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Our digital life consists of activities that are organized around tasks and exhibit different user states in the
digital contexts around these activities. Previous works have shown that digital activity monitoring can be
used to predict entities that users will need to perform digital tasks. There have been methods developed to
automatically detect the tasks of a user. However, these studies typically support only specific applications
and tasks and relatively little research has been conducted on real-life digital activities. This paper introduces
user state modeling and prediction with contextual information captured as entities, recorded from real-
world digital user behavior, called entity footprinting; a system that records users’ digital activities on their
screens and proactively provides useful entities across application boundaries without requiring explicit query
formulation. Our methodology is to detect contextual user states using latent representations of entities
occurring in digital activities. Using topic models and recurrent neural networks, the model learns the latent
representation of concurrent entities and their sequential relationships. We report a field study in which the
digital activities of thirteen people were recorded continuously for 14 days. The model learned from this
data is used to 1) predict contextual user states, and 2) predict relevant entities for the detected states. The
results show improved user state detection accuracy and entity prediction performance compared to static,
heuristic, and basic topic models. Our findings have implications for the design of proactive recommendation
systems that can implicitly infer users’ contextual state by monitoring users’ digital activities and proactively
recommending the right information at the right time.

CCS Concepts: • Information systems → Information retrieval; • Human-centered computing →
User models.
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1 INTRODUCTION
Our digital life is composed of receiving, processing, communicating, and producing information.
We tend to organize digital activities around tasks that are contextualized by entities, such as
apps, documents, people, and various keywords. These entities are semantic data objects which
have properties corresponding to real-world objects they represent [28] and specify the context
of our activities. We accomplish our digital tasks by a set of interactions with entities on our
digital devices, which then trigger a series of screen transitions following each interaction. The
problem faced by users when engaged in digital tasks is how to allocate their limited cognitive
resources to find and access the required entities from a wide range of data [51]. Digital life is
characterized by multitasking and frequent interruptions, requiring frequent activity switches.
For instance, consider a user engaging in multiple tasks every day; for each task, she works on
different documents, opens different applications, browses the Web with specific keywords related
to tasks, and communicates with colleagues about tasks. Therefore, during a day, the user is at
different states working on multiple tasks that are associated with a set of entities. Furthermore,
many forms of these interactions are repetitive - we visit the same websites, send messages and
reply emails to the same people, and open previously visited documents. With the growing number
of entities, searching has become increasingly important for finding information on personal
computers. This retrieval process can be time-consuming and cognitively challenging as the entity
to be retrieved (e.g., a file, name of a person, or an address on the Web) may be difficult to recall.
As a result, information overload can pose an additional challenge to the progressing of digital
tasks. Individuals have to remember which entities are associated with each task in order to restore
the information related to that task if needed. Consequently, designing personal assistants and
contextual recommendation systems that can understand the different states of the user and can
support the management of tasks has gained increasing interest[12, 35, 45, 55, 71, 75].

Over the last few decades, the use of assistive technologies and tools has changed how information
work is carried out. Many diverse user interfaces and interactive techniques have been developed
to facilitate accessing previously used items and managing tasks [12, 26, 28, 47]. Examples of
this include web page recency lists [31, 46], showing previously opened documents [66, 73], and
personal information management systems [7, 11, 49]. By exposing users to a larger variety of
what may be of interest to them, they can find what they are looking for quickly and efficiently.
For example, in the context of cloud-based platforms such as Google Drive and Microsoft Office
365, recommendations are intended to facilitate access to the documents users are likely to need in
the near future, thereby eliminating the burden of memorizing folder structures and automating
document management [74]. However, the majority of proposed personal assistants are based on
heuristic methods that consider recency and frequency without modeling the user’s activities.

Screen recording of digital devices (e.g., laptops, tablets, or smartphones) can provide a wealth of
information about the ongoing digital tasks of the users, and consequently their states. Manual
maintenance of such information collections and the analysis of data acquired from screen record-
ings are time-consuming and not feasible for long-term studies involving weeks or months. To
capture users’ ongoing states, we need to develop a representation of their activities. The use of
activity mining to automate maintenance of such collections appears to be a promising alternative
[55]. Activity mining extracts unique activities from a stream of interactions with entities by utiliz-
ing interaction histories. The existing literature in activity mining demonstrates varying degrees
of success in limited study setups in labs. Despite previous efforts, most approaches struggle to
maintain two important aspects; namely (a) considering cross-app rich entities, or (b) modeling the
temporal behavior.
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In spite of a large body of work devoted to modeling user digital behavior, most of the advances
were focused on pre-determined interaction logs (e.g., only query logs, email, or Web browsing
history) [40, 68, 76], or data acquisition has been limited to a certain application or predefined
tasks [30, 36, 43, 75]. In particular, the context of the user task is mainly determined based on
the user’s Web activity, such as recent Web queries issued by the user [15, 42] or the blogpost
or Web document the user is composing [5, 17, 25, 35]. However, there are many other sources
of contextual information that can be useful in determining the user state, such as 24/7 digital
behavioral recordings that are not restrained to a specific application or a type of user input.
Previous approaches have not been effective in utilizing rich features that are present on the user
screen in real-life digital activities as well as considering complex co-occurrence between different
types of entity appearing on the screen, which this paper aims to address. Furthermore, users’
interests are dynamic and constantly changing, and are influenced by their previous behavior.
Identifying users’ dynamic preferences based on their historical behavior can be challenging, but
essential for personal recommendation systems. Some of the previous studies fail to capture the
sequential development of contexts over time, or only model linear dynamics of user representations,
which are insufficient to capture nonlinear dynamics in human behavior [12, 28, 35, 45, 71].

There has been fairly little research on approaches that automatically learn the user states and
accordingly predict the user’s needs in real-life digital activities. In this paper, we present entity
footprinting which is an approach for entity recommendation in realistic everyday digital tasks,
based on user model learned from images captured from the screen. To collect the user’s 24/7 digital
behavioral recordings, we employed a screen monitoring approach that captured all user interaction
data and generated visual content (e.g., visual content presented to the user on the screen) across
application boundaries. A user state model is built of heterogeneous, multiple (temporal and topical)
aspects data that can be contextualized by several entities, such as applications, documents, people,
and various keywords. The model is then utilized to predict a subsequent user state and entities
relevant to that state. To this end, we aim to answer two main research questions. Our first question
aims to identify the user state:

RQ1: Can we automatically identify and distinguish users’ states from their everyday digital
activities?
Beyond the state identification, we are particularly interested in predicting which entities the

user will be interested in working on next, which leads to our second question:
RQ2: Does user state prediction help in recommending more relevant entities to users in the context

of their daily digital activities?
The model that solves the aforementioned issues should satisfy the following four characteristics:

(1) it should follow an unsupervised learning approach, i.e. the model needs no prior knowledge
about the categories of activities or the labeled data; (2) due to the high dimensionality and sparsity
of the extracted data from users’ screens, and therefore the high computational cost of the data
processing, the data must be clustered intomeaningful clusters that take textual content into account
and represent different states of a user; (3) it should take into account the time-varying nature of
human behavior; and (4) to recommend entities to users, the predicted states must be converted
into a ranking over entities. To answer those research questions and fulfill these characteristics, we
present a novel approach for data-driven modeling of users’ state in their daily digital activities.
This model is able to predict the entities that the user is likely to find relevant given the user’s
interaction history.
Due to the high dimensionality and sparsity of digital behavioral data with the size of several

thousands of entities occurring in the entire recording history, the user state is modeled using a topic
modeling approach wherein a topic represents a user state. Statistical co-occurrence patterns among
entities justify the application of the topic model in identifying the underlying latent thematic
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User Activity Data
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Fig. 1. Diagram of the proposed model. The model observes the user’s screen which is composed of extracted
entities such as the title of the active document, the name of the active application, people names, and
keywords in that screen. In the example shown here, in the user activity data, the first two documents are
an email, a PDF file that the user opened, and the last document is a Web page opened in the Safari Web
browser. Dimensionality is reduced by the user state modeling using the Dirichlet Hawkes Process (DHP)
which takes a corpus of information objects and their time as input and converts them to topic distributions
that represent different user states. Non-linear dynamics of the topic sequence is modeled using BiLSTM and
attention in user state prediction which is responsible for the prediction of the next state that the user will
attain, and entity prediction identifies the most relevant entities associated to the predicted state. Predicted
entities in this setting can be recommended to the user using an interface (the bottom right figure) that
displays the possible entities from which the user can choose.

structure of the data. However, this model on its own tends to suffer from disregarding the order
and not taking into account the temporal behaviors of the user. Therefore, in this work, to address
this problem and to capture the sequential signals underlying users’ behavior sequences, we use the
powerful Bidirectional Long-Short-Term-Memory (BiLSTM) model [54] to identify the sequential
relatedness of states. Moreover, we employ the self-attention mechanism [10, 69], to learn a better
representation of the user’s state in the behavior sequence by leveraging sequential information, to
accurately predict users’ subsequent state and accordingly recommend the most relevant entities
related to the predicted state. The diagram of the proposed model is represented in Figure 1.
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To evaluate the model, we conducted an offline analysis on a collected real-world digital activities
data in which all information appearing on the screens of 13 users during a period of 14 days
was captured automatically via screen monitoring and converted to texts using Optical Character
Recognition (OCR) [28].

The main contributions of this work can be summarised as follows:
• A new representation for characterizing digital activities: entity footprint across boundaries
of applications that utilizes contexts acquired from monitoring system to capture user state.
• A user model capable of predicting the user state in digital life based on entity footprinting
and predicting needed entities at the right time.
• An empirical evaluation showing how the proposed user model improves the prediction
performance compared to baseline models.

The paper is structured as follows. In the following section, a discussion of related work is
provided, and in section 3, we introduce data acquisition approach in entity footprinting and user
interface implemented in this paper. In section 4 we present the user model overview and problem
formulation including user state modeling, sequence modeling, and entity recommendation. Data
set creation and experimental exploration is presented in section 5. We evaluate our proposed
method and compare it with the baselines in section 6. Finally, we conclude with a discussion and
conclusion in section 7 and 8.

2 RELATEDWORK
The purpose of our work can be viewed, in broad terms, as the user state identification from
contextual information collected at the entity level. A large body of research has been undertaken on
user behavior modeling at the intersection of several different research topics: personal information
management, digital task recognition, information retrieval, and recommendation systems. There
are algorithmic approaches that aim to find how contextual information can be leveraged for
document ranking and making recommendations tailored to the context of each individual user.
Examples of contextual signals are pre-query sessions [73], click-through data [6], or pre-visited
pages [34], or a combination of behavioral-based signals [64]. Works related to our research can
broadly be grouped into researches that examine task-centric personal information management,
and context-aware recommendation systems. A comprehensive study can be found in reference
[28], where several different types of digital activity monitoring systems, and related entity-based
retrieval and recommendation systems are discussed.

2.1 Task-centric Personal Information Management
One relevant area within the context of this paper is research in task-centric personal information
management for the support of users of digital devices. In this line of research, they assume that the
user behavior is a mixture of tasks and each task is composed of a set of information items. Examples
of this kind of task managers are introduced in [2, 19, 32, 60], in which the creation, maintenance and
collection of such information were done manually. In addition to manual support systems, there are
different semi-automatic research prototypes for a task-centric support of information work [29, 57].
The clustering part was done manually and the task switches were detected automatically in these
works. As another alternative, automatic detection of tasks and activities from interaction histories
was introduced in [44, 45, 48, 52, 53, 55]. The task-specific window grouping was done based on
the title of the windows in [45]. However, in [48] the author clustered tasks by the context-aware
(program names and accessed documents) pattern mining approaches. To identify task clusters
in [53], hierarchical clustering was employed based on the semantic similarity of the document
contents. By applying these advancements, it has become possible to automatically split the digital
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work of a user into segments corresponding to different tasks. These studies either used activity
properties, such as access sequence, duration, mouse clicks, keystrokes, etc., or content properties,
i.e. content of documents, title of windows, and active applications. In a research proposed in [55]
the authors combined these properties to cluster the documents visited by information workers.
Researchers in [52], tried to automatically associate existing task descriptions with information
users access as they work on the tasks, and consequently generate the representation of a user’s
work using different Natural Language Processing (NLP) techniques (TF-IDF, W2V, etc.). Except
for [55], evaluations in this field concentrated on lab setups with short time intervals, ranging
from a few hours to a week. While a longer period of usage (around 40 work days) has been
examined in [55], none of these studies model the dynamics of user behavior while interacting
with the computer and instead mainly focus on clustering digital tasks and activities. Moreover,
most of these approaches are tailored to a specific application or specific task (e.g. information
seeking), as opposed to being application- or task-agnostic. For example, the focus of [44] was on
classifying user’s digital activities into six specific activity types: writing, reading, communicating,
web browsing, system browsing, and miscellaneous, and in [52], the authors restricted their study
to an information seeking task for software developers. Another limitation in the recent relevant
work [52] is that they assumed that the times of task switching must be indicated, so it is not a
fully automatic approach. Task descriptions were also captured manually in this work, which can
be impossible in realistic settings. Even in the specified tasks, it is possible that the vocabulary
users use to describe their tasks does not match exactly with the words commonly found within
the content of those tasks.

Task identification based on the log files has attracted the attention of the scientific community for
a long time and can be served for various purposes, from time spent on tasks [9], to understanding
the information needs of users [33], to support resumption of suspended or interrupted tasks.
Researchers investigated the effects of explicitly representing information associated with a task
on the productivity of users. Dragunov et al. [12] demonstrated that data collected from user
interactionswith information objects (e.g., files, emails, documents, contacts, etc.) could be converted
into a task template that can assist users in accomplishing their tasks. These templates were used to
aggregate information and associate relevant resources to each task. Information resources in this
work were documents and software tools necessary to accomplish tasks. According to Brdiczka et al.
[4], routine tasks are characterized by temporal regularity of user actions (e.g., switching between
applications, switching windows). The tasks were labeled by users, and each task was associated
with a set of documents and applications. This data was used to train a model that constructed
a task representation that was based on a distribution of temporal patterns defining the user’s
routine. A trained model and found patterns were then used to identify the task from an unseen
sequence. However, they did not aim to predict the task context or to examine more extensive
sources of contextual information, but the model was trained based on predefined interaction data,
such as the interaction history of specific applications. Ideally, a personal information management
system would monitor digital behavior across a variety of applications to determine what the user
is currently doing.

2.2 Context-Aware Recommendation Systems
In the last few decades, recommendation systems have gained popularity among researchers, and
they have become a part of our daily lives due to their ability to facilitate finding relevant information
in the rapidly expanding digital world. A successful and effective recommendation system depends
on accurately identifying the users’ intents or interests. Conventional recommendation systems
were limited to one type of data, for example, to find a match for movies, books, and songs, and
focused on recommending new items to the users. These recommender systems collect information
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from users; create and update users’ profiles; and recommend information tailored to the user’s
profile based on similarities across users as in collaborative filtering system. However, modern
virtual personal assistants are increasingly utilizing a variety of signals derived from users’ search
histories to build models of their users and better predict their short-term and long-term future
interests [58]. There are several commercially available recommendation systems that operate on
smartphones and provide resources based on the user’s current context, such as Google Now and
Microsoft Cortana. In particular, Google Now attempts to model both short-term search intents as
well as long-term interests and habits based on a series of search logs from a user for several months
[21]. In another work, Song and Guo [61] have introduced the concept of extracting patterns from
search history and using those patterns to recommend information to users at specific times during
the day.

Researchers have examined the use of task context not only for information management but also
for recommendation systems [15, 23, 34, 56, 70]. Users’ contextual information, such as search and
interaction histories, spatio-temporal information, or demographics can leverage recommendation
systems to provide tailored experiences for their users. Researchers in [50] provided an example
of an early proactive search setup that demonstrated the benefit of using contextual information
for proactive recommendations. The context in their work is determined from the text that is
written or read in a word processor, and this context is used as a query to the search system. The
query runs continuously in the background and displays a list of documents that are related to
the document that is currently being read or written by the user. The downside of this approach is
that system logs and contextual information derived from other application sources are all ignored.
Furthermore, users’ historical behavior, such as their long-term history, which has been shown to
improve the quality of recommendations, was not taken into account.

In the last few decades, the majority of the work on modeling context has focused on observed
past user behaviors of their search history, such as query logs [14, 18] and web browsing logs [20].
The context model was then used to update the list of initially generated recommendations, such as
reranked query suggestions or automatically generated search results. For instance, the context in
[14] was search engine result pages of the previous query; and the signal value was traces of user
attention at the term level. Then, the candidate terms for query expansion were reranked based
on the semantic correlation to those contextual terms. Letizia [40] is another introduced system
that provides proactive recommendations to users during web browsing by employing a set of
heuristic rules. However, Web searches are often performed as part of a more general task [38],
and therefore relying only on search history as the source of context may limit the effectiveness of
recommendations. An alternative approach is to include all the desktop data (documents stored on
the computer) as the context [8] for recommendation. Initially, a set of terms closely related to the
current query were identified as possible candidates. The query suggestions were then narrowed to
only those terms that were semantically related to terms appearing in the desktop data.
Additionally, more recent research has incorporated data from other sources that provide a

more comprehensive context. Singh et al. [59] logged user behavioral signals, such as clicks and
page visits, on a real-world e-commerce site to predict the query intent of the user. Li et al. [37]
considered recently read emails as context for recommendations. Tan et al. [63] used recently
opened documents as user context. The focus of these works was on obtaining partial data, which
can only be obtained through predefined applications or services. As a consequence, this would
limit the use of a recommendation system. While in this work, we integrated system logs and
screen monitoring to capture all textual context as well. We focus on modeling the task context
comprehensively by considering more extensive sources from various applications, as well as
considering temporal associations of the user’s past interactions to predict the user’s state and
provide them with information relevant to the predicted state.
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Most of the previous studies have focused on different neural network architectures or com-
binations of features, ignoring the sequential nature of user behavior sequences in real-world
recommendations. These intelligent assistants focus on the recurrence of users’ intent and present
information that is closely related to the users’ intent. In [75] and [1] the authors addressed user
modeling by predicting the topic of the user’s future click and search queries, respectively. A closely
related work to our proposed model is described in [75] which uses topic models for user modeling,
using browsing history of users. The method identifies activity patterns in a large group of users.
For user modeling, the LDA topic model is used jointly with LSTM where activity words are urls,
and the topic model is used to discover patterns in these activities. In contrast, our work investigates
the human state prediction from different types of entities extracted from the user’s screen, on a
large scale, and this data helps us discover individual behavior in their daily digital life. In another
work, the authors proposed a neural networks based time-series model with a dynamic memory
which is able to learn user behavior over time and predict future search topics [1]. In addition to
predicting future topics, their proposed model can estimate the approximate time of day when
a user is likely to be interested in a given search topic. Our work differs from their works in the
sense of context that we apply for our modeling. We use the screen content of the user which
includes multiple (temporal and topical) aspects of user’s digital behavior. Moreover, our goal is
to predict the next state of the user and accordingly recommend relevant entities to the user, not
just the next app or next search query. Models that incorporate sequence models such as LSTMs
(e.g., [36, 39]) have been widely employed for the modeling of interaction behavior, due to their
extensive architectures and their capability to capture long-range dependencies. In recent years,
the transformer model has been used to produce state-of-the-art results on a variety of tasks [69].
In a series of our work done on proactive entitybot [71], the authors applied latent semantic

analysis with a simple bag-of-words data representation to detect users’ tasks without considering
the dynamic evolving between tasks. In our more recent work [28], the entity recommender system
is built on a similar idea of long-term monitoring but utilizes a semi-supervised machine learning
approach that learns the user intent in real time. The user intent model is interactive such that
it can also learn from explicit feedback from the user if it is available. The system dynamically
adapts its recommendations to the most recent preferences of the user. After each interaction, the
user model is updated in light of the explicit feedback provided by the user. The advantage of our
approach is that we can predict the next state of the user based on their previous states, anticipating
their future information needs and not just focusing on entities relevant to the user’s current task.

3 DATA ACQUISITION APPROACH IN ENTITY FOOTPRINTING
Screen recording is an interesting source of data in user behavior modeling. In this section, we
introduce the utilized monitoring system that continuously monitors a user’s digital activities by
recording screenshots of the active windows, processes, and extracts relevant information, and can
generate vectors for discovering user’s states from user interaction logs [71].

3.1 Digital Activity Monitoring System
The digital activity monitoring system is developed in Mac Operating System (OS) and Windows
OS. Both versions were implemented using the Accessibility API, a native library in the OS. They
perform identical functions that track users’ digital activities and capture textual information
present on the screen. The digital activity monitoring system is comprised of four modules:

• Screen Monitoring module captures the content in an active application window by taking
screenshots at 2-second intervals and saving the screenshots as images.
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`OCOCR

OS logger

Keyword Extraction module

Information object 1

`OC

`OC

`OCOCR

OS logger

Keyword Extraction module

Information object 2

Bag of words

Fig. 2. Extraction of a bag of words from a digital activity monitoring system. An information object is an
information resource on a computer, such as a textual document, an email, a folder, a file, an instant message,
a Web page, or an application window with a unique title. The illustration demonstrates how a bag of words
is extracted from two information objects. The first information object contains three consecutive screenshots
of emails with the same subject line, and the second is three consecutive screenshots of a Google doc with a
unique title that has been scrolled down by a user.

• OCR module extracts texts from screenshots. OCR module is implemented using Tesseract
4.01 which is a very accurate OCR engine.
• OS logger collects information about computer usage associated with the captured screenshots,
including titles of active windows, names of active applications, time stamps, file paths, and
URLs.
• Keyword Extraction module detects and extracts keywords from the OCR-processed texts. We
used AllenNLP2 to implement the Keyword Extraction system.

All OCR-processed texts and OS log information were encrypted and stored as log files on
the computer. Each log entry was associated with a collection of entities, including applications,
documents, keywords, and persons. Applications were names of active applications; Documents
were determined as titles of active windows; Keywords were extracted using the Keyword Extraction
module; and Persons were determined by extracting senders and receivers in an e-mail (Mail, MS
Outlook, and Thunderbird) and contact persons in the chat window (Skype, Messenger, WhatsApp,
and Slack).

3.2 Screenshot Pre-processing
The screenshots and associated metadata, including text units produced by the OCR process as well
as OS information, and entities are stored chronologically as a sequence. We merged screenshots
that belong to the same information object using window titles. An information object describes
the user’s access to an information resource on the computer, such as a textual document, an email,
a folder, a file, an instant message, a Web page, and an application window with a unique title. For
instance, in Figure 2, we merged screenshots that belong to an email and its replies with the same

1https://tesseract-ocr.github.io/tessdoc/4.0-with-LSTM
2https://allennlp.org/
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Fig. 3. Example of entity prediction. In this example, a user was engaged in human-resource management on
recruiting a summer trainee. The model took recently recorded screenshots (the left part) as input representing
the context of the user. It then uses this information to identify relevant entities and predict what the user
would do next e.g., to read the quick guide for new employees or to go through summer job applications
(the right part). The model could predict the applications the user would open next and the documents they
would look for. It could also suggest which people the user should contact or which keywords the user should
use for searching related information.

subject (left pane) as a single information object, and screenshots of a Google doc with a unique
title (right pane) as another information object. We focused on the content of the information
object that the users read and produced by extracting only information change on the screen. For
this process, we utilized a frame difference technique in which the two temporally adjacent screen
frames (of a single information object) were compared, and the differences in pixel values were
determined. That is, terms that appeared in the same pixels in the two adjacent screen frames were
excluded from the information object.

4 USER MODEL IN ENTITY FOOTPRINTING: PROBLEM FORMULATION
User model in this work captures the user’s interactions with the system which consists of informa-
tion objects acquired from the user’s screen. It then models the user’s contexts, uses this model to
infer the user’s state at each time step, learns the preferences of the user, and finally provides the
relevant entities to the user. An illustrative example of a sequence of information objects recorded
from a user’s screen and the corresponding predicted entities are shown in Figure 3. We consider
that each interaction with the computer can be recorded as a tuple of information objects and the
time at which the interaction occurred. Each information object itself consists of a collection of
entities, including the title of the document, the application to which the document belongs, and
the screen content (keywords and persons). The 𝑖th interaction, Ω𝑖 , in a sequence can be expressed
as follows:

Ω𝑖 = (𝑜𝑖 , 𝑡𝑖 ) (1)
where 𝑡𝑖 indicates the timewhen an interaction with a particular information object of 𝑜𝑖 occurred.

Each 𝑜𝑖 is:
𝑜𝑖 = (𝑠𝑖 , 𝑎𝑖 ,𝑤𝑖 , 𝑝𝑖 ) (2)

where 𝑠𝑖 is the title of the active screen, 𝑎𝑖 identifies the app to which the information object
belongs, 𝑤𝑖 and 𝑝𝑖 refer to the screen content that contains a collection of entities including
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keywords and people names, respectively. The sequence of user digital activities may be viewed as
a series of these tuples.

Ω1:𝑛 = {(𝑜1, 𝑡1), (𝑜2, 𝑡2), . . . , (𝑜𝑛, 𝑡𝑛)} (3)
Based on the bag of words model, each information object 𝑜𝑖 can be represented by a bag of

individual entities [𝜖1, ..., 𝜖 |𝐸 |]𝑇 in which non-zero elements are the entities present in the current
information object. 𝐸 is the set of all unique entities, including screen titles, app names, keywords,
and people names extracted from the entire recording history, and |𝐸 | denotes the set’s size. The
logged digital activities of the user are stored in the matrix 𝑋 ∈ R |𝐸 |×𝑁 shown in Figure 4, where
columns are a sequence of information objects 𝑜𝑖s and rows are entities extracted from the user’s
screen. The (𝑖, 𝑗)th element is 1 if the 𝑖th entity exists in the 𝑗th information object.

𝑋 =

o1 o2 . . . o𝑁


entity1 𝜖11 𝜖12 · · · 𝜖1𝑁
entity2 𝜖21 𝜖22 · · · 𝜖2𝑁

...
...

. . .
...

entity |𝐸 | 𝜖 |𝐸 |1 𝜖 |𝐸 |2 · · · 𝜖 |𝐸 |𝑁

Fig. 4. Input data based on the Bag-of-Word model. The element 𝜖𝑖 𝑗 is 1 if the 𝑖th entity 𝜖𝑖 exists in 𝑗th
information object 𝑜 𝑗 . 𝑁 is the number of observed information objects, 𝐸 is the set of entities, and |𝐸 | denotes
the set’s size.

Given a sequence of previous information objects, we are interested in predicting which entities
are likely to appear next, at the (𝑛 + 1)th step:

𝑜𝑛+1 = 𝑓 (𝑜1:𝑛) (4)
In order to achieve the function 𝑓 , we will utilize a machine learning model. Due to the fact

that |𝐸 | is too large (it can reach thousands within our dataset), implementing machine learning
models directly on these highly sparse and large vectors would require enormous amounts of data.
Therefore, we first cluster the stream of information objects into different states by inducing the
textual content and exploiting the co-occurrence patterns among entities. In this way, we reduce
the size of the dataset by formulating a semantic and meaningful representation for the collected
entities. The second step in achieving the function 𝑓 is to encode the history of a user by modeling
a sequence of interactions. Finally, based on the encoding of history, we intend to design the model
in such a way that recommends those entities to the user that are most likely to appear in the next
time step.

4.1 User State Modeling
Identifying the states of the user from a sequence of interactions with the computer can be seen as
the task of clustering sequential data. By creating representations of a user’s state, we can determine
what tasks the user is focused on at any given time instant. In order to generate more advanced
representations, which consider an entity’s relevance within the context of the user’s overall state,
we focus on topic modeling approaches. These representations can be used to automatically match
a topic to each state of the user to identify the task they are working on. The most extensively used
topic model for clustering data is Latent Dirichlet Allocation (LDA) model, where a finite number
of topics are defined in advance [3]. Its enhanced model is Hierarchical Dirichlet Process (HDP),
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which is the nonparametric counterpart of the LDA, and has an infinite number of topics [65].
These algorithms are designed to discover hidden thematic structures in a collection of documents
and rely on the co-occurrence of words to make cluster inferences. In these methods, the probability
of a word being assigned to a particular topic is determined by the word count of that topic.

In recent years, researchers have also been exploring the idea of clustering document streams into
clusters based on the temporal sequence inwhich they arrive [13, 24]. The newmodels do not require
a fixed size dataset, instead they can be applied to a stream of documents arriving sequentially,
with the number of clusters updated automatically. In this paper, to deal with continuous stream
of screens, we implement a Dirichlet-Hawkes Process (DHP), which is a probabilistic generative
model that combines the strengths of Bayesian nonparametrics as well as the Hawkes Process [13].
DHP is a continuous-time model for streaming data that allows for self-excitation. The key idea in
DHP is that the Hawkes process (one kind of temporal point process) is adopted to model the rate
intensity of information objects, while the Dirichlet Process is used to capture the state-information
objects cluster relationships in which each cluster represents a state that contains information
objects related to that state.
Let show the latent state indicator by 𝑧1:𝑛 . Given a stream of information objects (𝑜𝑖 , 𝑡𝑖 )𝑛𝑖=1, the

inference algorithm in DHP is composed of two subroutines. First, it samples the latent cluster
for the current information object 𝑜𝑛 by Sequential Mont Carlo; and then, updates the learned
triggering kernels of the corresponding cluster in the progress. DHP generates a series of samples
\𝑜1:𝑛 corresponding to these information objects. Each state will have a distinctive value of \𝑜𝑖 . If
there are𝐾 distinct values \1:𝐾 at time 𝑡𝑛 , then 𝑧𝑛 ∈ 1, 2, . . . , 𝐾, 𝐾 + 1where 𝑧𝑛 = 𝐾+1 denotes a new
state and 0 < 𝑧𝑛 ≤ 𝐾 denotes an existing state. Let the uniform prior \0 be a |𝐸 | dimensional vector
(where |𝐸 | denotes the size of unique entities set) where every element is a constant value. The
posterior is decomposed as 𝑃 (𝑧𝑛 |𝑜𝑛, 𝑡𝑛, 𝑟𝑒𝑠𝑡) ∼ 𝑃 (𝑜𝑛 |𝑧𝑛, 𝑟𝑒𝑠𝑡)𝑃 (𝑧𝑛 |𝑡𝑛, 𝑟𝑒𝑠𝑡) by Dirichlet-Multinomial
conjugate relation. Then the likelihood 𝑃 (𝑜𝑛 |𝑧𝑛, 𝑟𝑒𝑠𝑡) is given by:

𝑃 (𝑜𝑛 |𝑧𝑛, 𝑟𝑒𝑠𝑡) =


Γ (𝐶𝑧𝑛+∑|𝐸 |a \0 [a ])

∏|𝐸 |
a Γ (𝐶𝑧𝑛

a +𝐶𝑜𝑛
a +\0 [a ])

Γ (𝐶𝑧𝑛+𝐶𝑜𝑛
∑|𝐸 |

a \0 [a ])
∏|𝐸 |

a Γ (𝐶𝑧𝑛
a +\0 [a ])

if 0 < 𝑧𝑛 ≤ 𝐾

Γ (∑|𝐸 |a \0 [a ])
∏|𝐸 |

a Γ (𝐶𝑜𝑛
a +\0 [a ])

Γ (𝐶𝑜𝑛
∑|𝐸 |

a \0 [a ])
∏|𝐸 |

a Γ (\0 [a ])
if 𝑧𝑛 = 𝐾 + 1

(5)

Here 𝐶𝑧𝑛 is the entity count of cluster (state) 𝑧𝑛 , 𝐶𝑜𝑛 is the total entity count of information
object 𝑜𝑛 , and 𝐶𝑧𝑛a and 𝐶𝑜𝑛a are the corresponding counts of the ath entity. Finally, 𝑃 (𝑧𝑛 |𝑡𝑛, 𝑟𝑒𝑠𝑡) is
the prior given by the Dirichlet-Hawkes process as :

𝑃 (𝑧𝑛 |𝑡𝑛, 𝑟𝑒𝑠𝑡) =


_\𝑘 (𝑡𝑛)

_0+
∑𝑛−1

𝑖=1 𝛾\𝑜
𝑖
(𝑡𝑛,𝑡𝑖 )

0 < 𝑘 ≤ 𝐾

_0
_0+

∑𝑛−1
𝑖=1 𝛾\𝑜

𝑖
(𝑡𝑛,𝑡𝑖 )

𝑘 = 𝐾 + 1
(6)

where _0 is the base intensity of a background Poisson process, _\𝑘 is the intensity of the Hawkes
process corresponding to the 𝑘th state, and 𝛾\𝑜

𝑖
(𝑡𝑛, 𝑡𝑖 ) = exp(−|𝑡𝑛 − 𝑡𝑖 |). Using these probabilities,

Sequential Monte Carlo sampling is used to infer the state label of each information object.
This model is able to learn a representation of each observed input at each time step and provide

an appropriate framework for generating a representation of the user state based on the observation
of digital activity. Additionally, as the digital activity of the user arrives at streaming fashion and
has time information, we can leverage both the contents and time information in order to better
cluster the activities or as we called states of the user. However, this model still tends to suffer
from disregarding the order and not taking into account the sequential information of states and
recurrent activities of the user.
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4.2 User State Prediction
The state representation explained in the previous subsection, is aimed to cluster what’s on the
user screen at each time frame. We also can compress what happens over time. Our focus is on
a frequently encountered question: can we predict the kind of activity a user will undertake in
the future based on the sequence of activities observed in the past? How do past states affect
the occurrence of future states? To correctly understand user preferences, one must be able to
account for the information about the sequential behaviors and inherent dynamics in the behavior.
Therefore, the second component of our model is sequence learning on the user state. This module
is aimed to process the sequence of input and predict the most likely future continuation of the
sequence which is the state that is expected to be reached by the user. By modeling the sequences,
we can learn the digital activity patterns of the users. As an example, the occurrence of one event
related to checking Twitter may result in a series of events about other social media such as
Facebook. Generally, when a user is working, information objects that appear in close proximity to
one another tend to share a similar topic. This implies that the appearance of a specific topic is
likely to be followed by the emergence of related topics in a nearby timeframe.

One typical approach tomodel temporal dynamics in user behaviors is to use latent autoregressive
model. This algorithm updates the latent state using ℎ𝑛+1 = 𝑓 (ℎ𝑛, 𝑜𝑛) and the observable state is
derived from 𝑜𝑛+1 = 𝑔(ℎ𝑛+1, 𝑜𝑛) for some data 𝑜𝑛 . Functions 𝑓 and 𝑔 are nonlinear functions that
can be learned from data and are commonly referred to as recurrent neural networks (RNNs) in
deep learning. One of the most used variants of RNNs is the Long-Short Term Memory (LSTM)
which contains specially designed units to avoid vanishing gradients.

Our technique is based on the idea of seeing the state as a nonlinear function of the state’s
history and parameterizing it using a recurrent neural network. In this model, user state history
can be encoded into a compact vector representation, from which the subsequent state of the user
can be predicted. Encoding of user interaction history into a compact vector (representing user’s
preferences) can be done using the basic paradigm of the left-to-right sequential model. Despite
their popularity and efficacy, such unidirectional left-to-right models are insufficient for learning
appropriate representations of user behavior sequences. These models were initially developed
for types of sequential data that have natural order, such as text and time series data. Therefore,
encoding is done only on data from previous items. However, users’ behaviors in real-world
applications may not always follow this rigidly ordered sequence [27, 62, 72]. When modeling
user behavior sequences, we can consider context from both directions. LSTMs with bidirectional
properties can learn input sequences both forward and backward, leading to both interpretations
being concatenated and embedded within the hidden state. Our intuition behind using the BiLSTM
neural network is to use all available information and effectively model the local dependencies
between certain states of the user in a temporal manner.
Formally, given a state 𝑧𝑛 at the time step 𝑛, corresponding hidden state ℎ𝑛 can be derived by

using the equations defining the various gates used in LSTM as:

𝑖𝑛 = 𝜎 (𝑧𝑛𝑈 𝑖 + ℎ𝑛−1𝑊 𝑖 )
𝑓𝑛 = 𝜎 (𝑧𝑛𝑈 𝑓 + ℎ𝑛−1𝑊 𝑓 )
𝑜𝑛 = 𝜎 (𝑧𝑛𝑈 𝑜 + ℎ𝑛−1𝑊 𝑜 )
𝑔𝑛 = tanh(𝑧𝑛𝑈 𝑔 + ℎ𝑛−1𝑊 𝑔)
𝑐𝑛 = 𝜎 (𝑓𝑛 ⊙ 𝑐𝑛−1 + 𝑖𝑡 ⊙ 𝑔𝑛)
ℎ𝑛 = 𝑜𝑛 ⊙ tanh(𝑐𝑛) (7)
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where 𝑐𝑛 denotes the cell state. In order to capture the long-term dependencies, the LSTM cell
adds internal gating mechanism. 𝑖 , 𝑓 and 𝑜 are the input, forget and output gates respectively in Eq.
7. These gates control how information is added to or removed from cell states along the sequence
of state updates. 𝑧𝑛 and ℎ𝑛 are the one-hot vector of input state and the LSTM hidden state at time
step 𝑛, respectively.
We divide a sequence of user states 𝑧1, 𝑧2, ..., 𝑧𝑛 into a fixed-sized sliding window of size𝑊 for

𝑛 = 1, . . . , 𝑁 , and each sequence is formed as {𝑧𝑛−𝑊 +1, ..., 𝑧𝑛−1, 𝑧𝑛}. Given the last𝑊 of user states
in this window, LSTM network performs:

ℎ𝑛 = 𝑓 (ℎ𝑛−1, 𝑧𝑛), 𝑛 = 1, . . . , 𝑁 (8)

The forward layer output sequence,
−→
ℎ , is iteratively calculated using inputs in a positive sequence

from time 𝑁 −𝑊 to time 𝑁 − 1, while the backward layer output sequence,
←−
ℎ , is calculated using

the reversed inputs from time 𝑁 −𝑊 to time 𝑁 − 1. The desired output which is the prediction of
next topic is then produced at each time step from ℎ𝑛 :

𝑧𝑛+1 = 𝑔(
−→
ℎ𝑛,
←−
ℎ𝑛), (9)

where 𝑔 is an arbitrary differentiable function followed by a softmax. The BiLSTM network
accepts a sequence of 𝑧 (state) as input and outputs the next 𝑧.
Although BiLSTM utilizes the user’s sequential behavior to capture the long-term dependency

in the contextual user state, this approach cannot focus on the important information and the
user’s main purpose within the obtained contextual state. In real-life digital activity there are
situations where a user is working on a specific topic, but accidentally opens a document, or clicks
on a wrong link which opens an irrelevant web page. While these actions are part of the user’s
behavior sequence, they are not the primary focus of the user at that time. As a result, it is crucial
to contemplate the main goal of the user in each session in addition to the sequential behavior. By
concentrating on the important aspects of the contextual state, we can boost the accuracy of our
prediction. Attention mechanism can highlight important information by setting different weights.
BiLSTM combined with the attention mechanism can enhance the prediction accuracy even further
[41].
In order to train the model using back-propagation, the loss(𝑧𝑛+1, 𝑧𝑛+1) is measured using

categorical-crossentropy. The trained network can then serve as a model to predict the future state
in the test data set. The output of the network depends not only on the latest state but also on a
sequence of states.

4.3 Entity Recommendation
The topic model in the first subsection provides the probability of entities at each state. The sequence
model then predicts the probability of each state at the next time step after the final softmax. By
knowing these probability values at time step 𝑛, the probability of a given entity 𝜖𝑛 assuming 𝑍
states is computed by:

𝑝 (𝜖𝑛) =
𝑍∑
Z=1

𝑝 (𝜖𝑛 |𝑧𝑛 = Z )𝑝 (𝑧𝑛 = Z ) (10)

Top-k entities are generated by sorting entities in descending order. That is, entities in each
type (apps, documents, people, and keywords) that are most consistent with the future state are
retrieved.
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5 EXPERIMENTAL STUDY
In order to investigate the research questions, we collected data from thirteen users as they
accomplished their daily digital tasks. Five males and eight females with the average age of 25
years were recruited to take part in the study. Participants with higher educational backgrounds
were chosen as they were likely to use their personal laptops for work-related tasks, allowing us to
collect more realistic data. Upon joining the study participants were informed of their privacy and
told that their data would be encrypted and stored on a secure server, and used only for research
purposes. As compensation for participating, they were compensated with 120 euros.
The research was carried out in accordance with the ethical guidelines of the University of

Helsinki. Regarding the data usage policy and procedure, participants were asked to complete
a consent form. The research plan and informed consent form were approved by the Ethical
Committee of the University of Helsinki. It is important to note that all logs are stored locally, the
logging tool does not upload any data to the cloud, and all evaluation scripts utilizing these logs
were run locally on the computers of participants.

The monitoring system was installed on participants’ laptops and digital activities were continu-
ously recorded in the background thread for 14 days. The system was set to launch automatically
whenever the laptop was turned on. Participants can stop the system anytime, however, we advised
them to avoid doing so during the monitoring period unless it was necessary.
5.1 Data Description
The data were pre-processed into a standardized format, consisting of a stream of information
objects, each comprising of the merged screenshots of documents with the same window title, which
includes a set of entities; an application name, a document title, keywords and non-keyword terms
in OCR-processed text units. We used frame difference methods to exclude duplicate keywords and
terms constantly appearing on the screen and focused only on the information change. Due to a
large number of occurrences with respect to various browsers, we decided to extract the domain
names of the Web pages visited and considered them to be separate applications.

5.2 Data Analysis
Table 1 summarizes the data collected during the two-week digital activity monitoring of thirteen
participants. The number of recorded information objects per participant was 2,903 (𝑆𝐷 = 1, 388),
which corresponded to an average of 78 hours (𝑆𝐷 = 73) of computer usage per participant. The
average number of unique documents and unique applications accessed per participant was 811
(𝑆𝐷 = 326) and 140 (𝑆𝐷 = 52) respectively. An average of 241 (𝑆𝐷 = 208) people entities were found
from the data. Keyword extraction from OCR-processed text units resulted in 35,400 (𝑆𝐷 = 16, 611)
keywords and 17,534 (𝑆𝐷 = 6, 859) non-keyword terms per participant.

Table 1. Summary of the collected data from thirteen participants. An information object describes an access
to an information resource on the computer, such as a textual document, an email, or a Web page. Entities
are applications, documents, people, and keywords that are extracted from the information object.

Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

# applications 188 173 181 83 131 181 135 71 115 234 49 149 135
# documents 1034 1299 1243 564 553 1320 606 460 532 983 359 855 810
# people 62 48 6 14 156 25 293 453 646 346 241 429 419

# keywords 44450 69416 45948 51797 22651 45299 16794 18811 29257 26992 13148 27947 47700

#
information

objects 5460 3483 5543 3306 1461 3787 2043 2008 2417 2096 1090 2884 2171
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5.3 Training details
Hyperparameters for DHP include setting _0 = 0.05 and 𝛾0 = 0.1. For the inference, we used
Sequential Monte Carlo sampling with 8 particles. For BiLSTM we used a sequence length of
𝑊 = 10. The BiLSTM network was modeled using two layers and 64 neurons on each layer. The
network parameters were learned using mini-batch stochastic gradient descent algorithm, where
the batch size was set to 32, the dropout rate set to 0.5, and the learning rate initialized to 0.001.
Categorical-cross-entropy was used as the loss function. The loss on the validation set was also
used as the criterion for the early stopping of the training. We split each user’s data into training
and test sets. We selected 80% of the data for training; and used the remaining 20% as the test set
and the evaluation objective for prediction experiments is that given 80% data for training, we want
to assess the predictive quality for individual user states and entities issued during the remaining
20% of data. We also sampled 20% of the training set as a hold-out validation set. BiLSTM models
were trained for 1000 epochs (that is, 1000 iterations over the entire training set) and then evaluated
against the validation set. The model parameters with the best performance on the validation set
were selected and then evaluated on the test set. The BiLSTM networks were implemented using
TensorFlow library3.

6 EVALUATION
The predictive performance of the model is evaluated by measuring:
• 1) how accurately we can predict the user’s upcoming states (RQ1), and
• 2) how well we can predict the entities the user will use going forward (RQ2).

6.1 Performance Measures
The following standard measures were used:
• user state prediction Accuracy (𝐴𝑐𝑐) which indicates the cumulative accuracy of the correctly
predicted users’ states (or dominant topics in information objects) over the test set for each
user;

𝐴𝑐𝑐 =
1
|𝑁𝑢 |

∑
𝑢

𝐴𝑐𝑐𝑢 (11)

where |𝑁𝑢 | is the total number of users, and𝐴𝑐𝑐𝑢 is the state prediction balanced accuracy for
each user. To obtain the ground truth for evaluating state prediction accuracy, we considered
the topics obtained from the DHP topic model at each time step as the ground truth states.
Due to the imbalanced dataset (which means that some states have much more samples than
that of other states), we used balanced accuracy for multi-class problem [22].
• Hitrate@k of document and application prediction. Hitrate@k is equivalent to the precision of
the top k predicted entities having the entity that the user actually used. Hitrate@k considers
a single correct entity in top-k predictions, while there may be more than one correct people
and keyword appearing on the screen. Therefore, hitrate was not used to measure keywords
and people prediction performance.
• Recall@k of document, application, people, and keyword prediction. Recall@k is computed
as the average fraction of the actual used entities appearing on a participant’s screen in the
next steps that is successfully predicted. How many relevant entities are retrieved?
• Precision@k is the fraction of relevant entities within the top k predicted entities. How many
retrieved entities are relevant?

3https://www.tensorflow.org/ and trained on a machine equipped with GPUs
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• MRR@k (Mean Reciprocal Rank) is a statistical measure used to evaluate the rank position of
the first relevant entity. MRR is the average of reciprocal rank across all the test data.

𝑀𝑅𝑅 =
1
|𝑁𝑢 |

∑
𝑢

𝑀𝑅𝑅𝑢 =
1
|𝑁𝑢 |

∑
𝑢

1
|𝐷𝑢 |

∑
𝑖∈𝐷𝑢

1
𝑟𝑎𝑛𝑘𝑖

(12)

Where |𝐷𝑢 | is the length of the test set for each user, and 𝑟𝑎𝑛𝑘𝑖 represents the ranking of
the model with the top recommended entity at 𝑖th test point. If a rank is greater than 𝑘 , the
reciprocal rank is set to zero.

When evaluating hitrate, precision, recall, and MRR, we considered entities present at the next
information object as ground truth entities at each time instant.

6.2 Baselines
We compare the proposed algorithm with existing algorithms that have been adapted for predicting
future states and entities based on previous users’ behavior.
• Most Recently Used (MRU) that recommends entities from most recent to least recent
ones. Recency is a powerful heuristics that has been continuously applied in commercial
products, e.g., recently used apps or recently made calls [77]. MRU predicts the next entities
to be recommended according to the entities present in the last screenshot. This baseline is
competitive when the user is working on activity for a long time.
• Most Frequently Used (MFU) that evaluates frequencies of entities and recommends them
in decreasing order. Frequency is another common heuristics used in the recommendation of
items and entities. The method predicts the element that will be used by the user based on
how frequently it has been used previously.
• Combined Recency and Frequency (CRF) [16] considers all previous accesses to an entity.
Equation 13 is used to calculate the entity’s weighting𝜔 𝑓 .𝑛 is the number of previous accesses,
𝑡 is the current time step and 𝑡𝑖 represents the time step where access 𝑖 took place (time is
defined in terms of discrete events). In our setting 𝑝 = 2 and _ = 0.1 resulted in the best
performance.

𝜔 𝑓 =

𝑛∑
𝑖=1

1
𝑝

_ (𝑡−𝑡𝑖 )
(13)

• MRU_topic uses the most recent state as the prediction, i.e. removes the sequence modeling
part as it only assumes the next user activity is related to the current state of the user.
MRU_topic is used to evaluate the significance of the sequential information contained in the
user behavior. This baseline only makes use of the context without considering the temporal
information.
These methods treat human actions passively, rather than acknowledging the dynamics of
the user behavior.
• Markov Chain, involves exploiting the sequential nature of user behavior and translating
sessions into Markov processes.

𝑃 (𝑋𝑛+1 = 𝑥 |𝑋𝑛 = 𝑥𝑛) =
|𝑥𝑛 → 𝑥 |
|𝑥𝑛 |

(14)

where |𝑥𝑛 | represents the number of previous occurrences of state 𝑥𝑛 , and |𝑥𝑛 → 𝑥 | represents
the number of previous transitions from state 𝑥𝑛 to 𝑥 . 𝑋𝑛 indicates the state at time 𝑛. Given
the most recent access 𝑥𝑛 , the calculated probabilities produce a ranking.
• LDA uses LDA topic modeling rather than DHP in our proposed model. LDA calculates the
probability of each topic (or state) at each time instant rather than clustering the dataset
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into states. We fed the sequence of these topic vectors into BiLSTM as input. A drawback of
the LDA is that the number of topics must be predetermined. By using the number of topics
acquired from the DHP model, we were able to compare the state prediction accuracy of the
LDA with that of our proposed model.

6.3 Statistical Testing Procedure
In order to determine whether there is a statistically significant difference in performance among
our approach and the baselines, two-tailed paired sample t-tests with the p-value threshold of 0.05
(𝑝 < 0.05) were used. To test the significance levels, we used accuracy in the state prediction, and
hitrate, recall, precision, and MRR in the entity prediction as dependent variables and models as
independent variables. The Shapiro-Wilk test was also used for all normality tests.

6.4 State Prediction Accuracy

Fig. 5. State prediction accuracy in different methods. ` and 𝜎 are the average and standard deviation of the
accuracy in 13 users.

To answer RQ1, we compared the predictive performance of user state for different approaches.
DHP topic modeling provides us with two important outputs: ground truth states at each time
step, and the distribution of entities at each state (𝑝 (𝜖 |𝑧)). Prediction of the states for the baseline
models are as follows. MRU_topic model only considers the most recent state as prediction, so
it doesn’t consider the temporal dynamics of the user behavior. In other words, the LSTM is not
included in the modeling and only the DHP provides us with states. Heuristic baselines (CRF, MFU,
and MRU) provide weight vector for all extracted entities at each time step. In order to convert
these weight vectors to the analogous states of DHP, we used normalized weight vectors at each
model and compared it using cosine similarity against vector of entity distribution for each state
(𝑝 (𝜖 |𝑧)), and took the argmax as the predicted state. The cosine similarity between two vectors
is determined by the angle between those vectors projected in a multi-dimensional space. As the
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angle decreases, the cosine similarity increases. In other words, the closer these vectors of entity
distributions are to each other, the more similar the states. In the LDA-BiLSTM model, we took the
argmax of the predicted topic vector as the state at each time step. Figure 5 shows the comparison
between our proposed model and baselines. By leveraging sequential dynamics between different
user states, our proposed approach improves over the static model MRU_topic, Markov chain,
and other baseline models. There was a significant difference in the state prediction accuracy of
the proposed method compared to baselines. Paired t-test P-values were at p < 0.0001. This result
suggests that modeling the temporal dynamics of the user behavior plays an important role in
predicting the next contextual state of the user. The advantage of LSTMs over HMMs that are based
on Markovian assumptions and have a finite number of hidden states is that they have a continuous
space memory which enables them to make predictions based on longer-term observations. As
we mentioned earlier, one drawback of the LDA topic model is that it relies on determining the
number of topics in advance. This is challenging for this type of data logs. Moreover, documents
are assumed to be exchangeable in the LDA model [3]. This assumption is too restrictive when
addressing streaming documents, since documents about the same topic are not exchangeable as
topics evolve over time [67]. Document collections in our study exhibit evolving content.

6.5 Entities Prediction
Since at each time instant there is only one application (𝑎𝑖 ) and one document (title of the screen 𝑠𝑖 ),
described at the beginning of section 4, it is possible to compare the hitrate@k of these two types of
entities across different models. Figures 6 show the performances of models in terms of hitrate@k for
applications and documents (left and right respectively). Our approach consistently outperforms the
baselines over the top 1-5 and 10 recommendation. These improvements are statistically significant,
as tested with paired Student t-test, 𝑝 < 0.01. Our proposed approach achieves a high hitrate of
more than 0.5 even with a single document prediction (hitrate@1) and more than 0.7 even with a
single app prediction. The results indicate that our approach was successful in anticipating the
applications and documents that the users actually would use in the unseen data.

Fig. 6. Total Hit ratio @ 1, 2, 3, 4, 5, and 10 of applications (left) and documents (right)
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Precision@20 of different models in predicting four different types of entity including application,
document, people, and keywords, is shown in Figure 7. Precision means the percentage of prediction
results that are relevant. It can be seen that the precision in document and application and keyword
prediction is significantly different (𝑝 < 0.05) compared to all baselines except than MRU and MC
in the application. The difference of precision@20 for the people recommendation is significant
only in MRU and MC.

Fig. 7. Total Precision@20 of entities (application, document, people, and keyword) in different methods.
Numbers written on the lower cap are paired t-test P-values for the proposedmethod and baselines, (significant
at 𝑝 < 0.05).

Figure 8 shows performances of the the models in terms of Recall@20 which is an indicator of
how well the model is able to preload the next entity between the top 20 predicted entities. The
results of the application and document prediction indicate recall of our approach outperforms the
baselines, the difference was significant (𝑝 = 0.05), demonstrating the importance of modeling user
states. However, no significant difference was found in the recall of people and keyword prediction
between the models.

Figure 9 shows the MRR for evaluating the effectiveness of improved prediction when it is applied
to the entity that is ranked highest. This metric calculates the average or mean of the inverse of the
ranks at which the first relevant entity was retrieved. As can be seen from the results, our proposed
method performs better, in particular in the document or application, where the user wants to
select one entity to click on and the proposed method provides more reliable predictions.
In summary, our model outperformed the baselines in almost all measures since the model

explicitly considers the temporal behavior of the user, whereas static and heuristic baselines simply
output the ranking of the entities without any sequence information. It is true that the LDA-BiLSTM
model considers the sequential nature of the user’s behavior and it models the dependencies between
entities within a lower-dimensional space, however, the disadvantage of the LDA topic model is
that it needs a predefined number of topics, which are suitable for static data sets of long documents.
However, in our study, we are dealing with streaming corpora that sometimes contain information
objects with a limited number of entities, which makes inference of latent topic distributions more
challenging. Modeling user states and makes a major contribution to the entity prediction. This
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Fig. 8. Total Recall@20 of entities (application, document, people, and keyword) in differentmethods. Numbers
written on the lower cap are paired t-test P-values for the proposed method and baselines (significant at
𝑝 < 0.05).

Fig. 9. Total MRR of entities (application, document, people, and keyword) in different methods. Numbers
written on the lower cap are paired t-test P-values for the proposed method and baselines, (significant at
𝑝 < 0.05).

is visible in the results that the more correctly predicted user states, the higher hitrate, precision,
recall, and MRR.

7 DISCUSSION
The main contribution of this paper is to introduce entity footprinting for predicting the user
information needs using contextual information available on the screen of the user. This system
collects individual’s entity footprints from personal digital devices and automatically extracts state
representation that can be used to learn semantic relationships of the collected information and
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to find related entities such as documents, apps, people, and keywords. A user study provides
evidence that our system is able to proactively produce relevant resources and is suited for re-finding
previously seen entities.

It is important to note that entity footprinting differs significantly from other recommendation
tasks, such as movies, songs, and shopping items. In this research, users have a lot of information
about the entities with which they have previously interacted, and they have a clear objective with
regard to finding or relocating specific entities (e.g. documents, apps, people) when they work
with their digital devices. Therefore, a successful recommendation system in the setting of entity
footprinting requires an accurate recommendation algorithm. A more accurate recommendation
indicates that the proposed method can reduce users’ manual search effort by providing them with
more relevant and useful information.
Furthermore, the entity footprinting presented in this paper differs from the other personal

information management systems in three ways. First, our approach in this work is on being
proactive, in the sense that it does not require any action from users and instead exploits context
from users’ screens and past interactions to predict users’ needs in the future and provide them with
information that is relevant to their predicted tasks. Aside from that, users’ everyday digital activities
are heterogeneous, meaning that they are not limited to a specific application and can switch across
several applications. Therefore, the second difference is that the entity footprinting is principally
based on screen recordings, hence making it a general system that is agnostic to tasks users perform
or applications they use for their tasks. In this work, we didn’t conduct any experimental study
with the controlled settings in the lab and we examined in-the-wild data collection and real-world
tasks. By using a single data source (users’ screen), we were able to create a rich user model without
requiring any human supervision. Entity footprinting was examined especially on dataset acquired
from mostly knowledge workers, however, is not limited to knowledge work and can be applied to
other types of computer users as well. Participants in our user study were engaged in different types
of tasks ranging from writing thesis and coding, to checking social media, online shopping, and
reading news. Within these tasks, participants took part in different activities, and their intents and
preferences frequently changed. Due to this drift in intents and preferences for entities over time,
entity footprinting should be time-sensitive. Therefore, the third difference is that our proposed
model explicitly takes into account the temporal behavior of the user.
The proposed system can augment the human with a digital memory of entities interacted.

This memory can be used in different applications building on personal digital data. Among these
applications are: (1) proactive search, in which users are provided with information based on their
past behavior, rather than explicitly querying for information, and are able to learn their interests
and search preferences based on their history; (2) time-line search, which aids in recalling events
and searching for specific information by displaying the information on a graphical time-line;
and (3) associative recall, that deals with specific relationships between entities. It is possible that
we remember some partial information, but not the exact information we are looking for. Entity
footprinting provides cues that can facilitate associative recall.
Results on state prediction accuracy showed that the proposed method is able to capture the

users’ rapidly evolving preferences and consequently provide them with entities that are actually
used in their tasks. Our findings provide evidence that considering contextual as well as temporal
information can help the entity footprinting system identify significantly more relevant entities
than other baselines when performing real-world digital tasks. Nevertheless, utilizing a digital
activity monitoring method is not without limitations. Here, we acknowledge the limitations of
our study and outline potential research areas for future studies.

Artifact Access Some information, such as web bookmarks, may always be visible on the active
windows regardless of the task at hand. The model may be confused by this information.
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Experiment Limitations. Our findings were based on a 13-person experiment that lasted for
two weeks. In order to ensure that our findings will be valid for a broader population, a larger
experiment over a longer period of time will be necessary. Although our observations have provided
us with valuable insights, the possibility of improving the prediction accuracy could have been
enhanced by longer sessions and more data.

Generalization. It is not feasible to generalize from one person’s collection of personal informa-
tion objects to another because of the abundance of specialized tasks, keywords, and entities used.
Therefore, our model should operate at an individual level by processing data from each user’s
device, without relying on collective patterns across multiple users.

Privacy. The monitoring system introduced in this work may contain sensitive information.
However, this is a common issue with most personal assistant systems. Some participants disabled
the monitoring temporarily during some activities. More study of the concealed data could assist
in automating the process of setting the privacy boundaries that users expect.

Influence on User Behavior. An evaluation of performance could be conducted, rather than
focusing on relevance, to quantify the usefulness and impact that comprehensive entity footprinting
can have on users’ daily digital activities.

7.1 Future work
There are several future directions for this work. One could improve the model by incorporating
other temporal features such as duration and timing of events and activities, and here, the Hawkes
process can play a crucial role in creating more accurate models. There is important information
to be gained by analyzing the precise interval between two events in order to understand the
dynamics of the underlying behavior. The characteristics of these data establish a fundamental
difference from independent and identically distributed time series data, where time is viewed
as index rather than randomly distributed variables. The second direction of extensions can also
further investigate the dependence between the user states and their transitions. Most user states
discovered by our models generally correspond to repetitive human tasks. By recognizing which
routine a user probably engages in, a collection of related entities can be recommended.
The data stored in entity footprinting is in textual form. Even those files that contain images,

videos or voices are stored and retrieved by the name of the file in textual form. It is however
possible to convert these types of data into textual data (e.g. speech-to-text, visual concept detection)
and augment them with extracted textual information.
Furthermore, there is no comparison with other temporal dynamics modelings (e.g., RNN,

transformers). Using RNN at the entity level may result in higher accuracy in predicting entities as
it can take advantage of entity level statistics. However, the aim of this work was to investigate
the possibility of modeling user states via digital activity monitoring. Therefore, comparing other
advanced models such as transformer-based models and the proposed method is an interesting
area of future work.

8 CONCLUSIONS
Despite the fact that entity recommendation systems are becoming a common feature of personal
assistants and commercial platforms, research in this area is limited to specific applications or pre-
defined tasks. However, our focus in this paper was to study the applicability of entity footprinting
in everyday digital life. We investigated how much the proposed approach is able to understand
the users’ states while they perform their everyday digital tasks using heterogeneous applications.
This has been enabled by a digital activity monitoring system, that allowed context extraction
across application boundaries. By automatically predicting and presenting relevant information
in advance, users can easily access the information without having to formulate specific queries.
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The proposed model (1) is unsupervised and does not need any knowledge about the categories of
activities or tasks; (2) clusters the high-dimensional digital activity data into a meaningful states;
(3) considers the time-varying nature of the human behavior by sequential and attention model;
and (4) represents the predicted states as ranking over entities to be able to recommend top-ranked
entities.

In order to validate our approach, we implemented it in the introduced entity footprinting system
and conducted a user study with a realistic data set. We investigated the impact of the user’s state
dynamic evolution on finding more relevant entities. In the earlier study based on EntityBot system,
the user model relied on linear modeling to address the challenges inherent in high-dimensionality,
limited explicit interaction, and being real-time for interactive use. However, in this work, we
developed a more complex model using DHP topic model and BiLSTM network to learn the user
states and their dynamic behavior. In this paper, we have presented a prediction framework for
user state that incorporates two factors influencing user digital daily behavior: context and user
preferences. We evaluated this framework with a 2-week 13-subject field trial and compared it to
heuristic, static, and other baselines.
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