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This bachelor’s thesis focuses on the study of a microprogrammed machine. It is a simplistic 

microprogrammable computer used to teach basics of microprogramming in the Foundations 

of Computer Science (FoCS) -course at LUT University. The main research problem this 

thesis solves is designing and implementing an accessible way to simulate the 

microprogrammed machine. 

By following a design science research methodology, a web simulator application is 

designed and implemented in this thesis to solve the main research problem. The goal is to 

enable users to write arbitrary microprograms, execute them and study how the different 

components of the computer react in a virtual environment. A Windows operating system 

dependent simulator application with known compatibility issues already exists. To be easily 

accessible by most students, a platform independent web simulator application is produced. 

The application is intended to be used as a supporting e-learning tool during future FoCS 

course implementations. This thesis limits to designing and implementing the application. 

Evaluation through end user testing is done in future course implementations. The 

application is open-source software allowing possible future contributions from third parties. 

The application has been developed using React user interface library and hosted on GitHub 

Pages as a publicly accessible static website. Using the application requires a web browser 

and Internet access.  
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Tämän kandidaatintyö tutkii yksinkertaista mikro-ohjelmoitavaa tietokonetta, jota käytetään 

LUT-yliopiston tietojenkäsittelytieteiden perusteet -kurssilla mikro-ohjelmoinnin 

perusteiden opettamiseen. Työn suurin tutkimusongelma on tuottaa helposti saavutettava 

mikro-ohjelmoitavaa tietokonetta simuloiva ratkaisu. 

Alustariippumaton verkkopohjainen simulaattorisovellus tuotetaan työssä suunnittelutiede-

tutkimusmetodologiaa noudattaen. Simulaattorisovelluksen tarkoitus on ratkaista 

tutkimusongelma mahdollistamalla mikro-ohjelmien tuottamisen ja suorittamisen 

virtuaaliympäristössä, jossa käyttäjä voi nähdä miten tietokoneen komponentit reagoivat 

mikro-ohjelman suorituksen aikana. Yhteensopivuusongelmia sisältävä Windows-

käyttöjärjestelmästä riippuvainen simulaattorisovellus on jo olemassa. Tässä työssä 

kehitetään alustariippumaton verkkosovellus, jotta se on helposti saavutettavissa 

suurimmalle osalle opiskelijoista. 

Simulaattorisovellusta on tarkoitus hyödyntää opetusta tukevana e-oppimistyökaluna 

tulevilla tietojenkäsittelytieteen perusteet -kurssin toteutuksilla. Tämä työ rajoittuu 

sovelluksen suunnitteluun ja toteutukseen jättäen käyttäjätestauksen tuleville 

kurssitoteutuksille. Simulaattorisovellus on avointa lähdekoodia, jotta mahdollinen 

jatkokehitys on mahdollista myös kolmansien osapuolien toimesta. Sovellus on kehitetty 

React -käyttöliittymäkirjaston avulla, ja julkaistu GitHub Pages -alustalla julkisesti 

saavutettavana staattisena verkkosivuna. Sovelluksen käyttäminen vaatii verkkoselaimen 

sekä toimivan Internet-yhteyden.  
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1  Introduction 

As the world has transformed into a digitalized environment, the need for software engineers 

has grown. The U.S. Bureau of Labor Statistics stated in 2021: 

“Employment of software developers, quality assurance analysts, and testers 

is projected to grow 22 percent from 2020 to 2030, much faster than the 

average for all occupations.” [2] 

As a rapidly growing industry, many software developers have chosen to self-learn software 

engineering. According to a survey conducted by Stack Overflow in 2016, 69% of the survey 

participants (40183 non-student developers) claim to be at least partially self-taught and 13% 

only self-taught [3]. It is easy to get overwhelmed by the large amount of information about 

software engineering on the Internet especially for new software developers. Many articles 

focus on trending technologies overlooking the importance of understanding the 

fundamentals of computer science. An extensive mixed-method study by Paul Luo Li, Amy 

J. Ko and Andrew Begel showed that the top two most important attributes of a software 

engineer are: “pays attention to coding details” [4] and “mentally capable of handling 

complexity” [4]. 

To understand complex systems or understand programming details, it is important for 

developers to have at least a basic understanding of the underlying system. Understanding 

how computer systems work at a low abstraction level is required of software developers 

who intend to work with low level programming but is also useful for other developers. 

Getting familiar with a simplified microprogrammed machine (MPM) helps to understand 

arguably the lowest level of programming: microprogramming. Specific details of how 

modern computers utilize microprogramming are outside the scope of this thesis however 

typical use cases are considered in related research -chapter. Instead, this thesis focuses on 

a simplified MPM proposed by J. Boberg et al. (2012) [5]. The structure of the MPM is 

depicted in (Appendix 1). A web simulator application is designed and produced during this 

thesis. The application is intended to help understand basic concepts about 

microprogramming by allowing users to create and execute microprograms on a primitive 

simulated computer. This thesis refers to “a piece of equipment that is designed to represent 

real conditions” [6] when referring to a simulator. In this thesis, the piece of equipment is a 

web application which represents the MPM. 
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Microprogramming was invented by Maurice Wilkes in 1951 to simplify circuitry in 

computer systems. Microprogramming is the act of creating microprograms which consist 

of very primitive microinstructions. Microprogramming is typically used to implement 

machine instructions instead of implementing them with complex circuitry. It also enables 

engineers to implement a machine’s instruction set differently with varying efficiencies and 

costs. [7], [8] 

The LUT School of Engineering Science at Lappeenranta–Lahti University of Technology 

(LUT) teaches a course called: Foundations of Computer Science (FoCS). The course 

focuses on the same MPM as this thesis. Having attended the course and worked on two 

different course implementations as a teaching assistant, it can be stated that a large portion 

of students who attend FoCS consider the MPM as a challenging topic. The inability to test 

microprograms in practice causes a large part of the challenge. Students cannot practically 

verify if they understood the concepts correctly as the MPM is only defined on paper. 

Creating a practical way to test microprograms written for the MPM is the main problem 

this thesis aims to solve. This thesis also provides English literature on the MPM as currently 

it is only available in Finnish. The design, structure and other materials about the MPM can 

be found in Finnish from [1]. 

 

1.1  Goals and methods 

At the time of writing, one simulator program which simulates the MPM has already been 

created. It is a platform dependent Windows application; it only works on Windows-based 

operating systems. The simulator also has known compatibility issues with modern versions 

of Windows. [1] The main goal of this thesis is to produce a platform independent open-

source web application which simulates the MPM. The main use case of the simulator 

application is to be used as a supporting e-learning tool in FoCS. The goal is to allow users 

to create microprograms, execute them on a simulator application and be able to follow how 

the different components of the MPM change during execution. A platform independent web 

application only requires access to a modern Internet browser (such as Google Chrome, 

Mozilla Firefox, Microsoft Edge etc.) and a working Internet connection which most 
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students have access to. Making the software open-source enables contributions in the future 

from third parties as well. 

The application is developed using React which is an open source frontend JavaScript library 

primarily intended for creating web user interfaces [9]. React is also an open-source 

technology as it is licensed under the Massachusetts Institute of Technology (MIT) -license 

which is a permissive software license [10]. The permissive MIT-license allows other 

software developers to continue improving the application after it is published. React’s 

component-based workflow should suit well for modelling the MPM which consists of 

multiple autonomous components. React is also considered as one of the most used web 

technologies at the time of writing [11]. 

With these considerations in mind, the main research questions for this thesis are: 

- How to create a web simulator application which simulates the MPM introduced by 

J. Boberg et al. (2012) [5] using React? 

- Can the simulator application be used with nothing but a web browser and Internet 

access? 

- Can users create and execute arbitrary microprograms in the simulator application? 

As this thesis aims to answer a research question which calls for designing and developing 

software, design science (DS) research has been chosen as the research paradigm. DS 

research focuses on the creation of artifacts that answer questions related to 

human/organizational problems. The artifact that solves the research problems in this thesis 

is the simulator application. DS research has gained traction among information systems 

researchers since the early 1990s and many frameworks/methodologies have been created 

for conducting it. [12], [13] This thesis follows the design science research methodology 

(DSRM) proposed by Peffers et. al. (2008) [12]. The research methodology is presented in 

detail in chapter three. 

 

1.2  Work structure 

This thesis is divided into six chapters. The first chapter is the introduction which gives the 

reader required background knowledge, explains the motives that lead to this thesis, sets 
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goals for the thesis’ outcome, and justifies why this thesis is important. The second chapter 

covers related research on the thesis’ topic. The third chapter covers the DSRM (the research 

methodology followed in this thesis) in-depth. The fourth chapter is dedicated for the design 

and development of the artifact i.e., the simulator application which is the primary product 

of this thesis. The fifth chapter discusses the produced artifact and its key findings. The sixth 

and final chapter concludes this thesis.  
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2  Related research 

This chapter explains how the MPM defined by J. Boberg et al. (2012) [5] and the simulator 

application as a modern e-learning tool relates to existing research. The MPM is a simplified 

computer which does not execute machine language instructions directly, instead it utilizes 

microprogramming. Computers that are built in such a way are called microprogrammed as 

they use an interpreter-like microprogram to execute machine language instructions. The 

MPM is the primary subject of study in this thesis overall however there is little research 

about it outside of the defining document. This chapter focuses on microprogramming in 

general as the MPM is intimately related to the concept of microprogramming. [5] 

After the invention of microprogramming by Maurice Wilkes in 1951 [7], it has been 

researched and applied extensively mainly in the context of control units of computers. 

Articles such as Microprogrammed Control for Computing Systems by G. B. Gerace (1963) 

have been written to improve upon the Wilkes’ original scheme [14]. Before discussing 

microprogramming more, it is important to understand its’ main use case in computers. 

For computers to be able to execute programs, they must first be compiled into instructions 

understandable by the computer called machine language instructions. The instructions are 

typically in a binary format as bits can easily be mapped into electric signals which are 

ultimately required for controlling computer hardware. A special computer program called 

assembler is designed to compile symbolic assembly language into machine language 

instructions which often have near one-to-one mapping. Similarly, higher level 

programming languages can be compiled into assembly language by compiler programs and 

then into machine language by the assembler. [15] 

After programs have been compiled into these machine language instructions, the computer 

still needs to be able to turn them into electric signals that operate the actual hardware. An 

instruction set architecture (ISA) can be considered as an abstract model to which a 

computer’s central processing unit (CPU) must conform to. ISAs define salient parts about 

the capabilities of the CPU such as the instruction set. Instruction set contains all the 

architecture’s machine language instructions which an implementing CPU is capable of 

executing. [15], [16] Modern ISAs such as x86 and its 64-bit extension x86-64 contain 
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complex instructions such as multiplication and division which are non-trivial to implement 

directly in the hardware. 

Implementing large and/or complex instruction sets with sequential logic circuitry is a 

complex, inflexible and an expensive approach typically called hardwired control. 

Microprogrammed control on the other hand can be used to alleviate the need for such 

complex circuitry by implementing machine instructions by breaking them down into a 

sequence of primitive microinstructions. A microprogram can act as an interpreter which 

fetches a machine instruction from the main memory of the computer and executes a 

sequence of microinstructions which results in the same goal as implementing the machine 

instruction with complex circuitry. [17]–[19] 

As mentioned earlier, the simulator application can be considered as an e-learning tool. To 

better understand the growing global e-learning market, compound annual growth rate 

(CAGR) is introduced. CAGR is the annualized average rate of revenue growth over the 

course of 𝑛 > 0 years. CAGR between years 𝑦0 and  𝑦𝑡 where 𝑦𝑡 > 𝑦0 is calculated as 

follows: 

𝐶𝐴𝐺𝑅 = (
𝑟𝑡

𝑟0
)

1
𝑦𝑡−𝑦0 − 1 

where 𝑟0 is the annual revenue of year 𝑦0 and  𝑟𝑡 is the annual revenue of year 𝑦𝑡. [20], [21] 

According to a report by Polaris Market Research published in February 2022 “The global 

E-learning market was valued at USD 214.26 billion in 2021 and is expected to grow at a 

CAGR of 20.5% during the forecast period.” [22] where the forecast period is from year 

2022 up to year 2030. Such a rapid growth amounts to approximately fivefold increase from 

the current market value until the end of year 2030. 

E-learning which is considered as computer assisted learning has existed for decades 

however it is still a prominently researched topic as the rapidly growing global market 

suggests. The simulator application falls under the category of asynchronous e-learning tools 

which can be used for self-paced learning. [23] Although this thesis largely focuses on the 

design and development of the simulator application, future research can be done from the 

perspective of effectiveness as an e-learning tool. 
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3  Research methodology 

This chapter introduces the design science research methodology followed throughout this 

thesis. DSRM is a relatively new research methodology proposed by Peffers et al. (2008) 

[12]. DSRM process model consists of six core activities [12], all of which are covered in 

this chapter. The six activities are represented in Figure 1 which visualizes the DSRM 

process model. This thesis follows the process model relatively strictly but as with all DS 

projects, “a certain level of creativity” [13] is needed. 

 

 

Figure 1. DSRM process model from [12]. 

 

3.1  Problem identification and motivation 

The first activity of the DSRM process model Figure 1 is problem identification and 

motivation. In the first activity, the researcher should: “Define the specific research problem 

and justify the value of a solution.” [12]. This activity consists of two distinct steps: 

identifying and defining the research problem, and justifying the value of a solution. Both 

steps are covered in the introduction chapter. Justifying the value of a solution not only 

motivates the researcher but also possible future researchers. Considering the solution’s 



14 
 

value can also help in accepting the results of the research. Well defined problem on the 

other hand is required to be able to produce an artifact which effectively solves the research 

problem. It can also be helpful to break down a complex problem on a conceptual level to 

better understand what it is that the artifact needs to solve. [12] 

 

3.2  Define the objectives for a solution 

After specifying the research problem, the objectives for the solution are defined by taking 

the research problem specification, knowledge about what is possible/feasible, and 

determining the objectives and goals for the solution [12]. The most important goals and 

objectives for the solution have already been stated in the introduction chapter however more 

specific objectives will be formed later. As the solution consists of implementing software, 

knowledge about what is feasible or not is gained during initial prototyping during the design 

and implementation. As with any software project, the requirements of the artifact are 

expected to change as the implementation progresses. 

 

3.3  Design and development 

Activity three is called design and development which is the most important activity for this 

thesis. The fourth chapter is primarily dedicated to how this activity was executed in this 

thesis. As the name suggests, the third activity focuses on designing and developing the 

artifact. In Hevner’s and Chartterjee’s book Design Research in Information Systems (2010), 

the artifacts are broadly defined as: 

- constructs: vocabulary and symbols, 

- models: abstractions and representations, 

- methods: algorithms and practices, 

- instantiations: implemented and prototype systems and 

- better design theories. [13] 



15 
 

However, the artifacts in DS research can be any designed objects if they possess research 

contribution in the design [12]. The artifacts need to generate new knowledge by solving a 

problem or by improving existing solutions to be considered DS research instead of just 

routine design practice [13]. It is through “rigorous evaluation methods and comparison with 

similar artifacts” [13] that the researcher may conclude that new knowledge has indeed been 

created with the development of a new artifact which is conducted in the fifth activity. This 

thesis does not focus on the evaluation of the artifact as proper end user testing can only be 

done in future FoCS course implementations. Naturally, the artifact is evaluated during its 

implementation however it does not suffice as rigorous evaluation. 

 

3.4  Demonstration 

The fourth activity consists of demonstrating the artifact’s value by using it to solve one or 

more of the research problems [12]. The main research problem of this thesis is to design 

and implement the simulator application which solves the problem of not being able to 

practically test microprograms created for the MPM. It is used to find a solution to the 

research problem and research questions which are later discussed in the fifth chapter thus 

covering the demonstration activity. 

 

3.5  Evaluation 

As mentioned before, to verify that new knowledge has been created by the development of 

an artifact it must be rigorously evaluated [13]. The fifth activity of the process model in 

Figure 1 consists of comparing the objectives set in activity two to the results gained from 

the demonstration in activity four. As the artifact is a software project, this activity consists 

mainly of software testing and requirements verification. Each artifact calls for distinct 

evaluation methods as each artifact has different metrics, context, and objectives. Due to the 

broadly varying case-specific evaluation methodologies, “any appropriate empirical 

evidence or logical proof” [12] can be included in the evaluation. [12] End user testing and 
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creating automated tests to evaluate the software is a part of future work and outside the 

scope of this thesis however continuous testing is performed during the development of the 

artifact. 

 

3.6  Communication 

The final activity of the DSRM process model Figure 1 is communication. This activity, as 

the name yet again suggests, consists of communicating: 

“the problem and its importance, the artifact, its utility and novelty, the rigor 

of its design, and its effectiveness to researchers and other relevant audiences 

such as practicing professionals, when appropriate.” [12] 

Because this bachelor’s thesis is a scholarly publication, it will be published for appropriate 

audiences which satisfies the sixth and final activity. Furthermore, the artifact is intended to 

be an open-source project which allows thorough inspection of its design and 

implementation by all interested audiences. Relevant information on where the to find the 

artifact will be attached as appendices to this thesis after it has been finished. 

 

3.7  DSRM process model order 

The DSRM process model has a sequential order regarding the different activities however 

it is possible to start at different activities depending on the situation. The different entry 

points are depicted in Figure 1. Because the research problem originated from observations, 

it is natural to select the problem-centered initiation approach for this thesis. Definition of 

the problem is given in the first chapter along with the most important objectives which 

cover the first two activities. Further chapters cover the rest of the activities however 

evaluation is considered as a part of future work. 

An objective-centered approach is meant for already well defined research problems that can 

be solved by developing an artifact. A design and development -centered approach starts 
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with activity number three. There must be previous research on the problem to jump directly 

into activity three. An artifact which has clear objectives but has not yet been designed as a 

solution for the problem is a common reason for adopting the design and development -

centered approach. Finally, there is the client/context-initiated approach starting with 

activity four: demonstration. Such an approach is usually triggered by observing a working 

solution for the same or similar research problem. Researchers can then use the results of the 

working solution to improve upon the existing one or use them to create a new one by 

working backward in the process model. [12] 
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4  Design and implementation  

This chapter covers the fourth activity of the DSRM process model: design and 

implementation. As the name suggests, the design and the implementation of the artifact are 

presented. Technologies used for the development of the simulator application are presented 

first. The microprogrammed machine and its basic working principles are discussed in more 

detail. Components of the MPM are introduced and their implementation in the simulator 

application is presented. 

 

4.1  Simulator application architecture 

Before proceeding to the details of the MPM and how they are implemented in the simulator 

application, a high level explanation of the simulator application’s architecture is in order. It 

is a single-page web application (SPA) developed using React which is a JavaScript library 

intended for creating user interfaces. SPAs are web applications that update themselves 

dynamically using JavaScript APIs without the need of refreshing the whole page [24]. In 

React applications, pieces of the user interface are broken down to autonomous reusable 

components. The components can be nested and thus form a hierarchical structure which 

suits well for modelling the MPM. [25]  

Figure 2 represents the React components’ hierarchy in the simulator application. Some of 

the less relevant components have been omitted in Figure 2 for the sake of brevity. The 

application is first divided into two components which represent complete web pages: 

HomePage and SimulatorPage. As their names suggest, HomePage is the landing page of 

the website and SimulatorPage contains the simulator application. SimulatorPage is further 

divided into two components: Editor and MPM. The Editor component represents the view 

where the users can create and edit their microprograms. It also allows users to manipulate 

initial conditions of the MPM. The main application logic resides in a component called 

MPM which represents the microprogrammed machine. It consists of multiple smaller child 

components which represent different parts of the MPM.  
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Figure 2. Components of the simulator application 

 

Most of the application’s state also lives within the MPM component. In React, data that 

changes over time and needs to be remembered is stored using state. For example, the values 

of registers and data buses are stored using state variables within the MPM component. 

Because data flows one way from top down in React (parent components pass data down to 

child components), the child components of the MPM are mostly representations of the state 

of the MPM component without much added functionality. [26] 

 

4.2  Basic working principle of the MPM 

The MPM discussed in this thesis is a simplistic microprogrammed computer. 

Microprogrammed computers execute complex instructions (i.e., machine language 

instructions) as a series of primitive microinstructions. An earlier approach is called 

hardwired implementation where complex instructions are implemented using sequential 

logic circuits. Microprogrammed approach reduces cost and complexity of the control unit 

which is why it is the basis of many modern computers.  [5], [19] An analogous way to 
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understand the difference is that microprogrammed computers interpret machine instructions 

whereas hardwired computers already understand machine instructions. 

The microinstructions of the MPM defined by J. Boberg et al. (2012) [5] consist of 22 control 

bits described in Table 1. Together the microinstructions form a microprogram which the 

MPM executes.  When the MPM is built, microprograms are stored in a read-only memory 

called microprogram memory which can contain a maximum of 256 microinstructions. A 

five phase clock controls the computer by activating the current microinstruction’s control 

bits in five distinct phases. Activating a control bit means that the control signal represented 

by the control bit is passed through to the control bus which in turn activates the logic 

described by the control bit. For example, if the control bit c17 is activated and its value is 

one then the integer 1 is written to data bus DC1 (see the description of c17 in Table 1). [5] 

If the control bit’s value is zero, it does not affect the state of the computer when activated 

as zero represents low voltage which the control bus’s wires have already by default. With 

that said, programming consists of creating a series of microinstructions where the 

programmer chooses what primitive operations i.e., control bits should be carried out in each 

instruction. 

Without diving too deep into electric engineering, it is helpful to understand how bits and 

electric signals relate to one another – specifically how binary values are used to represent 

electric signals. Each digit of a binary value is called a bit which can have a value of zero or 

one. Bits can be trivially translated into electric signals and vice versa where zero represents 

low voltage and one represents high voltage. This kind of a voltage which corresponds to a 

discrete number of values is called a digital signal [27]. When designing complex logic 

circuits, it is easier to use ideal zeros and ones to represent electric signals instead of using 

true voltages or other electric properties. Going forward, this thesis refers to bits and binary 

values, but it is important to keep in mind that in the context of the MPM bits are merely an 

encoded representation of electric signals. [28] For example, if it is said that the integer value 

one is written to a bus, it means that the rightmost wire of that bus has high voltage whereas 

other wires of the bus are low voltage thus representing the binary value one: … 00001. 
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Table 1. Control bits of the MPM. Adapted from [5, p. 133] 

Control bit Description 

C1 Value of register A is written to data bus DC2. 

C2 Value of register B is written to data bus DC2. 

C3 Value of register C is written to data bus DC2. 

C4 Value of register D is written to data bus DC2. 

C5 Integer one is written to data bus DC1. 

C6 Value of register MDR is written to data bus DC1. 

C7 Value of data bus DC1 is negated. 

C8 A logical left shift is performed on the value of data bus DC3. 

C9 Value of data bus DC3 is written to register A. 

C10 Value of data bus DC3 is written to register B. 

C11 Value of data bus DC3 is written to register C. 

C12 Value of data bus DC3 is written to register D. 

C13 Value of data bus DC3 is written to register MDR. 

C14 Value of data bus DC3 is written to register MAR. 

C15 Value at main memory address pointed to by register MAR is written to MDR. 

C16 Value of register MDR is written to main memory address pointed to by MAR. 

C17 Integer value 1 is written to data bus DC1. 

C18 The eight most significant bits of register MIR are written to DC1. 

C19 Integer value 1 is written to data bus DC1 if the value of register A is zero 

otherwise integer value 2 is written to data bus DC1. 

C20 Integer value 1 is written to data bus DC1 if the most significant bit of register A 

is 1 otherwise integer value 2 is written to data bus DC1. 

C21 The four most significant bits of register MDR are written to data bus DC1. 

C22 Value of register MPC is written to data bus DC2. 

 

 

All 22 control bits in a microinstruction are activated in the first four clock phases. The clock 

phases are executed sequentially from clock phase one to five. The fifth clock phase has a 

special purpose. In the fifth clock phase, the microprogram counter (MPC) which points to 

the currently executed microinstruction in the microprogram memory gets a new value from 

data bus DC3. After the new value has been written to the MPC, the microinstruction pointed 
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to by MPC is fetched from the microprogram memory and written to the microinstruction 

register (MIR). MIR is a 22-bit register which stores the microinstruction that is currently 

being executed. The MPM works in an infinite loop where the current microinstruction in 

MIR is executed in the first four clock phases after which a new instruction is fetched for 

execution in the fifth clock phase. [5] 

During each clock phase, each of the control bits that belong to it are executed 

simultaneously. Simultaneous activation of the control bits might lead to conflicting 

situations. For example, the first four control bits all write a different register’s value to data 

bus DC2 which results in an undefined value in DC2. However, as long as the computer does 

not crash, it does not matter if the value is not stored anywhere. [5] To provide users the 

ability to execute each control bit separately, the simulator application does not execute the 

control bits simultaneously in each clock phase.  

In conclusion, the MPM is a simplistic computer which executes a read-only microprogram 

from the microprogram memory. The simulator application allows users to create arbitrary 

microprograms and test them by showing how the computer’s state (values of registers, 

memory, data buses etc.) changes during the execution of the microprogram. Without a real 

or virtual implementation of the MPM, there would be very limited options for verifying 

whether microprograms work as the programmer intended which is what the simulator aims 

to solve. 

 

4.3  Components of the MPM 

In short, the MPM comprises of the following components: registers, memories, an 

arithmetic logic unit (ALU), a clock and buses [5]. Each of them has their own purpose and 

together they form the microprogrammed machine depicted in (Appendix 1). Table 2 gives 

a high level description of each of the components. After Table 2, all the components’ 

implementations in the simulator application are explained. Finally, features that are not 

included in the definition of the MPM are presented. 
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Table 2. Components of the MPM 

Component Description 

Microinstruction 

register 

Microinstruction register is a 22-bit register which contains the 

microinstruction currently being executed. Each bit maps to a specific 

control bit from left to right e.g., 20𝑡ℎ bit of MIR corresponds to control 

bit c20. If the value of a control bit is one then the operation of the 

corresponding control bit will be carried out in its respective clock phase 

otherwise it does not affect the computer’s state. [5] 

Clock The MPM has a five-phase clock that controls the computer’s actions by 

activating the control bits in the MIR. Control bits c1–c8 are activated 

in the first phase, c9–c14 in the second phase, c15–c16 in the third phase 

and c17–c22 in the fourth phase. The bits are activated simultaneously 

in each phase. The fifth clock phase has a constant function in which the 

value of DC3 is written to the MPC after which a new microinstruction 

is written to MIR from the microprogram memory address pointed to by 

the MPC. [5] 

Buses The MPM has three data/address buses DC1, DC2 and DC3 and a 

control bus CC. The data/address buses are 16-bit as is the word size of 

the MPM. The control bus is a 22-bit bus as it must be able to contain 

microinstructions which consist of 22 control bits. [5] 

Registers A, B, C and 

D 

The MPM has four 16-bit general purpose registers called A, B, C and 

D. They are meant for storing operands and results of arithmetic 

operations. The A register can also be used in clock phase 4 to modify 

control flow of the microprogram. [5] 

Microprogram 

memory 

Microprogram memory is a read-only memory which contains the 

microprogram. Each memory location is 22-bit wide as each location 

contains a microinstruction consisting of 22 control bits. There is a total 

of 28 = 256 memory locations because MPC is an 8-bit wide register 

which means that the microprogram can consist of 256 microinstructions 

maximum. [5] 

Microprogram 

counter 

Microprogram counter is an 8-bit wide register which contains the 

address of the currently executed microinstruction. The address points 

to a memory location in the microprogram memory. In the fifth clock 

phase, the value of data bus DC3 is written to the MPC after which the 

microinstruction pointed to by the MPC is written to the MIR. [5] 
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Main memory Main memory (MM) is a read-write memory which has 212 = 4096 16-

bit wide memory locations. It is typically used to store machine language 

instructions and data. [5] 

Memory data and 

address registers 

Memory data register (MDR) and memory address register (MAR) are 

registers that are used to read and write data from and to the main 

memory. MDR is a 16-bit wide register which can be used in the first 

clock phase for arithmetic operations as it is the only register that can be 

written to data bus DC1. MAR is a 12-bit address register which is used 

to point to the MM. In the third clock phase, it is possible to write data 

to the MDR from the MM location pointed to by the MAR or write the 

value of MDR to the MM location pointed by the MAR. [5] 

Arithmetic logic unit The arithmetic logic unit is a full adder with few other abilities: it can 

negate the value of DC1, sum two 16-bit integers in data buses DC1 and 

DC2, and perform a logical left shift of the resulting sum in DC3. 

Subtraction is handled by using two’s complement representation in the 

MPM. In short, it can perform all the arithmetic operations of the MPM. 

[5] 

 

 

4.3.1  Registers and buses 

Registers are components that can store binary information. An 𝑛-bit register consisting of 

𝑛 flip-flops can store an 𝑛-bit binary value. Flip-flops are logic circuits that can store a single 

bit of information. [27, p. 324] Storing integers in variables is a trivial task in modern 

programming languages however some extra considerations must be taken because registers 

have a minimum and a maximum value they can store. The MPM handles most values in 

two’s complement binary representation which means that registers’ values must be within 

the range: 

value ∈ [−2𝑛−1,  2𝑛−1 − 1] 

where 𝑛 is the number of bits. If the user inputs a value outside of the range, the application 

displays a warning message modal to the user. 
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Buses are a set of lines that transfer data between different components in a computer. Buses 

are controlled by selection logic where control signals select the source and destinations in 

between which data is transferred. For example, in the MPM control bits 𝑐9 − 𝑐14 can be 

used to transfer data from the same source (data bus DC3) to multiple different registers 

using a shared transfer path i.e., a bus. [5], [27, p. 359] 

In the simulator application, both the registers and buses use the same Register component. 

This is because the relevant information of both buses and registers is the binary information 

that they hold at a certain time. What React components the user interface composes of is 

completely transparent to the end user. The component is simply a read-only HTML input -

element which displays the value it currently has. It can display the value in either binary 

representation as seen in Figure 3 or as a base 10 integer. The registers’ and buses’ actual 

values are stored in state variables within the parent MPM component where the logic for 

transferring data between registers is implemented as well. The visual appearance of 

registers and buses can  be seen in Figure 3. 

 

 

Figure 3. Registers, buses, and main memory components in the simulator application. 

 

4.3.2  Memory 

Figure 3 also shows the visual appearance of the main memory component. Memory in the 

context of digital systems is simply “a collection of cells capable of storing binary 

information” [27, p. 403]. The MPM has two separate memory components: microprogram 
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memory and main memory. The microprogram memory is a read-only memory where 

microprograms are stored. Read-only memory cannot be written to as the name suggests; 

values can only be read from it. Main memory on the other hand is a random-access memory 

(RAM) which can be both written to and read from. The time it takes to access RAM is 

independent of the location which is why it is called random-access memory [27, p. 404]. 

Each location of the main memory can store a 16-bit binary value, and it has 4096 memory 

locations. Addressing memory locations is done using the MAR register which is a 12-bit 

register hence the MM has 212 = 4096 memory locations. [5] 

As each location of the main memory stores a 16-bit value, the MainMemory component 

can be thought of as a list of 16-bit registers that have a unique address.  In Figure 3, the 

MainMemory component can be seen as a list of similar components as the Register 

component. It has not been implemented using the Register component in the simulator 

application however it is a list of read-only HTML input elements. Each of the elements 

displays the address and value of the memory location in the following format: address | 

value. The MainMemory component is also capable of displaying its addresses and values 

in either binary or base 10 representations. 

  

4.3.3  Arithmetic logic unit and clock 

The arithmetic logic unit of the MPM is a component capable of doing a logical left shift, 

summation, and subtraction by negating the other operand and then performing summation. 

The tasks are simple to implement using most programming languages however just 

summing or subtracting two variables in JavaScript is not enough. Once again, the minimum 

and maximum values come into play because the summation is performed by a 16-bit full 

adder [5, p. 132]. As discussed before, the minimum and maximum value that can be 

represented in two’s complement binary representation is dependent on the number of bits. 

The simulator application displays a warning modal if the arithmetic operation performed 

by the ALU produces a result outside the range: 

[−216−1,  216−1 − 1] = [−32768, 32767] 
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which is the range of values a 16-bit binary value can be represented in two’s complement 

representation. 

As stated in Table 2, the MPM has a five-phase clock which controls the MPM. A clock is 

a type of signal generator which produces a rectangular pulse wave. The MPM’s multiphase 

clock generates clock pulses in five distinct phases similarly as illustrated in [29, Fig. 1b] 

which are then passed to five separate wires. The five wires are connected such that the clock 

pulses activate the control bits in MIR in five phases. Because the clock controls when the 

control bits are activated and thus progresses the microprogram’s execution, it makes the 

computer’s speed dependent on the clock’s frequency. Naturally, physical properties of the 

other components limit the maximum clock frequency the computer can handle. [5, pp. 129, 

133] 

The Clock component somewhat differs from the previous definition of the MPM’s clock. 

In the application, the Clock component only displays which clock phase is currently in 

execution. The intention is to give the user the ability to advance the clock by activating 

control bits. To allow users to activate the control bits one by one, they are not executed 

simultaneously in clock phases. When the user activates control bits, the Clock component 

is updated by the MPM component to match the clock phase of whichever the last control 

bit activated belongs to. For example, after executing the control bit c15 which is the first 

control bit of the third phase, the clock phase is updated to three. 

 

 

Figure 4. Visual appearance of the simulator application’s Clock component. 

 

As seen in Figure 4, the Clock component of the simulator application is a progress bar 

which advances incrementally in steps of one from phase one to phase five. The clock phase 

is also displayed as a numeric label within the progress bar for clarity. The Clock component 

itself does not contain any state. The current clock phase is managed by the MPM component 

and passed as props to the Clock component. 
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4.3.4  Other features 

Most of the simulator application comprises of the components that have been modelled by 

following the definition of the MPM. However, few additional components have been 

created to provide users functionality for creating microprograms, switching between 

decimal and binary number systems, initializing registers and main memory, and saving or 

loading microprograms. The implementation of these features is presented here. 

One of the most important features is to allow users to create microprograms as without it 

the simulator provides little to no value. Microprogramming consists of creating the 22-bit 

microinstructions where in each microinstruction each of the 22 control bits’ values are set 

to zero or one. If a control bit’s value is one, the operation described in Table 1 is carried out 

when the control bit is activated. After creating the microinstruction, it is saved into the 

microprogram memory to a certain address. To provide this functionality, a form consisting 

of checkboxes representing the control bits is shown in Figure 5. At the bottom of Figure 5, 

an input element and a button are provided for the user to input the address they want their 

microinstruction to be saved to. 

 

 

Figure 5. Editor component’s microinstruction section. 
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To be able to view and modify the microprogram, it has been added as a table consisting of 

the addresses and microinstructions at the bottom of the Editor and MPM components as 

seen in Figure 6. The table represents the microprogram memory of the MPM and the four 

first memory locations are shown in Figure 6. It can be freely modified in the application 

however it is important to remember that it is a read-only memory (see Table 2 and chapter 

4.3.2). 

 

 

Figure 6. Bottom of the Editor component. 

 

As also seen in Figure 6, buttons for editing, saving, and loading microprograms, and 

initializing registers or the main memory are provided in the Editor component. They open 

modals which allow users to give initial values for the general purpose registers A, B, C and 
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D or initialize the main memory with arbitrary values. The manage program -button opens a 

modal where users can edit the microprogram in a free-form text representation. Such 

functionalities are not defined by J. Boberg et al. (2012) [5] however have been added to 

better work as a learning tool. Exercises which prerequisite some initial conditions can be 

created when users are allowed to modify the registers’ and main memory’s values. Finally, 

a button for switching between decimal and binary number systems is given in the MPM 

component to eliminate the need of manually converting values between them. 
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5  Discussion 

This chapter discusses key points of the design, development, and implementation of the 

finished artifact i.e., the simulator application. Key points include the software development 

process, software development technologies, limitations of the artifact, deviations from the 

specification of the MPM, and future work. After discussing the key findings, this chapter is 

concluded by deliberating the research questions. 

 

5.1  Software development process 

The software development process followed during the development of the artifact can be 

considered a loose lightweight agile process. Simplicity and development speed were 

preferred over a robust process and detailed documentation which is common for agile 

software processes. [30, p. 19] The most significant reason for choosing a lightweight 

development process was time. As the only developer contributing to the development of 

the artifact, not much time could have been allocated for following a strenuous process. The 

process consisted of a cycle of quick small releases which were then tested and validated 

immediately. In the context of agile practices, iteratively developing, testing and validating 

the software artifact are listed as best practices in [31, Tbl. 2]. 

A minimalistic prototyping approach was first taken with the simulator application to try and 

evaluate how realistic developing it was. After finishing few iterations of the prototype, an 

approximation of required work to produce the simulator application was estimated and 

deemed realistic. The finished prototype worked as the basis on top of which the finished 

artifact was developed. The first prototype can be found by going back to the first commit 

in the code repository of the simulator application (Appendix 2). 

A bottom-up approach was followed during the whole development process. The MPM 

consists of easily identifiable autonomous components such as registers and buses that can 

be considered and modelled as separately. The different components of the MPM were 

implemented first and then used to construct the MPM component itself. In the context of 
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React, it means that the leaf components at the component hierarchy in (Figure 2) were 

developed first i.e., bottom up. 

 

5.2  Limitations and future work 

The simulator application has been divided into React components and a collection of utility 

functions written in vanilla JavaScript i.e., not using the React’s JSX extension which 

extends the syntax of JavaScript by allowing HTML-like markup to be mixed with plain 

JavaScript [32]. The utility functions provide functionality that is required in multiple 

components such as converting a base 10 integer into binary representation; they are not 

considered as a part of any single component. They are then imported and used within the 

React components wherever needed.   

Separately testing, improving or completely rehauling the components or utility functions is 

possible as long as the components’ interfaces do not change. Because most components and 

functions are small and serve a single clear purpose, future contributors can easily work on 

them. However, by design most of the application’s state and logic resides in the MPM 

component which is a relatively large component compared to the other ones. The MPM 

component could be better refactored into smaller components in the future. 

As was the original goal, the simulator application is open-source software to allow 

contributions from anyone. Typically, open-source software is a two-edged sword where on 

the other hand vulnerabilities are found, reported and thus patched more frequently as more 

people contribute to the project however it also allows malicious users access to the source 

code. Resistance to vulnerabilities is inherent to the simulator application because it is a 

static website which does not use any third party services nor a backend server. The website 

is hosted using GitHub Pages which only serves the static files from the gh-pages branch of 

the code repository in (Appendix 2). This means that any security vulnerabilities should not 

arise from the application’s source code itself however there is always a possibility of 

vulnerabilities being found in the application’s dependencies in the future. 

Even though vulnerabilities should not arise from the source code, bugs are likely to exist 

whether discovered or not as with any software project. For numerous reasons such as to 
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prevent bugs, the application should be migrated to use TypeScript in the future. TypeScript 

can be thought of as a superset of ECMAScript which is the language standard for JavaScript 

[33]. TypeScript being a superset of ECMAScript means that valid JavaScript is also valid 

TypeScript which allows migration in small increments. JavaScript itself is not well suited 

for maintaining large software projects which TypeScript tries to solve by extending it. 

TypeScript introduces static typing and many other language constructs such as interfaces 

to JavaScript. [34] Mainly with TypeScript, static analysis could prevent bugs already at 

compile time and integrated development environment support would improve significantly. 

The simulator application does not persist any session data which means that microprograms 

created by users are discarded each time the web page is refreshed. The application warns 

users about this behaviour and encourages to save the microprogram locally using the 

application’s Manage Program -feature. The feature allows users to save and load the 

microprogram they have created in the application’s own microprogram editor. Retaining 

the microprogram and/or the simulation’s state automatically within the browser’s web 

storage could be beneficial for better user experience. Web storage allows web applications 

to persist data in the user’s web browser. It is possible to save data for the current session or 

without any expiration date using web storage. [35], [36] 

 

5.3  Deviations from the MPM 

The simulator application strives to conform to the definition of the MPM given by J. Boberg 

et al. (2012) [5] however few minor degrees of freedom had to be taken. The most significant 

difference with the specification and the application is how the clock component works. 

Because in the simulator application the user controls the MPM by activating control bits 

individually, the clock is not responsible for activating them. Instead, the Clock component 

in the application only displays the current clock phase to which the latest executed control 

bit belongs to. This gives users more control by allowing them to execute microprograms on 

their own phase and makes observing changes in the machine’s state easier as control bits 

can be activated individually. This deviation can be justified as it makes the simulator 

application a better e-learning tool.  
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The application initializes registers and memory locations to zero as any initial values have 

not been stated by J. Boberg et al. (2012) [5] and thus presumed to be an implementation 

detail. However, whether the registers or memory components have been initialized with 

random values or not, it can be handled in the microprogram. For example, it is possible to 

begin the microprogram with microinstructions which initialize registers to certain values. 

Furthermore, the application allows users to initialize registers and the main memory with 

arbitrary values. This feature has been added to allow exercises with arbitrary initial 

conditions to be created. 

 

5.4  Research questions 

To recap, the research questions of this thesis are: 

1. How to create a web simulator application which simulates the MPM introduced by 

J. Boberg et al. (2012) [5] using React? 

2. Can the simulator application be used with nothing but a web browser and Internet 

access? 

3. Can users create and execute arbitrary microprograms in the simulator application? 

This subchapter answers the research questions based on the findings in this thesis. The first 

research question is largely answered in chapter 4 as the design and implementation of the 

web simulator application is presented in it. As mentioned in the previous subchapter 5.3, 

few minor deviations from the definition of the MPM had to be taken but overall, the 

simulator application was created by modelling the components in React using the 

definitions given by J. Boberg et al. (2012) [5]. 

The implementation given in chapter 4 does not utilize any third party services or a backend 

server and as such can be constructed completely as a static website. At the time of writing, 

it is hosted on GitHub Pages which is a service allowing users to host websites directly from 

git code repositories in GitHub. The simulator application can be accessed using nothing but 

a web browser and Internet access from the URL provided in (Appendix 3) thus answering 

research question number 2. 
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Finally, as shown in subchapter 4.3.4, a component for creating arbitrary microprograms has 

been added to the simulator application. A more graphical programming oriented solution is 

given by allowing users to select the control bits of each microinstruction using a collection 

of checkboxes as well as a free form approach where users can edit the microprogram in a 

textual representation. 
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6  Conclusions   

This thesis focuses on a microprogrammed machine defined by J. Boberg et al. (2012) [5]. 

It is a simplified computer which can be microprogrammed using primitive 

microinstructions. The research problem solved in this thesis is to create an easily accessible 

and practical way of creating and executing microprograms for the MPM. A web simulator 

application for the MPM was created to solve the research problem. As the research problem 

ensued a need for developing a software artifact, the design science research methodology 

proposed by Peffers et. al. (2008) [12] was followed throughout the thesis from a problem-

centered entry point. 

The design and implementation of the simulator application is presented in chapter 4. The 

simulator application was implemented using React and is currently freely accessible as a 

static website from the URL in (Appendix 3). The simulator application is an open-source 

software project hosted at the URL in (Appendix 2). Most of the implementation follows the 

definition of the MPM however few minor deviations from the original design were taken 

and few additional features were created. 

This thesis limits to the design and implementation of the simulator application. More 

rigorous evaluation of the artifact is considered a part of future work. The simulator 

application is going to be used as a supporting e-learning tool at LUT on the FoCS course 

where end user testing is going to be performed on future course implementations. 

The application itself can be contributed to by either creating new issues or pull requests on 

the code repository in (Appendix 2). Creating unit tests, refactoring larger components, and 

migrating the project to use TypeScript are currently the biggest ways to contribute to the 

project. 
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Appendix 1. Structure of the microprogrammed machine from [1]. 

 



 

Appendix 2. URL to the git code repository of the simulator application. 

https://github.com/jani-heinikoski/mpm-simulator 

  

https://github.com/jani-heinikoski/mpm-simulator


 

Appendix 3. URL to the deployed simulator application. 

https://jani-heinikoski.github.io/mpm-simulator/ 
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