Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Beyond big data – new techniques for forecasting elections using stochastic models with self-organisation and memory

Zhukov, Dmitry; Khvatova, Tatiana; Millar, Carla; Andrianova, Elena (2021-12-10)

Katso/Avaa
zhukov_et_al_beyond_big_data_aam.pdf (890.3Kb)
Lataukset: 


Post-print / Final draft

Zhukov, Dmitry
Khvatova, Tatiana
Millar, Carla
Andrianova, Elena
10.12.2021

Technological Forecasting and Social Change

175

Elsevier

School of Business and Management

https://doi.org/10.1016/j.techfore.2021.121425
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022021619354

Tiivistelmä

This paper introduces an innovative social process model addressing population-wide measures of voter preferences that was tested on data from the 2016 US presidential election. Population-wide, “macroscopic” parameters are needed when privacy, ethics or regulatory constraints block “big data” techniques (e.g., in political contexts to counter “micro-targeting”). Confidence will be eroded if existing trend models and other macroscopic approaches frequently fail to predict outcomes, however campaign data reveal mathematical features that suggest a different possible approach. Given that the populations modelled exhibit self-organisation and memory when transmitting viewpoints, our model is based on mathematical representations of such processes. Its validation indicates the applicability and potential generalisability of this theoretical approach. In order to design a stochastic dynamics model of changing voter preferences, we evaluated probability models for transitions between possible system states (magnitudes of voter preferences), formulated the boundary task for probability density functions and derived a second-order non-linear differential equation incorporating self-organisation and memory. We find consistent dependencies between influences on the system and its reaction, and it is congruent with empirical data. The ability to use researchable global parameters indicates the potential for modelling electoral processes and wider applicability for complex social processes, avoiding dependence on “internal” variables.

Lähdeviite

Zhukov, D., Khvatova, T., Millar, C., Andrianova, E. (2021). Beyond big data – new techniques for forecasting elections using stochastic models with self-organisation and memory. Technological Forecasting and Social Change, vol. 175. DOI: 10.1016/j.techfore.2021.121425

Alkuperäinen verkko-osoite

https://www.sciencedirect.com/science/article/abs/pii/S0040162521008568?via%3Dihub
Kokoelmat
  • Tieteelliset julkaisut [1560]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste