Synthesis and optimization of Kraft process evaporator plants
Neto, Márcio R. V. (2021-03-09)
Väitöskirja
Neto, Márcio R. V.
09.03.2021
Lappeenranta-Lahti University of Technology LUT
Acta Universitatis Lappeenrantaensis
School of Energy Systems
School of Energy Systems, Energiatekniikka
Kaikki oikeudet pidätetään.
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-335-635-1
https://urn.fi/URN:ISBN:978-952-335-635-1
Tiivistelmä
In this dissertation, a novel methodology based on process superstructures for the synthesis and optimization of multiple-effect evaporation systems is described. The methodology allows for the structure and heat transfer areas of multiple-effect evaporation systems to be simultaneously considered in optimization without having to resort to any previously selected arrangements. The methodology is applied to industrial evaporator case studies where it is necessary to simultaneously size and determine the best way to arrange additional evaporator bodies in an existing system to increase maximum load. An equation-oriented simulator for chemical pulp mill evaporator plants was developed and used in conjunction with differential evolution. A sequential-modular simulator was also developed for comparison. Multiple-effect evaporator plants were used as case studies to highlight the workings of the new method and to assess its viability in realistic systems. Through this methodology, it was possible to determine the optimal arrangement and heat transfer areas for the studied systems. Nesta tese é descrita uma nova metodologia para síntese e otimização de sistemas de evaporadores de múltiplo efeito baseada em superestruturas de processo. A metodologia permite que sistemas de evaporadores de múltiplo efeito sejam otimizados levando em conta, simultaneamente, a sua estrutura e as áreas de troca térmica, sem haver a necessidade de recorrer a estruturas predeterminadas. A metodologia foi aplicada a estudos de caso em que era necessário especificar e posicionar novos corpos evaporadores em sistemas pré-existentes cuja capacidade deveria ser aumentada. Um simulador orientado a equações para plantas de evaporação foi desenvolvido e utilizado em conjunto com o algoritmo de otimização estocástica Evolução Diferencial. Um sequencial modular foi também desenvolvido para comparação. Plantas de evaporação de múltiplo efeito foram tomadas como estudos de caso para destacar o funcionamento do novo método e para avaliar sua viabilidade de aplicação em sistemas realistas. Através desta metodologia, foi possível determinar o arranjo ótimo e as áreas de transferência de calor correspondentes aos sistemas estudados.
Kokoelmat
- Väitöskirjat [1099]