Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling the stochastic dynamics of transitions between states in social systems incorporating self-organization and memory

Zhukov, Dmitry; Khvatova, Tatiana; Millar, Carla; Zaltcman, Anastasia (2020-06-16)

Katso/Avaa
zhukov_et_al_modelling_the_stochastic_aam.pdf (1.246Mb)
Huom!
Sisältö avataan julkiseksi
: 17.06.2022

Post-print / Final draft

Zhukov, Dmitry
Khvatova, Tatiana
Millar, Carla
Zaltcman, Anastasia
16.06.2020

Technological Forecasting and Social Change

158

Elsevier

School of Business and Management

https://doi.org/10.1016/j.techfore.2020.120134
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi-fe20201209100106

Tiivistelmä

This conceptual research presents a new stochastic model of the dynamics of state-to-state transitions in social systems, the Zhukov–Khvatova model. Employing a mathematical approach based on percolation theory the model caters for random changes, system memory and self-organisation. Curves representing the approach of the system to the percolation threshold differ significantly from the smooth S-shaped curves predicted by existing models, showing oscillations, steps and abrupt steep gradients.

The modelling approach is new, working with system level parameters, avoiding reference to node-level changes and modelling a non-Markov process by including self-organisation and the effects (memory) of previous system states over a configurable number of time intervals. Computational modelling is used to demonstrate how the percolation threshold (i.e. the share of nodes which allows information to spread freely within the network) is reached.

Possible applications of the model discussed include modelling the dynamics of viewpoints in society during social unrest and elections, changing attitudes in social networks and forecasting the outcome of promotions or uptake of campaigns. The easy availability of system level data (network connectivity, evolving system penetration) makes the model a particularly valuable addition to the toolkit for social sciences, politics, and potentially marketing.

Lähdeviite

Zhukov, D., Khvatova, T., Millar, C., Zaltcman, A. (2020). Modelling the stochastic dynamics of transitions between states in social systems incorporating self-organization and memory. Technological Forecasting and Social Change, vol. 158. DOI: 10.1016/j.techfore.2020.120134

Alkuperäinen verkko-osoite

https://www.sciencedirect.com/science/article/pii/S0040162520309604?via%3Dihub
Kokoelmat
  • Tieteelliset julkaisut [723]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Lähetä palautetta | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Lähetä palautetta | Tietosuoja | Saavutettavuusseloste