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A linear prediction procedure is one of the approved numerical methods of signal 

processing. In the field of optical spectroscopy it is used mainly for extrapolation known 

parts of an optical signal in order to obtain a longer one or deduce missing signal samples. 

The first is needed particularly when narrowing spectral lines for the purpose of spectral 

information extraction. In the present paper the coherent anti-Stokes Raman scattering 

(CARS) spectra were under investigation. The spectra were significantly distorted by the 

presence of nonlinear nonresonant background. In addition, line shapes were far from 

Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy 

method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra 

were further underwent the linear prediction analysis in order to be narrowed.  
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INTRODUCTION 

Coherent anti-Stokes Raman scattering (CARS) technique is a powerful spectroscopy 

method exploiting nonlinear optical properties of different media (gases, flames, organic 

compounds etc.). This is a non-degenerate four-wave mixing (FWM) process giving the 

signal at anti-Stokes Raman frequency which proportional to third-order nonlinear 

susceptibility of a medium. However, CARS spectra are far from those obtained, for 

instance, by stimulated Raman scattering technique. There are several kinds of distortions 

affecting spectral background (which in general is nonlinear) as well as convenient 

Gaussian/Lorentz profiles of spectral lines. The nonlinear background results from the 

presence of nonresonant response of the medium. As a consequence, the analysis of CARS 

spectra becomes quite unobvious, especially when line broadening mechanisms lead to 

spectral lines being overlapped. Notwithstanding this situation, there exist several 

approaches to resolving the mentioned problems. One of such techniques is the maximum 

entropy method (MEM) which allows scientists to derive Raman line shapes (MEM 

spectra) directly from the CARS spectra [10, 14]. There are several methods of estimation 

nonlinear background as well, amongst which is, for example, wavelet analysis [26, 27]. 

Line narrowing methods are quite useful for obtaining the information on peak frequencies 

and relative peak‟s heights thus enhancing spectral resolution of obtained spectra [28]. The 

essence of line narrowing methods is the linear prediction (LP) algorithm. One of the main 

delimitations of such techniques is that they cannot properly process spectra with non-

constant spectral background because the last is considered by the algorithms as the set of 

additional resonant frequencies that do not characterize the medium resonant quantum 

transitions. 

The present paper is aimed to develop the LOMEP line narrowing algorithm [28] using 

MatLab environment and apply it to the known MEM spectra. The paper is organized as 

follows. The Section 2 provides the description of the CARS process including theoretical 

and experimental considerations. The Section 3 gives the key steps of derivation MEM 

spectra and introduces the spectra to be analyzed. The Section 4 explains the ideas of line 

narrowing techniques and describes the LOMEP procedure. The Section 5 presents the 

main results obtained by this method. Finally, in the Section 6 analysis of the results is 

made. In the Appendix section one can find the sources of the MatLab programs created 

for the current paper.  
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1. GENERAL PRINCIPLES OF CARS SPECTROSCOPY 

1.1. Historical remarks 

The discipline of spectroscopy originates from 1802 when the English chemist and 

physicist Wollaston discovered the presence of dark lines in the spectrum of sunlight [1]. 

Later, mainly due to Fraunhofer, Bunson, Talbot, Kirchhoff and others the discipline was 

further developed and elaborated. However, at that time spectroscopy was essentially an 

empirical science and confined itself to cataloging and classification of newly obtained 

spectra. New period started after Bohr has proposed his atomic theory in 1913. This theory 

provided the first explanation of existing spectra by introducing the concept of discrete 

atomic levels. From this moment spectroscopic experiments started to collaborate with 

atomic theory. 

In 1923 the Austrian theoretical physicist Smekal first theoretically predicted the 

phenomenon of inelastic scattering of photons. In 1928 the Indian physicist Raman 

discovered the effect experimentally for which two years later he was awarded the Nobel 

Prize in physics. He observed that a portion of light scattered from material had a different 

frequency than the incident light. This effect has led to the whole new branch of 

spectroscopy named after the scientist. 

Raman spectroscopy has been a powerful tool for studying molecular vibrations and 

rotations for many years. However, this technique had an essential shortcoming. Before 

laser has been invented Raman signal had been difficult to observe because of its weakness 

and low intensity [2]. As a matter of fact, differential cross-section of spontaneous Raman 

scattering is about 10
-30

 cm
2
/sr resulting in low instrumental sensitivity and spectral 

resolution [3]. The invention of the laser in 1960 has revolutionized this type of 

spectroscopy which has become mostly nonlinear. In 1962 two physicists Woodbury and 

Ng have discovered infrared (IR) component in the spectrum of the light emitted by ruby 

laser with the nitrobenzene Kerr cell [4]. This observation revealed a new type of Raman 

scattering called stimulated Raman scattering. 

In 1965 Maker and Terhune published the paper [5] on induced third order polarization. In 

the paper the process of FWM was demonstrated for the first time. However, methodical 

elaboration of the nonlinear spectroscopy techniques has begun only in 1971 when 
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frequency-tuned lasers became widely in use [6]. One of the FWM spectroscopy 

techniques appeared as the method of CARS. 

1.2. Theoretical background 

In order to describe the process of CARS let us start from the description of medium 

susceptibility 𝜒. This physical quantity can be referred to the measure of how medium 

reacts to electromagnetic (EM) radiation. It is in one-to-one correspondence with the 

internal structure of medium describing both relative positions of atoms inside the unit cell 

of crystal lattice and different vibrational, rotational modes of molecules including dipole 

transitions of electrons. Depending on the intensity of light, medium response can be either 

linear 𝜒𝐿 or nonlinear 𝜒𝑁𝐿. The first occurs when the intensity of external EM field is much 

lower than the intensity of intra-atomic fields (~10
8 

V/cm) while the last takes place when 

we apply strong EM fields with electrical strength ≳10
8 

V/cm (e.g., emitted by lasers). 

Obviously, in order to adequately describe linear and nonlinear susceptibilities one should 

utilize rigorous principles of quantum mechanics. However, in many cases it is sufficient 

to exploit simple models that reveal particular properties under consideration. Here we 

briefly consider the classic model of anharmonic oscillator thus revealing resonant 

properties of a medium. 

Let us consider an isotropic medium consisting of oscillators of one kind and suggest the 

whole system is under strong EM radiation (≳10
8 

V/cm). In this case the motion of each 

oscillator can be described by the well-known nonlinear second-order inhomogeneous 

differential equation in the form 

𝑑2𝑥

𝑑𝑡2
+ Γ
𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥+  𝛽𝑗𝑥
𝑗

∞

𝑗= 2

= −
𝑒

𝑚
𝐸, (1) 

where 𝑚 is the mass of electron, 𝑒 is the electron charge, Γ is the damping parameter, 𝛽𝑗 is 

the normalized nonlinear spring coefficients, 𝜔0 is the damped oscillator‟s natural 

frequency and 𝐸= 𝐸0𝑒
−𝑖𝜔𝑡 is the complex electric field [7]. Under the assumption of 

weak nonlinearities, following [7], we can immediately write the solution of (1) in the form 

of series expansion 
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𝑥=  𝑥𝑙

∞

𝑙= 1

, (2) 

where 

𝑥1 = −
𝑒

𝑚

𝐸0𝑒
−𝑖𝜔𝑡

𝜔0
2−𝜔2−𝑖Γ𝜔

 , 

 

𝑥2 =
𝑒2

𝑚2
𝛽2

𝐸0
2𝑒−2𝑖𝜔𝑡

 𝜔0
2−4𝜔2−2𝑖Γ𝜔  𝜔0

2−4𝜔2−𝑖Γ𝜔 2
 , 

 

𝑥3 = −
𝑒3

𝑚3
 

2𝛽2
2

𝜔0
2−4𝜔2−2𝑖Γ𝜔

+ 𝛽3 
𝐸0

3𝑒−3𝑖𝜔𝑡

 𝜔0
2−𝜔2−𝑖Γ𝜔  𝜔0

2−9𝜔2−3𝑖Γ𝜔 
 , 

 

…   . 

(3) 

Defining polarization of a medium 𝑷 as the vector sum of the oscillators‟ dipole moments 

𝑁𝒑= −𝑁𝑒𝒙 per unit volume 𝑉 we find the following series expansion for the absolute 

value 𝑃 

𝑃= −
𝑁

𝑉
𝑒𝑥= −𝑛𝑒 𝑥𝑙

∞

𝑙= 1

= 𝜒 1 𝐸+ 𝜒(2)𝐸2 + 𝜒 3 𝐸3 + ⋯, (4) 

where 𝜒 1  is the linear susceptibility of a medium, 𝜒 𝑖 , 𝑖= 2,3,…, are the nonlinear 

susceptibilities of 𝑖th order and 𝑛 is the concentration of oscillators in the medium. From 

(4) one can directly conclude that the second term corresponds to a second-order nonlinear 

process which results in generating new frequencies being linear combinations of two 

incident frequencies (three-wave mixing processes). At the same time the third term 

describes the third-order nonlinear processes that generate new frequencies as linear 

combinations of three initial frequencies (four-wave mixing processes).  At this point it is 

worth noting that the second term in (4) is vanished for noncentro-symmetrical systems 

(that are dominated over centrosymmetrical ones in nature) leading to 𝜒 3  being the first 

nonlinear term. Expressions (3)–(4) exhibit resonant behavior of susceptibilities and of a 

medium in general. 

In order to find exact expressions for the susceptibilities one should apply quantum 

mechanical formalism of density matrices [4]. Furthermore, in the general case of 

anisotropic medium and EM radiation consisting of more monochromatic components 
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𝜔1,𝜔2,𝜔3,… it appears that susceptibilities are of the tensor form (𝜒𝑖𝑗
 1  𝜔1,𝜔2,𝜔3,… , 

 𝜒𝑖𝑗𝑘
 2  𝜔1,𝜔2,𝜔3,… ,  𝜒𝑖𝑗𝑘𝑙

 3  𝜔1,𝜔2,𝜔3,…  etc.). In addition, quantum mechanical approach 

reveals nonresonant terms in the susceptibilities as well as resonant ones. Thus, nonlinear 

susceptibilities can be written as the sum of resonant and nonresonant terms, for instance, 

𝜒𝑖𝑗𝑘𝑙
 3  𝜔 =  𝜒𝑁𝑅

 3  
𝑖𝑗𝑘𝑙

+  𝜒𝑅
 3  

𝑖𝑗𝑘𝑙
(𝜔). (5) 

There are generally 48 terms in the expression for 𝜒𝑖𝑗𝑘𝑙
 3 

 (for each of 3
4= 81 elements) [4]. 

For isotropic medium the tensor 𝜒𝑖𝑗𝑘𝑙
 3 

 has 21 (out of 81) nonzero elements and only 3 of 

them are linearly independent [3]. The element 𝜒1111
 3 

 can be considered as one of them. It 

corresponds to the linearly polarized vibrations of a medium and therefore is often 

observed by means of linearly polarized laser beams. 

 
Fig.1. CARS process: energy (left) and momentum (right) conservation laws [8]. 

 

Now we can directly proceed to the process of CARS. This process is generally a non-

degenerate FWM process. However, the degenerate CARS process shown in the Fig.1 is 

implemented more frequently. The process assumes two incident pump fields at 

frequencies 𝜔1 and 𝜔2 < 𝜔1 forming together the signal at the beat frequency ω1−𝜔2 =

𝜔v  of a molecular vibrational mode. The latter signal coherently excites medium increasing 

its energy from level  |1  to level  |2  by the value ℏ(𝜔1−𝜔2) . Before relaxation of a 

medium has occurred, a photon from the probe beam with the energy ℏ𝜔1 excites the 

medium to a virtual energy level
*
. According to the quantum mechanical uncertainty 

principle the last process is not forbidden even though it is instant meaning that the 

relaxation of the medium to lower states occurs instantly. There is a nonzero probability of 

the medium to lose its energy down to the level  |1 . In this case an anti-Stokes photon with 

                                                 
*
 Generally speaking, this level must not necessarily be virtual one. 
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the higher energy ℏ𝜔a appears. One could consider this photon being a spontaneously 

emitted in a random direction one. However, this is not the case. Speaking in the terms of 

classical optics, the EM field at the frequency 𝜔1 is scattered not by the random thermal 

fluctuations, but by the regular diffraction grating formed inside crystal. This grating is 

induced by the biharmonic wave at the frequency 𝜔1−𝜔2. As a consequence, for a given 

set of input parameters (angles of incidence, frequencies 𝜔1 and 𝜔2) there exists only one 

direction of constructive interference that satisfies Bragg condition [6]. Thus, we can write 

for the CARS process both conservation energy law and conservation momentum law 

(phase matching condition) as the following 

𝜔a = 2𝜔1−𝜔2, (6) 

𝒌a = 2𝒌1−𝒌2. (7) 

As was mentioned above, the process of CARS is the FWM process and therefore 

described by the third-order nonlinear susceptibility 𝜒a
 3 = 𝜒 3  𝜔a = 2𝜔1−𝜔2 . The 

intensity of anti-Stokes component observed in the experiment is proportional to 

 𝜒 3  𝜔a = 2𝜔1−𝜔2  
2
: 

𝐼a 𝜔a ~ 𝜒
 3  𝜔a = 2𝜔1−𝜔2  

2
𝐼1

2𝐼2 
sin 
Δ𝑘𝐿

2  

Δ𝑘
2

 

2

, (8) 

where 𝐿 is the length of the nonlinear layer and Δ𝑘 =  𝑘a−2𝑘1 + 𝑘2  [6]. According to (7) 

and (8) the intensity 𝐼a has its maximum value whenever the phase matching condition 

Δ𝑘= 0 takes place. The typical CARS line shape is shown in the Fig.2. This kind of line 

shape is obtained, for example, by scanning the nonlinear medium with the field at the 

tunable frequency 𝜔1. Similar result was obtained by Levenson et al. and published in 

1972 [9]. It is notable that the obtained line shape was far from Lorentzian line shape. This 

is because of presence of nonresonant contribution from the electronic response of 

molecules in the third-order susceptibility 𝜒a
 3 

 (see (5)) which leads to the additional 

nontrivial background: 
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 𝜒a
 3  

2

~  𝜒a
 3  

𝑅
+  𝜒a

 3  
𝑁𝑅
 
2

=   𝜒a
 3  

𝑅
 
2

+ 2 𝜒a
 3  

𝑁𝑅
𝑅𝑒  𝜒a

 3  
𝑅
 +  𝜒a

 3  
𝑁𝑅

2

, 

(9) 

where 

 𝜒a
 3  

𝑅
~

𝐴v

𝜔v − 𝜔1−𝜔2 −𝑖Γv
. (10) 

Here 𝐴v  is the amplitude of a vibrational Raman mode and Γv  is its line-width [10].  

 
Fig.2. Typical CARS single line shape [8]. 

1.3. Experimental setup 

With the development of the techniques for generating ultra-short pulses the CARS 

spectroscopy methods have become more efficient. It is the well-known fact that the 

shorter the pulse, the more continuously distributed frequencies it consists of. Thus, in the 

context of CARS spectroscopy by means of ultra-short pulses one can cover several 

vibrational molecular modes at once without scanning procedure (multiplex CARS). As a 

matter of fact, there exist several different modifications of the experimental setups for 

CARS spectroscopy. Each concrete modification can be designed for specific purposes. 

The example of an experimental setup is given by Levenson et al. in [9]. They have used 

the second harmonic of a Q-switched Nd:glass laser and continuously tunable narrow-band 

dye laser in order to obtain the line shape as that in Fig.2. Rotational modes can be studied 

with the other modification of experimental setup presented in [11]. Another example of an 

experimental setup applicable for studying vibrational molecular modes is shown in Fig.3. 

The most common laser system for CARS spectroscopy was the pair of a dye laser and a 
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Nd:YAG laser with pulse repetition rate of approximately 10 Hz and pulse duration ~0.1–

10 ns. The Nd:YAG laser operated in broadband mode and was coupled with a shutter 

(e.g., acousto-optic Q-switch, electro-optical Kerr cell switch etc.) in order to generate 

short pulses at the pump/probe frequency 𝜔1. Today Ti:sapphire lasers can generate ultra-

short femtosecond (fs-) pulses that have much broader bandwidth than nanosecond (ns-) 

and picosecond (ps-) pulses. Instead of relatively cumbersome dye lasers optical 

parametric oscillators (OPO) and optical parametric amplifiers (OPA) are used in order to 

obtain different frequencies. Detection system often consists of a high-resolution 

spectrometer and a CCD-camera. Special optics is needed for the high-energy pulses 

passing through the optical elements. Filters are necessary in order to block input beams 

and probable fluorescence appearing in a sample under observation. 

 

Fig.3. Experimental setup of vibrational CARS spectroscopy [12]. „M‟ denotes mirror, 

„BC‟ – beam combiner, „BS‟ – beam splitter, „A‟ – aperture, „ND‟ – neutral density filter, 

„CCD‟ – charge-coupled device, „L‟ – lens, „SP‟ – short-pass filter. 

In [9], [11] and [12] noncollinear geometries of CARS experimental setups are presented. 

However, the most common geometry for CARS spectroscopy is the collinear one (Fig.4). 
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Fig.4. Collinear geometry of a vibrational CARS experimental setup. 

Let us discuss this issue more carefully. Mathematically there are several ways to satisfy 

phase-matching condition (7). All of them can be separated in a few groups [12]. These are 

collinear phase-matching, planar boxcars phase-matching and folded boxcars phase-

matching (Fig.5). When wave vectors participating in the process are all parallel to each 

other then the collinear phase matching is implemented. Planar boxcars phase matching 

takes place whenever all wave vectors are coplanar. Finally, folded boxcars phase 

matching implies wave vector 𝒌1 belonging to one plane while both 𝒌2 and 𝒌a are 

belonging to another plane. It is shown in the paper [16] that CARS interaction volume 

depends not only on the focusing parameters but in addition on the type of phase matching 

used. In the context of CARS spectroscopy each of these implementations can be revealed 

in a specific type of measurement. Thus, in the paper [13] the folded boxcars case has been 

employed in order to obtain pure rotational CARS spectra to within a few wavenumbers of 

the incident pump frequency. Collinear phase matching is well implemented in gases 

where dispersion within a small interval of frequencies is negligible [2-3]. In liquids 

dispersion is much higher and the phase matching condition is well implemented whenever 

beams are crossing each other at a certain angle (that satisfies the phase matching 

condition) [2]. 
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Fig.5. Different implementations of phase-matching condition [10]. 

The data (see Section 3.2) for the current work were obtained by means of collinear 

experimental CARS scheme similar to that as in Fig.4. The pump/probe laser operating at 

710 nm emitted 10-ps pulses each having the bandwidth of 1.5 cm
-1

. This laser determined 

the spectral resolution. The second (Stokes) laser was frequency-tunable within the range 

of 700 – 1000 nm thus allowing experimenters to cover the vibrational range of 950 – 3150 

cm
-1

. This laser emitted 80-fs pulses with the bandwidth of 184 cm
-1

. 

1.4. Advantages and disadvantages 

Speaking of the advantages of CARS spectroscopy, authors (for instance, [2-3]) commonly 

highlight the following ones: 

1. The main advantage with respect to spontaneous Raman spectroscopy is the high 

intensity of anti-Stokes signal. For comparison, its magnitude can be 10
4
–10

5 
times 

bigger than that of spontaneously scattered Raman signal. 

2. CARS beam is significantly narrow and propagates in the solid angle of order ~10
-6

 sr. 

This allows experimenters to discriminate anti-Stokes signal from fluorescent 

background or thermal radiation (especially when studying plasma). 

3. Scattering volume leading to appearance an anti-Stokes component is essentially 

around a focal point. Such a volume is of order ~10
-6

 cm
3
 and consists of ~10

7
 

molecules. Therefore it is enough to investigate small amounts of a sample. 

4. It is relatively easy to filter anti-Stokes signal owing to its bigger frequency. 
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5. By means of ultra-short pulses it is possible to obtain high spectral resolution (0.3–

0.001 cm
-1

) and also observe processes having fast relaxation times. 

Owing to these advantages CARS spectroscopy methods are extremely effective when 

studying flames, gas discharges, burning processes as well as biological and organic 

samples. With the aid of fs-pulses it is possible to investigate fast processes and vibrational 

dynamics of molecular systems in gaseous, liquid and solid media. 

The main drawbacks of CARS spectroscopy are the relatively high prices of experimental 

equipment and strong fluctuations of the CARS signal caused by instabilities both in 

beams adjustment and pulses‟ intensities [2]. With the aid of pure CARS signal it is 

impossible to directly obtain Raman spectra because of the presence of nonlinear 

nonresonant contribution in the third-order susceptibility which results in both high 

distortions of line shapes and presence of nonresonant background in output spectra. In the 

CARS spectroscopy the absolute value  𝜒 3  
2
 is measured, therefore it is impossible to 

directly obtain phase spectra as well. The last is an issue of high importance because, as 

was shown in a series of papers [10, 14–15], in the context of CARS spectroscopy phase 

spectra are directly proportional to corresponding Raman spectra containing information 

on resonant components of molecules. In the next section the maximum entropy principle 

is applied in order to extract phase function from obtained CARS spectra. It is possible due 

to the interference between resonant part of FWM CARS process and nonresonant 

background which results in the implicit record of phase information within CARS spectra. 
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2. MAXIMUM ENTROPY METHOD 

2.1. Introductory remarks 

In 1948 Shannon published the paper “A Mathematical Theory of Communication” [17] 

where he introduced the quantitative measure of information in the form of entropy. 

Generally speaking, entropy is the measure of either chaos or uncertainty. The more chaos 

(randomness or uncertainty) is in a system under consideration, the greater value of 

entropy the system has, and vice versa. Shannon used the concept to measure information 

uncertainty particularly in cryptography. However, entropy is widely used in 

thermodynamics, statistical mechanics, cosmology, astrophysics, probability theory, 

philosophy, as well as in different applications such as natural language processing [18-19] 

and additional spectroscopic information extraction [7], [10, 14, 20-23]. According to the 

second law of thermodynamics (law of nature) entropy of a system left to its own resources 

can only be increased. This is called the maximum entropy (ME) principle. In this section 

the ME principle is used in order to extract phase information from the CARS signal. The 

fundamental idea is to find the ME model for the finite set of spectral data, i.e. to fit known 

samples with the new ones giving the most random corresponding time samples (discrete 

Fourier transform, DFT), whose autocorrelation values are in agreement with the given 

data set [23]. Mathematically it can be done by exploiting the methods of variation 

calculus where the entropy functional (which might include additional constraints) is 

maximized. The idea has been proposed by Burg [24]. 

It is worth noting that MEM is not the only theoretical method for phase retrieval. Another 

method is based on the well-known Kramers-Kronig (KK) relations. However, these 

relations cannot be applied with sufficient confidence whenever one deals with finite and 

discrete set of experimental data. Moreover, in nonlinear optics MEM covers a wider 

subset of problems than the KK relations [7, 10, 23]. 

2.2. Theoretical background  

Following the papers [7], [10], [14], [21] and [23], let us represent here the most important 

steps of the phase function ME model derivation process. Let 𝑥𝑚, 0≤𝑚≤𝑀, be a 

measured experimental equidistant (with a distance Δ𝑡) time series and 𝐶 𝑚 =

𝜖 𝑥𝑛,𝑥𝑛+𝑚  be a corresponding autocorrelation function (𝜖 is the mathematical expectation 
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operator). Then 𝐶(𝑚)  and the power spectrum 𝑆(𝜈)  are connected through the following 

Fourier transforms: 

𝑆 𝜈 =  𝐶 𝑚 𝑒−𝑖2𝜋𝑚𝜈
∞

𝑚=−∞

, (11) 

𝐶 𝑚 =  𝑆 𝜈 𝑒𝑖2𝜋𝑚𝜈𝑑𝜈

1
Δ𝑡

0

. 
(12) 

One can obtain a power spectrum estimate by applying a Fourier transform to 𝑤 𝑚 𝐶(𝑚)  

under the assumption that 𝐶 𝑚 = 0, 𝑚 > 𝑀; 𝑤(𝑚)  is a window function. Next, one 

should apply the Burg‟s MEM [24] mentioned above. The output is the maximum entropy 

model for 𝑆(𝜈) . As a starting point for phase retrieval procedure, one has to maximize the 

entropy rate 

ℎ~ log𝑆(𝜈)𝑑𝜈
1

0

 (13) 

under the constraint 

𝐶 𝑚 =  𝑆 𝜈 𝑒𝑖2𝜋𝑚𝜈𝑑𝜈
1

0

, 𝑚 ≤𝑀, (14) 

i.e. to solve 

𝜕ℎ

𝜕𝐶(𝑚)
= 0, 𝑚 > 𝑀. (15) 

The solution of (15) can be written as the power spectrum estimate, namely 

𝑆 𝜈 =
1

 𝑎𝑘𝑒−𝑖2𝜋𝑘𝜈
𝑀
𝑘=−𝑀

, (16) 

where 

𝑎𝑘=  
1

𝑆 𝜈 
𝑒𝑖2𝜋𝑘𝜈𝑑𝜈

1

0

, 𝑘 ≤𝑀. (17) 

Now, one needs to substitute (16) into (14), but for 0≤𝑚≤𝑀. This operation 

corresponds to obtaining such coefficients 𝑎𝑘 for which (16) would be in accordance with 
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the known autocorrelation values 𝐶(𝑚) . The methods of complex analysis lead to the set 

of linear equations which can be represented using Toeplitz matrix as 

 

𝐶 0 𝐶 −1 ⋯ 𝐶 −𝑀 

𝐶 1 𝐶 0 ⋯ 𝐶 1−𝑀 
⋮ ⋮ ⋱ ⋮

𝐶 𝑀 𝐶 𝑀−1 ⋯ 𝐶 0 

  

1
𝑐1
⋮
𝑐𝑀

 =  

𝑏0

0
⋮
0

 , (18) 

where 𝑏0 is real and 𝑐𝑘, 1≤𝑘≤𝑀, are complex coefficients. It appears that ME model 

(16) can be written in the terms of these coefficients as 

𝑆 𝜈 =
𝑏0

 1 +  𝑐𝑘𝑒−𝑖2𝜋𝑘𝜈
𝑀
𝑘= 1  2

, (19) 

where 𝑐𝑘 and 𝑏0 can now be calculated from (18). 

It can be shown [25] that there is one-to-one correspondence between the ME model (19) 

and the autoregressive (AR) model of a stationary stochastic signal (time response 

function) 𝑥(𝑡)  

𝑥𝑚 = − 𝑐𝑘𝑥𝑚−𝑘+ 𝑒𝑚

𝑀

𝑘=𝑙

, (20) 

where 𝑒𝑚 is a random error. By taking a DFT of (20) we obtain the following expression 

for the complex spectral response 

𝑓(𝜈) =
𝐸(𝜈)

1 +  𝑐𝑘𝑒−𝑖2𝜋𝑘𝜈
𝑀
𝑘=𝑙

, (21) 

where 𝑓 𝜈 = ℱ{𝑥 𝑡 }, 𝐸 𝜈 = ℱ 𝑒 𝑡  =  𝛽 𝑒−𝑖𝜙 𝜈  is the error spectrum, 𝜙(𝜈)  is the 

phase of the error spectrum, which cannot be defined from measured |𝑓 𝜈 |. As follows 

from (21), the phase retrieval process can be reduced to the estimation of the error phase 

function 𝜙 𝜈 . The denominator of (21) can be presented as 1 +  𝑐𝑘𝑒
−𝑖2𝜋𝑘𝜈𝑀

𝑘=𝑙 =

 𝐴𝑀 𝜈  𝑒
−𝑖𝜓 𝜈 , where 𝜓(𝜈)  is called MEM phase. True phase of a CARS signal can be 

shown to be the sum of the MEM phase function and the error phase function. It appears 

that for the most cases of CARS spectroscopy the error phase function 𝜙(𝜈)  is almost zero 

and the MEM phase 𝜓(𝜈)  coincides with the true phase spectrum. 
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According to (9), nonlinear cubic susceptibility registered in a CARS experiment consists 

in general of three terms including quadratic combinations of resonant and nonresonant 

components which make obtained CARS spectra difficult to analyze. The resonant part of 

the susceptibility in complex compounds can be represented as the sum of (10). Such a 

sum can be compared with the corresponding spontaneous Raman signal 

𝐼𝑆𝑅𝑆 𝜔 ~ 
𝐴𝑗Γ𝑗

𝜔𝑗−𝜔+ Γ𝑗
2

𝑗

, (22) 

where 𝐴𝑗, 𝜔𝑗 and Γ𝑗 are the amplitude, the frequency and the line width of 𝑗th Raman mode 

respectively. From this comparison, one can derive the Raman spectra to be 

Im𝜒𝑅
 3  𝜔𝑎 ≈ 𝜒1111

 3  𝜔𝑎  sin(𝜃′), (23) 

where 𝜃′ is the estimate of the 𝜒1111
 3 

 phase. It is seen from (23) that there is still 

nonresonant background in the Raman spectra. Taking into account the presence of 

nonresonant susceptibility leads to the following expression for the phase away from 

resonances: 

𝜃 ω = tan−1 
Im𝜒𝑅

 3  𝜔 

𝜒𝑁𝑅
 3 + Re𝜒𝑅

 3  𝜔 
 . (24) 

The diagram showing the phase of nonlinear susceptibility on the complex plane is 

presented in the Fig.6. Whenever experimentalists deal with relatively simple samples 

(such as gases or flames) there is almost constant nonresonant background in the obtained 

spectra. As can be seen from the Fig.6, in this case 𝜒𝑅
 3 

 is almost equaled to Im𝜒1111
 3 

 

which exactly coincides with the corresponding Raman spectrum. However, for the 

complex organic compounds this is not the case and phases‟ ME models become extremely 

useful. 
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Fig.6. Representation of nonlinear susceptibility on the complex plane [29]. 

2.3. Application of MEM to experimental and theoretical spectra 

In the present paper different CARS spectra were used to be analyzed. The pictures below 

present the CARS spectra (left) and the corresponding MEM phase spectra (right) of water 

(Fig.7), water solutions of sucrose (Fig.8 and Fig.9), simulated 𝜒 3  without background 

(Fig.10) and with non-constant background (Fig.11), and equimolar (500 mM) mixture of 

adenosine mono-, di- and triphosphate nucliotides (AMP, ADP and ATP) in water 

(Fig.12). 

 
 

Fig.7. Spectra of water without sucrose. 
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Fig.8. Spectra of water solution of 300 mM sucrose. 

 

 
 

Fig.9. Spectra of water solution of 500 mM sucrose. 

 

 
 

Fig.10. Simulated 𝜒 3  spectra with constant background. 
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Fig.11. Simulated 𝜒 3  spectra with non-constant background. 

 

 
 

Fig.12. Spectra of ADP/AMP/ATP. 

It is seen from the figures above that the MEM phase spectra are similar to those of Raman 

scattering processes, even though they still need to be analyzed for significant nonlinear 

background. 
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3. LINE NARROWING PROCEDURE 

3.1. Introductory remarks 

Line broadening is one of the problems experimentalists encounter when measuring CARS 

spectra. This is in addition to the presence of slow varying nonresonant background and 

line shape distortions. The last problem can be solved by means of MEM algorithm briefly 

described in the Section 3. Nonresonant background can be estimated, for instance, using 

the MEM approach coupled with wavelet analysis [26-27]. Another approach to the 

problem could be the procedure of line narrowing which narrows spectral lines to a less 

FWHM. After this is accomplished one can easily correct the estimate of slow varying 

spectral background. In addition, narrowed spectra are more informative meaning 

knowledge about the number of spectral lines and their relative peak spectral powers. 

Thus, line narrowing methods become extremely important for the spectral analysis of 

CARS spectra. 

3.2. Fourier self-deconvolution (FSD) 

The fundamental idea of any line narrowing method is the fact that the broader the pulse, 

the narrower corresponding spectral lines it has. Therefore first of all one should convert 

the spectrum (discrete set of frequencies) under consideration to the corresponding 

radiation (time series). This is always done by the Fourier transform. In the current paper 

the inverse DCT was exploited in the following form: 

𝑥𝑘=  
1

𝑁
𝑓0 +  

2

𝑁
 𝑓𝑗cos 

𝜋

2𝑁
 𝑗−1  2𝑘−1  

𝑁−1

𝑗= 1

,𝑘= 0,…,𝑁−1, (25) 

where 𝑁 is the number of spectral samples, 𝑓𝑗 is the 𝑗th spectral sample and 𝑥𝑘 is the 𝑘th
 

time sample. The corresponding direct DCT is 

𝑓𝑘=  
2

𝑁
 𝑥𝑗cos 

𝜋

2𝑁
 2𝑗−1  𝑘−1  

𝑁−1

𝑗= 0

,𝑘= 1,…,𝑁−1, 

𝑓0 =  
1

𝑁
 𝑥𝑗

𝑁−1

𝑗= 0

. 

(26) 
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These forms are straight and do not assume 𝑁 to be equaled to 2𝑛. After the time series 𝑥𝑘 

has been calculated by using (25), the next step should be to make the signal broader. This 

can be done by the FSD procedure (which corresponds to deapodization in the time 

domain) implying the factorization of the original signal by the inverse Fourier transform 

of a window function 𝑊(𝑓) [28]. Let us consider this issue more carefully. Following [28], 

let a measured spectrum be of the form 

𝐻𝑤 𝑓 = 𝑊 𝑓 ∗𝐻 𝑓 =  𝑊 𝑓′ 𝐻 𝑓−𝑓′ 𝑑𝑓′,
∞

−∞

 (27) 

where 𝐻 𝑓  is the real spectrum, 𝑊(𝑓)  is an instrumental window function. The spectrum 

𝐻(𝑓)  can be obtained by deconvolution if 𝑊 𝑓  is defined. However, deconvolution (in 

the frequency domain) is rather difficult to implement, therefore deapodization
†
 (in the 

time domain) is used more frequently. Thus, one should take Fourier transform of (27) 

which leads to the following equation: 

ℱ 𝐻𝑊 𝑓  = ℱ 𝑊 𝑓  ℱ 𝐻 𝑓   (28) 

Finally, the real spectrum can be obtained from (28) by taking inverse Fourier transform as 

𝐻 𝑓 = ℱ−1 
ℱ 𝐻𝑊 𝑓  

ℱ 𝑊 𝑓  
 . (29) 

In the line narrowing process self-deconvolution is used. In this case spectrum is 

deconvolved by the line shape of the spectrum itself [28]. Let 𝑊𝑅(𝑓)  be a registered single 

line shape. As follows from (29), 

ℱ−1 
ℱ 𝑊𝑅 𝑓  

ℱ 𝑊𝑅 𝑓  
 = ℱ−1 1 = 𝛿 𝑓 . (30) 

Thus, in the ideal case of the single line shape without noise the FSD procedure leads to 

the Dirac‟s delta function which has an infinitely small FWHM. However, the real spectra 

are always noisy requiring the additional smoothing operation by multiplying the 

corresponding spectrum by some smoothing window function. Moreover, measured 

spectra lie within the finite range of frequencies giving sinc-function instead of the delta 

function in (30). Finally, the spectra are usually consisted of several spectral lines. 

Fortunately, the FSD procedure is a linear operation meaning that the deapodization of the 

                                                 
†
 Further „deapodization‟ and „deconvolution‟ will be used as synonyms. 
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signal composed of several frequencies implies the narrowing of each spectral line 

separately. It does not affect the relative heights of the spectral lines as well as their 

positions and areas under the corresponding line shapes. 

The FSD procedure affects the tails of the signal more than its core, in a gradient-like way, 

resulting in the increase of intensity, particularly of the tails. As a result, the signal may 

seem to be wider and the corresponding spectral lines narrower. The problem is what kind 

of window function would be more appropriate in order to obtain better results. In this 

paper the Lorentz function was used as the most relevant to physical considerations. As a 

matter of fact, there are two general types of spectral line broadening. These are 

homogeneous (giving Lorentz line shape) and inhomogeneous (giving Gaussian line shape) 

broadening processes. Of these, there are different mechanisms inside media leading to one 

of the two line broadening types. One of the main contributions to inhomogeneous line 

broadening is the big velocities of molecules in gases. In this paper the nongaseous media 

are under consideration and therefore homogeneous broadening dominates inhomogeneous 

one. 

The inverse Fourier transform of the Lorentz function is the exponentially decaying 

function 𝑒−𝑥/𝑏. In the numerical simulations parameter 𝑏  was varied in order to obtain the 

most adequate results. This parameter corresponds to the FWHM of the Lorentz function in 

the frequency domain. The exponential decay 𝑒−𝑥/𝑏  with the parameter 𝑏  was chosen also 

as the smoothing function in the time domain. This function gives to the narrowed spectral 

lines Lorentz shapes as well.  

3.3. Linear prediction algorithm 

The LP algorithm can be the part of a line narrowing method. By means of this algorithm it 

is possible to extend the time series beyond its existence thus making the signal much 

broader and therefore the spectral lines much narrower. The signal can be predicted 

forward and backward. The first forward predicted sample 𝑥 𝑗 which follows the last known 

one 𝑥𝑗−1 can be estimated by the linear combination of the form 

𝑥 𝑗= Δ𝑥 ℎ𝑙𝑥𝑗−𝑙

𝑀

𝑙= 1

, (31) 

whereas the backward predicted sample that precedes the first known one can be found as 
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𝑥 𝑗= Δ𝑥 ℎ𝑙
∗𝑥𝑗+𝑙

𝑀

𝑙= 1

. (32) 

By applying (31) and (32) in a cycle one can extrapolate the original “short” signal as far 

as desired [28]. The coefficients ℎ𝑙 are known as theoretical impulse response coefficients. 

One of the known approaches to the problem of finding the impulse response coefficients 

is exploiting of the Burg‟s formula including the Levinson-Durbin recursion. 

If the signal is predictable without errors by means of the known 𝑀= 𝑚−1 impulse 

response coefficients ℎ1
(𝑚−1)

,…,ℎ𝑚−1
 𝑚−1 

 then it is possible to obtain a new set of 𝑚 impulse 

response coefficients using the Levinson-Durbin recursion 

 
 
 

 
 ℎ1

(𝑚)
= ℎ1

 𝑚−1 −Δ𝑥𝑟ℎ𝑚−1
 𝑚−1 ∗,

ℎ2
(𝑚)

= ℎ2
 𝑚−1 −Δ𝑥𝑟ℎ𝑚−2

 𝑚−1 ∗

⋮

ℎ𝑚−1
(𝑚)

= ℎ𝑚−1
 𝑚−1 −Δ𝑥𝑟ℎ1

 𝑚−1 ∗

ℎ𝑚
 𝑚 = 𝑟,

  (33) 

where 𝑟 is called the reflection coefficient and can be calculated using the Burg‟s formula 

𝑟= ℎ𝑚
 𝑚 =

2

Δ𝑥

 𝑒𝑛
 𝑚−1 𝑏𝑛−1

 𝑚−1 ∗𝑁−1
𝑛=𝑚

   𝑒𝑛
 𝑚−1  

2

+  𝑏𝑛−1
 𝑚−1  

2

  𝑁−1
𝑛=𝑚

, (34) 

𝑁 is the number of samples involved in the calculations and 𝑁> 𝑀 [28]. The values 𝑒𝑛
 𝑚−1 

 

and 𝑏𝑛
 𝑚−1 

 are called prediction residuals and can be computed by the recursion 

 
𝑒𝑛
 𝑚−1 = 𝑒𝑛

 𝑚−2 −Δ𝑥ℎ𝑚−1
 𝑚−1 𝑏𝑛−1

 𝑚−2 ,

𝑏𝑛
 𝑚−1 = 𝑏𝑛−1

 𝑚−2 −Δ𝑥ℎ𝑚−1
 𝑚−1 ∗𝑒𝑛

 𝑚−2 
  (35) 

with the initial values 𝑒𝑛
 0 = 𝑏𝑛

 0 = 𝑥𝑛,𝑛= 0,…,𝑁−1. 

3.4. Quantity factor 

In order to define whether the given impulse response coefficients are capable of 

extrapolating the known time series with the minimum errors, one should use some 

criterion. The quantity factor (q-factor) is approved to be a good one [28]. The idea is to 

extrapolate the known part of the signal and then to compare it with the corresponding 
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original samples. For conjugate symmetric signals it is reasonable to use q-factor of the 

following form: 

𝑞= 1− 
  𝑥 −𝑗−𝑥−𝑗 

2𝑁0−1
𝑗=𝐽

  𝑥𝑗 
2𝑁0−1

𝑗=𝐽

, (36) 

where 𝑁0 is the number of the last tested sample. This form assumes the backward 

prediction of the signal. To be more specific, the positive half of the signal is extrapolated 

backward and the extrapolated negative half is further compared with the corresponding 

original half. The q-factor depends on 𝑁 and 𝑀, i.e. 𝑞= 𝑞 𝑁,𝑀 . Moreover, the better the 

extrapolation, the higher the q-factor is (max 𝑞 = 1). The negative sign of the q-factor 

may indicate that extrapolated signal is mostly of opposite phase regarding to the original 

signal‟s phase. Therefore, one should analyze the q-factor for the local extremums, where 

derivatives of it are equaled to zero. 

3.5. The LOMEP algorithm 

The LOMEP (Line shape Optimized Maximum Entropy linear Prediction) algorithm is 

described by the following steps [28]: 

1. Convert the spectra under consideration to the time series using inverse Fourier 

transform (25). 

2. Deapodize the signal obtained at the step 1. 

3. a) Choose the number of samples to be extrapolated and compute the impulse response 

coefficients using Levinson-Durbin recursion (33) and Burg‟s formula (34). 

b) Compute the q-factor (36) as the function of 𝑁 and 𝑀. 

This step is implemented repeatedly until the best q-factor is obtained. 

4. Accept the impulse response coefficients that correspond to the best q-factor and 

extrapolate the signal as far as desired. 

5. Apodize the result in order to smooth the signal, to obtain desired line shape and to 

minimize sinc-function effects of the sharply truncated signal. 

6. Convert the result back to the frequency domain by using direct Fourier transform (26). 

These steps are graphically demonstrated in the Fig.13. 
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Fig.13. Graphical demonstration of the steps of the LOMEP method [28]. 
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4. SPECTRA ANALYSIS AND RESULTS 

5.1. Water solution of 300 mM sucrose 

Let us start our analysis from the MEM phase spectrum of water solution of 300 mM 

sucrose shown in the Fig.8. First, we consider the spectrum without nonlinear background 

which is obtained by subtracting the corresponding spectrum of water without sucrose 

(Fig.7). The result is shown in the Fig.14. At the right a smoothed version with suppressed 

noise is presented. Smoothing was implemented in the process of cubic spline interpolation 

using Hiroshi Akima‟s method [30]. The smoothed spectrum will be taken as an example 

of line narrowing analysis which will be considered in detail. The analysis of the other 

spectra will be accompanied only with the key results. The words on the spectra including 

non-constant background are reserved to the Conclusions section. 

 
 

Fig.14. MEM spectra of water solution of 300 mM sucrose without nonlinear background: 

original (left) and smoothed (right). 

The corresponding signal of the smoothed spectrum was obtained by the inverse DCT (25) 

and shown in the Fig.15. 
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Fig.15. Signal corresponding to the smoothed spectrum of water solution of 300 mM 

sucrose. 

As prescribed by the LOMEP algorithm, the next step is to deapodize the signal. As was 

mentioned above, for this reason exponential decay function 𝑒−𝑥/𝑏 was used. The problem 

now is what value 𝑏 should be in order to obtain the best results. At this point q-factor 

criterion was used as well. Thus, q-factor was considered as the function of three 

parameters, namely 𝑏,𝑁 and 𝑚≡𝑁−𝑀, where 𝑁 is the number of the last sample used in 

the LP procedure and 𝑀 is the number of impulse response coefficients. In the Fig.16 the 

q-factor as the function 𝑞  𝑏 = max𝑚,𝑁𝑞(𝑏,𝑚,𝑁) of one variable is presented. X-axis 

stands for the parameter 𝑏 while y-axis stands for the value of the q-factor. As seen from 

the figure, there are several local extremums which are to be checked for the best result. 

The last is obtained for the set  𝑋,𝑌 =  𝑏,𝑞 =  15,0.8086 . The value 𝑏= 10 is too small 

resulting in significant increase of noise close to the tail. The value 𝑏= 23 in turn is too 

large resulting in the small effect of apodization procedure. 
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Fig.16. The q-factor as the function of variable 𝑏 for 300 mM sucrose. 

Once parameter 𝑏 is defined, the next step is to deapodize the signal and then define other 

two parameters 𝑚 and 𝑁, i.e. decide how many impulse response coefficients are the best 

to use and where to cut the signal to extrapolate it further. The result of deapodization is 

shown in the Fig.17. 

 

Fig.17. Signal after deapodization. 
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Now we can immediately proceed to finding 𝑀 and 𝑁 by using Levinson-Durbin recursion 

(33) and Burg‟s formula (34). For this purpose a contour map was plotted showing 

different values of the q-factor (Fig.18). From this map one can easily estimate the values 

of 𝑚 and 𝑁 to be 4 and 35 correspondingly. These are the values of the highest point on 

the map. 

 
Fig.18. Contour map of the surface 𝑞(15,𝑚,𝑁). 

Using the obtained set of the parameters that provides the best q-factor 𝑞 15,4,35 =

0.8086, the signal was linearly predicted forward by 1500 new samples. The result is 

shown in the Fig.19. 

 
 

Fig.19. Forward predicted signal. 
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In order to decrease sinc-function effect of abrupt truncation at the end of the signal, the 

last was iteratively apodized (smoothed) by exponential decay function with the parameter 

𝑏 = 500. 

 
 

Fig.20. Apodized forward predicted signal. 

 

Taking the DCT of the result by using (26) we finally obtain narrowed spectral lines 

(Fig.21). 

 

Fig.21. Narrowed spectrum of 300 mM sucrose compared to the original one (𝑏 = 500). 
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For the noised spectrum parameters appear to be the same. In this case the q-factor is 

equaled to 0.8119 and the narrowed spectrum visually looks as shown in the Fig.21. 

4.2. Water solution of 500 mM sucrose 

Here and further only the key results are presented. 

 
 

Fig.22. MEM spectrum of water solution of 500 mM sucrose without nonresonant water 

background. 

 

Fig.23. The q-factor as the function 𝑞  𝑏 = max𝑚,𝑁𝑞(𝑏,𝑚,𝑁) . 

In the Fig.24–26 q-factor contour maps are shown for the different values of parameter 𝑏. 

It is worth noting how contours are changed with the increase of the parameter. For 𝑏= 20 

there is a large island with the big values of q-factor. 
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Fig.24. Contour map of the surface 𝑞(7,𝑚,𝑁). 

 

Fig.25. Contour map of the surface 𝑞(13,𝑚,𝑁). 
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Fig.26. Contour map of the surface 𝑞(20,𝑚,𝑁). 

 

Fig.27. Narrowed spectrum of 500 mM sucrose compared to the original one (𝑏 = 300). 
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4.3. Simulated  𝝌 𝟑  
𝟐
 spectrum 

 

Fig.28. MEM spectrum of simulated  𝜒 3  
2
. 

 

Fig.29. The q-factor as the function 𝑞  𝑏 = max𝑚,𝑁𝑞(𝑏,𝑚,𝑁) . 

 

The Fig.30–33 show the results obtained with the parameters 𝑏= 20,𝑁= 100 and 

𝑚= 52 for different values 𝑏 . 
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Fig.30. Narrowed spectrum (𝑏 = 200). 

 

 

Fig.31. Narrowed spectrum (𝑏 = 100). 

 

Fig.32. Narrowed spectrum (𝑏 = 50). 
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Fig.33. Narrowed spectrum (𝑏 = 20). 

4.4. ADP/AMP/ATP 

 

Fig.34. MEM spectrum of ADP/AMP/ATP. 

 

Fig.35. The q-factor as the function 𝑞  𝑏 = max𝑚,𝑁𝑞(𝑏,𝑚,𝑁) . 
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Fig.36. Contour map of the surface 𝑞(17,𝑚,𝑁). 

As seen from the Fig.36, the best set of parameters is  𝑏,𝑚,𝑁 = (17,9,48)  which gives 

the result shown in the Fig.37. 

 

Fig.37. Narrowed spectrum (𝑏 = 150). 

 



41 

 

 

Fig.38. Narrowed spectrum (𝑏 = 14). 

4.5. Simulated Lorentz peaks 

In order to understand better how the line narrowing method works, the last was applied to 

the simulated sets of Lorentz peaks without noise and with random noise (signal-to-noise 

ratio SNR = 100). The line widths of all spectral lines are FWHM = 20 cm
-1

. It was also 

simulated the same spectra with FWHM equaled to 10 cm
-1

, 5 cm
-1

 and 1 cm
-1

 in order to 

be compared with the results of the LOMEP procedure. 

 

Fig.39. Simulated Lorentz peaks. 

In the Fig.40 the q-curve is presented for the noised case. The peak (𝑞= 0.8012) of the 

curve is at the point 11. The same position holds for the spectrum without noise for which 

𝑞= 0.7972. In the Fig.41–44 the narrowed spectra are presented compared to the original 

ones with noise and different FWHM. The same spectra but without noise are presented in 

the Fig.45–48. In the case of the noised spectra the set of the parameters  𝑏,𝑚,𝑁 =
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 11,2,37  was chosen, whereas for the spectra without noise the parameters were 

 𝑏,𝑚,𝑁 =  11,24,55 . These parameters in both cases do not correspond to the 

maximum values of q-factor though (Fig.49–50). 

 

Fig.40. The q-factor for noised spectrum. 

 

Fig.41. Narrowed spectrum (𝑏 = 400). 
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Fig.42. Narrowed spectrum (𝑏 = 80). 

 

 

Fig.43. Narrowed spectrum (𝑏 = 40). 
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Fig.44. Narrowed spectrum (𝑏 = 12.5). 

 

 

Fig.45. Narrowed spectrum (𝑏 = 400). 
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Fig.46. Narrowed spectrum (𝑏 = 50). 

 

 

Fig.47. Narrowed spectrum (𝑏 = 26). 
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Fig.48. Narrowed spectrum (𝑏 = 11). 

 

 
Fig.49. Contour map of the surface 𝑞(11,𝑚,𝑁) for the case of the spectrum with noise. 
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Fig.50. Contour map of the surface 𝑞(11,𝑚,𝑁) for the case of the spectrum without noise. 
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CONCLUSIONS 

As seen from the results, the LOMEP algorithm is quite effective theoretical tool for the 

line narrowing. However, the results of this paper are far from ideal, and algorithm 

implemented in the MatLab environment requires further elaboration. First of all, the 

symmetry of the spectral lines is distorted resulting in slight displacement of their 

positions. Therefore frequency tuning method could be quite appropriate [28]. Second, the 

maximum value of the q-factor is not necessarily the best as it may correspond to the 

parameters for which not the all spectral features are taken into account. For instance, 

relatively small values of 𝑁 can cut away several frequencies, whereas small values of 𝑀 

(that correspond to large values of 𝑚) mean that there are not enough impulse response 

coefficients to extrapolate all frequencies. The results show that the number of the 

coefficients should belong to the approximate range 30–50. The greater values of this 

number could lead to appearance of additional spectral components that were not in 

original spectra. In general, the minimal number of the impulse response coefficients must 

be equaled to twice the number of spectral lines [28]. Finally, noised spectra are narrowed 

with difficulties meaning that the best results might be obtained for the q-factors that are 

not local extremums at all. Nevertheless, the peaks of the q-factor can be exploited as the 

starting anchor points for the parameters estimation. 

It is worth saying a few words about how the LOMEP method works with the spectra 

containing non-constant background. Spectral nonresonant background is considered by 

the algorithm as the set of additional resonant frequencies that do not characterize a 

medium. As a result, in the output narrowed spectrum there may present a comb of these 

frequencies. In addition, q-factors in this case are mostly negative. The best positive q-

factors are close to zero. Thus, the line narrowing procedure cannot directly narrow such 

kind of spectra. However, the LOMEP method could be used together with some 

background estimation procedure as the part of an integrated iterative process of 

background estimation. Knowing exact frequency values could also help to fit background 

with a spline within the interpolation process. 

In conclusion, in CARS spectrometer setups the whole LOMEP procedure could be as a 

part of an automatic real-time system with the feedback based on the q-factor anchor 

points.  
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APPENDIX 

In this section the sources of Matlab programs are presented. For different spectra separate 

Matlab files were created. Here only one of them (for the simulated  𝜒 3  
2
 spectrum, 

psdmp0.m) is demonstrated. The others can be implemented in a similar way. 

1. dft_cos.m 

 

The function computes the spectrum of a symmetrical even signal by using the DCT 

transform (26). 

 
function  [ spectrum ] = dft_cos( signal )  

%   Discrete cosine transform  

%    

N = length(signal);  

spectrum = zeros(1,N);  

for  j = 1:N  

        spectrum(1) = spectrum(1) + signal(j)/sqrt(N);  

end ;  

for  k = 2:N  

    for  j = 1:N  

        spectrum(k) = ...  

            spectrum(k) + sqrt(2/N)*signal(j)*  ...  

     cos(pi/(2*N)*(2*j - 1)*(k - 1));  

    end ;  

end ;  

end  

 

 

2. idft_cos.m 

 

The function computes the signal from its spectrum by using the inverse DCT transform 

(25). 

 
function  [ signal ] = idft_cos( spectrum )  

%   Inverse discrete cosine transform  

%    

N = length(spectrum);  

signal = zeros(1,N);  

for  k = 1:N  

    for  j = 2:N  

        signal(k) = ...  

            signal(k) + sqrt(2/N)*spectrum(j)*  ...  

 cos(pi/(2*N)*(j - 1)*(2*k - 1));  

    end ;  

    signal(k) = signal(k) + sqrt(1/N)*spectrum(1);  

end ;  

end  
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3. burg_imp_resp.m 

 

The function computes the impulse response coefficients by using the expressions (33)–

(35). 

 
function  [ h ] = burg_imp_resp( signal,N_use,M )  

%   Burgôs impuse response coefficients 

%    

% initializ ation  

h = zeros(1,M);   % output impulse response coefficients  

e = zeros(M,N_use);  % residuals (35 )  

b = zeros(M,N_use);  % residuals (35 )  

for  i=1:N_use  

    e(1,i) = signal(i);  

    b(1,i) = signal(i);  

end ;  

  

%% Burg's algorithm  

% initialization of impulse response coeffitients  to be iterated  

h1 = zeros(M,M);  

for  m=1:M   

    % initialization  of numerator and denumerator of ( 34)    

    S1 = 0; S2 = 0;  

    for   i=1:N_use - m 

        % numerator of reflection coefficient ( 34)  

        S1 = S1 + e(m,i)*b(m,i+1);  

        % denumerator of reflection coefficient  ( 34)  

        S2 = S2 + abs(e(m,i))^2 + abs(b(m,i+1))^2;  

    end ;  

    h1(m,m) = 2*S1/S2; % reflection coefficient ( 34)  

    for  j=1:m - 1 

        % equations ( 29) for response coefficients  

        h1(m,j) = h1(m - 1,j) -  h1(m,m)*h1(m - 1,m- j);  

    end ;  

    for  k=1:N_use - m 

        e(m+1,k) = e(m,k) -  h1(m,m)*b(m,k+1); % residuals ( 35)  

        b(m+1,k) = b(m,k+1) -  h1(m,m)*e(m,k); % residuals ( 35)  

    end ;  

end ;  

  

h(:) = h1(M,:);  

  

end  

 

 

4. qfactor.m 

 

The function calculates the q-factor (36). The input parameters are the half of an original 

symmetric even signal and the corresponding predicted version of this part which was 

predicted knowing another half part of the signal.  
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function  [ q ] = qfactor( signal,predicted )  

%   Q- factor  

%    

q1=0; q2=0; % initializing of numerator and denumerator of  ( 36)  

N = length(signal);  

for  j=1:N  

    % calculating numerator of  ( 36)  

    q1 = q1 + abs(signal(j) - predicted(j))^2;  

    % calculating denumerator of  ( 36)  

    q2 = q2 + abs(signal(j))^2;  

end ;  

q = 1 -  sqrt(q1/q2); % output q- factor  

  

end  

  

 

5. deapodize_and_cut.m 

 

The function returns the signal s  having been deapodized by some window function 

win_func  and cut at the chosen point N_last . 

 
function  [ s ] = deapodize_and_cut( signal,win_func,N_last )  

%   Deapodize - and- cut function  

%    

s = signal./win_func;  

for  i=N_last+1:length(signal)  

    s(i)=0;  

end ;  

  

end  

 

 

6. predict.m 

 

The function returns the signal result  having been predicted by N_fut  samples using the 

vector h of impulse response coefficients. The program allows to choose between two 

options by setting the parameter opt  to be 'f'  or 'b '  (forward or backward prediction 

respectively). 

 
function  [ result ] = predict( signal,N_fut,h,opt )  

%   Linear prediction (either forward or backward)  

%    

M = length(h);  

N_sig = length(signal);  

buf_sig = zeros(1,N_fut);  % Predicted part of the signal  

result = zeros(1,N_fut);  

  

if  (opt== 'f' )     

    for  i=1:N_sig  

        buf_sig(i) = signal(i);  
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    end ;  

elseif  (opt== 'b' )  

    for  i=1:N_sig  

        buf_sig(i) = signal(N_sig+1 - i);  

    end ;  

end ;  

  

for  j=1:N_fut  

   for  k=1:M  

       % forward linear prediction ( 31)  

       result(j) = result(j) + h(k)*buf_sig(N_sig - k+1);  

   end ;  

   for  i=1:N_sig - 1 

       buf_sig(i) = buf_sig(i+1);  

   end ;  

   buf_sig(N_sig) = result(j);  

end ;  

  

if  (opt== 'f' )     

    return ;  

elseif  (opt== 'b' )  

    for  i=1:N_fut  

        buf_sig(i) = result(N_fut+1 - i);  

    end ;  

    result = buf_sig;  

end ;  

  

end  

  

 

7. predict2sides.m 

 

The function returns the signal yy  having been predicted by N_fut  samples both in 

forward and backward directions using the vector h of impulse response coefficients. 

N_last  is the last nonzero sample of the cut signal after deapodization and s is the input 

signal.  

 
function  [ yy ] = predict2sides( s,N_last,N_fut,h )  

%    Forward and backward prediction  

%    

yy = zeros(1,N_last+2*N_fut);  

yy(N_fut+1:N_fut+N_last) = s(1:N_last);  

% backward prediction  

yy(1:N_fut) = predict(s(1:N_last),N_fut,h, 'b' );  

% forward prediction  

yy(N_fut+N_last+1:N_last+2*N_fut) = ...  

predict(s(1:N_last),N_fut,h, 'f' );  

  

end  
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8. psdmp0.m 

 

The example of the MatLab procedure that analyzes the given spectrum  𝜒 3  
2
 by the 

LOMEP method in order to be narrowed. 

 
clear all  

close all  

clc  

  

% read multi - column spectral data  

spectrumDif = dlmread( 'psdmp0.d' );   

% forget about x - axis  

spectrum = spectrumDif (:,2);  

Nl = length(spectrum(:));  

 

% deriv ation  of  the signal from the spectrum  by the  i nverse DCT  

% (25)  

signal = idft_cos(spectrum(:));  

 

N_last1 = 100;  % the last nonzero signal sample  

N_fut = 1500;   % the number of samples that are to be predicted  

N_total = N_fut+N_last1;  

q = zeros(N_last1:N_last1);   

 

for  k=20:20  

    apodization = exp( - (1:1:Nl)/k);  

    for  N_last = N_last1:N_last1  

        for  m=52:52  % the max(m) must be equaled to N_last - 1 

            % iterationsô number and impulse response length 

            M = N_last - m; 

            % number of samples used in Burg's algorithm  

            N = N_last;  

            s = deapodize_and_cut(signal,apodization,N_last);  

  

 %% find B urg's impulse response coefficients  

 % max M allowed is N - 1 

            h = burg_imp_resp(s,N,M);  

  

 %% linear prediction (both backward and forward)  

 % expanding the sign al to have N_fut zero values at  

 % both sides  

            yy = predict2sides( s,N_last,N_fut,h );  

  

            % forming two signals to be compared in the terms of  

            % q- factor  

            for  i=1:N_last  

                y1(i) = s (N_last+1 - i);  

                y2(i) = yy(N_fut - N_last+i);  

            end ;  

            q(N_last,m) = qfactor(y1,y2);  

            % óclearô is needed for iterations in order to compute  

            % each variable independently of its value at the  

            % previous iteration  
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            % clear y1 y2 y3 y4 M N s1 s2 h yy yy2  

        end ;  

    end ;  

    qq(k) = max(max(q ));  

end ;  

  

%% secondary apodization by exponential deca y function   

% width parameter b  

b = 200;  

apodization2 = exp( - ((1:1:N_total))/b);  

 

%% plot narrowed spectrum  

% normalized x - axis (Raman shifts)  

freqs = spectrumDif (1,1): ...  

    (spectrumDif(Nl,1) - spectrumDif (1,1))/(N_total - 1): ...  

    spectrumDif (Nl,1);  

% deapodized and predicted forward signal  

yyy(1:N_total) = yy(N_fut+1:N_last+2*N_fut);  

 

figure  

subplot(2,1,1); plot(spectrumDif(:,1),spectrumDif (:,2))  

title( 'Original spectrum' );  

ylabel( 'Spectral power, a.u.' );  

xlabel( 'Raman shift, cm^{ - 1}' );  

subplot(2,1,2);  

plot(freqs ...  

    ,dft_cos(deapodize_and_cut(yyy, ...  

    exp( - (1:1:N_total)/360000),N_total - ...   

    1).*apodization2(1:N_total)));  

title( 'Narrowed spectrum' );  

ylabel( 'Spectral power, a.u.' );  

xlabel( 'Raman shift, cm^{ - 1}' );  

 


