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Computationally Efficient Practical Method for
Solving the Dynamics of Fluid Power Circuits in

the Presence of Singularities
Julia Malysheva, Stanislav Ustinov, and Heikki Handroos, Member, IEEE, Member, ASME

Abstract—In this paper, a practical method is proposed for
the efficient solution of fluid power systems with singularities
originating (in particular) from the presence in the system of
small volumes. The method is based on the use of an enhanced
version of the pseudo-dynamic solver (the advanced pseudo-
dynamic solver), which seeks the steady-state solution of pressure
building up in the small volume. This solver can be attributed to
the class of explicit solvers. There are two main advantages of the
proposed solver. The first is the higher accuracy and numerical
stability of the solution compared with the classical pseudo-
dynamic solver, owing to the enhanced solver structure and the
use of an adaptive convergence criterion. The second is the faster
calculation time compared with conventional integration methods
such as the fourth-order Runge-Kutta method, owing to the ob-
tained possibility of larger integration time step usage. Thus, the
advanced pseudo-dynamic solver can become a preferred method
in the simulation of complex fluid power circuits. Simulation
results of the C code implementation confirm that the advanced
pseudo-dynamic solver is better than conventional solvers for
the solution of the real-time systems that include fluid power
components with small volumes.

Index Terms—Stiff fluid power system modeling and simula-
tion, advanced pseudo-dynamic solver, Runge–Kutta integration,
small hydraulic volumes modeling, real-time systems.

I. INTRODUCTION

THE level of automation of mobile working machines,
such as excavators, logging harvesters, or hydraulically

driven cranes, as well as their complexity, have increased
significantly over the past few decades. In the machine in-
dustry, this has led to emergence of novel approach in the
new product development process, such as virtual prototyping
[1]–[3]. Essentially, a virtual prototype of a mobile machine
is the mathematical representation of all machine elements
as well as their interactions. To estimate the performance of
a mobile machine under development, a simulation of the
virtual prototype is used. However, a major problem of virtual
prototypes is often the speed of their simulation, which in
particularly is related to the complexity and characteristics of
the employed mathematical models. A number of studies have
been dedicated to the problems of real-time [2], [4]–[6] and
faster than real-time simulation [7] of the virtual prototypes
of mobile machines.
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The mechanical and fluid power components are the es-
sential parts of any virtual prototype of mobile machines [1],
[2], [8], [9] as well as various other types of mechatronic
systems such as aircrafts, heavy industrial process machines,
ships, off-shore cranes etc. The mathematical model of fluid
power components can be presented with sets of algebraic and
differential equations. By nature, such differential equations
are highly nonlinear [10], and often contain singularities that
make the model mathematically stiff. In particular, the stiffness
in the modeling of fluid power systems is often associated
with high values of the bulk modulus or with the presence of
small volumes in the components of the circuit. Numerical
stiffness of the model directly affects the simulation time,
which is the vital aspect in real-time simulation in mechatronic
applications. For instance, such problem is highlighted in [11],
where authors try to solve a problem of real-time simulation
of the excavator which is related to numerical stiffness in fluid
power model. In order to achieve the real-time simulation
speed, the model was divided into multiple sub-models for
parallel execution and a local stiff integration solver was
applied to the hydraulic sub-models. The same problem has
been recently highlighted in a number of works dedicated
to human-in-the-loop and hardware-in-the-loop systems that
have fluid power components. For example in [12], authors
had to simplify the fluid power model of the mechatronic
component and to use third order explicit solver with small
time step in order to ensure the hardware-in-the-loop real-time
simulation for developed controller strategy testing. Thus, the
described above mechatronic applications showed the need for
the development of the method that can provide a generic
practical solution to accelerate simulation of mechatronic
systems including small hydraulic volumes with a minor cost
in the accuracy.

In [13], Bowns and Wang were the first to formulate the
mathematical stiffness problem that arises during the solution
of fluid power systems in the presence of small volumes,
particularly in hydraulic pipes. Physically, the mathematical
stiffness occurs when the pressure is rapidly changing, owing
to the low compliance of the fluid in the pipe. According
to their observations, this causes the solutions of the system
differential equations to decay at widely varying rates. In
addition, it should be noted that the mathematical stiffness
of the problem is often a local phenomenon, meaning it only
occurs occasionally. Thus, if the orifice is located in the
hydraulic circuit, a stiffness approaching infinity arises if the
relation ∂∆p/∂Q is small, which is true when the volume
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flow Q tends to zero. Moreover, according to [14]–[16], if
the purely turbulent description of the orifice is used, the
mathematical stiffness occurs also when the pressure drop ∆p
approaches zero.

To simulate the virtual prototype, meaning to obtain a
solution for the mathematical model, numerical integration is
used. The family of explicit Runge–Kutta methods that use an
integration time step of fixed size are well established in the
solution of systems of ordinary differential equations (ODEs).
However, it was shown in [17] that numerical integrators based
on explicit Runge–Kutta methods are not A-stable (the numeri-
cal stability of the method is not guaranteed for any integration
step size), which is apparently why they are not very efficient
on stiff problems unless a very small integration time step is
used. At the same time, integrators based on implicit methods
have established themselves as A-stable or even L-stable,
which allows the accurate solution of such problems. However,
implicit methods are much more computationally expensive. In
general, they involve solving a nonlinear system of algebraic
equations at each time step. This in turn requires a modified
Newton iteration scheme, which includes the calculation of
iteration matrix of the form (I − ∆tβ0J), where I is the
identity matrix, J is the Jacobian and ∆tβ0 is a scalar, and also
further its factorization. The iteration scheme is repeated until
a convergence criterion is reached [18]. Due to such iteration
scheme the amount of computations can vary from step to step
which can result in simulation time overflows. Thus, implicit
methods cannot be used directly in real-time applications. In
contrast to implicit methods the previously mentioned explicit
methods can ensure a constant simulation time in time-critical
real-time applications.

On the other hand, the integration in fluid power systems
can be performed with the help of special solvers [19]. To
overcome the stiffness of differential equations in fluid power
systems with small volumes, a pseudo-dynamic solver was
proposed by Åman and Handroos [20]–[22]. This solver can
be related to the class of explicit solvers. The goal of the
solver algorithm was to increase the accuracy and to reduce
the computational time for the simulation of stiff fluid power
circuits. The proposed solver was based on the assumption
that if the considered volume was small enough, the build-
up pressure can be substituted by a steady-state pressure. The
goal was achieved by implementing an iterative technique with
substituting the small volume with a volume that is large
enough to obtain a numerically stable response in pressure.
The solver showed its applicability at relatively large inte-
gration time steps, whereas conventional stiff models used
very small time steps to simulate the circuit without numerical
instability, affecting the computational time of the simulation.
However, in their work, only a short-term simulation (about
2 seconds) with predefined inputs was considered, which did
not give a full picture of the solver characteristics.

Another interesting method of solving pressures in small
volumes in fluid power systems was recently introduced
by Kiani-Oshtorjani et al. [23] and further applied for the
mechatronic system accelerated simulation in [6], [24]. The
proposed method was based on singular perturbation theory.
The modified version of this theory was used for the algorithm.

The main principle of the algorithm was the replacement of
stiff differential equation of pressure by the algebraic equation
in accordance with singular perturbation theory. The replace-
ment of the differential equation allows a numerically stable
response of the pressure to be achieved at different integrator
time steps. Consequently, the time step of the integration can
be increased without significant losses in calculation accuracy,
which allows the method to be implemented in real-time
simulations. Moreover, in the works [6], [24] Rahikainen et
al. emphasized that the fluid power system due to its stiffness
needs much smaller integration time step than the multibody
system during the coupled simulation which sufficiently in-
creases the simulation speed of the whole mechatronic system.
However, the method based on singular perturbation theory
may have limited applicability, such as it only can be applied
under certain conditions of the system when the boundary
layer is exponentially stable [23].

The objective of the present research is to develop a
method that quickly finds an accurate and numerically stable
solution for stiff fluid power circuits with increased modeling
accuracy, to accelerate their simulation. For this purpose, the
classical pseudo-dynamic solver [20]–[22] was selected as a
basis for the research. In this work, the characteristics of the
pseudo-dynamic solver are studied in more detail by applying
long-term simulation together with random inputs to the test
fluid power circuits. Based on the obtained results the new
Advanced pseudo-dynamic solver (AdvPDS) of the enhanced
structure is proposed. The developed solver provides a fast and
accurate solution of more complex fluid power circuits in the
presence of singularities caused by small volumes.

The structure of the present research paper is organized
as follows. Section II describes the systems under investiga-
tion. Section III contains a brief description of the classical
pseudo-dynamic solver. The development and features of the
AdvPDS are described in Section IV. Results and discussion
are presented in Section V, where the results obtained by
the developed method are compared with the results obtained
using conventional way models of stiff fluid power circuits and
classical pseudo-dynamic solver. Finally, Section VI contains
the conclusion of present research.

II. FLUID POWER CIRCUIT MODELING

Fluid power circuit modeling can be approached from the
point of view of lumped fluid theory [9], [25]. According to
this theory, any fluid power circuit can be considered as a
number of separate volumes with evenly distributed pressures.
The volumes are separated by throttles and orifices that create
pressure drops in the fluid when passing through them. In turn,
the pressure drop together with orifice geometrical parameters
are used for the volume flow calculation. Finally, pressure
built up in each volume can be calculated using a continuity
equation that relates the effective bulk modulus with respect
to the considered volume and the difference between inlet Qin
and outlet Qout volume flows [10], [26].

A. Circuit 1: two-way flow control valve
The first system under investigation is a two-way flow

control valve. The fluid power circuit related to the system
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Fig. 1. Schematic representation of Circuit 1

is schematically depicted in Fig. 1. The circuit consists of
a pressure power source, two-way flow control valve, orifice,
and 2/2 directional control valve. A two-way flow control valve
consists of two components: pressure compensator and control
throttle. The volume between the pressure compensator and
control throttle is assumed to be a small volume, the presence
of which increases the stiffness of the system. The power
source is assumed an ideal pressure source with constant
pressure. It is composed of a hydraulic accumulator, pump,
pressure relief valve, and tank. To reach the tank, hydraulic
fluid flow passes through a two-way control valve and two
orifices after the valve. One of the orifices is an ordinary sharp-
edged orifice, whereas the other is a 2/2 directional control
valve, the opening of which can be controlled by signal Ud.
Pressure in the system can be integrated from the following
continuity equations:

ṗ1 =
Be
V1

(Q1 −Qt) (1)

ṗ2 =
Be
V2

(Qt −Qe1 −Qe2) (2)

where Be is the oil effective bulk modulus, V1 and V2 are
pipeline volumes, where V1 is a small volume, Q1 and Qt are
volumetric flows through the pressure compensator and control
throttles, and Qe1 and Qe2 are orifice and directional control
valve volume flows, respectively. Volume flows Q1 and Qt
can be obtained as follows:

Q1 = K
√
|ps − p1|sign(ps − p1) (3)

Qt = kt
√
|p1 − p2|sign(p1 − p2) (4)

where ps is the supply pressure, K and kt denote the semi-
empirical flow coefficients for the pressure compensator throt-
tle and for the control throttle, respectively. Both coefficients
can be integrated from the following differential equations:

K̇ =
C5 − p1 + p2 − (C1 + C2(ps − p1))K

C3
(5)

k̈t = (Ue − C9)C6C
2
7 − 2k̇tC8C7 − ktC2

7 (6)

where Ue is the signal applied to control throttle (opening),
C1, C2, C3, C5, C6, C7, C8, C9 are empirical constants [27].
Volume flows Qe1 and Qe2 are obtained according to the
following flow equations:

Qe1 = k1

√
p2 − pt (7)

TABLE I
CIRCUIT 1 PARAMETERS

Be 1.5·109 Pa C1 4.65·107
V1 1.0·10−5 m3 C2 -1.79·104
V2 1.0·10−3 m3 C3 4.0·1011
k1 5.62·10−7 C5 1.02·106
k2 5.73·10−7 C6 5.26·10−7

pt 0 Pa C7 200
K 0.05·10−9 C8 0.45
kt 1.0·10−7 C9 1.2

Qe2 = k2

√
p2 − pt (8)

where k1 and k2 are semi-empirical flow coefficients for the
orifice and directional control valve, and pt is the tank pres-
sure. The initial values and constants of the system described
in following equations are shown in Table I. To analyze the
mathematical stiffness of the developed model of Circuit 1,
its state-space representation should be derived. If we assign
the state and input vectors as x = [x1 x2 x3 x4 x5]T =
[p1 p2 K kt k̇t]

T and u = [u1 u2 u3]T = [ps Ue ε]T ,
respectively, then the state equations can be written as follows:

ẋ1 =
Be

V1
(x3
√
u1 − x1 − x4

√
x1 − x2)

ẋ2 =
Be

V2
(x4
√
x1 − x2 − k1

√
x2 − u3(k2

√
x2))

ẋ3 =
1

C3
(x2 − x1 + C2x1x3 − C2x3u1 − C1x3 + C5)

ẋ4 = x5

ẋ5 = C6C
2
7u2 − 2C7C8x5 − C6C

2
7C9 − C2

7x4

(9)
The obtained state-space representation (9) is a multi-input
multi-output nonlinear model, where ε is the parameter that
describes the binary input of the 2/2 directional control valve.
If ε is equal to 0 the valve is closed and the term k2

√
x2 will

be also equal to zero.
One way to detect the stiffness in the problem is to estimate

the dominant eigenvalues of its Jacobian directly. In linear sys-
tem theory, the eigenvalues of the system Jacobian describe the
behavior modes inherent in the model. In nonlinear systems,
eigenvalues and eigenvectors are time-varying. Nevertheless,
it is possible to apply this approach to nonlinear problems
through model linearization. Linearization means that con-
stantly differentiating nonlinearities are linearly approximated
about their operating points. As the linearized solutions can
be considered as a good approximation of nonlinear system
solutions about the operating point, the observations obtained
locally can be generalized to the rest of the system. Further,
to simplify the model we also assume that flows through the
compensator and control throttles have constant coefficients
K and kt, which is often valid and frequently employed in
fluid power systems design. The Jacobian of the system can
be calculated as

J =
∂F
∂x x=x̄,u=ū (10)

where F is the left-hand side of the first and second equation of
(9) , x is the model state vector, u is the model input vector, and
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(x̄, ū) is the operating point. The Jacobian for the considered
system can be written as follows:[
− Be

2V1
( K√

u1−x1
+ kt√

x1−x2
) Be

2V1

kt√
x1−x2

Be
2V2

kt√
x1−x2

Be
2V2

(k1+k2√
x2

+ kt√
x1−x2

)

]
(11)

To characterize the level of numerical stiffness of the
model, we employ a condition number of the Jacobian, which,
according to numerical analysis theory, can be written as

κ(J) =
|λmax(J)|
|λmin(J)|

(12)

where λmax(J) and λmin(J) are the maximum and minimum
eigenvalues of the Jacobian, respectively, which for J ∈Mn×n
should satisfy |J−λI| = 0, where I is the identity matrix. The
condition number shows how much the eigenvalues of the
system differ, i.e., small values of κ show that the problem
is well-conditioned, whereas large values of κ indicate the
ill-conditioned problem and the system can be considered
as stiff. The condition number can be determined for the
certain configuration of the system. This means that the
Jacobian should be calculated in the operating point (x̄, ū).
To define such a point, the physical characteristics of the state
variables should be considered. Thus, the following physical
restrictions should be imposed on the state variables and
inputs: x1, x2 > 0, x3 ∈ [ 0, 10−6] , x4 > 10−7, u1 > 0, u2 ∈
[ 0, 10] , u3 ∈ {0, 1}. Under the restrictions, the operating point
can be chosen as x = [198 · 105, 1.5 · 105, 10−6, 10−7, 0]T

and u = [200 · 105, 6]T . Note, that x1 and x2 are calculated
from first and second equation of (9) by substituting x3 and
x4 with the constant values and assuming that all the rates are
equal to zero.

At this point, let us consider the two cases. In the first case
V1 = 10−3 m3, i.e., the volume between compensator and
control throttle is quite large. The condition number of (11)
in the chosen operating point for this case is κ = 1.28. In
the second case the volume is reduced to V1 = 10−5 m3

and the corresponding condition number becomes as large
as κ = 77.81. Analyzing the system Jacobian (11), this
effect can be seen through the fact that the small volume V1

appears in the denominator of the Jacobian elements and, thus,
makes the eigenvalues differ significantly in magnitude and the
mathematical model (9) become numerically stiff.

B. Circuit 2: pressure compensating proportional valve

The next fluid power system considered here has a more
complex structure and is more practical. The system is the
part of the fluid power circuit of the hydraulic crane PATU
655, the modeling of which was considered in [4], [7].
The considered part includes a differential cylinder with an
attached sliding load, a 4/3-proportional directional valve with
a pressure compensator, and a constant pressure pump. In
the system, the small volume appears between the directional
valve and pressure compensator. In Fig. 3 the small volume
and the pressure developing within it are denoted by V3 and
p3, respectively. The system is controlled through the voltage
signal U supplied to the valve solenoids:

Üs = Kvω
2
nU − 2ζωnU̇s − ω2

nUs (13)

Fig. 2. Hydraulic crane PATU 655 actuated by the fluid power system

Fig. 3. Schematic representation of Circuit 2

where Kv is the valve gain, Us is the signal proportional to the
valve spool displacement, ζ is the valve damping ratio, and ωn
is the natural angular frequency. The volume flow rates model
of the 4/3-proportional directional valve using turbulent orifice
model with triangular groove cross-section can be presented
as

Q1 = Cν(Us − Udb)2sign(ps − p1)
√
|ps − p1|, Us ≥ Ud

Cν(Us − Udb)2sign(p1 − pt)
√
|p1 − pt|, Us ≤ −Ud

0, otherwise
Q2 = −Cν(Us − Udb)2sign(p2 − pt)

√
|p2 − pt|, Us ≥ Ud

−Cν(Us − Udb)2sign(ps − p2)
√
|ps − p2|, Us ≤ −Ud

0, otherwise
(14)

In (14), Cν is the flow constant that accounts for cross-
sectional areas of the valve orifices, Udb is the dead band
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voltage of the valve, and p1, p2, ps, and pt are the pressures in
two cylinder chambers, the supply pressure, and the pressure
in the tank, respectively. In this work, the directional valve
is assumed ideal, such that there are no internal leakages.
The volume flow Q3 related to the pressure compensator is
modeled using the semi-empirical approach developed in [27]:

Q3 = K
√
ps − p3,

K̇ =
1

C3
(C5− p3 + pshuttle − (C1 + C2(ps − p3))K)

(15)
where pshuttle = max (p1, p2) is the output of the shuttle valve
(Fig. 3). The volume flow Q4 between valve and pressure
compensator can be considered as equal to Q1 if Us ≥ Udb,
and equal to −Q2 if Us ≤ −Udb.

According to Newton’s second law, the equation of motion
of a hydraulic cylinder can be written as

mẍp = p1A1 − p2A2 − Ff (16)

where ẍp is the acceleration of the cylinder piston, m is
the load mass, p1 and p2 are the pressures in the cylinder
chambers, A1 and A2 are the piston-side and rod-side areas,
respectively, and Ff is the cylinder friction force. In turn, the
friction formed in the cylinder can be represented using the
LuGre friction model [28], [29]:

Ff = σ0z + σ1ż + kν ẋp

ż = ẋp −
|ẋp|
g(ẋp)

z

g(ẋp) =
1

σ0

(
FC + (Fst − FC) exp

(
−
(
ẋp
vst

)2
))

(17)
where σ0 is the flexibility coefficient, σ1 is the damping
coefficient, kν is the friction coefficient, FC is the Coulomb
friction, Fst is the Stribeck friction, and vst is the Stribeck
velocity. More specifically, z represents the non-measurable
internal state, g(ẋp) describes the friction behavior during
constant velocity motion, and kν ẋp is the viscous friction.

The internal leakage flow QLi (m3/s) between the cylinder
chambers can be approximated as

QLi = Li(p1 − p2) (18)

where Li is the laminar leakage flow coefficient.
The pressures that are building up in the circuit can be

calculated from

V1

βe1
ṗ1 = Q1 −A1ẋp +QLi

V2

βe2
ṗ2 = −Q2 +A2ẋp −QLi

V3

βe3
ṗ3 = Q3 −Q4

(19)

where the chamber volumes V1 and V2 are calculated as{
V1 = A1xp + V01

V2 = A2(H − xp) + V02
(20)

Here H is the cylinder stroke and V01, V02 are the dead
volumes connected to the respective ports. In (19), the com-
pressibility of hydraulic oil is accounted for by the effective

TABLE II
CIRCUIT 2 PARAMETERS

m 210 kg Li 1.72·10−13 m3/sPa
A1 8.04·10−4 m2 C1 4.65·107
A2 4.24·10−4 m2 C2 -1.79·104
V01 1.0·10−3 m3 C3 4.0·1011
V02 1.0·10−3 m3 C5 8.0·105 Pa
Cν 2.31·10−9 m3/sV

√
Pa V3 1.0·10−5 m3

H 1 m Udb 2 V
ps 1.4 ·107 Pa Emax 1.8·109 Pa
pt 9.0 ·105 Pa pmax 2.8·107 Pa
Kv 9.9·10−1 σ0 3.2·102 N/m
ωn 3.31·102 rad/s σ1 6.3 Ns/m
ζ 6.2·10−1 kν 1.28·103 Ns/m
a1 0.5 FC 2.15·106 N
a2 90 Fst 1.13·1010 N
a3 3 vst 3.47·102 m/s

bulk modulus βei (i = 1, 2, 3). The effective bulk modulus
for each part of the system is calculated regarding the local
pressure using the empirical formula [30]:

βei = a1Emax log

(
a2

pi
pmax

+ a3

)
(21)

where Emax denotes the maximum bulk modulus of the oil,
pmax is the maximum pressure in the system, and ai (i =
1, 2, 3) are the empirical constants. The values of parameters
used in the hydraulic model described in this section are listed
in Table II.

Equations (13)–(21) make up the mathematical model of
Circuit 2. The presence in the model of the pressurized small
volume makes the mathematical equations stiff and, hence,
computationally costly.

III. PSEUDO-DYNAMIC SOLVER OF PRESSURE IN SMALL
VOLUMES

The main idea of the pseudo-dynamic solver proposed in
[16] lies in searching for a steady-state solution for pressures
related to small volumes in fluid power circuits. At the same
time, the pressures built up in larger volumes are solved with
the conventional integration algorithms. Thus, the pseudo-
dynamic solver includes two integration loops: the main loop,
which contains algebraic and differential equations related to
larger volumes, and the inner loop. The inner loop, using
artificially enlarged fluid volume, searches for the steady-state
value of pressure passing by the transition process of pressure
formation. The steady-state value of pressure is sought out
during the single time step of the main loop.

The pressure inside the inner loop can be calculated from the
classical continuity equation using artificially enlarged fluid
volume as follows:

ṗ =
Be

Vpseudo
(Qin −Qout) (22)

where Vpseudo is the artificial pseudo-volume, Be is the
effective bulk modulus of the oil, and Qin and Qout are the
inlet and outlet volume flows, respectively. According to [21],
the pseudo-volume is recommended to be set at least 10 times
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Fig. 4. Input signals for Circuit 1

higher than the actual volume. Inlet and outlet volume flows
can be expressed as a function of pressure drop as follows:

Q = f(∆p) (23)

The integration of differential equation 22 inside the in-
ner loop occurs by using an explicit fixed-step fourth-order
Runge–Kutta integration routine with independent sufficiently
small time step ti. The integration routine continues until the
convergence criterion is reached. The criterion is a predefined
user parameter, which represents the first derivative of the
pressure. It is important to note that the activation of the inner
loop suspends the main loop until the steady-state pressure
value is found.

IV. DEVELOPMENT OF THE ADVPDS WITH ADAPTIVE
CRITERION

To study the characteristics of the pseudo-dynamic solver
described in Section III, a simple fluid power system (Circuit
1) was employed. Circuit 1 is a more complicated variant of
the fluid power circuit used in [21]. The three random signals
in the form of pseudo-random multilevel signals (PRMSs)
were supplied as the inputs: supply pressure ps in the range
14–20 MPa, control voltage to the control throttle Ue in the
range −10 to +10 V, and directional valve control signal Ud,
which took either 1 when it is open or 0 when it is closed (Fig.
4). The signals were supplied asynchronously with a period of
0.5 s. The system was simulated using a conventional fourth-
order Runge–Kutta integrator with sufficiently small time step
of 10−6 s for 100.5 s. During the simulation, the small volume
V1 is equal to 10−5 m3. The simulation took about 5 hours
using the following simulation environment: MATLAB 2018b,
Intel Core i5-4590 3.30 GHz with 16 GB of RAM, running
OS Windows 7 64-bit. The fourth-order Runge–Kutta solver
is considered further in this work as a reference solver and
the solutions obtained with its help thus also considered as
a reference. The solution for the pressure p1 was obtained
under such conditions and was used as a reference in the case
of Circuit 1.

The classical pseudo-dynamic solver (described in Section
III) was introduced in the same simulation using recommended
parameters. Unfortunately, it could not achieve a stable solu-
tion compromising it’s speed and accuracy. While studying the
reasons for such a behavior, it was discovered that the solver
becomes numerically unstable in areas of sudden pressure
change owing to fixed Qout in (22) during integration in the
inner loop. To stabilize the numerical solution it was decided

Fig. 5. Main loop sequence for Circuit 1

to move the calculation of Qout into the inner loop. Thus, in
terms of Circuit 1, the pressure build-up in the small volume
(1) as well as inlet and outlet volume flows described by (3)
and (4), respectively, are calculated in the inner loop. However,
it was also found that the calculation of other system elements
such as K and kt inside the inner loop does not have much
of an effect on the solution accuracy, moreover it makes the
simulation longer. These findings formed the basis for the
AdvPDS.

Further, in order to describe the operating principle of the
AdvPSD Circuit 1 is used as an implementation example.
Similar to the classical pseudo-dynamic solver, the AdvPDS
consists of two integration loops.The main loop (Fig. 5) begins
with the reading of the current control signals ps(t), Ue(t),
and Ud(t). Then, the initial values of pressures p1 and p2,
as well as current control signal ps(t) are sent to the inner
loop, and the inner loop starts to execute. Initial values of
pressures, volume flows, and flow coefficients are used in the
main and inner loops during the first iteration. In the following
iterations, the pressure and flow values are updated every
time step. The inner loop (Fig. 6) first saves the previous
value of the pressure p1. The value of pressure should be
saved every iteration to calculate the rate of pressure change
between the adjacent iterations. The running of the inner loop
occurs at its own integration time step ∆ti that may differ
from the main loop time step ∆t. It is important to note
that the main loop is suspended during the execution of the
inner loop. Further calculation of the volume flows through
the pressure compensator (Q1pseudo) and control throttle (Qt)
is performed only inside the inner loop using equations (3)
and (4), respectively. Next, the pressure p1 is integrated from
(1). Note, that the small volume from (1) is substituted with
the pseudo-volume as in (22). Obtained pressure value is used
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Fig. 6. Inner loop sequence for Circuit 1

to calculate the pressure difference, which is further compared
to the convergence criterion value.

In the classical pseudo-dynamic solver the single conver-
gence criteria was used. The criteria was based on the rate
of pressure change between the iterations in the inner loop.
The rate of pressure change between the iterations ∆p1 can
be written as:

∆p1 = p1 − p1prev (24)

where p1 is the pressure from the current iteration, and p1prev

is the pressure from the previous iteration of the inner loop.
The rate of pressure change is compared with the convergence
criterion value to detect the beginning of the steady-state
process of the pressure. The captured steady-state value is
further passed to the main loop.

The effect of the single criterion value in the inner loop
of the AdvPDS on the solution accuracy was also studied. It
was discovered that applying a smaller convergence criterion
in the inner loop produces a more numerically stable result
when the pressure approaches its lower values during the
simulation. In Fig. 7 the effect of the criterion value on the
calculation of the low pressures using the AdvPDS is shown.
At the same time, it was noticed that the computational time
of the simulation increases with the criterion decrease owing
to the large number of iterations performed inside the inner
loop. Thus, the adaptive convergence criterion was proposed.
The idea behind the adaptive criterion is that depending on
the pressure level, the criterion with the most suitable time-
efficient and numerically stable effect on the pressure is au-
tomatically selected during the fluid power circuit simulation.
According to Fig.6 when the pressure difference between the
iterations ∆p1 is calculated using (24) the current pressure
level p1 is compared to assigned low-pressure level plow limit.
If the current pressure level is low the smaller criteria is
used, i.e. inner loop continues to iterate until the change in
the pressure is less then p1 tol low. If p1 > plow limit the

Fig. 7. Effect of the criterion value on the low-pressure calculation using the
AdvPDS

inner loop proceeds with criteria p1 tol high. In other words,
at low pressure levels in the system, the smaller criterion is
implemented to achieve a more numerically stable result. At
pressure levels higher than the low-pressure limit, the bigger
criterion is used to reduce the computational time of the
simulation. The low-pressure level was defined experimentally
and for both Circuits 1 and 2 it was 22 bar. Both criteria
have to be predefined by the user before the simulation, based
on the recommendations given further in this work. When
the criterion is satisfied, the value of pressure p1 and flow
Qt are updated for subsequent calculations in the main loop.
The main loop further updates the pressure p2, and flows
Qe1 and Qe2 according to (2), (7), and (8), respectively.
Then calculation of flow coefficients (K and kt) according
to equations (5) and (6) is performed. The next iteration of
the main loop begins at the next time step ∆t. The process
continues for all specified simulation time.

V. RESULTS AND DISCUSSION

In this section, the results of the simulation of the two
fluid power circuits described in Section II are presented. The
results are represented through a comparison of the responses
of the considered fluid power circuits obtained using the
reference solver and the AdvPDS. The results demonstrate the
features of the proposed method and its advantages compared
with the traditional method of fluid power system modeling
and simulation.

A. Circuit 1 simulation

Circuit 1 was simulated for 100.5 s using the AdvPDS
and the reference solver with the inputs described in Section
IV. The presence of the small volume (V1 = 10−5 m3)
in the circuit between the pressure compensator and control
throttle increased the stiffness of the whole system, and also
determined the selection of the integration time step for the
reference solver. The integration time step of the reference
system was set to the largest possible value of 1 × 10−6 s,
at which the solution for the pressure appeared numerically
stable.
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Fig. 8. Sensitivity analysis of p1 solution to the changes in Vpseudo

The use of the AdvPDS with Circuit 1 allows the stiffness
of the system to be reduced owing to substitution of the small
volume by the larger artificial volume. In the mathematical
model of Circuit 1 the artificial volume Vpseudo substitutes
the real volume V1 in (1). This volume directly affects the
resulting pressure p1. In order to analyse how the size of
the artificial volume affects the respective pressure solution
a simple sensitivity analysis was carried out. The sensitivity
analysis was performed in a way that Circuit 1 is simulated five
times with the same input signals and parameter values except
for the pseudo-volume value. In the experiment Vpseudo took
the following values: 0.5×10−2 m3, 1×10−3 m3, 0.5×10−3

m3, 1×10−4 m3, and 0.5×10−4 m3. The upper bound of the
pseudo-volume range was limited by the system stability while
holding the condition ∆ti = 10−5 s. In Fig. 8. the results of
five simulations are presented. For better visibility only short
range of the simulation time is shown in the figure. It should
be noted that the biggest difference in the pressure solutions
of five simulations is observed in the transition areas, when
one of the control signals was changed. One of such areas is
shown in Fig. 8. It can be seen from the figure that the four
solutions that refer to the smaller pseudo-volumes are rather
close to the reference one. Only the solution obtained using
the biggest volume 0.5×10−2 m3 compromised the accuracy.
Taking into account the obtained results the artificial volume
was set to Vpseudo = 1 × 10−3 m3. On the one hand, the
pseudo-volume of this size ensured quite high accuracy of the
solution. On the other hand, it allowed the integration time
steps for the main and inner loops to be increase significantly
and to be set to the values of 10−4 s and 10−5 s, respectively.
As it was previously mentioned, the number of iterations

performed in the inner loop at each time step has also a
direct effect on the simulation time. The transition process
is more oscillatory, and the larger the pressure changes, the
more iterations are performed in the inner loop. At the same
time, the number of iterations is dependent on the chosen
convergence criterion. It was found experimentally that the
larger criterion is associated with the smaller number of
iterations. Thus, to speed up the simulation of the AdvPDS-

Fig. 9. Number of iterations performed by the AdvPDS in the inner loop
during the first 20 s of the simulation with 10 (upper plot) and 300/10 (lower
plot) criteria

based system, the adaptive convergence criterion 300 Pa/10
Pa was selected based on experimental results. In Fig. 9,
the number of iterations performed by the AdvPDS using a
single convergence criterion in comparison with the use of
the adaptive criterion is shown for the first 20 seconds of the
simulation. It can be seen from the figures that the AdvPDS
executed a higher number of iterations in transition areas with
the single criterion than with the adaptive criterion, which
resulted in a shorter simulation time.

Figure 10 shows the pressure responses p1 of Circuit 1,
obtained with the reference solver and the AdvPDS. One can
observe that the two curves are highly coincident with each
other. Now the high accuracy of the AdvPDS-based system
was also achieved on the low-pressure areas. The accuracy
of the system was represented through root-mean-square error
(RMSE). The overall error was RMSE = 1.12 · 104Pa, which
is insignificant for such high pressure levels in the system.

Thus, the use of larger integration time steps together with
the adaptive convergence criteria allowed the computational
time of the simulation to be reduced compared with the ref-
erence system. The simulation time with the reference solver
was about 5 hours, whereas only 147.983 s was spent for the
same simulation using the AdvPDS. Moreover, it should be
noted that the system with the AdvPDS (in contrast to the use
of the classical pseudo-dynamic solver) is numerically stable
during the whole 100.5 s of simulation (i.e., the solver kept
the same pressure level as the reference system).

B. Circuit 2 simulation

Circuit 2 was simulated for 10 seconds with input signals,
which are a constant supply pressure of 14 MPa and voltage
signal for the directional control valve that varies from −5
to 8 V with 1 second period. The simulation of the system
in the presence of the small volume between the pressure
compensator and directional control valve using the reference
solver was run with the safe integration time step of 10−5 s.
Such time step ensured a numerically stable solution for the
system.

The adaptive criterion values for the AdvPDS under the
condition of trade-off between the accuracy and simulation
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Fig. 10. Pressure responses of Circuit 1 obtained using the reference solver and AdvPDS (with enlarged areas)

time was experimentally chosen using Circuit 1. In order
to verify the applicability of the chosen criterion values to
other fluid power circuits which also include small volumes
Circuit 2 with the AdvPDS was used in another experiment.
In the experiment the circuit was simulated 14 times with
the different values of the criterion of the AdvPDS while
the simulation times and solution accuracy for the cylinder
position piston xp (against the responses obtained with the
reference solver) were measured. The use of AdvPDS for the
solution of the system allowed the integration time step to be
increased to 10−4 seconds for both the main and inner loops.
The single criteria value was used in order to the dependency
(criterion value/accuracy vs. simulation time) showed itself
more clearly. The experimental results are summarized in
Table III and graphically illustrated by Fig. 11. It can be seen
from the figure that the calculation accuracy and simulation
time have exponential dependency. Thus, it can be concluded
that a larger criterion reduces the simulation time but decrease
the calculation accuracy, which is expressed by an increased
RMSE. In this case, the criterion equal to 100 can be con-
sidered as optimal. However, according to the results, as the
increase in overall accuracy was not significant in contrast
with the decrease in simulation time, which in our work is
the more advantageous system performance. While also taking
into account the solution problems in the low-pressure areas,
which were solved by use of a smaller criterion, it became
clear that the adaptive criteria 300/20 Pa was the most suitable
choice. Consequently, the simulation time was 27.572 s, which
is a better result compared with the reference system and with
systems having a single convergence criterion. The response
of the pressure p3 built up in the small volume as well as
the cylinder position piston xp against the responses obtained
with the reference solver can be observed in Fig. 12. The
obtained responses of the AdvPDS-based system in pressure
and cylinder piston position were accurate and differed from
the reference responses with RMSEs of 1.12 · 105 Pa and
only 4.24 · 10−4 m for the pressure and piston position,
respectively. The obtained accuracy of the responses was
ensured, in particular, by the adaptive criteria, which provided
more precise solution in the low-pressure areas. In Table IV,
the resulting simulation times for both circuits using reference

Fig. 11. Dependency between Simulation time and RMSE using AdvPDS
with a single criterion value

TABLE III
RELATIONSHIP BETWEEN CRITERIA VALUE, SIMULATION TIME, AND

CALCULATION ACCURACY FOR THE ADVPDS WITH A SINGLE CRITERION

Criteria, Pa Simulation time, s RMSE ×10−4, m
10 115.593 4.2950
20 101.847 4.3251
50 63.766 4.3554
70 46.558 4.3720
100 27.546 4.3939
200 25.222 4.4529
300 24.307 4.5051
400 23.609 4.5480
500 22.815 4.5897
600 22.638 4.6339
700 21.829 4.6704
800 22.084 4.7151
900 22.400 4.7496
1000 21.043 4.7881

solver and AdvPDS are presented. The appropriateness of
the adaptive criterion chosen was confirmed by a number of
experiments that were carried out also with Circuit 2.

C. Real-time implementation

To investigate the possibilities of the use of the developed
method in real-time and faster than real-time implementations,
MATLAB codes for Circuit 2 with the reference solver and
the AdvPDS were translated into standalone C code using
MATLAB Coder 4.1. Both codes were compiled and run
outside MATLAB on a PC with an Intel Core i5-4590 3.30
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Fig. 12. Circuit 2 responses in pressure p3 and cylinder piston position xp using the reference solver and the AdvPDS

TABLE IV
SIMULATION TIME OF CIRCUIT 1 AND CIRCUIT 2 USING THE REFERENCE SOLVER AND THE ADVPDS

Circuit Solver Real Time, Time Step (s) Simulation Adaptive RMSE
seconds (global/inner) Time Criterion w.r.t. Ref.

1 Ref. 100.5 10−6/− ∼ 5 h − −
AdvPDS 100.5 10−4/10−5 147.983 s 300/10 RMSEp1 = 1.12 · 104 Pa

2 Ref. 10 10−5/− 200.350 s − −
AdvPDS 10 10−4/10−4 27.572 s 300/20 RMSEp3 = 1.89 · 105 Pa

RMSExp = 4.24 · 10−4 m

GHz with 16 GB RAM. As a result, to simulate an interval
of 10 s of real time, it took 219 ms for the reference system,
whereas for the AdvPDS-based system it took only 47 ms
to simulate the same time interval. Thus, the introduction
of the developed AdvPDS solver allowed Circuit 2 to be
simulated 4.7 times faster in comparison with the use of the
reference solver usage. It should be noted that in our case,
both implementations were calculated much faster than real-
time. However, in virtual prototypes the fluid power system are
usually employed in conjunction with mechanical components
(i.e., multibody dynamic representation of the mobile machine
structure). Thus, the mechanical component should also be
calculated at each time step of the real-time simulation. Based
on the results, it can be concluded that the use of the AdvPDS
for the solution of the real-time and faster than real-time
systems, which include fluid power components with the small
volumes, can be more beneficial than the reference solver
application.

VI. CONCLUSION

In this paper, the advanced pseudo-dynamic solver with
adaptive criterion has been proposed for the efficient solu-
tion of fluid power systems with singularities originating (in
particular) from the presence in the system of small volumes.
Based on the results of the experiments performed with two
test fluid power circuits, which contained small volumes in
their structure, the model for the AdvPDS was formulated.
There are two main differences of the AdvPDS in comparison
with the classical pseudo-dynamic solver. First, the calculation
of the outlet volume flow rate related to the small volume is
included into the inner loop of the solver, which allowed the
numerical stability of the solution to be increased. Second, the

adaptive convergence criterion is introduced, which allowed
the simulation time to be decreased and the calculation accu-
racy to be increased. Side-by-side simulation results confirmed
that the proposed solver is much more efficient in solution of
the fluid power circuits than the conventional method as well
as the classical pseudo-dynamic solver. The main advantage
of the proposed solver is that it produces the lower error than
the classical pseudo-dynamic solver with single criteria. In
addition, the AdvPDS-based model can be calculated faster
than the conventional model of the fluid power circuit with
small volumes owing to the possibility of the application
of a larger integration time step. Moreover, the AdvPDS
solver can be the preferable method in modeling of more-
detailed fluid power circuits, especially in such cases when
the classical pseudo-dynamic solver may show numerically
unstable and slow response. The described advantages in
solution of the fluid power systems with small volumes of
the developed solver allow to use AdvPDS in simulations of
mobile machines in the real-time and faster than real-time
applications. Moreover, mechatronic applications such as [4],
[6], [7] can directly benefit from the usage of the developed
solver. In these applications in particular the solver can ensure
the accurate real-time or faster than real-time simulation of
the multibody systems with the fluid power actuation. Future
studies will be associated with the use of the AdvPDS-based
fluid power model as a part of the simulation model of a
mobile machine for the real-time applications.
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