Fine-Grained Wood Species Identification Using Convolutional Neural Networks
Shustrov, Dmitrii; Eerola, Tuomas; Lensu, Lasse; Kälviäinen, Heikki; Haario, Heikki (2019-05-12)
Post-print / Final draft
Shustrov, Dmitrii
Eerola, Tuomas
Lensu, Lasse
Kälviäinen, Heikki
Haario, Heikki
12.05.2019
11482
67-77
Springer, Cham
Lecture Notes in Computer Science
School of Engineering Science
Kaikki oikeudet pidätetään.
© Springer Nature Switzerland AG 2019
© Springer Nature Switzerland AG 2019
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019102935417
https://urn.fi/URN:NBN:fi-fe2019102935417
Tiivistelmä
This paper considers the wood species identification from images of boards. The identification using only visual features of the surface is a challenging task even for an expert. The task becomes especially difficult when the wood species are from the same family. We propose a CNN based framework for the fine-grained classification of wood species. The framework includes a patch extraction procedure where board images are divided into image patches. Each patch is separately classified using the CNN resulting in multiple classification results per board. Finally, the patch classification results for a single board are combined. We evaluate various CNN architectures using the challenging data, consisting of species from the Pinaceae family. In addition, we propose three alternative decision rules for combining the patch classification results. By selecting a suitable amount of image patches, the proposed framework was able to achieve over 99% identification accuracy and real-time performance.
Lähdeviite
Shustrov, D., Eerola, T., Lensu, L., Kälviäinen, H., Haario, H., Fine-Grained Wood Species Identification Using Convolutional Neural Networks, Image Analysis, Springer Lecture Notes in Computer Science, LNCS Vol. 11482, pp. 67–77, 2019, Proceedings of the 21st Scandinavian Conference on Image Analysis (SCIA 2019), Norrköping, Sweden, 2019. DOI: https://doi.org/10.1007/978-3-030-20205-7_6
Alkuperäinen verkko-osoite
https://link.springer.com/chapter/10.1007%2F978-3-030-20205-7_6Kokoelmat
- Tieteelliset julkaisut [1464]