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Abstract—Industrial automation systems have collected vast
amounts of data for years. Data analytics and machine learning
can be used to reveal different phenomena and anomalies, which
may be otherwise impossible to see. However, the opportunities
offered by the data are not currently utilized even though the
technology is available. In this paper, a the potential use of
the data analytics and machine learning of automation system
data is presented. A case study on indirect measurement and
predictive analysis of electric motor overcurrent was carried out
in a pulp mill. Predictive models reached accuracy up to 98,85
%. The methods presented can be generalized to other processes.
Since automation systems store data in most industrial sites, no
additional hardware is necessarily needed for industrial internet
of things (IIoT) systems, making a factory scale IIoT system
possible.

Index Terms—Factory and process automation, Fault detection,
diagnostics and prognostics, Intelligent Digital ecosystems

I. INTRODUCTION

The Internet of Things (IoT) is taking ground worldwide.
The technology allows physical things to collect data and
to be connected to each other and the internet. Data, when
refined is valuable as it can help to detect phenomena which
might not otherwise be observable. Applying IoT technology
in industries forms the Industrial Internet of Things (IIoT),
which improves productivity, increases predictability, allows
new business opportunities, and creates new value for industry
operators. Factories and industrial plants are vast sources of
data. However, the potential of stored data is not widely
utilized. One promising solution for data utilization is the use
of machine learning and data analytics, which can emerge
new information from the data available in a factory [1].
Collected factory data is also presented to be used in predicive

This research is partly funded by Business Finland research funding agency.
We would like to thank the financial support received to make the study
possible. 978-1-7281-2927-3/19/$31.00 ©2019 IEEE

maintenance to avoid unplanned breakdowns [2], [3] and in
remaining useful life predictions [4].

In this paper, the usage of machine learning, data analytics
and factory automation data to detect and predict electric
motor overcurrent is presented as a case study of harnessing
the potential of data available in industrial environment. The
case study represents a single point of a large, factory-
sized IIoT system, where data is used to gain advantage in
production. The IIoT system works in parallel with the existing
automation system of the factory, and they share the source of
the data. The detection and prediction of failures or abnormal
functioning of process equipment is a typical need in industrial
plant. Malfunctioning process equipment and machinery can
cause the factories to be forced to halt the production for the
time for repairs. This causes financial losses, as the factory
does not make money when the production is stopped. If,
for example, an electric motor failure could be predicted, the
downtime caused by unexpected events could be minimized.

This paper takes also a glance on what are the driving
factors and business enablers for building an IIoT system.
Also, the generalization the methods presented in the pulp
mill case study is discussed.

The factory selected for this study is UPM Kaukas pulp mill
in Lappeenranta, Finland. The pulp mill has a high production
rate of 740 000 tonnes of softwood and birch pulp per year.
Therefore the mill represents a large industrial plant, and the
observations presented in this paper can be generalized for
applying in other industrial instances, also.

A. Internet of Things

Internet of Things (IoT), connecting things to the internet,
allows the collection of data from different locations. Gath-
ering raw data, however, is a not new technology and data
may not be valuable in its raw form. Present day industrial
automation systems collect and visualize data for the factory



operators, not utilizing the full value of the process data. By
refining gathered data, new information can be created, which
may prove to be valuable. The refined data has potential to, for
example, yield savings for the operator, improve productivity
and improve the quality of the product. The driving force of
digitalization of industries is to harness the full potential of all
of the available data and move towards smart manufacturing.
IIoT is a key tool in that transformation [5].

The potential of IoT technology arises from new business
opportunities associated to the industrial production and ser-
vice environments. IoT provides more tools to support fact-
based decision making based on the real-time information [6].
The automatization of the processes has increased the effec-
tiveness of production systems in recent years, however, IoT
is an essential technology enabler to transfer companies into
the fourth industrial generation. In [7] it is described that in
Industry 4.0 “manufacturing systems are vertically networked
with business processes within factories and enterprises and
horizontally connected to dispersed value networks that can
be managed in real time – from the moment an order is placed
right through to outbound logistics. In addition, they both
enable and require end-to-end engineering across the entire
value chain.” This vision highlights the integrated processes
between firms and digitalization as an enabler for integration,
automation and real time information sharing.

B. Data Analytics

The process of extraction of information from data sets is
called machine learning [8]. This can be done, if a sufficient
amount of data is available. In addition to the raw data,
depending on the use case, detailed description of the data may
be required. If, for example, prediction of failures is desired,
data of both flawless and faulty operation is needed to find the
correlations of data which lead towards the failure detection.

Machine learning happens by utilizing different algorithms
to produce models, find patterns and predict a user-defined
target output [8]. An algorithm is, simply put, a set of
instructions to solve a problem. Machine learning algorithms
are a collection of these instructions, which solve an algorithm-
specific problem. There is a vast amount of such algorithms,
which work in different kinds of problems. The correct algo-
rithm for the task has to be selected in each case.

A trained machine learning algorithm is called a model.
The model is an entity which can create predictions on
data. Models are created by allowing a training algorithm
to determine the internal weights or other parameters of the
model based on the data. The model is then able to makes
predictions of the value or quantity which the model was
trained to predict.

The trained model can be integrated into the factory systems
to provide predictions using factory automation data (Fig. 1).
To utilize machine learning in an industrial environment,
necessary data connections need to be made, mainly to the
automation system and its data storage for model training and
continuous data flow. The predictions made with the model can

Fig. 1. The architecture and data flow used in machine learning. The data
flows continuously from the automation system to the model, which gives
predictions for the operators and back to the automation system. The model
is trained using history data from the factory.

then be used by the factory operators, to control the process
with the new information, when necessary.

In [11], similar data analytics on electric motors were
performed. In this paper, the analysis is conducted further
with feature importance analytics for all the algorithms and
the method of feature importance calculation was changed
due to issues of built-in feature importance tool of scikit-learn
presented in [12]. The feature importances in this paper are
calculated with Python library called Skater, which measures
the entropy in changing of the predictions. The results pre-
sented in this paper therefore are more reliable than the ones
presented in [11].

II. METHODS

An electric motor is a crucial piece of equipment in a pulp
mill, and the number of electric motors in a pulp mill can
easily be in the thousands. The motors provide power to many
different parts of the pulp making process, such as material
pumping and stirring. The motors also come in various sizes
and power ratings. Therefore, an electric motor is suitable for a
case study for IIoT, as they are common in different industries.

Malfunctioning electric motors can cause large-scale pro-
duction losses in pulp mills. The faults in induction motors
can be divided into three categories [13]:

1) Electrical faults (unbalanced supply voltage, overcurrent,
overvoltage, overload, earth fault, inter-turn short circuit
etc.)



Fig. 2. A mockup of a process chart in a pulp mill. There are multiple points
where data is collected. With machine learning and data analytics, some of
those values can be predicted indirectly by observing the other values, without
direct measurement of the quantity itself.

2) Mechanical faults (broken rotor bar, damaged bearings,
rotor winding failure, mass unbalance etc.)

3) Environmental faults (moisture, vibration, ambient tem-
perature related issues etc.)

Electric motors are not designed to be operated over their
rated current. While under overcurrent or overload, the temper-
ature of the coils inside the motor rise. The rising temperature
seldom causes instant failures, but does however have an
effect on the lifetime of an electric motor. Rising operation
temperatures damage the stator winding insulation and cause
mechanical stress fatiguing windings. This causes the lifespan
of the motor to decrease [14]. Therefore, by eliminating
the overcurrent periods of the motors on the pulp mill, the
maintenance costs will decrease as less motor replacement is
required. If it was possible predict motor overcurrents using
the automation data, would it be an example of a useful piece
of new information generated with machine learning and data
analytics.

The case study focuses on a 315 kW AC motor manufac-
tured by ABB, powering a medium consistency pump feeding
a buffer container in UPM Kaukas pulp mill. The motor
to be studied was selected due to daily overcurrent reports
originating from the motor.

The study consists of two parts:

1) Indirect overcurrent detection: The state of the motor
under inspection is predicted without using the motor
current data. The other data collected from the automa-
tion system.

2) Direct overcurrent prediction: The state of the motor
under inspection is forecast 10 minutes into the future.
The current measurement data is used, along with other
data.

As the scenarios are independent of each other, the algo-
rithms and models have to be selected, trained and validated
separately.

In this study, the analytics was performed with Python and
its additional libraries Pandas, and scikit-learn and Skater.
Pandas is a library expanding the data structure features of
Python. Scikit-learn provides tools for data mining and data
analysis, allowing to use data structures built with Pandas

in creation of predictive models on electric motor data. The
library is built on NumPy, SciPy and matplotlib, which are
mathematical libraries for Python.

A. Feature extraction

The source of data used in this study is the process data
stored in Metso DNA automation system. This system collects
data from sensors measuring different quantities of each piece
of equipment. The system also generates event and alarm
information, if a value of a quantity exceeds a pre-defined
limit. The pieces of data are gathered from the same section
of the pulp process, of which a mock-up is presented in Figure
2. The data points are selected from the same production line,
in neighboring pieces of equipment. This allows also indirect
measurements to be made. The data used for the overcurrent
detection and prediction consisted of:

• Current measurement of two adjacent pump motors (av-
erage and maximum)

• Current measurement of an adjacent filter (hydraulics
pump motor and mass eject pump)

• Production of pulp mass on the oxygen sector
• Average thickness of the mass
• Average mass flow
• Maximum mass flows (5 measurement points)
• Inverter frequency of an adjacent pump (average and

maximum)
• Average valve positions of two different valves
• Temperature measurement of the motor under overload

and an adjacent motor
For the data set to be used for data analytics, measurements

covering one year (1st July 2017 - 1st July 2018) were
gathered and the data was split into two parts: the training
part and the testing part. The split was set to May 1st 2018,
therefore giving 10 months of training data and 2 months of
test data.

The detection and prediction of electric motor overcurrents
is a classification task. In classification tasks, the target is to
predict a class from a pre-defined set of possible classes [10].
The possible states of the motor are ”overcurrent” and ”not
overcurrent”. In order to use a binary classifier, an additional
data column or feature was created for the model. This feature
was a true/false flag indicating whether the motor was running
on overcurrent or not. The data was generated with simple
logic: if the motor current was over 100 percent, the flag in
that row was set as 1, otherwise 0. This new feature could
then be used as the target value of the prediction.

B. Algorithm selection

Using the data listed above, a machine learning model
was fit to detect overcurrent indirectly, not using the current
measurement itself. The machine learning task for this case
is classification, because the desired output is whether the
motor is under overcurrent or not. Therefore, the model was
to be generated using a classification algorithm, and random
forest classifier was selected. The model was trained to detect



TABLE I
CONFUSION MATRIX FOR THE PREDICTION. THE ROWS REPRESENT

ACTUAL VALUES, AND THE COLUMNS REPRESENT PREDICTED VALUES.

Actual overcurrent

No Yes

Pr
ed

. No 8683 35

Yes 0 66

Accuracy: 99,60 %
Precision: 100,00 %
F1 Score: 79,04 %

whether the motor has been running on overcurrent in the past
10 minutes.

To predict into the future, the model needs to be re-trained.
The data set remained mostly the same as with the present-time
overcurrent detection. Because this model predicts into the
future, the present time current information could be included
into the model training dataset. Therefore the future prediction
is not an indirect measurement, like the overcurrent detection
presented above is. The output feature was set to be the
generated overcurrent true/false flag from the next ten minutes
of data.

Due to future predicting being a more challenging task
than the indirect present-time detection, the future prediction
was tested with six different classification algorithms: random
forest, gradient boosting, logistic regression, Multi-layer Per-
ceptron Classifier (MLPC), Gaussian Naive Bayes (NB) and
Linear discriminant.

C. Model evaluation

To evaluate the models, the testing set is used to test how
well the created models work. For the model, the ratio of
correct predictions to total observations (accuracy) and the
ratio of correctly predicted overcurrents to total predicted
overcurrents (precision) are calculated. A metric considering
both precision and recall of a test called F1 score is calculated,
also. It is the harmonic average of precision and recall (the
ratio of correctly predicted overcurrents to all overcurrent
observations). Along the numeric performance metrics, the
performance of the models are also presented with receiver
operating characteristic curves and confusion matrices. If the
model is deemed capable enough, it can be deployed into use
and, for example, real-time data can be fed into the model to
get predictions in real time.

D. Feature importance calculation

The input features have different levels of importance in
the model—some of the data is more significant than other.
Knowing which feature is most important may prove to
be valuable information, as the factory operators are often
interested in which parts of the process are the most crucial
and have the possibility to form a bottleneck.

The data importances can be calculated by measuring the
entropy in the change of predictions as the features are

Fig. 3. The receiver operating characteristic curve of the model. The y-axis
represents the true positive rate and x-axis represents the false positive rate.
The red line represents a pure random guess, so the area between the curve
and the red line should be as large as possible. The curve raises very sharply,
indicating high accuracy.

individually perturbated. This can be done with skater, and
the results can be presented as a bar chart, where each feature
is given an importance between 0 and 1, while the sum of all
importances being 1.

III. RESULTS

A. Overcurrent detection
The model accuracy was tested using the test set, and the

model scored an accuracy score of 99,60 %. Based on the
confusion matrix (Table I), it can be seen that the model is
very good at detecting true negatives—the situations where
the motor is not under overcurrent. This combined with zero
false positives yields a precision score of 100 %. The rows
represent predictions (pred.) and the columns represent actual
values. The ideal result would be that the top right and
bottom left corners would be zero, since those are either false
positives or false negatives. The motor was under overcurrent
in 101 samples and the model managed to predict 66 of those
samples, missing none of them. However, the model gave quite
a few false positives, 35 of them. The amount of false positives
is quite high, when the number of true positives is taken into
account.

The receiving operating characteristic curve (Fig. 3) shows
the model functioning well. The steeper the curve, the better
the model is detecting true positives. The ideal curve would
be shaped like a step function, rising immediately to 1,0. The
red line indicates a pure random guess - if the curve falls
below the red line, it indicates that the model gives more false
positives than true positives. Therefore, the area between the
curve and the red line should be as large as possible.

B. Overcurrent prediction

The confusion matrices (Tables IIa-IIf) and receiving oper-
ating charcteristic curves (Fig. 4a-4f) show that the different



TABLE II
CONFUSION MATRICES AND ACCURACY SCORES FOR SIX DIFFERENT

CLASSIFICATION ALGORITHMS.

(a) Random Forest

Actual overcurrent

No Yes

Pr
ed

. No 8669 92

Yes 14 9

Accuracy: 98,76 %
Precision: 39,13 %
F1 Score: 14,52 %

(b) Gradient Boosting

Actual overcurrent

No Yes

Pr
ed

. No 8604 56

Yes 79 45

Accuracy: 98,83 %
Precision: 36,29 %
F1 Score: 40,00 %

(c) Logistic Regression

Actual overcurrent

No Yes

Pr
ed

. No 8447 85

Yes 236 16

Accuracy: 96,35 %
Precision: 6,35 %
F1 Score: 9,07 %

(d) MLPC

Actual overcurrent

No Yes

Pr
ed

. No 8668 101

Yes 0 10

Accuracy: 98,79 %
Precision: 0,00 %
F1 Score: 0,00 %

(e) Gaussian NB

Actual overcurrent

No Yes

Pr
ed

. No 1241 1

Yes 7442 100

Accuracy: 15,27 %
Precision: 1,33 %
F1 Score: 2,62 %

(f) Linear Discriminant

Actual overcurrent

No Yes

Pr
ed

. No 7584 30

Yes 1099 71

Accuracy: 87,15 %
Precision: 6,07 %
F1 Score: 11,17 %

models yield different results. The highest model accuracy
score was MLPC with a score of 98,85 %. This is due to
the low amount of false negatives (zero instances). However,
the model did not detect any overcurrents correctly, and all
positive results were false positives. Even with slightly lower
accuracy percentages, random forest or gradient boosting
provides better results. Although both result in false positives
and negatives, the models were able to predict overcurrents.
For example, with gradient boosting model, when the model
predicts an overcurrent, the prediction is correct 36,29 % of
the time.

The best algorithm for each job depends purely on the
data and the characteristics of the phenomena predicted—
for example, on some cases neural network might perform
best, and on other cases random forest might. The accuracy
scores of the future prediction algorithms are quite high, if
Gaussian NB is not taken into account. However, the precision
scores alternate to some degree and are not comparable to the
accuracies. The shape of the receiving operating characteristic

(a) Random Forest (b) Gradient Boosting

(c) Logistic Regression (d) MLPC

(e) Gaussian NB (f) Linear Discriminant
Fig. 4. Receiving operating characteristic curves of six different classification
algorithms. The curves are not as ideal as in 3. The Gaussian NB curve (e)
is the worst in performance, due to the low area between the red pure guess
line and the curve.

curves itself does not tell everything. The performance of
linear discriminant algorithm (Figure 4f), seem quite good
when looking only at the receiving operating characteristic
curve, but the amount of false positives in confusion matrix
in Table IIf is quite high, 1099 samples.

IV. DISCUSSION

As demonstrated in the case study, data analytics applied
to automation data allows the creation of useful information
for operation and maintenance of an industrial site. The pulp
mill case shows that motor overcurrents can be predicted
far ahead enough to take action in order to try prevent the
upcoming motor overcurrent. For example, the mass pumped
by the motor studied can be diluted with water to increase
its viscosity and therefore make the task of pumping the pulp
mass easier. The refined new information can also be used to,
for example, indicate possible bottlenecks. As an example, the
motor studied in this case study might have been misfitted or
have been properly sized in the past, but today, when the mill
produces higher amount of pulp, the motor became too small.

As shown in this paper and in [1]–[4], data analytics can
be utilized in factories to gain new value. This paper also
shows that the data for analytics purposes can be retrieved



from existing industrial automation systems. The models use
the raw automation data, which the automation systems have
been collecting for years. The data collected has a huge hidden
potential, and the existing data collection infrastructure is
suitable for data analytics. If the existing hardware and data
flows are connected to a machine learning model, predictions
could be made in real time. Eventually this develops towards
a digital twin of the factory, where each piece of machinery
and equipment is monitored and its performance is predicted.

Along with the operational improvement, IoT technology
and data analytics can bring in new business opportunities,
also. It is obvious that Industrial IoT has huge potential espe-
cially in predictive maintenance where machines are fitted with
sensors and their conditions can be monitored and predicted
[15]. The data can be used to forecast future events and
optimize processes accordingly. Furthermore, IoT increases
the traceability of production and services to follow a product
and the processes it goes through. A good traceability system
provides more transparency by offering specific information
to stakeholders [16].

Despite the obvious potential in IoT and data analytics,
many businesses may prove reluctant in deployment of the
technology. A major concern is the security or the data sharing
between different stakeholders. Secure data transactions and
trust is necessary in IoT system deployment [17], [18]. In
many applications, a cloud platform like Amazon Web Ser-
vices, Microsoft Azure or IBM Cloud is used in data analytics
and machine learning tasks. Especially in those cases, the flow
of data between the industrial site and the cloud service must
be secured so that no third parties may access the data. Also,
the ownership of the data raises a lot of concern, as businesses
do not want to give away their data, which may be of much
value. If utilizing a cloud platform, for example, the data
ownership issues must be resolved beforehand and complete
trust between the stakeholders, the user of the platform and
the provider of the platform must be formed. The field is quite
conservative when it comes to data sharing, as the technologies
are new and the methods are therefore not widely used.

V. CONCLUSION

With data analytics and machine learning models, pre-
dictions can be made using the process data collected by
the automation system. The models presented in this paper
show that data analytics can create new value in a pulp mill
environment.

In our case study, predictive models were created using
factory automation data to indirectly detect electric motor
overload in real time and predict overcurrents ten minutes
into the future. The case study proves that machine learning
algorithms can be used as a tool for indirect measurements and
a tool for forecasting industrial equipment performance. This
can bring both operational and business benefits in industries.

A key advantage on factory IoT system development is the
fact that, in many cases, the data necessary data for modeling
already exists because the factory automation systems have
stored the process data for years. Therefore, there is no need

for data acquisition before modeling, which makes the process
faster. Also, no additional IoT hardware, for example, sensors
and gateways, is needed.

A lot of questions are raised when discussing the ownership
of the data. As data is shared between stakeholders, it is often
not certain who owns the data and who decides, for example,
how and where it is kept safely, to whom it is shared and how
it is destroyed when necessary.

To reach the full potential of all of the data available, the
solution presented in this paper should be scaled up to cover
the whole pulp mill. This requires all of the motors in the mill
to be modeled. This is possible, since the methods presented
in the case example can be applied to all other equipment
in the mill. The tools for building mill-wide systems exist,
and building such system requires wide-scale knowledge about
data analytics and process engineering. A possible solution
for mill-wide system building is a cloud platform, such as
Microsoft Azure, Amazon Web Services or IBM Cloud.
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