Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
  •   Etusivu
  • LUTPub
  • Tieteelliset julkaisut
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Integrated Framework for Enhancing Security and Privacy in IoT-Based Business Intelligence Applications

Kumar, Randhir; Kumar, Prabhat; Jolfaei, Alireza; Islam, A. K. M. Najmul (2023-02-17)

Katso/Avaa
kumar_et_al_an_integrated_aam.pdf (503.7Kb)
Huom!
Sisältö avataan julkiseksi
: 18.02.2025

Post-print / Final draft

Kumar, Randhir
Kumar, Prabhat
Jolfaei, Alireza
Islam, A. K. M. Najmul
17.02.2023
IEEE

School of Engineering Science

Kaikki oikeudet pidätetään.
© 2023 IEEE
https://doi.org/10.1109/ICCE56470.2023.10043450
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023022027837

Tiivistelmä

Business intelligence (BI) is the procedure of strategically planning and using a variety of tools and techniques to get important data insights and make wise business decisions. The Internet of Things (IoT) has emerged as the main source of big data with the most real-time data used across all business sectors in recent years. However, the expansion of business results is impacted by the integration of IoT as data sources with conventional BI systems. This is because there are now more security and privacy concerns in IoT ecosystems as a result of adversaries undertaking data inference and poisoning attacks on networked IoT devices via the open communication medium Internet. This study proposes an integrated architecture for strengthening security and privacy in IoT-based BI applications, which is inspired by the discussion above. The suggested structure contains two engines: an intrusion detection engine and a two-level privacy engine. Due to adversaries conducting data inference and poisoning attacks on networked IoT devices over the open communication medium Internet, there are now additional security and privacy risks in IoT ecosystems. Based on the discussion above, this study suggests an integrated architecture for enhancing security and privacy in IoT-based BI applications. The two different engines are designed namely two-level privacy and intrusion detection engine. The experimental outcomes utilising the real IoT-based dataset ToN-IoT show that the suggested strategy outperforms previous peer privacy-preserving machine learning algorithms in terms of detection rate, accuracy, F1 score, and precision.

Lähdeviite

Kumar, R., Kumar, P., Jolfaei, A., Islam, A. K. M. N. (2023). An Integrated Framework for Enhancing Security and Privacy in IoT-Based Business Intelligence Applications. In: 2023 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA. DOI: 10.1109/ICCE56470.2023.10043450

Kokoelmat
  • Tieteelliset julkaisut [1140]
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetKoulutusohjelmaAvainsanatSyöttöajatYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
LUT-yliopisto
PL 20
53851 Lappeenranta
Ota yhteyttä | Tietosuoja | Saavutettavuusseloste