.63 5.59 
Summer 9.43 9.11 10.55 10.42 10.86 
Spring 5.45 5.57 5.73 5.08 8.34 
Winter 4.70 4.83 5.19 5.10 7.30 

Average 6.08 6.10 6.52 6.30 8.02 
 
Table 5.2. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2010 produced by the NN employing different feature selection techniques. 
Input data: historical prices. 
 
 Feature selection technique 
Test week Linear 

Corr./ — 
Relief/            

— 
MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 3.33 3.68 3.28 2.91 6.16 
Summer 6.53 5.97 6.31 5.48 5.49 
Spring 9.01 8.88 8.73 8.47 7.67 
Winter 21.74 18.72 17.96 19.88 19.81 

Average 10.15 9.31 9.07 9.19 9.78 
 Linear Corr. 

/ Linear 
Corr. 

MI/            
MI 

Relief/            
Linear 
Corr. 

Relief/            
MI 

Heuristic 

Fall 2.42 3.01 3.37 2.92 5.18 
Summer 5.51 4.64 5.32 5.35 7.73 
Spring 8.13 7.59 6.99 7.89 8.86 
Winter 15.32 14.54 17.87 15.22 21.54 

Average 7.85 7.45 8.38 7.65 10.83 
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Table 5.3. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2009 produced by the NN employing different feature selection techniques. 
Input data: historical prices and demand. 

 Feature selection technique 
Test week Linear 

Corr./ — 
Relief/            

— 
MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 5.43 5.16 5.25 5.63 5.46 
Summer 9.99 10.47 9.67 10.03 10.93 
Spring 5.64 7.68 5.79 6.05 6.15 
Winter 6.05 4.60 6.24 5.23 4.88 

Average 6.78 6.98 6.74 6.74 7.11 
 Linear 

Corr./ 
Linear Corr. 

MI/            
MI 

Relief /            
Linear 
Corr. 

Relief/            
MI 

Heuristic 

Fall 4.64 4.52 4.98 4.65 5.51 
Summer 9.58 9.69 10.02 9.79 10.48 
Spring 5.31 5.30 6.14 5.98 7.37 
Winter 4.58 5.01 4.98 5.01 5.99 

Average 6.03 6.13 6.53 6.33 7.34 
 

Table 5.4. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2010 produced by the NN employing different feature selection techniques. 
Input data: historical prices and demand. 
 

 Feature selection technique 
Test week Linear 

Corr./ — 
Relief/            

— 
MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 3.36 3.30 3.03 3.79 3.44 
Summer 6.53 5.98 5.29 5.60 5.81 
Spring 6.77 6.35 6.84 7.01 10.57 
Winter 20.21 17.31 15.77 16.05 16.84 

Average 9.22 8.24 7.73 8.12 9.17 
 Linear 

Corr./ 
Linear Corr. 

MI/            
MI 

Relief /            
Linear 
Corr. 

Relief/            
MI 

Heuristic 

Fall 2.77 2.34 3.01 2.58 3.09 
Summer 5.15 3.25 4.09 3.47 6.27 
Spring 6.47 6.20 7.66 6.40 8.37 
Winter 15.54 13.57 15.10 14.55 22.38 

Average 7.48 6.34 7.47 6.75 10.03 
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5.3 Simultaneous forecasting electricity prices and demand 

It  is  very  useful  for  a  market  participant  to  be  able  to  predict  electricity  demand  and  
prices simultaneously because demand and prices are intertwined activities in electricity 
markets (Aggarwal, 2009). In many studies, it is assumed that actual values of 
electricity demand are known when day-ahead electricity prices are forecasted (Wu and 
Shahidehpour, 2010; Amjady and Keynia, 2008; Nogales et al., 2002), and therefore, 
the effect on the price forecast accuracy of uncertainty in the demand forecast has been 
ignored.   

In the experiments given in Section 5.2.2, actual values of electricity demand were used 
to forecast day-ahead electricity prices. However, such a strategy is not suitable for a 
real-life problem as realized electricity demand values are not known for a day-ahead 
market at the moment when the prices are predicted. Some authors have used the 
projected demand of TSO of the concerned electricity market as an input variable, while 
a few have predicted the demand first and then used it as an input variable for the price-
forecasting model (Georgolakis, 2006; Mandal et al., 2006).  

In deregulated markets, the system demand may be significantly affected by electricity 
prices when consumers are encouraged to use less energy during peak hours. In other 
words,  variability  in  the  electricity  price  can  influence  the  energy-use  patterns  of  the  
consumers.  As  mentioned  above,  actual  values  of  electricity  demand were  used  when 
day-ahead prices were predicted. Moreover, the same assumption was used for 
electricity demand forecasting, when the electricity demand was dependent on actual 
values of prices rather than their predicted values (Yun et al., 2008; Niu et al., 2009).  

The methodology presented in this section uses a hybrid wavelet transform combined 
with  SARIMA  and  a  three-layered  NN  to  implement  simultaneous  demand  and  price  
forecasting processes in the day-ahead energy market. The proposed methodology is 
better adapted to actual conditions of an energy market since the forecast features for 
price and demand are not assumed known values but are predicted by the model, thus 
accounting for the interactions of the demand and price forecast processes (Voronin and 
Partanen, 2013b). The forecasting performance evaluation applied actual hourly data of 
the four weeks in the Finnish day-ahead energy market of the year 2009, corresponding 
to four seasons, as in the previous section.  

5.3.1 Wavelet transform 

When using classical statistical techniques, a stationary process is assumed for the data. 
For electricity demand and price time series, the assumption of stationarity usually has 
to  be  rejected.  One  of  the  ways  to  capture  localized  trending  in  the  series  is  to  apply  
models with time-varying parameters (Granger, 2008). Another way to deal with 
nonstationarity is the use of mathematical transformations of an initial series. In many 
cases, information that cannot be readily seen in the time domain can be obtained in the 
frequency domain. Fourier transform (FT) is probably the most popular transform and is 
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used in many different areas, including many branches of engineering. However, no 
time information is available in the Fourier transformed signal, in other words, it is not 
clear where the time specific spectral components appear. The short-time Fourier 
transform (STFT) gives time information by dividing the signal into small enough 
segments so that these segments of the signal can be assumed to be stationary. For this 
purpose, a window function is chosen. The width of this window must be equal to the 
segment of the signal where its stationarity is valid. Depending on the window length, 
STFT gives a poor time resolution and a good frequency resolution, or vice versa. The 
wavelet transform (WT) was developed as an alternative approach to STFT to overcome 
the resolution problem (Olkkonen, 2011). Implicitly, wavelets have a window that 
automatically adapts itself to give an appropriate resolution. The basic concept in the 
wavelet analysis begins with the selection of a proper wavelet (mother wavelet) and an 
analysis of its translated and dilated versions (Galli, 1996).  A wavelet can be defined as 
a function (h) with a zero mean.        

( ) 0h dh  
(5.3) 

A signal can be decomposed into many series of wavelets:    
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where the scale parameter a* controls  the  spread  (dilation)  of  the  wavelet  and  the  
translation factor b* determines its central position. Thus, the continuous WT wa*,b* of 
the signal f(h) with respect to a wavelet a*,b* is given by: 
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(5.5) 

A wa,b coefficient represents how well the original signal  f(h) and the scaled/translated 
mother wavelet match. Since the continuous WT is achieved by continuously scaling 
and translating the mother wavelet, substantial redundant information is generated. 
Therefore, instead of doing that, the mother wavelet can be scaled and translated using 
certain scales and positions usually based on powers of two (Conejo et al., 2005b; Reis 
and Alves, 2005). This scheme is more efficient and as accurate as the continuous WT. 
It is known as the discrete WT: 
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where H is the length of the signal f. The scaling and translation parameters are 
functions of the integer variables l and m (a=2l and b  =  m·2l), h is the discrete time 
index, and wl,m is the decomposition coefficient corresponding to l and m.   

An efficient algorithm to implement the discrete WT using filters has been developed in 
(Mallat, 1989). Multiresolution via Mallat’s algorithm is a procedure to obtain 
approximations (e.g. A1) and details (e.g. D1) from a given signal f. In the 
reconstruction stage, these components can be assembled back into the original signal f’ 
(see Figure 5.6). 

 

Figure 5.6. Multilevel decomposition (top) and reconstruction (bottom) processes. 

Multilevel wavelet decomposition is applied to data preprocessing and considered as an 
alternative to the previously used time series decomposition technique (see Section 
3.3.1). Depending on the selected resolution level, the time series signal is decomposed 
into  a  set  of  wavelet  domain  components.  This  set  of  components  presents  a  better  
behavior  (more  stable  variance  and  no  outliers)  than  the  original  price  series.  Unlike  
classical time series decomposition, where deterministic patterns are projected to the 
future and used as forecasted values, the obtained wavelet components are more 
accurately predicted by the corresponding model.   

Hereafter, a Daubechies wavelet of order 5 is used as the mother wavelet to transform 
the price and demand series into several wavelet subseries. This wavelet offers an 
appropriate trade-off between wavelength and smoothness, resulting in an appropriate 
behavior for the price and demand forecast. Similar wavelets have been considered in 
previous studies (Conejo et al., 2005b; Tan et al., 2010).Three decomposition levels are 
considered, since this describes the price series in a more thorough and meaningful way 
(Conejo,  et  al.,  2005b).  Thus,  each  of  the  original  price  and  demand  series  is  
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decomposed and reconstructed into one approximation subseries (general trend 
component) and three detail subseries (high-frequency components).   

5.3.2 Forecasting time framework 

The time framework to simultaneously forecast electricity prices and demand in the 
day-ahead energy market of Nord Pool Spot is illustrated in Figure 5.7 and explained 
below. As mentioned above, the market day-ahead electricity price forecast for day D is 
required on day D-1. Actual day-ahead price data up to 24 hours of day D-1 are 
published by the TSO and available on day D-2. However, actual demand data for day 
D-1 are not available on day D-2.   

 

Figure 5.7. Time framework to forecast market prices and demand in the Finnish day-ahead 
energy market. 

Therefore, when bidding for day D (hour 12 of day D-1), day-ahead price data up to 
hour 24 of day D-1 are considered known while demand data are available only up to 
hour 12 of day D-1. As a result, the actual forecasts of market day-ahead prices and 
demand for day D can take place between the clearing hour for day D-1 of day D-2 and 
the bidding hour for day D of day D-1. At least a 36 hours ahead (12 hours of day D-1 
plus 24 hours of day D) demand forecast is required to predict prices 24 hours ahead 
when bidding for day D.  

5.3.3 Forecasting strategy 

WT deals with nonstationarity by decomposing the price and demand series into less 
volatile components. A linear SARIMA and a three-layered NN are combined to 
capture different aspects of the underlying linear and nonlinear patterns of the wavelet 
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subseries. The SARIMA model incorporates the cyclicality of the series, which clearly 
exhibits hourly and weekly patterns and produces initial day-ahead forecasts for all 
wavelet subseries of demand and prices. The proposed relevance-redundancy feature 
selection algorithm is performed for the feature selection of each wavelet subseries. The 
NN uses the selected inputs to forecast the demand and prices of the next hours.  

The proposed simultaneous forecast strategy can be summarized by the following step-
by-step algorithm, shown also in Figure 5.8: 

1) Electricity price and demand series are decomposed by WT into approximation 
subseries (A3) and three detail subseries (D3, D2, D1). 

2) WT+SARIMA  models  are  built  to  forecast  the  future  values  of  the  price  and  
demand wavelet subseries.  

3) The set of candidate inputs for each subseries is constructed, including lagged and 
predicted features of both the wavelet and time domains. Although the wavelet 
components are obtained by the decomposition of the price and demand signals, the 
past  values  of  the  original  price  and  demand  series  are  considered  among  the  
candidate inputs of each wavelet component, since it is still possible that some 
characteristics of the price and demand signals are better highlighted in the original 
time domain (Amjady, 2008). Taking into account the short-run trend, and daily 
and  weekly  periodicity  of  the  electricity  and  demand  time  series,  their  lagged  
values up to about one week are considered among the candidate inputs. Finally, 
the candidate inputs for each subseries of demand and price include lagged values 
of these subseries, original price or demand lagged up to 200 hours before a 
forecast hour, and price and demand values of these subseries forecasted by the 
WT+SARIMA  model.   For  the  sake  of  clarity,  prices  and  demand  wavelet  
components predicted by the WT+SARIMA model are additionally indexed as 
“SARIMA”. For instance, the approximation price wavelet component value 
predicted by the WT+SARIMA at hour h is denoted A3SARIMA_price,h. There are the 
602 candidate inputs to predict the approximation price wavelet subseries at hour h 
(A3price,h):{A3SARIMA_price,h, A3price,h-1,…, A3price,h-200, priceh-1,…, priceh-200, 
A3SARIMA_demand,h , A3demand,h-1,…, A3demand,h-200}. 

4) An iterative search procedure introduced in Section 5.2 is carried out. The 
procedure automatically adjusts V1 and  V2 of the relevance-redundancy feature 
selection algorithm and Nh of the NNs for each subseries in order to minimize the 
forecasting error on a validation data set. 

5) Given adjusted V1 and V2 values, the inputs are selected. With the selected Nh, the 
NNs are trained by their respective training samples and separately predict the price 
and demand subseries of the next hours. 

In multistep ahead prediction, the predicted price and demand values of the current step 
are used to determine their values in the next step up to hour 24 of the forecasting day.   
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Figure 5.8. Flowchart of the proposed forecasting methodology. 

5.3.4 Training phase 

To commence the training phase of the proposed forecast strategy, the training periods 
of the WT+SARIMA and NN models are first determined. Intervals of 50 days (1200 h) 
for  both  WT+SARIMA  and  NN  are  considered  resulting  in  two  consequent  equal  
training periods.   

First, a day denoted by D is considered in the training period of the NN (second training 
interval) and the values of price wavelet subseries for this day are assumed unknown. In 
the case of demand forecasting, the values of the demand wavelet subseries for day D 
plus 12 after bidding hours of day D-1 are assumed unknown. The WT+SARIMA 
models are trained by the historical data of the 50 days preceding hour 1 of day D or 
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bidding hour of day D-1 and predict hourly price and demand subseries of day D, 
respectively. To improve the performance of the WT+SARIMA forecast process for 
each day of the second training period (D = 1,…,50), the WT+SARIMA models are 
trained  in a moving fashion, that is, by the immediately previous 50-day period. This 
process is repeated until price and demand subseries forecasts of the WT+SARIMA 
models are obtained for all  days of the training period of the NN model.  The selected 
samples of the validation period (i.e., the 24 hours before the forecast day for the price 
forecasting and the 36 hours before the forecast horizon of the demand forecasting) are 
removed from the training set of the NN model. Then, the NN model is trained by the 
remaining selected samples, and the hourly demand and price values of the forecast day 
are predicted.  

The plots of price, demand, and their wavelet components A3, D3, D2, and D1 in one of 
the four time intervals used in the study are shown in Figs. 5.9–5.11, respectively. 

 

Figure 5.9. Plot of price (top) and demand (bottom) for the Finnish day-ahead energy market of 
the year 2009. 

For each day-ahead forecast over the test week, the overall time interval consists of a 
forecast day, the first training period for the WT+SARIMA, and the second training 
period (with a validation interval) for the NN (see Figures 5.10–5.11).  
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Figure 5.10. Plot of the price components A3, D3, D2, and D1 for the first forecast day of the 
fall test week (from 15 Nov to 21 Nov 2009). 

 

Figure 5.11. Plot of the demand wavelet components A3, D3, D2, and D1 for the first forecast 
day of the fall test week (from 15 Nov to 21 Nov 2009). 
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5.3.5 Numerical results 

The results obtained of the relevance-redundancy linear correlation based feature 
selection algorithm for price and demand forecasting for the first fall test day, that is, 15 
Nov 2009 are presented in Tables 5.5–5.6. The values selected for Nh,  V1,  and  V2 of 
each wavelet component for the first day of the fall test week are shown in the second, 
third, and fourth columns of Tables 5.5–5.6. From the obtained results, the forecast 
features (for both price and demand) produced by the WT+SARIMA model are always 
among the selected features for the A3 and D3 subseries of price and demand. For the 
approximation components of price and demand, inputs indicating the effect of short-
run trend (A3price,h-1, A3demand,h-1), daily periodicity (A3price,h-25, A3demand,h-23), and weekly 
periodicity (A3price,h-167, A3demand,h-167, priceh-169, demandh-167) can also be seen from the 
obtained results.  

Table 5.5–5.6 also show that the dependency of the price and demand wavelet 
components on the exogenous variables decreases from A3 to D1.  

Table 5.5. Inputs selected by the two-step feature selection analysis for the four wavelet price 
components (the first day of the fall test week). 

Variable Nh V1 V2 Selected candidates 
A3price,h 6 0.63 0.83 A3SARIMA_price,h, A3SARIMA_demand,h, A3price,h-1, 

A3price,h-2, A3price,h-6, A3price,h-21, A3price,h-25, 
A3price,h-165, A3price,h-167,  A3price,h-169, A3price,h-

170, A3demand,h-4, A3demand,h-22, A3demand,h-142, 
A3demand,h-146, A3demand,h-167, A3demand,h-170, 
A3demand,h-172, A3demand,h-194, priceh-169, priceh-170 

D3price,h 9 0.59 0.84 D3SARIMA_price,h, D3SARIMA_demand,h, D3price,h-1, 
D3price,h-23, D3price,h-144, D3price,h-167, D3price,h-168, 
D3price,h-169, D3price,h-192, D3demand,h-144, 
D3demand,h-169 

D2price,h 5 0.47 0.75 D2SARIMA_price,h, D2price,h-1, D2price,h-144, D2price,h-

168, D2price,h-192 
D1price,h 11 0.16 0.85 D1SARIMA_price,h, D1price,h-3, D1price,h-24, D1price,h-

48, D1price,h-72, D1price,h-96, D1price,h-120 
 
The results obtained of the relevance-redundancy correlation based feature selection for 
the approximation subseries of price and demand for the first day of the fall test week, 
that is, 15 Nov 2009 can be found in Appendix H (see Section H.1). 
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Table 5.6. Inputs selected by the two-step feature selection analysis for the four wavelet demand 
components (the first day of the fall test week). 

Variable Nh V1 V2 Selected candidates 
A3demand,h 11 0.53 0.63 A3SARIMA_demand,h, A3SARIMA_price,h, A3demand, h-1, 

A3demand,h-3, A3demand,h-4, A3demand,h-20, A3demand,h-

48, A3demand,h-94, A3demand,h-140, A3demand,h-167, 
A3price,h-1, A3price,h-3, A3price,h-142, A3price,h-144, 
A3price,h-145, A3price,h-167, demandh-146,       
demandh-163, demandh-167 

D3demand,h 9 0.56 0.70 D3SARIMA_demand,h, D3SARIMA_price,h, D3demand,h-13, 
D3demand,h-37, D3demand,h-71, D3demand,h-97, 
D3demand,h-108, D3demand,h-121, D3demand,h-168, 
D3price,h-23, D3price,h-47, D3price,h-71, D3price,h-156, 
D3price,h-179  

D2demand,h 9 0.71 0.80 D2SARIMA_demand,h, D2 demand,h-36, D2 demand,h-48, D2 

demand,h-120, D2 demand,h-156, D2 demand,h-180 
D1demand,h 5 0.68 0.80 D1SARIMA_demand,h, D1demand,h-1, D1demand,h-24 

 
In order to illustrate graphically the accuracy of the price and demand forecasts of the 
proposed strategy, the forecasts and actual signals for the four test weeks of the Finnish 
day-ahead energy market of the year 2009 are shown in Figures 5.12–5.15. As can be 
seen, the forecast curves acceptably follow the actual curves of both prices and demand 
for all the four test weeks. 

 

Figure 5.12. Original and predicted price (left) and demand (right) curves for the fall test 
week of the Finnish day-ahead energy market of the year 2009. 
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Figure 5.13. Original and predicted price (left) and demand (right) curves for the winter test 
week of the Finnish day-ahead energy market of the year 2009. 

 

Figure 5.14. Original and predicted price (left) and demand (right) curves for the spring test 
week of the Finnish day-ahead energy market of the year 2009. 

Figure 5.15. Original and predicted price (left) and demand (right) curves for the summer test 
week of the Finnish day-ahead energy market of the year 2009. 
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Only a few studies have considered price and demand forecasting in the Finnish day-
ahead energy market, and it was not possible to find price and demand forecast methods 
considering the above-mentioned four test weeks in the literature. Therefore, the 
proposed method is compared with some of the most recent price and demand forecast 
techniques applied to case studies of energy markets of other countries: SARIMA 
(Taylor, 2006; Contreras et al., 2003; Nogales et al., 2002), WT+SARIMA (Conejo et 
al., 2005b; Tan, 2010), NNs with different training algorithms (Taylor, 2006, 
Bhattacharyya  and Thanh, 2003; Cavallaro, 2005; Nasr et al., 2001; Mandal et al., 
2007;  Szkuta, 1999; He and Bo, 2009), and WT+NN (Shafie-khah , 2011, Chen et 
al.,2010).  

AMAPE values of the proposed method and five other forecast techniques for the four 
weeks corresponding to the four seasons of the year 2009 in the Finnish day-ahead 
energy market are presented in Table 5.7. Particle Swarm Optimization (PSO) is 
another learning algorithm for NNs. As can be seen from the tables, the NN(PSO) 
model results are close to those of NN(LM). A detailed mathematical description of the 
algorithm to train the NN by the PSO method can be found in (He and Bo, 2009). In the 
WT+NN(LM) model, WT is used to decompose the price and demand series into less 
volatile components; separate NNs with the LM learning algorithm are applied for each 
component.  For  a  fair  comparison,  NN(LM),  NN(PSO),  and  WT+NN(LM)  have  a  
feature selection analysis based on the proposed two-step feature selection. The target 
variables of the feature selection technique for the NN(LM) and the NN(PSO) models 
are the original price and demand signals, respectively, while the feature selection 
technique is executed for each wavelet component in the WT+NN(LM) model and in 
the proposed method. It also should be noted that in the set of candidate inputs of the 
alternative models examined, no variables are predicted beforehand by the models.  

Table 5.7. AMAPE in percent (%) for the price/demand forecast of the four test weeks of the 
Finnish day-ahead energy market in the year 2009. 

Test 
week 

SARIMA WT+ 
SARIMA 

NN(LM)  NN(PSO) WT+ NN 
(LM) 

Proposed 
method 

Winter 5.19/1.60 4.27/1.55 4.70/2.45 5.25/3.09 5.16/1.81 3.93/1.19 
Spring 5.76/3.34 4.69/2.31 5.45/2.57 6.01/3.35 4.85/2.36 4.17/1.98 

Summer 13.08/2.08 7.49/1.65 9.43/3.42 11.05/3.99 9.13/2.22 6.81/1.89 
Fall 5.83/1.93 3.28/1.76 4.75/3.29 5.87/3.97 4.30/2.14 3.01/2.09 

Aver. 7.47/2.24 4.93/1.82 6.08/2.93 7.05/3.60 5.86/2.13 4.48/1.79 
 

As  seen  from  Table  5.7,  on  the  basis  of  the  AMAPE  values,  the  proposed  strategy  
outperforms the other examined methods in all four test weeks. Table 5.7 shows that for 
the demand forecast, the WT+SARIMA model has lower AMAPE values than the 
proposed strategy in the summer and fall test weeks. However, the average of the 
AMAPE values of the proposed strategy is lower than that of all other techniques 
(indicated in the last row of Table 5.7). The accuracy improvement of the proposed 
method for price prediction with respect to SARIMA, WT+SARIMA, NN(LM), 



               Tuning of the forecasting model parameters 114

NN(PSO), and WT+NN(LM) in terms of average AMAPE is 40.03% (1-4.48/7.47),  
9.13% (1-4.48/4.93), 26.32% (1-4.48/6.08), 36.45% (1-4.48/7.05), and 23.55% (1-
4.48/5.86), respectively. The corresponding improvement in the average AMAPEs for 
demand forecasting is 20.09% (1-1.79/2.24), 1.65% (1-1.79/1.82), 38.91% (1-
1.79/2.93), 50.27% (1-1.79/3.60), and 15.96% (1-1.79/2.13).  

From the results presented in Table 5.7, it can be seen that the use of WT decomposition 
results in an improvement in the model accuracy. These improvements for SARIMA in 
comparison with WT+SARIMA in terms of average AMAPE are 34.00% (1-4.93/7.47) 
and 18.75% (1-1.82/2.24) for the price and demand forecasts, respectively. For 
NN(LM) in comparison with WT+NN(LM) these values are 3.62% (1-5.86/6.08) and 
27.30% (1-2.13/2.93) for price and demand forecasts, respectively.  

The results for both price and demand forecasts also confirm the efficiency of the hybrid 
methodology with linear and nonlinear modeling capabilities. Furthermore, it should be 
noted that the results given in Table 5.7 show that the performance of models based 
only on a nonlinear framework was worse compared with the ARMA-based models. A 
possible explanation could be that the certain characteristics of the initial demand time 
are more linear than those of the price time series.  

To demonstrate the efficiency of the proposed methodology over a longer period, a 
detailed representation of the performance of the price and demand forecast strategy for 
all the weeks of 2009 is shown in Appendix H (see Section H.2). 

The running time required for the setup of the proposed simultaneous price and demand 
forecasting strategy including the training and prediction phases of WT+SARIMA to 
forecast price and demand for each day of the second training interval (50 days), the 
relevance-redundancy feature selection processes,  the tuning of the adjustable model 
parameters, the training of the NNs, and the generation of price and demand forecasts 
for the first forecasting day is about 11 h 40 min on the personal computer with an Intel 
Core i5 2.40 GHz processor and 3.24 GB RAM. For the next forecast days, the total 
computation time for the training of the proposed strategy and the generation of price 
and demand forecasts 24 and 36 hours ahead, respectively, is about one hour since the 
price and demand predictions generated by WT+SARIMA become available. Therefore, 
the running time of the proposed strategy is considered sensible (except for the first 
forecast day) for day-ahead energy market operation. The overall average running times 
for SARIMA, WT+SARIMA, NN(LM), NN(PSO), WT+NN(LM) to generate a price or 
demand prediction for the forecast day are about 3 min, 7 min, 8 min, 10 min, and 23 
min measured on the same hardware. All computer codes are provided by the 
MATLAB and R software packages. As can be seen, the running time to set up the 
competitive methods is lower than the setup of the proposed strategy. However, the 
prediction accuracy is a crucial concern for a forecasting method (as far as the 
computation time is reasonable). 
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5.3.6 Summary 

The methodology consisting of SARIMA and NN frameworks is able to explain 
intermittent high volatility in prices by incorporating the effect of demand pressure. 
Moreover, frequency components obtained by WT are separately predicted. Such a 
strategy was supposed to improve an overall forecasting performance and, in particular, 
spikes in the series since there is a high correlation between price spikes and high-
frequency wavelet components of the price signal spectrum. The proposed methodology 
generally outperforms other alternative forecasting methods because of its ability to 
capture different essential features of the given time series and incorporate interactions 
between demand and price forecasting processes being better adapted to the actual 
conditions of the energy market.  

The methodology can produce acceptable results over a longer period of a calendar 
year. However, the methodology that typically predicts normal price behavior fairly 
well does not capture anomalous behavior (when prices increase rapidly and 
unexpectedly) to the full. The drawback of the proposed methodology can be clearly 
observed in Figures 5.13 and 5.15, and additionally, in Figure 5.16 where the predicted 
and actual prices of the selected weeks of the year 2009 are presented.   

Figure 5.16. Original and predicted prices of week 32 (left) and week 49 (right) of the Finnish 
day-ahead energy market of the year 2009. 

In the light of the findings obtained in Chapters 4–5, an approach separately predicting 
normal price behavior and price spikes becomes more preferable because of its main 
ability to use different forecasting engines (for normal prices and price spikes). Such a 
strategy provides an opportunity to train forecasting models more effectively while the 
nonseparate methodology should learn the behavior of both normal prices and price 
spikes. A forecasting methodology for separate treatment of hourly normal prices and 
price spikes in the day-ahead energy market is extended in the further study. 
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6 Iterative day-ahead price prediction with separate 
normal range price and price spike forecasting 
frameworks  

 

 

 

 

 

 

 

 

 

This chapter introduces the day-ahead electricity price forecasting methodology based 
on an iterative strategy implemented as a combination of two modules separately 
applied to normal price and price spike prediction. The methodology is intended to 
capture all essential features of electricity price series, and it produces forecasts of not 
only normal range prices of high accuracy but of also price spikes. The methodology is 
built on the findings made within the study and implemented as a combination of 
different forecasting techniques.   

6.1 Description of the forecasting methodology 

Similarly to the hybrid model presented in Section 4.2, the new proposed methodology 
consists of two modules to separately predict normal range prices and price spikes. The 
normal price module is a mixture of WT, linear SARIMA and nonlinear NN. In the 
price spike module, the probability of a price spike occurrence is produced by a 
compound classifier in which three single classification techniques are used jointly to 
make a decision. Combined with the spike value prediction technique (KNN model), the 
output from the price spike module aims at providing a comprehensive price spike 
forecast. The best inputs and optimal parameter settings for forecasting engines of both 
modules are chosen by the proposed relevance-redundancy feature selection algorithm 
and the search procedure.  The overall electricity price forecast is formed as combined 
normal price and spike forecasts.  
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6.2 Electricity price spike extraction 

Given n = 3 and w = 6 months (4380 hours), the thus defined price spikes are extracted 
from the original price series of the Finnish energy market of Nord Pool over the period 
1 Jan 2009 – 31 Dec 2010 (see Figure 6.1). 

 

Figure 6.1.  a) Original Finnish day-ahead prices over the period 1 Jan 2009–31 Dec 2010; b) 
extracted price spikes. 

Table 6.1 shows the basic distribution parameters for normal prices and spikes in the 
Finnish energy market of the years 2009–2010. 

 

 

 



               Iterative day-ahead price prediction with separate normal range price 
and price spike forecasting frameworks 

118

 

Table 6.1. Basic statistics for normal prices and price spikes over the period 2009-2010 

 Number of 
observations 

Mean Std Skewness Kurtosis 

Normal prices 17324 44.62 15.77 9.65 1.88 
Spikes 196 240.98 256.68 13.61 3.30 

6.3 Compound classifier 

As  previously,  the  problem  of  the  price  spike  occurrence  prediction  is  stated  as  a  
classification problem that can be solved by a pattern recognition framework. The 
results of the experimental assessment of the different classification designs are 
supposed  to  be  the  basis  for  choosing  one  of  the  classifiers  as  a  final  solution  to  the  
problem. It had been observed that even if one of the designs did yield the best 
performance, the sets of patterns misclassified by the different classifiers would not 
necessarily overlap. This suggests that different classifier designs potentially offer 
complementary information about the patterns to be classified, which could be 
harnessed to improve the performance of the selected classifier. The idea behind the use 
of the compound classifier presented in this study is to avoid reliance on a single 
classifier. Instead, a set of proposed classifiers is used for decision making by 
combining their individual opinions to derive a consensus decision. Various classifier 
combination schemes have been devised, and it has been experimentally demonstrated 
that some of them consistently outperform a single best classifier (Kittler et al., 1998).  

To enhance the accuracy and confidence of the price spike occurrence prediction, the 
compound classifier composed of three different single classifiers is used within the 
proposed forecasting methodology. The majority vote rule is applied to get an overall 
output (spike/non-spike) from the compound classifier (Kittler et al., 1998). Here, the 
votes received from the individual classifiers are simply counted. The class that receives 
the largest number of votes is then selected as the consensus (majority) decision.  

The three individual classifiers used together in the compound classifier are a 
probabilistic neural network (PNN), RF, and RVM. These methods are chosen because 
they provide probabilistic output (probability of class membership e.g. probability of 
spike occurrence). The methods have been previously applied to several other 
applications with promising results (Amjady and Keynia, 2010; Meng et al., 2009; 
Huang et al., 2012). Description of the PNN is given in Appendix I (see Section I.1). 
The output from each classifier is modified by introducing a predetermined probability 
threshold value V0 as described in Section 4.2.3. 
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6.4 Construction of the candidate input set  

6.4.1 Price spike forecasting: probability of spike occurrence 

The set of candidate inputs selected for the compound classifier is given below: 

Historical prices of both time and wavelet domains 

Historical prices of original range, approximation price wavelet component (A3price), 
and detail price wavelet component of the highest frequency (D1price), all lagged up to 
200 hours before a forecast hour, are among the candidate inputs for the compound 
classifier. Here, a high relation of a spiky price series with the original price series and 
the above-mentioned price wavelet components is assumed (Amjady and Keynia, 
2010). 

Electricity demand and supply 

Besides the historical price data, electricity demand and supply are among the set of 
candidate inputs for the price spike forecasting since the relations of these variables are 
known to drive the movement in the price spikes to a large extent (Zhao et al., 2007b). 
Therefore, total electricity generation (i.e. internal supply) and electricity demand in 
Finland, both lagged up to 200 hours before a forecast hour, are selected as candidate 
inputs for the compound classifier. As mentioned above, reliable forecasts of the 
demand and supply are highly required. To decrease the overall computational costs 
within the proposed methodology, it was opted not to simultaneously predict electricity 
demand/supply and prices as proposed in Section 5.3. Instead, the WT+SARIMA 
approach, proposed as one of the competitive approaches in Section 5.3 for electricity 
demand forecasting, is implemented here as a side forecasting model to separately 
predict demand and supply.    

Temporal effect 

Hourly (hour_index), daily (day_index), and seasonally (season_index) indices are 
considered as parameters to indicate the temporal effect when price spikes are predicted.  

The SARIMA model is used as a model producing an initial forecast for the compound 
classifier and provides preliminary day-ahead forecasts for all price wavelet subseries.  

Finally, the set of candidate inputs for both the compound classifier and the KNN model 
of the proposed method includes both historical and forecasted features of both wavelet 
and time domains. For instance, the 1008 candidate inputs to predict price spike 
occurrence at hour h are {priceSARIMA,h, priceh-1…,priceh-200, demandh,…,demandh-200, 
supplyh,.., supplyh-200, A3SARIMA_price,h, A3price,h-1,…,A3price,h-200, D1SARIMA_price,h, D1price,h-1 
,…, D1price,h-200, hour_indexh, day_indexh, season_indexh}. 
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It should be noted that within the methodology, the effect of weather variation is 
incorporated in the electricity demand unlike in the hybrid model presented in Section 
4.2 where the temperature data were directly passed to the spike forecasting module. 
Moreover, the Elspot capacity-flow difference variable is not considered among the 
candidate inputs to relate price spikes as additional experiments have indicated 
inefficiency of this variable within the short-term forecasting (i.e. low relation to spike 
occurrence). 

6.4.2 Price spike forecasting: spike magnitude 

If the forecast sample is classified by the compound classifier as a spike, the price spike 
module is activated. The target set to train the KNN model is formed by the price spike 
samples extracted from the original training price series. The KNN model uses the set of 
candidate inputs similar to the one utilized for the compound classifier.  

6.4.3 Normal range price forecasting 

If the forecast sample is classified as a non-spike, the normal price module is activated. 
All electricity price spikes are extracted from the original training price series and 
replaced by the corresponding mean price value to form new normal price series. The 
set of candidate inputs for the model to predict normal prices (i.e. NN), is similar to the 
one used within the model to predict prices presented in Section 5.3. The SARIMA 
model produces preliminary day-ahead forecasts for all subseries of the normal price 
series. The 602 candidate inputs to predict an approximation normal price wavelet 
component at hour h (A3price,h)  are  {A3SARIMA_price, A3price,h-1,…, A3price,h-200, A3demand,h 
,…, A3demand,h-200, priceh-1,…,priceh-200}. 

6.5 Forecasting strategy 

The proposed forecast strategy can be summarized by the following step-by-step 
algorithm shown also in Figure 6.2: 

1) An  electricity  price  time  series  is  decomposed  by  the  wavelet  transform  into  one  
approximation subseries (A3price)  and  three  detailed  subseries  (D3price, D2price, 
D1price). 

2) WT+SARIMA’s are built to produce an initial forecast to predict the future values 
of the price wavelet subseries 24 hours ahead. 

3) The compound classifier is activated. 
3.1. The set of candidate inputs for each classification approach of the compound 

classifier is constructed. 
3.2. Values  of  the  thresholds  (V0,  V1,  V2) plus corresponding value of a classifier 

parameter are fine-tuned for each single classifier on the validation data set by 
the proposed search procedure. Spread values for the Gaussian radial basis 
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function (RBF) ( RVM,  PNN)  and  the  number  of  trees  (Ntree) are the specific 
tuned parameters for the RVM, PNN, and RF, respectively. 

3.3. With  the  selected  values,  each  classification  approach  of  the  compound  
classifier is trained and predicts the price spike occurrence possibility 24 hours 
ahead.  

3.4. A final output from the compound classifier is formed as an overall output from 
all three single classifiers in a majority voting scheme.  

4) For all test samples forecasted by the compound classifier as nonspikes, the normal 
price prediction module is activated. 

4.1. All spike samples are extracted from the original training price series. The new 
adjusted normal price series is decomposed into four wavelet components. 

4.2. WT+SARIMA’s are built to forecast the future values of the normal price 
wavelet subseries 24 hours ahead. 

4.3. The set of candidate inputs to predict each normal price wavelet subseries by 
the NN model is constructed. 

4.4. The threshold values (V1,  V2)  and  Nh of  NNs  to  predict  each  normal  price  
wavelet subseries are fine-tuned on the validation data set by the proposed 
search procedure.  

4.5. With the selected values, NNs are trained and predict the normal price wavelet 
subseries 24 hours ahead. 

5) For all test samples forecasted as spikes, the price spike module is activated. 
5.1. All spike samples extracted from the original training price series are formed 

into price spike series used as targets to train the KNN model. 
5.2. The set of candidate inputs to predict spike value by the KNN model is 

constructed. 
5.3. The threshold values (V1, V2) and the number of neighbor samples (K) for the 

KNN approach are fine-tuned on the validation data set by the search 
procedure.  

5.4. With the selected values, the KNN model is trained and predicts the price spike 
value of the test sample. 

6) The overall electricity price forecast is formed as a joint output from the normal 
price and price spike modules. 

7) The overall price forecast replaces the predictions produced by the initial 
forecasting model for the current forecast day (step 2), since it is expected that 
electricity prices predicted by the separate forecasting frameworks have more 
accuracy and thus have more relevance with actual values of price. After 
replacement, the forecasting cycle is repeated as shown in Figure 6.2 until no 
difference in the overall electricity price forecast output of two successive iteration 
steps is observed. 

6.6 Training and validation phases 

The training periods for the forecasting models of the normal price and price spike 
modules are different. As previously proposed, a 50-day period preceding the forecast 
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day to train NNs of the normal price module is considered. There are only a few price 
spike samples in the whole data set (see Table 6.1). Unlike normal price prediction, in 
order to get a sufficient number of spike samples to train the models of the price spike 
module, a longer price series period is required. Hence, 365 days preceding the forecast 
day are considered for the price spike prediction (the compound classifier and the KNN 
model). 

Since the forecasting models of the normal price and price spike modules have the 
inputs preliminarily predicted by other models (i.e. WT+SARIMA), their training 
periods are extended to comprise two consecutive training periods: the moving training 
period for the preliminary model and the training period of the main model. Then, to 
predict normal prices or price spikes, a day denoted by D is considered in the 
corresponding second training period.   

 

Figure 6.2. Flowchart of the proposed forecasting methodology. 
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The values of prices for day D are assumed unknown. The preliminary WT+SARIMA 
models are trained by the historical data of the 50 days preceding hour 1 of day D and 
predict  the  price  wavelet  subseries  of  day  D.  To  improve  the  performance  of  the  
WT+SARIMA forecast process for each day of the second training period (D = 1,..,50 
for  NNs  or  D  =  1,…,365  for  the  price  spike  module),  the  WT+SARIMA  models  are  
trained by the immediately previous 50-day period. This process is repeated until 
forecasts from the WT+SARIMA models are obtained for all days of the corresponding 
second training period (see Figure 6.3). 

 

Figure 6.3. Historical data required for the training of the normal price and price spike modules. 

The 24 hours price data before the forecast day are removed from the training set of the 
NNs  of  the  normal  price  module  and  used  as  the  validation  set.  Then,  the  NNs  are  
trained by the remaining training samples. Adjusted parameters are fine-tuned on the 
validation set.  

For the price spike module, all tuned parameters of the respective approaches are fine-
tuned by a 10-fold cross-validation technique applied to the whole training data set 
(Arlot and Celisse, 2010). 

6.7 Numerical results 

For examination of the proposed method, the actual hourly data of the Finnish day-
ahead energy market are considered. The electricity price, demand, and supply historical 
data during November 2008–December 2009 are used to establish the training data 
sample set. The data over the period 1 Jan 2010– 31 Dec 2010 are used as the test set. 

The results obtained of the two-step MI based feature selection algorithm for the 
compound classifier, the KNN model, and the NN model to predict prices in the Finnish 
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day-ahead energy market for each hour of a single day, 5 Jan 2010, are presented in 
Tables 6.2–6.3. 

Since electricity price spikes have a very volatile stochastic nature with respect to the 
normal price time series, the regular and periodic behavior of the price spikes are not so 
obvious. As can be seen in Table 6.2, no features related to the periodic behavior are 
obtained by the feature selection algorithm.  

Table 6.2. Inputs selected by the two-step feature selection analysis for the three classification 
approaches of the compound classifier and the KNN model. 

 
Engine  V0 V1 V2 Parameter Selected candidates 
RVM 0.43 0.46 0.64 RVM = 0.13 A3SARIMA_price,h, A3price,h-1, A3price,h-2,   

A3price,h-4, A3price,h-5, A3price,h-6, A3price,h-7, 
D1SARIMA_price,h, D1price,h-1, D1price,h-2,   
D1price,h-3,priceh-1, priceh-2, priceh-3, priceh-4, 
demandh, demandh-2, demandh-46, demandh-

72,supplyh, hour_indexh, day_indexh, 
PNN 0.47 0.50 0.78 PNN = 0.03 A3 SARIMA_price,h, A3price,h-1, A3price,h-2,   

A3price,h-3, A3price,h-4, A3price,h-5, A3price,h-6, 
A3price,h-22, D1price_arima,h, D1price,h-1, 
D1price,h-2, D1price,h-3, D1price,h-4, D1price,h-5, 
priceh-2, priceh-3,  priceh-4, demandh-2, 
demandh-21, demandh-22, supplyh-2, 
hour_indexh, day_indexh, season_indexh 

RF 0.42 0.48 0.61 Ntree = 100 A3 SARIMA_price,h, A3price,h-1, A3price,h-2,   
A3price,h-4, A3price,h-5, A3price,h-6, A3price,h-7, 
D1price,h-1, D1price,h-2, D1price,h-3, priceh-1, 
priceh-2,  priceh-3, priceh-4, priceh-5, 
demandh, demandh-4, demandh-19, demandh-

69,  demandh-73, hour_indexh, day_indexh 
KNN  0.45 0.56 K = 3 A3 SARIMA_price,h, A3price,h-2, A3price,h-9,   

A3price,h-15, A3price, h-21, D1price, h-2, D1price,h-5, 
D1price, h-7, D1price, h-8, D1price, h-16, priceh-1, 
priceh-3, priceh-7, priceh-52, demandh-190, 
hour_indexh, day_indexh, season_indexh 

 
The variables of the short-run trend (A3price,h-1, D3price,h-2), daily periodicity (A3price,h-25, 
D3price,h-24), and weekly periodicity (A3price,h-169, A3demand,h-169) are among the selected 
input features to forecast normal price wavelet components (see Table 6.3). The 
dependency of the normal price wavelet components on the exogenous variables 
decreases from A3price to D1price.  
 
The overall accuracy of the proposed method is compared with some of the most 
popular price forecast techniques applied to case studies of energy markets of other 



6.7 Numerical results 125

countries: SARIMA (Contreras et al., 2003; Nogales et al., 2002; Taylor et al., 2006); 
WT+SARIMA (Conejo et al., 2005b; Tan et al., 2010); NN (Zhang and Qi, 2005; 
Taylor et al., 2006), and WT+NN (Safie-khan et al., 2011). Additionally, 
WT+SARIMA+NN, which has not been found in the literature is among competitive 
techniques. 

Table 6.3. Inputs selected by the two-step feature selection analysis for the normal price wavelet 
components. 

Variable Nh V1 V2 Selected candidates 
A3price,h 4 0.52 0.71 A3SARIMA_price,h, A3price,h-1, A3price,h-3, A3price,h-4,    

A3price,h-16, A3price,h-21, A3price,h-25, A3price,h-72,    A3price,h-

97, A3price,h-121,A3price,h-144, A3price,h-169, A3demand,h-8, 
A3demand,h-10, A3demand,h-11, A3demand,h-42, A3demand,h-91, 
A3demand,h-98, A3demand,h-141, A3demand,h-169, priceh-72, 
priceh-95, priceh-97, priceh-120 

D3price,h 7 0.47 0.81 D3SARIMA_price,h, D3price,h-1, D3price,h-2, D3price,h-11,  
D3price,h-24, D3price,h-48, D3price,h-60, D3price,h-96, D3demand,h-

12, D3demand,h-47, D3demand,h-71, D3demand,h-143 
D2price,h 4 0.41 0.74 D2SARIMA_price,h, D2price,h-1, D2price,h-7, D2price,h-8, 

D2price,h-24 
D1price,h 6 0.15 0.85 D1SARIMA_price,h, D1price,h-6, D1price,h-24, D1price,h-30,   

D1price,h-48, D1price,h-72, D1price,h-94, D1price,h-120,   D1price,h-

157 
 
To demonstrate the efficiency of the proposed methodology, the results obtained for the 
Finnish day-ahead energy market in the year 2010 are shown in Table 6.4 with the 
corresponding results obtained from five other competing prediction techniques.   

Table 6.4. AMAPE in percent (%) obtained by different prediction techniques for price 
forecasts in the Finnish energy market of the year 2010.  

 SARIMA WT + 
SARIMA 

NN WT+NN WT+ 
SARIMA+NN 

Proposed 
method 

Normal 
price 

10.53 7.53 8.17 8.01 7.18 5.89 

Price 
spikes 

55.76 40.51 46.33 44.22 37.72 32.91 

Overall 14.93 10.03 12.52 11.98 9.66 8.08 
 
For a fair comparison, NN, WT+NN, and WT+SARIMA+NN have historical and 
forecasted demand data among the candidate inputs. A feature selection analysis based 
on the proposed relevance-redundancy filtration is made for all the examined models. 
The adjustable parameters of the competing models are fine-tuned on the basis of the 
proposed search procedure. It should be noted that among the alternative examined 
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models, only the WT+SARIMA+NN model has preliminarily predicted prices in its set 
of candidate inputs; that is, the NN part of the WT+SARIMA+NN model uses 
predictions from SARIMA as the candidate input.  
 
As seen from Table 6.4, the AMAPE values corresponding to the proposed strategy are 
lower than the values obtained from other examined methods. The accuracy 
improvement of the proposed method with respect to SARIMA, WT+SARIMA, NN, 
WT+NN, and WT+SARIMA+NN in terms of AMAPE is 45.88% (1-8.08/14.93), 
19.44% (1-8.08/10.03), 35.46%(1-8.08/12.52), 32.55% (1-8.08/11.98), and 16.36%(1-
8.08/9.66), respectively. It can also be seen that the use of WT results in an 
improvement in the model accuracy. This improvement in SARIMA in comparison with 
WT+SARIMA in terms of AMAPE is 32.82% (1-10.03/14.93). For NN in comparison 
with WT+NN, this value is 4.31% (1-11.98/12.52). The results also confirm the 
efficiency of the hybrid methodology with linear and nonlinear modeling capabilities 
(WT+NN versus WT+SARIMA+NN) where the improvement is 19.37% (1-
9.66/11.98).  

It is expected that the implementation of the proposed iteration strategy increases the 
accuracy of the overall price prediction. Detailed results of the proposed iteration 
strategy for the four test weeks of the Finnish day-ahead energy market of the year 2010 
are shown in Table 6.5. These test weeks are related to dates 1–7 Jan 2010, 8–14 Jan 
2010, 29 Jan–4 Feb 2010, and 5–11 Feb 2010, respectively, and indicate periods of high 
volatility in the price series. Iteration 0 in Table 6.5 represents the results obtained from 
the initial forecasting model (i.e., the WT+SARIMA model).  

Table 6.5. Accuracy of the proposed iteration procedure in terms of AMAPE (%) for the four 
test weeks in the Finnish day-ahead energy market of the year 2010. 

 
Iteration 
number 

 
Week1 

 
Week2 

 
Week5 

 
Week7 

0 17.46 37.27 13.49 10.87 
1 12.56 26.24 7.96 6.93 
2 9.50 25.16 7.24 6.81 
3 9.41   6.59 

 
As seen from Table 6.5, the iteration procedure converges in at most of the three cycles, 
and the prediction error for the four test weeks at the end of the iterative forecast 
process with respect to Iteration 1 is improved by 13% on average.  
 
In addition, the performance of the proposed compound classifier is compared with each 
single classifier of the compound classifier and other techniques recently used for price 
spike occurrence prediction: Naïve Bayesian (Zhao et al., 2007a), SVM (Zhao et al., 
2007a), PNN (Amjady and Keynia, 2010), RVM (Meng et al., 2009), and RF (Huang et 
al., 2012).  The total number of the price spike samples extracted from the test period is 
182. Nspikes, Ncorr, and Nas_spikes for the Finnish day-ahead energy market of the year 2010 
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are presented in the second, third, and fourth columns of Table 6.6, respectively. Spike 
prediction accuracy and confidence are given in the fifth and sixth columns of Table 
6.6. For a fair comparison, the candidate input sets of all alternative classifiers are 
similar to the set of candidate inputs of the compound classifier. Optimal settings are 
selected and the candidate input set is refined for each examined classifier on the basis 
of the proposed search procedure. All preliminarily predicted price variables that are 
among the input sets of each competing classifier are predicted by the WT+SARIMA 
model.  
 
To justify the proposed iteration strategy particularly for the price spike occurrence 
prediction, Ncorr and Nas_spikes, the classifier accuracy and confidence measures obtained 
from the compound classifier on the final iteration step of the proposed methodology 
are shown in the seventh, eighth, ninth, and tenth columns of Table 6.6, respectively.   
 
Table 6.6. Ncorr and Nas_spikes, classifier accuracy and confidence for price spike classification. 
 
 WT+SARIMA as the initial 

forecasting model 
Final iteration step of the 

proposed 
methodology 

Engine  Nspikes Ncorr Nas_spikes Acc.,
[%] 

Conf., 
[%] 

Ncorr Nas_spikes Acc., 
[%] 

Conf., 
[%] 

Bayes   
 
 
 182 

124 247 68.13 50.20     
SVM 120 174 65.93 68.79     
PNN 112 155 61.54 72.26 147 161 80.77 91.30 
RVM 119 168 65.38 70.83 163 190 89.56 85.79 

RF 122 166 67.03 71.08 152 179 83.51 84.92 
Comp-d 122 152 67.03 77.63 162 174 89.01 93.10 

 
The results given in Table 6.6 indicate that the use of the iteration strategy results in a 
notable accuracy improvement of the price spike occurrence prediction. Table 6.6 also 
shows that the compound classifier performs better than all single classifiers. Only the 
RVM has a slightly better spike prediction accuracy than the compound classifier, while 
the compound classifier has a considerably better spike prediction confidence than the 
RVM. 
 
Further, the set of test price spike samples are divided according to their original price 
value intervals. Large price spikes with price values varying between 300 and 1500 
euro/MWh constitute around 15% of all the spike samples. Because of their values and 
stochastic character, such spikes are extremely important for market participants. The 
results obtained from each classifier and the compound classifier itself on the final 
iteration step of the proposed methodology for the Finnish day-ahead energy market of 
the year 2010 are shown in Table 6.7. All the classifiers presented in Table 6.7 are able 
to correctly discriminate all the large spike samples over the test period. The price 
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prediction accuracy of the examined classifiers varies in prediction of price spike 
samples between 85 and 300 euro/MWh.  

Table 6.7. Results obtained from the compound classifier for different price spike intervals in 
the Finnish day-ahead energy market of the year 2010. 

Original price 
interval, 

[euro/MWh] 

Nspikes Ncorr 

PNN RVM RF Compound 

85 -150 66 50 55 53 55 
150 -300 87 68 79 70 78 
300 -500 18 18 18 18 18 
500 -1000 1 1 1 1 1 

1000 -1500 10 10 10 10 10 
TOTAL 182 147 163 152 162 

 
For a more detailed representation of the performance of the proposed overall price 
forecast strategy and separately for the price spike occurrence on the whole test year, 
their  results  for  all  the  weeks  of  the  2010  are  shown  in  Table  6.8.  There  are  six  
measures given for all test weeks of the Finnish day-ahead energy market of the year 
2010: the overall AMAPE, Nspikes, Ncor, Nas_spikes, the classifier accuracy and confidence 
of the compound classifier. 
 
Table 6.8. Results obtained from the proposed forecasting methodology for each week of the 
year 2010. 

Week 1 2 3 4 
AMAPE, [%] 9.41 25.16 6.31 5.75 

Nspikes/Ncorr/ Nas_spikes 23/21/22 22/22/22 0/0/0 9/8/8 
Acc./Conf, [%] 91.30/95.45 100/100 - 88.89/100 

Week 5 6 7 8 
AMAPE, [%] 7.24 4.51 6.59 30.75 

Nspikes/Ncorr/ Nas_spikes 7/7/7 1/0/0 5/5/5 44/39/39 
Acc./Conf, [%] 100/100 0/- 100/100 77.27/97.14 

Week 9 10 11 12 
AMAPE, [%] 6.49 6.11 4.76 3.55 

Nspikes/Ncorr/ Nas_spikes 2/2/2 0/0/0 0/0/1 0/0/1 
Acc./Conf, [%] 100/100 - -/0 -/0 

Week 13 14 15 16 
AMAPE, [%] 2.84 2.99 3.31 5.07 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0 
Acc./Conf, [%] - - - - 

Week 17 18 19 20 
AMAPE, [%] 6.11 6.88 7.43 15.51 
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Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0 
Acc./Conf, [%] - - - - 

Week 21 22 23 24 
AMAPE, [%] 6.35 8.03 7.23 6.46 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0 
Acc./Conf, [%] - - - - 

Week 25 26 27 28 
AMAPE, [%] 6.15 7.23 4.26 12.82 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 9/7/7 
Acc./Conf, [%] - - - 77.78/100 

Week 29 30 31 32 
AMAPE, [%] 4.56 5.38 7.58 6.34 

Nspikes/Ncorr/ Nas_spikes 0/0/2 0/0/0 0/0/0 0/0/0 
Acc./Conf, [%] -/0 - - - 

Week 33 34 35 36 
AMAPE, [%] 3.06 3.14 4.99 2.19 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0 
Acc./Conf, [%] - - - - 

Week 37 38 39 40 
AMAPE, [%] 3.64 2.65 3.64 2.43 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 0/0/0 
Acc./Conf, [%] - - - - 

Week 41 42 43 44 
AMAPE, [%] 3.83 4.09 5.91 3.14 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/1 0/0/0 
Acc./Conf, [%] - - - - 

Week 45 46 47 48 
AMAPE, [%] 2.26 2.83 4.03 17.12 

Nspikes/Ncorr/ Nas_spikes 0/0/0 0/0/0 0/0/0 12/7/8 
Acc./Conf, [%] - - - 58.33/87.50 

Week 49 50 51 52 
AMAPE, [%] 8.37 11.02 5.70 4.22 

Nspikes/Ncorr/ Nas_spikes 3/3/3 35/33/34 9/8/11 0/0/1 
Acc./Conf, [%] 100/100 82.86/96.67 88.89/72.73 -/0 

 
As  can  be  seen  from  Table  6.8,  the  price  forecasts  of  the  weeks  related  to  a  winter  
season (December–February), that is, the weeks 1–8 and 48–52 of the year 2010, have a 
relatively higher prediction error compared with the price forecasts related to other 
seasons. It is unsurprising that the performance of the proposed forecasting 
methodology is worse during the winter season because of the extreme price volatility 
reflected in price spikes, which is caused by a number of complex factors and which 
takes place during periods of market stress. These stressed market situations are 
generally associated with extreme meteorological events and unusually high demand. 
However, in the light of the fact that the occurrence of price spikes typical in the winter 
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period is predicted by the proposed methodology with high confidence, the achieved 
overall forecast accuracy level is fairly good and provides market participants with an 
ability to analyze price spike probabilities and thus manage their risks.  

In order to graphically illustrate performance of the proposed forecasting methodology, 
the prediction performance and actual signals for the four test weeks of the year 2010, 
corresponding to the four seasons are shown in Figure 6.4.   

 

Figure 6.4. Original and predicted prices for the four test weeks of the Finnish day-ahead energy 
market of the year 2010:  (a) Winter week; (b) Spring week; (c) Summer week; (d) Fall week. 

The four weeks, a winter week (12 Feb to 18 Feb), a spring week (14 May to 20 May), a 
summer week (13 Aug to 19 Aug), a fall week (12 Nov to 18 Nov), were considered 
representative for a study spanning one whole year. All the forecast price curves 
acceptably follow the actual ones. The proposed methodology based on a hybrid 
iterative strategy is able to capture the essential features of the given price time series: 
nonconstant mean, cyclicality, exhibiting daily and weekly patterns, major volatility, 
and significant outliers.   
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Additionally, to emphasize the ability of the proposed methodology to capture spikes in 
the price series, Figure 6.5 presents forecasting results from the proposed methodology 
for the four selected spiky weeks (weeks 1, 2, 5, and 28 in Table 6.8). The forecasting 
performance of the competing approaches for these weeks is shown in Appendix I (see 
Section I.2). 

 

Figure 6.5. Original and predicted prices for the four weeks with prominent spikes of the 
Finnish day-ahead energy market of the year 2010:  (a) Week 1; (b) Week 2; (c) Week 5; (d) 
Week 28.  

It should be noted that many other exogenous variables can be considered in candidate 
input sets for feature selection, such as fuel costs and some meteorological information, 
but this is a topic for future research. Moreover, there is a clear need for a more accurate 
method for price spike value prediction.  

The total running time to set up the proposed separate forecasting strategy including its 
normal price module, price spike module, and iterative prediction process for the first 
forecast day is about 42 hours since price predictions produced by the initial forecasting 
model are required over the period up to 365 days. Similarly, in the previously proposed 
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forecasting strategy, simultaneously predicting price and demand (see Chapter 5), the 
running time of the training and prediction procedures for the next forecast days after 
the first one is significantly lower (about 50 min) and considered suitable for day-ahead 
energy market operation. All the competitive nonseparate forecasting approaches 
examined for price prediction have lower computation costs than the proposed separate 
forecasting strategy but are outperformed by the proposed strategy in terms of 
forecasting accuracy. The PNN and RVM classifiers of the compound classifier have 
relatively lower computational costs than the alternative back-propagation NN and 
SVM, respectively. The training process of the PNN is carried out through one run of 
each training sample unlike the back-propagation algorithm. The RVM is faster than the 
SVM in decision speed, as the RVM has a much sparser structure (the number of 
relevant vectors versus the number of support vectors). The computation times to set up 
the proposed and competitive forecasting strategies are measured on a hardware 
including Intel Core i5 2.40 GHz processor and 3.24 GB RAM. All computer codes are 
provided by the MATLAB and R software packages. 

6.8 Summary 

The proposed methodology is able to capture high volatility of prices to distinctly 
distinguish normal prices and price spikes when the overall price path is forecasted. By 
providing such ability, the proposed methodology significantly outperforms all other 
competing approaches examined in the study. Thus, the proposed methodology can be 
applied to the entire Nordic market and deregulated markets in other countries to 
provide extensive and useful information for the participants of the energy market, who 
have limited and uncertain information for price prediction. 
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7 Conclusions 

7.1 Summary and conclusions 

The  main  purpose  of  this  thesis  was  to  present  a  model  able  to  predict  not  only  day-
ahead electricity prices within the normal range with a high degree of accuracy but also 
price spikes. The structure of a case market, which is selected to be the day-ahead 
Nordic energy market (Nord Pool Spot) and, particularly, the Finnish day-ahead energy 
market, is studied in detail, and then, a set of potential explanatory factors that may 
influence the price behavior in the Nordic electricity market are stated.  

A wide range of market data from the Nord Pool Spot over the period from 1 Jan 1999 
to 31 Dec 2012 were investigated and statistically analyzed. The existing seasonal 
patterns and the remaining stochastic component were extracted with the help of a 
decomposition technique for further analysis.  

Various classical and more elaborate modern approaches were developed to relate the 
electricity market price behavior in the Finnish day-ahead energy market. A linear 
multiple moving regression model was examined with different lengths of training 
periods to predict day-ahead prices. Residuals obtained from the regression model fit 
were prone to outliers and presented nonconstant mean level and high spikes over the 
testing period.  

Next, the Box-Jenkins models were presented to relate the electricity price behavior by 
altering the given series to make it stationary.  It was shown that the Box-Jenkins 
models were unable to estimate high volatility and spike clustering presented in the 
original price series. A difference filter used within the Box-Jenkins model was not able 
to remove and add deterministic elements of original price series accurately for out-of-
sample modeling. Therefore, separate treatment of the deterministic elements through a 
decomposition model was proposed as more effective technique. 

MR financial stochastic models based on Ornstein-Uhlenbeck approach, even when 
optimally calibrated with the real day-ahead electricity market prices, were not able to 
capture the statistical characteristics of the real series. 

Following the aforementioned conclusions, spike samples were extracted from the 
corresponding data set to avoid the undesirable effect of those samples on the parameter 
estimates in the models. Further, it was suggested to implement a separate prediction of 
adjusted  price  series  (when  spikes  were  extracted)  and  price  spikes  with  the  use  of  
different forecasting engines.  

The Box-Jenkins and MR models enhanced with the regime switching approach were 
presented as common tools to model day-ahead electricity prices. The regime-switching 
model for the spike process was applied to working and nonworking days of different 
seasons and the transition probabilities were determined for each case, as the number of 
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spikes and the length of spike groups could differ for different day types. The impact of 
the regime-switching was very clear when comparing the results of the models 
combining the regime-switching with the corresponding results obtained from the 
models without the regime-switching.   

Then, an electricity price forecasting model implemented as a combination of classical 
and modern forecasting approaches was presented to analyze electricity price time 
series in two parts; normal behavior and spiky behavior. The Box-Jenkins models were 
combined with the NN to capture linear and nonlinear relationships between the normal 
range price series and the selected explanatory variables. The probability of a price 
spike occurrence and the value of a price spike were produced by two different 
forecasting engines (GMM and KNN). Selection of explanatory variables and model 
parameters to predict both normal range prices and price spikes was based on heuristics. 
It has been shown that when applied in addition to the normal range price forecast, the 
proposed price spike forecast method could provide practically useful and reasonably 
accurate forecasts, thereby enhancing the applicability of the price forecasts in the 
actions of electricity market participants. However, the feature selection process based 
on heuristics and past experience was found inappropriate for accurate price forecasting 
since each electricity market has characteristics of its own.  

The two-step feature selection algorithm was proposed to refine the set of candidate 
inputs such that a subset of the most effective inputs was selected for the forecast 
engine. Besides the simple calculation of the corresponding relevance value between the 
target and candidate inputs, the problem of the presence of excessive information in the 
set of candidate inputs was solved by adding the filter removing redundant information 
from the set of candidate inputs. Several linear and non-linear statistical techniques 
were used to calculate the relevance value between the given variables within the 
proposed feature selection algorithm.  The performance of different forecasting engines 
given  by  different  feature  selection  techniques  was  examined.   It  was  shown  that  the  
feature selection techniques consisting of both relevance and redundancy filters 
outperformed the feature selection techniques having only a relevance filter for all the 
considered forecasting engines. Moreover, the models applying feature selection 
techniques  that  were  able  to  consider  the  nonlinearities  of  the  price  signal  performed  
significantly better than those models merged with linear feature selection techniques. 
The heuristic approach that was among the examined feature selection techniques 
indicated the worst performance for all the considered forecasting engines.  

The importance of the correct parameter setting for any forecasting model was 
addressed in the thesis. Hence, the search procedure implemented to find the optimal 
setting model parameters including the thresholds for the proposed two-stage feature 
selection algorithm was proposed. 

The study showed that besides past price values, inclusion of fundamental data (e.g. 
electricity demand) in a forecasting model could significantly improve a forecasting 
performance. In some past studies, actual values of fundamental data were used to 
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forecast prices. However, such a strategy was shown to be not suitable for a real-life 
problem as realized values of fundamental data were not known for a day-ahead market 
at the moment when the prices were predicted. The thesis addressed the mutual effect of 
price and demand in the deregulated markets where not only the system demand 
influences the prices but the system demand may be significantly affected by the 
electricity prices when consumers are encouraged to use less energy during peak hours. 
To incorporate the above-mentioned mutual effect in the forecasting model, a 
methodology was proposed that simultaneously predicted the electricity demand and 
prices in the day-ahead energy market. The proposed methodology was better adapted 
to actual conditions in an energy market since the forecast features for price and demand 
were not assumed known values but were predicted by the model, thus accounting for 
the interactions of the demand and price forecast processes. A WT approach was 
applied within the proposed methodology to data pre-processing and considered as an 
alternative to the previously applied time series decomposition technique. The 
corresponding frequency components obtained by WT were separately predicted by the 
combined SARIMA and NN. Such a strategy was supposed to improve the overall 
forecasting performance and, in particular, spikes in the series without a separate normal 
and spiky price prediction since there was a high correlation between the price spikes 
and high-frequency wavelet components of the price signal spectrum. The best input set 
and model parameter settings were selected by the proposed search procedure and the 
relevance-redundancy feature selection algorithm. The methodology outcomes showed 
that the proposed forecasting strategy was able to achieve more accurate predictions 
than separate frameworks recently used for the case study of electricity price 
forecasting. However, the proposed methodology still suffered from its inability to 
capture anomalous price behavior (when prices increased rapidly and unexpectedly) to 
the full.  

In  the  light  of  the  findings  obtained  along  the  study,  separate  normal  price  and  price  
spike forecasting was found to be the most preferable approach owing to its main ability 
to train forecasting models more effectively while the nonseparate methodology should 
learn the behavior of both normal prices and price spikes. 

The novel methodology based on an iterative forecasting strategy, implemented as a 
combination of two modules separately applied to normal price and price spike 
prediction, was presented. The normal price module employed the previously applied 
forecasting technique that was a mixture of WT, linear SARIMA and nonlinear NN. As 
previously, the price spike module was a combination of the spike probability and the 
spike value forecasting models. However, the spike probability model was implemented 
on basis of three single classification techniques used jointly to make a final decision. 
Selection of the best input set and parameter settings for the models employed within 
the methodology was implemented by the proposed search procedure and the relevance-
redundancy feature selection algorithm. It has been shown that the use of the proposed 
iteration strategy significantly increases the accuracy of the overall price prediction and, 
in particular, price spikes. The methodology was examined for price prediction and 
resulted in the best forecasting performance when it was compared with some of the 
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most popular and recently used frameworks for price prediction and separately for price 
spike occurrence prediction.  

The proposed methodology was suggested to be applied to the entire Nordic market and 
deregulated markets in other countries since it was able to capture different distinct 
features of the given price time series and incorporate the iteration strategy separately to 
predict normal prices and price spikes.  

Prior information on market price fluctuations is a crucial concern for market 
participants. An energy producer will benefit from having such information, as it allows 
developing an optimal production schedule subject to the producer’s marginal costs. 
The generated price forecast can be used for the development of an optimal short-term 
operation portfolio. Development of an optimal short-term operation portfolio of a 
single market customer, that is, a CHP power plant, the given price forecast was 
considered in Appendix J. In this case, two price forecasts of different accuracies were 
examined and the associated economic impacts were studied.    

7.2 Contributions 

The focus of this thesis is on developing the most accurate day-ahead energy market 
price forecasting model that is able to predict not only normal prices but also price 
spikes and that is feasible from the market participants’ viewpoint. The following are 
the main contributions of the thesis: 

1. A survey of current linear and nonlinear forecasting methodologies and their 
applications to price prediction in the day-ahead energy market of Finland is 
presented. 

2. Two-step feature selection algorithm is applied to refine the set of candidate 
inputs for a forecasting model by extracting nonrelevant and redundant 
information from the set of candidate inputs. 

3. The search procedure to obtain an optimal set of input features and adjustable 
parameter settings for a forecasting model is proposed. 

4. The forecasting methodology separately predicting normal prices and price 
spikes is claimed as the most accurate approach to relate actual price behavior 
on a day-ahead energy market. 

5. The model simultaneously predicting electricity demand and prices on a day-
ahead energy market is implemented. It is better adapted to actual conditions of 
an energy market as forecast features for price and demand are not assumed 
known values but are predicted within the model thus accounting for the 
interactions of the demand and price forecast processes. 

6. The novel forecasting methodology based on iterative strategy implemented as 
a combination of two modules separately applied to normal price and price 
spike prediction is proposed and implemented. The two modules are built on a 
hybrid approach and implemented as a mixture of different models. A set of 
experiments have shown that the proposed methodology is able to capture 



7.3 Suggestions for future work 137

essential features of the real price series and significantly outperforms the most 
popular and recently used frameworks for price prediction in a day-ahead 
energy market. 

7. The application of a price forecast with different levels of accuracy is examined 
to obtain an optimal short-term operation scheduling of a single market 
customer. 

7.3 Suggestions for future work 

Based on the research work presented and discussed in this thesis, further research may 
be pursued on the following subjects: 
 

 Construction of an interface between different pieces of forecasting software 
packages used to implement the proposed forecasting methodology. It could 
make the forecasting model more easy and practical to use by researchers and 
software users.  

 The effect of other variables (besides electricity demand/supply) when integrated 
into the proposed price forecasting methodology is a topic of future research. 
These include fuel costs, regulatory constraints etc. 

 Development of a more accurate method for price spike value prediction. The 
possible methods that could be based on NNs or RVM regression approaches 
can be considered in the future work. 

 Study on the application of price forecasts for short-term operation scheduling of 
actual market participants. Investigate the energy costs sensitivity to price 
forecast accuracy across different market participants.  

 Application of the proposed forecasting methodology to after-spot energy 
markets (Elbas market). 

 Investigation of the effect of market power and supplier bid behavior on the 
market price formation.  
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Appendix A: ML estimation 
ML estimation is a method for estimating the parameters of a statistical model. The ML 
method views the parameters as quantities whose values are fixed but unknown. The 
best  estimate  of  their  value  is  defined  to  be  the  one  that  maximizes  the  probability  of  
obtaining the samples actually observed. Suppose there are n data sets x1, x2,…, xn with 
the  samples  in  xi having been drawn independently according to the probability law

1 2( , ,..., | )np x x x . Such samples are independent and identically distributed (i.i.d.) 

random variables. The probability law 1 2( , ,..., | )np x x x  is  assumed to  have  a  known 
parametric form. Because the samples are drawn independently, one can obtain 

1 2
1

( , ,..., | ) ( | )
n

n k
k

p x x x p x  
(A.1) 

1 2( , ,..., | )np x x x  is called the likelihood of  with respect to the set of samples. The 

ML  estimate  of   is, by definition, the value  that maximizes 1 2( , ,..., | )np x x x . 
Therefore, the estimate corresponds to the value  that best agrees with or supports the 
actually observed training samples.  

It is usually easier to work with the logarithm of the likelihood than with the likelihood 
itself. Function 1 2( | , ,..., )nl x x x is defined as the log-likelihood function: 

1 2 1 2( | , ,..., ) ln ( , ,..., | )n nl x x x p x x x  (A.2) 

thus 

1 2
1

( | , ,..., ) ln ( | )
n

n k
k

l x x x p x  
(A.3) 

and 

1

ln ( | )
n

k
k

l p x . 
(A.4) 

Thus, a set of necessary conditions for the ML estimate for  can be obtained from the 
set of equations 

0l  (A.5) 
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Appendix B: Parameter estimations of SARIMA+GARCH  
All the coefficients are statistically significant at the 5% level. 

Table B.1. Parameter coefficients of the SARIMA and SARIMA+GARCH models estimated for 
original and adjusted price series for the Finnish day ahead energy market from 16 Sep 2009 to 
14 Nov 2009.  

  Original data Adjusted data 
Model 

parame-
ters 

SARIMA(1,1,1) 
((1,7),1,1)24 

SARIMA(1,1,0)  
((1,7),1,1)24+ 
GARCH(1,1) 

SARIMA(1,1,1)  
((1,7),1,1)24 

SARIMA(1,1,0) 
(1,7),1,1)24+ 
GARCH(1,1) 

1
 0.62 

(0.02) 
0.14   

 (0.05)         
0.67 

(0.04) 
0.08 

(0.03)  
 
1
 0.10 

(0.02) 
0.08 

(0.02) 
0.11 

(0.02) 
0.09  

(0.02)  

2
 0.24     

(0.01)         
0.13    

  (0.01)         
0.26 

(0.02) 
0.13    

 (0.01)         

1
 -0.89   

  (0.02)        
 -0.89 

(0.03) 
 

 

1
 -0.85    

 (0.02)        
-0.83 
(0.01) 

-0.81 
(0.02) 

-0.85    
 (0.01)        

 
Variance  
equation: 

    

     
C  2.41 

(0.11) 
 0.48 

(0.03)  
   0.26 

(0.03) 
 0.69 

(0.05)  
  0.09 

(0.02) 
 0.30 

(0.01) 
 
Notes: Standard errors are given in parenthesis 
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Appendix C: Distributions of simulated price paths 
Figure C.1 indicates number of price values (Y-axis) that hit within the specific price 
interval (X-axis). 

 

Figure C.1. Distributions of out-of-sample simulated price paths and original prices.  
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Appendix D: Hybrid electricity price forecasting model 

D.1 GMM 

When the probability density function (pdf) that describes the data points in a class is 
not known, it has to be estimated prior to the application of the Bayesian classifier. An 
arbitrary pdf can be modeled as a linear combination (weighted sum) of several pdfs. 
Therefore, if a high number of component distributions are used, any distribution can be 
approximated (Theodoridis and Koutroumbas, 2010). The probability density function 
for the samples is then given by  

1

( | ) ( | , )
M

i i wi
i

prob x prob x P  
(D.1) 

where x is a V-dimensional continuous-valued data vector (i.e., measurement of 
features), Pwi,i = 1,…,M, are the mixture weights, and prob(x|µi i), i=1,..,M,  are the 
component Gaussian densities. Each component density is a V-variate Gaussian 
function of the form, 

1
/2 1/2
1 1( | , ) exp ( ) ' ( )

(2 ) | | 2i i i i iV
i

prob x x x  

(D.2) 

with the mean vector µi and the covariance matrix i. The mixture weights satisfy the 
constraint

1
( ) 1M

w ii
P . The complete Gaussian Mixture model (GMM) is 

parameterized by the mean vectors, covariance matrices, and mixture weights from all 
the component densities. These parameters are represented as  

( ), , 1,....,w i i iP i M  
(D.3) 

Several techniques are available for estimating the parameters of the GMM. By far, the 
most popular and well-established method is the ML estimation. For a sequence of n 
training vectors X={x1,…,xk}, the GMM likelihood, assuming independence between the 
vectors, can be written as 

1

( | ) ( | )
k

i
i

prob X prob x  
(D.4) 

This expression is a nonlinear function of the parameters , and direct maximization is 
not possible. However, ML parameter estimates can be obtained iteratively using a 
special case of the expectation-maximization (EM) algorithm. The basic idea of the EM 
algorithm is, beginning with an initial model , to estimate a new model such that 
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( | ) ( | )prob X prob X .The new model then becomes the initial model for the next 
iteration, and the process is repeated until some convergence threshold is reached. The 
EM algorithm for GMM was described in (Reynolds, 2005). 

Predicting the occurrence of a spike is a typical binary classification problem. The 
factors relevant to spikes can be considered the dimensions of the input vector 
X={x1,…,xk} at each time point h where xi, i =1,2,…,k is the value of a relevant factor. 
The object is to determine the label y for every input vector, where  

1,
1,

non spike
y

spike  

(D.5) 

and y denotes whether a spike will occur. 

A GMM based  on  a  Bayesian  classification  algorithm is  used  to  mine  the  database  to  
find out the internal relationships between the electricity price spikes and the external 
factors. Basically, for a given input vector X={x1,…,xk} and its class label                       
y  {c1,c2,…,ck} the probability classifier calculates the probability that X belongs to 
class ci for i = 1,2,…,k. X is labeled as class ci, which has the largest probability. 

D.2 KNN 

KNN is a nonparametric technique. It stores all available cases and predicts the 
numerical target based on a similarity measure (e.g. distance functions). If the KNN is 
used for feature selection, K points in a given feature set X that are nearest to each point 
in the numerical target set are used.  If the KNN is used for regression, the sum of 
weighted values of the K closest samples is computed as the unknown sample’s value. 

The distance metric from an unknown sample or a given target Z  =  {z1,…,zk} to  the  
neighboring sample or feature set X = {x1,…,xk} is determined by the Euclidian distance 
between two real-valued vectors as given in Eq. (D.6)  

2

1
( , ) ( )

k

i i
i

dist X Z x z  
(D.6) 

where k is a vector dimensionality. 

D.3 Parameter estimations of ARMA+GARCH based models 

Structures of proposed models are given below. All data are in daily resolution. 

SARIMAX+(GARCH): 
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7 7 1 7
1 1 _ . , 1 1(1 )(1 )(1 ) (1 )(1 ) (1 )(1 )h n b demand h hB B B price U B B B B a   (D.7) 

 
ARMAX+(GARCH): 

1

7 8 7
1 7 8 1 _ . ,(1 ) (1 )decomposed decomposed

h n b demand h hB B B price U B a  (D.8) 

 
GARCH (for both SARIMAX+GARCH/ARMAX+GARCH models): 

1 1
2 2 2 2

1 1

, ~ 0, at time , 1,2,3,...,h i t i i h i h
i i

C a a N h h H  
(D.9) 

The second and third columns of Table D.1 report the results of estimating (D.7-D.9).  

Table D.1. ARMAX+GARCH based models obtained from the initial training data set. 
 

 SARIMAX + GARCH(1,1) ARMAX + GARCH(1,1) 
1 0.31 

(0.07) 
0.85 

(0.03)  
7  0.72 

(0.04)  
8  -0.58 

(0.05)  
1 0.01 

(0.00) 
0.50 

(0.05)  
1
 -0.67 

(0.06) 
-0.64 
(0.06)  

1  -0.84 
(0.02) 

 
 

Variance equation:   
C 2.29 

(0.14) 
0.00 

(0.000)  
 0.41 

(0.05) 
0.68 

(0.07)  
 0.39 

(0.04) 
0.16 

(0.04)  
Model diagnostics:   

LBQ 26.41 
[0.20] 

29.00 
[0.11]  

ARCH 0.56 
[0.46] 

0.89 
[0.35]  

 
Notes: Standard errors are given in parentheses and probability values in square brackets. LBQ is 
the  Ljung-Box  Q-statistic  to  test  for  serial  correlation  in  the  residuals.  ARCH  tests  for  
autoregressive conditional heteroscedasticity in the residuals. 
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D.4 Random walk model 

The random walk was implemented as the naïve method since it is the most widely used 
and simplest naïve benchmark method in forecasting studies. The random walk forecast 
function is given as 

1 at time, , 1,2,3,...,h hX X h h H  (D.10) 

where Xh and Xh-1 can be considered price values at time h and h-1, respectively. 

D.5 Performance measurements for the normal range price models 
Table D.2. Performance measurements of the models predicting a normal range price up to 

seven days ahead. 

 Horizon, [days] MSE MAE AMAPE, [%] 
Naïve benchmark 1 15.27 2.70 7.43 

2 18.67 3.12 8.60 
3 20.84 3.34 9.19 
4 26.14 3.68 10.15 
5 26.30 3.69 10.18 
6 26.20 3.65 10.16 
7 26.44 3.73 10.29 

SARIMA+GARCH 1 8.14 2.09 5.76 
2 10.55 2.53 6.96 
3 11.69 2.67 7.36 
4 15.13 2.92 8.05 
5 17.90 3.18 8.76 
6 19.43 3.32 9.15 
7 22.44 3.51 9.66 

SARIMAX+GARCH 1 7.35 2.00 5.51 
2 8.57 2.23 6.15 
3 8.96 2.28 6.29 
4 10.97 2.42 6.67 
5 12.51 2.65 7.30 
6 13.95 2.82 7.77 
7 16.56 2.95 8.14 

ARMA+GARCH* 1 6.30 1.94 5.34 
2 7.41 2.10 5.80 
3 8.09 2.17 5.97 
4 8.53 2.27 6.25 
5 8.83 2.29 6.38 
6 9.67 2.39 6.63 
7 9.76 2.40 6.75 

ARMAX+GARCH* 1 6.02 1.90 5.23 
2 6.87 2.00 5.50 
3 7.00 2.02 5.57 
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4 7.18 2.05 5.87 
5 8.36 2.23 6.14 
6 8.75 2.27 6.37 
7 8.79 2.31 6.47 

NN with raw data 1 10.14 2.14 5.89 
2 10.55 2.34 6.46 
3 10.80 2.45 6.76 
4 11.62 2.55 7.03 
5 14.33 2.78 7.68 
6 14.98 2.88 7.95 
7 15.73 3.00 8.27 

NN with 
decomposed data 

1 7.09 2.08 5.73 
2 7.91 2.20 6.05 
3 8.83 2.27 6.25 
4 9.19 2.38 6.55 
5 9.92 2.48 6.82 
6 11.13 2.56 7.08 
7 11.16 2.64 7.27 

Combined with raw 
data 

1 7.41 1.96 5.40 
2 8.34 2.17 5.97 
3 8.56 2.19 6.05 
4 11.20 2.35 6.49 
5 11.48 2.51 6.92 
6 13.23 2.67 7.35 
7 13.70 2.78 7.66 

Combined with 
decomposed data 

1 6.01 1.89 5.20 
2 6.58 1.95 5.36 
3 6.63 1.97 5.39 
4 7.18 2.05 5.63 
5 7.70 2.14 5.82 
6 8.16 2.16 5.95 
7 8.24 2.22 6.04 

 
Notes: *Models tested by decomposed data. 
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Appendix E: Feature selection techniques 

E.1 MI  

A quantity called entropy is defined for any probability distribution. The entropy of a 
random variable is a measure of the uncertainty of the random variable; it is a measure 
of the amount of information required on the average to describe the random variable. 
Entropy then becomes the self-information of a random variable. The notion of entropy 
can  be  extended  to  define  MI,  which  is  a  measure  of  the  amount  of  information  one  
random variable contains about another. MI is a special case of a more general quantity 
called relative entropy, which is a measure of the distance between two probability 
distributions (Cover and Thomas, 1991). The entropy H(X) of a discrete random 
variable X with values X1,  X2,…, Xk and probabilities P(X1), P(X2),…, P(Xk), 
respectively, is defined as follows: 

2
1

( ) ( ) log ( ( ))
k

i i
i

H X P X P X . (E.1) 

The joint entropy H(X,Y) of  a  pair  of  discrete  random  variables  (X,Y)  with  a  joint  
distribution P(X,Y) is defined as 

2
1 1

( , ) ( , ) log ( ( , ))
k m

i j i j
i j

H X Y P X Y P X Y . (E.2) 

One can define the conditional entropy H(Y/X) of a random variable given by another as 
the expected value of the entropies of the conditional distributions P(Y/X), averaged 
over the conditioning random variable. Therefore, the conditional entropy H(Y/X) 
quantifies the remaining uncertainty of Y, when X is known. The conditional entropy is 
defined as follows: 

1

2
1 1

2
1 1

( / ) ( ) ( / )

( ) ( / ) log ( ( / ))

( , ) log ( ( / ))

k

i i
i

k m

i j i j i
i j

k m

i j j i
i j

H Y X P X H Y X X

P X P Y X P Y X

P X Y P Y X

 

 

(E.3) 

MI is introduced as a measure of the amount of information that one random variable 
contains about another random variable. It is the reduction in the uncertainty of one 
random variable due to the knowledge of the other. Therefore, the mutual information 
I(X,Y) is the information found commonly in two random variables X and Y with a joint 
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probability mass function P(X,Y) and marginal probability mass functions P(X) and 
P(Y), and can be defined as: 

 2
1 1

( , )
( , ) ( , ) log

( ) ( )

k m
i j

i j
i j i j

P X Y
I X Y P X Y

P X P Y
. (E.4) 

Thus, MI of a random variable with itself is the entropy of the random variable. This is 
the reason why entropy is sometimes referred to as self-information. The relationship 
between H(X), H(Y), H(X,Y), H(X/Y), H(Y/X), and MI(X,Y) is expressed in a Venn 
diagram (see Figure E.1). MI(X,Y) corresponds to the intersection of the information in  
X with the information in Y.  

 

 

 

 

 

 

 

 

Figure E.1. Relationship between entropy and MI. 

E.2 Relief 

A problem of estimating the quality of attributes (features) is an important issue in the 
machine learning when a sufficient subset of features to describe the target concept is 
selected. Relief is a nonlinear technique that is able to detect conditional dependencies 
between attributes and provide a unified view on the attribute estimation in regression 
and classification (Robnik-Sikonja and Kononenko, 2003).  

The original Relief algorithm considering two-class problems is used to estimate the 
quality of attributes according to how well their values distinguish between the 
instances that are near to each other (Kira and Rendell, 1992).  

For that purpose, given a randomly selected instance X,  Relief  searches  for  its  two  
nearest  neighbors  based  on  the  Euclidian  distance  measure:  one  from  the  same  class,  
called nearest hit Hnearest,  and  the  other  from  a  different  class,  called  nearest  miss  

 

 

H(X/Y) 

 

 

            H(Y/X) 

MI(X,Y) 

H(X) H(Y) 

H(X,Y) 
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Mnearest. In the Relief algorithm, the weight of the ith feature Wi is updated according to 
the following equation: 

( ) ( ) ( ) ( )| ( ) | | ( ) |, 1, 2, ...,i i i i
i i nearest nearestW W X M X X H X i I  (E.5) 

where X(i) is the ith attribute (feature) of the sample X; Mnearest
(i) and Hnearest

(i) are the ith 
features of the nearest miss and the nearest hit of the sample X, respectively, and I is the 
number of candidate input features.  

Therefore, a feature’s weight is updated according to how well its values distinguish the 
sample from its nearest hit and nearest miss. A feature will receive a high weight if it 
differentiates between samples from opposite classes and has the same value for the 
samples of the same class (Robnik-Sikonja and Kononenko, 2003). The cycle is 
repeated for all randomly selected samples, and then, the candidate features are ranked 
according to the finally obtained weight values.  

The original Relief algorithm is limited to two-class problems and becomes 
inappropriate for a problem of electricity price forecasting where the price value Y is 
continuous. The difference from the original Relief to adapt it to the regression problem 
is that, instead of one nearest hit and one nearest miss, Relief uses K nearest  hits  and  
misses and averages their contribution to Wi.  

Relief’s estimate Wi of the quality of the ith attribute is an approximation of the 
following difference of probabilities (Kononenko, 1994): 

( . / . )

( . / . )

th
i

th

W P diff value of i feature nearest sample from diff class
P diff value of i feature nearest sample from same class

 
(E.6) 

Then, instead of requiring the exact knowledge of whether two samples belong to the 
same  class  or  not,  a  kind  of  probability  that  the  price  values  Y of  two  samples  are  
different is introduced. This probability can be modeled with the relative distance 
between the price value Y (class) of two samples. 

Eq. (E.6) can be reformulated, so it can be directly evaluated using the probability that 
the price values Y of two samples are different: 

       _ ( . / )th
diff iP P diff value of i feature nearest samples  (E.7) 

        _ ( . / )diff YP P diff value of Y nearest samples  (E.8) 

_ / _ ( . / . )th
diff Y diff iP P diff value of Y diff value of i featureand nearest samples  (E.9) 

and from Eq. (E.6) according to Bayes’ rule:  
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             _ / _ _ _ / _ _

_ _

(1 )
1

diff Y diff i diff i diff Y diff i diff i
i

diff Y diff Y

P P P P
W

P P
. 

(E.10) 

The algorithm to estimate Wi by approximating terms defined by Eqs (E.7)–(E.9) can be 
found in (Robnik-Sikonja and Kononenko, 2003). 

Relief-based algorithms have been recommended for feature selection when 
classification or regression approaches are adopted (Kononenko, 1994; Robnik-Sikonja, 
Kononenko, 2003). 
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Appendix F: Two-step feature selection algorithm 
Relevance values are calculated for the target variable (price) and each candidate 
feature. Further, all candidate features with a relevance value (with respect to the target 
feature)  V1 (0.61) are selected by the relevancy filter (see Figure F.1 and Table F.1). 
The selected features indicate the short-run trend (priceh-1, priceh-2, priceh-3, priceh-4), 
and the daily (priceh-24) and weekly periodicity (priceh-168) of the price series.  

 

Figure. F.1.Relevance values between the candidate inputs and the target variable. 

The results obtained when the redundancy filter is implemented are presented in Table 
F.2. Competing candidate inputs, their mutual relevance values (correlation coefficient), 
relevance values between each candidate input and a target variable (correlation 
coefficient), and the removed inputs are presented in Table F.2.  
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Table F.1. Results obtained when the relevance filter is implemented. 

Selected input Correlation coefficient  
priceh-1 0.94 
priceh-2 0.85 
priceh-3 0.75 
priceh-4 0.67 
priceh-21 0.64 
priceh-22 0.71 
priceh-23 0.76 
priceh-24 0.79 
priceh-25 0.75 
priceh-26 0.68 
priceh-47 0.66 
priceh-48 0.68 
priceh-49 0.65 
priceh-71 0.66 
priceh-72 0.69 
priceh-73 0.66 
priceh-95 0.64 
priceh-96 0.66 
priceh-97 0.62 
priceh-120 0.63 
priceh-143 0.66 
priceh-144 0.69 
priceh-145 0.66 
priceh-165 0.62 
priceh-166 0.70 
priceh-167 0.77 
priceh-168 0.80 
priceh-169 0.76 
priceh-170 0.69 
priceh-191 0.65 
priceh-192 0.66 
priceh-193 0.62 
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Table F.2. Results obtained when the redundancy filter is implemented. 

Candidate 
input xa 

Candidate 
input xb 

RV(xa, xb) RV(xa,y) RV(xa,y) Removed 

priceh-1 priceh-2 0.94 0.94 0.85 priceh-2 
priceh-3 priceh-4 0.94 0.75 0.67 priceh-4 
priceh-21 priceh-22 0.94 0.64 0.71 priceh-21 
priceh-22 priceh-23 0.94 0.71 0.76 priceh-22 
priceh-23 priceh-24 0.94 0.76 0.79 priceh-23 
priceh-24 priceh-25 0.94 0.79 0.75 priceh-25 
priceh-47 priceh-48 0.94 0.66 0.68 priceh-47 
priceh-48 priceh-49 0.94 0.68 0.65 priceh-49 
priceh-71 priceh-72 0.94 0.66 0.69 priceh-71 
priceh-72 priceh-73 0.94 0.69 0.66 priceh-73 
priceh-95 priceh-96 0.94 0.64 0.66 priceh-95 
priceh-96 priceh-97 0.94 0.66 0.62 priceh-97 
priceh-143 priceh-144 0.94 0.66 0.69 priceh-143 
priceh-144 priceh-145 0.94 0.69 0.66 priceh-145 
priceh-165 priceh-166 0.94 0.62 0.70 priceh-165 
priceh-166 priceh-167 0.94 0.70 0.77 priceh-166 
priceh-167 priceh-168 0.94 0.77 0.80 priceh-167 
priceh-168 priceh-169 0.94 0.80 0.76 priceh-169 
priceh-191 priceh-192 0.94 0.65 0.66 priceh-191 
priceh-192 priceh-193 0.94 0.66 0.62 priceh-193 
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Appendix G: RVM and RF forecasting engines 

G.1 RVM  

Relevance vector machine (RVM), a statistical learning technique based on the 
Bayesian estimation theory, is developed for regression and classification problems. A 
detailed mathematical description of the RVM is given in (Tipping, 2001).  

Note that in most of real-world problems, the training data are not linearly separable. 
The method to deal with nonlinear data is to use a map function to map the training data 
from the input space into some high-dimensional feature space so that they will become 
linearly separable in the feature space. The related kernel function is used to avoid 
explicit knowledge of the high-dimensional mapping (Vapnik, 1995). A Gaussian RBF 
kernel with its specific value of spread RVM is  selected  for  the  application  of  RVM  
(Meng et al., 2009). 

G.2 RF 

RF produces a forest of a specific number of decision trees (Ntree) whose predictions are 
combined to make an overall prediction for the forest. Bagging is a method to develop 
improved estimating class probabilities from the decision tree classification algorithm.  

Mathematical description of the decision tree and the bagging method can be found in 
(Breiman, 1984; Provost et al., 2000; Ali et al., 2012). 
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G.3 RVM and RF with different feature selection techniques 
Table G1. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2009 produced by the RVM employing different feature selection techniques. 
Input data: historical prices. 

 
 Feature selection technique 

Test week Linear 
Corr./ — 

Relief/            
— 

MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 5.38 5.01 5.20 6.01 5.88 
Summer 9.97 10.55 10.13 10.83 11.25 
Spring 6.21 6.54 6.01 5.99 6.89 
Winter 6.02 7.01 6.13 6.88 7.20 

Average 6.90 7.28 6.87 7.43 7.81 
 Linear Corr. 

/ Linear 
Corr. 

MI/            
MI 

Relief/            
Linear Corr. 

Relief /            
MI 

Heuristic 

Fall 4.69 4.78 4.86 4.81 5.81 
Summer 9.38 9.27 10.37 10.05 10.57 
Spring 5.87 5.94 5.31 4.99 8.52 
Winter 5.21 5.03 5.47 5.25 7.48 

Average 6.29 6.26 6.50 6.28 8.10 
 
Table G.2. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2010 produced by the RVM employing different feature selection techniques. 
Input data: historical prices. 

 
 Feature selection technique 

Test week Linear 
Corr. / — 

Relief /            
— 

MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 3.22 3.50 2.66 3.15 4.99 
Summer 5.64 6.02 5.23 5.79 5.66 
Spring 8.79 9.03 8.90 8.81 8.13 
Winter 23.77 19.88 20.66 19.05 18.90 

Average 10.36 9.61 9.36 9.20 9.42 
 Linear Corr. 

/ Linear 
Corr. 

MI/            
MI 

Relief /            
Linear 
Corr. 

Relief/            
MI 

Heuristic 

Fall 2.64 2.54 3.03 3.17 3.05 
Summer 4.79 4.40 5.64 6.96 7.05 
Spring 8.58 7.23 8.83 8.71 9.13 
Winter 19.00 17.86 19.19 18.32 26.86 

Average 8.75 8.03 9.17 9.29 11.52 
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Table G3. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2009 produced by the RF regression employing different feature selection 
techniques. Input data: historical prices. 

 
 Feature selection technique 

Test week Linear Corr. / 
— 

Relief/            
— 

MI             
— 

KNN/            
— 

Sequential 
selection  

Fall 5.56 5.98 5.47 5.80 5.68 
Summer 9.26 9.90 9.29 9.93 10.15 
Spring 5.99 6.10 5.68 5.99 6.10 
Winter 6.09 6.29 6.00 6.10 6.89 

Average 6.73 7.07 6.61 6.96 7.13 
 Linear Corr. / 

Linear Corr. 
MI/             
MI 

Relief /            
Linear 
Corr. 

Relief /            
MI 

Heuristic 

Fall 4.50 4.63 5.06 5.31 5.93 
Summer 8.95 9.19 9.31 10.28 10.22 
Spring 5.63 5.63 5.59 5.76 7.12 
Winter 5.77 5.52 5.30 5.67 6.25 

Average 6.21 6.24 6.32 6.76 7.38 
 
Table G4. AMAPE (%) for the price forecast of the four weeks of the Finnish day-ahead energy 
market in the year 2010 produced by the RF regression employing different feature selection 
techniques. Input data: historical prices. 

 
 Feature selection technique 

Test week Linear Corr. / 
— 

Relief/            
— 

MI/            
— 

KNN/            
— 

Sequential 
selection  

Fall 3.08 3.12 2.68 3.44 3.73 
Summer 6.90 5.17 4.68 4.76 6.06 
Spring 10.03 9.63 9.23 9.05 9.33 
Winter 17.24 18.01 16.89 17.25 17.96 

Average 9.31 8.98 8.37 8.63 9.27 
 Linear Corr. / 

Linear Corr. 
MI/            
MI 

Relief /        
Linear 
Corr. 

Relief /            
MI 

Heuristic 

Fall 2.66 2.53 3.13 3.17 3.03 
Summer 5.64 4.45 5.79 4.96 6.76 
Spring 9.14 8.47 8.83 8.71 9.74 
Winter 16.60 14.59 16.45 16.32 23.15 

Average 8.51 7.51 8.55 8.29 10.67 
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Appendix H: Simultaneous price and demand forecasting 

H.1 Inputs selected by the two-step feature selection 

The selected inputs and their ranked correlation coefficients (with respect to the target 
variable) are given for price and demand prediction (see Table H.1). 

Table H.1. Feature selection results for the approximation wavelet subseries of price and 
demand for 15 Nov 2009 in the Finnish day-ahead energy market. 

 
Selected features for the 

approximation subseries of price at 
hour h 

 Selected features for the 
approximation subseries of demand 

at hour h 
Selected inputs Correlation 

coefficient 
Selected inputs Correlation 

coefficient 
A3price,h-1 0.99  A3demand, h-1 0.99 
A3price,h-2 0.97 A3SARIMA_demand,h 0.97 

A3SARIMA_price,h 0.82 A3demand, h-167 0.92 
A3SARIMA_demand,h 0.79 A3demand, h-3 0.87 

A3demand,h-167 0.77 demandh-167 0.83 
A3price,h-170 0.74 A3demand, h-4 0.79 
A3price,h-167 0.73 demandh-167 0.83 
A3price,h-169 0.73 demandh-146 0.69 
A3price,h-25 0.71 A3price,h-145 0.66 

A3demand,h-170 0.69 A3price,h-144 0.66 
A3demand,h-172 0.68 A3SARIMA_price,h 0.62 

A3price,h-21 0.67 A3price,h-1 0.62 
A3demand,h-146 0.66 A3price,h-142 0.59 
A3demand,h-194 0.66 A3demand, h-48 0.59 
A3demand,h-142 0.66 A3demand, h-20 0.59 

priceh-169 0.66 A3demand, h-140 0.55 
A3demand,h-22 0.65 A3price, h-167 0.55 
A3demand,h-4 0.64 A3price,h-3 0.55 
priceh-170 0.64 A3demand, h-94 0.54 
A3price,h-6 0.63 demandh-163 0.54 

A3price,h-165 0.63    
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H.2 Model performance for a period of one year 
Table H.2. Results of the proposed simultaneous price and demand forecasts for all 52 weeks of 
the year 2009 in the Finnish day-ahead energy market. 

Week 1 2 3 4 5 6 
AMAPE 5.08/4.02 4.45/2.72 5.76/2.09 3.20/1.84 2.88/0.99 3.78/1.65 
Week 7 8 9 10 11 12 

AMAPE 4.17/1.25 3.66/1.17 2.48/1.18 5.10/2.17 3.59/1.56 2.93/1.60 
Week 13 14 15 16 17 18 

AMAPE 5.97/1.74 3.38/1.31 5.68/3.91 6.43/2.89 5.79/1.90 7.07/2.17 
Week 19 20 21 22 23 24 

AMAPE 6.20/1.68 4.17/1.98 6.35/3.71 7.10/2.94 4.46/1.40 5.40/2.33 
Week 25 26 27 28 29 30 

AMAPE 6.20/4.04 3.97/2.69 5.93/0.87 4.45/1.39 5.58/1.60 8.06/1.61 
Week 31 32 33 34 35 36 

AMAPE 7.25/2.13 6.58/1.85 6.34/1.91 6.86/1.05 5.49/0.98 6.14/0.95 
Week 37 38 39 40 41 42 

AMAPE 5.00/1.16 4.49/1.12 4.96/1.14 5.87/1.81 4.89/1.73 3.27/1.73 
Week 43 44 45 46 47 48 

AMAPE 2.55/1.96 3.85/2.79 1.92/2.05 3.18/1.85 2.61/2.16 3.82/1.39 
Week 49 50 51 52   

AMAPE 7.22/1.55 6.38/2.22 8.73/2.86 7.09/2.77   
 
Average of price AMAPEs = 5.07%; Average of demand AMAPEs = 1.95% 
 
Table H.2 shows that the AMAPE values for all 52 weeks of the year 2009 are close to 
the AMAPE values of the four considered test weeks. The averages of the AMAPEs for 
the 52 weeks are slightly higher than or similar to the averages of the AMAPEs of the 
four test weeks for both the price (5.07% versus 4.48%) and the demand (1.95% versus 
1.79%). 
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Appendix I: Iterative forecasting methodology with 
separate normal price and price spike frameworks 

I.1 PNN  

Probabilistic neural networks (PNN) are a kind of a radial basis network suitable for 
classification problems. A PNN is closely related to the Parzen window probability 
density function estimator (Duda et al., 2001). A PNN is organized into a multilayered 
feed-forward network with four layers: an input layer (set of measurements), a pattern 
layer (the Gaussian functions), a summation layer (average operation of the outputs 
from the second layer for each class), and an output layer (a vote, selecting the largest 
value).   Mathematical  details  of PNN can be found in (Specht,  1988).  The spread of a 
Gaussin RBF PNN is an adjustable parameter of the PNN. If the spread is close to zero, 
the network acts as a nearest neighbor classifier. As the spread becomes larger, the 
designed network takes into account several nearby design vectors. 

I.2 Forecasting performance of competing approaches 

Forecasted price curves obtained from SARIMA, WT+SARIMA, WT+NN, and 
WT+SARIMA+NN models for the four spiky weeks of the year 2010 in the Finnish 
day-ahead energy market are presented in Figures I.1–I.4, respectively.  

 
Figure I.1. SARIMA: (a) Week 1; (b) Week 2; (c) Week 5; (d) Week 28. 
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Figure I.2. WT+SARIMA: (a) Week 1; (b) Week 2; (c) Week 5; (d) Week 28. 

 
Figure I.3. WT+NN: (a) Week 1; (b) Week 2; (c) Week 5; (d) Week 28. 
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Figure I.4. WT+NN+SARIMA: (a) Week 1; (b) Week 2; (c) Week 5; (d) Week 28. 
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Appendix J: Short-term operation planning 
The support decision-making tool generating an optimal production schedule and 
bidding strategy for a demand-side market customer based on the electricity price 
forecast is discussed.  

Scheduling of the demand-side market participants’ operation is formulated as an 
optimization problem, which is solved to minimize the expected energy costs of the 
market participant. The problem of minimizing electricity costs over the next 24 hours 
for a demand-side market participant can be given as: 

24

1
min

h
h hP h

Cost price P  
(J.1) 

where Ph is the net power purchased from the market at hour h and priceh is the market 
price at hour h. It should be noted that Eq. J.1 is subject to technical constraints (e.g. 
generation constraints, transmission constraints). 

In a real case, when the optimization problem to schedule day-ahead operation has to be 
solved, realized electricity market prices are not known. Therefore, price forecasts 
generated from the corresponding forecasting model are given as the expected day-
ahead prices and considered in Eq. J.1 as the realized market prices. 

A demand-side market customer considered in this study is presented as a typical CHP 
industry process having own on-site generation and both thermal and electrical energy 
demand. The thermal and electrical energy demand profiles are assumed to be known 
for an operational day (see Figure J.1). 

The real case of CHP power plant operation within an electricity market environment 
can be presented as in Figure J.2.  

Therefore, the optimization objective function can be given as: 

24

, ,
1

24 24

1
min forec Import forec ExportProduction

h h Elspot h h Elspot h
hh h i h

Cost Cost price P price P  (J.2) 

where Costh
Production = 300+40·(Ph

Heat + Ph
Electr.)+0.002·( Ph

Heat + Ph
Electr.)2  (euro/hour) 

is assumed to be an approximation of the total production costs based on the amount of 
generated heat and electrical energy at hour h; priceh

forec is the forecasted market price 
at hour h;  Ph

Heat is the heat energy generated by CHP; Ph
Electr. is the electrical energy 

generated by CHP; PElspot,h
Import is the electrical energy imported from the market at hour 

h, and PElspot,h
Export is the electrical energy exported to the market at hour h. 
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Figure J.1. a) Thermal and b) electrical energy demand profiles.  

 

Figure J.2. Scheme of the CHP power plant operation within an electricity market.  

The  thermal  demand  must  be  met  at  all  hours  by  the  thermal  energy  produced  at  the  
power plant. The electrical demand must be met either by the energy produced by the 
power plant or energy purchased from the market. The energy balance constraints with 
added transmission losses are written as: 
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h
Heat

h HeatP  (J.3) 

2( )Import Importloss
Elspot,h h Elspot,h

Electr.local
h P Electricity PP  (J.4) 

2( )Export loss Export
Elspot,h Elspot,h

Electr. Electr.local
h h P PP P  (J.5) 

Export
Elspot,h transmission_limitP  (J.6) 

Import
Elspot,h transmission_limitP  (J.7) 

Heat Heat Heat
maxmin hP P P  (J.8) 

Electr. Heat Electr.
maxmin hP P P  (J.9) 

where Heati and Electricityi are the hourly thermal electrical demand, respectively; 
Pi

Electr.local is the electric power from the power plant supplying local electricity demand 
at hour i; Pmin

Heat, Pmax
Heat, Pmin

Electr., Pmax
Electr. are the heat/electricity generation limits of 

the CHP power plant, and loss is the transmission loss coefficient.  

To maintain the CO2 emissions produced by the CHP power plant, a certain constraint 
on the volume of the produced CO2 is given as: 

2
24

.
2 _

1
( )CO Heat Electr

Limith h
h

P P CO  
 

(J.10) 

where CO2 is the coefficient indicating the volume of CO2 (ton) produced per MWh of 
energy  generated  by  the  CHP  power  plant;  CO2_Limit is  the  specified  limit  of  CO2 
produced (ton/day).  

With the thermal and electrical demand profiles of the CHP power plant, the 
optimization problem has been solved for a CHP power plant operating within the 
Finnish day-ahead energy market on a single day, 15 Feb 2010. The values of loss , 

CO2, CO2_Limit  are considered to be 0.0012, 0.43 (ton/MWh), 100 (ton/day), 
respectively. The energy import/export/generation schedules of the CHP power plant 
(presented as in Figure J.2) for a single test day when using actual prices and two 
different price forecasts of low and high accuracy are shown in Figures J.3–J.4. Here, 
the forecasts of high and low accuracy correspond to price forecasts produced by the 
proposed separate forecasting methodology and simple SARIMA, respectively. These 
two forecasting models are considered in Chapter 6 of the doctoral thesis.   
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Figure J.3. Energy scheduling of the CHP power plant during a single day, 15 Feb 2010, based 

on the price forecast obtained from the separate forecasting methodology proposed. 
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Figure J.4. Energy scheduling of the CHP power plant during a single day, 15 Feb 2010, based 

on the price forecast obtained from the SARIMA model. 
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The total CHP costs based on three different market price paths are presented in Table 
J.1. 

Table J.1. The total CHP power plant costs when using actual market prices and two 
different price forecasts for a single day, 15 Feb 2010. 
 

Actual costs, [euro] Estimated costs when using 
the proposed separate 
methodology, [euro] 

Estimated costs when using 
the SARIMA model, [euro] 

19542 19700 20153 
 
The cost deviation information aims at evaluating the overall economic impact of using 
the specific market price forecast in the operation scheduling of the specific market 
participant.  The cost deviation is based upon the following relation  

100%Estimated Costs Actual costsCost Deviation
Estimated Costs

 
 
(J.11) 

Therefore, the cost deviation values can only be calculated after the realized market 
prices are available. Cost deviations (%) (related to the actual power plant costs 
corresponding to the ideal schedules) and AMAPE (%) values when two different price 
forecasts used are illustrated in Figure J.5.   

 
Figure J.5. Cost deviations of the CHP power plant and the AMAPE values when two different 

price forecasts are used for a single day, 15 Feb 2010. 

In this study, scheduling of the next-day operation of the CHP power plant based on the 
24 hours ahead electricity price forecasts of low and high accuracy is described. As 
demonstrated, the electricity market price forecast can be effectively employed to 
schedule the operation 24 hours ahead. Linear correlation between the forecast error 
measures and the corresponding cost deviations exists. 
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