Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interrelationship between daily COVID‑19 cases and average temperature as well as relative humidity in Germany

Ganegoda, Naleen Chaminda; Wijaya, Karunia Putra; Amadi, Miracle; Erandi, K. K. W. Hashita; Aldila, Dipo (2021-05-28)

Katso/Avaa
ganegoda_et_al_interrelationship_between_daily_covid-19_cases_publishers_version.pdf (1.542Mb)
Lataukset: 


Publishers version

Ganegoda, Naleen Chaminda
Wijaya, Karunia Putra
Amadi, Miracle
Erandi, K. K. W. Hashita
Aldila, Dipo
28.05.2021

Scientific Reports

11

Springer Nature

School of Engineering Science

https://doi.org/10.1038/s41598-021-90873-5
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021060232783

Tiivistelmä

COVID-19 pandemic continues to obstruct social lives and the world economy other than questioning the healthcare capacity of many countries. Weather components recently came to notice as the northern hemisphere was hit by escalated incidence in winter. This study investigated the association between COVID-19 cases and two components, average temperature and relative humidity, in the 16 states of Germany. Three main approaches were carried out in this study, namely temporal correlation, spatial auto-correlation, and clustering-integrated panel regression. It is claimed that the daily COVID-19 cases correlate negatively with the average temperature and positively with the average relative humidity. To extract the spatial auto-correlation, both global Moran’s I and global Geary’s C were used whereby no significant difference in the results was observed. It is evident that randomness overwhelms the spatial pattern in all the states for most of the observations, except in recent observations where either local clusters or dispersion occurred. This is further supported by Moran’s scatter plot, where states’ dynamics to and fro cold and hot spots are identified, rendering a traveling-related early warning system. A random-effects model was used in the sense of case-weather regression including incidence clustering. Our task is to perceive which ranges of the incidence that are well predicted by the existing weather components rather than seeing which ranges of the weather components predicting the incidence. The proposed clustering-integrated model associated with optimal barriers articulates the data well whereby weather components outperform lag incidence cases in the prediction. Practical implications based on marginal effects follow posterior to model diagnostics.

Lähdeviite

Ganegoda, N.C., Wijaya, K.P., Amadi, M. et al. Interrelationship between daily COVID-19 cases and average temperature as well as relative humidity in Germany. Sci Rep 11, 11302 (2021). https://doi.org/10.1038/s41598-021-90873-5

Alkuperäinen verkko-osoite

https://www.nature.com/articles/s41598-021-90873-5
Kokoelmat
  • Tieteelliset julkaisut [1556]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste