Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Framework for the Identification of Rare Events via Machine Learning and IoT Networks

Nardelli, Pedro; Papadias, Constantinos; Kalalas, Charalamps; Alves, Hirley; Christou, Ioanns T.; Macaluso, Irene; Marchetti, Nicola; Palacios, Raul; Alonso-Zarate, Jesus (2019-10-21)

Katso/Avaa
nardelli_et_al_framework_for_post_print.pdf (324.9Kb)
Lataukset: 


Post-print / Final draft

Nardelli, Pedro
Papadias, Constantinos
Kalalas, Charalamps
Alves, Hirley
Christou, Ioanns T.
Macaluso, Irene
Marchetti, Nicola
Palacios, Raul
Alonso-Zarate, Jesus
21.10.2019

International Symposium on Wireless Communication Systems

IEEE

School of Energy Systems

Kaikki oikeudet pidätetään.
© Copyright 2019 IEEE
https://doir.org/10.1109/ISWCS.2019.8877287
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2019111337968

Tiivistelmä

This paper introduces an industrial cyber-physical system (CPS) based on the Internet of Things (IoT) that is designed to detect rare events based on machine learning. The framework follows the following three generic steps: (1) Large data acquisition / dissemination: A physical process is monitored by sensors that pre-process the (assumed large) collected data and send the processed information to an intelligent node (e.g., aggregator, central controller); (2) Big data fusion: The intelligent node uses machine learning techniques (e.g., data clustering, neural networks) to convert the received ("big") data to useful information to guide short-term operational decisions related to the physical process; (3) Big data analytics: The physical process together with the acquisition and fusion steps can be virtualized, building then a cyber-physical process, whose dynamic performance can be analyzed and optimized through visualization (if human intervention is available) or artificial intelligence (if the decisions are automatic) or a combination thereof. Our proposed general framework, which relies on an IoT network, aims at an ultra-reliable detection/prevention of rare events related to a pre-determined industrial physical process (modelled by a particular signal). The framework will be process- independent, however, our demonstrated solution will be designed case-by-case. This paper is an introduction to the solution to be developed by the FIREMAN consortium.

Lähdeviite

Nardelli P., Papadias C., Kalalas C., Alves H., Christou I. T., Macaluso I., Marchetti N., Palacios R., Alonso-Zarate J. (2019). Framework for the Identification of Rare Events via Machine Learning and IoT Networks. Published in: 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27-30 Aug. 2019. DOI: 10.1109/ISWCS.2019.8877287

Kokoelmat
  • Tieteelliset julkaisut [1560]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste