Predictive Analytics in a Pulp Mill using Factory Automation Data—Hidden Potential
Nykyri, Mikko; Kuisma, Mikko; Kärkkäinen, Tommi; Hallikas, Jukka; Junkkari, Tero; Kerkelä, Kari; Puustinen, Jouko; Myrberg, Jesse (2020-01-30)
Post-print / Final draft
Nykyri, Mikko
Kuisma, Mikko
Kärkkäinen, Tommi
Hallikas, Jukka
Junkkari, Tero
Kerkelä, Kari
Puustinen, Jouko
Myrberg, Jesse
30.01.2020
1014-1020
IEEE
School of Energy Systems
Kaikki oikeudet pidätetään.
© 2019 IEEE
© 2019 IEEE
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202002034321
https://urn.fi/URN:NBN:fi-fe202002034321
Tiivistelmä
Industrial automation systems have collected vast amounts of data for years. Data analytics and machine learning can be used to reveal different phenomena and anomalies, which may be otherwise impossible to see. However, the opportunities offered by the data are not currently utilized even though the technology is available. In this paper, a the potential use of the data analytics and machine learning of automation system data is presented. A case study on indirect measurement and predictive analysis of electric motor overcurrent was carried out in a pulp mill. Predictive models reached accuracy up to 98,85 %. The methods presented can be generalized to other processes. Since automation systems store data in most industrial sites, no additional hardware is necessarily needed for industrial internet of things (IIoT) systems, making a factory scale IIoT system possible.
Lähdeviite
Nykyri, M. Kuisma, M., Kärkkäinen, T.J., Junkkari, T., Kerkelä, K., Puustinen, J., Myrberg, J., Hallikas, J. (2019). Predictive Analytics in a Pulp Mill using Factory Automation Data—Hidden Potential. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 2019. pp. 1014-1020. DOI: 10.1109/INDIN41052.2019.8972070
Kokoelmat
- Tieteelliset julkaisut [1423]