Sähköverkosta irti olevan pienhybridijärjestelmän toteutus
Implementation of small off-grid hybrid system
Perttu Suikkanen
Ville Kenttämaa
TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto
Teknillinen tiedekunta
Sähkötekniikan koulutusohjelma

Perttu Suikkanen
Ville Kenttämaa

Sähköverkosta irti olevan pienhybridijärjestelmän toteutus

2014

Kandidaatin työ.
61 sivua, 24 kuvaa, 5 taulukkoa ja 5 liitettä.

Tarkastajat: Professori Olli Pyrhönen ja tutkimusjohtaja Markku Niemelä.
Hakusanat: Hybridijärjestelmä, tuulivoima, aurinkovoima, lataussäädin.

Kiitokset: Haluamme esittää kiitokset työn ohjaajille Olli Pyrhösen ja Markku Niemelälle,
ja partiolippukunta Lappeen Sinisten yhteyden koiraille sekä laboratoriomittaukset
järjestänneelle Kyösti Tikkaselle.

Lappeen siniset –partiolippukunnalla on käytössään leiripaikka Humaljärvelle,
Lappeenrannassa. Leiripaikalla ei ole liityntää sähköverkkoon, joten leiripaikalle on
asennettu kaksi erillistä aurinkovoimalla toimivaa sähköjärjestelmää. Leiripaikan
sähköistetyt rakennukset ovat pääkämppä ja saunan sekä vanhan kämpän muodostama
kokonaisuus. Aurinkopaneleille tuotettu sähköenergia varastoidaan akustoihin.
Lippukunta on havainnot käytössä, ettei talvella tuotettu aurinkoenergia riitä kattamaan
pääkämpän sähkönkulutusta, joten leiripaikalle on päätetty hankkia tuulivoimala
lisäämään tuotantoa.

Tässä kandidaatin työssä esitellään hybridijärjestelmään kuuluvien aurinko- ja tuulivoiman
toimintaperiaatteita sekä näiden komponentteja. Aurinko- ja tuulivoimalla tuotetulle
sähköenergialle lasketaan arvot, joita verrataan leiripaikan sähköjärjestelmän arvioituun
kulutukseen. Leiripaikalle tuleva tuuliturbiinia ja sen latausäädintä testataan
laboratoriossa, jotta varmistetaan niiden soveltuvuudesta sekä toimivuudesta kohteeseen.
Testausten ja laitteiden datalehden avulla suunnitellaan leiripaikalle toimiva
hybridijärjestelmä, joka kattaa leiripaikan ympärivuotisen sähkönkulutuksen.
ABSTRACT

Lappeenranta University of Technology
Faculty of Technology
Degree Programme in Electrical Engineering

Perttu Suikkanen
Ville Kenttämäa
Implementation of small off-grid hybrid system

2014

Bachelor's Thesis.
61 pages, 24 pictures, 5 tables and 5 attachments.

Examiners: Professor Olli Pyrhönen and D.Sc. Markku Niemelä.

Scout group Lappeen siniset has a campsite which is situated onshore lake Humaljärvi in Lappeenranta. Campsite has two separated solar power electricity systems. Electrified buildings are main cabin and sauna with old cabin. Energy produced by solar panels is stored to battery banks. Scout group has noted that consumption in main cabin in winter is more than solar panels can produce electricity. Result from that scout group has decided to enhance electricity production by upgrading the system with a wind turbine.

This bachelor's thesis' presents hybrid systems principles and it's components. Electricity produced by solar panels and wind turbine are estimated and compared to campsite's estimated consumption. Wind turbine and charge controller are tested in laboratory conditions to clarify components and systems functionality. By using results from laboratory and devices data sheets we design hybrid system which covers electricity consumption year-round.
Sisällysluettelo

KÄYTETYT MERKINNÄT JA LYHENTEET ... 6
1. JOHDANTO ... 8
2. HYBRIDIJÄRJESTELMÄN KOMPONENTIT .. 10
 2.1 HYBRIDIJÄRJESTELMÄ .. 10
 2.2 AURINKOVOIMA ... 12
 2.3 TUULIVOIMA ... 14
 2.3.1 Tuulivoimalatyyppit ... 16
 2.3.2 Pientuulivoima ... 18
 2.4 LATAUSSÄÄTIMET .. 20
 2.5 AKUSTO .. 21
 2.5.1 Akkutyypin valinta .. 22
 2.6 KAAPELIT ... 23
 2.7 KÄYTTETTÄVÄT LAITTEET ... 25
3. SÄHKÖENERGIANTUOTANNON JA -KULUTUKSEN ARVIOINTI 27
 3.1 VUOTINEN JÄRJESTELMÄN ENERGIANKULUTUS .. 27
 3.2 VUOTINEN ENERGIANTUOTANTO AURINKOVOIMALLA 28
 3.3 VUOTINEN ENERGIANTUOTANTO TUULIVOIMALLA 29
 3.4 KULUTUKSEN JA TUOTANNON TASAPAINO .. 33
4. LAITTEIDEN TESTAUS .. 34
 4.1 TUULIGENERAATTORIN TESTAUS ... 34
 4.1.1 Tuuligeneraattorin tuottama teho ... 36
 4.1.2 Tuuligeneraattorin hyötysuhde .. 36
 4.1.3 Tuuligeneraattorin oikosulkuvirta ... 37
 4.2 LATAUSSÄÄTIMEN TESTAUS .. 38
 4.2.1 Lataussäätimen herääminen .. 39
 4.2.2 Lataussäätimen syöttämä teho .. 39
 4.2.3 Akkujen lataaminen .. 40
 4.2.4 Eri varauslaitanteissa olevien akkujen lataaminen 44
 4.2.5 Lataussäätimen tasavirtakuorma ja virrankulutus 45
5. JÄRJESTELMÄRÄTKAISUT .. 47
 5.1 LABORATORIOTESTAUKSESSA SIMULOITU HYBRIDIJÄRJESTELMÄ 47
 5.2 TESTATUN LATAUSSÄÄTIMEN KÄYTTÄMINEN OSANA HYBRIDIJÄRJESTELMÄÄ 48
 5.3 VAHTOHOITOINEN JÄRJESTELMÄRÄTKAISU ... 50
 5.4 TUULIVOIMALAN SIJOITUS ... 51
5.4.1 Kaapelihäviöt... 52

6. JOHTOPÄÄTÖKSET.. 56
LÄHTEET.. 57
LIITTEET.. 62
KÄYTETYT MERKINÄT JA LYHENTEET

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking, maksimi tehopisteen määrittys</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse-width Modulation, pulssinleveysmodulaatio</td>
</tr>
<tr>
<td>STC</td>
<td>Standart Test Conditions, standardin mukaiset mittausolosuhteet</td>
</tr>
<tr>
<td>A_j</td>
<td>johtimen poikkipinta-ala [m²]</td>
</tr>
<tr>
<td>A_{pv}</td>
<td>aurinkopaneelin pinta-ala [m²]</td>
</tr>
<tr>
<td>A_t</td>
<td>tuulivoimalan pyyhkäisypinta-ala [m²]</td>
</tr>
<tr>
<td>C_{Betz}</td>
<td>Betzin kerroin</td>
</tr>
<tr>
<td>C_p</td>
<td>tuuliturbiinin aerodynaaminen tehokerroin</td>
</tr>
<tr>
<td>d</td>
<td>päivä</td>
</tr>
<tr>
<td>E_{pv}</td>
<td>aurinkopaneelin tuottama energia [Wh]</td>
</tr>
<tr>
<td>E_t</td>
<td>tuulivoimalan tuottama energia [Wh]</td>
</tr>
<tr>
<td>f</td>
<td>taajuus [Hz]</td>
</tr>
<tr>
<td>G</td>
<td>Auringon sääteilyteho [W/m²]</td>
</tr>
<tr>
<td>H</td>
<td>Auringon sääteilyenergia [Wh/m²]</td>
</tr>
<tr>
<td>I</td>
<td>näennäisvirta [A]</td>
</tr>
<tr>
<td>I_{AC}</td>
<td>vaihtovirta [A]</td>
</tr>
<tr>
<td>I_{DC}</td>
<td>tasavirta [A]</td>
</tr>
<tr>
<td>I_k</td>
<td>keinokuorman virta [A]</td>
</tr>
<tr>
<td>I_{max}</td>
<td>energianlähteiltä saatava maksimivirta [A]</td>
</tr>
<tr>
<td>I_p</td>
<td>päätövirta [A]</td>
</tr>
<tr>
<td>I_Q</td>
<td>loisvirta [A]</td>
</tr>
<tr>
<td>k</td>
<td>tasasuunnatun jännitteen ja pääjännitteen tehollisarvon suhde</td>
</tr>
<tr>
<td>L</td>
<td>inductanssi [H]</td>
</tr>
<tr>
<td>l</td>
<td>pituus [m]</td>
</tr>
<tr>
<td>n</td>
<td>pyöririmisnopeus [rpm]</td>
</tr>
<tr>
<td>P</td>
<td>teho [W]</td>
</tr>
<tr>
<td>$P_{h,AC}$</td>
<td>kolmivaiheisen vaihtovirtakaapelin tehoehäviö [W]</td>
</tr>
<tr>
<td>$P_{h,DC}$</td>
<td>tehoehäviö tasavirtakaapelissä [W]</td>
</tr>
<tr>
<td>P_t</td>
<td>tuuliturbiinin sähkölöhe [W]</td>
</tr>
<tr>
<td>P_{teor}</td>
<td>teoreetinen sähkölöhe [W]</td>
</tr>
<tr>
<td>P_0</td>
<td>tuulen vapaan virtauksen teho [W]</td>
</tr>
<tr>
<td>r</td>
<td>tuuliturbiinin pyyhkäisypinta-alan säde [m]</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>R_{AC}</td>
<td>vaihtovirta resistanssi</td>
</tr>
<tr>
<td>R_{DC}</td>
<td>tasavirta resistanssi</td>
</tr>
<tr>
<td>R_k</td>
<td>keinokuorman resistanssi</td>
</tr>
<tr>
<td>t</td>
<td>aika</td>
</tr>
<tr>
<td>t_h</td>
<td>huipunkäyttöaika</td>
</tr>
<tr>
<td>T</td>
<td>lämpötila</td>
</tr>
<tr>
<td>T_n</td>
<td>sähkömoottorin nimellispisteen vääntömomentti</td>
</tr>
<tr>
<td>T_s</td>
<td>suhteellinen vääntömomentti</td>
</tr>
<tr>
<td>U</td>
<td>jännite</td>
</tr>
<tr>
<td>U_a</td>
<td>akuston jännite</td>
</tr>
<tr>
<td>U_{AC}</td>
<td>vaihtojännite</td>
</tr>
<tr>
<td>U_{DC}</td>
<td>tasajännite</td>
</tr>
<tr>
<td>$U_{h,AC}$</td>
<td>jännitteenenalnena</td>
</tr>
<tr>
<td>X_{AC}</td>
<td>vaihtovirtakaapelien reaktanssi</td>
</tr>
<tr>
<td>W_p</td>
<td>aurinkopaneelin nimellistehto</td>
</tr>
<tr>
<td>w_a</td>
<td>tuulen nopeus</td>
</tr>
<tr>
<td>α</td>
<td>resistiivisyyden lämpötilakerroin</td>
</tr>
<tr>
<td>η_g</td>
<td>generaattorin hyötysuhde</td>
</tr>
<tr>
<td>η_{mek}</td>
<td>turbogeneraattori hyötysuhde</td>
</tr>
<tr>
<td>η_{pv}</td>
<td>aurinkopaneelin hyötysuhde</td>
</tr>
<tr>
<td>φ</td>
<td>vaihe-ero</td>
</tr>
<tr>
<td>λ</td>
<td>kärkinopeussuhde</td>
</tr>
<tr>
<td>ω</td>
<td>roottorin kulmanopeus</td>
</tr>
<tr>
<td>ρ_a</td>
<td>ilman tiheys</td>
</tr>
<tr>
<td>ρ_0</td>
<td>ominaisresistiivisyyys</td>
</tr>
</tbody>
</table>
1. JOHDANTO

Kuva 1.1 Lappeen Sinisten partiokämpän sijainti. (Maanmittauslaitos)

Lippukunta on havainnut käytössä, ettei talvella saatava aurinkoenergia riitä kattamaan pääkämpän kulutusta. Saunan sähköjärjestelmä tuottaa enemmän energiaa ja tuotanto on riittävä myös talvisin. Pääkämpän ja saunan akustot on jouduttu vaihtamaan talvisin keskenään, jolla on varmistettu keskeyttämätön sähköläävyyttä pääkämpällä.

Huonon talvituotannon takia lippukunta on päätännyt hankkia leiri-aiheen tuulivoimalan varmistamaan ympäri vuotisen sähköläävyyden. Lippukunta on saanut lahjoituksena nimellisteholtaan 600 W tuuliturbion ja siihen sopivan lataussäätimen, jotka aiotaan liittää
yhteen aurinkopaneelien kanssa muodostaen pienhybridijärjestelmän. Pienhybridijärjestelmällä tarkoitetaan tässä työssä nimellisteholtaan alle 1 kW olevan tuulivoimalan ja alle 600 W aurinkopaneelijärjestelmän muodostamaa sähköjärjestelmää. Järjestelmä on tarkoitus rakentaa vuoden 2014 kesällä.

2. HYBRIDIJÄRJESTELMÄN KOMONENTIT

Tutustutaan hybridijärjestelmän periaatteeseen ja sen toteuttamiseen tarvittaviin laitteisiin sekä niiden toimintaan. Hybridijärjestelmään kuuluvat aurinkopaneelien ja tuulivoimalan lisäksi akut, lataussäätimet ja kaapelit. Lisäksi kappaleessa esitellään leiripaikalla olevat laitteet ja lippukunnalle lahjoitetut lataussäädin sekä tuuligeneraattori.

2.1 Hybridijärjestelmä

Tutustutaan tarkemmin sellaisen hybridijärjestelmän komponentteihin, toimintatapaan ja kytkentöihin, jossa ei ole saatavilla verkkosähköä. Kuvassa 2.1 on esitetty erään sähköverkosta erillään olevan hybridijärjestelmän kaaviopiirros.
Kuvasta 2.1 nähdään, että tuuliturbin ja aurinkopaneelien sekä akuston välillä on liitetty lataussäädäin. Lataussäätimen tehtävänä on estää akkujen ylilataus, syväpurkauks ja vuotovirrat takaisin aurinkopaneelle tai tuuligeneraattorille. Lataussäätimiä on erikseen aurinkopaneelleille, tuuligeneraattoreille ja niin sanottuja hybridilataussäätimiä, jotka soveltuvat molemmilla sähköntuotantotavoilla tuotetun sähköenergian säätämiseen samanaikaisesti. Lataussäätimiä käsitellään tarkemmin myöhemmin tässä työssä.

Vaikka verkosta eristetty hybridijärjestelmä oikein mitoitettuna kattaakin hyvällä todennäköisyydellä kaiken pienen rakennuksen kulutuksen, kannattaa hätätapauksia varten varata varavoimaa. Varavoimala voi olla aggregaatti, joka voidaan kytkeä lataamaan akkuja. Hybridijärjestelmä tuottaa varavoimaa lukuun ottamatta täysin uusiutuvaa energiaa eikä se tuota kasvihuonekaasuja tai muita päästöjä.

Hybridijärjestelmän investointikustannus on kohtalaisen suuri. Suuri hankintakustannus voi karkottaa mahdollisia investoijia, mutta pitkällä aikavälillä käyttökustannus on matala. Hybridijärjestelmä usein myös ylimitoitetaan, koska suunnittelija yrittää kattaa järjestelmän energian tarpeen kullakin energiantuottotavalla. Energiantuottotapojen erilainen teknologia voi aiheuttaa myös ongelmia suunnittelijalle, etenkin elektronisten säätöjärjestelmien osalta. (Kaldellis 2010)
2.2 Aurinkovoima

![Kuva 2.2](image)

Kuva 2.2 Nimellisteholtaan 250 W monikidepaneeli. (Yingli Solar)

Aurinkopaneelin sähköenergian tuottaminen tapahtuu aurinkokennojen avulla, joiden materiaalina käytetään yleisimmin maaperästä saatavaa piitä. Aurinkokennot voivat olla, joko yksi- tai monikiteisiä. Yksikiteinen aurinkokennon koostuu yhdestä kasvatetusta piikiteestä, joka sahataan kiekoksi, muodostaen yhden aurinkopaneelin kennon. Yksikiteisen piin etu monikiteiseen verrattuna on parempi hyötyyhteys, mutta koska monikiteinen kenno on edullisempi valmistaa, on sen markkinoausu suurempana (Finnwind). Kennot koostuvat kahdesta puolijohdekerroksesta, joiden välille syntyy jännite.
valosähköisen ilmiön vaikutuksesta. Aurinkokennon toimintaperiaate on esitetty kuvassa 2.3. (Kaligirou 2009)

![Aurinkokennon toimintaperiaate](image)

Aurinkoksen toimintaperiaate. (TKK)

Aurinkopaneeli määritellään yleensä niiden tuottaman nimellistehon W_p perusteella, mikä tarkoittaa paneelin suurinta mahdollista tehontuottoa. Nimellisteho määritellään STC -olosuhteissa (Standard Test Conditions), jonka mukaan paneelin maksimiteho saavutetaan, kun Aurinkon säteilyteho G on 1000 W/m² ja kennon lämpötila on 25 °C. Aurinkopaneelin tuottaman energian E_{pv} tietyllä ajanjaksona voidaan laskea yhtälöllä

$$E_{pv} = \int_0^t \eta_{pv} A_{pv} H dt,$$ \hspace{1cm} (2.1)
missä η_{pv} on paneelien hyötysuhde, A paneelien pinta-ala ja H Aurinkon säteilyenergia ajanjaksolla. Piistä valmistettujen yksikiteisten aurinkokennojen hyötysuhde on tällä hetkellä noin 17 % ja monikiteisistä valmistettujen noin 16 % (Pyrhönen 2014). Aurinkopaneelin hyötysuhde voidaan myös arvioida yhtälöllä

$$\eta_{pv} = \frac{W_p}{G_{Apv}} \quad (2.2)$$

missä Aurinkon säteilytehona käytetään STC –olosuhteen mukaista säteilytehoa 1000 W/m2.

Aurinkopaneelilta vuodessa saatava sähköenergia voidaan myös laskea paneelin nimellistehon avulla yhtälöllä

$$E_{pv} = W_p t_h \quad (2.3)$$

missä t_h on aurinkopaneelin tarkastelujakson huipunkäyttöaika tunneissa. (Kalogirou 2009) Huipunkäyttöajalla tarkoitetan sitä, että aurinkopaneelista saadaan tarkasteltavana olevan ajanjakson aikana energiaa yhteensä määrä, joka vastaa paneelin toimimista huipunkäyttöajan verran nimellistehollaan. Aurinkokennojen huipunkäyttöaika on Etelä-Suomessa noin 900-1000 tuntia. Vuotuinen aurinkopaneelilla tuotettu energia vastaa kennon toimimista nimellistehollaan huipunkäyttöajan verran. Esimerkiksi 100 W nimellistehoinen aurinkopaneeli tuottaa Etelä-Suomessa vuodessa suurimmillaan noin 100 kWh sähköä. (Finnwind)

2.3 Tuulivoima

Tuulivoima tarkoittaa tuulen kineettisen energian muuttamista ensin turbiinin mekaaniseksi energiaksi, jonka jälkeen generaattori muuttaa sen sähköenergiaksi. Tuulivoimalan roottorin pyörimsinopeus kasvaa suoraviivaisesti tuulennopeuden kasvaessa. Tuulen syntymiseen vaikuttaa maapallon epätasainen lämpeneminen ja jäähdyminen. Epätasaisen lämpenemisen vaikutuksesta kylmää ilmaa virtaa kohti lämmintä alueita ja lämmintä ilmaa kohti kylmiä alueita muodostaven näin ilman virtausta, tuulta. (Emeis 2013)

Tuulivoima on nostanut suosioaan energiantuotannossa fossiilisten polttoaineiden hinnan nousun myötä ja ympäristötietoisuuden kasvaessa. Uusiutuvana energiana tuulivoima on ympäristöystävällinen ja varma energiantuotantомуoto, joka ei saastuta ympäristöä eikä...
Tuota kasvihuonepäästöjä asennuksen ja valmistuksen jälkeen. Tuulivoiman varmuus perustuu tuulen jatkuvan esiintymiseen ja fossiilisten polttoaineiden varantojen huvetessa tuulivoiman sekä muiden uusiutuvien energiamuotojen merkitys kasvaa. Tuulienergiaa on saatavilla tasaisesti ympäri Maapalloa, joten sen hyödyntämisen mahdollisuudet ovat suuret. (Tiwari 2012)

Tarkastellaan tuuligeneraattorin tuottamaa sähköenergiaa, joka tuotetaan tuulen kineettisen energian avulla. Tuulen vapaan virtauksen teho P_0 saadaan yhtälöstä

$$P_0 = \frac{1}{2} \rho_a A_t w_a^3,$$ (2.4)

missä ρ_a on ilman tiheys, A_t voimalan pyyhäisypinta-ala ja w_a tuulennopeus. Suurin teoreettinen tuulesta saatava teho P_{teor} saadaan Betzin hyötysuhteen C_{Betz} avulla yhtälöllä

$$P_{teor} = C_{Betz} P_0.$$ (2.5)

Tuulen kineettisestä tehosta saatava sähköteho P_t saadaan yhtälöstä

$$P_t = \eta_{mek} C_p P_0.$$ (2.6)

missä η_{mek} sisältää mekaaniset sekä generaattorihäviöt ja C_p tuuliroottorin aerodynaamisen hyötysuhteen. Tuulella tuotettu sähköenergia E_t voidaan laskea halutulta ajanjaksoalta yhtälöllä

$$E_t = \int_0^t P_t dt,$$ (2.7)

missä t on tarkasteltavan ajanjakson pituus ja P_t ajanjakson keskimääräinen teho. Tuuliroottorin aerodynaamiset häviöt riippuvat voimalan kärkinopeussuhteesta λ joka saadaan yhtälöstä
missä ω on roottorin kulmanopeus ja r pyyhkäisypinta-alan säde. Tuuligeneraattorin siiven kärkinopeussuhde on tärkeä apuväline kun tarkastellaan tuulivoimalan tehokerrointa. Kaikkien tuulivoimaloiden tehokerroin vaihtelee kullekin ominaisella tavalla. siiven kärkinopeussuhteen funktiona. Tämän takia suurten tuulivoimaloiden siiven kärkinopeussuhde halutaan pitää vakiona jokaisella tuulennopeudella, joka vastaa parasta mahdollista kyseisen tuulivoimalan tehokerrointa.

2.3.1 Tuulivoimalatyypit

Pystyakselisen tuulivoimalan etuna on mahdollisuus asentaa mekaaniset ja elektroniset komponentit, vahdelaatikko sekä generaattori maan tasalle. Tämän tapainen tuulivoimala voidaan asentaa helposti myös ahtaisiin kaupunkiympäristöihin, sillä se ei vie yhtä paljon tilaa kuin vaaka-akselilla varustettu tuulivoimala. (Hau 2013) Kuvassa 2.5 on esitetty pystyakselisella roottorilla varustettuja Savonius-tyyppisiä tuulivoimaloita asennettuna osaksi rakennusta.

Kuva 2.5 Venger Wind V2 Savonius-tyyppiset tuulivoimalat asennettuna osaksi rakennusta.

Pystyakselinen tuulivoimala ei myöskään tarvitse rakenteensa puolesta tuulen suunnan mukaista suuntausta. Tämä voidaan myös laskea kyseisen tuulivoimalamallin haitaksi, koska siiven kärkinopeussuhde on tämän takia pystyakselisella voimalalla pieni. Pystyakselinen suuri tuulivoimala ei voi myöskään käynnistyä itsestään, vaan tarvitsee avustuksen pyörämisliikkeen aikaansaamiseksi. Roottorin siipien asentoon ei voida myöskään muuttaa säättävästi näin tuulivoimalan tuottamaa sähkötehoa. (Hau 2013)

2.3.2 Pientuulivoima
Tuulivoimaa käytetään kaupallisen sähkön tuottamiseen suurilla tuuligeneraattoreilla, jotka ovat usein sijoitettuja tuulipuistoihin. Toinen tuulivoiman käyttötapana on talokohdainen sähköntuottaminen, jossa tuotettu energia varastoidaan akustoon tai tuulivoimalaan on kytketty osaksi talon omaa sähköverkkoa. Tähän käytöttäkoitukseen soveltuvat
tuulivoimalat ovat usein pieniä, suurimmillaan muutamien kilowattien suuruisia generaattoreita. Tässä työssä perehdytään tarkemmin pientuulivoiman käyttöön.

Pientuulivoimalat ovat normin IEC 61400-2 mukaan voimaloita, joiden pylvähkäisypinta-ala on alle 200 m², ja joka käytännössä tarkoittaa alle 50 kW:n laitteita. Tyypillisiä käyttökohteita pientuulivoimalle ovat esimerkiksi maataloudet, kotitaloudet ja vapaa-ajan asunnot. Pientuulivoimaa käytetään tällä hetkellä pääasiassa vain sellaisissa kohteissa, jotka eivät ole sähköverkon piirissä. Valio ei tue Suomessa tällä hetkellä pientuulivoiman rakentamista eikä verkkoptyytiöt maksa välttämättä korvausta verkkoon syötetyn sähkölle. Tämän vuoksi pientuulivoima ei ole yleistynyt sähköjärjestelmässä olevien asuinrakennusten keskuudessa.

Suomessa pientuulivoimaa käytetään pääsääntöisesti akkujen lataukseen järjestelmissä, joiden jännite vaihtelee välillä 12 V - 230 V, lämmitysenergian tuottamiseen rakennuksen lämmitysvesijärjestelmiin ja lämpimän käyttöveden varaan. Verkkoyn kytkeyissä tuulijärjestelmissä sähköä tuotetaan suoraan omakotitalon sähköverkkoon, jolloin voimalan teho muutetaan verkkosähköksi ja voimala kytetään kiinteistön sähköjärjestelmään. Tuulivoimalla tuotettu ylijäämä syötetään sähköverkkoon ja vastaavasti alijäämä saadaan sähköverkosta. (Suomen tuulivoimayhdistys ry b)

Tuulivoimalatyypinä käytetään pääsääntöisesti perinteisiä potkurityyppisiä vaaka-akselisia voimaloita, mutta myös pystyakselisia tuulivoimaloita. Vaaka-akseliset voimalat ovat suunniteltu tietylle tuulennopeusalueelle, jolla ne toimivat parhaiten. Pystyakselisia voimala voidaan käyttää pyöreissä olosuhteissa, josta hyvänä esimerkkinä voidaan mainita sanoa ahtaaksi rakennettu kaupunkiyrityspäristö. (Suomen tuulivoimayhdistys ry a)

Tuuliturbiinin antama teho on luonnostaan vaihtelevaa ja riippuu hetkittäin saatavaista tuulen kineettisestä energiasta. Tämän vuoksi systeemin, johon tuulivoimala on kytetty, on otettava jollakin tavalla huomioon sähkötuotannon vaihtelut. Verkkoyn kytkeyissä järjestelmissä sähköverkko toimii ikään kuin kohteen energiavastarosta. Pienemmässä ja eristetyssä systeemissä, jota tässä projektissa käsitellään, sähköenergian saanti voidaan turvata sähköenergian varastoinnilla sekä varalle asennetulla sähkögeneraattorilla, kuten aggregaatilla. (Suomen tuulivoimayhdistys ry b)

Pientuulivoimala tulee suojata kovan tuulen aiheuttamalta ylimpienpotelasta, joka voi johtaa generaattorin rikkomiseen, siihen kytkeytyen laitteiden ylimpienpoteluumiseen ja hajoamiseen sekä vaaratilanteisiin. Pientuulivoimalan myrkkyysjoensä voidaan toteuttaa potkurin sivuun kaannu, potkurin pysäytyksen tai potkurin sakkauskuvulla. Potkurin
sivuun kääntäminen tarkoittaa potkurin kääntämistä pois tuulesta sivuun tai ylös, jolloin tuulta kohtisuoraan oleva pyyhkäisypinta-ala pienenee. Potkurin ylinopeuden ehkäisemiseksi, voidaan roottoriin asentaa mekaaninen jarru, joka alkaa rajottamaan potkurin pyörımisnopeutta tuulen nopeuden kasvaessa suureksi. Potkurin sakaus toteutetaan lapojen suunnittelulla niin, että kovalla tuulella ilman virtaus irtaavat lavoista, jolloin generaattori ei enää pysty tuottamaan tarvittavaa energiaa. (Suomen Tuulivoimayhdistys ry a) Kestomagneettigeneraattorin tapauksessa voidaan pystyttää myös kytkemällä generaattorin staattori oikosulkuun. Oikosulku voidaan toteuttaa erillisellä kytkimellä, joka voidaan erikseen asentaa generaattorin maston juureen tai lataussäätimen oman kytkimen avulla.

2.4 Lataussäätimet

2.4.1 Lataussäädintyypit

Latausreleperiaatteella toimivat lataussäätimet toimivat, niin että akun tullessa täyteen, säätimen latausrele vetää ja siinä oleva kosketin irrottaa latauspiiriin galvanisesti akusta. Latauspiiri voi olla tuuligeneraattori, aurinkopaneellit tai nämä yhdessä. Tällaisen säätimen hyvänä puolen on yleensä erittäin yksinkertainen rakenne ja laite on usein hankintahinnaltaan erittäin edullinen. Toisaalta säädintyypin huonona puolena on
pidettävä myös tätä liiankin yksinkertaista rakennetta, jolloin suuret lämpötilan vaihtelut sekä erityisesti ikääntyneen akun vaikutukset rajoittavat näiden säädinten käyttävyyttä merkittävästi. Säätimen analogiateknikalla toteutettuja toimintoja on kuitenkin voitu merkittävästi parantaa laadukkaampien sähköisten komponenttien valinnalla sekä lisäämällä niihin uusia ominaisuuksia, kuten esimerkiksi käyttämällä lämpötilan kompensaatiota, jonka avulla latausjännitten taso seuraa akun lämpötilaa. Näitä perussäätiimiä ei kuitenkaan suositella ikääntyneiden tai ympärivuotisessa käytössä olevien akkujen lataamiseen. (Eurosolar)

Älykkään hakkurisäätimen eli MPPT –lataussäätimen (Maximum power point tracking) toimintaa ohjaa yleensä prosessori, joka valvoo akun napajännitteen muuttumista ja estää näin akun ylilatautumista tehokkaasti. Säädin toimii myös syväpurkaussuojana estäen akun täydellisen tyhjentymisen virhetilanteissa. MPPT -periaatteilla toimivilla säätimillä on mahdollisuus myös nostaa latausvirran määrää tehokkaasti, kun akun varaustila on alhainen ja esimerkiksi aurinkopaneelin kennojännite on ristiriidassa. MPPT –säätimien toiminta perustuu aurinkokennojen maksimitoimintapisteeseen seurantaan, jonka avulla akkujen lataus tapahtuu parhaalla mahdollisella virran arvolla. (Eurosolar)

2.5 Akusto

Koska tuuli- ja aurinkovoimalla saatava energia vaihtelee sääolosuhteiden mukaan, täytyy näillä tuotantomenetelmillä tuotettua energiaa varastoida verkosta eristettyjen järjestelmien kohdalla akkuihin myöhempää käyttöä varten. Energialähteillä tuotettu
sähköenergia varastoidaan akkuihin, tämän työn kohteen kaltaisissa järjestelmissä yleensä liijyakkuhiin. Akkujen koko täytyy mitoittaa niin, että se kattaa muutaman pilvisen ja tuulettoman päivän energian tarpeen. (Kaldellis 2010)

Akuston mitoitus on hyvä aloittaa määrittämällä kuinka monen tuulettoman ja pilvetöman päivän ajan järjestelmän halutaan toimivan. Toisena määritetään järjestelmän kuluttama sähköenergia vuorokaudessa ja kuinka paljon akuston kapasiteetista halutaan hyödyntää. Lähtökohtana akustosta on hyvä käyttää vain 70 - 80 % sen kapasiteetista, jotta tekninen käyttökäytä tulee mahdollisimman pitkäksi (Rashid 2011). Hyvä syväpurkausakku kuitenkin kestää yleensä hyvinkin monta syväpurkauksen, joka voi olla 50 % akun varauksesta. Talvella kylmyyys laskee akuston varausta, joten akut olisi silloin hyvä pitää mahdollisimman täyteen varattuina. Akkuja ei koskaan tulisi purkaa kokonaan tyhjiksi, sillä akusto saattaa viottua ja menettää varauskykyään tämän seurauksena.

2.5.1 Akkutyyppit

Avoimet akut ovat edullisimpia verrattava olaviin akkutyyypeihin ja sopivat usein vapaa-ajan asunnoille, joissa akkuja säilytetään usein moina alla tai kuistilla ja säädän on asennettu sisätiloihin erilleen akuista. Haittapuolen avoimia akkuja tulee huoltaa säännöllisesti käyttämällä niitä vedellä sekä akkuhapoilla, jotka höyrystyvät nopean latauksen yhteydessä. Hoppohöyry syövyttävät mahdollisesti käytettävän inverterin elektronikkaan ja muodostavat palovaaran, jonka takia niitä ei tulisi varastoida sisätiloissa. (REPS)

AGM –akku on kehitetty lyijyakku, jossa neste on sidottu lasikuitukankaaseen paksujen
lyijykennojen väliin. Niillä on geeliakkujen kaikki hyvät puolet ja tämän lisäksi ne sallivat
lisäksi suuria virtoja. Kuten kaikissa muissakin akkutyypeissä, eri valmistajien ja mallien
välillä on suuria eroavaisuuksia AGM –akkujen välillä. Suurin ero muodostuu akun
sietämästä lataus-purkaussyklistä, joka on suorassa suhteessa akun elinikään. Myös
niiden kyky kestää jäätymistä on parempi ja niiden sisäinen vastus on pieni, jonka kautta
latauslyijy keskittää itseperuskautumisominaisuudet ovat paremmat kuin muilla akkutyypeillä.
Korkea sisäinen vastus tekee sen, että jännite laskee enemmän kovassa kuormituksessa.
(REPS)

2.6 Kaapelit

Sähköenergiaa siirretään kaapeleilla tuotantopaikasta kuormaan. Siirron aikana tapahtuu
häviötä, jolloin kaapelissa kulkeva energia muuttuu toiseen muotoon, yleisimmin
lämpöenergiaksi. Tasavirtakaapeleissa häviöt johtuvat johdemateriaalin resistanssista ja
vaihtovirtakaapeleissa resistanssin lisäksi vaikuttaa myös johdemateriaalin reaktanssi.
Kaapeleiden sisäksi häviöitä tapahtuu liittimissä ja johtojen liitoksissa.

Tasavirta kaapelin resistanssi R_{DC} voidaan laskea yhtälöllä

$$R_{DC} = \rho_0 (1 + \alpha \Delta T) \frac{l}{A_j}$$

missä ρ_0 on johtimen materiaalin ominaisresistiivisyys, α resistiivisyyden lämpötilakerroin
materiaalilille, ΔT lämpötilaero referenssi lämpötilan ja vallitsevan lämpötilan välillä. Lisäksi
johtimen pituus on l ja sen poikkipinnan pinta-ala on A_j. Yhtälöstä (2.9) huomataan, että
mitä paksumpaa kaapel on, sitä pienempi tasavirta resistansssi on johtimessa.

Tehohäviö tasavirtakaapelissa $P_{h_{DC}}$ saadaan nyt yhtälöstä (2.10), kun tiedetään kaapelin
resistansssi ja siinä kulkeva tasavirta I_{DC}.

$$P_{h_{DC}} = R_{DC} I_{DC}^2$$

Tuuligeneraattorilla tuotettu kolmivaiheisen virran ja jännitteen arvo muuttuu
tasasuuntauksessa, joten ne täytyy selvittää häviölaskelmia varten. Laskennassa
tasasuuntaussillan tulo- ja lähtötehon voidaan olettaa olevan samoja, koska tehohäviöt
tasasuuntauksessa ovat pieniä. Kun tasasuuntauksen teho pysyy samana, voidaan
tasavirran arvo I_{DC} määrittää yhtälöllä
\[\sqrt{3} \cdot I_{AC} U_{AC} = I_{DC} U_{DC}, \] \hspace{1cm} (2.11)

missä \(I_{AC} \) on kolmivaiheisen vaihtovirran arvo, \(U_{AC} \) kolmivaiheisen pääjännitteen arvo ja \(U_{DC} \) tasasuunnatun jännitteen arvo. Tasasuunnatun jännite voidaan selvittää yhtälöllä

\[U_{DC} = k \cdot U_{AC}, \] \hspace{1cm} (2.12)

missä \(k \) on tasasuunnatun jännitteen ja kolmivaiheisen pääjännitteen tehollisarvon suhde.

Jännitteenalennemä kolmivaiheisessa vaihtovirtakaapelissa riippuu resistanssin lisäksi myös induktiivisesta reaktanssistä \(X_{AC} \). Jännitteenalennemä \(U_{h,AC} \) voidaan laskea yhtälöllä

\[U_{h,AC} = \sqrt{3}(I_{p}R_{AC} + I_{Q}X_{AC}), \] \hspace{1cm} (2.13)

missä \(I_{p} \) on pätövirta, \(R_{AC} \) kaapelin vaihtovirta resistanssi ja \(I_{Q} \) loisvirta, ja yhtälöstä saatava jännitteenalennemä saadaan pääjännitesuureena. Näennäisvirta \(I \) voidaan jakaa pätö- ja loisvirran komponentteihin vaihe-eron \(\varphi \) avulla. Pätö- ja loisvirta saadaan yhtälöistä

\[I_{p} = I \cos \varphi \] \hspace{1cm} (2.14)

\[I_{Q} = I \sin \varphi. \] \hspace{1cm} (2.15)

Jokaisella kaapelilla on ominaiset vaihtovirta resistanssit ja induktanssit, joiden arvot löytyvät kaapeleiden datalehdistä. Kaapelin induktiivinen reaktanssi voidaan laskea yhtälöllä

\[X_{AC} = 2\pi fL, \] \hspace{1cm} (2.16)

missä \(f \) on vaihtovirran taajuus ja \(L \) kaapelin induktanssi.

Kolmivaiheisen vaihtovirtakaapelisen tehohäviö \(P_{h,AC} \) voidaan nyt laskea yhtälöllä

\[P_{h,AC} = \sqrt{3} \cdot U_{h,AC} I_{AC}, \] \hspace{1cm} (2.17)

kun kaapelissä kulkeva virta \(I_{AC} \) tiedetään.

Sähköntuotantolaitteisto kannattaa häviöiden johdosta sijoittaa aina mahdollisimman lähelle lataussäädintä, akustoa ja kulutuskojeita. Suurilla kaapelin poikkipinta-aloilla
saadaan pienemmät häviöt, mutta tällöin kaapeleiden hinta nousee. Teknillistaloudellisesti
kaapeleita mitoitassa pitääkin tehdä yleensä kompromisseja kaapeleiden hintaan ja
häviöiden suuruuden kanssa.

2.7 Käytettävät laitteet

Humaljärven partiokämpällä on kaksi toisistaan erillistä aurinkopaneelijärjestelmää. Varsinaisen partiokämpän katolla on kaksi 100 W monikidepaneelia sarjaan kytettynä, samoin kuin saunan katolla. Yhden aurinkopaneelin pinta-ala on 0,78 m² ja sen tuottama jännite on nimellispisteessä 17,2 V sekä virta 5,81 A. Molemmissa järjestelmissä käytetään Soltronic MPPT 7520 lataussäädintä, jotka sätelevät akkujen latausvirtaa. Molemmissa järjestelmissä käytetään kahta Exide ES2400 Equipment Gel–akkua, jonka kapasiteetti on 210 Ah. Akut on kytetty rinnan muodostaen 12 V järjestelmät, tällöin järjestelmän akuston yhteiskapasiteetti on 420 Ah.

Leiripaikan kaikki sähkölaitteet ja valot toimivat 12 V jännitteellä. Pääkämpän terassilla ulkovalaistus on toteutettu kolmella 10 W led-valonlähteellä, joiden virrankulutus on \(\frac{10 \text{ W}}{12 \text{ V}} = 0,83 \) A. Sisällä valaistus hoidetaan kahdeksalla led-valokiskolla, jossa yhden valokiskon teho on 7,2 W ja jonka virrankulutus on \(\frac{7,2 \text{ W}}{12 \text{ V}} = 0,6 \) A. Pääkämpän varustukseen kuuluu Tivoli Audio Model One–pöytäradio, jonka virrankulutus on 800 mA. Lisäksi mökissä on mahdollisuus ladata kännyköitä autokännykänlaturilla. Yksittäisen autolaturin maksimi virrankulutus on 1,0 A (Belkin).

Lippukunta on saanut lahjoituksena GP-600w tuulivoimalan ja tuulilataussäätimen FK_FSZ24H-0.6A. Tuulivoimalan ja lataussäätimen on valmistanut kiinalainen WinPower, jonka maahantuojalta, GreenEnergy Finland Oy:ltä, laitteet on hankittu. Kuvassa 2.6 on esitetty tuuliturbiinin tehokäyrrä.
Kuva 2.6 GP-600w tuuliturbiinin antama teho tuulen nopeuden funktiona.

GP-600w tuuliturbiinin nimellisteho 600 W saadaan tuulennopeudella 10 m/s, jota vastaa pyörimisnopeus 400 rpm. Kuvasta 2.6 nähdään generaattorin tuottaman tehon kasvavan lähes linearisesti aina tuulennopeuteen 13 m/s asti, jonka jälkeen tuotettu teho pienenee nopeasti. Käyränmuoto selittyy tuulivoimalan siiven kärkinopeussuhteen arvon laskemisen takia, joka johtaa turbiinin tehokortoimen huononemiseen. Tuulivoimala on kestomagnetoitu ja kolmivaiheinen generaattori, jonka kolmilapaisen roottorin halkaisija on 2,5 metriä.

Tuuligeneraattorin mukana toimitettu lataussäädin toimii PWM–teknikalla ja se soveltuu lataamaan 24 V akustoa. Lataussäädin on varustettu keinovastuksella, johon lataussäädin syöttää ylimääräisen tehon akkujen ollessa täynnä. Green Energy Finland on asentanut lisäkytkimen lataussäätimeen, jonka avulla voidaan kytkeä manuaalisesti irti akkuista, jolloin se ei kuluta akkujen varausta. Lataussäätimessä on myös tuuliturbiinin pysäytämistä varten oleva kytkin, jonka avulla tuuligeneraattorin staattori voidaan kytkeä oikosulkuun.
3. SÄHKÖENERGIANTUOTANNON JA -KULUTUKSEN ARVIOINTI

3.1 Vuotuinen järjestelmän energiankulutus

Arvioitaan seuraavaksi kesäkuukausina käytettyjen laitteiden kulutusarviot ja verrataan niitä talvikuukausille laskettuin arvoihin. Varausvuorokausiksi ja laitteiden käyttötunnit kesäkuukausina pääkämpällä on arvioitu liitteessä I taulukossa 3 ja saunalla sekä vanhalla kämpällä taulukossa 4 näkyvällä tavalla. Liitteessä I esitettyjen käyttötuntien ja laitteiden virrankulutusten mukaan kesäkuukausina pääkämpää kuluttia virtaa noin 3200
Ah ja vastaavasti sauna sekä vanha kämppä 3000 Ah. Arvot ovat huomattavasti suurempia kuin talvikuukausille lasketut, vaikka talvikuukausia on määritelty yksi enemmän. Vaikka talvikuukausina varausvuorokautta kohden kulutettu sähköenergia on suurempaa kuin kesällä, on kesäkuukausina huomattavasti enemmän käyttövuorokausia. Vuotuinen kokonaisenergian kulutus on päälämpöllä noin 5800 Ah ja saunalla sekä vahalla kämpällä on noin 5300 Ah.

3.2 Vuotuinen energiantuotanto aurinkovoimalla

Vuotuisen tuotetun aurinkoenergian arvioimiseen käytetään vuoden 2013 huhtikuusta vuoden 2014 maaliskuuhun kerättyä dataa Auringon sähköenergiasta (Suomen sääpalvelu). Vertailu Humaljärven partiokämpään kyseisillä arvoilla on riittävällä tarkkuudella, koska kohteitten välinen etäisyys on vain noin 20 km. Aurinkopaneleiden hyötysuhteeksi arvioitiin yhtälön (2.2) avulla 12,9 %. Aurinkopaneleilta saatavat sähköenergiat voidaan nyt laskea yhtälöllä (2.1) käytävän kuukauden aikana saatavaa Auringon sähköenergiaa. Arvioidut Humaljärven aurinkopaneelien energiantuotannot on esitetty graafisesti kuukausittain kuvassa 3.1 ja kuvaajan arvot on taulukoitu liitteen II.

![Kuva 3.1](image-url) Kuukausittain aurinkopaneleilta saatava arvioitu sähköenergia Humaljärvellä. (Suomen sääpalvelu)
Kuvasta 3.1 nähdään, että auringon säteilyenergia painottuu voimakkaasti kesäkuukausille. Säteilyenergia kasvaa voimakkaasti keväällä ja vastaavasti vähentyy voimakkaasti syksyllä. Kuvasta 3.1 voidaan myös huomata, että edellä määritettyinä talvikuukausina aurinkopaneeleilta saadaan huomattavasti vähemmän sähköenergiaa. Sekä pääkämpälle että saunalle lasketut aurinkopaneelien tuotot ovat yhtä suuria, sillä kohteissa sijaitsevat aurinkopaneelit ovat samanlaisia ja pinta-alaltaan yhtä suuria. Liitteessä II esitetystä arvoista nähdään, että määritettyinä talvikuukausina tuotetun aurinkoenergian suuruus molempien rakennusten kohdalla on noin 29,8 kWh. Vastaavasti kesäkuukausina tuotetuki aurinkoenergiaksi molemmissa järjestelmissä saadaan noin 141,3 kWh. Ampeeritunteiksi muutettuna talvella saatava aurinkoenergia rakennusta kohden on 2,5 kAh ja kesällä 11,8 kAh. Laskettuihin tuotantoarvioihin ei ole otettu mukaan puiden varjostuksesta johtuvaa energian tuotannon vähennemistä, joten todellinen aurinkopaneeleista saatava sähköenergia on arvioihin verrattuna pienempi. Lippukunnan kokemuksen mukaan pääkämpän aurinkopaneelianjärjestelmä lataa akustoa huonommin kuin saunan, joten varsinkin pääkämpän aurinkopaneeleista saatava energia on huomattavasti pienempää arvioihin verrattuna. Ongelma korostuu varsinkin talvisin, jolloin lippukunnan kokemuksen mukaan pääkämpän aurinkopaneileiden kohdalla paistetunnit ovat huonoimmillaan vain noin kaksi tuntia vuorokaudessa.

3.3 Vuotuinen energiantuotanto tuulivoimalla

Tuulivoimalan tuottaman tehon arvioimiseen käytetään Lappeenrannan Lepolasta kerättyä tuulen mittausdataa vuodelta 2012 (Ilmatieteen laitos b). Tuulen mittauspiste sijaitsee noin 20 metrin korkeudessa, mikä on riittävän lähellä tuulivoimalan tuuliolosuhteita Humaljärven rannalla. Mittauspisteestä saadun datan perusteella laskettiin keskituulennopeudet kullekin kuukaudelle, joiden perusteella piirrettiin kuvan 3.2 tuulijakauma.
Kuva 3.2 Vuoden 2012 tuulijakauma Lappeenrannan Lepolan mittauspisteessä.

Kuvasta 3.2 nähdään suuremman tuulivoiman sähköntuotantokapasiteetin sijoittuvan talvikuukausille, toisin kuin aurinkovoiman kohdalla. Tuulivoiman saatavuus jakautuu kuitenkin melko tasaisesti koko vuodelle, sillä kuvasta 3.2 voidaan huomata kuukausittaisen keskituulennepeksen sijoittuvan noin 1,0 m/s sisälle. Mittauspisteistä laskettuna koko vuoden keskituulennepeus on 2,7 m/s.

Tuulivoimalla tuotetun sähköenergian arvioimiseen tulee ottaa huomioon tuulennepeksien lisäksi myös tuulen suunta, jotta voidaan ottaa huomioon mahdolliset maastonmuodostaiden tai rakennuksista aiheutuvat esteet tuulen vapaalle virtaukselle. Tuulen keskimääräiset suunnat esitetään yleensä tuuliruusussa, jossa tuulensuunnat on esitetyt prosentuaalisesti esiintymänsä mukaan. Kuvassa 3.3 on esitetty Suomen tuuliatlaksesta otettu tuuliruusu Humaljärvellä 50 metrin korkeudessa.
Kuva 3.3 Humaljärven tuuliruusu 50 metrin korkeudelta. (Suomen tuuliatlas)

Kuvasta 3.3 nähdään, että yleisimmin Humaljärvellä tuulee luoteen ja etelän väliltä. Kyseinen tuulensuunta ei ole edullinen partiokämpän tuulivoimalla tuotetun sähköenergian määrälle, johtuen partiokämpän sijainnista. Partiokämpän etelä- ja lounaispuolella on metsää ja järvi avautuu lännen sekä kaikon välille. Suuri osa saatavana olevasta tuulienergiasta osuu siis kuvan 3.3 tuuliruusun mukaan maanmuodoista johtuviin esteisiin. Tässä työssä oletetaan, että järven rannalle sijoitettauto tuulivoimalan tuuliolosuhteet ovat hyvät joka tuulen suunnasta, vaikka tuuliruusun mukaan yleisimmät tuulen suunnat ovat Humaljärvellä epäotolliset. Tätä ei oteta huomioon tuulivoimalan tuotantoarvioissa.

Saadusta mittausdatasta saatiin selville vuoden 2012 tuntien keskitehot. Tuulivoimalan hyötysuhteena η_{mek} käytettiin kappaleessa 4.1.2 laskettujen generaattorin hyötysuhteiden perusteella arvoa 0,60 ja tehokertoimeksi C_p arvioitiin 0,40. Sijoittamalla nämä arvot yhdessä jokaisen tarkasteluajanjakson tunnin tuulen vapaan virtauksen keskitehnon kanssa yhtälöön (2.6) ja summaamalla saadut arvot yhteen saadaan yhtälöön (2.7)
mukaan tuotettu sähköenergia tarkasteluajanjaksona. Kuukausikohtaiset tuulella tuotetut sähköenergiat on esitetty graafisesti kuvassa 3.4.

Kuva 3.4 Tuulivoimalan sähköenergian tuotantoarvio kuukausittain vuonna 2012. Arvio perustuu kuvan 3.2 tuulijakaumaan

Kuvasta 3.4 voidaan huomata, että talvikuukausina tuulivoimala tuottaa selvästi enemmän kuin kesäkuukausina. Talvella tuulivoimalan kokonaisenergian tuotanto on noin 109 kWh ja kesällä noin 45 kWh. Ampeeritunteiksi muutettuna energiantuotanto on talvisin noin 9,1 kAh ja kesällä noin 3,8 kAh. Vertailemalla tuotettua energiaa kuvassa 3.2 näkyviin kuukausittaisiin tuulennopeuden keskiarvoihin huomataan energiantuoton vaihtelevan huomattavasti enemmän. Vaikka keskituulennopeudet pysyvät 1,0 m/s marginaalissa, tuotettu energia vaihtelee suurimmillaan noin 17 kWh:n välillä. Tämä johtuu kesän alhaisemmista tuulennopeuksista, koska tuulivoimala ei tuota alle 3 m/s tuulennopeuksilla. Lisäksi tuulen vapaan virtauksen teho kasvaa tuulennopeuden kolmannen potenssiin yhtälön (2.5) mukaisesti.
3.4 Kulutuksen ja tuotannon tasapaino

Kesäisin pääkämpän aurinkopaneeleilla tuotetaan sähköenergiaa ilman varjoisuudesta johtuvia vähennyksiä noin 11,8 kAh kulutuksen ollessa tällöin 3,2 kAh. Aurinkoenergialla tuotetaan siis kesäkuukausina riittävästi sähköenergiaa pääkämpän kulutukseen nähden. Arvioista voidaan myös nähdä, että kesäisin saunan aurinkojärjestelmä tuottaa enemmän sähköenergiaa kuin saunalla ja vanhalla kämpällä kulutetaan.

4. LAITTEIDEN TESTAUS

Laboratoriotestausten tarkoituksena on selvittää lippukunnalle lahjoitettujen tuuligeneraattorin ja lataussäätimen toimivuus sekä soveltuvuus partiokämpän systeemille. Etenkin lataussäätimen kohdalla halutaan määrittää sen toimivuus mahdollisimman monessa erilaisessa tilanteessa, jotta käytössä ei ilmenisi ongelmtilanteita. Laboratoriomittauksissa käytetty järjestelmä on esitetty kuvassa 4.1.

Kuva 4.1 Laboratoriomittauksissa käytetty järjestelmä.

Tuuliturbnin generaattori näkyy kuvassa 4.1 kytkettynä sähkömoottoriin säätövastuksien takana. Lisäksi kuvassa näkyy vierekkäin taajuusmuuttaja ja tuuliturbnin lataussäädin. Oikeassa alakulmassa nähdään testauksissa käytetty 12 V:n akut ja oikeassa yläkulmassa hyllykön päällä tehoanalysaattori, jonka avulla kerättiin mitausdataa.

4.1 Tuuligeneraattorin testaus

Generaattori oli kytkettynä nimellisteholtaan 7,5 kW:n oikosulkumoottoriin, jonka avulla pyöritettiin generaattorin roottoria. Sähkömoottoria ohjattiin taajuusmuuttajan avulla, jolla pystyttiin säättämään moottorin pyörinmisnopeutta. Kuvassa 4.2 on esitety testattu tuuligeneraattori kytkettynä 7,5 kW:n sähkömoottoriin.
Kuva 4.2 Testattu tuuligeneraattori kytettynä taajuusmuuttajaohjattuun 7,5 kW:n oikosulkumoottoriin.

4.1.1 Tuuligeneraattorin tuottama teho

Taulukko 4.1 Tuuligeneraattorin tuottaman tehon, pääjännitteen ja virran testauksesta mitatut arvot.

<table>
<thead>
<tr>
<th>Tuulennopeus w_a [m/s]</th>
<th>Pyöränopeus n [rpm]</th>
<th>Teho P [W]</th>
<th>Pääjännite U_p [V]</th>
<th>Virta I [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,2</td>
<td>150</td>
<td>99,5</td>
<td>12,8</td>
<td>4,5</td>
</tr>
<tr>
<td>3,9</td>
<td>175</td>
<td>133,3</td>
<td>14,8</td>
<td>5,2</td>
</tr>
<tr>
<td>4,5</td>
<td>200</td>
<td>171,5</td>
<td>16,8</td>
<td>5,9</td>
</tr>
<tr>
<td>5,8</td>
<td>250</td>
<td>259,1</td>
<td>20,6</td>
<td>7,3</td>
</tr>
<tr>
<td>6,9</td>
<td>300</td>
<td>359,3</td>
<td>24,2</td>
<td>8,6</td>
</tr>
<tr>
<td>8,4</td>
<td>350</td>
<td>470</td>
<td>27,7</td>
<td>9,8</td>
</tr>
<tr>
<td>10,0</td>
<td>400</td>
<td>593,5</td>
<td>31,1</td>
<td>11,0</td>
</tr>
<tr>
<td>12,8</td>
<td>450</td>
<td>701,3</td>
<td>33,8</td>
<td>12,0</td>
</tr>
</tbody>
</table>

Yli 450 rpm olevia pyöränopeuksia ei pystytty tällä menetelmällä testaamaan, koska pyöränopeutta kasvatettaessa sähkömoottorin avulla teho kasvaa lineaarisesti, mikä ei vastaa todellista tuulivoimalan toimintaa. Todellisessa toiminnassa yli nimellispisteen olevat tuulennopeudet aiheuttavat tuulivoimalan siivissä sakkaamista, mikä laskee tuulivoimalan tuottamaa tehoa. Taulukossa näkyvät tuulennopeudet on arvioitu vertailemalla mitattuja arvoja sekä kuvassa 2.6 näkyvää tehokäyrää.

4.1.2 Tuuligeneraattorin hyötysuhde

Tuuligeneraattorin hyötysuhdetta tutkittiin taulukossa 4.1 esitettyjen generaattorin tuottamien tehojen ja taajuusmuuttajasta otettujen vääntömomenttien avulla. Mittauksen
kytkentä on esitetty liitteessä III kuvassa 1. Hyötysuhteen määritkseen käytetyt mitaustulokset sekä laskennat on esitetty liitteessä IV. Taulukko 4.2 on taulukoitu mitattujen arvojen perusteella lasketut tuuligeneraattorin hyötysuhteet.

Taulukko 4.2 Tuuligeneraattorin hyötysuhteet.

<table>
<thead>
<tr>
<th>Tuulennopeus v_a [m/s]</th>
<th>Pyörimisnopeus n [rpm]</th>
<th>Turbiinin hyötysuhde η [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>200</td>
<td>54,4</td>
</tr>
<tr>
<td>6,9</td>
<td>300</td>
<td>66,3</td>
</tr>
<tr>
<td>10,0</td>
<td>400</td>
<td>72,1</td>
</tr>
</tbody>
</table>

Taulukosta 4.2 nähdään generaattorin hyötysuhteen kasvavan turbiinin pyörimisnopeuden ja tehon kasvaessa. Plenillä pyörimisnopeuksilla generaattorin hyötysuhteiden huomataan olevan vain hieman yli 50 %, kun taas suurilla pyörimisnopeuksilla generaattorin hyötysuhde nousee yli 70 %.

4.1.3 Tuuligeneraattorin oikosulkuvirta

Kuva 4.3 Nimellispyörimisnopeudella 400 rpm oikosulkuun kytketyn tuuligeneraattorin oikosulkuvirta. Y-akselin asteikko vaihtelee ±50 ampeerin välillä.
Oikosulun tapahtuessa oikosulkuvirran huippuarvo nousee noin 36 ampeeriin, jonka tehollisarvo on \(A_o = \frac{36 \times A}{\sqrt{2}} = 25,5 \) A. Verrattuna generaattorin nimellispisteen virtaan, taulukko 4.1, virtapiikin tehollisarvo on 2,3-kertainen. Virtapiikin jälkeen virran huippuarvo tasoittuu arvoon 30 A, jonka tehollisarvoksi saadaan 21,2 A. Tasoittuneen virran tehollisarvo on hieman alle kaksinkertainen generaattorin tuottaman nimellispisteen virtaan verrattuna. Tuulivoimalan oikosulkuvirta ei siis ole poikkeuksellisen suuri, mikä on hyvä asia generaattorin kestävyyden kannalta. Suurenta oikosulkuvirrat voivat vahingoittaa kytkettynä olevia laitteita, liittimiä ja johtoja.

4.2 Lataussäätimen testaus

4.2.1 Lataussäätimen herääminen

Kuva 4.4 Lataussäätimen latauksen testaaminen eri generaattorin pyöräminenpeuksilla.

Kuvasta 4.4 nähdään lataussäätimen aloittavan akkujen lataamisen generaattorin pyöräminenpeuksien ollessa 170-180 rpm välissä. Kyseisten pyöräminenpeuksien vastaavuudet tuulenkooppeihin voidaan nähdä vertailemalla kuvan 2.6 tehokäyrää ja taulukkoa 4.1. Vertailusta nähdään lataussäätimen aloittavan akkujen lataamisen tuulenkooppeuden ollessa noin 4 m/s.

4.2.2 Lataussäätimen syöttämä teho

Lataussäätimen syöttämää latausvirtaa ja –jännitettä tutkittiin eri generaattorin pyöräminenpeuksilla. Testauksen tarkoituksena oli selvittää eri tilanteissa syöttävien virtojen suuruudet lisäksi kullakin pyöräminenpeudella, syöttääkö lataussäädin liian suurta virtaa akkujen kestävyyden kannalta suurilla pyöräminenpeuksilla. Testaus toteutettiin
liitteessä III kuvassa 2 esitetyllä kytkennällä akkujen varaustilanteen ollessa noin 66 % ja kokeessa saadut tulokset on taulukoitu taulukkoon 4.3.

Taulukko 4.3 Lataussäätimen latausvirta ja –jännite generaattorin eri pyörimisnopeuksilla.

<table>
<thead>
<tr>
<th>Pyörimisnopeus (\eta) [rpm]</th>
<th>Jännite (U) [V]</th>
<th>Virta (I) [A]</th>
<th>Teho (P) [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>25,6</td>
<td>1,8</td>
<td>45,5</td>
</tr>
<tr>
<td>250</td>
<td>25,9</td>
<td>6,7</td>
<td>174,3</td>
</tr>
<tr>
<td>300</td>
<td>26,4</td>
<td>11,6</td>
<td>306,5</td>
</tr>
<tr>
<td>350</td>
<td>27,0</td>
<td>15,6</td>
<td>421,1</td>
</tr>
<tr>
<td>400</td>
<td>27,4</td>
<td>18,6</td>
<td>508,9</td>
</tr>
<tr>
<td>450</td>
<td>27,7</td>
<td>20,8</td>
<td>575,3</td>
</tr>
</tbody>
</table>

Taulukosta 4.3 nähdään lataussäätimen syöttämän latausvirran kasvavan aluksi nopeasti alhaisilla pyörimisnopeuksilla ja tullessa suurille pyörimisnopeuksille latausvirran kasvaminen hidastuu. Partiokämpällä olevien akkujen valmistaja suosittelee, että latausvirta ei kasvaisi 25 prosenttia akkujen kapasiteettia suuremmaksi (Exide). Tässä tapauksessa suurin sallittu latausvirta on \(I_{\text{max}} = 0,25 \times 420 \, \text{A} = 105 \, \text{A} \). Lataussäätimeltä saatava latausvirta ei koskaan tule saavuttamaan tätä arvoa, koska lataussäätimen valmistajan ohjekirjan mukaan suurin säätimeltä saatava latausvirta on 25 A.

4.2.3 Akkujen lataaminen

Akkujen latautumista tutkittiin lataussäätimen avulla kahdella eri generaattorin pyörimisnopeudella akkujen varaustilanteen ollessa kummassakin tapauksessa noin 66 %. Mittauksen tarkoituksena oli selvittää PWM-lataussäätimen käyttäytyminen lataustilanteessa ja akkujen ollessa täynnä. Ensimmäisessä tapauksessa generaattorin pyörimisnopeuden arvoksi valittiin 300 rpm, joka vastaa noin tuulennopeutta 6,5 m/s. Mittaus toteutettiin liitteessä III kuvassa 2 esitetyllä kytkennällä ja saatu latauskäyrä on esitetty graafisesti kuvassa 4.5.
Kuva 4.5 Lataussäätimen latauskäyrä generaattorin pyörimisnopeuden ollessa 300 rpm.

Kuvasta 4.5 nähdään lataussäätimen laskevan akuille syötettävää virtaa akkujen lähestyessä täyttä varaustillanetta samalla kun akkujen jännite kasvaa. Kun akkujen jännite on saavuttanut pisteen noin 28,4 V eli akkujen tullessa täyteen, alkaa se katkomaan akuille syötettävää virtaa PWM –tyypiselle lataussäätimelle ominaiseen tapaan. Kuvasta 4.5 huomataan akkujen lataamisen täyteen 66 %:n varaustillanteesta kestävän pyörimisnopeudella 300 rpm noin yhden tunnin ja 40 minuuttia.

Laboratoriotestauksessa kiinnitettiin lataussäätimen sisäiseen vastukseen yleismittari, jonka avulla haluttiin nähdä kellutusvaiheen aikana vastukseen syötetty teho. Kuvassa 4.6 on esitetty testatun PWM –lataussäätimen sisäinen keinokuorma.
Yleimmässä avulla huomattiin, että lataussäätimen kellutusvaiheessa tuuligeneraattorin ylimääräinen teho syötetään lataussäätimen vastukseen. Mittauksen yhteydessä huomattiin, ettei vastuksen alapuolella oleva tuuletin toiminut. Tuulettimessa olevan vian vuoksi vastus lämpenki huomattavasti ja lataussäätimestä havaittiin tulevan palaneen hajua.

Akkujen latautumista tutkittiin vielä akkukohtaisesti ja akkujen jännitteiden arvot otettiin ylös ennen latauksen aloittamista, latauksen aikana sekä jännitteiden tasaannuttua latauksen jälkeen. Valmistajan Varta akun jännite ennen latauksen aloittamista oli 12,39 V ja valmistajan Exide 12,10 V. Akut oli ennen koetta ladattu erikseen täyteen varaukseen, jonka jälkeen niitä oli purettu 10 A suuruisella virralla kaksi tuntia. Akut olivat siis samassa varaustilanteessa ja niiden erisuuruiset jännitteet johtuvat siis akkujen erilaisesta rakenteesta tai niiden erilaisesta kunnosta. Akkujen jännitteet latauksen aikana on esitetty kuvassa 4.7.
Kuva 4.7 Akkujen jännitteet latauksen aikana generaattorin pyörimisnopeuden ollessa 300 rpm.

Kuvasta 4.7 huomataan akkujen jännitteiden olevan erisuuruisia koko latauksen ajan, mutta kasvavan kuitenkin samassa tahdissa. Kun akkujen jännitteen olisi annettu tasaantua noin 10 minuuttia latauksen jälkeen, olivat jännitteet Vartan akulla 13,16 V ja Exidellä 12,85 V. Tästä huomataan valmistajan Varta akun jännitteen nousseen hieman enemmän kuin Exiden. Akkujen erilainen käyttäytyminen johtuu akkujen erilaisista ominaisuuksista tai niiden ikääntymisestä.

Kuvasta 4.8 huomataan lataussäätimen käyttäytymän perusperiaatteeltaan samalla tavalla kuin generaattorin pyöränopeudella 300 rpm. Latautuminen samasta varaustilanteesta on kuitenkin huomattavasti nopeampaa. Tuuligeneraattorin pyöränopeuden ollessa 400 rpm akkujen latautumiseen varaustilanteesta 66 % kesti ainoastaan reilun kolmasosan verrattuna generaattorin pyöränopeudella 300 rpm, eli noin 35 minuuttia.

4.2.4 Erillisiä varaustilanteissa olevien akkujen lataaminen

4.2.5 Lataussäätimen tasavirtakuorma ja virrankulutus
Lataussäätimen omaa virrankulutusta testattiin siihen asennetun kytkimen ollessa molemmissa asennoissa. Kytkimen on tarkoitus irrottaa tasavirtakuorma akustosta, kun järjestelmä ei käytetä. Tällöin lataussäätimen oma virrankulutus tulisi olla vähemmän. Tasavirtakuorman ollessa liitettynä akustoon, mitattiin akustolta otettavaksi virraksi noin 240 mA. Kun akusto irrotettiin tasavirtakuormasta, akustolta otettu virta olisi tällöin 180 mA. Tasavirtakuorman akuista irtikytkeminen asennetun kytkimen avulla laskee siis lataussäätimen virrankultusta 60 mA. Testistä voidaan nähdä, että lataussäädin kuluttaa vähän akkujen varausta, vaikka kuorma ei olisikaan liitetty säätimeen.
5. JÄRJESTELMÄRATKAISUT

Arvioitujen kulutus- ja tuotantoarvioiden sekä testaustulosten perusteella suunniteltiin partiokämpällä kolme erilaista vaihtoehtoa hybridijärjestelmän toteuttamiselle. Ensimmäisen järjestelmän perustana on kappaleessa 4.2.4 simuloitu järjestelmä. Kahden muun järjestelmän perustana on, että molempien rakennusten sähköjärjestelmät voidaan tarvittaessa yhdistää siirtämättä paneleita ja akustoja. Jälkimmäisissä järjestelmävaihtoehdoissa tuulivoimalalta saatavalla sähköenergialla varataan päälämpän akusto, koska talvikuukausina aurinkopaneelien saatava energia ei kata järjestelmän energiantarvetta. Saunalle ja vanhalle kämpälle tuulivoiman liittäminen ei ole tarpeellista, kuten kappaleessa 3.4 huomattiin.

5.1 Laboratoriotestauksessa simuloitu hybridijärjestelmä

Kappaleessa 4.2.4 simuladoidun järjestelmämallin kohdalla huomattiiin, että kaikkien tuulilataussäätimeen liitettyjen akkujen tulee olla samassa varaustilassa, jotta ne latautuvat optimaalisesti. Kuorman tulee ottaa kuluttamansa sähköenergia yhdestä akustosta, joka on samassa jänniteportaassa. Tällä tavalla ei akustoon pääse muodostumaan eri varaustilanteita. Zyklit tavalla ei akustoon pääse muodostumaan eri varaustilanteessa olevia akkuja.

Kuva 5.1 Laboratoriotestauksen pohjalta suunniteltu hybridijärjestelmä.

5.2 Testatun lataussäätimen käyttäminen osana hybridijärjestelmää

Yhtenä suunnittelun lähtökohtana oli, että rakennusten sähköjärjestelmät voidaan yhdistää. Tämä toteutetaan pääkämpän kuorman liittämisää saunan kuormaan. Saunalla voidaan tällä tavoin akkujen varauksen ollessa matala käyttää pääkämpän akustoon tuulivoimalla tuotettua sähköenergiaa. Saunalla on kytkin, jonka avulla voidaan valita käytettävänä saunan sähköjärjestelmän omaa akustoa vai pääkämpän sähköjärjestelmää.

Koska molemmillä rakennuksilla on jänniteellä 12 V toiminut sähkölaitteet, on pääkämpän akustolta otettava 24 V jännite munnettava niille sopivaksi. Muunto tapahtuu kuvasa 5.2 näkyvällä jännitteen alentimella. Jännitteen alentimien haittapuolena on niiden aiheuttama järjestelmän hyötysuhteen heikkeneminen, sillä niiden hyötysuhteet ovat noin 0,85 luokka. Jännitteen alentimien tuottamat häviöt lisäävät entisestään järjestelmän
kokonaishäviöitä yhdessä pitkien siirtokaapeleiden kanssa. Järjestelmän haitpuolena on myös lataussäätimien erilaiset algoritmit, jotka saattavat aiheuttaa lataustilanteessa ongelmia, kuten edellisessä kappaleessa mainittiin.

5.3 Xantrex C35 –lataussäätimillä toteutettu järjestelmäratkaisu

Kuva 5.3 Xantrex C35 –lataussäätimillä toteutettu hybridijärjestelmä.

Xantrex C35 –lataussäädin voidaan valita toimimaan joko lataussäätimenä tai ylipurkautumissuojana, joten kummankin toiminnon muodostamiseksi tarvitaan kaksi kyseistä laitetta. Tuulivoimalan ja aurinkopaneeleiden kytkeminen akustoon eroaa edellisessä järjestelmässä siten, että kummatkin sähköenergianlähteet kytetään suoraan akustoon, jonka rinnalle asennetaan lataussäädin. Tuulivoimalan kolmivaiheinen

Pääkämpän kuorma liitetään kuvassa 5.3 näkyvällä tavalla akustoon syväpurkaussuosjana toimivan lataussäätimen kautta. Lataussäädin tarkkailee tässä tapauksessa akkujen jännitettä, jotta niiden varaus ei päätä laskemaan liian alas ja aiheuttamaan akkujen vioittumista. Järjestelmän mahdollisten ylivirtojen suojaus toteutetaan sulakkeilla. Sulakkeet asennetaan tuuliturbiiiniin tasasuuntaajan jälkeen ja pääkämpällä sijaitsevien aurinkopaneeleiden jälkeen. Sulake määrätään tuuliturbiiinille 20 % suuremmaksi kuin turbiinin tuottama maksimivirta ja aurinkopaneelille 20 % suuremmaksi kuin sen maksimivirta (Windy Nation a). Samoin kuin kappalessa 5.2 järjestelmaratkaisussa myös tässä järjestelmaratkaisussa pääkämpän ja saunan välissä suunnitellaan asennetavan järjestelmän yhdistävä kaapeli.

5.4 Tuulivoimalan sijoitus

Tuuliolosuhteiden kannalta paras vaihtoehto olisi vanhan kämpän edustalla oleva niemi, sillä tuuli pääsee tällöin virtaamaan esteltä tuuliturbiiinille mahdollisimman monesta suunnasta. Siirtokaapeleiden hinta kasvaa tällöin suureksi, sillä sijoituspaikan etäisyys
maitse pääkämpästä kasvaa noin 140 metriin. Suoraan lahden yli asennettaessa sijoituspaikan sekä lataussäätimen etäisyys laskee noin 115 metriin. Halvempi ratkaisu saataisiin sijoittamalla tuulivoimala pääkämpän edustalle kuvassa 5.4 näkyvään kohtaan. Tällöin siirtokaapeleiden pituus olisi noin 60 metriä, mikä on putolet lyhyempi edelliseen ratkaisuun verrattuna.

![Kuva 5.4 Tuulivoimalan sijoitusvaihtoehdot (Maanmittauslaitos).](image)

Kaapeleina voidaan käyttää joko ilma- tai maakaapeleita. Maakaapelit tulee kaivaa routarajan alapuolelle, jotta ne eivät pääse vahingoittumaan talvella. Maahan kaivettuna kaapelit eivät ole alttiita myrskytuulen kaatamille puille toisin kuin ilmakaapelit. Ilmakaapelit asennetaan tolppien varaan, joiden korkeuden olisi hyvä olla vähintään neljä metriä, jotta kukaan ei pääse kosketuksiin kaapeleiden kanssa.

5.4.1 Kaapelihäviöt

Kuten aiemmin todettiin, kaapeleissa tapahtuva tehohäviö on riippuvainen sähköenergian siirtomatkasta, jonka kasvaessa häviöt kasvavat. Siirtomatkan lisäksi tehohäviöiden suuruuteen vaikuttaa myös sähkönsiirtotapa, eli siirretäänkö sähköenergiaa tasa- vai vaihtovirralla. Kolmas siirtohäviöihin vaikuttava tekijä on kaapelin poikkipinta-ala. Mitä
suurempi on siirtokaapelin poikkipinta-ala sitä pienemmät ovat kaapelissa tapahtuvat häviöt.

Lippukunnalla on käytössään 35 mm² AMKA pienjänniteriippukierrekaapelia, jonka
tasavirtaresistanssi \(R_{DC} \) on 0,868 \(\Omega/km \) ja vaihtovirtaresistanssi \(R_{AC} \) 1,0 \(\Omega/km \) sekä
induktanssi \(L \) 0,00034 \(H/km \). Tasavirralla tapahtuva tehohäviö voidaan nyt laskea
yhtälöllä (2.10), kun ensin on selvitetty tasasuunnatun virran arvo yhtälön (2.11) avulla.
Kyseiseen yhtälöön tarvittava tasasuunnatun jännitteen arvo saadaan yhtälöstä (2.12),
jossa tasasuuntauksen oletetaan tapahtuvan 6-pulssidiodisillan avulla. Tällöin kertoimena
\(k \) käytetään arvoa 1,35 (ABB 2000). Laskennassa on muistettava, että laskeutuvan
sähkötehoa siirretään kahden johtimen avulla, joten todellinen johtimen pituus on kaksi
kertaa siirtomatka. Jakamalla tehohäviö tuuligeneraattorin tuottamalla teholla saadaan
kaapelissa tapahtuvan tehohäviön prosenttiosuus. Laskennassa huomattiin, että
tehohäviöt ovat lähes saman suuruisia riippumatta tuuligeneraattorin pyörämisnopeudesta.
Siirtomatkoille laskettu prosentuaaliset tehohäviöt tuuligeneraattorin nimellispisteessä
on taulukoitu taulukko 5.1.

Kyseiselle kaapelille vaihtovirralla tapahtuva jänniteenalenneminen voidaan laskea yhtälöllä
(2.12), (2.13), (2.14) ja (2.11). Tehohäviö vaihtovirralla saadaan nyt yhtälöstä (2.15).
Kuten edellisessä tasavirrähäviöiden tarkastelussa, siirtomatkoille laskettiin
prosentuaaliset tehohäviöt ja ne on esitetty taulukossa 5.1.

Taulukko 5.1 Tehohäviöt AMKA 35 mm² riippukierrekaapelilla tuuligeneraattorin
nimellispisteessä. Etäisyysväli vastaavat siirtoreitit nähdenä kuvasta 5.2.

<table>
<thead>
<tr>
<th>Etäisyys</th>
<th>Tehohäviöt tasavirralla [%]</th>
<th>Tehohäviöt vaihtovirralla [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 m</td>
<td>3,5</td>
<td>3,4</td>
</tr>
<tr>
<td>115 m</td>
<td>6,7</td>
<td>6,5</td>
</tr>
<tr>
<td>140 m</td>
<td>8,2</td>
<td>7,9</td>
</tr>
</tbody>
</table>

Taulukossa 5.1 esitetyjen vaihtovirralla tapahtuven prosentuaalisten tehohäviöiden
huomataan olevan hieman tasavirralla tapahtuvia tehohäviöitä pienempiä. Tehohäviöt
nähdenä olevan myös kohtuullisen pieniä, joten sähkötehon siirtäminen kaikilla tutkituilla
matkoilla on kannattavaa. Tuloksista voidaan todeta, ettei sähkösiirtotavalla ole
merkitystä häviöiden puolesta Humaljärven kohteessa.

Siirtomatkoille haluttiin laskea myös tehohäviöt, kun käytettävaksi kaapeleiksi valitaan 16
mm² poikkipintainen ja alumiininen AMKA –kaapeli sekä 10 mm² poikkipintainen
kuparijohtiminen MCMK –kaapeli. Laskennan tarkoitus on tarkastella kaapelivaihtoehtoja,
jotka lippukunnan olisi pitänyt hankkia, jos käytössä ei olisi ollut edellä mainittua kaapelia. Poikkipinnaltaan 16 mm² AMKA–kaapeli on ohuin saatavilla oleva alumiinivoimakaapeli, jonka kuormituskestoisuus on kuitenkin riittävä käyttötarkoituksessa. Poikkipinta-alaltaan 10mm² MCMK–kaapeli valittiin toiseksi tarkasteltavaksi, koska haluttiin nähdä saadaanko alumiinivoimakaapelia ohuemmalla kuparivoimakaapeli allaikaan pienemmät tehohäviöt.

Tarkasteltavan AMKA–kaapelin tasavirtaresistanssi R_{DC} kilometriä kohden on 1,91 Ω/km, vaihtovirtaresistanssi R_{AC} 2,3 Ω/km ja induktanssi L 0,00039 μH/km. Vastaavasti tarkasteltavan MCMK–kaapelin tasavirtaresistanssi R_{DC} on 1,89 Ω/km, vaihtovirtaresistanssi R_{AC} 2,19 Ω/km ja induktanssi L 0,00028 μH/km. Kaaapeleissa tapahtuvat häviöt voidaan määrittää nyt samalla tavalla kuin edeltävässä kohdassa ja tuuligeneraattorin nimellispisteessä lasketut arvot on taulukoitu taulukkoon 5.2.

Taulukko 5.2 Tehohäviöt tuuligeneraattorin nimellispisteessä 16 mm² poikkipintaisella AMKA–alumiinivoimakaapelilla ja 10 mm² -paksuisella MCMK–kuparivoimakaapelilla.

<table>
<thead>
<tr>
<th></th>
<th>Tehohäviöt tasavirralla [%]</th>
<th>Tehohäviöt vaihtovirralla [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMKA 16 mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etäisyys 60 m</td>
<td>7,7</td>
<td>7,7</td>
</tr>
<tr>
<td>Etäisyys 115 m</td>
<td>14,7</td>
<td>14,7</td>
</tr>
<tr>
<td>Etäisyys 140 m</td>
<td>17,9</td>
<td>17,9</td>
</tr>
<tr>
<td>MCMK 10 mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etäisyys 60 m</td>
<td>7,6</td>
<td>7,3</td>
</tr>
<tr>
<td>Etäisyys 115 m</td>
<td>14,6</td>
<td>14,0</td>
</tr>
<tr>
<td>Etäisyys 140 m</td>
<td>17,8</td>
<td>17,1</td>
</tr>
</tbody>
</table>

Taulukosta 5.2 nähdään, että ohuemmilla kaapeleilla siirtohäviöt kasvavat huomattavasti verrattuna taulukossa 5.1 esitettyihin poikkipinnaltaan 35 mm² kaapelin vastaaviin arvoihin. Taulukosta 5.2 nähdään myös, että kuparikaapelilla saavutettavat tehohäviöt ovat pienemmät kuin alumiinikaapelilla, vaikka tarkasteltavana olevan alumiinikaapelin poikkipinta-ala on suurempi. Tämä johtuu kuparin paremmasta sähköjohtavuudesta. Kummankin kaapelin kohdalla tapahtuvat tehohäviöt ovat kuitenkin varsin pieniä ja kaapelit soveltuvaisivat suunniteltavaan sähköjärjestelmään tuulivoimalan tuottaman tehon siirtämiseen molemmissa sähkönsiirtoavoilta.

Hinnaltaan 16 mm² AMKA–alumiinivoimakaapeli on huomattavasti edullisempi kuin 10 mm² MCMK–kuparivoimakaapeli. AMKA–kaapelin hinta metriä kohden on 2,16 €/m ja vastaavasti MCMK–kaapelin 7,90 €/m (Sähkötuote). Teknistaloudellisessa mielessä...
paras siirtokaapelivaihtoehto tarkasteltavista kaapeleista olisi AMKA –kaapeli, sillä se on huomattavasti edullisempi ja sen kohdalla tapahtuvat siirtohäviöt ovat laskettujen etäisyyksien kohdalla suurimmillaan vain noin 0,8 %-yksikköä suuremmat. MCMK –kaapeliksi voitaisiin valita myös tarkastellun AMKA –kaapelin kanssa saman paksuinen vaihtoehto pienentäen näin siirtohäviöitä, mutta 16 mm² MCMK -kaapelin hinta nousisi jo 12,00 €/m (Sähkötuote).

Pääkämpän ja saunan välille suunnitellun tasavirtalinkille laskettiin myös tehohäviö käyttäen lippukunnan omistamaa 35 mm² AMKA –kaapelia. Pääkämpän ja saunan etäisyys toisistaan on noin 100 metriä. Tehohäviö laskettiin saunan sähköenergian kulutuksen huipputehon mukaan, jolloin saunan kaikki valot ovat päällä ja käytössä on yksi matkapuhelinlaturi. Tällöin sähkölaitteiden ottamaksi huipputehoksi arvioitiin 65 W, jolloin ne tarvitsevat 5,4 A:n suuruisen virran. Tasavirtalinkissä tasavirralla tapahtuvat häviöt lasketaan yhtälöllä (2.10) ja häviöprosentiksi saatiin 7,8 %. Käytössä olevalla kaapelillä tehohäviöt ovat siis riittävän pieniä, jotta pääkämpän sekä saunan sähköjärjestelmien yhdistäminen on kannattavaa.
6. JOHTOPÄÄTÖKSET

Suunniteltujen järjestelmäratkaisujen pohjalta Humaljärven partikökällä päätettiin suosittelemaan kappaleessa 5.3 esitetyään järjestelmää, jossa päähämpän lataussäätimenä käytetään Xantrex C35 -lataussäädintä. Lataussäädin pystyy säätämään sekä aurinkopaneeleilla että tuulivoimalalla toteuttavaa akkujen lataamista, jolloin aurinkopaneeleille ei tarvita erillistä lataussäädintä. Tällä tavalla erityyppisten lataussäätimien latausalgoritmit eivät aiheuta mahdollisia ongelmavilanteita, kuten kappaleessa 5.2 esitetynä järjestelmässä, jossa tuuligeneraattorin lataussäätimenä käytetään testattua lataussäädintä. Aurinkopaneeleiden lataustulos on kuitenkin käsitellyssä järjestelmässä huonompa, koska alkuperäisessä järjestelmässä oleva MPPT -lataussäädin pystyy nostamaan aurinkopaneeleilta saatavaa virtaa laskemalla niiden tuottamaa jännitettä. Kyseisen lataussäätimen avulla aurinkopaneeleista saadaan ulos paras mahdollinen latauspiste, mutta käsitellyssä järjestelmässä aurinkopaneelit ovat kytketty suoraan akuston napoihin. Tuuligeneraattorin arvioitu tuotanto on kuitenkin suurta, joten samassa latausjärjestelmässä olevan aurinkopaneelin heikompi tuotanto ei ole energian riittävyyden kannalta ongelma.

Järjestelmäratkaisujen yhteydessä kappaleissa 5.1 ja 5.2 todettiin, että PWM – ja MPPT – tyyppien lataussäätimien latausalgoritmin yhteensopivuudessa saattaa ilmetä ongelmia. Tästä ongelmasta ei voida kuitenkaan olla varmoja, sillä aiheesta ei ole olemassa dokumentteja eikä vastaavien järjestelmien erikoistuneet yritykset osanneet kertoa varmuudella laitteiden yhteensopivuudesta. Järjestelmä tulisi testata laboratoriossa, jotta saataisiin varmaa tietoa lataussäätimien yhteensopivuudesta.
LÄHTEET

(Maanmittauslaitos) Maanmittauslaitos. Avoimien aineistojen tiedostopalvelu. [viitattu 13.4.2014]. Saatavilla:
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta

http://www.reps.fi/fi/frames-prod-batteries-fi.htm

(Roaming Oy) Roaming Oy. Tuotteet. Tarvikkeet. [verkkosivu]. [viitattu 18.5.2014]. saatavilla:
http://www.roaming.fi/tarvikkeet.htm

http://www.windgenerators.cn/showapplicatio n/6.html

(Suntekno) Suntekno. Aurinkopaneelit. [verkkodokumentti]. [viitattu 23.2.2014]. Saatavilla:
<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
<th>Reference Date</th>
<th>URL</th>
</tr>
</thead>
</table>

LIITTEET

Liite I. Humaljärven leiripaikan sähkölaitteiden käyttötunnit
Liite II. Aurinko- ja tuulivoimalla arvioidut kuukausittaiset energiantuotannon
Liite III. Järjestelmätestauksessa käytetyt kytkennät
Liite IV. Generaattorin hyötysuhteen laskenta
Liite V. Xantrex C35 -lataussäätimen keinokuorman mitoittaminen
HUMALJÄRVEN LEIRIPAIKAN SÄHKÖLAITTEIDEN KÄYTTÖTUNNIT

Taulukko 1 Varausvuorokausille arviodut päökämpän laitteiden käyttötunnit talvikuukausina.

<table>
<thead>
<tr>
<th></th>
<th>Sisävalot, keskimäärin 6kpl [h]</th>
<th>Ulkovalot [h]</th>
<th>Radio [h]</th>
<th>Matkapuhelimet [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yksittäinen päivä</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Puolikas päivä</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kokonainen päivä</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Taulukko 2 Varausvuorokausille arviodut saunan ja vanhan kämpän laitteiden käyttötunnit talvikuukausina.

<table>
<thead>
<tr>
<th></th>
<th>Sisävalot, keskimäärin 6kpl [h]</th>
<th>Ulkovalot [h]</th>
<th>Radio [h]</th>
<th>Matkapuhelimet [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yksittäinen päivä</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Puolikas päivä</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kokonainen päivä</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Taulukko 3 Varausvuorokausille arviodut päökämpän laitteiden käyttötunnit kesäkuukausina.

<table>
<thead>
<tr>
<th></th>
<th>Sisävalot, keskimäärin 6kpl [h]</th>
<th>Ulkovalot [h]</th>
<th>Radio [h]</th>
<th>Matkapuhelimet [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yksittäinen päivä</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Puolikas päivä</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kokonainen päivä</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Taulukko 4 Varausvuorokausille arviodut saunan ja vanhan kämpän laitteiden käyttötunnit kesäkuukausina.

<table>
<thead>
<tr>
<th></th>
<th>Sisävalot, keskimäärin 6kpl [h]</th>
<th>Ulkovalot [h]</th>
<th>Radio [h]</th>
<th>Matkapuhelimet [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yksittäinen päivä</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Puolikas päivä</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kokonainen päivä</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>
Taulukko 1 Tuuli- ja aurinkovoimalla arviodut energiantuotannot kuukausittain.

<table>
<thead>
<tr>
<th>Kuukausi</th>
<th>Arvioitu tuotettu aurinkoenergia [kWh]</th>
<th>Arvioitu tuotettu tuulienergia [kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>tammikuu</td>
<td>0,78</td>
<td>21,64</td>
</tr>
<tr>
<td>helmikuu</td>
<td>2,34</td>
<td>19,42</td>
</tr>
<tr>
<td>maaliskuu</td>
<td>9,51</td>
<td>16,59</td>
</tr>
<tr>
<td>huhtikuu</td>
<td>23,05</td>
<td>10,17</td>
</tr>
<tr>
<td>toukokuu</td>
<td>30,99</td>
<td>14,64</td>
</tr>
<tr>
<td>kesäkuu</td>
<td>33,07</td>
<td>8,64</td>
</tr>
<tr>
<td>heinäkuu</td>
<td>31,25</td>
<td>5,97</td>
</tr>
<tr>
<td>elokuu</td>
<td>22,92</td>
<td>6,08</td>
</tr>
<tr>
<td>syyskuu</td>
<td>11,20</td>
<td>7,96</td>
</tr>
<tr>
<td>lokakuu</td>
<td>3,91</td>
<td>5,52</td>
</tr>
<tr>
<td>marraskuu</td>
<td>1,30</td>
<td>15,22</td>
</tr>
<tr>
<td>joulukuu</td>
<td>0,78</td>
<td>23,09</td>
</tr>
</tbody>
</table>
JÄRJESTELMÄTESTAUKSESSA KÄYTETYT KYTKENNÄT

Kuva 1 Tuuligeneraattorin tehojen ja hyötysuhteiden määryksessä käytetyn kytkennän lohkokaavio.

Kuva 2 Lataussäätimen heräämiseen, latausvirtojen ja latauskäyrän mittaamisessa käytetyn kytkennän lohkokaavio.

Kuva 3 Tuuligeneraattorin oikosulkuvirran määryksessä käytetyn kytkennän lohkokaavio.
GENERAAATTORIN HYÖTYSUHTEEN LASKENTA

Generaattorin hyötysuhde lasketaan yhtälöllä

\[
\eta = \frac{P_t}{T_s \cdot \rho \cdot 2\pi \cdot \omega},
\]

missä \(P_t \) on generaattorin tuottama sähköteho, \(T_s \) generaattoria pyörittävän sähkömoottorin prosentuaalinen osuus nimellispisteen vääntömomentista, \(T_n \) sähkömoottorin nimellispisteen vääntömomentti ja \(n \) generaattorin pyörimisnopeus. Käytetyn nimellisteholtaan 7,5 kW:n sähkömoottorin nimellispisteen vääntömomentti on 49,4 Nm. Taulukossa 1 on esitetty testauksessa saadut mittaustulokset.

**Taulukko 1 **Tuuligeneraattorin hyötysuhteen testaamisessa mitatut arvot.

<table>
<thead>
<tr>
<th>Pyörimisnopeus (n) [rpm]</th>
<th>Vääntömomentti moottorin nimellispisteen (T_s) [%]</th>
<th>Generaattorin antama sähköteho (P_t) [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>33,8</td>
<td>190,2</td>
</tr>
<tr>
<td>300</td>
<td>35,6</td>
<td>366,1</td>
</tr>
<tr>
<td>400</td>
<td>39,6</td>
<td>591,7</td>
</tr>
</tbody>
</table>

Generaattorin hyötysuhteiksi laskettiin seuraavat arvot eri pyörimisnopeuksilla:

\(n = 200 \text{ rpm} \):

\[
\frac{190,2 \text{ W}}{0,338 \cdot 49,4 \text{ Nm} \cdot 2\pi \cdot \frac{200}{60}} \approx 0,544
\]

\(n = 300 \text{ rpm} \):

\[
\frac{366,1 \text{ W}}{0,356 \cdot 49,4 \text{ Nm} \cdot 2\pi \cdot \frac{300}{60}} \approx 0,663
\]

\(n = 400 \text{ rpm} \):

\[
\frac{591,7 \text{ W}}{0,396 \cdot 49,4 \text{ Nm} \cdot 2\pi \cdot \frac{400}{60}} \approx 0,721
\]
XANTREX C35 –LATAUSSÄÄTIMEN KEINOKUORMAN MITOITTAMINEN

Keinokuormaa mitoittaessa selvitetään energianlähteiltä saatava suurin virran arvo. Aurinkopaneeleilta saatava suurin tasasähkövirta on 5,81 A ja tuuligeneraattorilta saatava suurin kolmivaiheinen vaihtovirtavirta I_{AC} on laboratoriotestauksen mukaan 12,0 A. Kun tasasuuntauksen teho pysyy samana, voidaan tasasuunnatun virran arvo I_{DC} selvittää yhtälöllä (2.11) ja (2.12).

Oletetaan käytettävän tasasuuntaajan olevan 6-pulssidiodisilta, jolloin kertoimeksi k saadaan 1,35 (ABB 2000). Kun tuuligeneraattorin tuottaman suurimman kolmivaiheisen pääjännitteen arvo on 33,8 V, saadaan yhtälöllä (2.12) tasasuunnatuksi jännitteeksi $U_{DC} = 1,35 \times 33,8 = 45,6$ V. Nyt voidaan ratkaista yhtälöllä (2.11) tasasuunnatun virran arvo, jonka on $I_{DC} = \sqrt{\frac{12,0}{33,8}} = 5,81$ A. Energianlähteiltä saatava suurin sähkövirta I_{max} on siis yhteensä 5,8 A + 15,4 A = 21,2 A.

Lasketaan Ohmin lain mukaan yhtälöllä (1) kuinka paljon tehoa P_k keinokuormassa on kulutettava.

$$P_k = U_a I_{max},$$

missä U_a on akuiston jännite. Valitaan akuiston jännitteeksi 14,5 V, joka on karkeasti arvioituna täyteen varatun 12 V akuiston jännite. Keinokuorman vaadituksi tehon kulutuksesi saadaan nyt $P_k = 14,5 \times 21,2 = 307,4$ W.

Lasketaan keinokuormalle tuleva sähkövirta I_k, kun keinokuorma kytketyy akustoon yhtälöllä

$$I_k = \frac{U_a}{R_k},$$

missä R_k on keinokuorman resistanssi. Keinokuormana käytetään Windy Nationin 12 V:n järjestelmille soveltuva vastusta, jonka resistanssi on 0,73 Ω. Keinokuormalle tulevaksi sähkövirraksi saadaan nyt $I_k = \frac{14,5}{0,73} = 19,9$ A.

Yhdessä keinokuormassa kuluvaa tehoa P_k voidaan laskea nyt yhtälöllä (1) avulla sijoittamalla virran paikalle kuormalle tulevan sähkövirran I_k, jolloin tulokseksi saadaan
$P_k = 14,5 \text{ V} \times 19,9 \text{ A} = 288,0 \text{ W}$. Huomataan, että vaadittu tehon kulutus on suurempi kuin yksi vastus kuluttaa tehoa, joten keinokuormaan tarvitaan enemmän kuin yksi vastus. Vertaamalla vaadittua tehon kulutusta ja yhden vastuksen kuluttamaa tehoa nähdään, että Xantrex C35 –lataussäädin tarvitsee vähintään kaksi vastusta rinnankytketynä keinokuorman muodostamiseen. (Windy Nation c)