Open-Set Plankton Recognition Using Similarity Learning
Badreldeen Bdawy Mohamed, Ola; Eerola, Tuomas; Kraft, Kaisa; Lensu, Lasse; Kälviäinen, Heikki (2022-12-11)
Post-print / Final draft
Badreldeen Bdawy Mohamed, Ola
Eerola, Tuomas
Kraft, Kaisa
Lensu, Lasse
Kälviäinen, Heikki
11.12.2022
174-183
Springer, Cham
Lecture Notes in Computer Science
School of Engineering Science
Kaikki oikeudet pidätetään.
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022121471434
https://urn.fi/URN:NBN:fi-fe2022121471434
Tiivistelmä
Automatic plankton recognition provides new possibilities to study plankton populations and various environmental aspects related to them. Most of the existing recognition methods focus on individual datasets with a known set of classes limiting their wider applicability. Automated plankton imaging instruments capture images of unknown particles and the class (plankton species) composition varies between geographical regions and ecosystems. This calls for an open-set recognition method that is able to reject images from unknown classes and can be easily generalized to new classes. In this paper, we show that a flexible model capable of high classification accuracy can be obtained by utilizing similarity learning and a gallery set of known plankton species. The model is shown to generalize well for new plankton classes added in the gallery set without retraining the model. This provides a good basis for the wider utilization of plankton recognition methods in aquatic research.
Lähdeviite
Badreldeen Bdawy Mohamed, O., Eerola, T., Kraft, K., Lensu, L., Kälviäinen, H. (2022). Open-Set Plankton Recognition Using Similarity Learning. In: , et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_13
Kokoelmat
- Tieteelliset julkaisut [1518]