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NEW INVESTMENT DECISION-MAKING TOOL THAT COMBINES A FUZZY 

INFERENCE SYSTEM WITH REAL OPTION ANALYSIS  

 

Abstract: This paper proposes a new procedure for enriching investment and 

real option analysis performed with the fuzzy pay-off method by decomposing the 

pay-off distribution into multiple sub-distributions that correspond to different 

investment scenarios. This creates more information about the importance of the 

effect of selected factors to investment profitability. Furthermore, based on the 

proposed procedure, we show how a fuzzy inference system to support 

investment decision-making can be constructed. The proposed new procedure 

and the application of a fuzzy inference system are illustrated with a numerical 

case analysis of a power generation investment.  

The results show that the proposed new procedure reveals actionable information 

about the analyzed investment that may otherwise remain uncovered and 

enhances the decision-making ability of investment managers. The application of 

a fuzzy inference system to investment decision-support and real option analysis 

is a rather new approach. The obtained results highlight how the construct of a 

fuzzy inference system must be adapted to the perspective of the application for 

which it is used. 

Keywords: Corporate Finance and Governance, Capital Budgeting, 

Mathematical and Simulation Modeling, Renewable Resources and Conservation  
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1. INTRODUCTION 

Profitability analysis of investments is typically a forward-looking procedure and 

as such it is ridden with imprecision, connected to the estimated inputs into the 

analysis process. Profitability analysis has typically been done by using the well-

known net present value, or NPV, method, the most commonly used investment 

profitability analysis method in the industry (Block, 2007; Graham & Harvey, 

2001; Ryan & Ryan, 2002). The classical NPV method is, unfortunately, not able 

to consider estimation imprecision, and nor can it take into consideration the 

value of flexibility (Block, 2007). Flexibility in investments is often called real 

optionality.  For these reasons and for other reasons that include, e.g., better 

software and faster computers, simulation-based (Bastian-Pinto, Brandão, & 

Hahn, 2009; Boomsma, Meade, & Fleten, 2012; Cortazar & Schwartz, 1998; 

Hacura, Jadamus-Hacura, & Kocot, 2001; Monjas-Barroso & Balibrea-Iniesta, 

2013; Topal, 2008; Vithayasrichareon & MacGill, 2012; Zhu, Zhang, & Fan, 2015) 

and fuzzy logic-based (Buckley, 1987; Kuchta, 2000; Kuchta, 2001) investment 

analysis methods are becoming more popular. The resulting output from 

simulation and fuzzy logic based methods is a profitability distribution, an NPV 

probability distribution, or a fuzzy number NPV respectively. These results are a 

clearly different from the single number NPV outcome, provided by the net 

present value method.  

In this paper we focus on fuzzy logic based investment profitability analysis and 

build on the previously introduced fuzzy pay-off method (FPOM) (Collan, 2012; 

Collan, Fullér, & Mezei, 2009). The fuzzy pay-off method is a profitability analysis 
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method that deals with cash-flow imprecision by using fuzzy numbers that are 

typically created from three, or four, cash-flow scenarios. An extension to the pay-

off method exists for real option valuation (Collan, 2012). The ability to capture 

cash-flow imprecision and to include the valuation of real options makes the fuzzy 

pay-off method an interesting addition to the toolkit of investment managers. The 

pay-off method is a robust method, and thus usable under the condition of 

structural uncertainty (Collan, Haahtela, & Kyläheiko, 2016; Kyläheiko, 1998). 

Previously, the pay-off method has been used for analyzing the profitability of a 

number of different kinds of investments that range from analyzing patents as 

investments to the evaluation of fusion energy investments (Bednyagin & 

Gnansounou, 2011; Collan & Kinnunen, 2011; Collan & Heikkilä, 2011; Collan, 

2011; Hassanzadeh, Collan, & Modarres, 2012b; Hassanzadeh, Collan, & 

Modarres, 2012a; Kozlova, Collan, & Luukka, 2015).  

In this paper, by using the pay-off method as a basis, we introduce a new 

procedure that extends the fuzzy pay-off method, and that can be used to create 

more insight for the decision-maker, when the fuzzy NPV outcome created by the 

pay-off method is a composition of multiple variables. The idea of this new 

procedure is to enable the decomposition of the, from the pay-off method 

resulting, fuzzy NPV into pieces, or fuzzy sub-NPVs (sub-distributions) that are 

matched to the variable state combinations that cause them. In other words, a 

connection between the cause and the effect is established. This kind of 

information is much more actionable, than only having access to the resulting 

fuzzy NPV. Understanding what causes the positive and / or negative NPV 
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outcomes is actionable information and allows managers to act, in order to steer 

the situation towards a good, positive NPV. A similar procedure for simulation-

based profitability analysis has been introduced in (Kozlova, Collan, & Luukka, 

2016a). We call this new procedure “fuzzy pay-off distribution decomposition”. 

Additionally, in this paper, we show how a fuzzy inference system (FIS) can be 

constructed for the purposes of supporting and even automating investment 

decision-making. Constructing a fuzzy inference system “on top” of the procedure 

used in the fuzzy pay-off distribution decomposition quite simple as the input and 

output components to the are already defined. 

We illustrate how the new fuzzy pay-off decomposition procedure works with a 

profitability analysis case of a solar photovoltaic power generation investment. 

Furthermore, we show how a fuzzy inference system for decision-making 

“automation” can be constructed, based on the same case.  

The rest of this paper is structured as follows: first, we briefly present the 

underlying concepts of the fuzzy pay-off method and fuzzy inference system. This 

is followed by the introduction of the proposed new fuzzy pay-off distribution 

decomposition procedure and a presentation of the architecture of a fuzzy 

inference system. The proposed new procedure and the application of a FIS are 

illustrated with a numerical case. We demonstrate how the fuzzy inference 

system can be used for policy analysis and as a support for investment decision-

making. The paper is closed with a discussion and conclusions.   
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2. BACKGROUND 

In this section, we briefly introduce the two important concepts that lie behind the 

new fuzzy pay-off distribution decomposition procedure: the fuzzy pay-off method 

and the Mamdani-type fuzzy inference system.   

2.1 FUZZY PAY-OFF METHOD 

The fuzzy pay-off method (FPOM) (Collan et al., 2009) is a modern technique to 

value investment projects in the presence of uncertainty and imprecise cash-

flows. The method is based on using expert estimated cash-flow scenarios for an 

investment as a basis for the analysis. Typically, the experts are asked to 

estimate three, or four, cash-flow scenarios that correspond to the minimum 

possible, the maximum possible, and a best estimate scenario. A net present 

value (Brealey, Myers, Allen, & Mohanty, 2012) is calculated for each one of 

these scenarios and the resulting NPVs are then used to create a pay-off 

distribution for the investment. The pay-ff distribution is treated as a fuzzy 

number, a fuzzy net present value distribution. Real option value for the 

investment can be calculated directly from the pay-off distribution. The procedure 

that is the FPOM for a three scenario case can be shortly described as follows:  

1. Estimation of three future project cash-flow scenarios: the minimum possible, 

the best estimate, and the maximum possible scenarios. If it is necessary the 

cash-flow scenarios may consist of separate “sub” scenarios representing 

various classes of costs and revenues; 
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2. NPV calculation for each cash-flow scenario. Discussion on linking cash-flow 

sub-scenarios within the context of NPV calculation is discussed, e.g., in 

(Collan, 2012); 

3. Construction of a triangular fuzzy pay-off (NPV) distribution for the project: 

the minimum possible and the maximum possible scenario NPVs are 

assigned a limit to zero degree of membership in the set of possible pay-offs. 

The distribution is assumed to be bounded and the minimum and the 

maximum possible values form the lower and the upper limits of the 

distribution. The best estimate scenario NPV is considered to fully belong to 

the set of possible pay-offs and is assigned full membership. The relationship 

between the limits of the distribution and the best estimate scenario value is 

assumed to be linear and hence the pay-off distribution is assumed to be of 

a triangular shape. The created triangular pay-off distribution is treated as a 

fuzzy number. The membership function for the triangular pay-off distribution 

can be defined as: 

 

µ𝑁𝑃𝑉(𝑥; 𝛼, 𝛽, 𝛾) =

{
 
 

 
 
𝑥 − 𝛼

𝛽 − 𝛼
 𝑖𝑓 𝛼 ≤ 𝑥 ≤ 𝛽

𝛾 − 𝑥

𝛾 − 𝛽
 𝑖𝑓 𝛽 < 𝑥 ≤ 𝛾

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)  

 

where α is the minimum possible scenario NPV, 

β is the best estimate scenario NPV, 

and γ is the maximum possible scenario NPV. 
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4. Computing the real option value. The real option value is defined as the 

possibilistic mean of the positive part of the distribution weighted on the 

success-ratio (the area over positive NPV part of the distribution / total area 

of the distribution): 

RO value = possibilistic mean of the positive area * positive area / whole area 

In the original version of the FPOM (Collan et al., 2009), the mean value is 

computed as a possibilistic mean, however, calculating it as the center of 

gravity is also possible (Borges & Meier, 2017; Luukka & Collan, 2015a). 

So far, the fuzzy pay-off method has been applied to a number of real-word 

problems that, among others, include R&D project selection (Bednyagin & 

Gnansounou, 2011; Hassanzadeh et al., 2012b), analysis of large industrial 

investments (Collan, 2011), analysis of real estate investments (Vimpari, 

Kajander, & Junnila, 2014; Vimpari & Junnila, 2015), patent valuation (Collan & 

Heikkilä, 2011; Collan, Fedrizzi, & Luukka, 2013; Collan & Kyläheiko, 2013), 

insurance pricing (Collan, Fedrizzi, & Luukka, 2016; Luukka & Collan, 2015b), 

and M&A target screening (Collan & Kinnunen, 2011). The method has also been 

comparatively analyzed with other methods in (Favato, Cottingham, & 

Isachenkova, 2015; Kozlova, Collan, & Luukka, 2016b). 

2.2 FUZZY INFERENCE SYSTEM 

A fuzzy inference system (FIS) is a system that maps (combinations of) inputs to 

outputs by applying the fuzzy set theory. Typically the creation of a FIS includes 

the formulation of a set of rules, or a rule system, that describes how an output is 
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inferred from given fuzzy inputs. Perhaps the most commonly used FIS is the 

Mamdani-type fuzzy inference system (Mamdani & Assilian, 1975), which is also 

used here. The FIS used in this research is composed of four main components, 

which are given below and also illustrated in Figure 1.    

1. A rule base: consisting of a number of if-then rules. These rules are 

typically a quantifiable reasoning scheme that has been created on the 

basis of linguistic descriptions from experts.  

2. Fuzzy inference engine: mimics expert decision-making by 

“interpreting” the input information with the knowledge derived from the 

rule-base.  

3. Interface for matching crisp estimates with fuzzy input scales: 

converts inputs coming from an expert into information that is usable by 

the inference mechanism. This component is sometimes called a 

“fuzzification interface”.    

4. Interface for defuzzification: fuzzy result from the inference 

mechanism are converted into single number outputs.  

 

Figure 1. General structure of the fuzzy inference system used 
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The use of a fuzzy inference systems is commonplace in a wide variety of 

application areas that include, e.g., control (Chiou, Chiou, Chu, & Lin, 2009; CUI, 

TAN, AO, & KANG, 2005; Das & Kar, 2006; Fazzolari, Alcala, Nojima, Ishibuchi, 

& Herrera, 2013; Feng, 2006; Tanaka & Sano, 1994), forecasting in technical and 

natural systems (Aggarwal, Kumar, Saini, & Kumar, 2011; Al-zahra, Moosa, & 

Jasim, 2015; Bacanli, Firat, & Dikbas, 2009; Kazeminezhad, Etemad-Shahidi, & 

Mousavi, 2005; Mohandes, Rehman, & Rahman, 2011; Sachdeva, Singh, Singh, 

& Arora, 2011; Ying & Pan, 2008), stock market return prediction (Chang & Liu, 

2008; Esfahanipour & Aghamiri, 2010; Patel & Marwala, 2006), and decision-

making modeling (Amindoust, Ahmed, Saghafinia, & Bahreininejad, 2012; Ganga 

& Carpinetti, 2011; Oderanti & De Wilde, 2010; Oh, Yang, & Lee, 2012; Osiro, 

Lima-Junior, & Carpinetti, 2014; Yang, Khan, & Sadiq, 2011). Previously FIS has 

been used in connection with project valuation in (Ustundag, Kılınç, & Cevikcan, 

2010), where a FIS was used for input parameter definition, and in conjunction 

with system dynamic modeling for real option valuation in (Arasteh & Aliahmadi, 

2014). Generally speaking, fuzzy inference systems have been very seldom used 

in connection with investment analysis and decision-making, and this research is 

the first to present the use of a FIS together with the fuzzy pay-off method.  

3. THE PROPOSED NEW PROCEDURE FOR SUPPORTING INVESTMENT 

ANALYSIS WITH THE PAY-OFF METHOD  

Next, we present the proposed new procedure for supporting investment analysis 

with the pay-off method. A “starting” assumption is that there is an investment 

analysis model that uses the fuzzy pay-off method that has been constructed for 
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the profitability analysis of the studied investment, and that is able to create a 

pay-off distribution of the investment profitability. Typically we expect that the 

model in place is akin to models typically used with the pay-off method, see, e.g., 

(Collan, 2012), and that it is able to consider the effect of important-to-profitability 

variables separately. The procedure is visually presented in Figure 2.  

For simplicity we have divided the proposed new procedure into four main steps: 

Step 1. Identification of key investment variables 𝑉̃𝑖  and the range of their 

possible values 

In the first step, key variables, 𝑉̃𝑖  (where 𝑖 = 1,⋯ , 𝑛,  and n is a number of 

variables) that are critical to the project profitability are identified. If the model is 

built such that these key variables are separately “already” identified, then the 

identification is very simple. An example of a key investment variable might, for 

example, be the quality of the main produced goods that affects the success of 

the product on the markets and that the company manufacturing the good can 

affect by quality management. 

For each key variable the range of possible values is defined. The range can 

typically be identified by either addressing historical data, or by resorting to expert 

estimation. This range-determination is very similar to what is commonly done, 

when possible variable value ranges are determined for Monte Carlo simulation.  

Step2. Identification and determination of relevant states S̃ij for the identified key 

variables 



12 
 

In the second step, the relevant states 𝑆̃𝑖𝑗 (where 𝑗 = 1,⋯ ,𝑁𝑖, and Ni is a number 

of relevant states of variable Ṽi) are identified for each key investment variable 𝑉̃𝑖 

that the investment management can affect. Relevant here means that the 

identified states are “clearly separate states” with regards to, e.g., the level of 

achievement they represent for the investment owners. This achievement may 

be, e.g., in terms of the above discussed quality and such that for quality four 

relevant states can be identified: “low”, “medium”, “good”, and “excellent” quality. 

For each identified state the possible values within each state are recognized and 

the boundaries for each state are identified. If the states are fuzzy the exact 

representation for each state is determined. Variables that the investment 

management can affect means that if the management cannot affect, e.g., the 

raw material prices, then such variables need not (and cannot) be “achieved” by 

the investment owners. 
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Figure 2: Presentation of the steps of the proposed new procedure 

Step 3. Formation of groups G̃k from all the possible combinations of the identified 

relevant states for the key variables, such that one state is included for all key 

variables 

In the third step, groups  𝐺̃𝑘 (where k = 1, ⋯ , 𝐾) of all possible combinations that 

combine the identified states for (all) the key variables (simultaneously) are 

formed. Each one of the combinations is a “real-world” situation that may take 

place, e.g., such that three identified key variables states are quality = “low”, 

marketing effort = “medium”, and packaging = “excellent” and their combination 

is “low-medium-excellent”. This grouping is the basis of the fourth step in the 

proposed procedure and also forms the premise part of the if-then rules in the 

FIS (‘IF premise THEN consequent’). The number of rules (K) in the FIS rule base 
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is determined by the number of state combinations, if all possible state 

combinations are considered so that one state is for each variable, then total 

amount of groups formed in this step is  K = ∏ 𝑁𝑖  
𝑛
𝑖=1 .  

Step 4. Calculation of the fuzzy NPV for each group by applying the existing 

FPOM model 

In the fourth step, the existing profitability analysis model is used to (separately) 

calculate the profitability (NPV) for each resulting group.  

The step seems rather simple, but in fact includes making the choice of “how” the 

profitability is calculated for each resulting group. We suggest that for each group 

(combination) a set of three “scenarios” are identified that represent the 

“minimum”, “center”, and “maximum” values for the group. The values for the 

“minimum” and the “maximum” scenarios would come from the boundary values 

of the states in the group, while the “center” scenario value would either 

managerially set, or simply constructed from the mean values of the states that 

form the group. The three scenario values for each group would then be used in 

derivation of three cash-flow scenarios for the investment and ultimately the 

creation of the pay-off distribution for the investment under the circumstances 

(state combination) that the group represents. This means that K pay-off 

distributions are created. 

We note that it is important to distinguish between “cost” and the “benefit” factors 

and to take care, when these are combined, while the group scenarios are 

constructed (Collan, 2012).  
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Step 5. Defuzzification to real option value 

K pay-off distributions are further aggregated into a single pay-off distribution 

based on crisp inputs. This aggregated distribution is automatically defuzzified 

into crisp expected NPV value. Alternatively, the real option value can be 

computed as the center of gravity of the positive side of the aggregated pay-off 

distribution weighted on the success ratio (Kozlova, Luukka, & Collan, 2016). 

By using the five above-mentioned steps, one is able to produce K pay-off 

distributions for the investment that represent the different circumstances that 

each group represents. Such sub-divided information, in addition to the “original” 

pay-off distribution, we feel, is able to offer a more detailed insight into the 

“mechanism” that has caused each profitability outcome. Because the variables 

selected are such that the management of the investment can act on them and 

can therefore “affect” the state in which the investment finds itself, the effect of 

any activities to move from one state to another may be studied. Typically such 

“movement” entails costs – having information on a detailed level about the effect 

of different states allows a meaningful discussion on the cost – benefit issue with 

regards to moving between states. The possibility to obtain the output RO value 

creates space for the RO valuation logic in the investment appraisal. 

4. CONSTRUCT OF A FUZZY INFERENCE SYSTEM FOR SUPPORTING 

INVESTMENT DECISION-MAKING 

Based on the above described new procedure for supporting investment analysis 

with the fuzzy pay-off method, and based on the observation that the structure of 
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the method resembles the structure of an inference system, we have gone 

forward in this vein and propose a construct for an investment decision supporting 

fuzzy inference system. Building a FIS that formalizes the rules and assumes an 

inference mechanism to remain unchanged may sound at first a difficult match to 

the problem of investment decision-making, however, there are situations, where 

(a great) number of similar projects, within a similar reality, must be controlled for 

“fit” and evaluated within a tight timeframe (and where a formalized system would 

introduce structure and speed to the process). Such situations may, e.g., include 

the typically annually or semi-annually recurring analyses of patent portfolios 

(Camus & Brancaleon, 2003; Carlsson, Fullér, Heikkilä, & Majlender, 2007; 

Collan et al., 2013) and milestone reviews of research and development project 

portfolios (Collan & Luukka, 2014; Hassanzadeh et al., 2012b; Karsak, 2006). 

Also, at least two types of decision-making profiles can be identified that can use 

an inference system for support, we call these “policy making” and “investment 

decision-making”. Policy makers can use a FIS to set thresholds, for what can be 

called policy-variables, and investors can use a FIS to aid in the investment 

decision-making.  

On this background, we propose and present a MISO type fuzzy system, based 

on a Mamdani inference mechanism (Zadeh, 1973) for supporting investment 

decision-making. The rule base used consists of a “multiple input - one output”-

type of inference of the form: 

       R1:  If Ṽ1 i Ã11 and Ṽ2 is Ã21and ,…, and Ṽn is Ãn1, then w is NPV1 
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⋮ 

      RK: If Ṽ1 is Ã1K and Ṽ2 is Ã2K and,…, and Ṽn is S̃nK, then w is NPVK 

fact: Ṽ1 𝑖𝑠 𝑣̅01 𝑎𝑛𝑑 Ṽ2  𝑖𝑠 𝑣̅02 𝑎𝑛𝑑 , … , 𝑎𝑛𝑑 Ṽn 𝑖𝑠 𝑣̅0𝑛   

consequence: w is the NPV 

where Ṽ1, Ṽ2 ,…, Ṽn are the key variables, Ãij is the state for the ith variable for the 

kth rule. NPVk is the fuzzy NPV distribution for each group (see step 4 from the 

procedure presented in the previous section). 

The consequence is computed by 

𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝐴𝑔𝑔(𝑓𝑎𝑐𝑡 ∘ 𝑅1, … , 𝑓𝑎𝑐𝑡 ∘ 𝑅𝐾)     (2) 

and the computation of the fuzzy output can be formulated as  

i) Compute firing level of the k-th rule by Ṽ1(𝑣̅01) × Ṽ2(𝑣̅02) ×

,… ,× Ṽn(𝑣̅0𝑛)   

ii) Compute the output of the k-th rule by 

 𝑁𝑃𝑉′𝑘(𝑤) = Ṽ1(𝑣̅01) × Ṽ2(𝑣̅02) ×,… ,× Ṽn(𝑣̅0𝑛)  → 𝑁𝑃𝑉𝑘(𝑤) 

iii) Overall system output NPV is computed from individual rule 

outputs 𝑁𝑃𝑉′𝑘(𝑤)  by 𝑁𝑃𝑉(𝑤) =

𝐴𝑔𝑔{𝑁𝑃𝑉′1, … , 𝑁𝑃𝑉′𝐾} ∀ 𝑤 ∈ 𝑊 

where → denotes the suitable implication operator, Agg, aggregation operator, 

and × the Cartesian product. We are applying a Mamdani inference mechanism, 

where firing levels of the rules are computed as: 
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𝛼𝑘 = Ṽ1(𝑣̅01) ∧ Ṽ2(𝑣̅02) ∧, … ,∧ Ṽn(𝑣̅0𝑛) (3) 

  

where ∧  denotes the standard fuzzy intersection operator (minimum). The 

individual outputs from the rules are computed by: 

𝑁𝑃𝑉′𝑘(𝑤) = 𝛼𝑘 ∧ 𝑁𝑃𝑉𝑘(𝑤) (4) 

 

where ∧ is Mamdani’s implication (minimum). The overall output is computed by: 

𝑁𝑃𝑉(𝑤) = 𝑁𝑃𝑉′1(𝑤) ∨ 𝑁𝑃𝑉′2(𝑤) ∨ ⋯∨ 𝑁𝑃𝑉′𝐾(𝑤) (5) 

  

where for aggregation operator ∨ denotes the standard fuzzy union (maximum). 

As a last step for computing the single number defuzzified value, we apply the 

center of gravity operator for both, NPV (for further surface representation of 

results) and RO value (for real option analysis):  

𝑁𝑃𝑉0 =
∫ 𝑤𝑁𝑃𝑉(𝑤)𝑑𝑤
𝑤

∫ 𝑁𝑃𝑉(𝑤)𝑑𝑤
𝑤

 

𝑅𝑂𝑉0 =
∫ 𝑤𝑁𝑃𝑉+(𝑤)𝑑𝑤
𝑤

∫ 𝑁𝑃𝑉+(𝑤)𝑑𝑤
𝑤

 
∫ 𝑁𝑃𝑉+(𝑤)𝑑𝑤
𝑤

∫ 𝑁𝑃𝑉(𝑤)𝑑𝑤
𝑤

=
∫ 𝑤𝑁𝑃𝑉+(𝑤)𝑑𝑤
𝑤

∫ 𝑁𝑃𝑉(𝑤)𝑑𝑤
𝑤

 

(6) 

   

Where 𝑁𝑃𝑉+(𝑤) = max {0, 𝑁𝑃𝑉(𝑤)}. The RO value computation is realized as a 

defuzzification operator for FIS and coded in Matlab® as follows 
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function defuzzfun = ROVdefuzz(xmf,ymf) 

total_area = sum(ymf); % the whole area of the fuzzy NPV 

positive_area = sum(ymf(xmf>0)); % positive area of the fuzzy NPV 

mean_positive = sum(ymf(xmf>0).*xmf(xmf>0))/positive_area; % expected mean 

success = positive_area/total_area; % success ratio 

defuzzfun = mean_positive*success; % real option value 

end 

Published with MATLAB® R2015b 

The inference mechanism presented above is basic Mandani inference, which is 

now applying NPV or/and ROV computations. For the ROV computation the 

defuzzification operator needed to be implemented for Matlab as an add-on. In 

the following section we illustrate the proposed new procedure for investment 

analysis and the use of the proposed FIS in a real world investment context. 

5. NUMERICAL ILLUSTRATION: RENEWABLE ENERGY INVESTMENT 

This section presents a numerical illustration of using the proposed new 

investment analysis procedure in the analysis of a real-world renewable energy 

investment case in Russia. After illustrating the new investment analysis 

procedure, the use of a fuzzy inference system in decision-making is numerically 

presented in the same context, from the points of view of policy makers and of 

investors.  

5.1 CASE DESCRIPTION 

The investment case that used as background is an industrial scale 10MW solar 

photovoltaic (PV) power plant that is planned to be built in Russia, and that falls 

within the scope of Russian renewable energy (RE) support mechanism for the 

wholesale energy market (Boute, 2012; Government of Russian Federation, 

http://www.mathworks.com/products/matlab
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2013). The plant is assumed to start operation in 2018 and it is assumed to have 

a twenty-year economic life. The first fifteen years of the economic life are 

expected to be supported by the Russian RE support mechanism. More details 

on similar investments can be found in (Kozlova & Collan, 2016). The RE 

investment faces uncertainty that comes from uncertain electricity prices and 

from inflation. 

The Russian RE support mechanism is a contract that provides remuneration for 

selected investment projects that are paid regularly for a period of up to 15 years, 

starting from the power plant commercialization. The remuneration level is 

defined as a variable-rate annuity and the mechanism is designed to provide a 

secure return on RE investments, while taking into account project related costs, 

the expected revenue from electricity sales, changes in the inflation, and the 

interest rate on the markets. The support cash-flows are substantial and account 

typically for 50-95% of total project revenues, depending on the technology type 

used, year of the contract, and on some other issues (Kozlova & Collan, 2016).  

In order to motivate investors to act in the best interest of the “system”, the 

Russian RE support payments depend on the performance of the projects before 

investment and during the project economic life. The performance measures 

considered are: 

 Capital expenses (CapEx); The mechanism sets a limit on the level of CapEx 

that an investment can have to be able to participate in the competition for 

the supported contracts – the idea is to push down the investment costs.  
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 Capacity factor. Capacity factor is an indicator of electricity production 

performance that shows the ratio of the actual production of electricity to the 

theoretical maximum possible production (T). The mechanism sets the value 

for a multiplicator that is used in calculating the year-ahead support payment 

level, based on the factual capacity factor achieved (F) the previous year as: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑜𝑟,%) =  {

100%, 𝑖𝑓 𝐹 > 0.75𝑇
80%, 𝑖𝑓 0.5𝑇 < 𝐹 ≤ 0.75𝑇

0, 𝑖𝑓 𝐹 ≤ 0.5𝑇
 (7) 

 

 Localization. The mechanism requires projects to employ a target share of 

equipment manufactured locally in Russia. If the localization target is 

achieved, a project gets full support payments, otherwise they are “almost 

halved” for the whole contract period.  

As can be seen from the three measures above, the Russian RE support 

mechanism places an investment project into a ‘rule-based’ environment. Being 

able to “fulfill” requirements has an effect on the investment project profitability.  

5.2 PROFITABILITY ANALYSIS WITH THE NEW PROPOSED PROCEDURE 

Starting point of the analysis is a profitability analysis model that has been built, 

and that uses the fuzzy pay-off method to calculate the investment profitability. 

The computational logic behind the model is based on the Russian RE support 

policy that is presented in detail in (Kozlova & Collan, 2016). The output from the 

model is a triangular fuzzy pay-off (NPV) distribution. Project cash-flows are 

estimated and comprise from revenues from the electricity sales and from the 
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support payments that come from the Russian RE support mechanism, project 

costs include the investment cost, operating costs, and taxes. Based on the 

model the proposed procedure is used according to the steps described above: 

Step 1: Five key variables are identified for the investment, these are:  

𝑉̃ = {𝑉̃1,𝑉̃2, 𝑉̃3, 𝑉̃4, 𝑉̃5}

= {𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒, 𝐶𝑃𝐼, 𝐶𝑎𝑝𝐸𝑥 𝑙𝑒𝑣𝑒𝑙, 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟} 

(8) 

 

Estimated ranges for the values of each key variable are shown in Table 1. It can 

be observed that the investment owner can affect three of key variables: the 

capital expenditure level, the capacity factor, and the localization requirement.   

Table 1. Identified key variables for the investment and estimated ranges that the 

variables can take 

Factor 
Range of values 

Minimum Maximum 

Electricity price, rub./MWh 1000 3000 

Consumer price index (CPI) (inflation) 1.00 1.70 

CapEx level (percent of the limit) 80% 150% 

Capacity factor (percent of the target) 30% 120% 

Localization requirement Failed Fulfilled 

   

Step 2: Three out of five variables are such that can be affected by the 

management, and for these three relevant states are identified and the 

boundaries of the states are determined. The different states for each variable 

are:   
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CapEx level={𝑆̃11, 𝑆̃12}={Within limit [80%,100], Over the limit 

(100%,150%]} 

Localization={𝑆̃21, 𝑆̃22}={Failed, Fulfilled} 

Capacity factor={S̃31, 𝑆̃32, 𝑆̃33}={Low (30%, 50%],Medium 

((50%,75%],High (75%, 120%]} 

(9) 

The boundaries of the states are determined for each state of each variable, and 

they are also visible in (9), above.  

Step 3: We form all different groups of the combinations of the possible states, 

such that each group consists of combinations that include one possible state for 

each relevant key variable. The groups are visible in Table 2.  

Table 2.The twelve groups constructed of the possible combinations of the 

relevant states  

Group CapEx level Localization Capacity factor 

1 Within the limit [80%, 100%] 
Fulfilled 

High (75%, 120%] 
2 Over the limit (100%, 150%] 

3 Within the limit [80%, 100%] 
Failed 

4 Over the limit (100%, 150%] 

5 Within the limit [80%, 100%] 
Fulfilled 

Medium (50%, 75%] 
6 Over the limit (100%, 150%] 

7 Within the limit [80%, 100%] 
Failed 

8 Over the limit (100%, 150%] 

9 Within the limit [80%, 100%] 
Fulfilled 

Low (30%, 50%] 
10 Over the limit (100%, 150%] 

11 Within the limit [80%, 100%] 
Failed 

12 Over the limit (100%, 150%] 

 

The information about the groups is later also used in the formation of the premise 

part of the rules for the fuzzy inference system.  
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Step 4: The profitability for each group is calculated separately by using the 

“underlying” investment profitability analysis model. For the calculation, the 

minimum, center, and maximum values are set for each group. This is achieved 

by setting the identified boundary values of each state to serve as the minimum 

and the maximum values for each state. The center value for each state (and 

thus group) is calculated as the average of the minimum and the maximum of 

each state´s value, with the exception of the variables “capital expenditure” and 

“capacity factor”. The minimum, center, and maximum value for each group is 

derived by combining the minimum, center, and maximum values for the state 

combination that makes the group. Table 3 shows the minimum, center, and 

maximum values for each state, and for CPI and the electricity price used in the 

calculation. 

Table 3. Minimum, center, and maximum values for each state and for the CPI 

and Electricity price variables. Resulting NPV in billions of rubles also indicated 

for each group.  

Group Scenario Electricity 
price, 
rub./MWh 

CPI CapEx Localization Capacity 
factor 

NPV, 
bln. 
rub. 

1 

Maximum 3000 1 80% Fulfilled 120% 0.21 

Center 2000 1.35 100% Fulfilled 97.5% 0.17 

Minimum 1000 1.7 100% Fulfilled 75.1% 0.15 

2 

Maximum 3000 1 101% Fulfilled 120% 0.21 

Center 2000 1.35 130% Fulfilled 97.5% -0.09 

Minimum 1000 1.7 150% Fulfilled 75.1% -0.29 

3 

Maximum 3000 1 80% Failed 120% -0.26 

Center 2000 1.35 100% Failed 97.5% -0.46 

Minimum 1000 1.7 100% Failed 75.1% -0.52 

4 

Maximum 3000 1 101% Failed 120% -0.39 

Center 2000 1.35 130% Failed 97.5% -0.73 

Minimum 1000 1.7 150% Failed 75.1% -0.96 

5 Maximum 3000 1 80% Fulfilled 75% -0.02 
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Center 2000 1.35 100% Fulfilled 62.5% -0.08 

Minimum 1000 1.7 100% Fulfilled 50.1% -0.08 

6 

Maximum 3000 1 101% Fulfilled 75% -0.06 

Center 2000 1.35 130% Fulfilled 62.5% -0.34 

Minimum 1000 1.7 150% Fulfilled 50.1% -0.53 

7 

Maximum 3000 1 80% Failed 75% -0.42 

Center 2000 1.35 100% Failed 62.5% -0.60 

Minimum 1000 1.7 100% Failed 50.1% -0.63 

8 

Maximum 3000 1 101% Failed 75% -0.56 

Center 2000 1.35 130% Failed 62.5% -0.87 

Minimum 1000 1.7 150% Failed 50.1% -1.09 

9 

Maximum 3000 1 80% Fulfilled 50% -0.67 

Center 2000 1.35 100% Fulfilled 40% -0.91 

Minimum 1000 1.7 100% Fulfilled 30% -0.96 

10 

Maximum 3000 1 101% Fulfilled 50% -0.85 

Center 2000 1.35 130% Fulfilled 40% -1.20 

Minimum 1000 1.7 150% Fulfilled 30% -1.45 

11 

Maximum 3000 1 80% Failed 50% -0.74 

Center 2000 1.35 100% Failed 40% -1.00 

Minimum 1000 1.7 100% Failed 30% -1.06 

12 

Maximum 3000 1 101% Failed 50% -0.93 

Center 2000 1.35 130% Failed 40% -1.29 

Minimum 1000 1.7 150% Failed 30% -1.54 

 

The NPV calculation procedure for each scenario of each group can be 

expressed as (see details in Appendix 1): 

𝐶𝐹𝑖 = 𝑌𝐸𝑖(Ṽ1i , Ṽ5i) + 𝑌𝑆𝑖(Ṽ1i, Ṽ2i, Ṽ3i , Ṽ4i, Ṽ5i) − Ṽ3i − 𝐶1𝑖 ∗ Ṽ2i − 𝐶2𝑖 (10) 

where 

i denotes a year index of the project lifetime, 

𝑌𝐸  is function of revenues from the electricity sales, 

𝑌𝑆 is a function of RE support payments, 

Ṽ1 is the electricity price, 

Ṽ2 is the CPI, 
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Ṽ3 is CapEx, 

Ṽ4 is localization, 

Ṽ5 is capacity factor, 

𝐶1 is operating expenses (OpEx), and 

𝐶2 is taxes.  

The resulting NPV for each scenario of each group is visible in Table 3. Studying 

the resulting NPVs allows the investment owner to understand the effect each 

group (combination of states) has on the investment profitability. This becomes 

intuitive, when the resulting pay-off distributions are visualized, see Figure 3. 

 

Figure 3: Visualization of the pay-off (NPV) distribution for each group  

By visual inspection, a manager will find it easy to inspect which groups have 

possible outcomes on the positive NPV side. This information is “actionable” in 

the sense that it can be used to direct managerial actions in terms of reaching 

the necessary states of the relevant variables, so that the investment will reach 
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profitability. If it can be immediately determined that the required states for a 

profitable outcome cannot be reached, the investment proposal can be 

abandoned. 

5.3 CONSTRUCTION OF A FIS FOR SUPPORTING INVESTMENT DECISION-MAKING 

Having the information we have about the connection between the groups and 

the NPV outcomes, we have what is needed to build the premise part for a rule 

base on Russian RE investment profitability. Each group that is a combination of 

variable states potentially corresponds to a premise part of a rule, in our case the 

total amount of potential rules is K = ∏ 𝑁𝑖  
3
𝑖=1 = 2 ∗ 2 ∗ 3 = 12. To make sure the 

premise parts of the rules make sense, they are separately inspected for 

suitability - in our case, all twelve premise parts for the rules are accepted to be 

included in the rule base.  

The formation of the premise part of the rule base is rather straightforward, for 

instance, the premise part of the rule number seven (according to the groups in 

Table 2) is ‘IF CapEx is within the limit AND Localization is failed AND Capacity 

factor is medium’. After the premise part is formulated for each rule, the 

consequence part of each rule is formulated, in our case the consequence is the 

corresponding pay-off distribution. To create the complete rules, the premise and 

consequence parts are joined to create a set of twelve rules for the rule base:   

1. IF CapEx is within the limit AND Localization is fulfilled AND Capacity Factor 

is high THEN NPV is #1; 
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2. IF CapEx is over the limit AND Localization is fulfilled AND Capacity Factor is 

high THEN NPV is #2; 

3. IF CapEx is within the limit AND Localization is failed AND Capacity Factor is 

high THEN NPV is #3; 

4. IF CapEx is over the limit AND Localization is failed AND Capacity Factor is 

high THEN NPV is #4; 

5. IF CapEx is within the limit AND Localization is fulfilled AND Capacity Factor 

is medium THEN NPV is #5; 

6. IF CapEx is over the limit AND Localization is fulfilled AND Capacity Factor is 

medium THEN NPV is #6; 

7. IF CapEx is within the limit AND Localization is failed AND Capacity Factor is 

medium THEN NPV is #7; 

8. IF CapEx is over the limit AND Localization is failed AND Capacity Factor is 

medium THEN NPV is #8; 

9. IF CapEx is within the limit AND Localization is fulfilled AND Capacity Factor 

is low THEN NPV is #9; 

10. IF CapEx is over the limit AND Localization is fulfilled AND Capacity Factor is 

low THEN NPV is #10; 

11. IF CapEx is within the limit AND Localization is failed AND Capacity Factor is 

low THEN NPV is #11; 

12. IF CapEx is over the limit AND Localization is failed AND Capacity Factor is 

low THEN NPV is #12. 
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The NPV consequences, expressed for each rule as triangular fuzzy numbers, 

can be seen in the right-most column in Table 3. Based on the rule base, a FIS 

that utilizes the rule base can be constructed. For the purposes of this research, 

we have identified two uses for (perspectives for the use of) the FIS: i) the use in 

policy-analysis, and ii) the use in investment decision-support. We further 

observe that the type of use affects the requirements that are set for the construct 

of the FIS.    

The policy-analysis perspective is one, where the FIS is used to create and tune 

a policy. In this context the policy tool to be analyzed is the Russian renewable 

energy support mechanism, and it is tuned for the purposes of reaching the goals 

of the overall policy of renewable energy deployment. The policy analysis 

perspective typically means that clear boundaries for when, e.g., different levels 

of a support is paid are (and must for clarity be) established. When this 

requirement of non-ambiguity or “crispness” is taken into consideration, it means 

that a FIS designed to support policy-making will have crisp boundaries between 

different states that is, crisp boundaries between the input membership functions. 

The investment decision support perspective is one, where the FIS is used to 

analyze the chances of a given investment to reach fulfillment of the set criteria, 

and as a result, of reaching the different observed levels of profitability. Each 

investment faces uncertainty and estimation imprecision with regards to the 

ability of the investor to reach a level of fulfillment of a criterion. This imprecision 

can be modeled by using fuzzy boundaries between the different states of the 

input membership functions of the FIS.  
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Two versions of a FIS, with a policy-analysis and with an investment decision-

support perspective, based on the created rule base, are presented in the 

following two sections. 

5.3.1 FIS with a policy-analysis perspective    

As discussed above, policy-analysis requires the setting of clear policies with a 

goal of shaping behavior in a desirable way. In the context of the Russian 

renewable energy support policy the policies require setting clear crisp thresholds 

between different RE investment project specific factors that determine project 

performance that, in turn, determine the level of payments from the support 

mechanism. We model the membership functions of the fuzzy input variables with 

crisp boundaries between the states of the variables, and use trapezoidal fuzzy 

sets to model the states (for details see Appendix 2):  

𝜋(𝑥; 𝛼, 𝛽, 𝛾, 𝛿) =

{
 
 

 
 
𝑥 − 𝛼

𝛽 − 𝛼
 𝑖𝑓 𝛼 ≤ 𝑥 ≤ 𝛽

1 𝑖𝑓 𝛽 < 𝑥 ≤ 𝛾
𝛿 − 𝑥

𝛿 − 𝛾
 𝑖𝑓 𝛾 < 𝑥 ≤ 𝛿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (11) 

As the thresholds are crisp we set α=β and γ=δ. The resulting values for the states 

of the three support mechanism parameters with crisp borders are reported in 

Table 4. A visual representation of the crisp boundaries for the states of the three 

variables is visible in Appendix 2. 
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Table 4. Values of each specified state of the three support mechanism 

parameters (policy-analysis perspective) 

Variable State Trapezoidal fuzzy set 
(𝛼, 𝛽, 𝛾, 𝛿) 

CapEx level Within the limit [80%, 
100%] 

(0.5, 0.5, 1, 1) 

Over the limit (100%, 
150%] 

(0, 0, 0.5, 0.5) 

Localization Fulfilled (0.5, 0.5, 1, 1) 

Failed (0, 0, 0.5, 0.5) 

Capacity factor High (75%, 120%] (0.3, 0.3, 0.5, 0.5) 

Medium (50%, 75%] (0.5, 0.5, 0.75, 0.75) 

Low (30%, 50%] (0.75, 0.75, 1.2, 1.2) 
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Figure 4 shows a screenshot of the state combinations (rules) from the Matlab 

Fuzzy Logic Designer® interface, as well as the magnified output distribution. 

The vertical lines on the rules show a case with CapEx=0.4, capacity factor = 

0.77, and localization = 0.9. As the input variable states are divided by crisp 

borders, the combinations are “unique” that is, any combination of crisp inputs 

will only fire one rule. This means that the resulting NPV is one of the twelve 

outcome NPVs “as is”. In the case visualized in Figure 4 only rule #2 fires. 

 
Figure 4. Fuzzy inference system visualization (policy-analysis perspective)  
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For a better holistic view of the different profitability levels that are connected to 

the different rules, Figure 5 shows surface graphs of the expected NPV for the 

situations, where the localization variable is either in the fulfilled, or in the 

unfulfilled state, and the CapEx and the capacity factor variables´ values are 

allowed to vary through their ranges.  

 

Figure 5. Expected NPV, when localization is fulfilled (left) / failed (right) and the 

other two variables vary through their full range.     

In reality, localization is an issue that is more or less a requirement to even be 

able to participate in the project auctions, and for being an eligible recipient of the 

support offered by the Russian mechanism. These results show that taking the 

policy-maker perspective, with crisp boundaries of different states, clearly guides 

investments to a direction, where the CapEx is kept within the set limits, the 

capacity factor is kept high, and the localization requirement is fulfilled. Based on 

these results, the policy decision-makers can discuss, whether the boundaries 

are in the right place, or not. 

5.3.2 FIS with an investment decision-making perspective    
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From the investing company´s investment decision-making perspective, the 

focus is on “whether or not the company can fulfill the requirements” that is, 

whether the realized value at the time of establishing the support level is on the 

“right” side of the “variable state border”, or not. This means that as there is 

uncertainty and imprecision in the ability of the managers to estimate the actual 

future outcome, the borders between states are imprecise and uncertain for the 

investor. This imprecision is reflected by modeling the membership functions of 

the input variable states as fuzzy. For the purposes of this research the states 

are modeled in a way that is presented in detail in Table 5. 

Table 5. Values of each specified state of the three support mechanism 

parameters (investment decision-making perspective) 

Variable State Trapezoidal fuzzy set 

CapEx level Within the limit [80%, 
100%] 

(0, 1, 1,1) 

Over the limit (100%, 
150%] 

(0, 0, 0,1) 

Localization Fulfilled (0, 1, 1,1) 

Failed (0, 0,0, 1) 

Capacity factor High (75%, 120%] (0.7, 0.8, 1.2, 1.2) 

Medium (50%, 75%] (0.45, 0.55, 0.7, 0.8) 

Low (30%, 50%] (0.3 0.3, 0.45, 0.55) 
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A visual representation of the boundaries for the states of the three variables is 

visible in Appendix 2. Figure 6 shows a screenshot of the state combinations 

(rules), where the vertical line shows the same case as in the above example, 

with CapEx=0.4, capacity factor = 0.77, and localization = 0.9.  

 

Figure 6. Fuzzy inference system visualization (investment analysis 

perspective)  

The input variable states are divided by fuzzy borders and hence multiple rules 

are fired, in fact eight rules are fired. This means that also the outcome NPV is a 
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construct, consisting of the outcomes of the eight fired rules, and in this case is a 

rather complex-looking NPV distribution. What can be seen from the magnified 

resulting NPV distribution is that the area of possible outcomes is rather wide, 

and exhibits the imprecision connected to the final outcome of the project.  

The imprecision is reflected in Figure 7 that shows a surface graph of expected 

NPV, when the localization factor is either fulfilled, or not-fulfilled, by 

“smoothening” the graph considerably (compare to Figure 5).  Distinct plains, or 

layers of similar profitability are not visible anymore. Uncertainty perceived by 

investors changes the overall picture, and in this case deteriorates the perception 

of the overall project profitability. A detailed two-dimensional representation of the 

results can be found in Appendix 3.        

 

Figure 7. Expected NPV, when localization is fulfilled (left) / failed (right) and the 

other two variables vary through their full range.   

What we can see from comparing the results from the two FIS, constructed for 

the policy analysis perspective and for the investment decision-making 

perspective, is that the different requirements for the uncertainty / imprecision 
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that are incorporated in the FIS cause the results from these different FIS to be 

rather different. This observable difference can be understood as a quantification 

of how differently, in this context, the renewable energy support mechanism is 

viewed by investors and policy-makers. It seems that analysis of the FIS might 

be used in understanding the behavior of investors in light of different policies - 

this kind of aspects are interesting, however, they fall outside the scope of this 

research. 

6. SUMMARY AND CONCLUSIONS 

This paper has introduced a new procedure for investment analysis and real 

option valuation to complement the typical profitability analysis performed with 

the fuzzy pay-off method. The idea of the procedure is to identify key variables 

for an investment that management of the investment can affect, and to find and 

to determine the boundaries of relevant “reachable” states for the value of these 

key variables. By using these relevant states as a basis, combinations of the 

states are formed that serve as scenarios of possible state-combination 

outcomes. Profitability is calculated for each state-combination, and by doing so, 

more information with regards to the cause-effect relationship between the state-

combinations and profitability outcomes can be inferred. This information is 

actionable, as it can be used as a basis for decision-making with regards to 

actions that lead to reaching specific identified state combinations. Such 

information cannot be directly inferred from the typical analysis result from the 

fuzzy pay-off method. 
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The identified state-combinations can be used also as a basis of constructing a 

rule base that serves as a component in a fuzzy inference system. The calculated 

profitability outcomes for each state-combination can act as the resultant part of 

a rule base. A construct of a fuzzy inference system in the context of the proposed 

new procedure for investment analysis was proposed.  

The proposed new procedure and a FIS application into investment profitability 

analysis were numerically illustrated within the context of an investment into a 

renewable energy production investment in Russia. For the FIS illustration two 

separate perspectives that of a policy analysis, and that of investment decision-

support, were taken. It was shown that there are notable differences between 

these perspectives, a finding that highlights the potential value in constructing FIS 

with different perspectives, for the purposes of better understanding the problems 

at hand and specifically investor behavior. More specifically, the two FIS show 

that different perceptions of uncertainty lead to different NPV profiles. 

We believe that the proposed new method and the application of FIS into the 

investment profitability analysis context allow for better analysis of investments 

that face multiple key sources of uncertainty, and for which relevant states for 

these key uncertainties can be identified. Further research avenues include 

application of the proposed methods into other fields of industry and empirical 

testing of the proposed method with real world investments. 
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APPENDIX 1. Specifications of cash-flow calculation 

Here we provide the logic behind the cash-flow calculation performed in the 

investment model. It should be noted that for the purpose of easy perception, 

expressions are given in a simplified form missing some details. All key variables 

are denoted by Ṽ, whereas rest factors, which are assumed not to represent 

uncertainty to the model playing minor role, are denoted as 𝐶. 

The overall expression for the cash flow calculation is: 

𝐶𝐹𝑖 = 𝑌𝐸𝑖(Ṽ1i , Ṽ5i) + 𝑌𝑆𝑖(Ṽ1i, Ṽ2i, Ṽ3i , Ṽ4i, Ṽ5i) − Ṽ3i − 𝐶1𝑖 ∗ Ṽ2i − 𝐶2𝑖 

where 

i denotes an year index of the project lifetime, for simplicity, further we omit it, 

meaning that all calculation is performed for a particular year of the project, 

𝑌𝐸  is function of revenues from electricity sales, 

𝑌𝑆 is a function of subsidy payments, 

Ṽ1 is electricity price, 

Ṽ2 is CPI (inflation), 

Ṽ3 is capital costs (CapEx), 

Ṽ4 is localization, 

Ṽ5 is capacity factor, 

𝐶1 is operating expenses (OpEx), 
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𝐶2 is taxes (that although depend on the rest of cash flows their derivation is 

constant and defined by the Tax Code).  

The calculation of cash-flow consist of estimating project revenues from both, 

electricity sales and the subsidy payments, and from the expense-side, including 

capital expenses, operating expenses, and taxes. 

Further we provide clarification of functions:   

    𝑌𝐸  – revenue from electricity sales 

The revenue from electricity sales is simply the electricity price multiplied by the 

electricity production that is defined by capacity factor: 

𝑌𝐸 = Ṽ1Ṽ5𝐶3𝐶4, 

where  

𝐶3 – number of hours per year, and 

𝐶4 – installed capacity of the power plant. 

 

1. 𝑌𝑆 – subsidy payments 

The amount of subsidy paid depends on all key variables and is computed in 

accordance with a formalized legislative procedure. In a nutshell, it represents all 

project expenses corrected on expected revenues from electricity sales and 

adjusted with several coefficients to provide proper motivation for investors. 
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𝑌𝑆 = 𝑌𝑠ℎ(Ṽ1, Ṽ2) ∗ 𝑌𝑙(Ṽ5) ∗ (𝑌𝑐(Ṽ3, Ṽ4) + Ṽ2𝐶5 + 𝐶6), 

where 

𝐶5 is a norm of OPEX defined by the legislation, 

𝐶6 is the expected property tax for the project, 

𝑌𝑠ℎ is the share of expenses to be covered by the support, calculated as: 

𝑌𝑠ℎ = 1 −
Ṽ1𝐶3𝐶7

𝐶8_𝑎𝑛𝑛 + Ṽ2𝐶5
 

 where  

the nominator of the ratio represents expected revenues from the 

electricity sales for an ‘average project’ with 

𝐶7 – target capacity factor set by the legislation, 

the denominator represents total expected ‘average project’ 

expenses comprised of 

𝐶8_𝑎𝑛𝑛 – annualized weighted capital costs of projects that 

submitted bids for a particular commercialization year and 

technology, and  

𝐶5 – inflated (with Ṽ2) norm of project operating expenses, 

defined by the legislation. 
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𝑌𝑙 is the load coefficient that reflects electricity production performance and is 

formed as follows: 

𝑌𝑙 = {

1, 𝑖𝑓 Ṽ5 > 0.75𝐶7 (′𝐻𝑖𝑔ℎ′ 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟)

0.8, 𝑖𝑓 0.5𝐶7 < Ṽ5 ≤ 0.75𝐶7 (′𝑀𝑒𝑑𝑖𝑢𝑚′ 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟)

0, 𝑖𝑓 Ṽ5 ≤ 0.5𝐶7 (′𝐿𝑜𝑤′ 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟)

 

𝑌𝑐 is annualized project capital costs adjusted in accordance with the set limit 

(𝐶9) and fulfilling localization in the following way: 

Ṽ3𝑎𝑑𝑗1 = {
Ṽ3, 𝑖𝑓 Ṽ3 ≤ 𝐶9 (′𝑊𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡

′𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝐶𝑎𝑝𝐸𝑥)

𝐶9, 𝑖𝑓 Ṽ3 > 𝐶9 (′𝑂𝑣𝑒𝑟 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡
′𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝐶𝑎𝑝𝐸𝑥)

 

Ṽ3𝑎𝑑𝑗2 = {
Ṽ3𝑎𝑑𝑗1 , 𝑖𝑓 Ṽ4 = 1 (′𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

′𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)

0, 𝑖𝑓 Ṽ4 = 0 (′𝐹𝑎𝑖𝑙𝑒𝑑′𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)
 

𝑌𝑐 = Ṽ3𝑎𝑑𝑗2_𝑎𝑛𝑛 , 

where  

Ṽ3𝑎𝑑𝑗2_𝑎𝑛𝑛 is annualized value of Ṽ3𝑎𝑑𝑗2 . 
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APPENDIX 2. Detailed boundary information for the input variables 

Details on boundary formation of input variables, in particular Capital 

expenditures, localization, and capacity factor are presented in Figure A1 (policy-

analysis perspective) and Figure A2 (investor-analysis perspective) 

 

Figure A1. Variable states with crisp borders and the triangular NPV outcomes 

(policy-analysis perspective) 
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Figure A2. Variable states with imprecise borders and the triangular NPV 

outcomes (investor-analysis perspective) 
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APPENDIX 3. 2D representation of the results 

Here the results of examining our model by fixing two variable values (so that 

they are in ‘profitable area’) and representing another single variable value range. 

Results of this experiment from the policy-analysis perspective are shown in 

Table A1 and Figure A3 and from the investor-analysis perspective in Table A2 

and Figure A4. 

Table A1: Maximum NPVs when two variables have fixed values and one variable 

value is varied (policy-analysis perspective) 

Fixed variables Best variable range maximum NPV 

Capacity factor=1.2, 

Localization=1 

𝐶𝑎𝑝𝐸𝑥 ∈ [0.5,1] 0.175 

CapEx=1,Localization=1 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟

∈ [0.76,1.2] 

0.175 

CapEx=1, Capacity factor=1.2 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∈ [0.5,1] 0.175 
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Figure A3: Change in NPV, when two variables are fixed according to Table 1, 

and one variable’s values go through its entire range (policy-analysis 

perspective). 

 

Table A2: Maximum NPVs when two variables have fixed values and one variable 

value is varied (investor-analysis perspective) 

Fixed variables Best variable 

value 

Range for 

NPV>0 

Maximum 

NPV 

Capacity factor=1.2, 

Localization=1 

𝐶𝑎𝑝𝐸𝑥 = 1 𝐶𝑎𝑝𝐸𝑥 ∈ [0.8,1] 0.175 



52 
 

CapEx=1,Localization=1 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟

∈ [0.76,1.2] 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟

∈ [0.76,1.2] 

0.175 

CapEx=0, Capacity 

factor=1.2 

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

= 1 

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

∈ [0.95,1] 

0.175 

 

 

 

Figure A4: Change in NPV, when two variables are fixed according to Table 7, 

and one variable’s values go through its entire range (investor-analysis 

perspective) 
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