Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Väitöskirjat
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Väitöskirjat
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of finite elements for analysis of biomechanical structures using flexible multibody formulations

Valkeapää, Antti (2014-12-18)

Katso/Avaa
Antti Valkeapää 11 12 .pdf (1.310Mb)
Lataukset: 


Väitöskirja

Valkeapää, Antti
18.12.2014
Lappeenranta University of Technology

Acta Universitatis Lappeenrantaensis

Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-265-683-4

Kuvaus

ei tietoa saavutettavuudesta

Tiivistelmä

The absolute nodal coordinate formulation was originally developed for the analysis
of structures undergoing large rotations and deformations. This dissertation
proposes several enhancements to the absolute nodal coordinate formulation
based finite beam and plate elements. The main scientific contribution of this
thesis relies on the development of elements based on the absolute nodal coordinate
formulation that do not suffer from commonly known numerical locking
phenomena. These elements can be used in the future in a number of practical
applications, for example, analysis of biomechanical soft tissues. This study
presents several higher-order Euler–Bernoulli beam elements, a simple method
to alleviate Poisson’s and transverse shear locking in gradient deficient plate
elements, and a nearly locking free gradient deficient plate element.
The absolute nodal coordinate formulation based gradient deficient plate elements
developed in this dissertation describe most of the common numerical locking
phenomena encountered in the formulation of a continuum mechanics based
description of elastic energy. Thus, with these fairly straightforwardly formulated
elements that are comprised only of the position and transverse direction gradient
degrees of freedom, the pathologies and remedies for the numerical locking
phenomena are presented in a clear and understandable manner. The analysis of
the Euler–Bernoulli beam elements developed in this study show that the choice
of higher gradient degrees of freedom as nodal degrees of freedom leads to a
smoother strain field. This improves the rate of convergence.
Kokoelmat
  • Väitöskirjat [1123]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste