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Abstract—Forecasting the state-of-charge changes of battery
energy storage, anticipated from a provision of different services,
can facilitate planning of its market participation strategy and
leverage the maximum potential of its energy capacity. This
paper provides a performance comparison study of multiple
decision-tree and data-driven machine learning methods for point
forecasts of the state-of-charge of battery energy storage under
frequency containment reserve for normal operation on day-,
hour-, and 15-minute-ahead basis. The battery state-of-charge
data for the performance evaluation were simulated with a droop
curve battery model based on the historical frequency data in
the northern Europe synchronous area. The results show that the
data-driven methods outperform the decision-tree based methods
on the 15-minute- and day-ahead time scales while demonstrating
a comparable performance for the hour-ahead time scale.

Index Terms—battery state-of-charge, point forecasting, deci-
sion trees, machine learning, frequency containment reserve

I. INTRODUCTION

The European Union has recently revised its 2030 climate
and energy framework. An important change is hardening its
key target for the share of renewable energy on the grid to
32% in pursuit of low-carbon economy and its commitments
under the Paris Agreement [1]. The implementation of these
directives will demand more flexibility to guarantee the sta-
bility of power system operation in the conditions of gradual
replacement of dispatchable fossil-fuel based power plants by
intermittent renewable power generation.

Battery energy storage systems (BESSs) are one of the
flexibility elements of power systems that are able to handle
the foreseeable stability challenges provoked by the enlarged
share of renewables [2]. In fact, the control efficiency of a
BESS as a frequency containment reserve for normal operation
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(FCR-N) surpasses conventional power plants in ramping
capabilities [3]. In this scenario, frequency regulation is the
most common primary application for battery storage glob-
ally [4]. However, in addition to FCR-N, technical capabilities
of BESSs enable provision of other services [5], and hence, its
efficient utilization is bound to various decision making activ-
ities for finding the trade-off between the benefits of different
services and markets [6]. These decisions are dependent on the
forecast uncertainties of coupled resources and corresponding
stochastic processes that predetermine the development of
BESS state-of-charge (SOC) in time. Consequently, accurate
forecasting that would facilitate the economic dispatch of
BESSs and unit commitments is essential.

The goal of this study is to analyze and compare the
performance of several traditional and state-of-the-art machine
learning methods for point forecasting of BESS SOC in the
condition of BESS operating as a FCR-N in the northern
Europe synchronous area. The results of the study include the
performance evaluation of a decision tree (DT), random forest
(RF), Light Gradient Boosting Machine (LightGBM), dilated
convolutional neural network (DCNN), and multi-attention
recurrent neural network (MARNN) on day-, hour-, and 15-
minute-ahead time scales. Moreover, a data analysis of the
real frequency measurements utilized to simulate a BESS SOC
dataset and feature engineering for the dataset are provided.

The rest of this paper is organized as follows: Section
II describes the general principles of the machine learning
methods applied in this study for point forecasting. In Section
III, the case study is introduced including frequency data
analysis in northern Europe, feature engineering for the BESS
SOC dataset, implementation details, and evaluation criterion
for point forecasting. The results are presented in Section IV.
Finally, the conclusions are drawn in Section V.
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II. METHODS

A. Decision Tree

Decision tree represents a non-parametric supervised learn-
ing method utilized for classification and regression tasks [7].
A fitting model of the method is developed by recursively
partitioning a dataset into smaller subsets by using tests
applied to the feature or sample values. Each consecutive
splitting point is defined by a greedy algorithm with cost
function minimization as the criterion. The final structure of
the model corresponds to a binary tree where the topmost node
represents the root node, the intermediary nodes constitute the
binary decision rules, and each leaf node can be regarded as
the classification or regression outcome. The advantages of
DTs include the ability to capture non-linear patterns in the
data, while sensitivity to noisy data is one of their drawbacks.

B. Random Forest

An ensemble of multiple DTs is known as the random
forest method [8]. In this method, the final output of mul-
tiple DT models is combined to stabilize the performance of
individual DTs for both regression and classification tasks.
The aggregation of the individual models is implemented with
a bagging technique that involves training each DT model
on a different dataset with replacement. In addition to the
bagging, random feature selection is utilized. Then, an average
of all the predictions from the individual trees is computed to
define the final outcome. As a result, RFs provide more robust
performance for high-dimensional data and reduce the variance
of the DTs.

C. Light Gradient Boosting Machine

Light Gradient Boosting Machine is a modern and fast
gradient boosting framework that is also based on the DT
algorithm [9]. Gradient boosting decision trees follow the
principle of consecutively fitting an ensemble of DT models
to the data and weighting the model outcomes based on
the previous outcome with the gradient descent algorithm.
Eventually, the prediction is generated by adding the weights
of individual models. The main advantage of this approach is
that LightGBM splits the tree in a leaf-wise manner with the
best fit in contrast to the depth-wise or level-wise algorithms
for tree splitting used in other boosting algorithms. This split
approach enables construction of more complex trees and leads
to better loss reduction than in the level-wise algorithms.

D. Dilated Convolutional Neural Network

Convolutional neural networks are state-of-the-art deep
learning approaches for image classification problems [10].
They have recently gained popularity also in time-series fore-
casting [11]. In this study, we adopt DCNN that connects the
past inputs to future time step outputs in a causal structure.
Moreover, dilated convolutions presented in [12] enable the
exponential relationship between the dilated layer depth and
input size to handle longer sequences. Such relationship is
realized by skipping constant dilation rate inputs in between
each of the inputs.

E. Multi-Attention Recurrent Neural Network

Recurrent neural networks (RNNs) have proven to be
a robust method for prediction of sequentially dependent
data [13]. An attention mechanism introduced in [14] is a
recent advancement in the recurrent deep learning that further
improves the results of vanilla RNN in memorizing long
source sequences. The main difference with the RNN is that
the attention develops an aggregate context vector that is
filtered specifically for each output time step and memorized
in the decoder layer [15]. In this study, we utilize MARNN
model described in [16] that deploys lag sample values from
previous input sequences at the decoding time.

III. CASE STUDY

A. Description

The case study corresponds to a BESS operating as a FCR-N
in the northern Europe synchronous area. The FCR-N market
in this area is individually organized by the transmission
system operators (TSOs) that also set the service rules. The
reserve procurement occurs on the basis of competitive bidding
at the yearly market and at the hourly market arranged once
a day for additional procurement. The forecasting time scales
for the performance evaluation were selected considering the
battery operation in a multi-objective environment with cur-
rent procurement practices and possible future developments
towards shorter procurement intervals.

B. Data

In this study, the real frequency measurements for the period
of four years from 2015 to 2018 served as an input for
the BESS model to generate the variations of BESS SOC.
The droop curve parameters set by the TSO service rules in
the Finnish bidding area for the corresponding period were
used [17]. The details about the assumptions and BESS model
characteristics can be found in [16]. Moreover, to support
BESS SOC forecasting, several time, market, frequency, and
modified SOC features were retrieved and their correlations
with the simulated hourly SOC data are illustrated in Fig. A.1
of Appendix A. The dataset is publicly available in [18] for
examination, and its features are described below.

The frequency measurements utilized for the simulation
were retrieved from open data [19]. The frequency distribution
patterns for hourly mean frequency values are graphically
represented as a boxplot in Fig. 1. Following the medians
of the boxes, several over-frequency (0, 9, 21, and 23) as
well as under-frequency (2, 3, 4, 11, and 18) hourly trends
can be identified. If compared to the other hours, the morning
hours (6, 7, and 8) are highlighted by the smallest interquantile
range and variations between the maximum and minimum
frequency values. Also, the frequency distribution is close
to being symmetrical in most of the hours. In general, the
sequential distribution pattern of the frequency data resembles
wave-like structure with different wavelengths and amplitudes.

Fig. 2 illustrates the relationships between daily sets of
15-minute mean frequency data with 4 main clusters. To
obtain the clusters, a hierarchical dendrogram was built with



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time, h

49.9

50.0

50.1

F
re

q
u
e
n
c
y
, 
H

z

Fig. 1: Distribution of hourly mean frequency values in the northern Europe synchronous area (2015 – 2018). The outliers are
not shown.
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Fig. 2: Clusters of daily 15-minute mean frequency values in the northern Europe synchronous area (2015 – 2018).
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Fig. 3: Examples of autocorrelation and partial autocorrelation plots for the hourly BESS SOC data (a) before and (b) after
the removal of hourly correlation.

Ward’s minimum variance method [20]. From the clusters, the
hourly dips and spikes identified by the medians in Fig. 1
can be clearly seen, and, in addition, intra-hour variations are
distinguishable. For instance, one of the intra-hour properties
of such variations is in the frequency rise at the beginning of
the peak morning hours (Clusters 1 – 4) and, in some cases,
peak evening hours (Clusters 2 – 3) followed by the frequency
dips. The opposite trend is illustrated by all the clusters during
the daily hours (11 – 15) and late evening hours (20, 21, and

23). This power system dynamics can be potentially explained
by the trading model that includes hourly market with an
uneven distribution of load during the hours and primarily
stable power output of the generation units dispatched in the
market [21]. In the markets with high volume of intermittent
renewable generation, mistakes in the forecasted power output
of the renewables can be an additional factor contributing to
the mismatch between the market equilibrium and the real
power balance situation.



The time features in Fig. A.1a incorporate weekly (as
w day) and monthly (m day) day values for the data time
range, as well as sine and cosine functions of hourly and
monthly values that were obtained as follows:

hr sin(h) = sin
(2π
24
h
)
,

mn sin(m) = sin
(2π
12

(m− 1)
)
,

hr cos(h) = cos
(2π
24
h
)
,

mn cos(m) = cos
(2π
12

(m− 1)
)
.

(1)

The market data in Fig. A.1b were retrieved from open data
in [22] and incorporate a hourly sum of wind power generation
in Finland, Sweden, and Denmark (wind), as well as hourly
automatic activated reserve (up aar, dn aar) and regulation
volumes (up reg, dn reg) summarized for all nordic bidding
areas. Also, the frequency data (freq) were added as an hourly
mean to Fig. A.1b. The additional statistical frequency data
were retrieved from the frequency measurements and include
hourly sums of the number of seconds when the frequency was
above or below daily single (1s up, 2s up) or double (1s dn,
2s dn) the standard deviation value, respectively. Moreover,
the means of these features related to the positive (sm up)
or negative (sm dn) deviation were obtained. Furthermore,
the SOC data modified by shifting (sh 1, sh 24, sh 48) and
applying difference (df 1, df 24, df 48) with steps 1, 24, and
48 were investigated because of the highest correlation at these
time steps as seen in Fig. 3a.

The heatmaps indicate that the correlations of the time
features with the mean hourly SOC are accounting for less
than 8%. A stronger correlation can be retrieved from the
market and frequency data. For example, up- and down-
regulation volumes have about 10% correlation with the SOC
while for the automatic activated reserve volumes this metric
is reaching 20%. A non-linear conversion of the frequency
measurements led to 92% correlation with the SOC data. The
lowest correlation value among the market features is for the
wind data that is slightly exceeding 3%. The artificially created
frequency data features have the correlation varying from 60%
to 80%. The maximal correlation for the modified SOC data
is achieved by the difference values and reaches almost 70%
while the correlation of the shifted values is declining from
22% along with the difference in time.

C. Feature Selection

Feature selection is a part of machine learning model
engineering that incorporates finding a subset of relevant and
informative features from the initial dataset. The benefits of
proper selection can decrease training time, minimize the risk
of overfitting, potentially improve model performance, and
reduce model complexity [23]. A review of the state-of-art
methods for the feature selection can be found in [24]. In this
study, two types of feature selection methods were applied to
the dataset that are filter and embedded methods.
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Fig. 4: The results of feature selection for BESS SOC dataset:
(a) filter method and (b) embedded method.

For the filter method that enables model-independent feature
selection, Mutual information (MI) score is utilized. This
score evaluates the linear and non-linear dependence of the
target variable of each feature by quantifying the amount of
information that can be obtained about the target observing
the feature. As a result, a high MI score indicates dependence
between the target and the feature. According to the MI
scores presented in Fig. 4a, the most important features for
the SOC data are the frequency measurements, its derivatives
such as sm dn, sm up, and modified SOC data features such
as df 48, df 24, df 1. However, since the highly correlated
frequency derivative features are redundant, only sm dn and
sm up features can be be kept without loss of information.
In contrast to SOC and frequency data, the market and time
features have low importance with only up aar and dn aar
accounting for distinguishable MI score values.

In the embedded methods, feature selection is integrated into
the model algorithms at the training stage. Here, LightGBM
was used as the model algorithm to perform the feature
selection. The feature importance metric according to the
embedded method is presented in Fig. 4b. The results are
correlated with the MI scores and highlight the importance
of the frequency measurement, its derivatives, and modified
SOC data features.

Thus, the final set of features utilized in the experiment
included frequency mean values, all modified SOC data fea-
tures, sm up and sm dn features from the frequency data, and
automatically activated reserves from the market data.

D. Training, Validation, and Testing Sets

The input data for the experiments were obtained from
the BESS model simulation. The data were consisted of a



15-minute BESS SOC data in percent of a nominal battery
capacity and corresponding frequency data features. For the
hour- and day-ahead predictions, these data were transformed
to an hourly resolution and enriched by the selected features
from the hourly BESS SOC dataset presented in the previous
subsection. For the 15-minute forecasts, the hourly market
features were resampled to 15 minute resolution using forward
filling, and the SOC shifting and difference procedures were
applied with a coefficient factor equal to 4. The target variable
for the forecasts was the difference between the consecutive
hours (df 1 and df 4 for the hourly and 15-minute datasets,
respectively) to prevent the persistence model relying only on
the value of the previous step in its predictions. The distinction
between the autocorrelation and partial autocorrelation before
and after the removal of hourly correlation can be seen in
Fig. 3. Moreover, MinMax scaling with the range from 0 to 1
was utilized for the datasets.

The testing was done using hold-out validation, in which
the BESS SOC datasets were split for training and testing sets
in proportions of 75% and 25%. Also, 15% of the training set
was reserved for a parameter validation during the testing of
the MARNN and DCNN models.

E. Performance Index

The error of the point forecast was estimated by the
deviation between the actual observation and the prediction
εt = yt − f(xt). In this study, the widely used Root Mean
Squared Error (RMSE) error metric was employed to quantify
the statistical quality of the forecasts for the testing data points:

RMSE =

√√√√ 1

N

N∑
t=1

ε2t . (2)

F. Implementation Details

The data-driven models were implemented using Keras
2.0.2 high-level neural networks API [25] with Tensorflow
1.0.1 [26] as the backend in the Python 3.6 environment.
The DCNN was based on the model presented in [27], and
the MARNN model was developed based on [28] with the
Monte Carlo dropout added to the model as a regularization
method with the astroNN package [29]. The random forest and
decision tree models were implemented with the Scikit-learn
library [30], and the LightGBM model was built based on its
library [31].

IV. EXPERIMENTAL RESULTS

The experimental results are presented in Table B.I and
Fig. B.1 of Appendix B. According to the performance eval-
uation, the MARNN model achieved the best score in point
forecasting of BESS SOC for the hour-ahead and day-ahead
time scales while DCNN demonstrated the lowest loss for
the 15-minute-ahead forecast. However, the difference between
the performance of the RF, LightGBM, DCNN, and MARNN
models in hour-ahead forecasting is relatively small and can
be neglected.

The efficiency of tree based methods has an expected
distribution from DT to RF and LightGBM in the descending
order of their loss score, and this disposition is in correla-
tion with known simulation results. The data-driven models
have noticeable improvement in particular time horizons if
compared to each other. These time scales are 15-minute-
ahead and day-ahead for the DCNN model and the MARNN
model, respectively. This forecast quality can be explained by
their structures, in which the input of the DCNN model is a
sequence of consecutive values from the past, while for the
MARNN model, it is lag sample values from several previous
input sequences. Thus, the DCNN model has more restricted
scope that can be beneficial for the short-term forecasts but
the MARNN model can leverage lag sample values to predict
long-term dependencies.

The heatmaps of prediction and actual values in Fig. B.1
show forecast properties of the models. For example, the RF,
LightGBM, and DCNN models were unable to catch the BESS
SOC patterns in day-ahead forecasting, and this is illustrated
in Fig. B.1 by a low amplitude of their predictions. Better
performance of the MARNN, DCNN, RF, and LightGBM
models on hour-ahead time scale compared with the DT model
is demonstrated by a location of their predictions closer to
the imaginary diagonal line that corresponds to an absolutely
accurate prediction. In general, the forecast distributions of
BESS SOC imply the presents of errors that together with
the drawbacks of point forecasts makes the predictions too
uncertain and ambiguous to utilize them in decision making.

V. CONCLUSIONS

In this study, a comparison between the several traditional
and state-of-the-art machine learning algorithms was con-
ducted for the forecasting of BESS SOC in the northern
Europe synchronous area. The performance evaluation of the
algorithms was carried out on 15-minute-ahead, hour-ahead,
and day-ahead time scales. The results demonstrate that the
MARNN model outperforms DT, RF, LightGBM, and DCNN
on the day-ahead scale, DCNN has better loss for the 15-
minute-ahead forecasting, while comparable results can be
obtained for the hour-ahead forecasting by RF, LightGBM,
DCNN, and MARNN models.

Moreover, cross-dependency of BESS SOC data with time,
market, and frequency data features was analyzed, and the
most important features were chosen with the filter and em-
bedded feature selection methods. The findings suggest that
the BESS SOC data has low correlation with the market and
time features while frequency features as well as applying
shifting and difference to the SOC data can be more beneficial
to support the forecasting.

Forecasting of BESS SOC can potentially provide an effi-
cient and meaningful tool for decision making applications in
multi-objective smart grid environment. However, taking into
account inevitable errors of point forecasts related to stochas-
tic processes such as the frequency regulation, probabilistic
forecasts can be more informative and should be investigated
for such applications in the future research.
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APPENDIX A
FEATURE CORRELATION
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Fig. A.1: Correlation of simulated hourly state-of-charge (SOC) values in northern Europe synchronous area (2015 to 2018):
(a) time, (b) market, (c) frequency data, and (d) modified SOC data features.



APPENDIX B
PERFORMANCE EVALUATION

TABLE B.I: Performance evaluation of the point forecasts.

Timescale Metric DT RF LightGBM DCNN MARNN

15-min-ahead RMSE, [%] 7.35 5.17 5.07 3.98a 5.18

Hour-ahead RMSE, [%] 19.30 13.06 12.95 13.01 12.93
Day-ahead RMSE, [%] 25.51 17.43 17.26 17.12 13.80
aThe best RMSE loss is marked in bold.
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Fig. B.1: Performance of a decision tree (DT), random forest (RF), Light Gradient Boosting Machine (LightGBM), dilated
convolutional neural network (DCNN), and multi-attention recurrent neural network (MARNN) on day-, hour-, and 15-minute-
ahead time scales of the BESS SOC testing set.
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