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Abstract—This paper investigates the achievable sum rate and
the outage capacity of generalized frequency division multiplex-
ing systems (GFDMs) with minimum mean-square error (MMSE)
receivers over frequency-selective Rayleigh fading channels. To
this end, a Gamma-based approximation approach for the
probability density function of the signal-to-interference-plus-
noise ratio is presented, based on which accurate analytical
formulations for the achievable sum rate and outage capacity are
proposed. The accuracy of our analysis is corroborated through
Monte Carlo simulation assuming different GFDM parameters.
Illustrative numerical results are depicted in order to reveal the
impact of the key system parameters, such as the number of
subcarriers, number of subsymbols, and roll-off factors, on the
overall system performance.

Index Terms—Achievable sum rate, GFDM systems, outage
capacity, MMSE receivers.

I. INTRODUCTION

Along the last years, Generalized Frequency Division Mul-
tiplexing (GFDM) has arisen as a potential alternative to
Orthogonal Frequency Division Multiplexing (OFDM) for
beyond 5G systems due to its promising bandwidth efficiency
improvements [1]. Specifically, GFDM filters each subcarrier
with a well-localized prototype filter and has low out-of-band
(OOB) emission [2]. GFDM is also designed with a cyclic
prefix (CP) that can be used by a large number of transmitted
symbols instead of appending a CP per symbol, as in the
OFDM case [3]. It has also been shown that GFDM can be
harmoniously integrated with multiple-input multiple-output
(MIMO) channels [2].

Despite of the above attractive features, GFDM has some
deficiencies. In particular, it leads to self-interference among
the transmitted symbols, which needs be equalized using,
for instance, linear receivers as minimum mean square error
(MMSE) to recover individual input samples from channel
output. In this case, MMSE has the advantage of having low
complexity compared to other non-linear receivers. However,
fundamental performance limits of such an interesting combi-
nation, i.e., GFDM and MMSE receivers, are still unknown.
Moreover, the current available literature dealing with GFDM
systems only provides a handful of studies dealing with the
sum rate of these systems. For instance, Seungyul et al. in
[4] derived the data rates of GFDM systems for two types
of channels: additive additive white Gaussian noise (AWGN)

channel and Long-Term Evolution (LTE) Pedestrian B chan-
nel. However, such results relied on numerical approaches
that were only valid for specific scenarios, limiting their
generalization and practical usefulness.

Aiming to fill partly the gap that exists in the literature,
this paper investigates the achievable sum rate and outage
capacity of GFDM systems employing MMSE receivers and
undergoing frequency-selective Rayleigh fading. To this end,
a Gamma-based approximation approach for the probability
density function (PDF) of the signal-to-interference-and-noise
ratio (SINR) is presented, based on which, accurate analyti-
cal formulations are attained. The idea behind the proposed
approximation relies on the framework proposed in [5]. The
accuracy of our analysis is corroborated through Monte Carlo
simulation assuming different GFDM parameters. Illustrative
numerical results are depicted in order to reveal the impact of
the key system parameters, such as number of subcarriers,
number of subsymbols, and roll-off factors, on the overall
system performance. To the best of the authors’ knowledge,
our theoretical results have not been reported in the literature
yet and they can be used as a benchmark for future wireless
communication studies.

The remainder of the paper is organized as follows. Section
II describes the system model along with specific details
for the transmitter and receiver blocks. Section III extends
the description of the Gamma-based approximation approach
proposed in [5], and applies it subsequently in Sections IV
and V to derive closed-form accurate approximations for the
achievable sum rate and the outage capacity, respectively.
Section VI presents illustrative numerical results, which are
corroborated by means of Monte Carlo simulations. Finally,
Section VII concludes the paper.

II. SYSTEM MODEL

The considered GFDM system setup is designed to transmit
a complex symbol block ds,k at the sth time instant and kth
subchannel containing S ×K data symbols (s = 0, . . . , S −
1; k = 0, . . . ,K − 1). Assuming that the data symbols are
independent and identical, the GFDM signal can be written as

x[n] =

S−1∑
s=0

K−1∑
k=0

ds,k gs,k[n], (1)



where gs,k[n] denotes the circular time-frequency shifted ver-
sion of the prototype filter g[n], being expressed as

gs,k[n] , g[(n− sK)N ] ej2πnk/K , (2)

where N = S ×K and (.)N stands for modulo operator. To
simplify the circular convolution, the transmitter filter g[n] is
usually designed as being circular with a period of n mod
N . Also, it is noteworthy that in (2) the GFDM shifting step
is K in time domain and 1/K in frequency domain. Next,
the transmitter and receiver blocks of the considered GFDM
system setup will be described.

A. Transmitter Block

Let us first use (1) to rewrite the elements of the transmit
symbol block in a single vector as: d = [dT0 , . . .d

T
s−1]T and

ds = [ds,0, . . .ds,K−1]T , with variance σ2
d . The vector form

of x[n] (n = 0, . . . , N − 1) can be formulated as

x = Ad, (3)

where x = [x[0], . . . x[N − 1]]T and A, with dimension N ×
N , denotes the modulation matrix or self-interference matrix
of the GFDM system. This matrix can be defined as A =
[G0, . . .GS−1] so that Gs represents the N × K matrix of
gs,k[n] coefficients, i.e.,

Gs =


gs,0[0] gs,1[0] · · · gs,K−1[0]
gs,0[1] gs,1[1] · · · gs,K−1[1]

...
...

. . .
...

gs,0[N − 1] gs,1[N − 1] · · · gs,K−1[N − 1]

 .
(4)

A CP of length Ncp is added to the GFDM signal x
to prevent inter-block interference over frequency selective
fading channel (FSFC). Then, the transmitted signal is given
by xcp = [x(N −Ncp + 1 : N); x].

B. Receiver Block

Without any loss of generality, we assume a zero-mean
circular symmetric complex (ZMCSC) Gaussian channel h =
[h1, h2, · · · , hL]T , where hr denotes the complex baseband
channel coefficient of the rth path (1 ≤ r ≤ L). Consider
also that Ncp ≥ L, which means that the CP length must
be higher than the delay spread of the multipath channel
[6]. Additionally, the channel coefficients related to distinct
paths are assumed uncorrelated. Then, the received signal has
length Nt = Ncp +N + L− 1 and can be modeled as

ycp = h ∗ xcp + νcp, (5)

where the symbol ∗ symbolizes linear convolution operation,
νcp is the AWGN signal with variance σ2

ν and it is also
represented by a vector of length Nt.

Before starting decoding process, the CP introduced at
the transmitter needs to be removed. The frequency-domain
equalization (FDE) properties can be employed so that the
linear convolution in (5) becomes a circular convolution. So,

the resulting received vector after CP removal can be expressed
as

y = HchAd + ν, (6)

where vector ν represents the AWGN signal of length N with
variance σ2

ν and Hch is the N × N circular Toeplitz matrix
based on vector h, and can be written as[7]:

Hch =



h1 0 · · · 0 hL · · · h2

h2 h1 · · · 0 0 · · · h3

...
. . . · · ·

...
hL hL−1 · · · · · · · · · · · · 0
0 hL · · · · · · · · · · · · 0
...

. . . · · ·
...

0 0 hL · · · · · · h1


. (7)

The matrix Hch has a very special pattern. Specifically, every
row is the same as the previous row, just shifted to the right
by 1 (wrapping around “cyclically” at the edges). That is,
each row is a circular shift of the first row. To estimate the
transmitted complex data symbols d̂, we consider a matrix G
using the following relationship

d̂ = G y, (8)

where G denotes the MMSE receiver matrix.
Mathematically, the MMSE receiver matrix G is defined by

the following:

G = (HchA)† (pIN + (HchA)†(HchA))−1, (9)

where the operator (.)† represents the Hermitian-conjugate of
a matrix, IN is a N ×N identity matrix, and p is the average
signal-to-noise ratio (SNR), given by p = σ2

d/σ
2
ν . Based on

the MMSE receiver, it can be shown that the SINR of the nth
data symbol can be expressed as

Γn =
1

MMSEn
− 1 =

1[
(IN + p

N (HchA)†HchA)−1
]
nn

− 1.

(10)
Note that (10) has the same form of [8, Eq. (7.49)], being

therefore not restricted to binary signals and its derivation is
based on the second-order statistics of the input signals [9].

III. APPROXIMATION APPROACH FOR Γn

By analyzing (10), it can be verified that the product HchA
is not a circular matrix. In this case, a closed-form expression
for the joint PDF of the eigenvalues seems unfeasible. How-
ever, an accurate approximation for such statistics has been
previously proposed in [5]. This approximation follows some
assumptions that are described in the following subsections.
Firstly, we will describe how the joint PDF of the eigenvalues
of the matrix Hch is obtained. Then, we will provide further
insights on how to obtain the joint PDF of the eigenvalues
of the matrix HchA. Finally, we will describe the procedure
to obtain the approximation of the PDF of the SINR of Γn,
which will be based on a Gamma approximation.



A. Joint Probability Density of Eigenvalues of Hch

Let us consider a general matrix H, as defined in [10], where
each channel coefficient is represented by hr (r = 1, ..., N)
defined by a complex Gaussian distribution with zero-mean
and variance σ2

r . Thus, the PDF of hr (independent and
identically distributed Rayleigh channel realizations) can be
expressed by

phr (hr) =
1

2πσ2
r

exp

(
−|hr|

2

2σ2
r

)
. (11)

The matrix H is defined as

H =


h1 hN · · · h2

h2 h1 · · · h3

...
... · · ·

...
hN hN−1 · · · h1

 . (12)

From probability theory concepts, it can be shown that the
joint PDF of {h1 . . . , hN} can be expressed as

ph(h1, ..., hN ) =

N∏
r=1

1

2πσ2
r

exp

(
−|hr|

2

2σ2
r

)
. (13)

Following the property of circulant matrices, as the one
expressed in (12), the normalized eigenvectors are always the
same [10]. Thus, the normalized k-th eigenvector v(k), where
k = 0, 1, . . . , N − 1, can be expressed as

v(k) =
1√
N

(
ω0k
N ω1k

N ω2k
N . . . ω

(N−1)k
N

)T
, (14)

In this case, the variables ωjkN can be determined as

ωjkN = e
2πi
N jk, (15)

where i represents the imaginary unit, and j = 0, 1, . . . , N−1.
Note that (15) represents the N th root of unity.

By its turn, the matrix F, whose columns are the eigenvec-
tors, can be defined as

F =
(

v(0) v(1) v(2) . . . v(N−1)
)
, (16)

which has the following entries

Fjk = v(k)
j = ωjkN . (17)

Note that the operation of multiplying a vector by matrix F
represents the discrete Fourier transform (DFT) of that vector.
With this in mind, we can define the vector ĉ as

ĉ = Fc =
(
λ∗0, λ

∗
1, λ
∗
2, . . . , λ

∗
N−1

)
, (18)

where c denotes the first row of H, and ĉ stands for the
DFT of vector c, also representing the vector composed by
the eigenvalues of c.

We proceed similarly with F, which is also a unitary matrix,
to diagonalize H based on the following relationship

diag(λ∗j ) = F†HF, (19)

where, for both cases, λ∗j has entries defined by

λ∗j =

N−1∑
k=0

hkω
kj
N . (20)

Based on the fact that each hk is complex Gaussian
distributed with zero-mean and variance σ2

r , the complex
eigenvalues λ∗j have joint PDF being given by

pλ∗(λ∗1, ..., λ
∗
N ) =

N∏
j=1

1

2πΦ2
h

exp

(
−
|λ∗j |2

2Φ2
h

)
, (21)

where Φ2
h =

∑N
r=1 σ

2
r , leading to a PDF that has zero-mean

and variance Φ2
h for both real and imaginary parts.

Note that all the previous analysis was related to matrix
H. In order to extend the procedure to matrix channel Hch,
we now consider the limit σr → 0 for r = (L + 1), (L +
2), . . . , N so that we are able to analyze HchA. Let us first
use the following relationship defined by

diag(λj) = F†HchF. (22)

To obtain the complex eigenvalues λj of Hch, we first define
the joint PDF of the eigenvalues as

pλ(λ1, ..., λN ) =

N∏
j=1

1

2πΦ2
exp

(
−|λj |

2

2Φ2

)
. (23)

Then, we can finally write the variance of matrix Hch as Φ2 =∑L
r=1 σ

2
r .

B. Joint Probability Density of the Eigenvalues of
√
p HchA

By inspection, one can notice that the product HchA is
not necessarily a circulant matrix. Let us consider the main
product factor of (10) that is represented by p (HchA)†HchA,
which is an Hermitian matrix. We can employ a singular value
decomposition strategy so that

√
pHchA = VMU, (24)

where V and U are unitary matrices, and M =
diag(µ1, ..., µN ) contains the singular values of

√
pHchA.

From (24), we obtain

p (HchA)†HchA = UM†MU†, (25)

since V†V = I.
From (10), Γn can be rewritten in terms of αn so that

Γn =
1

αn
− 1, (26)

where αn is defined based on (25) as

αn =

[(
I +

p

N
(HchA)†HchA

)−1
]
nn

=

[
U
(
I +

1

N
M†M

)−1

U†
]
nn

. (27)



Using summation notation, (27) can be re-expressed by

αn =

N∑
r,s=1

Unr

(
1 +

1

N
|µr|2

)−1

δrsU
∗
ns, (28)

or by

αn =

N∑
r=1

(
1 +

1

N
|µr|2

)−1

|Unr|2. (29)

Based on the condition that HchA is a circulant matrix, then
U holds same condition as the DFT matrix given by (19)
and (14). As a result, the square of the absolute value of
Unr, represented by |Unr|2, is equal to 1/N . In this case,
the eigenvalue {µr} equals to the product of

√
p, eigenvalues

of Hch, and eigenvalues of A. Consequently, αn can be
approximated by

αn ≈
N∑
r=1

(
1 +

1

N
|µr|2

)−1 ∣∣∣ 1√
N

∣∣∣2
≈

N∑
r=1

1

N + |µr|2
. (30)

As properly demonstrated in [5], this assumption holds
very well for different parameter configurations of matrix A,
including different roll-off factors of prototype filter g[n].

Based on above, the symmetrized joint PDF of {µj}, j =
0, 1, . . . , N − 1), can be accurately approximated by

pµ(µ1, ..., µN ) ≈ 1

N !

∑
{q(j)}

[
N∏
j=1

1

2πpΦ2|χq(j)|2

× exp

(
− |µj |2

2pΦ2|χq(j)|2

)]
, (31)

where the sum involves all N ! permutations of
{q(1), q(2), ..., q(N)}, with q(j) being the indices of
{χ}, which are the eigenvalues of the matrix A.

Now, considering the joint PDF of eigenvalues of
√
p HchA,

as shown in Eq. (31), the next step is to find accurate
approximations for the PDF of the random variables αn and
Γn, which will be detailed next.

C. Statistics for αn and Γn

In order to compute an approximation for the PDF of αn,
we should first obtain its mean (µ) and variance (σ2). To this
end, we depart from the joint PDF given in (31) and use the
relation given in (30), which results in the mean value for αn
[5]

µ = E[αn] = −
N∑
j=1

[
1

Ψ2
j

exp

(
N

Ψ2
j

)
Ei
(
− N

Ψ2
j

)]
. (32)

We proceed similarly to compute the variance of αn, which
is given by [5]:

σ2 = E[α2
n]− (E[αn])2

=

N∑
j=1

[
1

NΨ2
j

+
1

Ψ4
j

exp

(
N

Ψ2
j

)
Ei
(
− N

Ψ2
j

)
− 1

Ψ4
j

exp

(
2N

Ψ2
j

)
Ei2
(
− N

Ψ2
j

)]
, (33)

where Ei(x) represents the exponential integral function,
which is defined by

Ei(x) = −
∫ ∞
−x

e−t

t
dt. (34)

In addition, Ψ2
j is given by the following relation:

Ψ2
j = 2pΦ2|χj |2, (35)

where Φ2 =
∑N
r=1 σ

2
r and χj denotes the jth eigenvalue of

matrix A.
Then, the PDF of αn can be approximated in terms of the

incomplete Gamma function as

pα(αn) ≈ 1

Γ(k) θk
αk−1
n exp

(
−αn
θ

)
, (36)

where Γ(·) denotes the Gamma function [11, Eq. (8.310)],
θ = σ2/µ, and k = µ2/σ2.

Based on the approximation above, we can easily reach at
an accurate approximation for the PDF of Γn after appropri-
ate substitutions and using standard statistical procedure for
random variables transformation, i.e.,

pΓ(Γn) ≈ 1

Γ(κ) θκ
(1 + Γn)−1−κ exp

(
− 1

(1 + Γn)θ

)
.

(37)

IV. ACHIEVABLE SUM RATE

Assuming independent decoding at the receiver, the achiev-
able ergodic sum rate for MMSE receiver is given by [12]:

Rmmse(Γn, N) =

N∑
n=1

EΓn [log2(1 + Γn)], (38)

which can be rewritten as

Rmmse =

N∑
n=1

∫ ∞
0

[log2(1 + Γn)] pΓ(Γn) dΓn

≈
N∑
n=1

∫ ∞
0

[
log2(1 + Γn)

1

Γ(κ) θκ
(1 + Γn)−1−κ

exp

(
− 1

(1 + Γn)θ

)]
dΓn, (39)

to solve the Integral in (39) let α = −1/θ and consider that∫ ∞
0

log(x+ 1)

(x+ 1)p
dx = − d

dp

∫ ∞
0

dx

(x+ 1)p

=
1

(p− 1)2
,<(p) > 1

(40)



and

exp

(
α

(1 + Γn)

)
=
∑
j≥0

αj

j! (Γn + 1)j (41)

the equation for Rmmse could be re-written as

Rmmse ≈ N (−ακ)

Γ(κ) log(2)

∑
j≥0

∫ ∞
0

log(1 + Γn)

(1 + Γn)κ+1

αj

j! (1 + Γn)j
dΓn


≈ N (−ακ)

Γ(κ) log(2)

∑
j≥0

αj

j!

∫ ∞
0

log(1 + Γn)

(1 + Γn)j+κ+1
dΓn


≈ N (−ακ)

Γ(κ) log(2)

∑
j≥0

αj

j!

1

(j + κ)2


≈ N (−ακ)

Γ(κ) log(2)

(
κ2

2F2(κ, κ;κ+ 1, κ+ 1;α)
)

(42)
where 2F2(·, ·; ·, ·; ·) represents the Generalized Hypergeo-
metric function [13, pp.555-566.]. Then, using the residue
theorem to the integral representation of the function

Gm,n
p,q

(
a1,...,ap
b1,...,bq

∣∣∣∣∣ z
)

, which is the Meijer’s G-function [11, Eq.

(9.301)] and replacing θ = −1/α, the Eq. (42) could be finally
defined as

Rmmse ≈ N

Γ(κ) log(2)

(
Γ
(
κ,

1

θ

)(
log(1/θ) + log(θ)

)
+

G 3,0
2,3

(
1,1

0,0,κ

∣∣∣∣∣ 1

θ

)
− Γ(κ)(log(θ) + ψ(0)(κ)))

)
,

(43)

where <(κ) > 0, and ψ(0)(z) = Γ′(z)/Γ(z) is the Polygamma
function.

V. OUTAGE CAPACITY

Considering that the variable Γn represents the SINR, it is
possible to calculate the non-ergodic capacity CΓn of the nth
data symbol by CΓn = log2(1 + Γn) [14], [15]. However,
to calculate the outage capacity of the system, it should be
considered that there are N = S × K symbols. Then, we
calculate the GFDM system capacity by

CΓ =

N∑
n=1

log2(1 + Γn) = N log2(1 + Γn). (44)

So, as we know the PDF of Γn from (37), it is possible
to calculate the PDF of the random variable CΓ, which is
represented by fCΓ(CΓ) and computed using random variable
transformation, i.e.,

fCΓ
(CΓ) =

(1 + Γn)−1−κ e
−1

θ(1+Γn)

Γ(κ)θκ N
log(2) (1+Γn)

∣∣∣∣
Γn=2CΓ/N−1

=

e−
2−CΓ/N

θ

(
2−CΓ/N

θ

)k
log(2)

NΓ(k)
,

(45)

The outage probability of the system associated with a given
transmission rate is defined as the probability that the random
variable CΓn falls below an arbitrary data rate value, which
is named as Rout. Accordingly, the outage probability for the
GFDM system is therefore given by

Pout = P [CΓ < Rout]

= FCΓ
(Rout)

(46)

where FCΓ
(CΓ) is the cumulative distribution of CΓn defined

by

FCΓ
(CΓ) =

∫ Rout

∞
fCΓ(CΓ) dCΓ (47)

In order to solve the (47), we use the following variable sub-

stitution: t = 2
−CΓ
N

θ in (45). So, dt = −2−CΓ/N

N θ log(2) dCΓ.

FCΓ(CΓ) =

∫ ∞
2−CΓ/N

θ

(
e−t tκ−1

)
dt =

Γ

(
κ, 2

−CΓ
N

θ

)
Γ(κ)

,
(48)

where the function Γ(a, x) ≡
∫∞
x
ta−1e−tdt is the upper

incomplete Gamma function.

VI. PERFORMANCE ANALYSIS

To validate the analytical formulations of the achievable
sum rate and outage capacity defined in (39) and (46), we
employ Monte Carlo simulation to demonstrate the accuracy
of the proposed models. The simulation considers different
parameters for the GFDM system, namely the prototype filter
defined by a root raised cosine (RRC) with a specific roll-
off factor, and the number of sub-carriers and symbols. The
channel is modeled as a FSFC, for different sizes of the L,
power delay profile modeled by σ2

m = e−0.2m, m = 1, . . . , L.
The power transmission for data symbols (σ2

d) is equal to 1.
So, the SNR values (p = σ2

d/σ
2
v) depend only of the noise

variance.

A. Achievable sum rate results
Figure 1 presents the achievable sum rate for some number

of sub-carriers as K = 8, 32, 128, number of sub-symbols
as S = 3, 5, the roll-off factors = 0.1, 0.9, and the number of
channels steps is L = 2. In all cases, the analytical approxima-
tion (represented by lines) matches with high accuracy with the
Monte Carlo simulation (represented by markers), indicating
the effectiveness of the proposed approach.

As the performance analysis itself, the achievable sum
rate is presented as a function of the SNR (p) using a
logarithmic scale in the achievable sum rate axis. The greater
the N = S.K, the higher the achievable sum rate value.
For example, when the SNR is 30 dB the achievable sum
rate for the case with K=8 and S=3 is less than 100 bps/Hz.
For the same SNR value, the achievable sum rate for K=128
and S=5 is approximately 400 bps/Hz. Based on this result,
we can conclude that the mathematical model described in
(39) is approximating the achievable sum rate with acceptable
accuracy in scenarios using a roll-off=0.1 and roll-off=0.9.
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Fig. 1. Simulated and analytic achievable sum rate for GFDM for different
values of k,S, roll-off, and L. The abbreviations S. and A. mean simulation
and analytical respectively.
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Fig. 2. Probability of outage versus SNR for different values of Rout for
GFDM (S = 3, K = 32, L = 2) with Roll-off= 0.9. Every Rout is in
bps/Hz, and the abbreviations S. and A. means simulation and analytical,
respectively.

B. Outage results

We considered the following GFDM parameters: K = 32,
S = 3, L = 2, and roll-off= 0.1. Many curves were generated
based on the assumption that an arbitrary data rate is fixed.
These data rates vary from 20 bps/Hz until 80 bps/Hz. As less
the value of the data rate, much is the chance of a specific
scenario to be in outage. For example, for a Rout = 20 bps/Hz
and a SNR value of 10 dB the outage probability is equal to
0.3. In the same analyse point, for a Rout = 80 bps/Hz the
outage probability is increased to 0.95.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we studied the achievable sum rate and the
outage for a GFDM system employing MMSE receivers over

FSFC based on a Gamma-distribution approximation for the
random variable that define the SINR. This approximation was
employed to compute the achievable sum rate and the outage
capacity in closed-form. Our numerical results showed the
proposed analytical models provide a high accuracy for differ-
ent GFDM parameters and channel conditions. Our numerical
results showed, for instance, that the outage probability when
the SNR= 20 for the Rout = 25 bps/Hz is less than 5%. As
future works, we plan to extend this work to more performance
metrics, providing a thorough comparison of the GFDM and
other techniques as OFDM.
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